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Abstract

We study the Neumann problem for the de Rham complex in a
bounded domain of R

n with singularities on the boundary. The sin-
gularities may be general enough, varying from Lipschitz domains to
domains with cuspidal edges on the boundary. Following Lopatinskii
we reduce the Neumann problem to a singular integral equation of the
boundary. The Fredholm solvability of this equation is then equivalent
to the Fredholm property of the Neumann problem in suitable func-
tion spaces. The boundary integral equation is explicitly written and
may be treated in diverse methods. This way we obtain, in particu-
lar, asymptotic expansions of harmonic forms near singularities of the
boundary.
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1 Introduction

We testify two approaches to boundary value problems for second order el-
liptic equations in domains with singularities on the boundary. Namely, we
study the Neumann problem for the de Rham complex in domains with edges
on the boundary. This problem is known to be motivated by the Hodge the-
ory on compact manifolds with boundary. The first approach consists of a
calculus of pseudodifferential operators on a manifold with edges. It gives a
criterion for the Fredholm property that consists of the unique solvability of
a boundary value problem for a Bessel type ordinary differential equation in
a semicylinder. The coefficients of the equation are operator-valued while the
weighted Sobolev spaces under study are very delicate. The second approach
reduces the Neumann problem to a pair of singular integral equations on the
boundary which is a Lipschitz surface. The equations are written explicitly,
and the symbol of the system is a triangular matrix. Hence the Fredholm
property of the Neumann problem is equivalent to that of an explicit singular
integral equation on the boundary. Thus, our treatment gives some suggestive
evidence to the advantage of the latter approach in the case of second order
elliptic equations.

2 Stratified spaces

In this paper we discuss boundary value problems for solutions of differential
equations on manifolds with singularities of sufficiently general nature. As
singularities we admit edges of diverse dimensions which meet each other at
nonzero angles. The same sets are thought of as carriers of discontinuity of
coefficients.

The manifolds with singularities in question are actually stratified spaces or,
figuratively speaking, collections of differentiable manifolds which are suitably
pasted together, cf. [Whi46]. We define them by induction in n = 0, 1, . . ., n
being the dimension.

Denote by V0 the class of finite collections of points endowed with the
discrete topology. By a differentiable function on such a set is understood any
function.

Suppose the classes V0,V1, . . . ,Vn−1 have been already defined, and intro-
duce Vn. Let T be a compact Hausdorff topological space, and {Ui} a finite
open covering of T . We require that for each i there be a homeomorphism hi

of Ui onto a relatively compact subset of a product Rq × C(V ), where C(V )
is the topological cone over a space V ∈ Vn−q−1. Away from the vertex C(V )
just amounts to R+ × V , which bears already a C∞ structure by the very
construction.

Given a point p ∈ Ui, write (y, z) for the projections of hi(p) to the factors
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of Rq ×C(V ). We can furthermore specify z ∈ C(V ) as (r, x), where r ≥ 0 and
x ∈ V . In this way we reduce the definition of a C∞ structure near the vertex
of C(V ), which is blown up to {0}×V , to introducing a C∞ structure at r = 0
on the half-axis R̄+. This latter usually originates from the geometry of the
cone which is given by a Riemannian metric dr2 +(δ′(r))−2dx2 of product type
on R+ × V , where δ is a C∞ function on R+. As usual, Rq × C(V ) is said to
be a model wedge with an edge along Rq. It is based on the cone C(V ) whose
cross-section or link is the singular space V . The case q = 0 is not excluded,
hence any point singularity can be formally thought of as an edge of dimension
0. Every model wedge gives rise to a typical vector field δ′(r)Dx along the link
V . The derivative Dx can in turn be degenerate, too, unless V is a smooth
compact manifold.

In the sequel, the edges of diverse dimensions in T are denoted by Y , and
X = LY stands for the link of Y . We thus arrive at a finite partition Z of
T into locally closed subspaces S, such that every piece S ∈ Z is a smooth
manifold without boundary in the induced topology, and if R∩S �= ∅ for some
R, S ∈ Z, then R ⊂ S. In the latter case one writes R < S and says that R is
incident to S, or a boundary piece of S. The incidence relation is easily seen
to be an order relation on the set of pieces of T . This justifies the designation
R < S.

A compact manifold with boundary is a simplest example of a stratified
space, the decomposition being ∂M < M \ ∂M . The boundary itself is an
edge of codimension 1, with a link consisting of a single point. A compact
manifold with a singular point on the boundary bears a natural stratification
P < ∂M \ P < M \ ∂M . More generally, a compact manifold with a smooth
edge on the boundary possesses a stratification Y < ∂M \Y < M \∂M . Since
the analysis of elliptic boundary value problems is local by the very nature, we
restrict our discussion to this latter case. For a thorough treatment we refer
the reader to [NP91].

3 Elliptic boundary value problems

Boundary value problems in domains with conical points on the boundary were
studied quite thoroughly by Kondrat’ev [Kon67]. Boundary value problems
with singularities of the boundary concentrated on a smooth q -dimensional
manifold were studied from various points of view in [VE67], [Gru71], [Fei72],
[MP77], [KO83], etc.

Let D be a relatively compact domain in Rn whose boundary contains
an edge Y . This means, Y is a smooth q -dimensional submanifold of R

n

without boundary and ∂D \ Y is a smooth hypersurface. Moreover, for each
point y ∈ Y there is a neighbourhood U in Rn and a diffeomorphism h of
U onto an open set O in Rn, such that h(U ∩ D) = O ∩ (Rq × C(X)) where
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C(X) = {(zn−qz
′, zn−q) : z′ ∈ X, zn−q > 0} is a cone over a bounded domain

X ⊂ Rn−q−1.
In U ∩D we can thus use local coordinates (y, r, x) ∈ Rq ×R+ ×X, where

r = zn−q and x = z−1
n−qz

′. Then

Dzj
= r−1Dxj

, for j = 1, . . . , n − q − 1,

Dzn−q = Dr − r−1

n−q−1∑
j=1

xjDxj
,

hence any differential operator L of order 2m in D takes in the local coordinates
of U ∩ D the form

π∗L =
1

r2m

∑
|β|+k+|α|≤2m

Lβ,k,α(y, r, x)
(
rDy

)β(
rDr

)k

Dα
x , (3.1)

the coefficients Lβ,k,α being (k × k) -matrices of smooth functions in U ∩ D.
When posing boundary value problems for solutions of Lu = f in D, one
usually assumes that the coefficients of L are C∞ up to the smooth part of
the boundary, i.e., ∂D \ Y . We restrict our discussion to those differential
operators L, for which the coefficients Lβ,k,α are actually smooth up to the
edge, the latter corresponding to r = 0. This condition can be relaxed by
requiring the continuity of Lβ,k,α up to r = 0 along with certain asymptotic
expansions for r → 0.

The vector field Dr = rDr is called the Fuchs derivative. The analysis of
Fuchs type operators is typical for conical singularities.

As is easy to check, the differential operators (3.1) are invariant under
those local diffeomorphisms of D, which preserve the cone bundle structure of
D close to the edge Y . In this way we obtain what will be referred to as edge
degenerate operators.

The natural domains of edge degenerate operators are weighted Sobolev
spaces Hs,γ(D, Ck) depending on two real parameters s and γ. The index s
specifies the smoothness over D, while the index γ specifies the growth near
Y . For s = 0, 1, . . ., the space Hs,γ(D, Ck) is defined to be the completion of
C∞

comp(D \ Y, Ck) with respect to the norm

‖u‖2
Hs,γ(D,Ck) =

∫
D

ρ−2γ
( ∑

|ϑ|≤s

ρ2|ϑ| |Dϑu(w)|2
)

dw, (3.2)

where ρ is a smooth positive function on D \ Y which is equal to the distance
from Y near the edge Y . For non-integral s > 0 the space Hs,γ(D, Ck) is
defined by complex interpolation, and for s < 0 it is introduced by a familiar
duality argument.
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Our next objective is to microlocalise the norm (3.2). Since Y is compact,
there is a finite covering {Ui} of Y by open sets in Rn and a family of diffeo-
morphisms hi : Ui → Oi, such that hi(Ui ∩ D) = Oi ∩ (Rq × C(Xi)). Pick a
partition of unity {ϕi} in some neighbourhood of Y subordinate to the cover-
ing {Ui}, i.e., ϕi ∈ C∞

comp(Ui) and
∑

ϕi = 1 near Y . Set ϕ0 = 1 − ∑
ϕi, then

ϕ0 is a C∞ function on the closure of D, vanishing close to Y . Hence it follows
that

‖u‖2
Hs,γ(D,Ck) ∼ ‖ϕ0u‖2

Hs(D,Ck) +
∑

‖ϕiu‖2
Hs,γ(D,Ck).

For each i, the product ϕiu has compact support in Ui ∩ D with local coordi-
nates (y, r, x). An easy verification shows that the norm of ϕiu in Hs,γ(D, Ck)
is actually equivalent to

(∫
Rq

∞∫
0

r−2γ+(n−q−1)
∑

|β|+j+A≤s

(1 + r2)s−|β|−j−A
∥∥(rDy)

βDj
rhi,∗(ϕiu)

∥∥2

HA(Xi)
dydr

)1
2

(3.3)
for all s = 0, 1, . . ..

Note that the factors (1 + r2)s−|β|−j−A do not affect the norm at r = 0.
However, they are of great importance in the analysis on infinite model wedges
Rq × C(Xi).

Lemma 3.1 As defined by (3.3), the norm survives under ‘edgification’,
i.e.,

‖u‖Hs,γ(Rq×C(X)) ∼
(∫

Rq

〈η〉2s‖κ−1
〈η〉Fy→ηu‖2

Hs,γ(C(X))dη
)1

2

where κλ ∈ L(Hs,γ(C(X))) is given by (κλu)(r, x) = λs−γ+
n−q

2 u(λr, x) for
λ > 0.

Proof. Let u be a C∞ function of compact support on Rq taking its values
in Hs,γ(C(X)). By abuse of notation, we write it simply u(y, r, x) and omit
r and x unless it may cause a confusion. Using explicit formula (3.3) for the
norm in Hs,γ(C(X)) we get

∫
Rq

〈η〉2s‖κ−1
〈η〉Fy→ηu‖2

Hs,γ(C(X))dη

=

∫
Rq

〈η〉2γ−(n−q)‖Fy→ηu
(
y,

r

〈η〉 , x
)
‖2

Hs,γ(C(X))dη

=

∫
Rq

∫ ∞

0

r−2γ+(n−q−1)
∑

j+A≤s

(
1 + (〈η〉r)2

)s−j−A

‖Dj
rFy→ηu‖2

HA(X)drdη,

the latter equality being a consequence of the obvious commutativity relation
D (U(λr)) = (DU)(λr).
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Since 〈η〉2 ∼ 1 + |η|2 holds on Rq, the equivalence meaning that the ratio
of the functions is bounded both below und above by positive constants, we
conclude that

(
1 + (〈η〉r)2

)s−j−A

∼
(
1 + r2 + r2|η|2

)s−j−A

=

s−j−A∑
k=0

(
s−j−A

k

)(
1 + r2

)s−j−A−k(
r|η|

)2k

whence∫
Rq

〈η〉2s‖κ−1
〈η〉Fy→ηu‖2

Hs,γ(C(X))dη

∼
∫ ∞

0

r−2γ+(n−q−1)
∑

k+j+A≤s

(1 + r2)s−k−j−A
(∫

Rq

(r|η|)2k ‖Dj
rFy→ηu‖2

HA(X)dη
)
dr

∼
∫

Rq

∫ ∞

0

r−2γ+(n−q−1)
∑

|β|+j+A≤s

(1 + r2)s−|β|−j−A
∥∥(rDy)

βDj
ru

∥∥2

HA(X)
dydr,

which is due to Parseval’s formula.
�

Denote by Hs−1/2,γ−1/2(∂D, Ck) the space of traces on ∂D \ Y of functions
in Hs,γ(D, Ck). Any (k × k) -matrix L of scalar edge degenerate differential
operators of order 2m in D, and (kj × k) -matrices Bj of scalar edge degen-
erate differential operators of order mj near the boundary of D give rise to a
continuous operator

L
⊕Bj

: Hs,γ(D, Ck) → Hs−2m,γ−2m(D, Ck)
⊕Hs−mj−1/2,γ−mj−1/2(∂D, Ckj)

(3.4)

for s ≥ max{2m, mj + 1}.
The principal parts of the boundary value problem defined by (3.4) are

evaluated by the local principle of Simonenko, cf. [Sim65a, Sim65b]. To this
end, one uses the local geometry of D. At each interior point of the domain the
translation group Rn acts which leads to the principal homogeneous symbol of
L at this point. At any point of ∂D\Y the local translation group of the tangent
boundary hyperplane acts as well as the dilatation group along the inward
normal direction. This results in the usual boundary symbol which is a family
of boundary value problems for a system of ordinary differential equations on
the semiaxis, parametrised by the boundary covariable. The invertibility of
the boundary symbol away from the zero section of the cotangent bundle of
the boundary just amounts to Lopatinskii’s condition. It remains to compute
the principal part of (3.4) at the points of the edge Y . At each y ∈ Y the local
translation group of the tangent plane of Y acts as well as the dilatation group
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along the tangent cone of D in the normal plane of Y at y. This leads to a
family of boundary value problems in the infinite cone which is parametrised
by the covariable of the edge. In this way we arrive at what is known as the
edge symbol of (3.4), cf. [Sch98]. If L is given by (3.1) near y ∈ Y then an
easy computation yields

L0(y; η,Dr, Dx) = lim
λ→∞

λ−2m κ̃−1
λ

1

r2m

∑
|β|+k+|α|≤2m

Lβ,k,α(y, r, x)
(
rλη

)β

Dk
rD

α
x κλ

=
1

r2m

∑
|β|+k+|α|≤2m

Lβ,k,α(y, 0, x)
(
rη

)β

Dk
rD

α
x (3.5)

for η ∈ Rq. Similarly we localise the boundary operators Bj at y ∈ Y , thus
obtaining an edge symbol mapping

L0(y; η,Dr, Dx)
⊕Bj,0(y; η,Dr, Dx)

: Hs,γ(C(Xy), C
k) → Hs−2m,γ−2m(C(Xy), C

k)
⊕Hs−mj−1/2,γ−mj−1/2(∂C(Xy), C

kj)
(3.6)

for all (y, η) ∈ T ∗Y .
The family of boundary value problems (3.6) on C(Xy) is a homogeneous

function of η, the homogeneity being appropriately defined, cf. [Sch98]. Hence
it suffices to study mapping properties of (3.6) for η varying over the unit
sphere in Rq.

The calculus of boundary value problems (3.6) over infinite cones C(Xy) is
well understood, cf. [Tro77], [NP91], et al. The solvability is controlled by the
so-called conormal symbol of the boundary value problem which is a family
of boundary value problems on the link Xy, parametrised by the covariable of
the Fuchs derivative which varies over the line �� = −γ + (n − q)/2 in the
complex plane. For the edge symbol of L given by (3.5), the conormal symbol
is

σM(L0)(y; �) =
∑

k+|α|≤2m

Lβ,k,α(y, 0, x)�kDα
x ,

and similarly for boundary operators Bj . Mention that the conormal symbol
originates from the Mellin representation of differential operators, which jus-
tifies the use of the subscript ‘M’. In this way we get the conormal symbol
mapping

σM (L0)(y; �)
⊕σM (Bj,0)(y; �)

: Hs(Xy, C
k) → Hs−2m(Xy, C

k)
⊕Hs−mj−1/2(∂Xy , C

kj)
(3.7)

where �� = −γ + (n − q)/2.

Theorem 3.2 Let y ∈ Y . The operator (3.6) is Fredholm if and only if
the line �� = −γ +(n− q)/2 is free from the spectrum of the conormal symbol
(3.7).
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Recall that a number � ∈ C is said to belong to the spectrum of (3.7) if the
mapping (3.7) fails to be bijective. We mention a few properties of the model
problems.

Theorem 3.3 Let u ∈ Hs,γ(C(Xy), C
k) be a solution of the homogeneous

problem corresponding to (3.6). If χ is a C∞ function on the closure of C(Xy)
vanishing near the vertex y, then χu ∈ H∞,∞(C(Xy), C

k).

In other words, all solutions of the homogeneous problem corresponding
to (3.6) are smooth away from the vertex on the closure of C(Xy) and vanish
more rapidly than any power of r, as r → ∞.

Theorem 3.4 Let γ1, γ2 ∈ R satisfy γ1 < γ2. Assume that the closed strip
between the lines �� = −γ2 + (n − q)/2 and �� = −γ1 + (n − q)/2 does not
contain any eigenvalue of the conormal symbol (3.7). If u ∈ Hs,γ1(C(Xy), C

k)
satisfies

L0u ∈ Hs−m,γ2−m(C(Xy), C
k),

Bj,0u ∈ Hs−mj−1/2,γ2−mj−1/2(∂C(Xy), C
kj),

then actually u ∈ Hs,γ2(C(Xy), C
k).

Theorem 3.4 shows that solutions of the boundary value problem in the
cone C(Xy) that is associated with (3.6) may change their genuine weight
exponents γ only over the projection of the spectrum of (3.7) onto the real
axis R.

Theorem 3.5 Suppose that each of the lines �� = −γ2 + (n − q)/2 and
�� = −γ1 + (n − q)/2 contains eigenvalues of (3.7) while the strip between
these lines is free from the spectrum of (3.7). If (3.6) is an isomorphism for
some γ ∈ (γ1, γ2), then this operator is an isomorphism for all γ ∈ (γ1, γ2),
but not for γ �∈ (γ1, γ2).

When combined with Theorem 3.2, the latter result shows that there ex-
ists at most one interval (γ1, γ2), such that the mapping (3.6) is bijective for
all γ ∈ (γ1, γ2). However, it may happen that no interval (γ1, γ2) with this
property exists. This is in particular the case for the Neumann problem. The
dependence of (γ1, γ2) on y will not cause additional troubles if we allow γ to
depend on y over the edge Y .

We now turn to the original boundary value problem (3.4). We require that
L be elliptic and (3.4) satisfy Lopatinskii’s condition on ∂D\Y . To each point
y ∈ Y we assign the edge symbol mapping (3.6) depending on y. Suppose that
for any point y ∈ Y there is a number γ(y), such that (3.6) is an isomorphism
for all η ∈ T ∗

y (Y ) \ {0}. Then, by Theorem 3.5, this property of the mapping
(3.6) remains valid for all γ(y) ∈ (γl(y), γu(y)). Without loss of generality
we can assume that this interval can not be further expanded. The functions
y �→ γl,u(y) are continuous.
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Theorem 3.6 Under the above assumptions, if moreover γ is a C∞ func-
tion on D with γ(y) ∈ (γl(y), γu(y)) for all y ∈ Y , then the operator (3.4) is
Fredholm.

This theorem is proved by constructing a regulariser patched by means
of a partition of unity on D from ‘local’ regularisers for model problems in
the wedge Rq × C(Xy) and on all of Rn. If the conditions of Theorem 3.6
are not satisfied then (3.4) fails to be a Fredholm operator. Thus, to get the
Fredholm property of problem (3.4) in the scale Hs,γ(D, Ck) one has to ensure
that the edge symbol (3.6) be an isomorphism outside of the zero section on
the cotangent bundle T ∗Y . In general, it is a difficult task. As was mentioned,
for some problems it is impossible to find a number γ such that the operator
(3.6) is an isomorphism. This suggests us to look for supplementary conditions
for solutions along the edge, a new scale of spaces, and so on, cf. for instance
[Sch98], [Sch01]. At present the situation is well understood in the case of
Dirichlet and Neumann problems for formally self-adjoint elliptic systems L,
cf. [NP91].

4 Asymptotics of solutions

Let D be a bounded domain in R
n with an edge Y on the boundary, as in

Section 3.
Consider an elliptic boundary value problem{

Lu = f in D,
Bju = uj on ∂D \ Y

for j = 0, 1, . . . , m − 1. Let y0 be an arbitrary point of the edge Y . Pick a
neighbourhood U of y0 in Rn and a diffeomorphism h of U onto an open set
O ⊂ Rn, such that h(U ∩ D) = O ∩ (Rq × C(X)). Here Rq substitutes the
tangential plane of Y at y0, and C(X) is a cone in the normal plane of Y at
y0 whose link is a compact (n − q − 1) -dimensional manifold X with smooth
boundary. We identify the normal plane with R

n−q and choose any coordinates
z on it.

Fix a cut-off function ω ∈ C∞
comp(U) which is equal to 1 in a neighbourhood

of y0. Write u = ωu + (1 − ω)u, then the product ωu is supported in U ∩ D
and satisfies {

L (ωu) = ωf + [L, ω]u in U ∩ D,
Bj (ωu) = ωuj + [Bj , ω]u on U ∩ ∂D (4.1)

for j = 0, 1, . . . , m− 1, while (1−ω)u vanishes near y0. Using the coordinates
(y, z) thus reduces the problem of asymptotic expansion of u near y0 to that
in the model wedge W := Rq × C(X).
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As in Section 3, to each point of the edge y ∈ Rq we assign the principal
edge symbol

L0(y; η,Dr, Dx)
⊕Bj,0(y; η,Dr, Dx)

whose domain is a weighted Sobolev space Hs,γ(C(X), Ck), cf. (3.6). Being in
an algebra of boundary value problems on the infinite cone C(X), it in turn
bears a conormal symbol

σM(L0)(y; �)
⊕σM (Bj,0)(y; �)

taking its values in boundary value problems on the link X, cf. (3.7). Denote
by (γl(y), γu(y)) the largest interval where the principal edge symbol is an
isomorphism for each η ∈ Sq−1. The existence of such an interval should be
postulated, and γl,u are continuous functions on Rq which are constant for |y|
large enough.

We consider a solution u ∈ Hs,γ(W, Ck) of problem (4.1) with right-hand
sides f ∈ Hs−m,δ−m(W, Ck) and uj ∈ Hs−mj−1/2,δ−mj−1/2(∂W, Ckj ). Here γ
and δ are C∞ functions on Rq which are constant for |y| > R and satisfy
γ(y) < δ(y) < γu(y) for all y ∈ R

q.
Denote by λ1(y), . . . , λN(y) the eigenvalues of the conormal symbol which

are situated between the lines �� = −δ + (n− q)/2 and �� = −γ + (n− q)/2.
Let moreover (

ϕ
(i)
ν,j

)
i=1,...,Iν

j=0,1,...,rν,i−1

be a canonical system of Jordan chains corresponding to the eigenvalue λν(y).
We suppose that the following conditions are fulfilled: 1) for all y ∈ Rq, the
above lines are free from the spectrum of the conormal symbol; 2) the numbers
N , Iν and rν,i are independent of y ∈ Rq; and 3) the Jordan chains may be

chosen in such a way that the functions y �→ ϕ
(i)
ν,j(y, x) are smooth on Rq for

all x ∈ D.

Theorem 4.1 Under the hypotheses 1)-3), let δ − γ ∈ (0, 1) for all y ∈ Rq

and Dβ
y f , Dβ

y ui belong to Hs−m,δ−m(W, Ck) and Hs−mj−1/2,δ−mj−1/2(∂W, Ckj ),
respectively, for all β. Then every solution u ∈ Hs,γ(W, Ck) of (4.1) has a
representation

u(y, z) =

N∑
ν=1

Iν∑
i=1

rν,i−1∑
j=0

c
(i)
ν,j(y) u

(i)
ν,j(y, z) + R(y, z), (4.2)

the remainder R being in Hs,δ(W, Ck), the coefficients c
(i)
ν,j(y) being smooth

functions on R
q, and

u
(i)
ν,j(y, z) = rıλν

rν,i−j∑
k=1

1

(k−1)!
(ı ln r)k−1ϕ

(i)
ν,rν,i−j−k(x).
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If we drop the restriction δ − γ < 1, the asymptotic formula (4.2) becomes
more complicated because of lower order terms. In general, the form of these
terms does not coincide with that of ingredients of asymptotic expansions in a
cone. The lower order terms may contain differentiations in y. If we impose no
additional assumptions on the smoothness in y of the right-hand side of (4.1)
then the coefficients fail to be smooth. Explicit formulas for the coefficients
c
(i)
ν,j(y) by means of the Green formula were first obtained in [MP76], cf. also

[NP91].

5 Cuspidal singularities

Let D ⊂ Rn be a bounded domain whose boundary is smooth except a smooth
closed manifold Y ⊂ ∂D of dimension q, where 0 ≤ q ≤ n − 2. In D we
consider a boundary value problem{

Lu = f in D,
Bju = uj on ∂D (5.1)

for j = 0, 1, . . . , m − 1, where L is a (k × k) -matrix of scalar differential
operators of order 2m in D, and Bj is a (kj × k) -matrix of scalar differential
operators of order mj close to boundary in D.

Pick a sufficiently small tubular neighbourhood U of Y in Rn. For points
p ∈ U we introduce new coordinates (y, z), where y = y(p) is the intersection
point of Y and the (n−q) -dimensional plane Fy through p which is orthogonal
to Y , and z = z(p) are coordinates of p in Fy. Suppose there is a coordinate
system z(p) in Fy with origin at y, which depends on p continuously and such
that D ∩ U is given by the inequality zd

n−q > ϕ(y, z′) + r(y, z′), where d > 0,
z′ = (z1, . . . , zn−q−1),

ϕ(y, z′) =
∑
|α|=k

ϕα(y) z′α,

r(y, z′) = O
(|z′|k+1

)
,

the functions ϕα(y) and r(y, z′) being C∞, and ϕ(y, z′) > 0 for z′ �= 0. We thus
represent D∩U as a fibre bundle over Y , the fibre being an (n−q) -dimensional
quasi-homogeneous cone.

Set o = k/d. For o = 1 the singularity along Y is conical, for o < 1
the singularity is cuspidal, and the case o > 1 actually corresponds to finite
smoothness.

Assume that the coefficients of L are infinitely differentiable in a neigh-
bourhood of D, and the coefficients Bj,ϑ of Bj possess near Y asymptotic
expansions

Bj,ϑ ∼
∞∑

k,l=0

B
(k,l)
j,ϑ

(
y, z

−1
o

n−qz
′
)
z
|ϑ|−mj+k

o +l
n−q
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where B
(k,l)
j,ϑ are C∞ and B

(0,0)
j,ϑ = 0 for |ϑ| < mj . When changing the coordi-

nates by

r = zn−q,

x = z
−1

o
n−qz

′

we get

Dzj
= r−

1
o Dxj

, for j = 1, . . . , n − q − 1,

Dzn−q = Dr − 1

o

1

r

n−q−1∑
j=1

xjDxj
.

The inequality zd
n−q > ϕ(y, z′) + r(y, z′) transforms to 1 > ϕ(y, x) + O(r

k+1
k ),

which describes the link of Y , namely Vy = {x ∈ Rn−q−1 : ϕ(y, x) < 1}. The
push-forward of L is

π∗L = r−
2m
o

∑
|β|+k+|α|=2m

Lβ,k,α(y, r
1
o x, r)

(
r

1
o Dy

)β(
r

1
o Dr

)k

Dα
x

up to terms of the form r−
2m
o O(1) for r → 0. Such terms are negligible in the

calculus of boundary value problems of [RST04], hence we are able to localise
(5.1) to {

L0(y; η, �, Dx)u = f in Vy,
Bj,0(y, x, η, �, Dx)u = uj on ∂Vy

(5.2)

for j = 0, 1, . . . , m − 1, where L0 stands for the principal homogeneous part
of L in the coordinates (y, z) with coefficients evaluated at zn−q = 0, and Bj,0

is the principal homogeneous part of Bj in the coordinates (y, z), with Bj,ϑ

replaced by B
(0,0)
j,ϑ .

The mapping (5.2), which assigns a boundary value problem on the link
Vy to any (y, η, �) ∈ Y × Rq+1, is called the symbol of (5.1) along the edge
Y . It controls the Fredholm property of (5.1) in the weighted Sobolev spaces
Hs,μ(D, Ck) that are defined as completions of C∞

comp(D \ Y, Ck) with respect
to the norm

‖u‖2 = ‖u‖2
Hs(D,Ck) +

∫
D∩U

z−2μ
n−q

∑
|ϑ|≤s

z
2
|ϑ|
o

n−q |Dϑu(y, z)|2 dydz. (5.3)

As usual, the space of restrictions to the boundary of various functions
in Hs,μ(D, Ck) is denoted by Hs−1/2,μ−1/2o(∂D, Ck). The norm of u in this
latter space is defined to be the infimum of the norms in Hs,μ(D, Ck) over all
continuations of u to D.
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The boundary value problem (5.1) is said to be elliptic if: 1) the operator
L is elliptic; 2) the Lopatinskii condition is fulfilled at all points of ∂D\Y ; and
3) for each y ∈ Y , the problem (5.2) is elliptic with parameter (η, �) ∈ Rq+1

and the resolvent R(η, �) has no poles on all of Rq+1. The following theorem
was first completely proved in [RST04] while it has been announced in the
paper [Fei72].

Theorem 5.1 Let o < 1. Suppose s ≥ max{2m, mj + 1} and μ ∈ R. In
order that the operator

L
⊕Bj

: Hs,μ(D, Ck) → Hs−2m,μ−2m/o(D, Ck)
⊕Hs−mj−1/2,μ−mj/o−1/2o(∂D, Ckj)

would be Fredholm, it is necessary and sufficient that the problem (5.1) be
elliptic.

For smooth {f, uj}, the solution u of the problem (5.1) need not be smooth
in general. One can show an asymptotic of the solution in a neighbourhood of
Y .

Theorem 5.2 Let o < 1 and (5.1) be elliptic. Assume that f ∈ C∞(D, Ck)
and uj ∈ C∞(∂D, Ckj ). Then there exist C∞ functions uk,l, such that for any
N there is bN with

u =
∑

k+ol≤bN

uk,l

(
y, z

−1
o

n−qz
′
)
z

k
o +l
n−q + RN ,

where RN ∈ H∞,μ(D, Ck) provided oμ < N .

As but one application of Theorem 5.2 we mention that if q = n − 2 and
1/o is integer then, under the hypotheses of Theorem 5.2, the solution u of
(5.1) belongs to C∞(D, Ck).

As is shown in [RST04], the Dirichlet problem in D is elliptic in the above
sense.

6 Boundary integral equations

In the early 1950s Lopatinskii [Lop53] showed a way of reducing a general
boundary value problem for an elliptic system in a bounded domain to a regu-
lar integral equation on the boundary. This approach to boundary value prob-
lems for elliptic equations in a smooth domain D was developed by Calderón
[Cal63] who reduced them to pseudodifferential equations on ∂D via what is
now called the Calderón projector. When the surface ∂D is merely C1 or Lip-
schitzian, the corresponding boundary operator fails to be pseudodifferential
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and, typically, can only be described in terms of singular integrals. Calderón’s
intuition that such problems are ultimately tractable via harmonic analysis
techniques stimulated a long-term program with profound implications in the
field.

As is mentioned in [Maz88], the signification ‘boundary integral equation’
appeared relatively recently. Earlier one spoke on integral equations of poten-
tial theory.

Both applications and the inner logic of the theory itself require investiga-
tion of non-regular curves and surfaces. First steps in this direction were made
by Korn [Kor02], Zaremba [Zar04] and Carleman [Car16] who studied bound-
ary value problems for the Laplace equation in a plane domain with corners
on the boundary by potential theory methods. Radon [Rad19] generalised the
results of [Kor02] and [Zar04] to plane contours of bounded rotation variation
without cuspidal points. In [Rad19] the integral operators are treated in the
space of continuous functions. A new feature of analysis of boundary integral
equations on non-regular curves and surfaces is that the relevant operators lose
compactness while being bounded. To coup with this difficulty Radon made
use of the operator theory in function spaces based on the concept of Fredholm
radius due to him.

Let T be a bounded operator in a Banach space B. After Radon, the
Fredholm radius R(T ) of T is the radius of the largest disk with centre λ = 0
in the complex plane, in whose interior the equation (1 − λT )u = f obeys
Fredholm theory. It coincides with the supremum of the radii of uniform
convergence of series I+λ(T−K)+λ2(T−K)2+. . . over all compact operators
K on B. By the essential norm of T in B is meant |T | := inf ‖T − K‖L(B),
the infimum being over all compact operators K on B. This concept stems
from [Rad19] where it is used to estimate R(T ) from below. Namely, since the
Neumann series converges for |λ| < ‖T −K‖−1

L(B) it follows that R(T ) ≥ |T |−1.
The results of Radon actually originated an important branch of functional
analysis, cf. [GK57].

If T = 2Pdl,0 is the (doubled) principal value of the double layer potential
over a closed curve of bounded rotation variation then the Fredholm radius of
T in the space of continuous functions just amounts to |T |−1 = π/α, where
α is the largest jump of the tangential angle at the points of the curve, cf.
[Rad19]. In case the curve does not contain cuspidal points one obtains α < π,
and so R(T ) > 1. Hence the Dirichlet and Neumann problems are Fredholm
in such a plane domain.

Long time after the paper of Radon the opinion existed that he developed
the potential theory in the space of continuous functions up to its natural
extents. First in the 1960s Burago and Maz’ya [BM67], Král [Krá80] et al.
carried over the theory of Radon to more general curves described in terms
of variation of the angle at which the boundary subsets are observable from
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any boundary point. Yet another approach to boundary integral equations
(1 − T )u = f on piecewise smooth curves without cuspidal points originates
from Lopatinskii [Lop63] who suggested to treat them in weighted Lebesque
spaces, the weight being a power of the distance to corner points. The operator
T is shown to coincide up to a compact term with an integral operator on the
angle whose kernel is homogeneous of degree −1. To explicitly invert this
latter operator called the model operator, Lopatinskii made use of the Mellin
transform.

In [BM67] a proper substitute of curves of bounded rotation variation was
found for surfaces of higher dimension in Rn. It corresponds to the intuitive
idea of spatial angle ω(x, σ), at which a boundary subset σ is observable from
a boundary point x. The results of Radon extend to those domains D for
which the supremum of varω(x, ·)(∂D ∩ B(x, r)) over all x ∈ ∂D is less than
σn/2, provided that r is small enough. This condition proves to be equivalent
to |T | < 1 where T = 2Pdl,0 is the (doubled) principal value of the double layer
potential over ∂D. The results of [BM67] thus apply to integral equations of
harmonic potential theory only in the case |T | < 1, the essential norm being
evaluated in the space of continuous functions. However, this condition fails
to hold even for fairly simple polyhedrons in R

n. Sometimes the inequality
|T | < 1 can be attained by using a weight norm in C(∂D) which depends on
the geometry of ∂D, cf. [KW86].

An essential progress in the study of boundary value problems for second
order equations in domains with Lipschitz boundary was achieved in the 1980s.
It was initiated by the paper of Calderón [Cal77] who proved the L2 bounded-
ness of the Cauchy integral on C1 and Lipschitz curves, cf. also [CMM82]. The
result of Calderón was used by [FJR78] to construct an Lp potential theory
for C1 surfaces in Rn. Yet another striking advance was the treatment of the
Laplacian under Dirichlet and Neumann boundary conditions on C1 and Lip-
schitz domains, cf. [FJR78], [DK87], [Ver84], et al. Since the end of the 1980s
very few new elliptic boundary problems have been attacked from this point
of view. One notable related development was the treatment of the Neumann
problem for the Hodge Laplacian Δ = δd + dδ on arbitrary Lipschitz domains
in [MM96], [MT99], [MMT00].

Although Lipschitz surfaces make a considerable class of general surfaces,
they are still not sufficient for many applications. Such simple surfaces as poly-
hedrons or cones with smooth generatrix are not exhausted by Lipschitz sur-
faces. Moreover, the Lipschitz surfaces do not well suit to analysis of smooth-
ness and local singularities of solutions.

The difficulties in the study of such questions for arbitrary piecewise smooth
surfaces are evoked to considerable extent by imperfection of the existing the-
ory of integral and pseudodifferential operators on non-smooth manifolds, cf.
[Pla86, Pla97], [Sch91, Sch98] et al.
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It was the paper [FJL77] that first elucidated anomalies of the potential
theory in domains with corners and edges. It studies the solvability in Lp of
boundary integral equations of the Dirichlet problem for the Laplace equa-
tion in several special domains, namely in a quarter-plane, a circular cone, a
quarter-space and a bounded plane domain with angle π/2 on the contour. In
the case of quarter-plane the integral equation is solvable in Lp for p �= 3/2,
while the value p = 3/2 is not exceptional for the explicit solution of the Dirich-
let problem by Poisson integral. The integral equation of the inner Dirichlet
problem in the cone {(x, y, z) : x2 + y2 ≤ z2, z > 0} is uniquely solvable in Lp

for all p > 1 but a sequence {pk}∞k=1 lying in the interval (1, 2). In the case of
quarter-space the integral equation is uniquely solvable in Lp for all p > 3/2.
If 1 < p < 3/2 the space of solutions of the homogeneous equation is infinite
dimensional. Moreover, the norm of the operator is shown to be less than 1
provided p > 3/2.

An important aspect of the theory of boundary integral equations is tech-
niques of numerical solution thereof. It is often referred to as the boundary el-
ement method. This direction makes an independent area of investigations, cf.
[KK62], [Wen82], [BB81]. Ryaben’kii [Rya69] developed a potential method
for systems of difference equations with constant coefficients which leads to
discrete analogues of boundary integral equations.

7 Hodge theory

In this paper we deal with the Neumann problem for the Hodge Laplacian
on domains with non-regular boundary. Another perspective from which the
results can be understood has to do with the direction initiated by Hodge’s
work on harmonic integrals in the 1930s. In [Hod41] he generalised to arbitrary
compact Riemannian manifolds the potential theory used by Riemann in his
study of Riemannian surfaces. The main question that we address is that of
the efficiency of the layer potential method in the global analysis, arbitrary
topology and in the presence of non-smooth structures.

The topology of the underlying domain plays a major role in the problem
under discussion. For instance, there are natural topological obstructions to
the unique solvability of the Neumann problem as well as to the invertibility
of the boundary operators under consideration. Among the main ingredients
used here we mention a regularity result allowing for the transition between
variational methods in D and boundary integral equation techniques, and de
Rham theory dealing with the topological information encoded in the problem.
We contribute to the case of non-Lipschitz singularities.

In the context of arbitrary domains in manifolds and for arbitrary degrees,
the only reasonably well understood case is that when all structures involved
are smooth. In this context, the Neumann problem have been treated by
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Conner [Con53], Duff [Duf54], Garabedian and Spencer [GS53].

A notable exception is the work by Morrey and Eells [ME56, Mor56] who
use variational methods and a priori regularity estimates. However, in their
formulation boundary traces are taken in a weak distributional sense which
actually affects the character of the problem.

The methods for proving the Hodge theory on smooth domains of Conner
[Con53] and Morrey and Eells [ME56, Mor56] fails if the boundary bears singu-
larities. On smooth domains the Neumann problem for the Hodge Laplacian is
coercive and the G̊arding inequality holds. On domains with singularities the
G̊arding inequality is still true near the smooth part of the boundary. How-
ever, the boundary conditions are meaningless at the singularities, hence the
analysis of differentiability is much more difficult.

The L2 Hodge theory on domains with boundary containing conical points
was constructed by Shaw [Sha83], who used the results of Kondrat’ev [Kon67]
on elliptic equations with general boundary conditions to prove the existence
and compactness of the Neumann operator that solves the Neumann problem.
Shaw measured the regularity of solutions at the singularities by carefully
analysing the first eigenvalue of the Laplace-Beltrami operator on subdomains
of Sn−1 under certain boundary conditions.

In 1970, Singer [Sin71] presents a comprehensive program aimed at extend-
ing the theory of elliptic operators and their index to more general situations,
namely to “non-smooth manifolds, non-manifolds of special type and to a con-
text where it is natural that integer (index) be replaced by real number”. As
but one part of this program Teleman [Tel80] produced a Hodge theory and
signature operators on PL manifolds.

A couple of years later, Sullivan [Sul79] formulated the problem of con-
structing an index theory on Lipschitz manifolds. The interest in studying
Lipschitz manifolds derives from the following two desirable but conflicting
features of the Lipschitz homeomorphisms in Rn, cf. [Sul79]. They preserve a
rich analytic structure, whereas, from the topological point of view, they are
very manageable. By [Sul79], any topological manifold of dimension �= 4 ad-
mits a Lipschitz structure which is unique up to a Lipschitz homeomorphism
close to the identity. On any Lipschitz manifold L2 -forms, exterior derivatives
and currents may be defined; all these objects are basic for the Hodge theory.
The Lipschitz Hodge theory presented in [Tel83] is a slight modification of the
combinatorial Hodge theory [Tel80].

Cheeger [Che80] studied Hodge theory for manifolds with interior coni-
cal points using a geometric approach. Similarly to [Tel83], this set up gives
however no information about the regularity of the harmonic forms near sin-
gularities.
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8 The Neumann problem

In this section we formulate the Neumann problem on domains with edges on
the boundary and solve it. Our set up gives us information about the regularity
of the harmonic forms near singularities. Although our method can be easily
generalized to manifolds with edges, we only consider domains in Rn in this
paper.

Let D be a bounded domain in Rn with boundary ∂D, such that ∂D is
smooth everywhere except of a closed manifold Y of dimension 0 ≤ q ≤ n− 1.
We assume that ∂D has along Y edge type singularities, cf. Section 3. This
means that the domain D is a cone bundle close to Y , the base being Y and
a fibre being the cone C(X) over a bounded domain with smooth boundary in
Rn−q−1.

We shall formulate the Neumann problem on D to study the L2 Hodge
theory, cf. [ST03]. The formulation is exactly the same for smooth domains,
cf. [Con53]. We shall only give a short description here.

Let C∞(D,
∧i) and C∞

comp(D,
∧i) denote the spaces of C∞ differential forms

of degree i and C∞ differential forms of degree i of compact support, respec-
tively, and C∞(D,

∧i) denotes the C∞ forms which can be extended smoothly
to all of Rn. Furthermore, we write L2(D,

∧i) for all i -forms with square inte-
grable coefficients. The Laplace operator on

∧i(D) is defined to be Δ = δd+dδ
where d is the exterior derivative and δ is the formal adjoint of d. It is easy to
check that Δ is formally self-adjoint.

In order to form an L2 self-adjoint extension of Δ, we define the L2 strong
closure of d, denoted T . Given u ∈ L2(D,

∧i), we set u ∈ Di
T if there is a

sequence uν ∈ L2(D,
∧i)∩C∞(D,

∧i) such that uν → u in L2(D,
∧i) and {duν}

is a Cauchy sequence in L2(D,
∧i+1). We define Tu = f where f ∈ L2(D,

∧i+1)
is the limit of {duν}.

The L2 adjoint T ∗ of T is defined in a familiar way. Namely, g ∈ Di+1
T ∗ and

T ∗g = v means that g ∈ L2(D,
∧i+1) and v ∈ L2(D,

∧i) satisfy (Tu, g) = (u, v)
for all u ∈ Di

T . It is easy to check that both T and T ∗ are closed densely defined
operators satisfying T 2 = T ∗2 = 0.

We are now in position to introduce an L2 self-adjoint extension of Δ.
Namely, set

Di
L := {u ∈ Di

T ∩ Di
T ∗ : Tu ∈ Di+1

T ∗ and T ∗u ∈ Di−1
T }

and Lu = T ∗Tu + TT ∗u for u ∈ Di
L.

The L2 self-adjointness of L was proved by [Gaf55]. We simply summarise
the results here.

Lemma 8.1 The operator L is self-adjoint. Furthermore, (L+1)−1 exists,
is bounded and everywhere defined.
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The space of harmonic i -forms Hi(D) is defined to consist of all forms
u ∈ Di

T ∩ Di
T ∗ with the property that Tu = T ∗u = 0. It is easy to check that

Hi(D) = ker L. From this and Lemma 8.1 we get immediately the so-called
Weak Hodge Decomposition Theorem.

Lemma 8.2 The range of L is orthogonal to Hi(D) and we have an or-
thogonal decomposition

L2(D,
∧i) = Hi(D) ⊕ T ∗T Di

L ⊕ TT ∗Di
L,

overline denoting the closure in L2(D,
∧i).

The Neumann problem for the de Rham complex actually consists of prov-
ing the existence of an operator N on L2(D,

∧i) which possesses the following
properties:

1o N is bounded and self-adjoint.

2o N Hi(D) = 0, Ran N ⊂ Di
L and Ran N is orthogonal to Hi(D).

3o LN = I − H on L2(D,
∧i) and NL = I − H on Di

L, where H is the
orthogonal projection onto Hi(D).

4o NT = TN on Di
T .

5o NC∞(D,
∧i) ⊂ C∞(D,

∧i).

If RanL is closed, by Lemma 8.2, we can decompose every u ∈ L2(D,
∧i)

into u = Hu + Lv, where v ∈ Di
L. Define N : L2(D,

∧i) → L2(D,
∧i) by

Nu = v − Hv. It is easily verified that the operator N satisfies properties 1o

to 5o. Hence, the Neumann problem can be solved whenever the range of L is
closed.

Lemma 8.3 If (L + 1)−1 is compact then RanL is closed. Furthermore,
Hi(D) is finite dimensional and the Neumann operator N is compact.

Proof. Since (L+1)−1 is self-adjoint and compact, the lemma follows from
the Riesz theory for compact self-adjoint operators on Hilbert spaces.

�
Our next goal is to show that (L + 1)−1 is compact, thus solving the Neu-

mann problem.
Let C∞(D̄\Y,

∧i) denote the i -forms which are smooth up to the boundary
except at Y . There exists a real-valued function � ∈ C∞(Rn \ Y ) such that
∂D \Y = {x ∈ Rn \Y : �(x) = 0}. We normalise � so that |d�| = 1 on ∂D \Y .
The sign of � is chosen in such a way that � < 0 in D and � > 0 outside
of D̄. As usual, we write σ(δ)(x, d�) for the symbol of δ in the direction d�
at a point x ∈ ∂D \ Y . We shall give an explicit description of the forms in
Di

L ∩ C∞(D̄ \ Y,
∧i).
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Lemma 8.4 If g ∈ Di
T ∗ ∩ C∞(D̄ \ Y,

∧i), then σ(δ)(x, d�)g = 0 holds on
∂D \ Y .

Proof. For every u ∈ C∞(D̄,
∧i−1) having support away from the edge Y ,

we have

(g, du) = (δg, u) −
∫

∂D
(σ(δ)(x, d�)g, u)ds

= (T ∗g, u),

by Green’s formula, where ds is the surface element on ∂D which is well defined
away from the edge. Since C∞

comp(D,
∧i−1) is dense in L2(D,

∧i−1), we have
δg = T ∗g and ∫

∂D
(σ(δ)(x, d�)g, u)ds = 0,

which implies σ(δ)(x, d�)g = 0 on ∂D \ Y .
�

Lemma 8.5 If u ∈ Di
L ∩ C∞(D̄ \ Y,

∧i), then

σ(δ)(x, d�)u = 0,
σ(δ)(x, d�)du = 0

on ∂D \ Y .

Proof. Since u ∈ Di
T ∗ and du ∈ Di+1

T ∗ , we can apply Lemma 8.4.
�

From Lemmas 8.4 and 8.5 we see that every element in Di
L∩C∞(D\Y,

∧i)
satisfies the same boundary conditions away from the edge as in the usual
Neumann problem on smooth domains. Therefore, if Lu = v and moreover
v ∈ C∞(D \ Y, wi), then u ∈ C∞(D \ Y,

∧i), which is due to the local elliptic
reqularity.

Writing in components, any sufficiently smooth solution u of the Neumann
problem in D satisfies the system

( n∑
j=1

D2
j

)
uJ = fJ in D for every J,

σ(δ)(x, d�)u = 0 on ∂D \ Y,
σ(δ)(x, d�)du = 0 on ∂D \ Y,

(8.1)

where
u =

∑′
#J=i uJdxJ ,

f =
∑′

#J=i fJdxJ
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and
∑′ means the sum over all increasing ordered i -tuples J = (j1, . . . , ji),

where 1 ≤ j1 < . . . < ji ≤ n.

Our main concern is to study the regularity of system (8.1) near the edge.
To this end, we invoke the weighted Sobolev spaces Hs,γ(D,

∧i) introduced in
Section (3.2). An i -form is in Hs,γ(D,

∧i) if and only if every component is in
Hs,γ(D).

First we consider the boundary value problem (8.1) on an infinite model
wedge W = Rq × C(X). Fix y ∈ Y . Since Y is a smooth q -dimensional
manifold, there is a plane Fy of dimension n− q through y which is orthogonal
to Y . Near y it meets D in a smooth domain with the only singilar point y
on the boundary. We denote by C(X) the tangent cone of this domain at the
point y. When introducing polar coordinates in Fy with centre y, we specify
the link X as a smooth domain on the (n − q − 1) -dimensional unit sphere
with centre y. This just amounts to the intersection of the unit sphere with
centre y in Fy with D.

Choose a sufficiently small tubular neighbourhood U if Y in Rn. For points
p ∈ U we introduce new coordinates (y, r, x), where y = y(p) is the intersection
point of Y and the (n−q) -dimensional plane Fy through p which is orthogonal
to Y , and r = r(p) and x = x(p) are polar coordinates of p in Fy. In these
coordinates the tangent cone at y is C(X) = {rx ∈ Fy : r > 0, x ∈ X}, rx
being the dilation of x.

For the Fourier transform ûJ(η, r, x) of uJ(y, r, x) in y ∈ Rq we obtain a
family of boundary value problems on the cone C(X) depending on a parameter
η ∈ Rq,

1

r2

(
r2|η|2 + (rDr)

2 − ı(n−q−2)(rDr) + ΔX

)
ûJ = f̂J in R+ × X,

B0(x) û = 0 on R+ × ∂X,
B1(x) dxû = 0 on R+ × ∂X,

(8.2)
for every J , where ΔX is the Laplace-Beltrami operator on the unit sphere
in Fy, and both B0(x) and B1(x) are matrices of smooth functions on the
boundary of X.

When applying the Fourier separation of variables to (8.2), one encoun-
ters Bessel’s differential equations which are generally typical for the analysis
on a cone. It is a happy case if such an equation may be solved explicitly.
A standard argument leads to power series solutions and Bessel’s functions.
Hence the verification of the bijectivity of (8.2) in weigthed Sobolev spaces is
an immense problem in general.

To see that the problem (8.2) is Fredholm we evaluate its conormal symbol.
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This is

(�2 − ı(n−q−2)� + ΔX)Mr 
→�ûJ = Mr 
→�+2ıf̂J in X,
B0(x) Mr 
→�û = 0 on ∂X,

B1(x) dxMr 
→�û = 0 on ∂X

(8.3)

for all J , where �� = −γ + (n − q)/2.
Since the boundary value problem {ΔX , B0, B1 ◦ dx} satisfies the Lopatin-

skii condition and X is a bounded domain with smooth boundary, equations
(8.3) are well understood. This problem has a discrete spectrum σ of finite
multiplicity. Furthermore, there exists a resolvent R(�) for the problem (8.3)
and R(�) is actually a meromorphic function of � with poles at those points,
such that −�2 + ı(n−q−2)� is in the spectrum σ. Using the estimates of [AV64]
for elliptic boundary value problems depending on a parameter, we are able to
prove the following.

We restrict our discussion to the natural case where Y is of dimension
n− 2. This actually corresponds to domains with piecewise boundary because
the intersection of two boundary pieces at a non-zero angle leads to a smooth
edge on the boundary, whose codimension in Rn is 2. The condition q = n− 2
is essential to the proof.

Lemma 8.6 Suppose that η ∈ R
q \ {0}. If the resolvent R(�) has no pole

on the line �� = −γ + 1, then for any i -form f̂ ∈ Hs−2,γ−2(C(X),
∧i) there

exists a unique i -form û in Hs,γ(C(X),
∧i), such that û fulfills the boundary

value problem (8.2).

The main result of the edge theory now tells us that under the hypotheses
of Lemma 8.6 the Neumann problem is Fredholm.

Lemma 8.7 Di
L ⊂ H2,ε(D,

∧i) for some positive number ε and (L + 1)−1

is compact on L2(D,
∧i).

Proof. As is easy to check, the domain of L lies in H2,0(D,
∧i). Since the

poles of R(�) are discrete and pure imaginary (see the next section), there exists
a small number ε > 0 such that there is no pole between the lines �� = −2ε+1
and �� = 1. By Theorem 3.5, we conclude that Di

L ⊂ H2,ε(D,
∧i) and the

following estimate holds

‖u‖2
H2,ε(D,

∧i)
≤ C

(
‖Lu‖2 + ‖u‖2

)

≤ 2C
(
‖(L + 1)u‖2 + ‖u‖2

)

for each u ∈ DL, with some constant C independent of u. It is a standard
fact that the inclusion map H2,ε(D,

∧i) ↪→ L2(D,
∧i) is compact. Hence we

deduce that (L + 1)−1 is compact, showing the lemma. �
Combining Lemma 8.3 and Lemma 8.7, we conclude that the Neumann

problem is solvable.
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Theorem 8.8 (Strong Hodge Decomposition) Let D be a domain in
Rn with smooth edges of codimension 2 on the boundary. Then Hi(D) is of
finite dimension for each i = 0, 1, . . . , n and

L2(D,
∧i) = Hi(D) ⊕ T ∗T Di

L ⊕ TT ∗Di
L.

Note that the condition of Theorem 5.1 is much easier verified than the
bijectivity of (8.2). Hence Theorem 5.1 effectively applies to derive the solv-
ability of the Neumann problem in domains with cuspidal edges, at least for
differential forms of higher degree. Cuspidal singularities fall out the class of
Lipschitz singularities.

9 Regularity up to the boundary

From Section 8 we see that the regularity of the Neumann problem, or the
operator L, depends on the distribution of the poles of the corresponding
resolvent R(�). The resolvent is related to any point y of the edge Y and it
amounts to the inverse operator of a boundary value problem on the link Xy of
singularitity at y. More precisely, we consider the section of D by an (n− q) -
dimensional plane through y orthogonal to Y . This section has a singular
point at y, and we consider the tangent cone to the section at y. The link
Xy is a bounded domain with smooth boundary on the sphere of sufficiently
small radius with centre y in the normal plane at y, that is cut out by the
tangent cone. The Neumann problem by freezing coefficients along the edge
Y and passing to the Mellin transform in the cone axis variable yields a family
of boundary value problems on the link Xy, cf. (8.3), whose resolvent specifies
the regularity of solutions to the Neumann problem up to the boundary. In the
sequel we omit the sub y of Xy assuming without restriction of generality that
the opening angle of the wedge along Y varies inessentially. In this section we
give some estimates of the poles of R(λ). Our result is by no means complete,
but it gives us a sufficient condition of continuity up to the boundary for the
operator L.

From now on we identify an i -form u on D with the collection of its coef-
ficients uJ . Let

ni =

(
n

i

)

and N i
∂X := {U ∈ C∞(X)ni : B0U = B1dU = 0 on ∂X}.

Lemma 9.1

1◦ ΔX is a symmetric operator on N i
∂X .

2◦ The eigenvalues of {ΔX , B0, B1 ◦ d} are real.
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Proof. If U, V ∈ N i
∂X , we have

B0U = B1dU = 0,
B0V = B1dV = 0

on ∂X.
Let ϕ be a C∞ function with compact support on R+, such that ϕ(r) ≥ 0

for all r and

ϕ(r) =

{
1 if r ∈ [2, 3],
0 if r ∈ (0, 1] ∪ [4,∞).

Then the vector ϕU can be identified as an i -form u with components ϕUj ,
j = 1, . . . , n0, on (0,∞) × X. We think of ϕU as being constant in y along
Y ∼= Rq. Similarly v = ϕV can be identified with an i -form on (0,∞) × X
which is constant in y.

Write ΔC(X) for the Laplace-Beltrami operator on C(X) with respect to the
cone metric dr2 + r2dω2, cf. (8.2) with η = 0. The integration by parts readily
yields

(ΔC(X)u, v) = (u, ΔC(X)v), (9.1)

the left-hand side being equal

n0∑
j=1

((
− ∂2

r − n−q−1

r
∂r +

1

r2
ΔX

)
uj, vj

)

=
(∫ ∞

0

(
− ϕ′′(r) − n−q−1

r
ϕ′(r)

)
ϕ(r)rn−q−1dr

) n0∑
j=1

∫
X

uj v̄jdω

+
(∫ ∞

0

(ϕ(r))2rn−q−3dr
) n0∑

j=1

∫
X

(ΔXuj) v̄jdω

where dω is the volume element on X. Similarly, the right-hand side of (9.1)
is equal to

(∫ ∞

0

(
− ϕ′′(r) − n−q−1

r
ϕ′(r)

)
ϕ(r)rn−q−1dr

) n0∑
j=1

∫
X

uj v̄jdω

+
(∫ ∞

0

(ϕ(r))2rn−q−3dr
) n0∑

j=1

∫
X

uj ΔXvjdω.

Since

∫ ∞

0

(ϕ(r))2rn−q−3dr �= 0, we get

(ΔXu, v)L2(X,
∧i) = (u, ΔXv)L2(X,

∧i)
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for all u, v ∈ N i
∂X . It follows that {ΔX , B0, B1 ◦ d} is symmetric on N i

∂X and
its eigenvalues are real.

�
In the case of edges of codimension 2 all the eigenvalues of the boundary

value problem {ΔX , B0, B1 ◦ d} are non-negative.

Lemma 9.2 The eigenvalues of {ΔX , B0, B1 ◦ d} are bounded below by the
quantity

−(n − q − 2)2

4
.

Proof. For all U ∈ N i
∂X we use the same notation as in Lemma 9.1. Then

we have (ΔC(X)u, u) ≥ 0, or equivalently

( ∞∫
0

(ϕ′(r))2rn−q−1dr
) n0∑

j=1

∫
X

|uj|2dω +
( ∞∫

0

(ϕ(r))2rn−q−3dr
) n0∑

j=1

∫
X

(ΔXuj) ūjdω

≥ 0.

If λ0 < 0 is an eigenvalue of {ΔX , B0, B1 ◦ d} and u is the corresponding
eigenfunction, then we get∫ ∞

0

(ϕ(r))2rn−q−3dr ≤ 1

|λ0|
∫ ∞

0

(ϕ′(r))2rn−q−1dr. (9.2)

Since (9.2) holds for any function ϕ ∈ C∞
0 (R+), we deduce by Hardy’s inequal-

ity that ∫ ∞

0

(ϕ(r))2rn−q−3dr ≤ 4

(n − q − 2)2

∫ ∞

0

(ϕ′(r))2rn−q−1dr

and
4

(n − q − 2)2
is the best possible constant, hence from (9.2) we obtain

1

|λ0| ≥
4

(n − q − 2)2
,

showing

λ0 ≥ −(n − q − 2)2

4
.

�
In fact, since C(X) is simply connected, we conclude by the positive defi-

niteness of (Δu, v)L2(C(X),
∧i) that

λ0 > −(n − q − 2)2

4
.
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Lemma 9.3 The poles of R(�) are purely imaginary.

Proof. The poles of R(�) are those such that −�2 + ı(n−q−2)� is an
eigenvalue of {ΔX , B0, B1 ◦ d}. Lemma 9.1 yields � (−�2 + ı(n−q−2)�) = 0,
so we have either � = ıb or

� = a + ı
n−q−2

2
.

In this latter case we get

−�2 + ı(n−q−2)� = −a2 − (n − q − 2)2

4

≤ −(n − q − 2)2

4
,

which contradicts Lemma 9.2. This proves the lemma.
�

Lemmas 9.1, 9.2 and 9.3 are true for any domain X. In order to improve the
results on the poles of R(�), Shaw imposes familiar conditions on the number
of negative eigenvalues of the Hesse form of C(X), cf. [Sha83].

10 The Green formula

In order to reduce the Neumann problem for the Hodge Laplacian to the
boundary we invoke as usual a suitable Green formula. Green formulas are
actually well understood in the context of general elliptic complexes, cf. [Tar95,
2.5.4].

Let g(x) stands for the standard fundamental solution of convolution type
for the Laplace equation on Rn, i.e.,

g(x) =

⎧⎪⎨
⎪⎩

1

2π
ln |x|, if n = 2,

1

σn

1

2 − n

1

|x|n−2
, if n ≥ 3,

σn being the area of the (n − 1) -dimensional unit sphere in R
n.

Suppose D is an arbitrary bounded Lipschitz domain in Rn, cf. [Mor66]
and elsewhere. The boundary ∂D is regarded as a Lipschitz submanifold of
codimension one in Rn. At almost every point y ∈ ∂D it has a well-defined
outward unit normal vector n(y). Using the Riemannian metric on TRn one
specifies n(y) within the cotangent space T ∗

y R
n. In this way we obtain what is

usually referred to as the outward unit conormal vector for ∂D at y, denoted
ν(y). Also, dσ stands for the surface measure induced by the the Riemannian
metric of TRn on ∂D.
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As usual we define the interior product of a 1 -form ξ and a q -form u by
setting

ξ�u := (−1)(deg u−1)n ∗ (ξ ∧ ∗u) .

Set
∧q =

∧q T ∗Rn. A measurable section u : ∂D → ∧q is called tangential
if ν�u = 0 a.e. on ∂D, and normal if ν∧u = 0 a.e. on ∂D. Every u : ∂D → ∧q

can be written as
u = t(u) + ν ∧ n(u)

where
t(u) = ν� (ν ∧ u |∂D) ,
n(u) = ν�u |∂D

cf. [Tar95, 3.2.2]. Since the operator in = ν� is nilpotent of index 2 both
t(u) and n(u) are tangential forms of degree q and q − 1, respectively. In fact,
the tangential forms of degree q give rise to a vector bundle

∧q
t over ∂D, cf.

equality (3.2.1) ibid.
It is well known that

σ(d)(x, ξ)u = ıξ ∧ u,
σ(δ)(x, ξ)g = −ıξ�g

for all x ∈ Rn and ξ ∈ T ∗
x Rn \ {0}. We are now in a position to introduce the

layer potentials that are relevant in the Neumann problem. More precisely,
given any

u1 ∈ L(∂D,
∧q

t ), u2 ∈ L(∂D,
∧q−1

t ),

u3 ∈ L(∂D,
∧q−1

t ), u4 ∈ L(∂D,
∧q

t ),

these are the double layer potentials

Pt(u1)(x) = δ

∫
∂D

g(x − y) ν(y) ∧ u1(y) dσ(y),

Pn(u2)(x) = − d

∫
∂D

g(x − y) u2(y) dσ(y),

and single layer potentials

Pt◦δ(u3)(x) =

∫
∂D

g(x − y) ν(y) ∧ u3(y) dσ(y),

Pn◦d(u4)(x) = −
∫

∂D
g(x− y) u4(y) dσ(y),

cf. [Tar95, 3.3.2]. For any f ∈ L(D,
∧q), we also define the so-called volume

potential

PΔ(f)(x) = −
∫
D

g(x − y) f(y) dy.

The coexact current Pt(u1) is also known as the Biot-Savart potential of
the form u1. The exact current Pn(u2) is said to be the Coulomb potential of
the form u2.
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Lemma 10.1 For any differential form u of degree 0 ≤ q ≤ n and of class
C2(D),

Pt(t(u))(x) + Pn(n(u))(x) + Pt◦δ(t(δu))(x) + Pn◦d(n(du))(x) + PΔ(Δu)(x)

=

{
u(x), if x ∈ D,
0, if x �∈ D.

(10.1)

Proof. This is a very particular case of the Green formula (2.5.11) of
[Tar95] related to the Laplacian of an arbitrary elliptic complex on a compact
smooth manifold with boundary.

�

11 Boundary reduction of Neumann problem

We shall find it necessary to work with classes of symbols Sm
1,0 which only

exhibit a limited amount of regularity in the spatial variable while being still
C∞ in the Fourier variable. The generic case in the scalar-valued Euclidean
setting is as follows. For a normed function space (F , ‖ · ‖F) with the property
that C∞

comp ↪→ F ↪→ C0 (most typically F = Cs or a similar space) we say that
a(x, ξ) ∈ FSm

1,0 if

‖Dβ
ξ a(·, ξ)‖F ≤ Cβ 〈ξ〉m−|β|

for all α ∈ Zn
+. The class of pseudodifferential operators op(a) with symbols

in FSm
1,0 is denoted by FΨm

1,0. As usual, we write FSm
cl for the subclass of

classical symbols, i.e., all a(x, ξ) ∈ FSm
1,0 with a ∼ am + am−1 + . . . where

aj(x, ξ) is of class F in x and is smooth and homogeneous of degree j in ξ for
|ξ| ≥ 1.

Given any two smooth vector bundles V and Ṽ over the same manifold,
let FΨm

1,0(V, Ṽ ), etc., stand for for the space of pseudodifferential operators

mapping sections of V to sections of Ṽ which, in local coordinates and over
local trivialisations of V and Ṽ , can be represented as matrices with entries
from FΨm

1,0.

For a pseudodifferential operator A ∈ C0Ψ−1
cl (V, Ṽ ), we denote by σ(A)

its principal symbol belonging to C0S−1
cl (T ∗Rn, Hom(V, Ṽ )), and by KA the

Schwartz kernel of A. This latter is a distribution over Rn ×Rn with values in
Ṽ ⊗ V ∗.

Next, we introduce a layer potential operator PA,0 by formally writing,
given a section u : ∂D → V ,

PA,0u (x) = p.v.

∫
∂D

〈KA(x, y), u(y)〉y dσ(y) (11.1)

for x ∈ ∂D.
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Lemma 11.1 Let A ∈ C0Ψ−1
cl (V, Ṽ ) be an operator whose principal symbol

σ(A)(x, ξ) is odd in ξ ∈ T ∗
x Rn. Then, for each u ∈ Lp(∂D, V ) with 1 < p < ∞,

the principal value integral PA,0u(x) exists at almost every point x ∈ ∂D.
Moreover,

PA,0 : Lp(∂D, V ) → Lp(∂D, Ṽ )

is a bounded operator.

Proof. The problem localizes and, given the invariance of the class of sym-
bols and pseudodifferential operators under discussion, it can be transported
in Rn−1 via coordinate mappings. For detail we refer the reader to [MT99] and
elsewhere.

�
To state the main result of this section we need some more notation. Set

D+ := D and D− := Rn \D. For a section u ∈ D′(Rn, V ), we denote by u± its
restriction to D±.

Since the kernel KA is continuous away from the diagonal, the layer po-
tential (11.1) is always well defined for x �∈ ∂D. It just amounts to A(uδ∂D)
where δ∂D is the surface layer on ∂D. We write PA,±u for A(uδ∂D) restricted
to D±, respectively.

If u ∈ D′(Rn, V ) is continuous away from ∂D and x0 ∈ ∂D, we denote by
u±(x0) the non-tangential limit values of u± at x0, that is

u±(x0) = lim
x∈C±(x0)

u(x)

where γ±(x0) ⊂ D± are appropriate non-tangential approach regions. As
usual, they are controlled by the non-tangential maximal operator defined for
u : R

n \ ∂D → V by
Nu± (x0) = sup

x∈C±(x0)

|u(x)|

if x0 ∈ ∂D.

Lemma 11.2 Under hypotheses of Lemma 11.1, there is a constant C > 0
such that ‖N (PA,±u)‖Lp(∂D) ≤ C ‖u‖Lp(∂D,V ) for any u ∈ Lp(∂D, V ). More-
over, PA,±u have non-tangential limit values at almost every point x ∈ ∂D,
namely

PA,±u (x) = ± 1

2ı
σ(A)(x, ν(x)) u(x) + PA,0u (x). (11.2)

Proof. Cf. Theorem 1.1 in [MMT00].
�

In [MMT00] it is also proved that if actually A ∈ C0,λΨ−1
cl (V, Ṽ ) for some

λ > 1/2, then PA,+ maps L2(∂D, V ) continuously to H1/2(D, Ṽ ). Similar
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results are also valid for all formal adjoints of pseudodifferential operators in
C0Ψ−1

cl (Ṽ , V ).
A typical context to which Lemma 11.2 applies is when A has the form DΠ

or its formal adjoint. Here D is a first order differential operator of type V → Ṽ
and Π is a parametrix for an elliptic operator of Ψ2

cl(V ) with even principal
symbol. In fact, similar arguments are still valid under considerably more
relaxed smoothness assumptions on the coefficients of the elliptic operator in
question.

Corollary 11.3 Assume that D is a relatively compact domain with Lip-
schitz boundary and u ∈ Lp(∂D,

∧q
t ), where 1 < p < ∞. Then the principal

value integral Pt,0u exists a.e. on ∂D and defines a form in Lp(∂D,
∧q). More-

over, Pt,+u has non-tangential limit values a.e. on the boundary of D which
satisfy

Pt,+u =
1

2
u + Pt,0u. (11.3)

Proof. In the case of smooth domains D and data u this result is well
known, cf. for instance Theorem 3.2.6 in [Tar95]. The additional difficulties
which are caused by boundary singularities are settled by Lemmas 11.1 and
11.2.

�
Jump formulas (11.2) are known as the Sokhotskii-Plemelj formulas for the

double layer potential.
We now return to the Neumann problem for the de Rham complex. Given

any f ∈ L2(D,
∧q), it consists of finding a differential form u ∈ L2(D,

∧q)
satisfying

(δd + dδ)u = f in D,
n(u) = 0 on ∂D,

n(du) = 0 on ∂D,
(11.4)

the boundary conditions being understood in a suitable weak sense. Since
{t, n, t ◦ δ, n ◦ d} is in fact a Dirichlet system of order 1 on ∂D, the case of
non-zero boundary data reduces to (11.4) in a familiar way, and we omit the
details.

If u ∈ L2(D,
∧q) is a solution of (11.4) then the Green formula (10.1) shows

that
u = Pt(t(u)) + Pt◦δ(t(δu)) + PΔ(f) (11.5)

in D. In order to find u it remains to determine u1 := t(u) and u3 := t(δu)
on ∂D. For this purpose, we invoke Corollary 11.3 to derive a system of two
boundary integral equations for u1 and u3. More specifically, we evaluate both
t(u) and t(δu) from (11.5), obtaining

t(u) = t (Pt,+(t(u))) + t (Pt◦δ,+(t(δu))) + t (PΔ,+(f)) ,

t(δu) = t (δPt,+(t(u))) + t (δPt◦δ,+(t(δu))) + t (δPΔ,+(f))
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a.e. on ∂D. As is easy to check,

δPt,+(t(u)) = 0,

δPt◦δ,+(t(δu)) = Pt,+(t(δu))

whence

t(u) − t (Pt,+(t(u))) − t (Pt◦δ,+(t(δu))) = t (PΔ,+(f)) ,

t(δu) − t (Pt,+(t(δu))) = t (δPΔ,+(f))

a.e. on ∂D.

Theorem 11.4 Let u1 ∈ L2(∂D,
∧q

t ) and u3 ∈ L2(∂D,
∧q−1

t ) satisfy the
system of integral equations

1

2
u1 − t (Pt,0(u1)) − t (Pt◦δ,+(u3)) = t (PΔ,+(f)) ,

1

2
u3 − t (Pt,0(u3)) = t (δPΔ,+(f))

(11.6)

a.e. on ∂D. Then u = Pt,+(u1) + Pt◦δ,+(u3) + PΔ,+(f) is a solution of the
Neumann problem (11.4) up to a finite-dimensional subspace of L2(∂D,

∧q−1).

Proof. From the remark after Lemma 11.2 it follows that u ∈ H1/2(D,
∧q).

Since the volume potential solves the equation ΔPΔ,+(f) = f in D we conclude
that Δu = f in D.

When combined with the jump formula (11.3), equations (11.6) easily yield
t(u) = u1 and t(δu) = u3 a.e. on ∂D. Hence u represents by the formula (11.5)
in D.

Comparing (10.1) with (11.5) we see that Pn(n(u)) + Pn◦d(n(du)) ≡ 0 in
D. Denote the current on the left-hand side by T . This is a harmonic form
away from the boundary of D vanishing at x = ∞ as |x|2−n. By Corollary
11.3, we get

t(T+) − t(T−) = 0, t(δT+) − t(δT−) = 0,
n(T+) − n(T−) = n(u), n(dT+) − n(dT−) = n(du)

on ∂D, cf. also Theorem 3.3.9 of [Tar95]. Since T+ ≡ 0 we conclude that both
t(T−) and t(δT−) vanish, and so

‖dT−‖2
L2(Rn\D,

∧q+1)
+ ‖δT−‖2

L2(Rn\D,
∧q−1)

=
(
ΔT−, T−)

L2(Rn\D,
∧q)

= 0

by Stokes’ formula. It follows that dT− = 0 and δT− = 0, which means that
∗T− is a solution of the Neumann problem in Rn \ D with zero data. Since
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the space of such ∗T− is isomorphic to the de Rham cohomology of Rn \ D at
step n− q, it is finite dimensional. To complete the proof it suffices to observe
that n(u) = −n(T−).

�
Were the cohomology of Rn \ D trivial at step n − q, we would be able to

conclude that T− ≡ 0, showing n(u) = 0.
Note that u = Pt,+(u1) + Pt◦δ,+(u3) + PΔ,+(f) need not satisfy (11.4) in

general. To see this, pick a non-trivial form T− ∈ C∞(Rn \D,
∧q) vanishing at

infinity and satisfying dT− = 0, δT− = 0 and t(T−) = 0. Choose a differential
form u ∈ C∞(D,

∧q) with the property that n(u) = −n(T−) and n(du) = 0.
Then Pn(n(u)) = −Pn(n(T−)) = 0 in D, as follows from the Green formula
(10.1). Hence u represents by the formula u = Pt,+(u1) +Pt◦δ,+(u3) +PΔ,+(f)
where u1 = t(u), u3 = t(δu) and f = Δu. Clearly, u1 and u3 satisfy (11.6)
while n(u) �= 0.

Corollary 11.5 If the operator I −2tPt,0 in L2(∂D,
∧q

t ) is Fredholm, then
so is the Neumann problem (11.4).

12 Topological ingredients

We first recall the Abstract de Rham Theorem, cf. for instance [Wel73]. Let
X be a Hausdorff paracompact topological space, and let S be a sheaf over X.
If

F · : 0 −→ S ι−→ F0 d0−→ F1 d1−→ . . .

is a resolution of S by fine sheaves over X, then H i(X,S) ∼= H i(F ·(X)) holds
for every i = 0, 1, . . .. Here H i(X,S) stands for the i -th cohomology of X with
coefficients in S.

Theorem 12.1 Suppose that D is a relatively compact domain with Lips-
chitz boundary. Then, for every j = 0, 1, . . ., there is an isomorphism of vector
spaces

H i(D, R) ∼= {u ∈ L2(D,
∧i) : du = 0 in D}

d{u ∈ L2(D,
∧i−1) : du ∈ L2(D,

∧i)} . (12.1)

Proof. For any fixed i = 0, 1, . . ., we consider the sheaf Li over the closure
of D, defined by

Li(U) = {u ∈ L2
loc(U,

∧i) : du ∈ L2
loc(U,

∧i+1)}

for any open subset U of D, and the sheaf morphism d : Li → Li+1 given by the
restriction of d to the interior of U in D. We claim that the sequence of sheaves
{Li}i=0,1,... forms a fine resolution of the sheaf R. Indeed, the only thing to
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be checked is the exactness on stalks. However, the L2 Poincaré lemma to
be verified in this context is clearly invariant under pull-back by bi-Lipschitz
homeomorphisms and, hence, can be transported to a ball in Rn. In the
latter case such a result is essentially well known, for the standard proof of the
Poincaré lemma can be adapted to this setting by using a mollifying argument.
Note that this proof utilizes only the Lipschitz structure of the underlying
Riemannian manifold. Hence the Abstract de Rham Theorem yields (12.1), as
desired.

�
If the cohomology H i(D, R) is finite dimensional then it just amounts to

the i -th singular homology group of D over real numbers, i.e., Hsing
i (D, R).

The dimension of this latter is said to be the i -th Betti number of D. The
cohomology on the right-hand side of (12.1) is actually H i(L·(D)). It fails to
coincide with the L2 cohomology of D in general. By this latter is usually
meant

{u ∈ Di
T : Tu = 0}
dDi−1

T

, (12.2)

cf. § 8. However, if the Neumann problem is normally solvable then H i(L·(D))
just amounts to (12.2). To prove this, it suffices to use the strong Hodge
decomposition.

Corollary 12.2 If the operator (L+1)−1 is compact then the L2 cohomol-
ogy of D at step i is isomorphic to Hsing

i (D, R).

Note that in a recent paper [KS03] sufficient conditions of compact solv-
ability for the de Rham complex are derived.
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boundary value problems in C1 domains, Acta Math. 141 (1978),
no. 3–4, 165–186.

[Fei72] V. I. Feigin, Elliptic equations in domains with multidimensional
singularities on the boundary, Uspekhi Mat. Nauk 27 (1972), no. 2,
183–184.

[Gaf55] M. P. Gaffney, Hilbert space methods in the theory of harmonic in-
tegrals, Trans. Amer. Math. Soc. 78 (1955), 551–590.

[GS53] P. R. Garabedian and D. C. Spencer, A complex tensor calculus for
Kähler manifolds, Acta Math. 89 (1953), 279–331.

[GK57] I. Ts. Gokhberg and M. G. Krein, Basic propositions on defect num-
bers, root numbers and indices of linear operators, Uspekhi Mat.
Nauk 12 (1957), no. 2 (74), 43–118.

[Gru71] V. V. Grushin, On a class of elliptic pseudodifferential operators
degenerate on a submanifold, Math. USSR Sbornik 13 (1971), no. 2,
155–183.

[Hod41] W. V. D. Hodge, The Theory and Application of Harmonic Integrals,
Cambridge Univ. Press, New York, 1941.

[KK62] L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher
Analysis, Fizmatgiz, Moscow, 1962, 695 pp.

[KO83] V. A. Kondrat’ev and O. A. Oleinik, Boundary value problems for
partial differential equations in nonsmooth domains, Uspekhi Mat.
Nauk 38 (1983), no. 2, 3–76.

[Kon67] V. A. Kondrat’ev, Boundary value problems for elliptic equations in
domains with conical points, Trudy Mosk. Mat. Obshch. 16 (1967),
209–292.

[Kor02] A. Korn, Abhandlungen zur Potentialtheorie in 5 Hefte, Dümmler,
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