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Chapter 6

Elliptic Theory on Manifolds with Edges

Introduction

In this paper, we acquaint the reader with analytical aspects of elliptic theory on manifolds with singular-
ities of the simplest type, that is, edges. This theory was developed by Schulze (e.g., see (Schulze 1991),
where one can find further references, and also (Egorov and Schulze 1997)). Although the geometry of
such manifolds is hardly more complicated than that of manifolds with isolated singularities, the con-
struction of elliptic theory proves to be much more involved, and the choice of “right” spaces where the
operators should act is by no means obvious. Hence in the first section we try to give a clear presentation
of related definitions and constructions, emphasizing the motivations and omitting less important details.
In particular, the reader will learn

• how edge-degenerate operators are defined and in which spaces they should be considered;

• what the notion of symbol looks like for such operators;

• why these operators, even under the ellipticity condition for the principal symbol, are Fredholm
only in exceptional cases, and how to obtain well-posed problems for them;

• what notion of ellipticity is suitable for edge problems;

• how one states the finiteness theorem in this case.

Issued related to pseudodifferential operators are touched in the first section only as long as they are
necessary for the understanding of statements and motivations. The theory of edge-degenerate pseudod-
ifferential operators, which is not only the main tool in the proof of the finiteness theorem but also an
important basis for homotopies used in index theory, is developed in Section 2. In the third section, by
means of the theory of pseudodifferential operators, we construct regularizers and thus prove the finite-
ness theorem for elliptic edge problems (including the case of pseudodifferential operators in the main
equation of the problem).

The techniques used in this paper involve some facts concerning pseudodifferential operators in
spaces of sections of infinite-dimensional bundles. These facts are included in the Appendix.
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6 ELLIPTIC THEORY ON MANIFOLDS WITH EDGES

6.1. Motivation and Main Constructions

6.1.1. Manifolds with edges

First, we introduce the main geometric object on which elliptic theory will be developed in this paper,
namely, manifolds with edges.

Definition. Let M be a smooth compact manifold with boundary ∂M . Suppose that the boundary is
equipped with the structure of a locally trivial bundle with base X and fiber Ω, where Ω and X are also
smooth compact manifolds:

π : ∂M Ω−→ X. (6.1)

We identify all points in each fiber Ωx = π−1(x) of π with one another, i.e., introduce the following
equivalence relation on M :

two points a1, a2 ∈ M are equivalent (a1 ∼ a2) if and only if either
a1 = a2 or both points belong to ∂M and π(a1) = π(a2).

(6.2)

DEFINITION 6.1. The quotient space M = M/∼ with respect to the equivalence relation (6.2) is called
a manifold with edges or, more precisely, a manifold with edge X.

The structure of a neighborhood of the edge. Let U be a collar neighborhood of the boundary in M .
Once and for all, we choose a direct product structure

U � ∂M × [0, 1); (6.3)

then the bundle (6.1) lifts to the bundle (denoted by the same letter)

π : U −→ X × [0, 1). (6.4)

(The projection acts as the identity operator with respect to the second argument.) Passing to the quotient
space, we see that the neighborhood U = U/∼ of the edge in M is also a bundle over X. The fiber of
this bundle is a manifold with isolated singularity, namely, the neighborhood {r < 1} of the vertex in
the infinite cone

KΩ = (Ω × R+)
/ (

Ω × {0}) (6.5)

with base Ω.
Thus geometrically a manifold with edges is a space with singularities which looks like the direct

product of a domain V in Euclidean space Rn by the cone KΩ with smooth compact base Ω in a neigh-
borhood of any singular point. The edge X (the set of singular points) itself is a smooth manifold and is
locally represented by the product of V by the cone vertex.

Next, there is a natural diffeomorphism M\X ≡
◦
M �

◦
M ≡M \ ∂M of the interiors.

Remark 6.2. Note that even though the manifold M with edges is the main geometric object of the
theory and, in particular, it is this manifold that arises in examples and applications of the theory, it will
be more convenient to carry out most of the main analytical constructions on the original manifold M
with boundary. We usually do so in what follows.
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The infinite wedge associated with M. If M = M/ ∼ is a compact manifold with edge X, then it has
a naturally associated manifold W with edge X called an infinite wedge with edge X. It is defined as the
quotient space of the Cartesian product ∂M × R+ by the equivalence relation

points a1, a2 ∈ ∂M × R+ are equivalent (a1 ∼ a2) if and only if either
a1 = a2 or both points belong to ∂M × {0} and satisfy π(a1) = π(a2),

(6.6)

similar to (6.2):
W =

(
∂M × R+

)
/ ∼ .

Thus W is a locally trivial bundle over X with fiber the infinite cone KΩ. The projection of this
bundle will also be denoted by π.

In W as well as in M, the neighborhood U of the edge is well defined. We sometimes identify it
with the corresponding neighborhood in M, which permits us to treat functions on M supported in U as
functions on W and, conversely, functions on W supported in U with functions on M.

Coordinates on M. We understand coordinates on M as admissible coordinates on M . Specifically,
we consider coordinate neighborhoods of two types on M . First, these are coordinate neighborhoods
of interior points, where arbitrary smooth coordinates systems will be called admissible. Second, these
are neighborhoods of boundary points. The boundary ∂M has the structure of a vector bundle, and
admissible coordinates on M in these neighborhoods are coordinates compatible with this structure,
namely, coordinates of the form (x, ω, r), where r is a defining function of the boundary (r ≥ 0 and the
equation of the boundary has the form r = 0) and the variables x are coordinates on the base X of the
bundle π (i.e., they are constant in the fibers of π). Then for each given x and r = 0 the variables ω are
automatically local coordinates in the fiber Ωx. The coordinate transition maps

(x, ω, r) = h(x̃, ω̃, r̃)

near the boundary have the form

x = f(x̃) + r̃f1(x̃, ω̃, r̃), ω = g(x̃, ω̃, r̃), r = F (x̃, ω̃, r̃)r̃, (6.7)

where F, f, f1, g are smooth functions and

F (x, ω, 0) > 0, det
∂f(x̃)
∂x̃

�= 0, det
∂g(x̃, ω̃, 0)

∂ω̃
�= 0. (6.8)

Similar admissible coordinate systems (x, ω, r) are defined on the infinite wedge W . In this case,
we always assume that the variable r ranges over the entire R+ (i.e., the coordinate neighborhood is an
infinite cone). With the change of variables (6.7) we associate the derived change of variables

(x, ω, r) = h∗(x̃, ω̃, r̃)

on the infinite wedge given by the formulas

x = f(x̃), ω = g(x̃, ω̃, 0), r = F (x̃, ω̃, 0)r̃. (6.9)

(We have essentially passed to differentials only with respect to the variable r at r = 0.) The derived
change of variables is obviously compatible with the bundle structure π : W −→ X.
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The cotangent bundle of M. The cotangent bundle of M plays an important role in the subsequent
constructions. By definition, it is some special vector bundle over the corresponding manifold M with
boundary. Let us describe it.1 In the space Λ1(M) of smooth differential 1-forms on M , consider the
subspace Λ1∧(M) ⊂ Λ1(M) of forms that vanish on the tangent vectors to the fibers Ωx = π−1(x) of π:

Λ1
∧(M) =

{
α ∈ Λ1(M)

∣∣∣ α∣∣TΩx
= 0 for all x ∈ X.

}
In admissible local coordinates in a neighborhood of the boundary, such forms can be represented as

α = ξ dx+ qr dω + p dr, (6.10)

where the functions ξ, q, and p are smooth up to the boundary.2 It follows that Λ1∧(M) is a locally free
C∞(M)-module and hence, by the Serre–Swan theorem, the module of sections of a vector bundle on
M , which is called the cotangent bundle of the manifold M with edges and denoted by T∗M. The
embedding Λ1∧(M) ⊂ Λ1(M) induces the natural embedding

j : T ∗M ↪→ T ∗M, (6.11)

which is an isomorphism over the interior
◦
M of M . The manifold T∗M is a manifold with boundary.

There are two types of canonical coordinates on T∗M: in neighborhoods of interior points, these are
standard canonical coordinates (y, θ) induced from the cotangent bundle T∗M , and in neighborhoods of
boundary points, these are coordinates of the form (x, ω, r; ξ, q, p), where (x, ω, r) are admissible coordi-
nates near the boundary on M and (ξ, q, p) are the coordinates corresponding to the representation (6.10)
of differential forms α ∈ Λ1∧(M).

Note that there is a natural diffeomorphism

∂T ∗M � ∂T ∗W, (6.12)

where the cotangent bundle of the infinite wedgeW is obtained by a similar construction over ∂M×R+.
To obtain this diffeomorphism, it suffices to use the identification of the neighborhood U of the edge in
M with the corresponding neighborhood of the edge in W . (This identification depends on the choice of
the trivialization of a collar neighborhood of the boundary in M , but a straightforward verification shows
that the diffeomorphism (6.12) is independent of this choice.)

In what follows, we need a special direct sum decomposition of the bundle ∂T∗M over ∂M . This
decomposition is constructed as follows. We have already noted that the wedge W is a bundle over X
with fiberKΩ. Let T ∗KΩx be the cotangent bundle of the cone KΩx over x ∈ X constructed by the same
recipe as T∗M. (The boundary bundle πx for KΩx is just a mapping into the point x: πx : KΩx −→
{x}.) This cotangent bundle is a vector bundle over the manifold Ωx × R+. Taking the disjoint union
of T ∗KΩx over all x ∈ X and equipping this union with a natural topology, we obtain a bundle over
∂M × R+, which will be denoted by T∗K −→ ∂M × R+.

PROPOSITION 6.3. There exists a natural decomposition

∂T ∗M = π∗(T ∗X) ⊕ ∂T ∗K (6.13)

1This construction is similar to, but different from, Melrose’s construction of the “compressed cotangent bundle” (Melrose
1981).

2One can readily see that the form (6.10) is invariant with respect to admissible changes of variables (6.7).
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into a direct sum of vector bundles over ∂M . Here π∗(T ∗X) is the lift of the bundle T∗X from X to
∂M via the projection π and ∂T∗K = T ∗K

∣∣
∂M×{0}.

Proof. It suffices to construct natural projections of the left-hand side onto each of the terms on the
right-hand side. (Then the fact that the mapping (6.13) is an isomorphism follows by the computation of
dimensions of the bundles occurring in the formula.) The projection

p1 : ∂T ∗M −→ π∗(T ∗X)

is defined as follows. Consider the restriction

j : ∂T ∗M −→ ∂T ∗M

of the mapping (6.11) to the boundary. The range of this mapping at each point consists of all (algebraic)
forms vanishing on the tangent space to the fiber of π through this point, i.e., exactly coincides with the
corresponding fiber of π∗(T ∗X), and we can take p1 = j. To construct the projection

p2 : ∂T ∗M −→ ∂T ∗K,

we use the isomorphism (6.12). Let β be an element of the fiber of ∂T∗W over a point v ∈ ∂M . This
means that β = α(v) for some section

α ∈ Γ(T ∗W ) = Λ1
∧(∂M × R+) ⊂ Λ1(∂M × R+).

We interpret this section as a differential form on ∂M × R+ and restrict it to Ωx × R+, where x = π(v)
(i.e., Ωx is the fiber of π through v). The resulting restriction, which we denote by α̃, still vanishes
on tangent vectors to Ωx × {0} and hence lies in Λ1∧(Ωx × R+) and can be interpreted as a section of
ã ∈ Γ(T ∗KΩx). The restriction of this section to v specifies an element of the bundle ∂T∗K , and we set

p2(β) = α̃
∣∣
v
.

Easy computations with the use of the coordinate representation (6.10) show that the mapping p2 is well
defined (i.e., is independent of the choice of the section α) and is an epimorphism. The proof of the
proposition is complete.

A description of M with the help of a metric. One can also describe a manifold with edges by
differential-geometric means. To this end, one equips M with a Riemannian metric degenerating at
the boundary in such a way that the distance between points lying in the same fiber is zero. One can
readily obtain such metrics using the cotangent bundle of M. Specifically, the mapping (6.11) induces a
mapping

j : S2(T ∗M) −→ S2(T ∗M) (6.14)

(denoted by the same letter) of symmetric powers of these bundles. By applying the latter mapping to an

arbitrary positive definite section of S2(T ∗M), we obtain a Riemannian metric on
◦
M degenerating on

∂M and smooth up to the boundary. The simplest metric of this sort has the form

dρ2 = dr2 + dx2 + r2dω2 (6.15)
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in U , where r ∈ [0, 1) is the second coordinate in the decomposition (6.3) (one can readily see that this
coordinate is just the distance to the boundary in the metric (6.15)) and dx2 and dω2 are some smooth
nondegenerate metrics on X and Ωx, respectively. (The latter metric is naturally assumed to depend
smoothly on x ∈ X). In terms of the metric (6.15), the equivalence relation (6.2) can be described as
follows:

a1 ∼ a2 if and only if ρ(a1, a2) = 0. (6.16)

Remark 6.4. Needless to say, there are many other metrics satisfying (6.16). For example, if we replace
the factor r2 multiplying dω2 in (6.15) by r2k, then we obtain “cuspidal edges of order k.” We restrict
ourselves to the case of the metric (6.15); the corresponding edges are said to be conical.

6.1.2. Edge-degenerate differential operators

Definition. What differential operators will be studied on manifolds with edges? In the interior
◦
M =

M \ X of the manifold, they will be just arbitrary differential operators with smooth coefficients, but
how do they behave near the edge? To define a natural class of such operators, we use the space Λ1∧(M)
of differential 1-forms corresponding to the edge structure.

DEFINITION 6.5. By Vect∧(M) we denote the space of vector fields V on
◦
M such that α(V ) ∈ C∞(M)

for every α ∈ Λ1∧(M). (More precisely, the function α(V ) defined on
◦
M extends by continuity to a

smooth function on the entire M .)

Next, by D = D(M) we denote the set of linear differential operators on
◦
M that are finite linear

combinations of terms of the form V1 · · ·VjaVj+1 · · ·Vs with various s (the case s = 0 is not excluded),
where a is a smooth function on M and all Vj are vector fields belonging to Vect∧(M). The subspace
of operators that can be represented by linear combinations in which s ≤ m for each of the terms will be
denoted by Dm = Dm(M). The elements of D (Dm) are called edge-degenerate differential operators
on M (of order ≤ m).

A coordinate description. Let (x, ω, r) be an admissible coordinate system on M in a neighborhood of
a boundary point. Then the vector fields

Aj = −i ∂
∂xj

, j = 1, . . . , n, B = −i ∂
∂r
, Cj = − i

r

∂

∂ωj
, j = 1, . . . , k, (6.17)

belong to Vect∧(M). As one might expect, they all have lengths of the order of unity (uniformly
bounded above and below by positive constants) in the metric (6.15). We would like to represent our
differential operators as polynomials of such vector fields with coefficients being smooth functions on
M . Note that the operator tuple (6.17) is not closed with respect to commutators: for example, the
commutator [

B,Cj

]
= −i1

r
Cj, (6.18)

as well as the commutator [
Cj , ωj

]
= − i

r
, (6.19)
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cannot be expressed as an ordered polynomial3 with smooth coefficients of the operators (6.17). Hence
the set of ordered polynomials with smooth coefficients of the operators (6.17) is not closed with respect
to composition: when moving the operator arguments in the product to the corresponding positions, we
gain the singular factor 1/r. To rectify the situation, we supplement our operator tuple with yet another
operator

D =
1
r
. (6.20)

PROPOSITION 6.6. An edge-degenerate differential operator P of order ≤ m on a manifold M with
edge X can always be represented in local coordinates (x, r, ω) in a neighborhood of the boundary as
an ordered polynomial of degree ≤ m of the operators (6.17) and (6.20) with coefficients smooth up to
r = 0:

P =
∑

|α|+|β|+j+l≤m

aαβjl(x, ω, r)AαBjCβDl. (6.21)

We point out that in this representation the order of an operator near the edge counts not only differ-
entiations but also the factors 1/r.

Remark 6.7. Needless to say, the representability in the form (6.21) is independent of the choice of local
coordinates near the boundary. Away from the boundary, edge-degenerate differential operators can be
arbitrary differential operators with smooth coefficients.

PROPOSITION 6.8. The set D of edge-degenerate differential operators is an algebra, and

DmDm′ ⊆ Dm+m′ . (6.22)

(In other words, the algebra D is filtered by the subspaces Dm.)

The proof readily follows from the definitions.

6.1.3. Symbols

Definition. Let us find out what the notion of principal symbol looks like for edge-degenerate operators.
Recall that for the case of a smooth manifold the space of mth-order principal symbols, i.e., homoge-
neous polynomials of degree m with respect to the momentum variables is naturally identified with the
quotient space of operators of order m by operators of order m− 1: the symbol is uniquely determined
by the principal part of the operator and in turn uniquely determines the operator modulo lower-order
terms. By analogy with this, we give the definition of the principal symbol in our case. We know that the
algebra D of edge-degenerate differential operators is filtered by the order of the operator, and we define
symbols as elements of the associated graded algebra

grD =
∞⊕

m=0

Dm/Dm−1 (D−1
def= 000).

DEFINITION 6.9. The principal symbol (of orderm) of an edge-degenerate differential operator P ∈ Dm

of order ≤ m is the image of P in the quotient space Dm/Dm−1 under the natural projection:

Dm 
 P �−→ Σ(P ) ∈ Dm/Dm−1. (6.23)

3That is, as a polynomial in which the order of operator arguments is fixed; say, the Aj act first, B acts second, and the Cj act
third; see (Maslov 1973) and also (Nazaikinskii, Sternin and Shatalov 1995) for a systematic exposition of the noncommutative
operator calculus.
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The interior principal symbol and the edge symbol. To use this definition in practice, we however need
to describe the structure of the principal symbol in more detail. It turns out that it can be represented by
a pair consisting of the interior principal symbol and the edge symbol. Let us describe both components
of the pair. Let D ∈ Dm be an edge-degenerate differential operator of order m. Its principal symbol

σclas(D) in the traditional sense is a function on T∗
◦
M polynomial in the fibers and having singularities

(growing unboundedly) near ∂T∗M . We set

σ(D) = j∗σclas(D), (6.24)

where j : T ∗M −→ T ∗M is the mapping introduced above. This is a function on the cotangent bundle
T ∗M. Let us describe the behavior of this function near the boundary. Let

D =
∑

α+β+j+l≤m

aαβjl(x, ω, r)
(
−i ∂
∂x

)α(
− i

r

∂

∂ω

)β(
−i ∂
∂r

)j(1
r

)l

(6.25)

in admissible coordinates. Then one can readily compute that the function σ(D) in the canonical local
coordinates (x, ω, r; ξ, q, p) on T∗M has the form

σ(D) =
∑

α+β+j=m

aαβj0(x, ω, r)ξαqβpj. (6.26)

In particular, it is smooth up to the boundary.

DEFINITION 6.10. The function σ(D) on T∗M given by the formula (6.24) is called the interior prin-
cipal symbol of the edge-degenerate differential operator D ∈ Dm.

Let us now proceed to the definition of the edge symbol. Let D again have the form (6.25).

DEFINITION 6.11. The operator family

σ∧(D)(x, ξ) =
∑

α+β+j+l=m

aαβjl(x, ω, 0)ξα

(
− i

r

∂

∂ω

)β(
−i ∂
∂r

)j(1
r

)l

, (6.27)

depending on the parameters (x, ξ), is called the edge symbol of D.

We have defined the edge symbol in local coordinates. Needless to say, now we need to globalize our
definition, i.e. find how this family is transformed under changes of coordinates. Consider the bundleW̃
with fiber the cone KΩ over T ∗X obtained by lifting the bundle

π : W KΩ−→ X

to T ∗X via the natural projection p : T∗X −→ X. Thus the local coordinates on W̃ are (x, ξ, ω, r),
where (x, ξ) are canonical coordinates on T∗X and (x, ω, r) are admissible coordinates on W .

PROPOSITION 6.12. The local expression (6.27) specifies a well-defined operator family on the fibers
KΩx of the bundle W̃ −→ T ∗X. This family is parametrized by points of the cotangent bundle T∗X.
More precisely, under a change of coordinates h on M given by the formula (6.7), the operator (6.27) is
transformed by the derived change of coordinates h∗ given by (6.9), and the parameter ξ is transformed
as a momentum variable, i.e., is multiplied by the matrix (t∂f̃/∂x̃)−1.
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The proof is by a straightforward computation.

The following proposition describes the relation of the interior principal symbol and the edge symbol
to the above-introduced principal symbol as an element of the associated gradation.

PROPOSITION 6.13. (1) The equations σ(D) = 0 and σ∧(D) = 0 for the operator D ∈ Dm hold if and
only if D ∈ Dm−1. (Thus the pair (σ(D), σ∧(D)) isomorphically represents the class Σ(D) ∈ Dm/
Dm−1.)

(2) The correspondence D �−→ (σ(D), σ∧(D)) is linear and multiplicative. This means that

σ(D1D2) = σ(D1)σ(D2), σ∧(D1D2) = σ∧(D1)σ∧(D2).

The compatibility condition. The interior principal symbol and the edge symbol of an operator D ∈ Dm

are not independent but satisfy some compatibility condition. To state this condition, let us view the
family σ∧(D)(x, ξ) as a cone-degenerate differential operator on the cone KΩ with parameter ξ ∈ T∗X
in the sense of Agranovich–Vishik (Agranovich and Vishik 1964). (Needless to say, this operator also
depends on the additional parameter x ∈ X.) Let D have the form (6.25). Then the principal symbol of
the family σ∧(D)(x, ξ) viewed as an operator of order m with parameter ξ has the form

σ(σ∧(D))(x, ω, ξ, q, p) =
∑

α+β+j=m

aαβj0(x, ω, 0)ξαqβpj (6.28)

(and is independent of r). By comparing this with the expression (6.26) for the principal symbol, we
obtain the compatibility condition

σ(σ∧(D)) = σ∂(D) ≡ σ(D)
∣∣
∂T ∗M . (6.29)

Condition (6.29) is invariant, which readily follows with regard to the decomposition (6.13).
This condition is obviously necessary and sufficient for the existence of a differential operator with

given edge and principal symbols.
We can summarize this as follows:
The homogeneous component of degree m of the graded algebra grD associated with the algebra

D of edge-degenerate differential operators on a manifold M with edges consists of pairs (principal
symbol, edge symbol) satisfying the compatibility condition (6.29). These pairs can naturally be viewed
as symbols of such differential operators.

Homogeneity properties of the symbols. In the case of differential operators on smooth manifolds, the
principal symbol σ(D) of an operator of order m is a homogeneous polynomial of degree m and hence
satisfies

σ(D)(y, λη) = λmσ(D)(y, η), λ > 0.

The same is true for the principal symbol of an edge-degenerate differential operator. Does the edge sym-
bol also have some homogeneity property? The answer is “yes,” but the property is more complicated.
Let κλ be the operator multiplying the argument r of a function by λ:

κλu(r) = u(λr). (6.30)
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(The function u may well have other arguments, which remain unaffected.) The homogeneity property
of the edge symbol can be written in the form

σ∧(D)(x, λξ) = λmκλσ(D)(x, ξ)κ−1
λ , λ ∈ R+. (6.31)

This property is referred to as twisted homogeneity.

Remark 6.14. The family κλ of scaling operators is a multiplicative one-parameter group of linear oper-
ators: κλμ = κλκμ, λ, μ ∈ R+.

6.1.4. Elliptic problems

Statement of the problem. We say that an edge-degenerate operator D on a manifold M with edges is
formally elliptic if its principal symbol is everywhere invertible on the cotangent bundle T∗M outside
the zero section. We wish to study an equation of the form

Du = f (6.32)

on the manifold M. The main question of interest to us is as follows:

• In what function spaces is it natural to consider this equation, and should one subject the solution
u and the right-hand side f to additional conditions to make the equation uniquely solvable (or at
least Fredholm)? What is the form of these conditions?

An example of an edge problem. Let M = M be a manifold with boundary, so that Ω = {pt} and
π = id : ∂M −→ X = ∂M . Consider the equation

Du ≡ �u− a

r2
u = f,

where � is the Beltrami–Laplace operator and a is a nonnegative constant. In the simplest case, this
equation in local coordinates has the form

∂2u

∂r2
+
∂2u

∂x2
− a

r2
u = f.

Let us study the equation near the edge. To this end, we freeze the coefficients at a point of the edge
and pass to the Fourier transform with respect to the variables x. We obtain the family of equations

D̂(ξ)ũ = f̃

on the half-line R+, where

D̂(ξ) ≡ σ∧(D)(ξ) =
∂2

∂r2
− |ξ|2 − a

r2

is the edge symbol of the operator D. In what spaces is it natural to study this family of equations?
For large r, the operator D̂(ξ) is essentially an operator with constant coefficients, and it is natural

to study it in the ordinary Sobolev spaces Hs. For small r, we can rewrite the operator in the form

D̂(ξ) = −r−2

[(
ir
∂

∂r

)2

− i

(
ir
∂

∂r

)
+ |rξ|2 + a

]
.

We see that the operator is cone-degenerate and can naturally be studied for these r in the weighted
Sobolev spaces Hs,γ (Schulze 1991).
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DEFINITION 6.15. The space Ks,γ(R+) is glued from Hs,γ(R+) for small r and Hs(R+) for large r.

Thus we consider the operator family

D̂(ξ) : Ks,γ(R+) −→ Ks−2,γ−2(R+).

We are interested in its kernel and cokernel, so we shall consider also the adjoint family

D̂(ξ)∗ : K2−s,2−γ(R+) −→ K−s,−γ(R+),

which is given on C∞
0 (R+) by the same differential expression as D̂(ξ). We wish to keep the exposition

as elementary as possible, and so in what follows we set a = 0.
To obtain a Fredholm problem for the original operator, we must ensure the invertibility of the oper-

ator D̂(ξ) for large ξ.
Since the edge symbol is twisted-homogeneous, it suffices to do this for |ξ| = 1 and then extend the

result to all ξ �= 0 by homogeneity.
The conormal symbol

σc(D̂(ξ)) = −p2 + ip

of the edge symbol in question is invertible for p �= 0, i, so that the operator D̂(ξ) is Fredholm for
γ �= 1

2 ,
3
2 (Schulze 1991).

Let us compute the kernel and cokernel of the edge symbol for these γ.
Formally, the kernel of D̂(ξ) and D̂(ξ)∗ is given by the expression

u = C1e
−r + C2e

r.

However, the constant C2 is always zero, which follows from the integrability at infinity.
Next, the presence of the weight factor r−2γ in the definition of the norm in Ks,γ(R+) results in the

assertion that e−r ∈ Ks,γ(R+) if and only if γ < 1
2 .

Now let us exhaust all possible cases.
1. If γ < 1

2 , then D̂(ξ) has the one-dimensional kernel
{
Ce−r

}
and a trivial cokernel. To make the

edge symbol invertible, one can equip it, say, with a condition of the form∫ ∞

0
φ(r)ũ(r) dr = g,

where φ ∈ C∞
0 (R+) is a given function nonorthogonal to e−r.

2. For 1
2 < γ < 3

2 , the edge symbol D̂(ξ) is invertible.

3. If γ > 3
2 , then the edge symbol D̂(ξ) has a trivial kernel and the one-dimensional cokernel{

Ce−r
}

. To make the edge symbol invertible, we equip it with a co-condition including a numerical
unknown μ ∈ C:

D̂(ξ)ũ+ μφ = f̃ .

Here φ is a given function satisfying the same nonorthogonality condition as above.
In all three cases, adding a finite-dimensional (in this example, one-dimensional) condition or co-

condition where necessary, we have made the edge symbol for |ξ| = 1 an invertible operator A(x, ξ).
For γ < 1/2, this operator has the form

A(x, ξ) =

(
D̂(ξ)
B̂

)
: Ks,γ(R+) −→

Ks−2,γ−2(R+)
⊕
C

, (6.33)
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where

B̂v =
∫ ∞

0
φ(r)v(r) dr.

For 1
2 < γ < 3

2 , we have

A(x, ξ) = D̂(ξ) : Ks,γ(R+) −→ Ks−2,γ−2(R+). (6.34)

Finally, for γ > 3
2 the operator A(x, ξ) is given by the formula

A(x, ξ) =
(
D̂(ξ), Ĉ

)
:
Ks,γ(R+)

⊕
C

−→ Ks−2,γ−2(R+), (6.35)

where
Ĉμ = μφ(r).

Now we extend the operator-valued symbolA(x, ξ) to all values ξ �= 0 by twisted homogeneity. Here
we assume that the group κλ acts trivially (as the identity operator) on the one-dimensional complex
space C. The component B (or C) of the symbol will be taken homogeneous of degree l, which does
not necessarily coincide with m. (In fact, we deal with homogeneity in the sense of Douglis–Nirenberg.)
By extending the symbol D̂ of the main operator to all ξ �= 0, we obtain the same symbol, since it is
twisted-homogeneous. The continuation of the symbols B̂ and Ĉ gives the symbols

B̂(x, ξ)v = |ξ|l+1/2

∫ ∞

0
φ(r|ξ|)v(r) dr,

Ĉ(x, ξ)μ = μ|ξ|l+1/2φ(r|ξ|).

By smoothing these symbols near ξ = 0 and then by applying the inverse Fourier transform, we
obtain the following problems for the operator D:

Du = f,

∫ ∞

0
φ

(
r

[
−i ∂
∂x

])[
−i ∂
∂x

]l+1/2

u(x, r) dr = g(x), γ < 1/2;

Du = f,
1
2
< γ <

3
2
;

Du+ φ

(
r

[
−i ∂
∂x

])[
−i ∂
∂x

]l+1/2

μ(x) = f, γ >
3
2
.

Here [ξ] is a smooth positive function such that

[ξ] = |ξ| for large |ξ|.

In what spaces will these problems be Fredholm? Obviously, these spaces are obtained from the
spaces Ks,γ(R+) with norm depending on the parameter ξ by the inverse Fourier transform F−1

ξ→x. They
will be described in the general case at the end of this section.
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The general case. The following scheme for studying elliptic equations on manifolds with multidi-
mensional singularities was apparently suggested for the first time in the case of Sobolev problems
in (Sternin 1967a).

We say that an operator P is formally elliptic if its principal symbol is invertible everywhere outside
the zero section. We shall study the formally elliptic equation Pu = f in appropriate spaces. Our main
task is to find out whether the equation is Fredholm and, if this is not the case, whether it is possible
to impose some conditions on the solution u and the right-hand side f to make the equation Fredholm.
A traditional way to prove the Fredholm property is to construct a regularizer. It is usually constructed
locally, and then the local regularizers are glued together with the help of a partition of unity. Consider a
formally elliptic edge-degenerate differential operator P of order m on a manifold M with edge X. In a
neighborhood of any interior point, formal ellipticity coincides with the ordinary ellipticity, and one can
construct the regularizer by usual methods of elliptic theory in the form of a pseudodifferential operator
whose symbol is the inverse of the principal symbol σ(P ). Now consider a neighborhood of some point
of the edge. Locally, we can assume that X = Rn. Let us freeze the coefficients aαβl of the operator P
at some point of the edge and proceed in the equation Pu = f to the Fourier transform with respect to
the variables x (i.e., the variables along the edge). Then we obtain the family of equations

σ∧(P )(x, ξ)ũ = f̃ , (6.36)

where the tilde stands for the Fourier transform with respect to the edge variables. To construct a regu-
larizer of the operator P in a neighborhood of the edge, we should exactly solve Eq. (6.36) in the domain
r < ε, where ε is a given (independent of r) positive number, for any (x, ξ) ∈ T∗0X (or at least for large
|ξ|). The edge symbol possesses the easy-to-verify homogeneity property (6.31) and hence it suffices to
solve (6.36), say, only for |ξ| = 1 on the entire infinite cone KΩ. (Indeed, any solution of (6.36) has the
form

ũ(r, ω) = |ξ|−mv(|ξ|r, ω), (6.37)

where v(r, ω) is a solution of the equation

σ∧(P )(x, ξ/|ξ|)v(r, ω) = f̃(r/|ξ|, ω), (6.38)

so that for arbitrarily large |ξ|, to know the solution of Eq. (6.36) in the domain r ≤ ε, one should know
the solution of (6.38) for arbitrarily large r.)

Thus let us study Eq. (6.36) on the cone KΩ. This is an elliptic equation that is cone-degenerate
at the vertex of the cone KΩ and behaves for large r as a usual elliptic equation with slowly varying
coefficients at infinity in Rk+1 written in polar coordinates.4 What can one say about its solutions? Since
the equation has variable coefficients, one cannot hope in general that it is uniquely solvable (invertible);
we can only hope that it is Fredholm in suitable spaces, and then one can make it uniquely solvable by

4An operator with coefficients slowly varying at infinity in Rk+1 is an operator of the form

D =
∑

aα(y)(−i∂/∂y)α,

where the coefficients aα(y), y ∈ Rk+1, satisfy the estimates

|a(β)
α (y)| ≤ const(1 + |y|)−|β|.
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adding finitely many conditions. As we return from the model equation to the original equation with
the operator P with the help of the inverse Fourier transform, these conditions become some conditions
on the solution and the right-hand side of the original equation providing its Fredholm property. Thus
first of all we should study the Fredholm property of the symbol σ∧(P )(x, ξ) on the infinite cone KΩ by
constructing a regularizer. We cover the cone KΩ by two overlapping neighborhoods, a neighborhood
U1 of the vertex r = 0 and a neighborhood U2 of infinity. One can construct the regularizer locally,
in each of these neighborhoods. In U2, our operator is a usual elliptic operator with coefficients slowly
varying at infinity, and hence the regularizer can be constructed in the usual Sobolev spaces Hs(U2). In
U1, our operator is cone-degenerate, and hence the regularizer can be constructed in weighted Sobolev
spaces Hs,γ(U1). On the intersection U1 ∩ U2 these spaces coincide,

Hs,γ(U1 ∩ U2) = Hs(U1 ∩ U2), (6.39)

and so we can glue them together by using a partition of unity subordinate to the cover (U1, U2). The
resulting space will be denoted by Ks,γ(KΩ).

For the norm in Ks,γ(KΩ) one can readily write out a simple equivalent global expression that does
not use partitions of unity. Namely, consider the space L2(KΩ) ≡ L2(KΩ, r

k dr dω) on the cone KΩ,
where

rk dr dω, k = dim Ω, (6.40)

is the Riemannian volume form corresponding to the metric

dr2 + r2dω2 (6.41)

on KΩ. In this space, we consider the operator

T = 1 + r−2 + �KΩ
, (6.42)

where �KΩ
is the Beltrami–Laplace operator on KΩ associated with the cone-degenerate metric (6.41).

PROPOSITION 6.16. The operator T with domain C∞
0 (K◦

Ω) is essentially self-adjoint in L2(KΩ).

Proof. The proof of this fact follows the proof of Theorem X.11 in (Reed and Simon 1975, p. 161)
almost word for word.

Consider also a weight function ρ(r) equal to r in a neighborhood of r = 0 and tending to 1 as
r → ∞. The following assertion holds.

PROPOSITION 6.17. An equivalent norm in Ks,γ(KΩ) can be given by the formula

‖u‖s,γ =
∥∥∥T s/2ρs−γu

∥∥∥
L2(KΩ)

, (6.43)

The proof is by a straightforward computation.

Thus we shall study the edge symbol in the spaces Ks,γ(KΩ). The following theorem holds.
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THEOREM 6.18. (1) The edge symbol of an operator P of order m is continuous in the spaces

σ∧(P )(x, ξ) : Ks,γ(KΩ) −→ Ks−m,γ−m(KΩ). (6.44)

(2) If the operator P is formally elliptic, then its edge symbol is Fredholm in the spaces (6.44) if and
only if the conormal symbol5

σc(σ∧(P ))(p) : Hs(Ω) −→ Hs−m(Ω) (6.45)

of the edge symbol is invertible on the weight line Im p = γ. Moreover, the kernel and cokernel of the
operator (6.44) are independent of the smoothness exponent s.

The first assertion of the theorem is obvious, and the second assertion can be proved by the construc-
tion of a regularizer in accordance with the scheme given above.

Boundary and coboundary conditions on the edge. Now assume that we have managed to find a weight
exponent γ in such a way that the edge symbol is Fredholm for all (x, ξ) ∈ T∗0X. For each (x, ξ) we can
make it an invertible operator by subjecting the solution and the right-hand sides of Eq. (6.36) to finitely
many orthogonality conditions

(ũ, bj) = 0, j = 1, ...,M ; (f̃ , c∗j ) = 0, j = 1, ..., N. (6.46)

(the inner product is taken in the space L2(KΩ)), and the functions bj and c∗j can be chosen to be infinitely
smooth:

bj ∈
⋂
s

Ks,−γ(KΩ), c∗j ∈
⋂
s

Ks,m−γ(KΩ). (6.47)

We can pass from problem (6.36), (6.46) to the nonhomogeneous problem

σ∧(P )(x, ξ)ũ + Cṽ = f̃ , (6.48)

Bũ = g̃, (6.49)

where the operators

B : Ks,γ(KΩ) −→ CM , C : CN −→ Ks−m,γ−m(KΩ) (6.50)

are given by the formulas

Bũ =
(
(ũ, b1), . . . , (ũ, bM )

)
, Cṽ = ṽ1c1 + · · · + ṽN cN , (6.51)

in which
c1, . . . , cN ∈

⋂
s

Ks,γ−m(KΩ) (6.52)

are functions such that

det

⎛⎝ (c1, c∗1) . . . (c1, c∗N )
. . . . . . . . .

(cN , c∗1) . . . (cN , c∗N )

⎞⎠ �= 0. (6.53)

5One readily sees that it is independent of ξ.
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Now suppose that these conditions and co-conditions can be chosen in such a way that they continuously
depend on (x, ξ) and, together with the edge symbol, form a family of invertible operators(

σ∧(P )(x, ξ) C(x, ξ)
B(x, ξ) 0

)
: Ks,γ(KΩ) ⊕ Ex −→ Ks−m,γ−m(KΩ) ⊕ Fx, (6.54)

where E and F are finite-dimensional vector bundles over X. (This is not always possible; the obstruc-
tion, which has a topological nature, was computed in (Nazaikinskii, Savin, Sternin and Schulze 2004).)
Since the edge symbol is twisted homogeneous, we can assume without loss of generality that the opera-
tors (6.50) are also twisted-homogeneous in ξ (the group κλ acts in the fibers of E and F as the identity
operator by definition):

B(x, λξ) = λlB(x, ξ)κ−1
λ , C(x, λξ) = λl′κλC(x, ξ). (6.55)

(It suffices to define these operators for |ξ| = 1 and then extend them by continuity.)
Passing to the inverse Fourier transform and unfreezing the coefficients, from the family (6.54) we

obtain the edge problem

Pu+ C(x,−i∂/∂x)v = f, (6.56)

B(x,−i∂/∂x)u = g, (6.57)

where v and g are functions (more precisely, sections of the bundles E and F ) on X.
Here B̂ = B(x,−i∂/∂x) is an operator of edge boundary conditions (or a boundary operator for

short6), which takes each function u(x, r, ω) on M to the function

[B̂u](x) =
∫
eixξ

∫
Kω

χ(|ξ|)�b(x, ξ, rξ, ω)ũ(ξ, r, ω)rk+1drdωdξ (6.58)

on the boundary (here χ(|ξ|) is a cutoff function equal to unity in a neighborhood of infinity), and
Ĉ = C(x,−i∂/∂x) is an operator of edge coboundary conditions, or a coboundary operator. (The
adjoint of Ĉ has a form similar to (6.58).)

Weighted Sobolev spaces. In what spaces is problem (6.56), (6.57) Fredholm? These spaces are obtained
from Ks,γ(KΩ) by direct integration with respect to ξ (see the Appendix concerning the general theory).

DEFINITION 6.19 ((Schulze 1991)). By Ws,γ(W ) we denote the space of functions on W obtained by
the completion of C∞

0 (W ◦) with respect to the norm

‖u‖s,γ =
(∫

[ξ]2s
∥∥∥κ−1

[ξ] ũ
∥∥∥
Ks,γ

dξ

)1/2

, (6.59)

where
κλv(r, ω, ξ) = λ(k+1)/2v(λr, ω, ξ), k = dimΩ.

(From now on, in contrast to (6.30), we include the scalar factor λ(k+1)/2 in the definition of the group
κλ; this normalization agrees with the one adopted in (Schulze 1991).)

The space Ws,γ(M) is obtained from Ws,γ(W ) by a standard gluing with the Sobolev spaceHs(M)
in the interior of M .

6We use terminology introduced for the case of Sobolev problems in (Sternin 1967a).
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The spaces Ws,γ(W ) have the simplest form for s = γ. Consider the space L2(M, dvol), where
dvol is the Riemannian volume form corresponding to the metric dρ2. Near the edge, this form is in the
simplest case given by

dvol = rkdrdωdx, k = dim Ω, (6.60)

where dω and dx are Riemannian volume forms on Ωx and X, respectively. Consider also the operator

T̃ = 1 −�M +
1
r2
, (6.61)

where �M is the Beltrami–Laplace operator on M corresponding to the metric dρ2 and r is the globally
defined function on M equal to the distance from the boundary.

PROPOSITION 6.20. For integer s ≥ 0, an equivalent norm on the space Ws,s(M) is given by the
formula

‖u‖s =
√

(T̃ su, u)0, u ∈ C∞
0 (M◦), (6.62)

where ( · , · )0 is the inner product in L2(M, dvol).

The proof goes by a standard functional-analytic argument.

The following theorem can be proved by a straightforward computation.

THEOREM 6.21. Outside an arbitrarily small neighborhood of the edge, the space Ws,γ(M) coincides
with the corresponding Sobolev space Hs(M). Every edge-degenerate operator P ∈ Dm of order m is
continuous in the spaces

P : Ws,γ(M) −→ Ws−m,γ−m(M) (6.63)

for every s and γ.

The finiteness theorem. Now we are in a position to state the finiteness theorem.

THEOREM 6.22. Suppose that the operator P is formally elliptic and the edge symbol of problem (6.56),
(6.57) is invertible in the spaces(

σ∧(P )(x, ξ) C(x, ξ)
B(x, ξ) 0

)
: Ks,γ(KΩ) ⊕ Ex −→ Ks−m,γ−m(KΩ) ⊕ Fx.

Then this problem is Fredholm in the spaces(
P C(x,−i∂/∂x)

B(x,−i∂/∂x) 0

)
: Ws,γ(M) ⊕Hs−m+l′+(k+1)/2(X,E)

−→ Ws−m,γ−m(M) ⊕Hs−l−(k+1)/2(X,F ).

The kernel and cokernel of the problem are independent of the smoothness parameter s.

The proof of the finiteness theorem is based on the calculus of edge pseudodifferential operators
developed in forthcoming sections.
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6.2. Pseudodifferential Operators

6.2.1. Edge symbols

The edge symbols of edge-degenerate differential operators are degenerate differential operators of spe-
cial form with parameter ξ on the cone KΩ. Accordingly, the edge symbols of edge-degenerate pseudo-
differential operators should obviously be degenerate pseudodifferential operators with parameter. Our
aim in this subsection is to construct some algebra of pseudodifferential operators with parameter on
KΩ including, in particular, the edge symbols of differential operators and (for elliptic symbols) their
(almost) inverses.

These operators will depend on the parameters (x, ξ) ∈ T∗0X and act in the spaces Ks,γ(KΩ) on the
cone KΩ. Our considerations are mainly local with respect to x, and so without loss of generality we can
work in local coordinates and assume that the parameter ξ ranges over Rn\{0}, where n = dimX. Next,
our operator classes are “bound” to a specific value of the weight exponent γ, whereas the smoothness
parameter s runs over the entire real line. To describe continuous operators in families of Hilbert spaces,
one could use the adequate technique of polynormed spaces or at least Fréchet spaces, but we refrain
from using this complicated machinery and speak each time of individual pairs of Hilbert spaces. By K◦

Ω

we denote the open half-cylinder (0,+∞) × Ω.

In what follows we especially often use a specific class of cutoff functions depending on the variable
r. Thus it will be reasonable to give such functions a name.

DEFINITION 6.23. A smooth function ψ(r) defined for r ≥ 0, equal to unity for sufficiently small r, and
vanishing for sufficiently large r is called an R-function.

Continuity properties. Prior to defining the set of edge symbols constructively, we shall describe the
mapping properties that we wish to hold for these symbols. In a sense, we require as little as possible so
as still to be able to prove the finiteness theorem and the smoothness of solutions.

Our edge symbols will be families of order m and weight γ in the sense of the following definition.

DEFINITION 6.24. A family of order m and weight γ is a smooth operator family

D(x, ξ) : C∞
0 (K◦

Ω) −→ D′(K◦
Ω)

parametrized by points (x, ξ) ∈ T∗
0X and possessing the following properties:

1) (twisted homogeneity)

D(x, λξ) = λmκλD(x, ξ)κ−1
λ , λ > 0

(recall that κλu(r, ω) = λ(k+1)/2u(λr, ω));

2) (continuity) the family D(x, ξ) and all of its derivatives extend by closure to smooth families of
continuous operators in the spaces

D(α,0)(x, ξ) : Ks,γ(KΩ) −→ Ks−m,γ−m(KΩ), |α| = 0, 1, 2, . . . , (6.64)

D(α,β)(x, ξ) : Ks,γ(KΩ) −→ Ks−m+1,γ−m(KΩ), |α| = 0, 1, 2, . . . , (6.65)
|β| = 1, 2, . . . ,

for a given weight γ ∈ R and for each s ∈ R;
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3) (almost compact fiber variation) for an arbitrary R-function ϕ(r), the operator families

ϕ(r)D(x, ξ), D(x, ξ)ϕ(r) : Ks,γ(KΩ) −→ Ks−m,γ−m(KΩ) (6.66)

have compact fiber variation (i.e., the operators ϕ(r)∂D/∂ξ(x, ξ) and ∂D/∂ξ(x, ξ)ϕ(r) are com-
pact in this pair of spaces);

4) conditions 1)–3) remain valid for the family (1 + r|ξ|)lD(x, ξ)(1 + r|ξ|)−l for arbitrary l ∈ R.

Remark 6.25. 1. The smoothness of our families is assumed in the strong operator topology and hence7

in the uniform operator topology.
2. In what follows, we do not usually mention extension by closure explicitly and speak merely of

the continuity of the operator in the corresponding spaces; the closure is denoted by the same letter as
the original operator.

PROPOSITION 6.26. If D ∈ Dm(M) is an edge-degenerate differential operator of order m, then its
edge symbol is a family of order m for each γ.

Proof. The proof is by straightforward verification.

Remark 6.27. Note that the estimate (6.65) remains valid for edge symbols of differential operators if
we replace the right-hand side by Ks−m+|β|,γ−m+|β|(KΩ).

Compact smoothing edge symbols. Instead of defining the entire set of edge symbols in one step, it is
more convenient to describe the subset of compact smoothing edge symbols first.

DEFINITION 6.28. A family D(x, ξ) of order m and weight γ is said to be a compact smoothing edge
symbol if it additionally satisfies the following properties:

5) the operators D(x, ξ) are compact in the spaces

D(x, ξ) : Ks,γ(KΩ) −→ Ks−m,γ−m(KΩ);

6) the operators (6.65) are continuous also for β = 0;

7) properties 5) and 6) remain valid for the operators for the families rD(x, ξ) and D(x, ξ)r.

The set of compact smoothing edge symbols of order m and weight γ will be denoted by Imγ .

PROPOSITION 6.29. 1. The multiplication of operators induces a bilinear mapping

I l
γ−m × Im

γ −→ Im+l
γ

for any γ,m, l ∈ R.
2. The passage to the adjoint operator (with respect to the inner product in K0,0(KΩ)) induces an

antilinear mapping
Im
γ −→ Im

m−γ

for any γ,m ∈ R.

7The resonance theorem (Yosida 1968) guarantees the uniform boundedness of all derivatives.
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Proof. Properties 1), 2), and 6) are respected by multiplication as well as by the passage to the adjoint
operator. Property 3) is not respected in general, but for compact smoothing edge symbols it is covered
by the stronger property 5), which is already preserved under these operations. The conjugation with
the operator (1 + r|ξ|)l, which is self-adjoint in K0,0(KΩ), is a homomorphism and hence preserved
under multiplication; when passing to the adjoint operator, we should just replace l by −l. This proves
that property 4) is preserved. Property 7) obviously remains valid for the adjoint operators; as to the
products, one should only note that property 7) is equivalent to the same property with the operators
(1 + r|ξ|)D(x, ξ) and D(x, ξ)(1 + r|ξ|) instead of rD(x, ξ) and D(x, ξ)r and then use property 4).

The definition of general edge symbols. Now we are in a position to describe general edge symbols.
These symbols are families of pseudodifferential operators on the infinite cones KΩ and, as such, they
have principal symbols and conormal symbols.

Let H = H(x, ω, ξ, p, q) ∈ Om(∂T ∗
0 M) be a smooth homogeneous function of order m on the

boundary ∂T∗
0M of the cotangent bundle of M. Next, let h(x, p) be an mth-order conormal symbol on

the weight line

p ∈ Lγ =
{

Im p = γ +
k + 1

2

}
. (6.67)

We assume that h(x, p) depends on the parameter x ∈ X but is independent of the variable ξ in the
fibers of T∗X. Next, we assume that the principal symbol H and the conormal symbol h satisfy the
compatibility condition

σ(h) = H(x, ω, 0,−p, q), (6.68)

where the symbol on the left-hand side is the principal symbol of the operator h viewed as a pseudod-
ifferential operator on Ω with parameter p ∈ Lγ in the sense of Agranovich–Vishik (Agranovich and
Vishik 1964).

Our aim is to define an edge symbol

D(x, ξ) : Ks,γ(KΩ) −→ Ks−m,γ−m(KΩ)

with the symbol pair (H,h). The construction is carried out separately in a neighborhood of the cone
vertex and outside the neighborhood; the results are then glued together with the use of a partition of
unity constructed from R-functions.

We proceed with the definition for |ξ| = 1. Later on we extend the definition to all ξ by twisted
homogeneity.

Near the vertex, the spaces Ks,γ(KΩ) coincide with their counterparts Hs,γ(KΩ), and we define
D(x, ξ) there as the family of cone-degenerate operators

ĥ = r−mh

(
x, ir

∂

∂r

)
: Hs,γ(KΩ) −→ Hs−m,γ−m(KΩ), x ∈ X. (6.69)

Note that this operator is actually independent of ξ, but this is no surprise, because it is near infinity on
the cone that the dependence on ξ becomes essential.

Away from a neighborhood of the vertex, the conormal symbol plays no role at all, and all we need
to define our operator family there is the principal symbol H(x, ω, ξ, p, q). Informally speaking, the
operator, Ĥ , should be obtained from the symbol H by the substitution

p �→ −i ∂
∂r
, q �→ − i

r

∂

∂ω
.
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To make this precise, we first note that since we work away from the vertex, we can multiply the symbol
by a smooth cutoff function ρ(r) equal to zero for small r and unity for large r. Next, consider a partition∑
ej = 1 of unity subordinate to some finite coordinate cover on Ω and excision functions fj supported

in the same coordinate neighborhoods as the respective ej and satisfying the condition ejfj = ej . We set

Fj(x, r, ω, ξ, p, q) = ρ(r)ej(ω)H(x, ω, ξ, p, q).

As is customary in the theory of pseudodifferential operators, we shall defineĤ by the formula

Ĥ =
∑

j

F̂j ◦ fj, (6.70)

and so the problem is to define the local representatives F̂j corresponding to coordinate neighborhoods
on Ω. Consider the change of variables

α : [ε,∞) × Rk
ω −→ Rk+1

y

given by the formulas
y0 = r, y′ ≡ (y1, . . . , yk) = rω.

In the new variables y, we define F̂ to be the pseudodifferential operator

F̂j = P

(
x,

2

y′

y0
, ξ,−i

1
∂

∂y

)
(6.71)

in Rk+1
y with symbol

P (y, η) = Fj(x, y/y0, ξ, η).

(Here η is the variable dual to y.)
The symbol P (y, η) satisfies the estimates (recall that |ξ| = 1)

|P (α,β)(y, η)| ≤ Cαβ(1 + |η|)m−|β|(1 + |y|)−α (6.72)

and hence the operator F̂j in the new variables y is continuous in the Sobolev spaces

F̂j : Hs(Rk+1
y ) −→ Hs−m(Rk+1

y ).

Returning to the original variables and recalling the definition of Ks,γ , we see that the operator F̂j is
continuous in the spaces

F̂j : Ks,γ(KΩ) −→ Ks−m,γ−m(KΩ).

Now we patch together our constructions and extend to arbitrary |ξ| by twisted homogeneity, thus
arriving at the following definition.

DEFINITION 6.30. An edge symbol of order m and weight γ with principal symbol H and conormal
symbol h is a family of order m representable modulo compact smoothing edge symbols (elements of
the space Iγ

m) in the form

D(x, ξ) = χ1(r|ξ|)ĥψ(r|ξ|) + (1 − χ2(r|ξ|))Ĥ(1 − ψ(r|ξ|)), (6.73)
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where χ1, χ2, and ψ are R-functions such that

χ1ψ = ψ, (1 − χ2)(1 − ψ) = 1 − ψ, (6.74)

the operator ĥ is defined by the formula (6.69), and the operator ĥ is defined by the formula (6.70). The
set of edge symbols of order m and weight γ will be denoted by Edgemγ ≡ Edgem

γ (T ∗
0X). We write

H = σ(D(x, ξ)) and h = σc(D(x, ξ)).

THEOREM 6.31. 1) The family (6.73) is indeed a family of orderm and is independent of the ambigu-
ity in the construction modulo compact smoothing operators. In other words, if D ∈ Edgemγ , then
the principal and conormal symbols of D are well defined, and D ∈ Imγ if and only if σ(D) = 0
and σc(D)=0.

2) The product of operators induces a bilinear mapping

Edgel
γ−m ×Edgem

γ −→ Edgem+l
γ ,

and the composition law

σ(D1D2) = σ(D1)σ(D2), σc(D1D2) = σc(D1)σc(D2) (6.75)

holds.

3) The passage to the adjoint operator (with respect to the inner product in K0,0) induces an antilin-
ear mapping

Edgem
γ −→ Edgem

m−γ ,

and
σ(D∗) = σ(D)∗, σc(D∗) = σc(D)∗. (6.76)

4) If D ∈ Edgem
γ and ϕ(r) is a smooth function bounded together with all derivatives and equal to

zero for large r, then the operator families ϕ(r)D and Dϕ(r) have compact fiber variation in the
spaces

Ks,γ(KΩ) −→ Ks−m,γ−m(KΩ).

Proof. 1) Let us verify conditions 1) and 2) in the definition of a family of order m. Condition 1)
(twisted homogeneity) follows by a straightforward computation from (6.73). Let us verify condition 2),
i.e., the continuity of the family D(x, ξ) and its derivatives in the spaces (6.64) and. The continuity
of the operators (6.64) is clear from the construction for both terms in (6.73) separately. To prove the
continuity of the operators (6.65), which involve ξ-derivatives, note that the only troublesome terms are
those arising from the differentiation of ψ and 1−ψ in (6.73). (Indeed, the differentiation ofĤ gives an
operator with the desired properties, and so does the differentiation of χ1 and χ2, since the derivatives of
these functions are zero on the supports of ψ and 1 − ψ, respectively.) Now note that χ1 = χ2 = 1 on
the support and that, owing to the compatibility condition (6.68), ĥ and Ĥ are operators with the same
principal symbol on the (compact) support of ψ′; it follows that the troublesome derivatives cancel each
other out modulo terms satisfying the desired estimates.

The family D(x, ξ) is independent modulo smoothing operators of the ambiguity in the construction
(the choice of the R-functions χ1, χ2, and ϕ as well as partitions of unity and excision functions on Ω).
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This follows from the composition formulas and formulas for the change of variables in pseudodifferen-
tial operators in conjunction with the estimate (6.72). The key point is as follows: this estimate implies
that the remainder terms in these formulas contain the factor (1 + r)−1, which guarantees the validity
of condition 7) in Definition 6.28. Finally, the validity of condition 4) in the definition of a family of
order m follows from the fact that the set of pseudodifferential operators with symbols satisfying the
estimate (6.72) is invariant with respect to conjugation by (1 + y2)l/2 for any l.

2) This property follows from the composition formula for pseudodifferential operators; the desired
estimates guaranteeing that the remainders belong to Imγ again follow from (6.72).

3) To prove this property, one passes to the adjoint operator in the formula (6.73) and uses the fact
that the remainder arising from the change in the order of action of operator arguments in the pseudodif-
ferential operator belongs to the space Imγ by virtue of the estimates (6.72).

4) It suffices to prove that the fiber variation of the product of the symbol (6.73) by ϕ(r) on the right
or on the left is compact. (Compact smoothing symbols have compact fiber variation even without this
factor.) We represent the symbol (6.73) in the form

D(x, ξ) = B(x, ξ, ξ),

where the first argument ξ of B corresponds to the argument ξ in the cutoff functions χ1, χ2, and ψ, and
the second to the argument ξ in the symbol H̃ itself. Then we have

D(x, ξ) −D(x, ξ′) =
[
B(x, ξ, ξ) −B(x, ξ′, ξ)

]
+
[
B(x, ξ′, ξ) −B(x, ξ′, ξ′)

]
.

The expression in the first brackets is a pseudodifferential operator of order m− 1 with compactly sup-
ported Schwartz kernel and hence is compact. Hence it suffices to prove that the second expression
multiplied by ϕ(r) on the right or on the left is compact. But this assertion is obvious, since the symbol
∂H/∂ξ is homogeneous of degree m − 1 in the momentum variables and hence the operator ∂Ĥ/paξ
(without the factor ϕ(r)) is continuous in the spaces Ks,γ(KΩ) −→ Ks−m+1,γ−m(KΩ). The multipli-
cation by ϕ(r) with regard to the fact that the support of the kernel is separated from r = 0 gives the
desired compactness result.

The proof of the theorem is complete.

PROPOSITION 6.32. If D ∈ Dm(M) is an edge-degenerate operator of order m, then σ∧(D) ∈ Edgem
γ

for each γ.

The proof is by a straightforward verification.

Fredholm property and smoothness. To construct almost inverses of edge-degenerate operators in what
follows, we need the inverses of their edge symbols. As a rule, the edge symbol of an interior-elliptic
operator is not invertible but (in the best possible case) only Fredholm, and to make it invertible one has
to supplement it with conditions and co-conditions (which results in the appearance of edge boundary
and coboundary conditions for the original operator). Let us give some facts concerning Fredholm edge
symbols.

THEOREM 6.33. Let D(x, ξ) ∈ Edgem
γ be a given edge symbol. If it is Fredholm (respectively, invert-

ible) for some s ∈ R, then its principal symbol is everywhere invertible outside the zero section, the
conormal symbol is invertible on the weight line, and the almost inverse (respectively, inverse) of D lies
in Edge−m

γ−m. Next, the following conditions are equivalent:
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(i) The family
D(x, ξ) : Ks,γ(KΩ) −→ Ks−m,γ−m(KΩ) (6.77)

is Fredholm for some s ∈ R.

(ii) The family (6.77) is Fredholm for all s ∈ R.

(iii) The principal symbol σ(D)(ω, ξ, p, q) is invertible for (ξ, p, q) �= 0, and the conormal symbol
σc(D)(p) is invertible for p ∈ Lγ .

Moreover, if the edge symbol is Fredholm, then its kernel, cokernel, and index are independent of s.

Proof. Let D(x, ξ) ∈ Edgem
γ be a Fredholm family in the spaces

D(x, ξ) : Ks,γ(KΩ) −→ Ks−m,γ−m(KΩ)

Let us prove that the principal symbol σ(D(x, ξ)) vanishes nowhere outside the zero section on ∂T∗M.
Suppose the contrary: σ(D(x, ξ)) = 0 at some point (x∗, ω∗, ξ∗, q∗, p∗) ∈ ∂T ∗

0 M. Then one can
readily construct a sequence of functions destroying the standard a priori estimate that follows from the
Fredholm property. Here we distinguish between two cases.

i) ξ∗ = 0. Then the a priori estimate is violated for D(x∗, ξ) for any ξ �= 0 on the sequence

ψλ(ω, r) = eiλ(ωq∗+rp∗)ϕ(
√
λ(r − 1),

√
λ(ω − ω∗)),

weakly convergent to zero, where ϕ is a smooth function supported in a neighborhood of the origin.
ii) ξ∗ �= 0. Then the a priori estimate is violated for D(x∗, ξ∗) on the sequence

ψλ(ω, r) = eiλ(ωq∗+rp∗)κλϕ(
√
λ(r − 1),

√
λ(ω − ω∗)),

weakly convergent to zero.
Thus σ(D(x, ξ)) vanishes nowhere outside the zero section, and hence there exists an edge symbol

B(x, ξ) such that
σ(B(x, ξ)) = σ(D(x, ξ))−1.

By the composition formulas, we then have

D(x, ξ)B(x, ξ) = 1 +R(x, ξ), B(x, ξ)D(x, ξ) = 1 + R̃(x, ξ), (6.78)

where R ∈ J0
γ (KΩ), R̃ ∈ J0

γ−m(KΩ).
Now if

Q(x, ξ) : Ks−m,γ−m(KΩ) −→ Ks,γ(KΩ)

is the inverse of D(x, ξ), then we obtain

B −Q = RQ = QR̃,

whence the desired assertion follows readily. The computations for the case in which Q is an almost
inverse (modulo the projections onto the kernel and cokernel of D) are similar.

Now let us prove that the kernel, cokernel, and index of D(x, ξ) are independent of s. Indeed, if
u ∈ kerD(x, ξ), then

0 = BDu = u+Ru,

and the operator R increases the smoothness by one. It follows that the elements of the kernel are
infinitely smooth and the kernel is independent of s. The corresponding assertion for the cokernel is
obtained from the second equation in (6.78). The assertion about the index follows from the assertions
about the kernel and the cokernel.
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Smoothing edge symbols of orderm. In what follows we also use the ideal of smoothing edge symbols.

DEFINITION 6.34. An edge symbol D(x, ξ) of order m and weight γ is said to be smoothing if its
principal symbol is zero. The set of smoothing edge symbols of order m and weight γ will be denoted
by Jm

γ .

Smoothing edge symbols possess the following properties.

PROPOSITION 6.35. Let D ∈ Jm
γ .

1) (gain in smoothness) the operator D(x, ξ) and all of its derivatives are continuous in the spaces

D(α,β)(x, ξ) : Ks,γ(KΩ) −→ Ks−m+1,γ−m(KΩ), s ∈ R;

2) the operators rD(x, ξ) and D(x, ξ)r possess the same property;

3) the family
D(x, ξ) : Ks,γ(KΩ) −→ Ks−m,γ−m(KΩ)

has a compact fiber variation (i.e., the differences D(x, ξ)−D(x, ξ′) are compact in these spaces);

4) conditions 1)–3) remain valid for the family (1 + r2)lD(x, ξ)(1 + r2)−l for arbitrary l ∈ R;

5) if ϕ(r) is a smooth function such that ϕ(r) = 0 in a neighborhood of zero and ϕ(r) = 1 for large
r, then the operators

ϕ(r)D(x, ξ), D(x, ξ)ϕ(r) : Ks,γ(KΩ) −→ Ks−m,γ−m(KΩ)

are compact.

Proof. Properties 1)–4) are an immediate consequence of the definitions. Let us prove 5). The operators
ϕ(r)D(x, ξ) and D(x, ξ)ϕ(r) in these spaces can be represented as the compositions

Ks,γ(KΩ)
rD(x,ξ)−−−−−→ Ks−m+1,γ−m(KΩ)

ϕ(r)/r−−−−→ Ks−m,γ−m(KΩ)

and

Ks,γ(KΩ)
ϕ(r)/r−−−−→ Ks−1,γ(KΩ)

D(x,ξ)r−−−−−→ Ks−m,γ−m(KΩ),

respectively, of continuous operators. Moreover, the operator ϕ(r)/r is compact in both cases. (Indeed,
the smoothness exponent in both cases is diminished by one, the weight exponent remains unchanged,
and the function ϕ(r)/r is equal to zero in a neighborhood of zero and tends to zero at infinity.)

6.2.2. Pseudodifferential operators

Now we shall define pseudodifferential operators. This shall be done in several steps. First, we de-
scribe their general continuity properties. Then from the set of all operators satisfying these continuity
properties we single out pseudodifferential operators as operators that possess edge and interior princi-
pal symbols. Finally, we define quantization, i.e., a mapping that assigns pseudodifferential operators
to compatible pairs (interior principal symbol, edge symbol) and show that this mapping possesses all
necessary properties.
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Operators of orderm. We choose and fix some value of the weight exponent γ ∈ R.

DEFINITION 6.36. An operator
D : C∞

0 (M◦) −→ D′(M◦)

is called an operator of order m (with weight exponent γ) if it can be extended to a continuous operator
in the spaces

D : Ws,γ(M) −→ Ws−m,γ−m(M) (6.79)

for every s ∈ R. An operator of order m is said to be negligible if it is compact in the spaces (6.79) and
continuous in the spaces

D : Ws,γ(M) −→ Ws−m+1,γ−m(M) (6.80)

for every s ∈ R.
The space of operators of order m will be denoted by Opm

γ = Opm
γ (M), and the subspace of

negligible operators by J Opm
γ (M) ⊂ Opm

γ (M).

The following assertion is obvious.

PROPOSITION 6.37. The operator product induces bilinear mappings

Opl
γ−m ×Opm

γ −→ Opl+m
γ ,

J Opl
γ−m ×Opm

γ −→ J Opl+m
γ , Opl

γ−m ×J Opm
γ −→ J Opl+m

γ

for any l and m.

The compatibility condition. Our pseudodifferential operators will have interior principal symbol σ and
edge symbols σ∧.

What pairs (σ, σ∧) should be quantized? Note that the interior principal symbol and the edge symbol
of a differential operator are related by the compatibility condition (6.29).

We impose the same compatibility condition on the symbols of pseudodifferential operators.

The definition of pseudodifferential operators. We introduce the notion of smooth functions on M.

DEFINITION 6.38. A function ϕ on a manifold M with edges is said to be smooth if the lift of ϕ to the
corresponding manifold M with boundary via the natural projection M −→ M is a smooth function.
In other words, ϕ ∈ C∞(M) if and only if ϕ ∈ C∞(M) and the restriction ϕ|∂M is constant along the
fibers of π.

Now we are in a position to give the definition of pseudodifferential operators.

DEFINITION 6.39. An operator P ∈ Opm
γ is called a pseudodifferential operator of order m and weight

γ on the manifold M if the following conditions are satisfied.

1) The inclusion [ϕ,P ] ∈ J Opm
γ holds for each function ϕ ∈ C∞(M).

Next, there exists a smooth interior principal symbol σ of order m on T∗0M and an edge symbol σ∧ ∈
Edgem

γ satisfying the compatibility condition (6.29) and such that

2) the operator P is pseudodifferential with principal symbol σ on the open manifold M◦;
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3) the operator P can be represented modulo J Opm
γ in the form

P = (ϕ(r)σ∧)
(
x,−i ∂

∂x

)
+ rQ, (6.81)

where ϕ(r) is an R-function and Q ∈ Opm
γ is a pseudodifferential operator on the open manifold

M◦ such that Q can be represented in a neighborhood of X (that is, after the multiplication by R-
functions on the right and on the left) as a pseudodifferential operator on X with operator-valued
symbol

q(x, ξ) ∈ Sm
CV (X;Ks,γ(KΩ),Ks−m,γ−m(KΩ))

of compact variation (see (Luke 1972)) for each s ∈ R.

The set of pseudodifferential operators of orderm and weight γ will be denoted by PSDm
γ ≡ PSDm

γ (M).

Remark 6.40. The principal symbol of the operator Q in (6.81) is of course

σ(Q) = r−1
(
σ − σ|∂T ∗Mϕ(r)

)
.

PROPOSITION 6.41. The interior principal symbol and the edge symbol of a pseudodifferential operator
are uniquely determined.

Proof. The assertion concerning the interior principal symbol is known from the usual theory of pseu-
dodifferential operators. To prove that the edge symbol is also uniquely determined, let us represent P in
a collar neighborhood of the edge in the form of a pseudodifferential operator on X with operator-valued
symbol of compact variation. This is clearly possible for both terms in the representation (6.81). Thus
we have

P = F

(
x,−i ∂

∂x

)
,

where
F (x, ξ) = ϕ(r)σ∧(x, ξ) + rq(x, ξ).

(Here q is the operator-valued symbol of Q.) Now we apply κ−1
λ F (x, ξ)κλ to an arbitrary function

u ∈ C∞
0 (K◦

Ω) and let λ→ ∞, thus obtaining

κ−1
λ F (x, ξ)κλu = ϕ(r/λ)λmσ∧(x, ξ)u + λ−1rq(x, λξ)u

= ϕ(r/λ)λmσ∧(x, ξ)u +O(λm−1).

This permits us to reconstruct the edge symbol from the operator and completes the proof of the propo-
sition.

6.2.3. Quantization

The computation of symbols is embedded in the very definition of pseudodifferential operators. Now our
task is to construct an inverse mapping, quantization. Thus pseudodifferential operators will be obtained
by quantization of pairs (σ, σ∧), where σ is the interior principal symbol (a homogeneous function on
T ∗

0M) and σ∧ = σ∧(x, ξ) is the edge symbol.



32 ELLIPTIC THEORY ON MANIFOLDS WITH EDGES

Let Am
γ be the set of pairs (σ, σ∧) satisfying the compatibility condition (6.29), where σ is an interior

principal symbol of order m and σ∧ ∈ Edgem
γ . This is obviously a linear space, and we have the natural

embedding

Jm
γ ↪→ Am

γ

σ∧ �−→ (0, σ∧).

Having this embedding in mind, we sometimes denote the corresponding element of Am
γ merely by σ∧

instead of (0, σ∧).

PROPOSITION 6.42. The componentwise multiplication induces a bilinear mapping

Al
γ−m ×Am

γ −→ Am+l
γ ,

and the subspace of smoothing edge symbols is an “ideal” in the sense that

J l
γ−m ×Am

γ −→ Jm+l
γ , Al

γ−m × Jm
γ −→ Jm+l

γ .

Proof. Both assertions follow from item 2) of Theorem 6.31, since the compatibility condition is linear
and multiplicative.

Quantization of the ideal Jm
γ . Note that the above-mentioned embedding Jm

γ ↪→ Am
γ gives rise to the

short exact sequence
0 −→ Jm

γ −→ Am
γ −→ Om −→ 0,

where Om ≡ Om(T ∗
0 M) is the space of interior principal symbols of order m. We use this exact

sequence to construct quantization modulo negligible operators. Namely, first we quantize the elements
of the ideal Jm

γ modulo negligible operators and the elements of the quotient

Am
γ

/
Jm

γ ≡ Om (6.82)

modulo operators with zero interior principal symbol. The resulting pair of quantizations of the extreme
terms of the sequence is then lifted in a standard way to a quantization of the middle term.

Thus let us quantize the ideal Jm
γ . Let a ∈ Jm

γ , i.e., a = (0, σ∧), where σ∧ ∈ Jm
γ . We take a smooth

function

ϕ(r) =

{
1 for small r,

0 for r > 1/2

and set

â = ϕ(r)σ∧
(
x,−i ∂

∂x

)
ϕ(r), (6.83)

where the pseudodifferential operator σ∧(x, ξ) with operator-valued symbol is defined in the usual way
with the help of a partition of unity subordinate to a cover of X by local charts (see the Appendix).
Owing to the presence of the factors ϕ(r) on the right and on the left, we can interpret the operator (6.83)
not only as an operator on the infinite wedge W but also as an operator on M. (The support of its kernel
is contained in the Cartesian product U × U .)

THEOREM 6.43. The following assertions hold:
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1) The interior principal symbol of the operator â is zero.

2) The operator â is modulo the subspace J Opm
γ independent of the choice of a cutoff function ϕ

and other ambiguous elements of the construction.

Proof. If a ∈ Jm
γ , then it follows from property 1 in Proposition 6.35 that the products (1−ψ(r))â and

â(1 − ψ(r)) raise the smoothness by one and are compact in the corresponding spaces. From this we
readily obtain both assertions of the theorem.

Quantization of the entire symbol algebra Am
γ . Let a = (σ, σ∧) ∈ Am

γ be a given symbol. We wish to
assign a pseudodifferential operator to it. This can be done as follows.

1) First, we construct some pseudodifferential operator P0 ∈ PSDm
γ with interior principal symbol

σ.

2) Then the edge symbols σ∧ and σ∧(P0) are compatible with the same interior principal symbol σ,
so that their difference is compatible with the zero interior principal symbol. This means that

σ∧ − σ∧(P0) ∈ Jm
γ .

3) Thus, using the construction from the preceding item, we can construct a pseudodifferential oper-
ator P1 with interior principal symbol σ(P1) = 0 and edge symbol

σ∧(P1) = σ∧ − σ∧(P0).

4) It remains to set
â = P0 + P1;

now we have
σ(â) = σ, σ∧(â) = σ∧

by construction.

All steps except for the first are obvious, and it remains to explain the first step. It suffices to consider
the case in which the interior principal symbol σ is supported in a neighborhood of the edge. (The general
case then follows with the use of a partition of unity.) We set

P0 = e(r)D
(
x,−i ∂

∂x

)
e(r), (6.84)

where e(r) is an R-function equal to unity in a wider neighborhood of the edge and the symbol D(x, ξ)
is given by the formula

D(x, ξ) = χ1(r|ξ|)ĥψ(r|ξ|) + (1 − χ2(r|ξ|))σ̂(1 − ψ(r|ξ|)). (6.85)

Here χ1, χ2, and ψ are R-functions such that

χ1ψ = ψ, (1 − χ2)(1 − ψ) = 1 − ψ, (6.86)

h is an arbitrary conormal symbol compatible with σ, and the operator σ̂ is constructed in the same
way as in the definition of edge symbols. (The only difference is that the symbol σ has an additional
dependence on the variable r. This does not cause any complications.)
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PROPOSITION 6.44. The operator (6.84) satisfies P0 ∈ PSDm
γ and

σ(P0) = σ.

Proof. The fact that the operator (6.84) is a pseudodifferential operator on the open manifold M◦ and
the relation σ(P0) = σ are trivial. To prove that P0 ∈ PSDm

γ , it suffices to show that P0 has an edge
symbol. This is clear directly from (6.84). Namely, applying the definition of the edge symbol, we see
that the edge symbol of P0 can be obtained by setting r = 0 in the coefficients of the operator σ̂c and in
the symbol σ.

Calculus. The quantization mapping constructed above has the following properties.

THEOREM 6.45. The quantization mapping is well defined and unique modulo negligible operators. This
mapping is the right inverse and the left almost inverse of the symbol mapping:

if a = (σ, σ∧) ∈ Am
γ , then σ(â) = σ, σ∧(â) = σ∧;

if P ∈ PSDm
γ , then (σ(P ), σ∧(P ))∧ − P ∈ J Opm

γ .

The proof readily follows from the construction.

COROLLARY 6.46. An operator P ∈ PSDm
γ is compact in the spaces

P : Ws,γ(M) −→ Ws−m,γ−m(M), s ∈ R,

if and only if
σ(P ) = 0, σ∧(P ) = 0.

Let us now state the main theorems of the calculus of edge-degenerate pseudodifferential operators.

THEOREM 6.47 (on the composition of edge-degenerate operators). The product of operators induces a
bilinear mapping

PSDl
γ−m(M) × PSDm

γ (M) −→ PSDl+m
γ (M)

for any l and m. The symbols of the product are given by the formulas

σ(D2D1) = σ(D2)σ(D1), σ∧(D2D1) = σ∧(D2)σ∧(D1). (6.87)

The last assertion can also be represented in the following form. If a ∈ Al
γ−m and b ∈ Am

γ , then

(̂ab) = âb̂ mod J Opm+l
γ .

THEOREM 6.48 (on the adjoint operator). The passage to the adjoint operator (with respect to the inner
product in W0,0(M)) induces an antilinear mapping

PSDm
γ (M) −→ PSDm

m−γ(M).

The symbols of the adjoint operator are given by the formulas

σ(D∗) = σ(D)∗, σ∧(D∗) = σ∧(D)∗. (6.88)

Proof. The proof of both theorems is by a straightforward computation. It is based on composition
theorems for usual pseudodifferential operators and for pseudodifferential operators with operator-valued
symbols.
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Ellipticity, Fredholm property, and smoothness. Let us now state the main assertions of elliptic theory
for edge-degenerate pseudodifferential operators without additional (co-)conditions. These assertions are
primarily of illustrative nature, since the supply of operators that are elliptic without additional conditions
is very restricted.

DEFINITION 6.49. An operator D ∈ PSDm
γ (M) is said to be interior elliptic if its interior principal

symbol σ(D) is invertible everywhere (up to the boundary) on the cotangent bundle T∗0M without the
zero section. The operator D is said to be elliptic if it is interior elliptic and its edge symbol is invertible
everywhere on T∗

0X.

THEOREM 6.50. Let D ∈ PSDm
γ (M). The following conditions are equivalent:

(i) The operator
D : Ws,γ(M) −→ Ws−m,γ−m(M) (6.89)

is Fredholm for some s ∈ R.

(ii) The operator (6.89) is Fredholm for all s ∈ R.

(iii) The operator (6.89) is elliptic.

Under any of these conditions, the kernel, cokernel and index of the operator (6.89) are independent of s.

This theorem is a special case of the more general Theorem 6.72 below .
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6.3. Elliptic Morphisms and the Finiteness Theorem

Now we proceed to edge boundary value problems. LetA ∈ PSDm
γ (M) be an edge-degenerate operator.

Suppose that it is interior elliptic. Then the principal symbol of its edge symbol is everywhere invertible
on T ∗

0M
∣∣
∂M

, and (under the assumption that the conormal symbol exists and is also invertible for all
x ∈ X on the weight line Lγ) the edge symbol σ∧(D)(x, ξ) proves to be a Fredholm family on T∗

0X.
As was already explained in Section 1, one can try to make the edge symbol invertible by supplementing
it with some conditions and co-conditions. Next, these conditions are quantized, and we arrive at matrix
operators of the form8

A =
(
A C
B D

)
:
Ws,γ(M)

⊕
Hs(X)

−→
Ws−m,γ−m(M)

⊕
Hs−m(X)

, (6.90)

where B and C are edge boundary and coboundary operators and D is a pseudodifferential operator on
X. (The last component may be lacking in natural statements of edge problems, but it inevitably arises
in products of matrix operators of this form.)

DEFINITION 6.51. A matrix operator A acting in the spaces (6.90) for all s ∈ R is called an operator
of order m (with weight exponent γ). The operator A is said to be negligible if it is compact in the
spaces (6.90) and continuous in the spaces

A : Ws,γ(M) ⊕Hs(X) −→ Ws−m+1,γ−m(M) ⊕Hs−m+1(X)

for every s ∈ R.
The space of matrix operators of order m and weight γ will be denoted by Opm

γ = Opm
γ (M), and

the subspace of negligible operators will be denoted by J Opm
γ (M).

Following (Sternin 1967b), we refer to matrix operators of the form (6.90) as morphisms. The study
of morphisms of this form and conditions ensuring that they are Fredholm gives the main analytical
results pertaining to edge boundary value problems. First, we study a subalgebra of matrix operators
containing boundary and coboundary operators as well as pseudodifferential operators on X. The full
class of matrix operators is the (nondirect) sum of this subclass and the class of pseudodifferential oper-
ators on M.

6.3.1. Matrix Green operators

Matrix Green operators are obtained by quantization of matrix Green symbols. Since these operators
are concentrated (modulo negligible operators) in an arbitrarily small neighborhood of the edge X, one
can consider them either on M or on the infinite wedge W associated with M. The latter is often more
convenient. Recall (see Sec. 1) that this wedge is a locally trivial bundle overX whose fiber is the infinite
cone KΩ. The fiber over a point x will be denoted by Kx. The neighborhood U of the edge in M is
naturally identified with a similar neighborhood in W . If E is a vector bundle over M, then in U it can
be identified with the lift toW of its restriction to the boundary ∂M of the stretched manifold M = M∧.
This lift, as well as its restrictions to the cones Kx, will be denoted by the same letter E. Operators of
order m and negligible operators are introduced as in Definition 6.51 with M replaced by W .

8For simplicity, we avoid considering operators of vector order in the sense of Douglis–Nirenberg.
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Green symbols.

DEFINITION 6.52. A matrix Green symbol of orderm and weight γ is a smooth family of linear operators

g∧(x, ξ) =
(
g∧(x, ξ) c∧(x, ξ)
b∧(x, ξ) d∧(x, ξ)

)
:
C∞

0 (Kx, E1)⊕
J1x

−→
D′(Kx, E2)⊕

J2x

,

where E1,2 are finite-dimensional vector bundles over the infinite wedge W and J1,2 are finite-dimen-
sional vector bundles over X such that the following conditions hold.

1. The family g∧(x, ξ) is twisted homogeneous of degree m:

g∧(x, λξ) = λmκλg∧(x, ξ)κ−1
λ , λ > 0, (6.91)

where the group κλ acts in the fibers J1,2x as the identity mapping for all λ.

2. The family g∧(x, ξ) extends by closure to a family of compact linear operators in the spaces

g∧(x, ξ) :
Ks,γ(Kx, E1)⊕

J1x

−→
Kl,γ(Kx, E2)⊕

J2x

for any s, l ∈ R.

3. The same is true of the families rg∧(x, ξ), g∧(x, ξ)r, and

(1 + r)lg∧(x, ξ)(1 + r)−l, l ∈ R,

where the operator of multiplication by r acts as the zero operator in the fibers of the bundles J1,2x.

The space of matrix Green symbol of order m and weight γ will be denoted by9 Sm
γ,G(T ∗

0X).

Remark 6.53. In particular, it follows from the definition that the upper left entry of a matrix Green
symbol satisfies g∧(x, ξ) ∈ Jm

γ , i.e., is an edge symbol. However, the smoothing properties of such a
symbol with respect to the variables (r, ω) for r > 0 are much stronger that those of an arbitrary element
of Jm

γ .

Green operators. The following proposition shows that matrix Green symbols have the compact fiber
variation property. This property ensures (see the Appendix) that the quantization of such symbols gives
operators with a “good” composition rule.

PROPOSITION 6.54. For each s, one has the embedding

Sm
γ,G(T ∗

0X) ⊂ S0
CV (T ∗

0X,Ks,γ(Kx) ⊕ C,Ks−m,γ(Kx) ⊕ C),

where the space of symbols with compact fiber variation on the right-hand side is introduced in Defini-
tion A.9 in the Appendix and the spaces Ks,γ ⊕ C are equipped with families of norms

||||||u⊕ z||||||ξ = [ξ]s
(∥∥∥κ−1

[ξ] u
∥∥∥
Ks,γ

+ |z|
)

(6.92)

of tempered growth with respect to the parameter ξ.
9To simplify the notation, in what follows we assume that E1,2 and J1,2 are trivial one-dimensional complex vector bundles

and omit them from the notation.
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The proof follows directly from the definition.

COROLLARY 6.55. The quantization of a Green symbol results in a well-defined bounded operator

g∧
(
x,−i ∂

∂x

)
:
Ws,γ(W )

⊕
Hs(X)

−→
Ws−m,γ−m(W )

⊕
Hs−m(X)

, (6.93)

and the product of such operators (modulo negligible operators) corresponds to the product of their
Green symbols.

Proof. Indeed, the space Ws,γ(W )⊕Hs(X) is obtained from the spaces with the family of norms (6.92)
by the construction in the Appendix so that the desired result follows from Theorem A.81.

Unfortunately, the operator (6.93) acts (in the first component) on the infinite wedge W rather than
on the manifold M. However, one can readily rectify this by using the following assertion. To unify the
notation, we adopt the convention that if ψ(r) is an arbitrary R-function and v(x) is a function on the
edge X, then

ψ(r)v(x)
def≡ v(x)

(in agreement with the fact that r = 0 on the edge).

PROPOSITION 6.56. Let ψ(r) be an arbitrary R-function. Then the operators

(1 − ψ(r))g∧
(
x,−i ∂

∂x

)
,g∧
(
x,−i ∂

∂x

)
(1 − ψ(r)) :

Ws,γ(W )
⊕

Hs(X)
→

Ws−m,γ−m(W )
⊕

Hs−m(X)

are compact for every s ∈ R. Moreover, these operators are continuous in the spaces

(1 − ψ(r))g∧
(
x,−i ∂

∂x

)
,g∧
(
x,−i ∂

∂x

)
(1 − ψ(r)) :

Ws,γ(W )
⊕

Hs(X)
→
Ws−m+1,γ−m(W )

⊕
Hs−m+1(X)

for every s ∈ R, i.e., belong to the space J Opm
γ .

Proof. This proof of the second assertion is completely similar to that of Theorem 6.43. The first asser-
tion follows from the fact that the symbol g∧ is compact.

DEFINITION 6.57. The operator

opG(g∧) = ψ(r)g∧
(
x,−i ∂

∂x

)
ψ(r), (6.94)

where ψ(r) is an arbitrary R-function with support in U , is called a Green operator with (edge) symbol10

g∧(x, ξ).

By Proposition 6.56, the operator (6.94) differs from the operator (6.93) by a negligible operator. The
new operator (6.94) can obviously be treated as an operator on M, since its Schwartz kernel is supported
in U × U .

10Note that the principal symbol of a Green operator is always zero.
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Remark 6.58. Note that the upper left entry of the operator (6.94) is a pseudodifferential operator on M
whose principal symbol (of order m) is zero and whose edge symbol coincides with the upper left entry
of the Green symbol.

Corollary 6.55 implies the following assertion.

PROPOSITION 6.59. Modulo negligible operators, the product of two Green operators is again a Green
operator, and moreover,

σ∧
(
opG(g(1)

∧ ) opG(g(2)
∧ )
)

= g(1)
∧ g(2)

∧ ,

i.e., the correspondence between Green symbols and Green operators is multiplicative.

6.3.2. General morphisms

Now we can describe general pseudodifferential morphisms on a manifold with edges.

DEFINITION 6.60. A morphism of order m and weight γ is an operator that, modulo elements of the
space J Opm

γ (M), can be represented as the sum

A = A+ opG(g∧), (6.95)

where the first term is a pseudodifferential operator11 on M of order m and weight γ and the second
term is a matrix Green operator of order m and weight γ.

The set of morphisms of order m and weight γ is denoted by Mormγ (M).

Remark 6.61. The representation (6.95) is obviously nonunique by virtue of Remark 6.58. However,
Proposition 6.63 below shows that this does not result in any difficulties in the theory.

Symbols.

DEFINITION 6.62. Let A ∈ Mormγ (M) be the morphism (6.95). We define the interior principal and
edge symbols of A by the formulas12

σ(A) = σ(A), (6.96)

σ∧(A)(x, ξ) = σ∧(A)(x, ξ) + g∧(x, ξ). (6.97)

PROPOSITION 6.63. Definition 6.62 is well-posed: the interior principal and edge symbols of A are
independent of the specific choice of the representation (6.95).

Proof. The independence of the interior principal symbol of the choice of the representation (6.95) is
obvious, since the interior principal symbol of the upper left entry of a Green operator is zero. Rela-
tion (6.97) is also obvious, since the edge symbol of the upper left entry can be computed according to
Definition 6.39.

11For brevity, we write A instead of the 2 × 2 matrix

(
A 0
0 0

)
and use similar notation for symbols.

12Where the first term is the shorthand notation for the matrix

(
σ∧(A)(x, ξ) 0

0 0

)
.



40 ELLIPTIC THEORY ON MANIFOLDS WITH EDGES

Quantization. Now our task is to construct quantization, i.e., a mapping that takes each compatible
pair (interior principal symbol, edge symbol) to the corresponding morphism. First, we should describe
the set of edge symbols in question and state the compatibility condition. By analogy with the set of
operators (6.95), we define the set of matrix 2 × 2 edge symbols of order m and weight γ as

Edgem
γ (T ∗

0X) =
(

Edgem
γ (T ∗

0X) 0
0 0

)
+ Sm

γ,G(T ∗
0X).

DEFINITION 6.64. The principal symbol of a matrix edge symbol

σσσ∧ =
(
σ∧11 σ∧12

σ∧21 σ∧22

)
∈ Edgem

γ (T ∗
0X) (6.98)

of order m and weight γ is the principal symbol of its upper left entry:

σ(σσσ∧) def= σ(σ∧11). (6.99)

One says that the edge symbol (6.98) is compatible with an interior principal symbol σ ∈ Om(T ∗
0M)

of order m on T∗
0M if the restriction of the latter to the boundary ∂T∗0 M coincides with the principal

symbol of the edge symbol (6.98):
σ(σσσ∧) = σ

∣∣
∂T ∗

0 M. (6.100)

PROPOSITION 6.65. If a matrix edge symbol σσσ∧ ∈ Edgem
γ (T ∗

0X) is invertible for all (x, ξ) ∈ T∗
0X,

then
σσσ−1
∧ ∈ Edge−m

γ−m(T ∗
0X) and σ

(
σσσ−1
∧
)

= σ(σσσ∧)−1.

Now let a compatible pair

(σ,σσσ∧) ∈ Om(T ∗
0M) × Edgem

γ (T ∗
0X), σσσ∧ =

(
σ∧11 σ∧12

σ∧21 σ∧22

)
(6.101)

be given.

DEFINITION 6.66. The quantization of the pair (6.101) is the morphism of order m and weight γ given
by the formula

(σ,σσσ∧)∧ = (σ, σ∧11)∧ + opG

[(
0 σ∧12

σ∧21 σ∧22

)]
. (6.102)

One can readily see that the principal and edge symbols of this morphisms are, respectively,

σ((σ,σσσ∧)∧) = σ, σ∧((σ,σσσ∧)∧) = σσσ∧.

Just as with pseudodifferential operators, the symbols of a pseudodifferential morphism determine
it modulo negligible operators. Thus quantization modulo negligible operators is the two-sided inverse
for the symbol mapping taking the operator to the pair (interior principal symbol, edge symbol). Recall
that negligible operators are compact, so that a given pair of symbols completely determines whether the
corresponding operator is Fredholm and, if this is the case, determines its index.

PROPOSITION 6.67. One has the implications

(σ,σσσ∧)∧ is compact in the spaces (6.90)

=⇒ {σ = 0 and σσσ∧ = 0} =⇒ (σ,σσσ∧)∧ ∈ J Opm
γ .

Remark 6.68. Thus compact operators in our operator algebra are not only compact but also smoothing.
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Calculus. Now we are in a position to state the main theorems of the calculus of pseudodifferential
morphisms on manifolds with edges.

THEOREM 6.69. The product of operators induces a bilinear mapping

Morl
γ−m(M) × Morm

γ (M) −→ Morl+m
γ (M). (6.103)

The principal and edge symbols of the product are given by the formulas

σ(AB) = σ(A)σ(B), σ∧(AB) = σ∧(A)σ∧(B). (6.104)

THEOREM 6.70. The passage to the adjoint operator induces the antilinear mapping

Morm
γ (M) −→ Morm

m−γ(M); (6.105)

moreover,
σ(A∗) = σ(A)∗, σ∧(A∗) = σ∧(A)∗. (6.106)

Proof. The proof of both theorems is by a straightforward computation based on the composition the-
orems for pseudodifferential operators and pseudodifferential operators with operator-valued symbols.

6.3.3. Ellipticity, Fredholm property, and smoothness

The calculus constructed above implies, in the standard way, the main assertions of elliptic theory for
pseudodifferential morphisms (or, which is the same, for elliptic edge problems, i.e., edge-degenerate
pseudodifferential operators equipped with edge boundary and coboundary conditions). The finiteness
and smoothness theorems for elliptic edge problems for differential operators stated in Sec. 1 are a special
case of these general theorems.

DEFINITION 6.71. A morphism A ∈ Mormγ (M) is said to be interior elliptic if its interior principal
symbol σ(A) is invertible up to the boundary of the cotangent bundle T∗0M without the zero section.
The morphism A is said to be elliptic if it is interior elliptic and its edge symbol is invertible on T∗0X.

THEOREM 6.72. Let A ∈ Morm
γ (M). The following conditions are equivalent:

(i) The morphism A is Fredholm in the spaces (6.90) for some s ∈ R.

(ii) The morphism A is Fredholm in the spaces (6.90) for all s ∈ R.

(iii) The morphism A is elliptic.

Under any of these conditions, the kernel and cokernel of A are independent of s.

Proof. We shall only prove that the ellipticity of a morphism implies its Fredholm property and the
smoothness (independence of s) of the kernel and cokernel.

Thus let A be elliptic. Then σ(A)−1 is a well-defined principal symbol on T∗
0M, and σ∧(A)−1 is a

well-defined edge symbol on T∗
0X by Proposition 6.65. By the same proposition,

σ(σ∧(A)−1) = σ(σ∧(A))−1,
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whence it readily follows that the pair
(
σ(A)−1, σ∧(A)−1

)
satisfies the compatibility condition (6.100),

since so does the pair (σ(A), σ∧(A)).
According to Definition 6.66, we construct a morphism R ∈ Mor−m

γ−m(M) such that

σ(R) = σ(A)−1, σ∧(R) = σ∧(A)−1.

Using the composition theorem 6.69 and Proposition 6.67, we obtain

AR = 1 + Q1, RA = 1 + Q2, (6.107)

where
Q1 ∈ J Op0

γ−m, Q2 ∈ J Op0
γ

are negligible operators. Since negligible operators are compact, from (6.107) we readily find that the
morphism A is Fredholm in the spaces (6.90) for all s ∈ R.

Now let us prove that the kernel of A is independent of s. Let u ∈ kerA. By applying the morphism
RA to u, we obtain, by virtue of the second equation in (6.107),

u = −Q2u. (6.108)

The negligible operator Q2 by Definition 6.51 is continuous in the spaces

Q2 : Ws,γ(M) ⊕Hs(X) −→ Ws+1,γ(M) ⊕Hs+1(X),

so that it follows from (6.108) that

u ∈ Ws,γ(M) ⊕Hs(X) =⇒ u ∈ Ws+1,γ(M) ⊕Hs+1(X).

In turn, it follows that u is contained in all spaces Ws,γ(M) ⊕ Hs(X), s ∈ R, simultaneously. (The
opposite implication is trivial in view of the embedding

Ws,γ(M) ⊕Hs(X) ⊂ Ws′,γ(M) ⊕Hs′(X)

for s′ < s.) In a similar way (by passing to adjoint operators) one can prove the independence of s of the
cokernel of the morphism A. The proof is complete.
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Appendix A. Fiber Bundles and Direct
Integrals

In this appendix, we outline a simple general theory of pseudodifferential operators in Hilbert spaces
of Hilbert-valued functions. The main examples arise in applications if one describes Hilbert function
spaces on the total space of a locally trivial bundle

π : Y −→ X

with compact base as spaces of Hilbert-valued functions (or distributions) on X. These spaces behave
“along X” very similarly to usual Sobolev spaces. (There are no distinguished or degenerate directions.)
It is convenient to define such spaces in the Fourier transform as direct integrals of Hilbert spaces. We
define pseudodifferential operators in such spaces and establish a boundedness theorem for such opera-
tors.

Throughout the following, we use the notation [ξ] = (1 + |ξ|2)1/2.

A.1. Local theory

Let H be a Hilbert space with norm |||||| · |||||| and inner product ( · , · ). Suppose that it is equipped with a
family {|||||| · ||||||ξ} of Hilbert norms depending on the parameter ξ ∈ Rn, equivalent to the original norm |||||| · ||||||,
and satisfying the following conditions:

• ||||||u||||||ξ is a measurable function of ξ for any u ∈ H;

• there exist constants C and N such that

||||||u||||||η ≤ C

(
[η]
[ξ]

+
[ξ]
[η]

)N

||||||u||||||ξ for any ξ, η ∈ Rn and u ∈ H, u �= 0. (A.109)

DEFINITION A.73. A family of norms satisfying the above-mentioned conditions will be called a tem-
pered family of norms.

We denote the space H equipped with the norm |||||| · ||||||ξ by Hξ and define the direct integral of Hξ by
the formula∫

Hξ dξ
def=
{
u : Rn −→ H

∣∣ u(ξ) is measurable and
∫

||||||u(ξ)||||||2ξ dξ <∞
}
. (A.110)

Remark A.74. (1) Strong and weak measurability are the same in a separable Hilbert space, so we do not
specify the kind of measurability in the definition.

(2) If u(ξ) is measurable, then so is ||||||u(ξ)||||||ξ , and hence (A.110) is well defined.

The space H =
∫
Hξ dξ is equipped with the natural norm

‖u‖ =
{∫

||||||u(ξ)||||||2ξ dξ
}1/2

, (A.111)

which makes it a Hilbert space.
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LEMMA A.75. The space H is the closure of the Schwartz space S(Rn,H) in the norm (A.111).

The proof is standard.
We are actually interested in the space F−1H obtained from H by the inverse Fourier transform. It

follows from the preceding lemma that F−1H is the completion of the Schwartz space S(Rn,H) with
respect to the norm

‖u‖(0) = ‖ũ‖ .
EXAMPLE A.76. If H = C and ||||||u||||||ξ = [ξ]|u|, then F−1H = Hs(Rn) is the ordinary Sobolev space
in Rn.

If H = Hs(M), where M is a smooth compact manifold, and

||||||u||||||ξ =

∥∥∥∥∥
(

1 + |ξ|2 −�
1 −�

)s/2

u

∥∥∥∥∥
Hs(M)

,

where � is the Beltrami–Laplace operator on M , then F−1H = Hs(Rn ×M) is the Sobolev space on
Rn ×M .

Let

G =
∫
Gξ dξ

be another direct integral of Hilbert spaces.
Let us study the continuity of pseudodifferential operators from F−1H to F−1G. We consider

operator-valued symbols D(x, ξ) ranging in L(H,G) and satisfying the estimates∥∥∥∥∂αD

∂xα
(x, ξ) : Hξ −→ Gξ

∥∥∥∥ ≤ Cαl [x]
−l , l, |α| = 0, 1, 2, . . . . (A.112)

THEOREM A.77. If the estimates (A.112) hold, then the operator

D

(
2
x,−i

1
∂

∂x

)
: F−1H −→ F−1G

is continuous.

Proof. We shall prove an equivalent assertion, namely, the continuity of the operator

D̂ = D

(
i

2
∂

∂ξ
,
1
ξ

)
: H −→ G.

The operator acts by the formula[
D̂u
]
(ξ) =

∫
D̃(ξ − η, η)u(η) dη =

∫
D̃(z, ξ − z)u(ξ − z) dz, (A.113)

where D̃ is the Fourier transform of the symbol D with respect to the first argument. By virtue of the
estimates (A.112), the Fourier transform is continuous and satisfies the estimates∥∥∥D̃(z, η) : Hη −→ Gη

∥∥∥ ≤ Cl [z]
−l , l = 0, 1, 2, . . . .
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We can rewrite (A.113) in the form

D̂u =
∫
U( · , z) dz, (A.114)

where
U(ξ, z) = D̃(z, ξ − z)u(ξ − z)

By virtue of the properties of the norm and the estimates imposed onD̃, we have

||||||U(ξ, z)||||||ξ ≤ const [z]N ||||||U(ξ, z)||||||ξ−z ≤ const [z]−M ||||||u(ξ − z)||||||ξ−z,

where M is arbitrarily large. Hence

‖U( · , z)‖ =
{∫

||||||U(ξ, z)||||||2dξ
}1/2

≤ const [z]−M/2

{∫
||||||u(ξ − z)||||||2ξ−zdz

}1/2

= const [z]−M/2 ‖u‖ ;

by substituting this estimate into (A.114) and by integrating over z, we arrive at the desired result.

COROLLARY A.78. The operator of multiplication by a smooth compactly supported function is contin-
uous in the space F−1H.

A.2. Globalization

So far we have defined spaces of Hilbert-valued functions on Rn. To proceed to a manifold, we should
study how the norms are affected by changes of variables. Let |||||| · ||||||ξ be a given tempered family of norms
in a Hilbert space H , and let ‖ · ‖ be the corresponding norm in the direct integral H of the spaces Hξ.

PROPOSITION A.79. LetU ⊂ Rn be a bounded domain, and let f : U −→ V ⊂ Rn be a diffeomorphism
extendible into some neighborhood of the closure U of the domain U . Then there exist positive constants
C1 and C2 such that the inequalities

c ‖ũ‖ ≤
∥∥∥f̃∗u∥∥∥ ≤ ‖ũ‖

(where the tilde stands for the Fourier transform) hold for each smooth H-valued function u(x) sup-
ported in V .

Proof. Let u be an H-valued function supported in V , let v(ξ) be its Fourier transform, and let w(η) be
the Fourier transform of f∗u. Next, let ρ(y) be a smooth compactly supported function whose support is
contained in the domain of the extended diffeomorphism f and which is equal to unity in U . Then

w(η) =
(

1
2π

)n ∫∫
ei(f(y)ξ−yη)ρ(y)v(ξ) dξdy. (A.115)

Using the operator

L =
1 − i〈f ′(y)ξ − η, ∂/∂y〉

1 + |f ′(y)ξ − η|2 ,
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which satisfies the relation
Lei(f(y)ξ−yη) = ei(f(y)ξ−yη),

and integrating by parts M times in (A.115), we obtain

w(η) =
(

1
2π

)n ∫∫
ei(f(y)ξ−yη)[(tL)Mρ(y)]v(ξ) dξdy, (A.116)

where tL is the transpose of L. Moreover, the estimate

|(tL)Mρ(y)| ≤ const
[
1 + |f ′(y)ξ − η|2]−M/2

is obviously valid. In the integral (A.116), we make the change of variables

ξ = ξ(η, t) ≡ f ′(y)−1(t+ η);

then it becomes

w(η) =
(

1
2π

)n ∫∫
ei(f(y)ξ(η,t)−yη) (tL)Mρ(y)

det f ′(y)
v(f ′(y)−1(t+ η)) dtdy, (A.117)

or

w(η) =
∫
U(η, t, y) dtdy,

where the integrand U in (A.117) satisfies the estimate

||||||U(η, t, y)||||||η ≤ const [t](N−M)/2 ||||||v(f ′(y)−1(t+ η))||||||f ′(y)−1(t+η).

Now the end of the proof is the same as in Lemma A.77 from the preceding subsection.

This proposition, in conjunction with the corollary to Lemma A.77 in the preceding subsection,
shows that by using partitions of unity we can introduce a well-defined space F−1H(X) of H-valued
functions on X whose local model is the space F−1H constructed in the preceding section. Pseu-
dodifferential operators whose complete symbols in local coordinates satisfy the estimates (A.112) are
continuous in such spaces.

We now give a modified definition of symbols with compact fiber variation. (The original definition
can be found in (Luke 1972).)

DEFINITION A.80. Let |||||| · ||||||1ξ and |||||| · ||||||2ξ be two tempered families of norms in Hilbert spaces H1 and H2,
respectively. By S0

CV ≡ S0
CV (R2n,H1,H2) we denote the space of operator-valued symbols a(x, ξ)

ranging in L(H1,H2), satisfying the estimates∥∥∥∥∂α+βa(x, ξ)
∂xα∂ξβ

: H1ξ −→ H2ξ

∥∥∥∥ ≤ Cαβ [ξ]−|β| , (A.118)

and having compact fiber variation. The space S0
CV (T ∗X,H1,H2) is defined as the space of operator-

valued symbols whose coordinate representatives satisfy the estimates (A.118).



APPENDIX A. FIBER BUNDLES AND DIRECT INTEGRALS 47

Let a ∈ S0
CV (T ∗X,H1,H2), and let 1 =

∑
j e

2
j be a finite smooth partition of unity subordinate to

a cover of X by coordinate neighborhoods. We set

â =
∑

j

(̂eja)ej ,

where the operator (̂eja) is defined in local coordinates as the pseudodifferential operator

(̂eja) = (eja)
(

2
x,−i

1
∂

∂x

)
.

The preceding arguments, in conjunction with the results and arguments in (Luke 1972), imply the
following theorem.

THEOREM A.81. The operator â is bounded in the spaces

â : F−1H1 −→ F−1H2

and independent, modulo compact operators in these spaces, of the choice of local coordinates and the
partition of unity. The product of such operators corresponds, modulo compact operators, to the product
of symbols.

A.3. Versions of the Definition of the Norm

A tempered family of norms can always be given by the formula

||||||u||||||ξ = ||||||A(ξ)u||||||, (A.119)

where A(ξ) is a strongly measurable family of bounded operators in H and |||||| · |||||| is the norm in H .
The operator A(ξ) is uniquely determined if we require that it be positive and self-adjoint. However,

these requirements are not necessary in applications; moreover, one can proceed to equivalent norms.

LEMMA A.82. Two tempered families of norms determined by operator families A(ξ) and B(ξ) in
accordance with (A.119) determine the same (up to norm equivalence) space H if and only if the operator
families

A(ξ)B−1(ξ), B(ξ)A−1(ξ)

are bounded uniformly with respect to ξ.

The proof is obvious.
Although the assertion is trivial, it permits one to give quite remarkable equivalent expressions for

the norm. For example, let κλ be the group of dilations in Hs(Rk) acting by the formula

κλu(x) = λk/2u(λx), λ ∈ R+.

The operator families

A(ξ) =
(

1 + |ξ|2 −�
1 −�

)s/2

, B(ξ) = [ξ]s κ−1
[ξ]

satisfy the assumptions of the lemma, and hence the norms associated with these families are equivalent.
Moreover, the family B(ξ) defines the space Ws(Rn,Hs(Rk)). We obtain the well-known identity

Hs(Rn+k) = Ws(Rn,Hs(Rk)).
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