
POWER SUMS OF ROOTS OF A NONLINEAR SYSTEM

A. KYTMANOV, S. MYSLIVETS, AND N. TARKHANOV

Abstract. For a system of meromorphic functions f = (f1, . . . , fn) in Cn, an
explicit formula is given for evaluating negative power sums of the roots of the
nonlinear system f(z) = 0.
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1. Introduction

An important tool of computer algebra and its applications in gas dynamics and
chemical physics is the elimination of variables from a systems of nonlinear algebraic
equations. The classical elimination method has been considerably modified on the
base of residue theory. The logarithmic and Grothendieck residues are crucial
ingredients of the new tools, cf. [AYu83], [BKL98], [Tsi92], etc.

The new approach consists of evaluating the sums of values of an arbitrary
polynomial over all roots of the system, without having granted these roots. This
allows one to find the power sums of roots and the resultant of the system relative
to an arbitrary polynomial by using the classical Newton recurrence relations or
their multidimensional analogues, cf. [BKL98].

For a nonlinear system f(z) = 0 in C
n given by entire or meromorphic functions,

the set of roots may be countable (if discrete). Hence, the power sums of roots fail in
general to be well defined for positive powers. The aim of this paper is to study the
power sums of roots for negative powers and derive an explicit evaluation formula
for them.
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2. Separating cycles

Consider a system of holomorphic functions f1, . . . , fn in a neighbourhood of
0 ∈ Cn, each fj being of the form

(2.1) fj(z) = zmj Pj(z) + Qj(z)

where mj = (mj,1, . . . , mj,n) is a multi-index with nonnegative integer entries, Pj a
homogeneous polynomial of degree kj , and Qj a Taylor series in a neighbourhood
of the origin.

We shall make two standing assumptions on the functions Pj and Qj under
consideration. Namely, the system P1, . . . , Pn is required to have a unique common
zero in Cn, i.e., z = 0. The assumption on Qj is that the degree of each monomial
entering into Qj is strictly greater than the degree of zmjPj , i.e., |mj| + kj where
|mj | := mj,1 + . . . + mj,n.

For a fixed ε = (ε1, . . . , εn) with εj > 0, we introduce the cycle

ΓP = {z ∈ C
n : |Pj(z)| = εj for j = 1, . . . , n}

in Cn.

Lemma 2.1. For almost all positive ε1, . . . , εn, the cycle ΓP is compact and smooth.

Proof. The smoothness of ΓP for almost all ε follows from the Sard theorem. It
remains to show that ΓP is compact.

Choose natural numbers q1, . . . , qn, such that q1k1 = . . . = qnkn = N . For
R > 0, consider the set BR = {z ∈ Cn :

∑n
j=1 |Pj(z)|2qj ≤ R2}. If we prove that

BR is compact, we shall have established the compactness of ΓP , for ΓP ⊂ BR

holds for sufficiently large R.
Pick z ∈ BR. Write z = tw, where t ∈ C and |w| = 1. Then

n∑
j=1

|Pj(z)|2qj = |t|2N
n∑

j=1

|Pj(w)|2qj .

Since the polynomials P1(w), . . . , Pn(w) have no common zero on the unit sphere,
it follows that

n∑
j=1

|Pj(w)|2qj ≥ c2

for |w| = 1, with c > 0 a constant independent of w. Therefore,

R2 ≥ |t|2N
n∑

j=1

|Pj(w)|2qj

≥ c2 |t|2N ,

i.e., |t|2N ≤ R2

c2
whence |z| ≤ N

√
R

c
, as desired. �

Lemma 2.2. Suppose, for every j = 1, . . . , n, that either one of P1, . . . , Pn van-
ishes identically on the hyperplane zj = 0 or there is a subsystem of n − 1 polyno-
mials which have the only common zero at the origin on zj = 0. Then there exist
ε1, . . . , εn > 0 such that ΓP ⊂ (C \ {0})n.
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Proof. Consider the coordinate hyperplane zj = 0. If one of the polynomials
P1, . . . , Pn vanishes identically on zj = 0, then the cycle ΓP does not meet this
hyperplane, as is easy to see.

We now assume that the system

(2.2)

⎧⎨
⎩

P1(z) = 0,
. . .

Pn−1(z) = 0

has a unique root on the hyperplane zj = 0, i.e., that at the origin. By Lemma
2.1, the cycle ΓP ′ on zj = 0, defined by P ′ = (P1, . . . , Pn−1), is compact. For any
neighbourhood U of 0 on zj = 0 one can choose ε1, . . . , εn−1 small enough, such
that ΓP ′ ⊂ U . The set

U = {z ∈ C
n : zj = 0 and |Pn(z)| < εn}

is open and contains 0. It follows that ΓP ′ ⊂ U , hence ΓP does not intersect the
hyperplane zj = 0. �

In the sequel we will assume that ε is chosen in such a way that ΓP ⊂ (C\ {0})n

is fulfilled.

3. A residue integral

Given any s ∈ Zn, we consider the integral

I(s + I) =
1

(2πı)n

∫
ΓP

z−s−I df

f

=
1

(2πı)n

∫
ΓP

1
zs1+1
1 · . . . · zsn+1

n

df1

f1
∧ . . . ∧ dfn

fn
.

Let us show that the integral is well defined, i.e., fj �= 0 on ΓP if εj is small enough,
for j = 1, . . . , n.

We get

fj(tz) = t|mj |+kj

(
zmj Pj(z) + tFj(t, z)

)
for any t ∈ C. On the cycle ΓP each expression zmjPj(z) is bounded away from
zero because

|zmjPj(z)| = |zmj | εj

≥ cj

with cj > 0 a constant independent of z. Furthermore, the functions Fj are bounded
on the compact set {t ∈ C : |t| ≤ 1} × ΓP in Cn+1. We can thus assert that
|zmjPj(z)| > |tFj(t, z)| on ΓP for all t small enough. Hence |zmj Pj(z)| > |Qj(z)|
holds on any cycle

tΓP = {w ∈ C
n : |P1(w)| = |t|k1ε1, . . . , |Pn(w)| = |t|knεn}

with sufficiently small |t|. It follows that fj(z) �= 0 on tΓP for all j = 1, . . . , n, as
desired.

Note that the integral I(s+I) is neither a logarithmic residue nor a Grothendieck
residue. Still, we will show that the integral can be expressed through power sums
of the reciprocal roots of the system f(z) = 0.
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Using the geometric series we expand the function 1/f1 · . . . · fn on ΓP . More
precisely,

1
f1 · . . . · fn

=
1

zm1+...+mnP1 · . . . · Pn

(
1 +

Q1

zm1P1

)
· . . . ·

(
1 +

Qn

zmnPn

)
=

1
zm1+...+mnP1 · . . . · Pn

∑
α∈Zn

+

(
− Q1

zm1P1

)α1 · . . . ·
(
− Qn

zmnPn

)αn

=
∑

α∈Zn
+

(−1)|α| Qα

z(α1+1)m1+...+(αn+1)mnPα+I

where α + I = (α1 + 1, . . . , αn + 1). Since the series converges uniformly on ΓP ,
termwise integration yields

(3.1) I(s + I) =
∑

α∈Zn
+

(−1)|α|

(2πı)n

∫
ΓP

1
zs+I

Qα Jfdz

z(α1+1)m1+...+(αn+1)mnPα+I

where Jf is the Jacobian of system (2.1).
Our next objective is to show that only finitely many summands in (3.1) are

different from zero. Since the cycle ΓP is a circular set, the only non-zero integrals
may be those whose numerator (counted with dz) has the same degree of homo-
geneity as that of the denominator. The degree of the denominator of any term in
(3.1) is equal to

|s| + n + (α1 + 1)|m1| + . . . + (αn + 1)|mn| + (α1 + 1)k1 + . . . + (αn + 1)kn

while the degree of the numerator is at least

|m1|+ k1 + . . . + |mn|+ kn − n + α1(|m1| + k1 + 1) + . . . + αn(|mn|+ kn + 1) + n.

Hence it follows that the number of nonzero summands in (3.1) is at most |s| + n,
for the degree of the numerator is at least |α| − |s| − n greater than the degree of
the denominator.

Summarising we arrive at the following result.

Lemma 3.1. If defined as above, I(s + I) just amounts to

I(s + I) =
∑

|α|≤|s|+n

(−1)|α|

(2πı)n

∫
ΓP

1
zs+I

Qα Jfdz

z(α1+1)m1+...+(αn+1)mnPα+I
.

4. Transformation under an involution

Consider the transformation zj = 1/wj, j = 1, . . . , n. This is a biholomorphic
involution (C \ {0})n → (C \ {0})n.

We get

fj

( 1
w

)
=

1
wmj

Pj

( 1
w

)
+ Qj

( 1
w

)
=

1
wMj

(
wMj−mj Pj

( 1
w

)
+ wMj Qj

( 1
w

))
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where Mj = (Mj,1, . . . , Mj,n) is a multi-index of Zn to be chosen. To this end, we
introduce

P̃j(w) = wMj−mj Pj

( 1
w

)
and

Q̃j(w) = wMj Qj

( 1
w

)
.

We require both P̃j and Q̃j to be polynomials. The degree of each monomial of
P̃j and Q̃j in wk is at least

Mj,k − mj,k − degzk
Pj ,

Mj,k − degzk
Qj ,

respectively. This suggests the choice

(4.1) Mj,k := max
{

mj,k + degzk
Pj , degzk

Qj

}
for any j, k = 1, . . . , n.

Under (4.1), every f̃j = P̃j + Q̃j is a polynomial and f̃j(w) = wMj fj(1/w), for
j = 1, . . . , n. Since deg P̃j = |Mj | − |mj | − kj and deg Q̃j = |Mj | − deg Qj , we
conclude that deg P̃j > deg Q̃j.

In what follows we assume that the system⎧⎨
⎩

P̃1(w) = 0,
. . .

P̃n(w) = 0

has the only common zero at the origin w = 0. This implies that the algebraic
system f̃(w) = 0 meets the condition of Bézout’s theorem.

By assumption, the cycle ΓP lies in (C \ {0})n. Under the involution z = 1/w it
transforms to a compact cycle of the form

Γ̃P = {w ∈ C
n : |P̃j(w)| = |wMj−mj | εj for j = 1, . . . , n}.

Our next goal is to transform the integral I(s+ I) under the change of variables
z = 1/w. By the above,

dfj

( 1
w

)
fj

( 1
w

) =
d
( 1

wMj
f̃j(w)

)
1

wMj
f̃j(w)

=
d

1
wMj

1
wMj

+
df̃j(w)
f̃j(w)

=
df̃j(w)
f̃j(w)

−
n∑

k=1

Mj,k
dwk

wk

whence I(s + I) transforms to

(−1)n

(2πı)n

∫
Γ̃P

ws+I
(df̃1(w)

f̃1(w)
−

n∑
k=1

M1,k
dwk

wk

)
∧ . . . ∧

(df̃n(w)
f̃n(w)

−
n∑

k=1

Mn,k
dwk

wk

)
,

the factor (−1)n being due to the change of orientation.
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The analytic polyhedron

Π = {w ∈ C
n : |P̃j(w)| > |wMj−mj | εj for j = 1, . . . , n}

lies in the product (C \ {0})n. Moreover, it agrees with the family of divisors
Dj := {w ∈ Cn : P̃j(w) = 0} in the sense that the j -th face of bΠ does not
intersect Dj , for each j = 1, . . . , n. Since (C \ {0})n is a domain of holomorphy, we
may apply the principle of separating cycles, cf. [Tsi92, § 9], which immediately
implies

I(s+I) =
(−1)n

(2πı)n

∫
ΓP̃

ws+I
(df̃1(w)

f̃1(w)
−

n∑
k=1

M1,k
dwk

wk

)
∧. . .∧

(df̃n(w)
f̃n(w)

−
n∑

k=1

Mn,k
dwk

wk

)
.

The integral on the right-hand side is a linear combination of integrals of the
form

(4.2)
∫
ΓP̃

ws+I
(df̃j1(w)

f̃j1(w)
∧ . . . ∧ df̃jk

(w)
f̃jk

(w)

)
∧
(dwjk+1

wjk+1

∧ . . . ∧ dwjn

wjn

)
,

where 1 ≤ j1 < . . . < jk ≤ n and 1 ≤ jk+1 < . . . < jn ≤ n. These integrals vanish
unless k = n. Indeed, on the cycle ΓP̃ the inequality |P̃j(w)| > |Q̃j(w)| is fulfilled
for any j = 1, . . . , n. Hence, expanding the integrand of (4.2) as a geometric series
on ΓP̃ just as in Section 3 we deduce that (4.2) is actually the sum of integrals of
the form

(4.3)
∫
ΓP̃

ws+IhJ,α(w)
(dwj1

P̃α1
j1

∧ . . . ∧ dwjk

P̃αk
jk

)
∧
(dwjk+1

wjk+1

∧ . . . ∧ dwjn

wjn

)
,

with hJ,α a polynomial. Since the cycle ΓP̃ is the skeleton of the bounded analytic
polyhedron {w ∈ Cn : |P̃j(w)| < εj for j = 1, . . . , n}, it follows that ΓP̃ = bFjk+1 ,
where

Fjk+1 = {w ∈ C
n : |P̃j(w)| = εj for j �= jk+1, |P̃jk+1(w)| < εjk+1}.

The integrand of (4.3) has no singularities on the face Fjk+1 , which enables us
to apply the Stokes formula to (4.3). We conclude this way that all integrals (4.3)
vanish, and so do the integrals (4.2) for k = 1, . . . , n−1, as desired. We have proved
the following formula.

Lemma 4.1. If Qj are polynomials satisfying (4.1), then

I(s + I) =
(−1)n

(2πı)n

∫
ΓP̃

ws+I df̃1(w)
f̃1(w)

∧ . . . ∧ df̃n(w)
f̃n(w)

.

5. Power sums

By the theorem of Bézout, cf. for instance [Tsi92, § 19], the system

(5.1)

⎧⎨
⎩

f̃1(w) = 0,
. . .

f̃n(w) = 0

has a finite number of roots in Cn, the roots being counted with their multiplicities.
This number is actually equal to the product of the degrees of the polynomials
P̃j(w).

Denote by bk = (bk,1, . . . , bk,n) the roots of (5.1) which lie away from the co-
ordinate hyperplanes in C

n. Here, the index k runs over the set 1, . . . , N , where
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N is the number of roots. Setting ak,j = 1/bk,j, we easily see that the points
ak = (ak,1, . . . , ak,n) form the set of all zeros of (2.1) lying away from the coordi-
nate hyperplanes.

Write

σ(s + I) =
N∑

k=1

a−s−I
k

=
N∑

k=1

bs+I
k

for a power sum of the zeros of system (2.1) which lie in the complement of the
coordinate hyperplanes in Cn.

Theorem 5.1. For any system (2.1) with polynomials Pj and Qj satisfying (4.1),
the equality holds

I(s + I) = (−1)nσ(s + I).

Proof. By Lemma 4.1, we get

I(s + I) =
(−1)n

(2πı)n

∫
ΓP̃

ws+I df̃

f̃
.

We now invoke the Rouché principle for residues, cf. Theorem 4.8 of [AYu83] or
[Tsi92, § 8]. It gives

I(s + I) =
(−1)n

(2πı)n

∫
Γf̃

ws+I df̃

f̃

= (−1)n
N∑

k=1

bs+I
k

because on ΓP̃ the inequalities |P̃j(w)| > |Q̃j(w)| are fulfilled, for j = 1, . . . , n. This
establishes the formula. �

6. Generalisation to meromorphic maps

We now consider more general systems (2.1). Suppose every fj , j = 1, . . . , n,
has the form

(6.1) fj(z) =
f

(1)
j (z)

f
(2)
j (z)

where f
(1)
j (z) and f

(2)
j (z) are entire functions on Cn with f

(2)
j (0) �= 0. We more-

over require both the numerators and the denominators to admit infinite product
expansions

f
(1)
j (z) =

∞∏
k=1

f
(1)
j,k (z),

f
(2)
j (z) =

∞∏
k=1

f
(2)
j,k (z)

which converge absolutely and uniformly on compact subsets of Cn, each factor
being of the form (2.1) with polynomials Pj and Qj satisfying condition (4.1).
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For any multi-index (k1, . . . , kn) ∈ Nn and any n -tuple (i1, . . . , in) of numbers 1
and 2, the system of algebraic equations

(6.2)

⎧⎪⎨
⎪⎩

f
(i1)
1,k1

(z) = 0,

. . .

f
(in)
n,kn

(z) = 0

has at most a finite number of roots away from the coordinate hyperplanes in Cn.
The roots of all systems (6.2) which lie in the complement of the coordinate hyper-
planes form at most a countable discrete set in Cn. Let a1, a2, . . . be a numbering
of the roots which are counted with their multiplicities. Our basic assumption is
that the series

(6.3)
∞∑

k=1

1
|aI

k|
converges.

Given any multi-index s ∈ Zn
+, we are interested in the power sums of the form

σ(s + I) =
∞∑

k=1

(−1)p(k)a−s−I
k ,

where p(k) is the number of functions f
(2)
j,kj

in the system (6.2) defining ak. The
series on the right-hand side converges, which is due to (6.3). For the system (6.1),
the points ak are either zeros or poles.

Theorem 6.1. Under the above assumptions on (6.1), it follows that

I(s + I) = (−1)nσ(s + I).

Proof. A trivial verification shows that

dfj

fj
=

df
(1)
j

f
(1)
j

− df
(2)
j

f
(2)
j

,

hence

df

f
=

(df
(1)
1

f
(1)
1

− df
(2)
1

f
(2)
1

)
∧ . . . ∧

(df
(1)
n

f
(1)
n

− df
(2)
n

f
(2)
n

)

=
∑

(−1)o(i) df
(i1)
1

f
(i1)
1

∧ . . . ∧ df
(in)
n

f
(in)
n

where the sum is over all possible n -tuples i = (i1, . . . , in) of numbers 1 and 2, and
o(i) is the number of entries 2 in i.

We are thus reduced to proving the theorem for entire functions fj = f
(1)
j . In

this case we have

df

f
=

d
∏∞

k=1 f1,k∏∞
k=1 f1,k

∧ . . . ∧ d
∏∞

k=1 fn,k∏∞
k=1 fn,k

=
∞∑

k1,...,kn=1

df1,k1

f1,k1

∧ . . . ∧ dfn,kn

fn,kn

.
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Hence it follows that the integral I(s + I) is equal to the sum of integrals of the
form

1
(2πı)n

∫
ΓP

1
zs+I

df1,k1

f1,k1

∧ . . . ∧ dfn,kn

fn,kn

.

Since for such integrals the desired formula is established by Theorem 5.1, the
assertion follows. �

7. Explicit evaluation

In this section we show that the integral I(s+I) can be evaluated through Taylor
coefficients of the functions f1, . . . , fn. Since the system P̃ (w) = 0 has the only
root at the origin 0 ∈ Cn, the theorem of Hilbert on roots (cf. for instance [Tsi92,
§ 20]) guarantees the existence of numbers N1, . . . , Nn and a matrix of homogeneous
polynomials

Ã = (ãi,j(w)) i=1,...,n
j=1,...,n

,

such that deg ãi,j = Ni − deg P̃j and

wNi

i =
n∑

j=1

ãi,j(w)P̃j(w)

for i = 1, . . . , n. Substituting w = 1/z into this equality and multiplying both its
sides by the lowest common multiple, we get

(7.1) zδi =
n∑

j=1

ai,j(z)Pj(z)

for i = 1, . . . , n, with some multi-indices δi ∈ N
n and polynomials ai,j(z).

For a multi-index α ∈ Z
n×n
+ with entries αi,j , we set

αi,· = (αi,1, . . . , αi,n), α·,j =

⎛
⎜⎝

α1,j

...
αn,j

⎞
⎟⎠

and |α| =
n∑

i,j=1

αi,j .

Theorem 7.1. Let f1, . . . , fn fulfil the hypotheses of Theorem 5.1 or Theorem 6.1.
Then,

I(s+1)(7.2)

=
∑

α∈Z
n×n
+

|α|≤|s|+n

cα M

(
detA

∏n
i,j=1 a

αi,j

i,j Qα1,·+...+αn,· Jf

zs+(|α·,1|+1)m1+...+(|α·,n|+1)mn+(|α1,·|+1)δ1+...+(|αn,·|+1)δn

)

where

cα = (−1)|α|
∏n

i=1 |αi,·|!∏n
i,j=1 αi,j !

and M is the functional assigning the constant term to a Laurent polynomial.
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Proof. We first consider a system f1, . . . , fn satisfying the conditions of Theorem
5.1. In this case Q1, . . . , Qn are polynomials. Changing the variables in (7.1) by
zj = 1/wj, for j = 1, . . . , n, we obtain

1
wδi

=
n∑

j=1

ai,j

( 1
w

)
Pj

( 1
w

)

=
n∑

j=1

ai,j

( 1
w

) 1
wMj−mj

P̃j(w)(7.3)

where the multi-indices M1, . . . , Mn are defined in Theorem 5.1.
Multiplying these equalities by the lowest common multiples leads to a system

of polynomials. In fact, there are multi-indices I1, . . . , In of Zn
+ with the property

that

wIi−δi =
n∑

j=1

ai,j

( 1
w

)
wIi−Mj+mj P̃j(w),

for i = 1, . . . , n, where

wIi−Mj+mj ai,j

( 1
w

)
= ãi,j(w)

are polynomials of degree Ni − deg P̃j and Ii − δi = Niei. As usual, we denote by
ei ∈ Z

n
+ the multi-index whose entries are zero but 1 at position i. We thus arrive

at the equalities

(7.4) wNi

i =
n∑

j=1

ãi,j(w)P̃j(w),

we have started with.
In the proof of Theorem 5.1 we have got the formula

I(s+I) =
(−1)n

(2πı)n

∫
ΓP̃

ws+I df̃

f̃
.

For such integrals, Theorem 8.1 of [BKL98] gives, under condition (7.4), the explicit
formula

(7.5) I(s+1) = (−1)n
∑

α∈Z
n×n
+

|α|≤|s|+n

cα M

(
ws+I det Ã

∏n
i,j=1 ã

αi,j

i,j Q̃α1,·+...+αn,· Jf̃∏n
j=1 w

(|αj,·|+1)Nj−1
j

)
,

Jf̃ being the Jacobian of the system f̃j = P̃j + Q̃j , where j = 1, . . . , n.
To obtain a formula in terms of the Taylor coefficients of the genuine system, we

change the variables by wj = 1/zj, for j = 1, . . . , n. Analysis similar to that in the
proof of Theorem 5.1 shows that

P̃j

(1
z

)
= zmj−Mj Pj(z),

Q̃j

(1
z

)
= z−Mj Qj(z)

and f̃j(1/z) = z−Mj fj(z). Hence

Q̃α1,·+...+αn,·
(1

z

)
=

Qα1,·+...+αn,·(z)
z|α·,1|M1+...+|α·,n|Mn

,
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and the entries of the Jacobi matrix of f̃ are

∂f̃j

∂wk
=

∂f̃j(1/z)
∂(1/zk)

= −z2
k

( 1
zMj

∂fj

∂zk
− Mj,k

zMj+ek
fj

)
=

zk

zMj

(
− zk

∂fj

∂zk
+ Mj,kfj

)
for j, k = 1, . . . , n. The Jacobian of f̃ is therefore of the form

(7.6) Jf̃ = (−1)n z2
1 · . . . · z2

n

zM1+...+Mn
Jf +

n∑
j=1

cjfj ,

where cj(z) are rational functions with denominators being monomials. When
substituted into (7.5), the second term of (7.6) gives zero contribution since the
integral I(s + I) just amounts to the sum (−1)nσ(s + I) which is evaluated at the
roots of f = 0.

Further, an easy computation computation shows that

det Ã
(1

z

)
=

detA(z)
zI1+...+In−M1−...−Mn+m1+...+mn

,

and so after substituting all the expressions into (7.5) we obtain formula (7.2), as
desired.

In the case when Q1, . . . , Qn fail to be polynomials we apply (7.5) to partial
sums of the Taylor series of these functions. Since the functional M vanishes on
summands whose numerators are of sufficiently large degree, the equality (7.2)
follows. �
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