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Abstract

Edge representations of operators on closed manifolds are known to induce large classes
of operators that are elliptic on specific manifolds with edges, cf. [9]. We apply this idea
to the case of boundary value problems. We establish a correspondence between standard
ellipticity and ellipticity with respect to the principal symbolic hierarchy of the edge algebra
of boundary value problems, where an embedded submanifold on the boundary plays the role
of an edge. We first consider the case that the weight is equal to the smoothness and calculate
the dimensions of kernels and cokernels of the associated principal edge symbols. Then we pass
to elliptic edge operators for arbitrary weights and construct the additional edge conditions
by applying relative index results for conormal symbols.
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Introduction

Mixed elliptic problems (such as the Zaremba problem for the Laplace operator) or crack problems
(e.g., the Lamé system with two-sided elliptic conditions on a crack in a medium) belong to the
category of boundary value problems on a manifold with edge and boundary (where the interface
in the case of mixed problems or the boundary of the crack play the role of the edge). Such
problems are embedded in a corresponding general calculus of edge-boundary value problems with
the transmission property at the smooth part of the boundary, cf. [14]. They are controlled
by a principal symbolic hierarchy (σψ, σ∂ , σ∧) consisting of the interior, the boundary and the
edge component σψ, σ∂ and σ∧, respectively. The solvability in weighted edge Sobolev spaces is
connected with additional conditions of trace and potential type along the edge (analogously as
boundary conditions in the theory of boundary value problems), provided that some topological
obstruction for their existence vanishes.

In general, certain weights have to be excluded, and the chosen admissible weights (if they exist
at all) affect the number of edge conditions (the difference of the number of potential and trace
conditions is equal to the Fredholm index of an elliptic boundary value problem on an infinite cone
transversal to the interface). It also happens that such conditions are unnecessary. These data
(which depend on the geometry of the configuration and on the coefficients of the operators) are
often unknown or very difficult to calculate, also for the concrete examples mentioned in the be-
ginning (although there are ‘abstract’ characterisations of the qualitative effects in general terms).
It is therefore an interesting extra chapter of the general edge calculus to explicitly construct suf-
ficiently large classes of operators which are elliptic with respect to all components of (σψ, σ∂ , σ∧).
Even for the case without boundary (i.e., when σ∂ disappears) it is a non-trivial task to establish
new classes of elliptic elements.

For closed manifolds with edges there are different strategies, e.g., external multiplications
between elliptic operators on a cone and on a C∞ manifold, cf. [19], or edge representations of
elliptic operators on a smooth manifold with respect to an embedded submanifold that plays the
role of an edge, cf. [9]. The constructions of [9] are crucial for the characterisation of the number
of elliptic interface conditions (together with the admissible weights) for the case of the Zaremba
problem and for other mixed problems in the framework of [8].

In the present paper we construct edge representations of boundary value problems with respect
to an embedded submanifold of the boundary. We obtain in this way new families of operators
which are elliptic with respect to (σψ, σ∂ , σ∧) on an associated manifold with edge and boundary.

In Chapter 1 we outline the basic material on boundary value problems for differential operators
on a manifold W with edge Z ⊂ W and boundary (further details may be found in [16]). The
operators are realised in weighted edge Sobolev spaces. Ellipticity refers to additional conditions of
trace and potential type along the edge which exist when a topological obstruction on the operator
vanishes; this is an analogue of [2] for edge problems, see also [32, 34]. We show (Theorem
1.3.2) that vanishing of the topological obstruction for the existence of elliptic edge conditions is
independent of the weight.
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Chapter 2 gives the edge representation of boundary value problems A in the half-space with
respect to an embedded hypersurface on the boundary. We show that the resulting operators
belong to the edge calculus of Chapter 1 when the weight is equal to the smoothness s, up to
certain discrete exceptional values. In particular, the ellipticity of A in the standard sense (i.e.,
with respect to the interior and the boundary symbol) entails the ellipticity with respect to the
edge symbolic hierarchy (Theorem 2.3.2). At the same time we explicitly calculate extra edge
conditions, and we see that the above mentioned topological obstruction vanishes in our situation.

In Chapter 3 we pass to boundary value problems on a C∞ manifold with boundary and obtain
the global versions of the results of Chapter 2 (Theorem 3.1.3).

In Chapter 4 we study boundary value problems in edge spaces with arbitrary weights. With the
help of relative index results for the principal conormal symbols (Proposition 4.1.2 and Corollary
4.1.3) we calculate the elliptic edge conditions also in this case, up to discrete exceptional weights
and using the fact that the topological obstruction remains trivial for arbitrary weights (Theorem
4.2.2). We finally consider the parametrices of our elliptic edge boundary value problems (4.4.1).

Our paper belongs to the program of studying ellipticity of operators on manifolds with geo-
metric singularities, here with edge and boundary.

To give a few references with relations to our results let us first mention the classical works
of Agranovich and Vishik [1] on parameter-dependent elliptic problems, and Kondrat’ev [15] on
elliptic boundary value problems for conical singularities; another background is the analysis on
manifolds with conical exits to infinity in the sense of Parenti [25] and Cordes [7] and the (pseudo-
differential) calculus of boundary value problems of Boutet de Monvel [5]. Our approach also
develops new aspects of the Sobolev problems, see the paper [36] of Sternin. As is well known
the study of operators for conical singularities is also motivated by the index theory and the
geometric analysis, see Atiyah, Patodi and Singer [4], Cheeger [6], or Melrose and Mendoza [18]
(the latter paper also considers relative index expressions in terms of the poles and zeros of principal
conormal symbols). Moreover, Nistor [23, 24], Gil and Mendoza [11], Loya [17] and many other
authors contributed to the field. A calculus of operators on manifolds with edges with extra
trace and potential contributions was formulated first in [29]; concerning index theory in this
kind of edge and corner algebras, cf. Schrohe and Seiler [28], Fedosov, Tarkhanov, and Schulze
[10], or Nazaikinskij, Savin, Schulze and Sternin [20]. The paper [21] gives a detailed description
of connections between different branches of the analysis on manifolds with edges, see also the
references there.

Acknowledgement: The authors thank A. Savin and B. Sternin from the Independent University
of Moscow for valuable remarks on the manuscript.

1 Operators on manifolds with edges and boundary

1.1 Manifolds with edges and weighted spaces

A manifold W with boundary and edge Z is a topological space that is modelled on a wedge
XΔ × Ω near any point z ∈ Z with the model cone XΔ = (R+ × X)/({0} × X), where X is a
(in our case compact) C∞ manifold with boundary, n = dimX, and Ω ⊆ R

q is an open set which
corresponds to a chart on Z. More precisely, W \ Z is a C∞ manifold with boundary, Z is a C∞

manifold, q = dimZ. We assume that the transition maps between different local wedges

XΔ × Ω → XΔ × Ω̃ (1.1)

restrict to diffeomorphisms
R+ × X × Ω → R+ × X × Ω̃; (1.2)
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those are assumed to be restrictions of diffeomorphisms R × X × Ω → R × X × Ω̃ (in the sense of
C∞ manifolds with boundary) to R+ × X × Ω. We then obtain transition maps

R+ × X × Ω → R+ × X × Ω̃ (1.3)

which induce diffeomorphisms {0} ×X ×Ω → {0} ×X × Ω̃; they represent the transition maps of
an X-bundle over Z.

Similarly to the process of doubling up a C∞ manifold X with boundary by gluing together two
copies X+,X− of X along the common boundary, we can double up W to a manifold 2W without
boundary and edge Z. The local wedges for 2W are (2X)Δ×Ω, where 2X is the double of X (where
we identify X with X+). The transition maps in the version for 2X are (2X)Δ×Ω → (2X)Δ×Ω̃; the
corresponding diffeomorphisms R+×(2X)×Ω → R+×(2X)×Ω̃ are restrictions of diffeomorphisms
R × (2X) × Ω → R × (2X) × Ω̃ to R+ × (2X) × Ω. All these maps restrict to the corresponding
ones for X = X+ itself.

We have the cocycle of maps {0}× (2X)×Ω → {0}× (2X)× Ω̃ which admits to attach 2X ×Ω
to R+ × 2X × Ω which yields R+ × (2X) × Ω. This is an invariant construction. The cocycle
of maps R+ × (2X) × Ω → R+ × (2X) × Ω̃ allows us to pass to the so called stretched manifold
2W which is a C∞ manifold with boundary ∂(2W) that has the structure of a 2X-bundle over Z.
There is then a canonical continuous map

2W → 2W (1.4)

which restricts to a diffeomorphism (2W)reg → (2W ) \ Z for (2W)reg := 2W \ ∂(2W). Let us set
(2W)sing := ∂(2W).

For W itself we then define the stretched manifold W to be the preimage of W under the
projection (1.4), and we set

Wreg := W ∩ (2W)reg, Wsing := W ∩ (2W)sing.

For convenience we assume that the transition maps (1.3) (as well as the analogues for the
double) are independent of r near zero and that Wsing ((2W)sing) is a trivial X ((2X))-bundle
over Z. The second assumption is not essential for our calculus; the first one can considerably be
weakened (though this will not be necessary for us).

Let us now pass to the definition of weighted spaces, first on an infinite stretched cone N∧ =
R+ × N for a closed C∞ manifold N , n = dimN (later on we apply this for N = 2X).

Let Lμ
cl(N ; Rl) denote the space of all classical pseudo-differential operators of order μ on N with

parameters λ ∈ R
l (i.e., the local amplitude functions a(x, ξ, λ) are classical symbols in (ξ, λ), and

L−∞(N ; Rl) := S(Rl, L−∞(N)), where L−∞(N) is the space of smoothing operators on N). We
use the fact that for every ν ∈ R there is a parameter-dependent elliptic element Rν(λ) ∈ Lν

cl(N ; Rl)
which induces isomorphisms Rν(λ) : Hs(N) → Hs−ν(N) for all ν ∈ R, λ ∈ R

l. Let M denote the
Mellin transform on R+, Mu(w) =

∫ ∞
0

rw−1u(r)dr, first for u ∈ C∞
0 (R+) (with the covariable w

varying on C), and then extended to more general distribution spaces, also vector-valued ones. In
the latter case we often consider w on a weight line Γβ := {w ∈ C : Re w = β} for some real β.

Let Hs,γ(N∧) denote the completion of C∞
0 (R+, C∞(N)) with respect to the norm⎧⎨⎩ 1

2πi

∫
Γ n+1

2 −γ

‖Rs(Im w)(Mu(w))‖2
L2(N)dw

⎫⎬⎭
1/2

.

We will also need a slight modification of these spaces for r → ∞. To this end we consider charts
χ1 : U → V on N to open sets V ⊂ Sn and define χ : R+ × U → {x̃ ∈ R

n+1 : x̃
|x̃| ∈ V } by
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χ(r, x) = rχ1(x) for r ∈ R+. Then Hs
cone(N

∧) denotes the subspace of all v ∈ Hs
loc(R × N)|R+×N

such that for every ϕ ∈ C∞
0 (U) we have (1 − ω)ϕv ◦ χ−1 ∈ Hs(Rn+1

x̃ ) for every χ and any cut-off
function ω(r) (in this paper a cut-off function on the half axis will be any ω ∈ C∞

0 (R+) that is
equal to 1 near the origin). We then define

Ks,γ(N∧) := {ωu + (1 − ω)v : u ∈ Hs,γ(N∧), v ∈ Hs
cone(N

∧)}, (1.5)

s, γ ∈ R. The spaces (1.5) are Hilbert spaces with suitable scalar products; for s = γ = 0 we have
K0,0(N∧) = r−

n
2 L2(R+ ×N) (where L2 refers to the product measure drdx for some Riemannian

metric on N).

For N = 2X we define the spaces

Ks,γ(X∧) := {u|intX∧ : u ∈ Ks,γ((2X)∧)}

with the Hilbert space structure of the quotient space Ks,γ((2X)∧)/ ∼, where u ∼ v means
u|intX∧ = v|intX∧ .

On the spaces Ks,γ(N∧) we have a strongly continuous group of isomorphisms

κλ : Ks,γ(N∧) → Ks,γ(N∧) (1.6)

when we set κλu(r, x) = r
n+1

2 u(λr, x), λ ∈ R+. For purposes below we set

Sγ(N∧) := ωK∞,γ(N∧) + (1 − ω)S(R+, C∞(N))

for any cut-off function, and

Sγ(X∧) := {u|intX∧ : u ∈ Sγ((2X)∧)}.

If a Hilbert space E is endowed with a strongly continuous group {κλ}λ∈R+ of isomorphisms
κλ : E → E, such that κλδ = κλκδ for all λ, δ ∈ R+, we say that E is endowed with a group action.
There is then a scale Ws(Rq, E) of so called abstract edge Sobolev spaces of smoothness s ∈ R,
defined as the completion of S(Rq, E) in the norm {

∫
〈η〉2s‖κ−1

〈η〉û(η)‖2
Edη}1/2; here û means the

Fourier transform (of E-valued functions) in R
q. The space Ws(Rq, E) is a Hilbert space with the

scalar product

(u, v)Ws(Rq,E) =
∫
〈η〉2s(κ−1

〈η〉û(η), κ−1
〈η〉v̂(η))2Edη

where (·, ·)E denotes the scalar product in E. If Ω ⊆ R
q is an open set, Ws

comp(z)(Ω, E) denotes
the set of all u ∈ Ws(Ω, E) that have compact support in z ∈ Ω; moreover, Ws

loc(z)(Ω, E) is the
space of all E-valued distributions on E such that ϕu ∈ Ws

comp(z)(Ω, E) for every ϕ ∈ C∞
0 (Ω).

Applying this definition to E = Ks,γ(N∧) with the group action (1.6) we obtain weighted edge
Sobolev spaces

Ws,γ(N∧ × R
q) := Ws(Rq,Ks,γ(N∧))

which are Hilbert spaces. Note that W0,0(N∧ × R
q) = r−

n
2 L2(R+ × N × R

q).

If W is a (say, compact) manifold with edge Z (first without boundary) and W its stretched
manifold we define Ws,γ(W) as the subspace of all u ∈ Hs

loc(Wreg) such that in the splitting of
variables (r, x, z) ∈ N∧ × R

q near Wsing the function ωϕu belongs to Ws,γ(N∧ × R
q) for any

cut-off function ω(r) and ϕ ∈ C∞
0 (Z) that localises u in a neighborhood of a point z ∈ Z. Also in

Ws,γ(W) we can introduce Hilbert space scalar products for all s, γ by using corresponding local
scalar products and a partition of unity.
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For the case of a (compact) manifold W with edge Z and boundary we first consider the double
2W and the associated stretched manifolds W and 2W, respectively. By construction, 2W also
consists of two copies W± of W, and we identify W+ with W. Then we set

Ws,γ(W) = {u|intWreg : u ∈ Ws,γ(2W)},

endowed with the quotient topology from the isomorphism Ws,γ(W) ∼= Ws,γ(2W)/ ∼, with the
equivalence relation u ∼ v ⇔ u|intWreg = v|intWreg . This gives us a Hilbert space structure in the
space Ws,γ(W) for the case when W is a manifold with edge and boundary.

Remark 1.1.1. Let W be a manifold with boundary and edge Z. Then V := {∂(W \ Z)} ∪ Z is
a manifold without boundary and with edge Z. If W and V are the associated stretched manifolds
we have ∂Wreg = Vreg, and V = ∂Wreg ∪ ∂Wsing.

An example is the wedge W = XΔ × Ω with Z = Ω and a C∞ manifold X with boundary ∂X;
then V = (∂X)Δ × Ω, W = R+ × X × Ω, and V = R+ × ∂X × Ω.

Our spaces may be generalised to the case of distributional sections in a (smooth complex)
vector bundle. In this case we write

Ws,γ(W, F ) and Ws,γ(V, G),

where F and G are the corresponding bundles over W and V, respectively; more details on those
spaces will be given below. Our calculus will be formulated for F = W × C (the trivial bundle
of fibre dimension 1). Concerning G, in general, it is necessary to admit non-trivial bundles,
although in the first part of the paper for simplicity those bundles are assumed to be trivial, too.
The generalisation to the case of non-trivial F and G is easy and left to the reader. For references
in Chapter 4 below, we prepare some notation for general G. First, if G1 is a vector bundle on X∧

we have a straightforward definition of the space Ks,γ(X∧, G1). Since every G1 can be regarded
as the pull back of a bundle G2 over X under the canonical projection X∧ → X we will often
employ the same notation for G1 and G2. Analogously, every bundle G3 over X∧ × R

q is the pull
back of some G2 over X under X∧ × R

q → X; also here we often take the same letters. Now if G
is a bundle on V we can localise it near Vsing to a singular chart to X∧ × R

q. Then Ws,γ(V, G)
is defined as the subspace of all u ∈ Hs

loc(Vreg, G) which are locally near Vsing a pull back of an
element in Ws(Rq,Ks,γ(X∧, G1)) where G1 over X∧ corresponds to the restriction of G to that
singular chart. We will simply write G for all involved bundles G, G1, G2 (this should not cause
confusion).

1.2 Boundary value problems

Let W be a manifold with boundary and edge Z. Let W denote its stretched manifold, and 2W

its double as explained before.

A differential operator A of order μ on Wreg (with smooth coefficients up to ∂Wreg) is said to
be edge-degenerate if it has in the splitting of variables (r, x, z) near Wsing the form

A = r−μ
∑

k+|α|≤μ

akα(r, z)
(
− r

∂

∂r

)k(rDz)α (1.7)

with coefficients akα(r, z) ∈ C∞(R+ × Ω,Diffμ−(k+|α|)(X)). Here X is the base of the model cone
which is a C∞ manifold with boundary ∂X, and Diffν(X) means the Fréchet space of all differential
operators on X of order ν with smooth coefficients up to the boundary.

A (differential) boundary value problem for the operator A in the category of edge-degenerate
operators is formulated as

Au = f in Wreg, Tu = g on ∂Wreg (1.8)
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with a column vector T = t(T1, . . . , TN ) of trace operators of the form

Tju = Bju|∂Wreg , j = 1, . . . , N, (1.9)

where Bj are edge-degenerate differential operators of order μj , as explained before, i.e., in a
neighbourhood of ∂Wreg in 2W near Wsing of the form

Bju = r−μj

∑
k+|β|≤μj

bj,kβ(r, z)
(
− r

∂

∂r

)k(rDz)β ,

with coefficients bj,kβ(r, z) ∈ C∞(R+ × Ω,Diffμj−(k+|β|)(X)) for all k, β and j.

Assume W to be compact. Then A :=
(

A
T

)
induces a continuous operator

A : Ws,γ(W) → Ws−μ,γ−μ(W) (1.10)

for s > max{μj + 1
2 : j = 1, . . . , N}, γ ∈ R, where Ws−μ,γ−μ(W) :=

Ws−μ,γ−μ(W)
⊕

⊕N
j=1Ws−μj− 1

2 ,γ−μj− 1
2 (V)

(in

the non-compact case we have a similar continuity between the ‘comp’ and ‘loc’ versions of edge
Sobolev spaces).

Occasionally, local coordinates on Wreg will be denoted by y with covariables η. Close to ∂Wreg

we then write y = (y′, yn+q) with y′ being tangent and yn+q normal to the boundary; the splitting
of covariables is then η = (η′, ηn+q). Finally, close to r = 0 we have the splitting y = (r, x, z) with
η = (ρ, ξ, ζ) and y′ = (r, x′, z), η′ = (ρ, ξ′, ζ).

Let us introduce the principal symbolic hierarchy of operators (1.10)

σ(A) := (σψ(A), σ∂(A), σ∧(A)). (1.11)

First we have the standard homogeneous principal symbol σψ(A) := σψ(A) ∈ C∞(T ∗
Wreg \ 0).

Using the edge-degeneracy we can form a ‘compressed’ version of σψ(A) near Wsing, defined (with
respect to local coordinates x on X and z on Z) by

σ̃ψ(A)(r, x, z, ρ, ξ, ζ) := rμσψ(A)(r, x, z, r−1ρ, ξ, r−1ζ), (1.12)

which is homogeneous of order μ in (ρ, ξ, ζ) �= 0 and smooth in r up to zero.

The second component σ∂(A) is called the boundary symbol. In future, r
M

will denote the
operator of restriction to the set M . On Wreg near ∂Wreg in the splitting of variables into (r, x, z) ∈
R+×R

n

+×Ω, x = (x′, xn) (with x′ being tangent to ∂X and xn normal to ∂X) and the covariables
(ρ, ξ, ζ), ξ = (ξ′, ξn) we have

σ∂(A)(r, x′, z, ρ, ξ′, ζ) :=
(

σψ(A)(r, x′, 0, z, ρ, ξ′,Dxn
, ζ)

t
(
r{xn=0}σψ(Bj)(r, x′, 0, ρ, ξ′,Dxn

, ζ)j=1,...,N

))
which is an operator family

σ∂(A)(r, x′, z, ρ, ξ′, ζ) : Hs(R+) −→
Hs−μ(R+)

⊕
C

N
(1.13)

parametrised by (r, x′, z, ρ, ξ′, ζ) ∈ T ∗∂Wreg \ 0. Similarly as before near Wsing in the splitting of
variables (r, x, z), x = (x′, xn) (with respect to local coordinates on X near ∂X and z on Z) we
have a compressed version, namely,

σ̃∂(A)(r, x′, z, ρ, ξ′, ζ) := diag
(
rμ, (rμj )j=1,...,N

)
σ∂(A)(r, x′, z, r−1ρ, ξ′, r−1ζ) (1.14)
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(ρ, ξ′, ζ) �= 0, which is smooth up to r = 0.

Finally there is the so called principal edge symbol

σ∧(A)(z, ζ) :=
(

σ∧(A)(z, ζ)
t
(
σ∧(Tj)(z, ζ)

)
j=1,...,N

)
for

σ∧(A)(z, ζ) = r−μ
∑

k+|α|≤μ

akα(0, z)(−r
∂

∂r
)k(rζ)α, (1.15)

σ∧(Tj)(z, ζ) = r
∂X

r−μj

∑
k+|β|≤μj

bj,kβ(0, z)(−r
∂

∂r
)k(rζ)β . (1.16)

The edge symbol σ∧(A) represents a family of continuous operators

σ∧(A)(z, ζ) : Ks,γ(X∧) → Ks−μ,γ−μ(X∧) (1.17)

parametrised by (z, ζ) ∈ T ∗Z \ 0, where Ks−μ,γ−μ(X∧) :=
Ks−μ,γ−μ(X∧)

⊕
⊕N

j=1Ks−μj− 1
2 ,γ−μj− 1

2 ((∂X)∧)
. The ho-

mogeneity of the component of σ∧(A) is expressed in terms of group actions on the respective
spaces

κ
(n)
λ : Ks,γ(X∧) → Ks,γ(X∧), κ

(n−1)
λ : Ks,γ((∂X)∧) → Ks,γ((∂X)∧),

s, γ ∈ R, defined by (κ(k)
λ u)(r, ·) := λ

k+1
2 u(λr, ·) for λ ∈ R+. In fact, we then have

σ∧(A)(z, λζ) = λμκ
(n)
λ σ∧(A)(z, ζ)(κ(n)

λ )−1, σ∧(Tj)(z, λζ) = λμj+
1
2 κ

(n−1)
λ σ∧(Tj)(z, ζ)(κ(n)

λ )−1,

for all λ ∈ R+, j = 1, . . . , N .

Remark 1.2.1. The operator (1.10) is compact if σ(A) = 0.

Definition 1.2.2. The operator A =
(

A
T

)
is said to be (σψ, σ∂)-elliptic in the edge-degenerate

sense if
(i) A is elliptic on Wreg in the standard sense, i.e., σψ(A)(y, η) �= 0 for all (y, η) ∈ T ∗

Wreg \ 0
and σ∂(A)(y′, η′) bijective as a family of maps (1.13) for all (y′, η′) ∈ T ∗∂Wreg \ 0 (and sufficiently
large s);
(ii) A is elliptic in the compressed sense, i.e., in the corresponding splitting of variables close to
Wsing we require σ̃ψ(A)(r, x, z, ρ, ξ, ζ) �= 0 up to r = 0 and σ̃∂(A)(r, x′, z, ρ, ξ′, ζ) bijective, both up
to r = 0 and for non-vanishing covectors (for sufficiently large s).

Theorem 1.2.3. Let A =
(

A
T

)
be (σψ, σ∂)-elliptic in the sense of Definition 1.2.2. Then for

every z ∈ Z there exists a countable set D(z) ⊂ C with finite intersection D(z) ∩ {c ≤ Re w ≤ c′}
for every c ≤ c′, such that (1.17) are Fredholm operators for all ζ �= 0 and all γ ∈ R with

Γn+1
2

∩ D(z) = ∅ (1.18)

(and all sufficiently large s).

A proof of Theorem 1.2.3 is given in [14]. Recall that D(z) is equal to the set of those w ∈ C

such that the subordinate principal conormal symbol

σMσ∧(A)(z, w) :=

⎛⎜⎜⎜⎜⎝
μ∑

k=0

ak0(0, z)wk

r
∂X

t
( μj∑

k=0

bj,k0(0, z)wk
)
j=1,...,N

⎞⎟⎟⎟⎟⎠



1 OPERATORS ON MANIFOLDS WITH EDGES AND BOUNDARY 9

as a family of Fredholm operators

σMσ∧(A)(z, w) : Hs(X) −→
Hs−μ(X)

⊕
⊕N

j=1H
s−μj− 1

2 (∂X)

(for s large) is not bijective (the exceptional set D(z) is just as described before in Theorem 1.2.3).
In the sequel we assume that for some weight γ ∈ R the condition (1.18) is satisfied for all z ∈ Z.

Theorem 1.2.4. Let A =
(

A
T

)
be a (σψ, σ∂)-elliptic operator and γ ∈ R such that the condition

(1.18) holds. Then (1.17) is a family of Fredholm operators.

A proof of Theorem 1.2.4 may be found in [14]. The operator A is globally defined on W by
local expressions, combined with a partition of unity, the coefficients akα(r, z) of (1.7) may assumed
to be independent of r for r > R for some R > 0. A similar property is assumed on the coefficients
bj,kβ(r, z) involved in the boundary operators. Let us set

a(z, ζ) := r−μ
∑

k+|α|≤μ

akα(r, z)
(
− r

∂

∂r

)k(rζ)α

and
bj(z, ζ) := r−μj

∑
k+|β|≤μj

bj,kβ(r, z)
(
− r

∂

∂r

)k(rζ)β .

Then a(z, ζ) : Ks,γ(X∧) → Ks−μ,γ−μ(X∧), r
∂X

bj(z, ζ) : Ks,γ(X∧) → Ks−μj− 1
2 ,γ−μj− 1

2 ((∂X)∧) are
families of continuous operators, C∞ in (z, ζ) ∈ Ω × R

q and they are operator-valued symbols in
the sense of the following general definition.

Definition 1.2.5. (i) Let E and Ẽ be Hilbert spaces with group actions {κδ}δ∈R+ and {κ̃δ}δ∈R+ ,
respectively. Then Sμ(Ω×R

q;E, Ẽ) for μ ∈ R, Ω ⊆ R
p open, denotes the subspace of all a(z, ζ) ∈

C∞(Ω × R
q,L(E, Ẽ)) such that

sup
z∈K,ζ∈Rq

〈ζ〉−μ+|β|‖κ̃−1
〈ζ〉{D

α
z Dβ

ζ a(z, ζ)}κ〈ζ〉‖L(E,Ẽ)

is finite for every α ∈ N
p, β ∈ N

q and arbitrary K � Ω.

(ii) Let S(μ)(Ω × (Rq \ {0});E, Ẽ) be the space of all a(μ)(z, ζ) ∈ C∞(Ω × (Rq \ {0});L(E, Ẽ))
such that

a(μ)(z, δζ) = δμκ̃δa(μ)(z, ζ)κ−1
δ

for all δ ∈ R+, (z, ζ) ∈ Ω × (Rq \ {0})). Then Sμ
cl(Ω × R

q;E, Ẽ) is defined to be the set of all
a(z, ζ) ∈ Sμ(Ω×R

q;E, Ẽ) such that there are elements a(μ−j)(z, ζ) ∈ S(μ−j)(Ω× (Rq \ {0});E, Ẽ)
with a−χ

∑N
j=0 a(μ−j) ∈ Sμ−(N+1)(Ω×R

q;E, Ẽ) for all N ∈ N, where χ(ζ) is any excision function
in R

q.

Pseudo-differential operators with amplitude functions a(z, ζ) of that kind (for Ω ⊆ R
q open)

are given by

Opz(a)u(z) =
∫∫

ei(z−z′)ζa(z, ζ)u(z′)dz′d−ζ, d−ζ = (2π)−qdζ;

occasionally we also write Op(·). For q = 1 we also write opz(·) rather than Op(·) (this will play
a role for z replaced by the cone axis variable r). Pseudo-differential operators in r ∈ R+ will also
occur in connection with the Mellin transform. We then set

opγ
M (f)u(r) :=

∫∫ (r′

r

) 1
2−γ+iρ

f(r,
1
2
− γ + iρ)u(r′)

dr′

r′
d−ρ, (1.19)
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γ ∈ R, for an amplitude function f(r, w) on R+ × Γ 1
2−γ . In the application below f(r, w) takes

values in suitable operator spaces and the argument function is vector-valued. (1.19) is interpreted
as a weighted Mellin pseudo-differential operator (with weight γ.

Proposition 1.2.6. Opz(a) : Ws
comp(z)(Ω, E) → Ws−μ

loc(z)(Ω, Ẽ) is continuous for all s.

Proofs of this result in different generality concerning the space E, Ẽ are given in [30] or [31].
The general case is treated in [35].

Remark 1.2.7. We have

a(z, ζ) ∈ Sμ(Ω × R
q;Ks,γ(X∧),Ks−μ,γ−μ(X∧))

and
r

∂X
bj(z, ζ) ∈ Sμj+

1
2
(
Ω × R

q;Ks,γ(X∧),Ks−μj− 1
2 ,γ−μj− 1

2 ((∂X)∧)
)

for all sufficiently large s and all γ ∈ R.

Since the dimensions p and q in Definition 1.2.5 are independent we also have the symbol
spaces Sμ(Ω× R

q+l;E, Ẽ) with the covariables (ζ, λ), where λ ∈ R
l is interpreted as a parameter.

It is often sufficient to consider the case Ω = R
q, since Ω plays the role of local coordinates on a

manifold. It is then convenient to give the symbol spaces Sμ(Rq × R
q+l;E, Ẽ) a slightly different

meaning compared with Definition 1.2.5 by requiring

sup
(ζ,λ)∈Rq+l

〈ζ, λ〉−μ+|β|‖κ̃−1
〈ζ,λ〉{D

α
z Dβ

ζ,λa(z, ζ, λ)}κ〈ζ,λ〉‖L(E,Ẽ) < ∞

for all α ∈ N
q, β ∈ N

q+l.

Remark 1.2.8. For Lμ(Rq;E, Ẽ; Rl) := {Op(a)(λ) : a ∈ Sμ(Rq × R
q+l;E, Ẽ)}, we then have a

bijection
Op(·)(λ) : Sμ(Rq × R

q+l;E, Ẽ) → Lμ(Rq;E, Ẽ; Rl) (1.20)

and Op(a)(λ)Op(b)(λ) = Op(a#b)(λ) for every two symbols a and b of order μ and ν, respectively
(where the spaces in the middle are assumed to fit together), with a unique symbol a#b or order
μ + ν (the Leibniz product between a and b), where

a#b = ab modulo a symbol of order μ + ν − 1. (1.21)

Let S−∞(Rq × R
q+l;E, Ẽ) :=

⋂
μ∈R

Sμ(Rq × R
q+l;E, Ẽ). Then the bijection (1.20) holds

including μ = −∞ (where L−∞(. . . ) :=
⋂

μ∈R
Lμ(. . . )).

1.3 Ellipticity with edge conditions

Ellipticity of an operator A on a manifold W with edge Z and boundary should mean the bijectivity
of all components of the principal symbolic hierarchy (1.11). The condition for σψ(A) and σ∂(A)
is given in Definition 1.2.2. However this only entails the Fredholm property of σ∧(A) in the sense
of Theorem 1.2.3. For the bijectivity of σ∧(A) we have to enlarge the operator A to a block matrix

A :=
(
A K
T Q

)
:
Ws,γ(W)

⊕
Hs(Z, J−)

−→
Ws−μ,γ−μ(W)

⊕
Hs−μ(Z, J+)

(1.22)

by additional edge conditions. Here T has the meaning of a trace operator, K of a potential
operator with respect to the edge, while Q is a classical pseudo-differential operator acting between
distributional sections of suitable (smooth complex) vector bundles J− and J+ over Z.
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In order to formulate the extra operators we enlarge the Fredholm family (1.17) to a family of
isomorphisms

σ∧(A)(z, ζ) :=
(

σ∧(A) σ∧(K)
σ∧(T ) σ∧(Q)

)
(z, ζ) :

Ks,γ(X∧)
⊕

J−,z

−→
Ks−μ,γ−μ(X∧)

⊕
J+,z

(1.23)

by additional finite-dimensional entries σ∧(K), σ∧(T ) and σ∧(Q). Here J±,z are the fibres of J±
over the point z ∈ Z. We may construct (1.23) first for (z, ζ) ∈ S∗Z (the unit cosphere bundle
induced by T ∗Z) and then extend the operators by ‘κδ-homogeneity’ to all (z, ζ) ∈ T ∗Z \ 0. The
homogeneities of the entries are determined by the spaces in the first components of (1.23) and
the chosen order shift in the spaces on Z in the formula (1.22). For instance, we require

σ∧(T )(z, δζ) = δμσ∧(T )(z, ζ)(κ(n)
δ )−1

for δ ∈ R+, (z, ζ) ∈ T ∗Z \ 0, or, for the component of σ∧(K)(z, ζ) for K := (K0,K1, . . . ,KN )

σ∧(K0)(z, δζ) = δμκ
(n)
δ σ∧(K0)(z, ζ), σ∧(Kj)(z, δζ) = δμj+

1
2 κ

(n−1)
δ σ∧(Kj)(z, ζ),

j = 1, . . . , N.

Recall that the construction of the additional entries (first for (z, ζ) ∈ S∗Z) is close to a
corresponding idea in boundary value problems, cf. [5]. The first step is to find the potential part
σ∧(K) such that the first row of (1.23) is surjective for all (z, ζ) ∈ S∗Z. In this construction,
if we do not take care of a minimal choice of the fibre dimension j− of J−, we can simply take
J− := Z × C

j− (as is well known there always exists a j− such that
(
σ∧(A) σ∧(K)

)
is surjective

for all (z, ζ) ∈ S∗Z). The operators (1.17) belong to the cone algebra of boundary value problems
on the infinite stretched cone, cf. [26], and they are exit elliptic for r → ∞, cf. [14]. This admits
to choose σ∧(K)(z, ζ) in such a way that

σ∧(K)(z, ζ) : J−,z −→
Sγ−μ+ε(X∧)

⊕
⊕N

j=0Sγ−μj− 1
2+ε((∂X)∧)

for some ε > 0 (we may even replace the spaces in the latter relation by C∞
0 (X∧) and C∞

0 ((∂X)∧),
respectively, because these spaces are dense in the weighted Sobolev spaces).

In order to complete the first row of (1.23) to an isomorphism, the second row necessarily has
to map ker

(
σ∧(A) σ∧(K)

)
(z, ζ) isomorphically to J+,z. This can be organised by a projection

of
Ks,γ(X∧)

⊕
J−,z

to that kernel, composed with an isomorphism to J+,z. Recall from the general

(‘elementary’) K-theory, cf. [3], that such constructions have a functional analytic background. If
M is a compact topological space (say, arcwise connected), H, H̃ Hilbert spaces, F(H, H̃) the set
of all Fredholm operators H → H̃ in the topology induced by L(H, H̃), and a ∈ C(M,F(H, H̃)) a
continuous family, there always exists a continuous family of isomorphisms(

a(m) k(m)
t(m) q(m)

)
:

H
⊕

G−,m

→
H̃
⊕

G+,m

for suitable (continuous, complex) vector bundles G± over M . Then the pair (G+, G−) represents
an element [G+] − [G−] in K(M), the K-group on M , called the index of the operator family a,
written

ind Ma ∈ K(M).

As is known, this element is independent of the choice of G± and the families k, t, q. In the
present case we have M = S∗Z, H = Ks,γ(X∧), H̃ = Ks−μ,γ−μ(X∧) for any fixed (sufficiently
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large) s, and we may talk about C∞ vector bundles on the respective manifold. Moreover, we
want to interpret G± as pull backs of bundles J± on Z with respect to the canonical projection
π : S∗Z → Z.

Remark 1.3.1. The property
ind

S∗Z
σ∧(A) ∈ π∗K(Z) (1.24)

is a necessary and sufficient condition for the existence of operators (1.22) which have (1.23) as
the homogeneous principal edge symbol. It may happen that (1.24) is violated. The property (1.24)
is a topological obstruction for the existence of (1.22) in the edge calculus.

Similar phenomena are known in the theory of elliptic boundary value problems, cf. Atiyah,
Bott [2], or [5]. Recall that boundary value problems have much in common with edge prob-
lems, cf. [33, 34]. Let us also note that when the obstruction (1.24) is non-vanishing, there are
pseudo-differential (boundary or edge) calculi with global projection conditions, cf. [32, 34], which
generalise those of Atiyah, Patodi and Singer [4].

Let us make a few further remarks about the nature of the edge symbols of the additional
operators K, T , Q. As noted before the operator Q is a classical pseudo-differential operator on
Z. Concerning σ∧(T )(z, ζ) and σ∧(K)(z, ζ) which can be generated by the above construction in
local coordinates (z, ζ) ∈ T ∗Ω \ 0, Ω ⊆ R

q open, we pass to

t(z, ζ) := χ(ζ)σ∧(T )(z, ζ), k(z, ζ) := χ(ζ)σ∧(K)(z, ζ)

for any excision function χ(ζ) in R
q. This gives us elements

t(z, ζ) ∈ Sμ
cl(Ω × R

q;Ks,γ(X∧), Cj+)

and
k0(z, ζ) ∈ Sμ

cl(Ω × R
q; Cj− ,Ks−μ,γ−μ(X∧)),

kj(z, ζ) ∈ S
μj+

1
2

cl (Ω × R
q; Cj− ,Ks−μj− 1

2 ,γ−μj− 1
2 ((∂X)∧)),

j = 1, . . . , N , cf. Definition 1.2.5 (ii). Locally over Ω we then form the pseudo-differential operators
Opz(t)ω(r) and ω(r)Opz(kj), j = 0, . . . , N , for some cut-off function ω(r). Then the global
operators T and Kj are defined as finite sums of operators of the kind

ϕ′ Opz(t)ψ
′ω, and ωϕ′ Opz(kj)ψ′,

(of course, combined with pull backs to the manifold) where ϕ′ is coming from a partition of unity
on Z, and ψ′ is a C∞

0 function in a corresponding coordinate neighbourhood that is equal to 1 on
suppϕ′. This is an invariant construction globally on our manifold with boundary and edge Z,
including the transition behaviour of the bundles J±. Applying Proposition 1.2.6 we obtain the
continuity of the operators between the weighted edge spaces in (1.22).

Theorem 1.3.2. The topological obstruction for existence of elliptic edge conditions is independent
of the choice of the weight γ for which (1.17) is a Fredholm family.

Proof. Let us give a proof for the situation of elliptic operators on a manifold W with edge Z and
without boundary. It will then become clear how to argue in the case of boundary value problems.
By assumption our elliptic operator A on W is edge-degenerate near Z in stretched coordinates
(r, x, z) ∈ R+ × X × Ω, Ω ⊆ R

q, cf. the formula (1.7). In the present case the base X of the cone
is closed and compact. The principal edge symbol has the form

σ∧(A)(z, ζ) = r−μ
∑

k+|α|≤μ

akα(0, z)
(
−r

∂

∂r

)k(rζ)α. (1.25)
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Assume that σ∧(A) induces families of Fredholm operators

σ∧(A)γi
(z, ζ) : Ks,γi(X∧) → Ks−μ,γi−μ(X∧),

for different weights γi ∈ R, i = 0, 1. We then have index elements ind
S∗Z

σ∧(A)γi
∈ K(S∗Z),

i = 0, 1. We will show

ind
S∗Z

σ∧(A)γ0 ∈ π∗K(Z) ⇔ ind
S∗Z

σ∧(A)γ1 ∈ π∗K(Z). (1.26)

Choose cut-off functions ω(r), ω0(r), ω1(r) such that ω0(r) ≡ 1 on suppω, ω ≡ 1 on suppω1, and
write

σ∧(A)γi
(z, ζ) = r−μω(r|ζ|) opγi−n

2
M (h)(z, ζ)ω0(r|ζ|) + r−μ(1 − ω(r|ζ|))a(z, ζ)(1 − ω1(r|ζ|))

where h(r, z, w, ζ) :=
∑

k+|α|≤μ akα(0, z)wk(rζ)α and a(z, ζ) := σ∧(A)(z, ζ) (the latter notation is
justified since a(z, ζ) is multiplied by localisations far from r = 0 such that there is no relation
to the weights at 0). Choose a strictly positive function k ∈ C∞(R+) such that k(r) = r for
0 < r < c0, k(r) ≡ 1 for c1 < r, for certain 0 < c0 < c1. In particular, fix c0 in such a way that
ω ≡ 1, ω0 ≡ 1 for all 0 < r ≤ c0. Setting

a1(z, ζ) := kγ0−γ1σ∧(A)γ1(z, ζ)k−γ0+γ1 : Ks,γ0(X∧) → Ks−μ,γ0−μ(X∧);

we obtain ind
S∗Z

σ∧(A)γ1 = ind
S∗Z

a1. Moreover, let a0(z, ζ) = σ∧(A)γ0(z, ζ). We have (writing
from now on ω = ω(r|ζ|), etc.)

a1(z, ζ) = r−μωkγ0−γ1 opγ1−n
2

M (h)(z, ζ)k−γ0+γ1ω0 + (1 − ω)kγ0+γ1a(z, ζ)k−γ0+γ1(1 − ω1).

Let us write h(r, z, w, ζ) = f(z, w) + g(r, z, w, ζ) for f(z, w) =
∑μ

k=0 ak0(0, z)wk, g(r, z, w, ζ) =∑
k+|α|≤μ

|α|>0
akα(0, z)wk(rζ)α. Using the identity

ωkγ0−γ1 opγ1−n
2

M (f)(z)k−γ0+γ1ω0 = ω opγ0−n
2

M (T γ0−γ1f)(z)ω0

(since k(r) = r on the support of ω and ω0) we obtain

a1(z, ζ) = r−μω opγ0−n
2

M (T γ0−γ1f)(z)ω0 + c1(z, ζ) + (1 − ω)kγ0+γ1a(z, ζ)k−γ0+γ1(1 − ω1)

for c1(z, ζ) := r−μω opγ0−n
2

M (T γ0−γ1g)(z, ζ)ω0. Let us also reformulate a0(z, ζ) as

a0(z, ζ) = r−μω opγ0−n
2

M (f)(z)ω0 + c0(z, ζ) + (1 − ω)a(z, ζ)(1 − ω1)

for c0(z, ζ) := r−μω opγ0−n
2

M (g)(z, ζ)ω0. The operator families ci(z, ζ) are compact operator-valued;
so they do not affect the index elements and may be ignored. Moreover, the difference

(1 − ω){kγ0+γ1a(z, ζ)k−γ0+γ1 − a(z, ζ)}(1 − ω1)

is also compact operator-valued; so it is admitted to compare the index elements of

p1(z, ζ) := r−μω opγ0−n
2

M (T γ0−γ1f)(z)ω0 + ψa(z, ζ)ψ1,

p0(z, ζ) := r−μω opγ0−n
2

M (f)(z)ω0 + ψa(z, ζ)ψ1

for ψ := 1 − ω, ψ1 := 1 − ω1. Set for abbreviation

opM (f0)(z) := opγ0−n
2

M (f)(z), opM (f1)(z) := opγ0−n
2

M (T γ0−γ1f)(z).
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Then we have

p0(z, ζ) = r−μω opM (f0)(z)ω0 + ψa(z, ζ)ψ1, p1(z, ζ) = r−μω opM (f1)(z)ω0 + ψa(z, ζ)ψ1.

Let a−1(z, ζ) denote a parametrix of a(z, ζ) on R+ × X; then

ψa−1(z, ζ)ψ1ψa(z, ζ)ψ1 ∼ ψ2 (1.27)

where ‘∼’ means equality modulo a family of compact operators between the respective spaces.
Then a parametrix of p1(z, ζ) has the form

p−1
1 (z, ζ) = ω opM (f−1

1 )(z)rμω0 + ψa−1(z, ζ)ψ1

where f−1
1 (z, w) is the usual inverse of f1(z, w) on the weight line Γn+1

2 −γ0
. We obtain

p−1
1 p0 = {ω opM (f−1

1 )rμω0 + ψa−1ψ1}{r−μω opM (f0)ω0 + ψaψ1}
= ω opM (f−1

1 )ω opM (f0)ω0 + ψa−1ψ1ψaψ1 (1.28)

+ ω opM (f−1
1 )rμω0ψaψ1 + ψa−1ψ1r

−μω opM (f0)ω0. (1.29)

The second summand of (1.28) is characterised in (1.27). For the first summand we write

ω opM (f−1
1 )ω opM (f0)ω0 = ω2 opM (f−1

1 f0)ω0 + d(z)

for a family d(z) of continuous operators (not necessarily compact). Writing f−1
1 f0 = 1−(1−f−1

1 f0)
we obtain ω2 opM (f−1

1 )ω opM (f0)ω0 = ω2 − ω2 opM (1 − f−1
1 f0)ω0 which gives us

ω opM (f−1
1 )ω opM (f0)ω0 = ω2 + d1

for another family d1(z) of continuous operators.

For the first term in (1.29) we write

ω opM (f−1
1 )rμω0ψaψ1 = ωω̃ opM (f−1

1 )rμω0ψaψ1 + ω(1 − ω̃) opM (f−1
1 )rμω0ψaψ1 (1.30)

with a cut-off function ω̃ such that ω̃ ≡ 0 on suppω0ψ (noting that ω0ψ ∈ C∞
0 (R+)). The operators

ωω̃ opM (f−1
1 )rμω0ψ : Ks−μ,γ0−μ(X∧) → Ks,γ0(X∧)

are compact since ω̃ψ vanishes on suppω0ψ; in fact, as is known from the cone calculus, cf. [31],
the operator is of Green type. Thus the first summand on the right of (1.30) is compact. The
second summand vanishes in a neighbourhood of 0. Let us write ψ1 = ψ1

˜̃ω+ψ1(1− ˜̃ω) for a cut-off
function ˜̃ω such that the support of ω0ψ and 1− ˜̃ω are disjoint. Then the operators ω0ψaψ1(1− ˜̃ω)
are compact as is known from the calculus on manifolds with conical exit to infinity, here X∧.
Then the second summand is equal to

ω(1 − ω̃) opM (f−1
1 )rμω0ψaψ1

˜̃ω (1.31)

modulo compact operators. Now (1.31) is localised far from r = 0 and r = ∞ and has the structure
αPβQγ for α := ω(1−ω̃), β := ω0ψ, γ := ψ1

˜̃ω ∈ C∞
0 (R+), and elliptic operators P := opM (f−1

1 )rμ,
Q := a such that P is a parametrix of Q. In such a situation we have αPβQγ ∼ αβγ. In other
words, (1.31)∼ ω(1 − ω̃)ω0ψψ1

˜̃ω = ωψ, i.e.,

ω opM (f−1
1 )rμω0ψaψ1 ∼ ωψ.

In a similar manner we can prove

ψa−1ψ1r
−μω opM (f0)ω0 ∼ ωψ.
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This gives us altogether
p−1
1 p0 ∼ ω2 + 2ωψ + ψ2 + d1 = 1 + d1.

For the index elements we obtain

ind
S∗Z

(p−1
1 p0) = ind

S∗Z
p−1
1 + ind

S∗Z
p0 = ind

S∗Z
(1 + d1). (1.32)

By hypotheses we have ind
S∗Z

p0 ∈ π∗K(Z); moreover, ind
S∗Z

(1 + d1) ∈ π∗K(Z), since 1 + d1 is
independent of ζ. From (1.32) it follows that ind

S∗Z
p−1
1 ∈ π∗K(Z). By virtue of

ind
S∗Z

(p−1
1 p1) = ind

S∗Z
p−1
1 + ind

S∗Z
p1 = ind

S∗Z
1 ∈ π∗K(Z)

we finally obtain ind
S∗Z

p1 ∈ π∗K(Z). Summing up we proved the relation (1.26).

In the case of an edge symbol

σ∧(A)(z, ζ) : Ks,γ(X∧) → Ks−μ,γ−μ(X∧)

associated with an elliptic boundary value problem we can argue in the same manner, because all
conclusions in terms of Mellin calculus near zero or calculus near a conical exit to infinity have
direct analogues in the case of boundary value problems, cf. [27].

Definition 1.3.3. The operator (1.22) is called elliptic in the calculus of boundary value problems
on the manifold W with edge if the three components of (1.11) are bijective (i.e., the first two in
the sense of Definition 1.2.2 and the third as a family of isomorphisms (1.23) for all (z, ζ) ∈ T ∗Z \0
and any sufficiently large s).

The bijectivity of (1.23) is an analogue of the Shapiro-Lopatinskij condition in standard bound-
ary value problems (it is just the bijectivity of the boundary symbol σ∂(·)).

Remark 1.3.4. Given a (σψ, σ∂)-elliptic operator A, it may be very difficult to compute (1.24)
and (in order to construct (1.23)) the dimensions of kernels and cokernels. It belongs just to the
program of the present paper to analyse a sufficient large class of examples where this information
can be derived. Also the condition ind

S∗Z
σ∧(A) ∈ π∗K(Z) is far from being trivial. Our examples

will also satisfy this condition.

Theorem 1.3.5. Let A be elliptic in the sense of Definition 1.3.3. Then (1.22) is a Fredholm
operator for every sufficiently large s.

A proof of this result may be found in [14]. We shall outline a few details in Section 4.3,
also in connection with the existence of corresponding pseudo-differential parametrices in the edge
calculus.

2 Model problems in the half-space

2.1 Edge characterisations of Sobolev spaces

Our manifold M , � = dimM , with boundary ∂M and edge Z ⊂ ∂M , q = dimZ, will locally near
a point z ∈ Z be described by the half-space

R
�

+ = {y = (y1, . . . , y�) ∈ R
� : y� ≥ 0}

such that ∂M corresponds to R
�−1 and Z to the hyperplane x1 = · · · = xd = 0 for d := � − q.

Let us also write x̃ := (y1, . . . , yd) = (x̃1, . . . , x̃d), x̃′ = (x̃1, . . . , x̃d−1), and z := (yd+1, . . . , y�) =
(z1, . . . , zq). The corresponding covariables will be denoted by η̃, η̃′, and ζ, respectively.
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We form the following operator-valued symbols

t(ζ, λ) := t
(
tα(ζ, λ) : |α| < s − d

2
)

and
k(ζ, λ) :=

(
kα(ζ, λ) : |α| < s − d

2
)

for every s > d
2 , s − d

2 �∈ N, where λ ∈ R
l is a parameter and

tα(ζ, λ) : Hs(Rd
+) → C, kα(ζ, λ) : C → H∞(Rd

+)

are defined as follows:

tα(ζ, λ)u := [ζ, λ]−
d
2−|α|(Dα

x̃ u)(0), kα(ζ, λ)c := [ζ, λ]
d
2

1
α!

([ζ, λ]x̃)αω+([ζ, λ]x̃)

for any fixed ω ∈ C∞
0 (Rd) which is equal to 1 in a neighbourhood of x̃ = 0, and ω+ := ω|Rd

+
.

Setting

ι(s, d) := �{α : α ∈ N
d, |α| < s − d

2
},

we obtain operator-valued symbols (with constant coefficients)

t(ζ, λ) ∈ S0
cl(R

q+l;Hs(Rd
+), Cι(s,d)), k(ζ, λ) ∈ S0

cl(R
q+l; Cι(s,d),Hs(Rd

+)). (2.1)

Observe that we even have k(ζ, λ) ∈ S0
cl(R

q+l; Cι(s,d),S(R
d

+)) for S(R
d

+) := S(Rd)|Rd
+
. The point-

wise composition gives us
t(ζ, λ)k(ζ, λ) = idCι(s,d)

for all (ζ, λ) ∈ R
d+l. Moreover,

p(ζ, λ) := id − k(ζ, λ)t(ζ, λ) ∈ S0
cl(R

q+l;Hs(Rd
+),Hs

0(Rd
+)) (2.2)

takes values in the space of projections to the space

Hs
0(Rd

+) := {u ∈ Hs(Rd
+) : (Dα

x̃ u)(0) = 0 for all |α| < s − d

2
}. (2.3)

Observe that, when we endow Hs
0(Rd

+) with the group action κδ : u(x̃) → δd/2u(δx̃), δ ∈ R+, we
have

Ws(Rq,Hs
0(Rd

+)) = {f(x̃, z) ∈ Hs(Rd+q
+ ) : (Dα

x̃ f)(0, z) = 0 for all |α| < s − d

2
}.

In addition, using polar coordinates x̃ → (r, φ), R
d

+ \ {0} → (Sd−1
+ )∧ = R+ × Sd−1

+ for Sd−1
+ :=

R
d

+ ∩ Sd−1 we have the indentifications

Hs
0(R

d

+) = Ks,s((Sd−1
+ )∧), Ws,s(Rq,Hs

0(Rd
+)) = Ws,s((Sd−1

+ )∧ × R
q)

for all s > d
2 , s − d

2 �∈ N. Incidentally (if we nevertheless have in mind the representation of
operators in x̃ rather than (r, φ)) it will be convenient to write

Ks,s((Sd−1
+ )∧) =: Ks,s(Rd

+ \ {0}), Ws,s((Sd−1
+ )∧ × R

q) =: Ws,s((Rd
+ \ {0}) × R

q).

By construction (
p(ζ, λ)
t(ζ, λ)

)
: Hs(Rd

+) →
Hs

0(Rd
+)

⊕
C

ι(s,d)
(2.4)
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is a family of isomorphisms for all s > d
2 , s − d

2 �∈ N, (ζ, λ) ∈ R
q+l, and (2.4) belongs to

S0
cl

⎛⎝R
q+l;Hs(Rd

+),
Hs

0(Rd
+)

⊕
C

ι(s,d)

⎞⎠ . (2.5)

Then for
P (λ) := Opz(p)(λ), T (λ) := Opz(t)(λ),

the operators (
P (λ)
T (λ)

)
: Hs(Rd+q

+ ) →
Ws,s((Rd

+ \ {0}) × R
q)

⊕
Hs(Rq, Cι(s,d))

define a family of isomorphisms, and we have(
P (λ)
T (λ)

)−1

= (E K(λ))

where E : Ws,s((Rd
+ \ {0}) × R

q) → Hs(Rd+q
+ ) is the canonical embedding and K(λ) = Op(k)(λ).

This is a consequence of (2.4) and (2.5).

In a similar manner, for s > d−1
2 , s − d−1

2 �∈ N, we obtain isomorphisms(
P ′(λ)
T ′(λ)

)
: Hs(Rd+q−1) →

Ws,s((Rd−1 \ {0}) × R
q)

⊕
Hs(Rq, Cι(s,d−1))

with the inverse (E′ K ′(λ)), where the notation is of analogous meaning as before for the half-
space case (in the expression for K ′(λ) we employ a function ω′ ∈ C∞

0 (Rd−1) which is equal to 1
near the origin). If necessary we write the smoothness as subscript, e.g., Ps(λ), Ts(λ), etc. Observe
that

ker Ts(λ) = EsWs,s((Rd
+ \ {0}) × R

q) for s >
d

2
, s − d

2
�∈ N, (2.6)

and similarly,

ker T ′
s− 1

2
(λ) = E′

s− 1
2
Ws− 1

2 ,s− 1
2 ((Rd−1 \ {0}) × R

q) for s >
d

2
, s − d

2
�∈ N (2.7)

for all λ ∈ R
l.

2.2 Examples for ellipticity with additional edge conditions

We consider the Dirichlet problem for the Laplace operator Δ in R
d+q
+ which represents a continuous

operator

A :=
(

Δ
D

)
: Hs(Rd+q

+ ) →
Hs−2(Rd+q

+ )
⊕

Hs−1/2(Rd+q−1)
(2.8)

for any fixed choice of s > 3
2 (in order that s − 2 > − 1

2 ). To illustrate the nature of additional
edge conditions we reformulate (2.8) into an operator

As :
Ws,s((Rd

+ \ {0}) × R
q)

⊕
Hs(Rq, Cι(s,d))

−→

Ws−2,s−2((Rd
+ \ {0}) × R

q)
⊕

Ws−1/2,s−1/2((Rd−1 \ {0}) × R
q)

⊕
Hs−2(Rq, Cι(s−2,d))

⊕
Hs−1/2(Rq, Cι(s−1/2,d−1)).

(2.9)
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First of all, observe that A itself induces (by restriction) a continuous operator

As : Ws,s((Rd
+ \ {0}) × R

q) →
Ws−2,s−2((Rd

+ \ {0}) × R
q)

⊕
Ws−1/2,s−1/2((Rd−1

+ \ {0}) × R
q).

(2.10)

We now apply the isomorphisms from the preceding section for an arbitrary fixed λ (which we
omit for the moment). In this way, composing (2.8) from the right with the operator (Es Ks) for
s > d/2, s − d/2 �∈ N, we obtain

(
ΔEs ΔKs

DEs DKs

)
:
Ws,s((Rd

+ \ {0}) × R
q)

⊕
Hs(Rq, Cι(s,d))

−→
Hs−2(Rd+q

+ )
⊕

Hs−1/2(Rd+q−1).

Then we pass to the composition⎛⎜⎜⎝
Ps−2 0

0 P ′
s−1/2

Ts−2 0
0 T ′

s−1/2

⎞⎟⎟⎠ (
ΔEs ΔKs

DEs DKs

)
=

⎛⎜⎜⎝
Ps−2ΔEs Ps−2ΔKs

P ′
s−1/2DEs P ′

s−1/2DKs

Ts−2ΔEs Ts−2ΔKs

T ′
s−1/2DEs T ′

s−1/2DKs

⎞⎟⎟⎠ =: As, (2.11)

for s − 2 > d
2 , s − 2 − d

2 �∈ N and s > d
2 , s − d

2 �∈ N.

Note that the operator (2.10) just coincides with the 2×1 upper left corner of As. Let us write,
for abbreviation,

As =
(
As Ks

T s Qs

)
(2.12)

for
Ks := t(Ps−2ΔKs P ′

s−1/2DKs), T s := t(Ts−2ΔEs T ′
s−1/2DEs) (2.13)

and Qs = t(Ts−2ΔKs T ′
s−1/2DKs).

Remark 2.2.1. We have T s ≡ 0. In fact, Δ and D induces maps

Δ : EsWs,s((Rd
+ \ {0}) × R

q) → Es−2Ws−2,s−2((Rd
+ \ {0}) × R

q)

and
D : EsWs,s((Rd

+ \ {0}) × R
q) → E′

s− 1
2
Ws− 1

2 ,s− 1
2 ((Rd−1 \ {0}) × R

q),

respectively. It suffices then to apply the relations (2.6) and (2.7).

We want to interpret the operator As as an edge-boundary value problem on the (stretched)
manifold with edge and boundary

(R+ × Sd−1
+ ) × R

q � (r, φ, z);

in this interpretation R
q is the edge, and the (stretched) boundary is equal to R

q × Sd−1
+ which

has itself a boundary R
q × ∂Sd−1

+ = R
q × Sd−2. We first rewrite (2.8) in polar coordinates with

respect to the variables x̃ ∈ R
d
+ \ {0}, x̃ �→ (r, φ). For purposes below we write Δ more generally

as
A = r−2

∑
j+|α|≤2

ajα(r, z)(−r
∂

∂r
)j(rDz)α

with coefficients ajα(r, z) ∈ C∞(Rq × R+,Diff2−(j+|α|)(Sd−1
+ )) (which is the form of an arbitrary

differential operator A of order 2 with smooth coefficients in polar coordinates).
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In the present case for the Laplacian the coefficients ajα(r, z) are independent of r, z. The
function

a(z, ζ) := r−2
∑

j+|α|≤2

ajα(r, z)(−r
∂

∂r
)j(rζ)α

represents an element of S2(Rq × R
q;E, Ẽ) for

E = Ks,γ((Sd−1
+ )∧), Ẽ = Ks−2,γ−2((Sd−1

+ )∧).

Then we have A = Opz(a). Moreover, the operator D of restriction to the boundary has the
interpretation of D = Op(a′) for

a′ : Ks,γ((Sd−1
+ )∧) → Ks−1/2,γ−1/2((Sd−2)∧),

a′u := u|(Sd−2)∧ , which is also an operator-valued symbol (although it is independent of variables
and covariables) of order 1

2 , namely, a′ ∈ S1/2(Rq
ζ ;E, C). Applying this for s = γ we obtain

altogether As = Opz

(
a
a′

)
=

(
Op(a)
Op(a′)

)
which is just the explanation of (2.10). Clearly in a

similar manner we can generalise this to an operator A(γ) by interpreting a and a′ as operator-
valued symbols with the weight γ in place of s; this yields a continuity similar to (2.10) between
the Sobolev spaces with arbitrary weight γ ∈ R.

Let us also consider the homogeneous principal edge symbol of (2.10) which is a column vector

σ∧(As)(z, ζ) : Ks,s((Sd−1
+ )∧) →

Ks−2,s−2((Sd−1
+ )∧)

⊕
Ks−1/2,s−1/2((Sd−2)∧)

(2.14)

for ζ �= 0. The second entry of (2.14) is the operator of restriction to the boundary, the first one
has the form

r−2
∑

j+|α|≤2

ajα(0, z)(−r
∂

∂r
)j(rζ)α

(recall that in our example there is no dependence on z; so we omit it again).

For every fixed ζ �= 0 the operator (2.14) represents a Dirichlet problem for the operator

σ∧(Δ)(ζ) := −|ζ|2 +
d∑

j=1

∂2

∂x̃2
j

: Hs(Rd
+) → Hs−2(Rd

+)

with respect to the boundary R
d−1.

Theorem 2.2.2. For every ζ �= 0 the operator (2.14) is Fredholm, and we have

indσ∧(As) = ι(s − 2, d) + ι(s − 1
2
, d − 1) − ι(s, d)

for every s > 3
2 , s − 2 > d

2 , s − 2 − d
2 �∈ N, s > d

2 , s − d
2 �∈ N.

Proof. The construction which produced the operator (2.9) from (2.8) can be carried out on the
level of ζ-depending operator families

σ∧(A)(ζ) :=
(

σ∧(Δ)(ζ)
D

)
: Hs(Rd

+) →
Hs−2(Rd

+)
⊕

Hs−1/2(Rd−1)
(2.15)
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under the same condition on s ∈ R as before (and D in the meaning of the operator of restriction
to x̃ = 0). Instead of Ks, Ps−2, etc., we take the operator families

σ∧(Ks)(ζ) : c →
(
|ζ|d/2 1

α!
(|ζ|x̃)αω+(|ζ|x̃)cα

)
|α|<s−d/2

for c = (cα)|α|<s−d/2 ∈ C
ι(s,d), for

σ∧(Ps−2)(ζ) = id − σ∧(Ks−2)(ζ)σ∧(Ts−2)(ζ),

σ∧(Ts−2)(ζ) : u →
(
|ζ|−d/2−|α|(Dα

x̃ u)(0)
)
|α|<s−2−d/2

and
σ∧(P ′

s−1/2)(ζ) := id − σ∧(K ′
s−1/2)(ζ)σ∧(T ′

s−1/2)(ζ)

with σ∧(K ′
s−1/2)(ζ) and σ∧(T ′

s−1/2)(ζ) being defined in an analogous manner as the expressions
before, now for d − 1 instead of d.

Now a similar composition as (2.11) gives us an operator family

σ∧(As)(ζ) :=
(

σ∧(As) σ∧(Ks)
σ∧(T s) σ∧(Qs)

)
(ζ) (2.16)

for σ∧(Ks) = t(σ∧(Ps−2)σ∧(Δ)σ∧(Ks) σ∧(P ′
s−1/2)σ∧(D)σ∧(Ks)), etc., cf. the formulas (2.12) and

(2.13),

σ∧(As)(ζ) :
Ks,s(Rd

+ \ {0})
⊕

C
ι(s,d)

−→

Ks−2,s−2(Rd
+ \ {0})

⊕
Ks−1/2,s−2/2(Rd−1 \ {0})

⊕
C

ι(s−2,d)

⊕
C

ι(s−1/2,d−1)

. (2.17)

We will show, cf. Lemma 2.2.3 below, that (2.15) is a family of isomorphisms. Then, since the
factors in the composition are isomorphisms, also (2.17) consists of isomorphisms. This implies
that the upper left corner of (2.16) is a family of Fredholm operators, and the index is just the
difference of the dimensions in the finite-dimensional components of (2.17).

Lemma 2.2.3. For every ζ �= 0 the operators (2.15) are isomorphisms for all s > 3
2 .

Proof. The half-space R
d
+ may be regarded as a manifold with exit to infinity and boundary. Let

us set Aζ := σ∧(A)(ζ), cf. the formula (2.15). The ellipticity of boundary value problems in such
a situation is determined by a principal symbolic hierarchy

(σψ(Aζ), σe(Aζ), σψ,e(Aζ);σ∂(Aζ), σe′(Aζ), σ∂,e′(Aζ)), (2.18)

where σψ(Aζ) = −|ξ̃|2, σe(Aζ) = −|ζ|2 − |ξ̃|2, σψ,e(Aζ) = −|ξ̃|2, and σ∂(Aζ)(ξ̃′) = σ∂(Aζ)(ξ̃′) =
−|ξ̃′|2 + ∂2

∂x̃2
d
,

σe′(Aζ)(ζ, ξ̃′) = −|ζ|2 − |ξ̃′|2 +
∂2

∂x̃2
d

: Hs(R+) →
Hs−2(R+)

⊕
C

,

and σ∂,e′(Aζ)(ξ̃′) = σ∂(Aζ)(ξ̃′). Ellipticity means that σψ(Aζ) �= 0 on R
d

+× (Rd \{0}), σe(Aζ) �= 0

on (R
d

+ \ {0}) × R
d, σψ,e(Aζ) �= 0 on (R

d

+ \ {0}) × (Rd \ {0}), and bijectivity of σ∂(Aζ) on
R

d−1 × (Rd−1 \{0}), σe′(Aζ) on (Rd−1 \{0})×R
d−1, and σ∂,e′(Aζ) on (Rd−1 \{0})× (Rd−1 \{0}).

Now for ζ �= 0 we have Aζ = Opx̃′(σ∂,e′(Aζ)(ξ̃′)) and A−1
ζ = Opx̃′(σ−1

∂,e′(Aζ)(ξ̃′)).
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Theorem 2.2.4. The operator As, given by (2.9) is elliptic in the edge calculus when s satisfies
the conditions of Theorem 2.2.2.

We shall prove this theorem in more general form below, cf. Theorem 2.3.2.

2.3 The general case

Let A =
∑

|α|≤2m

aα(y)Dα
y be an elliptic differential operator in R

�

+ with smooth coefficients aα ∈

C∞(R
�

+) that are assumed to be independent of y for large |y|. Consider an elliptic boundary value
problem for the operator A in the half-space

Au = f in R
�
+, Tu = g on R

�−1. (2.19)

The trace operator T is assumed to be of the form T = t(T1, . . . , Tm), Tju = Bju|R�−1 , where Bj

is a differential operator of order μj with smooth coefficients that are also independent of y for

large |y|. Ellipticity of the operator A :=
(

A
T

)
refers to the principal symbolic hierarchy

σ(A) := (σψ(A), σ∂(A))

of boundary value problems, where σψ(A) := σψ(A) is the homogeneous principal symbol of order
2m of A itself, while

σ∂(A)(y′, η′) :=
(

σψ(A)(y′, 0, η′,Dy�
)

t
(
r{y�=0}σψ(Bj)(y′, 0, η′,Dy�

)
)
j=1,...,m

)
(2.20)

is the principal boundary symbol of A. Ellipticity of A is defined by the following conditions:
(i)

σψ(A) �= 0 on T ∗
R

�

+ \ 0, (2.21)

(ii) (2.20) as an operator function

σ∂(A)(y′, η′) : Hs(R+) →
Hs−2m(R+)

⊕
C

m
(2.22)

is a family of isomorphisms for any sufficiently large s and all (y′, η′) ∈ T ∗
R

�−1 \ 0.

Similarly as in the preceding section we rephrase the continuous operator

A =
(

A
T

)
: Hs(R�

+) →
Hs−2m(R�

+)
⊕

⊕m
j=1H

s−μj−1/2(R�−1)
(2.23)

as an operator in edge representation with respect to the splitting of variables y = (x̃, z), x̃ =
(x̃1, . . . , x̃d) ∈ R

d
+, z = (x1, . . . , xq) ∈ R

q, � = q + d. We fix s ∈ R sufficiently large, i.e.,

s > max
1≤j≤m

{
2m − 1

2
, μj +

1
2

}
. We also form the family of operators

σ∧(A)(z, ζ) : Hs(Rd
+) −→

Hs−2m(Rd
+)

⊕
⊕m

j=1H
s−μj− 1

2 (Rd−1)
(2.24)
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defined by the column matrix consisting of

σψ(A)(0, z,Dx̃, ζ) : Hs(Rd
+) → Hs−2m(Rd

+) (2.25)

and
r{x̃d=0}σψ(Bj)(0, z,Dx̃, ζ) : Hs(Rd

+) → Hs−μj− 1
2 (Rd−1), (2.26)

for j = 1, . . . , m.

Then a procedure similar to that which gave us (2.9) allows us to rewrite the operator A in the
form

As :
Ws,s

(
(Rd

+ \ {0}) × R
q
)

⊕
Hs(Rq, Cι(s,d))

−→
Ws−2m,s−2m

(
(Rd

+ \ {0}) × R
q
)

⊕
Hs−2m(Rq, Cι(s−2m,d))

. (2.27)

for s−2m > d
2 , s−2m− d

2 �∈ N and s−μj > d
2 , s−μj− d

2 �∈ N. Here Ws−2m,s−2m
(
(Rd

+\{0})×R
q
)

:=
Ws−2m,s−2m

(
(Rd

+\{0})×R
q
)

⊕
⊕m

j=1Ws−μj− 1
2 ,s−μj− 1

2
(
(Rd−1\{0})×R

q
) and Hs−2m(Rq, Cι(s−2m,d)) :=

Hs−2m(Rq,Cι(s−2m,d))
⊕

⊕m
j=1Hs−μj− 1

2 (Rq,Cι(s−μj− 1
2 ,d−1))

.

In fact, we first have isomorphisms

(
Es Ks(λ)

)
:
Ws,s((Rd

+ \ {0}) × R
q)

⊕
Hs(Rq, Cι(s,d))

−→ Hs(R�
+), (2.28)

(
Ps−2m(λ)
Ts−2m(λ)

)
: Hs−2m(R�

+) −→
Ws−2m,s−2m((Rd

+ \ {0}) × R
q)

⊕
Hs−2m(Rq, Cι(s−2m,d))

, (2.29)

and (
P ′(λ)
T ′(λ)

)
: ⊕m

j=1H
s−μj− 1

2 (R�−1
+ ) −→

⊕m
j=1Ws−μj− 1

2 ,s−μj− 1
2 ((Rd−1 \ {0}) × R

q)
⊕

⊕m
j=1H

s−μj− 1
2 (Rq, Cι(s−μj− 1

2 ,d−1))
.

Then it follows that (when we again fix λ and then omit it)

As =

⎛⎜⎜⎝
Ps−2mAEs Ps−2mAKs

P ′TEs P ′TKs

0 Ts−2mAKs

0 T ′TKs

⎞⎟⎟⎠ . (2.30)

In the latter expression we employed an analogue of Remark 2.2.1.

Let As denote the (m + 1) × 1 upper left corner of As,

As =:
(

As

T s

)
: Ws,s

(
(Rd

+ \ {0}) × R
q
)
→ Ws−2m,s−2m

(
(Rd

+ \ {0}) × R
q
)
,

where As = Ps−2mAEs, T s = P ′TEs = t(T s
1 , . . . , T s

m) for T s
j = P ′TjEs. We then form

σ∧(As)(z, ζ) :=
(

σ∧(As)
σ∧(T s)

)
(z, ζ)

where

σ∧(As)(z, ζ) := σψ(A)(0, z,Dx̃, ζ) : Ks,s(Rd
+ \ {0}) → Ks−2m,s−2m(Rd

+ \ {0}), (2.31)

σ∧(T s
j )(z, ζ) = r{x̃d=0}σψ(Bj)(0, z,Dx̃, ζ) : Ks,s(Rd

+ \ {0}) → Ks−μj− 1
2 ,s−μj− 1

2 (Rd−1 \ {0}),

for j = 1, . . . , m, are just the restriction of the operators (2.25) and (2.26) to the subspace Ks,s(Rd
+\

{0}).
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Theorem 2.3.1. Let A =
(

A
T

)
be associated with elliptic boundary problem (2.19). Then

σ∧(As)(z, ζ) : Ks,s(Rd
+ \ {0}) → Ks−2m,s−2m(Rd

+ \ {0}) (2.32)

is a family of Fredholm operators for all (z, ζ) ∈ T ∗
R

q \ 0 and all s− 2m > d
2 , s− 2m− d

2 �∈ N and
s − μj > d

2 , s − μj − d
2 �∈ N, and we have

indσ∧(As)(z, ζ) = ι(s − 2m, d) +
m∑

j=1

ι(s − μj −
1
2
, d − 1) − ι(s, d). (2.33)

Proof. Let us show that (2.24) for every (z, ζ) ∈ T ∗
R

q \ 0 is a family of isomorphisms. In fact,
σ∧(A)(z, ζ) is a family of elliptic boundary value problems in R

d

+, regarded as a manifold with
boundary and exit to infinity. The ellipticity here is defined in terms of the principal symbolic
hierarchy

σ(·) = (σψ(·), σe(·), σψ,e(·);σ∂(·), σe′(·), σ∂,e′(·)).
Let us set Az,ζ := σ∧(A)(z, ζ), cf. the formula (2.24). As in the special case of operators in
the preceding section the Shapiro-Lopatinskij ellipticity of our original problem in R

�
+ entails the

invertibility of σ∂,e′(Az,ζ)(ξ̃′) for all z ∈ R
q, ξ̃′ ∈ R

d−1. In fact, (ξ̃′, ζ) corresponds to η′, and the
bijectivity of σ∂(A)(y′, η′) in the sense of (2.22) for all ξ′ �= 0 entails the invertibility of σ∂(Az,ζ)(ξ̃′)
for all (z, ζ) ∈ T ∗

R
q \ 0 and ξ̃′ ∈ R

d−1. Then we have

Az,ζ = Opx̃′(σ∂,e′(Az,ζ)(ξ̃′))

and
A−1

z,ζ = Opx̃′(σ−1
∂,e′(Az,ζ)(ξ̃′)),

is just the inverse of Az,ζ as a family of maps (2.24).

Now (2.24) can be reformulated in the form

σ∧(As)(z, ζ) :
Ks,s(Rd

+ \ {0})
⊕

C
ι(s,d)

−→

Ks−2m,s−2m(Rd
+ \ {0})

⊕
C

ι(s−2m,d)

⊕
⊕m

j=1C
ι(s−μj− 1

2 ,d−1)

(2.34)

and Az,ζ defined by (2.32) is just the (m+1)×1 upper left corner for (z, ζ) ∈ T ∗
R

q \0. Therefore,
this is Fredholm, and (2.33) is just a consequence of the isomorphism (2.34).

We now complete (2.34) to the principal symbolic hierarchy

σ(As) = (σψ(As), σ∂(As), σ∧(As))

of the operator As. Similarly as in the preceding section we express the involved operators in polar
coordinates with respect to the variables x̃ ∈ R

d

+ \ {0}, x̃ �→ (r, φ) ∈ R+ × Sd−1
+ . For the operator

A we obtain
A = r−2m

∑
k+|α|≤2m

akα(r, z)(−r
∂

∂r
)k(rDz)α

with coefficients akα(r, z) ∈ C∞(R+ × R
q,Diff2m−(k+|α|)(Sd−1

+ )), and the trace operator takes the
form

Tj = r{x̃d=0}r
−μj

∑
k+|β|≤μj

bj,kβ(r, z)(−r
∂

∂r
)k(rDz)β
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with bj,kβ(r, z) ∈ C∞(R+ × R
q,Diffμj−(k+|β|)(Sd−1

+ )), j = 1, . . . ,m. The homogeneous principal
symbol σψ(As) is then defined as

σψ(As)(r, φ, z, ρ, θ, ζ) := σψ(A)(r, φ, z, ρ, θ, ζ).

Similarly as (1.12) we form

σ̃ψ(As)(r, φ, z, ρ, θ, ζ) := r2mσψ(As)(r, φ, z, r−1ρ, θ, r−1ζ)

which is also homogeneous of order 2m in the covariables (ρ, θ, ζ) �= 0 and a smooth function in
(r, φ, z) up to r = 0. Finally we set

σ∂(As)(r, φ′, z, ρ, θ′, ζ) :=
(

σ∂(A)(r, φ′, z, ρ, θ′, ζ)
t
(
σ∂(Tj)(r, φ′, z, ρ, θ′, ζ)

)
j=1,...,m

)
for

σ∂(A)(r, φ′, z, ρ, θ′, ζ) := σψ(A)(r, φ′, 0, z, ρ, θ′,Dφd−1 , ζ) : Hs(R+) → Hs−2m(R+),

and

σ∂(Tj)(r, φ′, z, ρ, θ′, ζ) := r{φd−1=0}σψ(Bj)(r, φ′, 0, z, ρ, θ′,Dφd−1 , ζ) : Hs(R+) → C.

We also have the expressed boundary symbol

σ̃∂(As)(r, φ′, z, ρ, θ′, ζ) := diag(r2m, (rμj )j=1,...,m)σ∂(As)(r, φ′, z, r−1ρ, θ′, r−1ζ)

with components that are κλ-homogeneous in the covariables (ρ, θ′, ζ) �= 0 and smooth in (r, φ′, z)
up to r = 0.

Theorem 2.3.2. The operator (2.27) is elliptic in the calculus of boundary value problems on
the manifold R

�

+ with edge R
q, i.e., the components of the principal symbolic hierarchy σ(As) =

(σψ(As), σ∂(As), σ∧(As)) are bijective in the sense of Definition 1.2.2.

Proof. The condition (2.21) implies that σψ(As)(r, φ, z, ρ, θ, ζ) �= 0 for all (ρ, θ, ζ) �= 0 and in
addition σ̃ψ(As)(r, φ, z, ρ, θ, ζ) �= 0 up to r = 0.

In a similar manner, the bijectivity of (2.22) implies the bijectivity of the boundary symbol

σ∂(As)(r, φ′, z, ρ, θ′, ζ) : Ht(R+) →
Ht−2m(R+)

⊕
C

m

for all (ρ, θ′, ζ) �= 0 and sufficiently large t, and also the bijectivity of σ̃∂(As)(r, φ′, z, ρ, θ′, ζ) up to
r = 0.

The principal edge symbol σ∧(As)(z, ζ) is the same as (2.34) and hence bijective as noted in the
proof of Theorem 2.3.1. Summing up we proved the ellipticity of As with respect to (σψ, σ∂ , σ∧).

Observe that in polar coordinates x̃ �→ (r, φ) we have

σ∧(As)(z, ζ) :
Ks,s

(
(Sd−1

+ )∧
)

⊕
C

ι(s,d)

−→

Ks−2m,s−2m
(
(Sd−1

+ )∧
)

⊕
C

ι(s−2m,d)

⊕
⊕m

j=1C
ι(s−μj− 1

2 ,d−1)

(2.35)
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(cf. also the abbreviation in the formula (1.17)) for (z, ζ) ∈ T ∗
R

q \ 0, with the (m + 1) × 1 upper
left corner

σ∧(As)(z, ζ) =

⎛⎜⎜⎜⎝
r−2m

∑
k+|α|≤2m

akα(0, z)(−r
∂

∂r
)k(rζ)α

(
r{x̃d=0}r

−μj

∑
k+|β|≤μj

bj,kβ(0, z)(−r
∂

∂r
)k(rζ)β

)
j=1,...,m

⎞⎟⎟⎟⎠ :

Ks,s
(
(Sd−1

+ )∧
)
→ Ks−2m,s−2m

(
(Sd−1

+ )∧
)

(2.36)

cf. the formula (2.32). The operators (2.36) represent a parameter-dependent family in the cone cal-
culus of boundary value problems on the infinite (stretched) cone (Sd−1

+ )∧ with boundary (Sd−2)∧.

Remark 2.3.3. Note that s in the spaces Ks,s
(
(Sd−1

+ )∧
)
, etc., plays the role both of smoothness

and weight. Many relations remain true if we replace the smoothness index by t (sufficiently large).
In particular, instead of (2.36) we can write

σ∧(As)(z, ζ) : Kt,s
(
(Sd−1

+ )∧
)
→ Kt−2m,s−2m

(
(Sd−1

+ )∧
)
.

Remark 2.3.4. The principal conormal symbol of σ∧(As)(z, ζ) (in the sense of the cone calculus)
represents a family of continuous operators

σMσ∧(As)(z, w) : Ht(Sd−1
+ ) −→

Ht−2m(Sd−1
+ )

⊕
⊕m

j=1H
t−μj− 1

2 (Sd−2)
=: Ht−2m(Sd−1

+ ) (2.37)

parametrised by the weight line Γ d
2−s � w and z ∈ R

q. From the formulas (2.35) and (2.36) we
have

σMσ∧(As)(z, w) =

⎛⎜⎜⎜⎜⎝
2m∑
k=0

ak0(0, z)wk

r
Sd−2

t
( μj∑

k=0

bj,k0(0, z)wk
)
j=1,...,m

⎞⎟⎟⎟⎟⎠ . (2.38)

The conormal symbol (2.37) is a subordinate symbolic structure of the calculus of edge boundary
value problems. The ellipticity of As, more precisely, the Fredholm property of (2.36) implies that
the operators (2.37) are a family of isomorphisms for all w ∈ Γ d

2−s, z ∈ R
q.

3 Global constructions

3.1 Edge representation of boundary problems

Let M be a compact C∞ manifold with boundary ∂M , and let Z ⊂ ∂M be a compact C∞

submanifold of codimension d > 1. For simplicity, we let Z have a trivial normal bundle in ∂M
(this assumption is not really essential).

We now interpret M as a manifold W with edge Z and boundary, and ∂M as a manifold V

with edge Z (and without boundary). Locally near Z the manifold W is modelled on R
d

+ × R
q,

and the associated stretched manifold W is locally described by R+×Sd−1
+ ×R

q (with the splitting
of variables (r, φ, z)); moreover, V is locally modelled on R

d−1 × R
q and the associated stretched

manifold V on R+ × Sd−2 × R
q (with the splitting of variables (r, φ′, z)).
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On M we have the standard Sobolev spaces Hs(M) = {u|intM : u ∈ Hs(2M)}. For s ≥ 0,
s − d

2 �∈ N, we form the subspaces

Hs
0(M) =

{
u ∈ Hs(M) : Dα

x̃ u(0, z) = 0 locally near Z for all |α| < s − d

2
}
.

This refers to the splitting of variables (x̃, z) ∈ R
d

+ × R
q on M near Z. Similarly, for s ≥ 0,

s − d−1
2 �∈ N, we form

Hs
0(∂M) =

{
v ∈ Hs(∂M) : Dα

x̃′v(0, z) = 0 locally near Z for all |α| < s − d − 1
2

}
,

which refers to the splitting of variables (x̃′, z) ∈ R
d−1 × R

q on ∂M near Z.

Motivated by the equivalent descriptions

Hs
0(M) =

{
u ∈ Hs(M) : ϕu ∈ Ws,s((Rd

+ \ {0}) × R
q) for every ϕ ∈ C∞

0 (M)

supported in a coordinate neighbourhood near x̃ = 0
}
.

and

Hs
0(∂M) =

{
u ∈ Hs(∂M) : ϕ′v ∈ Ws,s((Rd−1 \ {0}) × R

q) for every ϕ′ ∈ C∞
0 (∂M)

supported in a coordinate neighbourhood near x̃′ = 0
}
,

we also write Ws,s(W) and Ws,s(V) instead of Hs
0(M) and Hs

0(∂M), respectively.

Let A be a differential operators on M of order 2m (with smooth coefficients up to ∂M),
regarded as a continuous map

Hs(M) → Hs−2m(M).

Moreover, let Bj be differential operators of order μj , given in a collar neighbourhood of ∂M
in M (with smooth coefficients up to ∂M), and form the continuous operators Tju := Bju|∂M ,
j = 1, . . . , m. Then T = t(T1, . . . , Tm) together with A represents a global boundary value problem
for A

A =
(

A
T

)
: Hs(M) → Hs−2m(M), (3.1)

concerning notation, cf. the formula (2.37).

Our next objective is to reformulate A as an edge problem in the sense of Section 1.2. To this
end we employ the following theorem.

Theorem 3.1.1. For every fixed s ≥ 0, s − d
2 �∈ N there is a family of isomorphisms

(
E K(λ)

)
:

Ws,s(W)
⊕

Hs(Z, Cι(s,d))
−→ Hs(M) (3.2)

for |λ| sufficiently large, where (3.2) localises near Z to the operators (2.28), and the inverse(
P (λ)
T (λ)

)
:=

(
E K(λ)

)−1 localises to (2.29) ( both modulo lower order terms, to be explained in

the construction below).

The proof of Theorem 3.1.1 will be given in Section 3.2 below.
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Applying an analogous construction for the case without boundary, for every s ≥ 0, s−μj > d
2 ,

s − μj − d−1
2 �∈ N, we obtain a family of isomorphisms

(
E′ K ′(λ)

)
:

⊕m
j=1Ws−μj− 1

2 ,s−μj− 1
2 (V)

⊕
⊕m

j=1H
s−μj− 1

2 (Z, Cι(s−μj− 1
2 ,d−1))

−→ ⊕m
j=1H

s−μj− 1
2 (∂M). (3.3)

for |λ| large, with the inverse
(

P ′(λ)
T ′(λ)

)
which localises near Z to the operators as constructed in

Section 2.3 before (modulo corresponding lower order terms).

Remark 3.1.2. The operator
(

A
T

)
combined with the isomorphisms (3.2) and (3.3) (for suffi-

ciently large |λ|, where the parameter λ is fixed and then omitted) gives us a block matrix As of
analogous structure as (2.30), which is an operator in the edge calculus on W. The conditions on
s, i.e.,

s − 2m >
d

2
, s − 2m − d

2
�∈ N, s − μj >

d

2
, s − μj −

d

2
�∈ N for j = 1, . . . ,m, (3.4)

are weight conditions for the ellipticity. The operator As itself is continuous in the sense

As :
Wt,γ(W)

⊕
Ht(Z, Cι(s,d))

−→
Wt−2m,γ−2m(W)

⊕
Ht−2m(Z, Cι(s−2m,d))

(3.5)

for all t ∈ R, t > μj + 1
2 , j = 1, . . . , m, and for all γ ∈ R, cf. the formula (1.10).

We now assume that A =
(

A
T

)
is elliptic, i.e., A is an elliptic differential operator on M and

the boundary operator T satisfy the Shapiro-Lopatinskij condition, that is, in local representation
near ∂M the boundary symbol (1.13) is a family of isomorphisms. Then as a consequence of
Theorem 2.3.2 we obtain the following result:

Theorem 3.1.3. Let A be an elliptic boundary value problem on M , and let s satisfy the conditions
(3.4). Then the operator As is elliptic in the edge calculus on W with respect to the principal
symbolic hierarchy (1.11), cf. Definition 1.3.3, here for the weight γ = s.

Corollary 3.1.4. Under the conditions of Theorem 3.1.3, the operator (3.5) is Fredholm for γ = s
and t > μj + 1

2 , j = 1, . . . ,m, and we have

indA = indAs.

This will follow from the existence of a parametrix in the edge calculus, cf. Section 4.3 below.

Remark 3.1.5. Recall that the number of elliptic edge trace and potential conditions rapidly
changes if we change s; the difference of the number of these conditions is just equal to indσ∧(As),
calculated in Theorem 2.3.1.

3.2 The construction of global isomorphisms

In this section we give the proof of Theorem 3.1.1.

We first consider the case that M is closed and compact. The proof for a manifold with
boundary is then straightforward and left to the reader. We fix a covering of M by coordinate
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neighbourhoods U1, . . . , UL, UL+1, . . . , UN such that Uj ∩ Z �= ∅ for 1 ≤ j ≤ L, Uj ∩ Z = ∅ for
L + 1 ≤ j ≤ N . The charts χj : Uj → χj(Uj) map to open sets of R

d × R
q and we assume that

for U ′
j := Uj ∩ Z, 1 ≤ j ≤ L, χ′

j := χj |U ′
j

: U ′
j → χ′

j(U
′
j) are charts on Z to open sets of R

q. In
addition (without loss of generality) we assume that Uj ∪Uk is again a coordinate neighbourhood
of our system. Moreover, we fix a subordinate partition of unity {ϕ1, . . . , ϕN}, ϕj ∈ C∞

0 (Uj), and
a system of functions {ψ1, . . . , ψN}, ψj ∈ C∞

0 (Uj), such that ψj ≡ 1 on suppϕj for all j. We
make the following special choice of these functions such that when Ũj for 1 ≤ j ≤ L denotes
the connected component of Uj that intersects Z and ϕ̃j := ϕj |Ũj

in local coordinates we have
ϕ̃j := σϑϕ′

j , for ϕ′
j := ϕj |U ′

j
, where σ ≡ 1 in a neighbourhood of x̃′ = 0. Similarly, for 1 ≤ j ≤ L

we assume on ψ̃j := ψj |Ũj
that ψ̃j := τδψ′

j for ψ′
j := ψj |U ′

j
, where τ ≡ 1 in a neighbourhood of

x̃′ = 0, and τ ≡ 1 on suppσ.

We construct the analogues of the operators (3.2) for the closed case in the form

(
E K(λ)

)
:=

L∑
j=1

(
ϕjEψj ϕjK(λ)ψ′

j

)
+

N∑
j=L+1

(
ϕj 0

)
(3.6)

where E : Ws,s(W) → Hs(M) is the canonical embedding, and

K(λ)v(z) = Op(k)(λ)v(z),

k(ζ, λ) :=
(
kα(ζ, λ) : |α| < s − d

2
)
∈ S0

cl(R
q+l; Cι(s,d),Hs(Rd)).

The inverse of
(
E K(λ)

)
will be approximated by

(
P0(λ)
T0(λ)

)
:=

L∑
k=1

(
ψkP (λ)ϕk

ψ′
kT (λ)ϕk

)
+

N∑
k=L+1

(
ϕk

0

)
(3.7)

for large λ.

Observe that the operator of multiplication by a function ϕ(x̃, z) ∈ C∞
0 (Rd+q) represents an

operator-valued symbol ϕ ∈ S0(Rq+l;E,E) for E = Hs(Rd), S(Rd) or Hs
0(Rd). It does not depend

on the covariables but it is not classical in the sense of Definition 1.2.5. Relations of that kind
belong to the tools for the calculations below.

Remark 3.2.1. Another aspect is that for every ϕ ∈ C∞
0 (Rd+q), β ∈ C∞

0 (Rq) and suppϕ ∩ {x̃ =
0} = ∅ implies that

ϕ Op(k)(λ)β = Op(c)(λ)

for a c(z, ζ, λ) ∈ S−∞(Rq × R
q+l; Cι(s,d),S(Rd)). In fact, we can write

ϕ Op(k)(λ)β = ϕ|x̃|−2K [ζ]−2K Op(|[ζ]x̃|2Kk)(λ)β.

By virtue of ϕ |x̃|−2K ∈ C∞
0 (Rd+q) for any K ∈ N the operator of multiplication by ϕ |x̃|−2K belongs

to S−∞(Rq × R
q+l;S(Rd),S(Rd)). We have

∣∣[ζ]x̃
∣∣2K

k(ζ, λ) ∈ S0
cl(R

q+l;S(Rd),S(Rd)), i.e.,

k−2K(ζ, λ) := [ζ]−2K(
∣∣[ζ]x̃

∣∣2K
k(ζ, λ)) ∈ S−2K

cl (Rq+l; Cι(s,d),S(Rd)).

Applying Remark 1.2.8 we see that ϕ|x̃|−2K Op(k−2K)(λ)β = Op(r)(λ) for an symbol r(z, ζ, λ) ∈
S−2K(Rq+l; Cι(s,d),S(Rd)). Since this holds for all K ∈ N, the relation (1.20) for μ = −∞ gives
us the assertion.
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Writing for abbreviation

Ej :=

{
ϕjEψj for 1 ≤ j ≤ L,

ϕj for L + 1 ≤ j ≤ N,
Cj(λ) :=

{
ϕjK(λ)ψ′

j for 1 ≤ j ≤ L,

0 for L + 1 ≤ j ≤ N,

Pk(λ) :=

{
ψkP (λ)ϕk for 1 ≤ k ≤ L,

ϕk for L + 1 ≤ k ≤ N,
Tk(λ) :=

{
ψ′

kT (λ)ϕk for 1 ≤ k ≤ L,

0 for L + 1 ≤ k ≤ N,

we have (
E K(λ)

)
=

N∑
j=1

(
Ej Cj(λ)

)
,

(
P0(λ)
T0(λ)

)
=

N∑
k=1

(
Pk(λ)
Tk(λ)

)
.

We then consider (
P0(λ)
T0(λ)

)(
E K(λ)

)
=

N∑
j,k=1

(
Pk(λ)Ej Pk(λ)Cj(λ)
Tk(λ)Ej Tk(λ)Cj(λ)

)
(3.8)

and (
E K(λ)

) (
P0(λ)
T0(λ)

)
=

N∑
j,k=1

{EjPk(λ) + Cj(λ)Tk(λ)}. (3.9)

Let us first characterise the entries of (3.8). For 1 ≤ j, k ≤ L we have

Pk(λ)Ej = ψkP (λ)ϕkϕjEψj , Pk(λ)Cj(λ) = ψkP (λ)ϕkϕjK(λ)ψ′
j ,

Tk(λ)Ej = ψ′
kT (λ)ϕkϕjEψj , Tk(λ)Cj(λ) = ψ′

kT (λ)ϕkϕjK(λ)ψ′
j .

For u(z) ∈ Ws(Rq,Hs
0(Rd)) we have

Pk(λ)Eju(z) = {ϕkϕj − ψk Op(kt)(λ)ϕkϕjEψj}u(z),

ψk Op(kt)(λ)ϕkϕjEψju(z) = ψ′
kτ Op(kt)(λ)ϕ′

kσϕ′
jσψ′

jτu(z) + Dkj(λ)u(z), (3.10)

where, according to Remark 3.2.1, Dkj(λ) = Op(dkj(z, ζ, λ)) for a symbol dkj(z, ζ, λ) ∈ S−∞(Rq ×
R

q+l;Hs
0(Rd),Hs

0(Rd) ∩ S(Rd)). Since ϕ′
kσϕ′

jσψ′
jτu(z) takes values in ker t(ζ, λ) we see that the

first summand of (3.10) vanishes, i.e., we have Pk(λ)Ej = ϕkϕj + Dkj(λ) for 1 ≤ j, k ≤ L.

For v(z) ∈ Hs(Rq, Cι(s,d)) we obtain

Pk(λ)Cj(λ)v(z) = ψk Op(p)(λ)ϕkϕj Op(k)(λ)ψ′
jv(z)

= ψk Op(p)(λ)β(z)Op(k)(λ)ψ′
jv(z) + Ckj(λ)v(z) (3.11)

for β(z) = ϕ′
k(z)ϕ′

j(z) where we used the fact that (by an appropriate choice of the cut-off function
ω involved in k(ζ, λ)) σ2k(ζ, λ) = k(ζ, λ), and Ckj(λ) = Op(ckj)(λ) for a corresponding symbol of
order −∞, again by Remark 3.2.1. In order to shorten notation in the rest of the proof we write
‘∼’ when equalities hold modulo term of order −∞ in λ. Applying Remark 1.2.8 we obtain

Op(p)(λ)β(z) = Op(p#β)(λ) = β Op(p)(λ) + Op(r)(λ)

for a symbol r(z, ζ, λ) of order −1 and we obtain

Pk(λ)Cj(λ) ∼ ψk Op(pk)(λ)ψ′
j + ψk Op(rk)(λ)ψ′

j .

Now we have pk = 0. By Remark 1.2.8 the second summand on the right can be reformulated as
Rkj(λ) = Op(rkj)(λ) for a symbol rkj(z, ζ, λ) ∈ S−1

cl (Rq ×R
q+l
ζ,λ ; Cι(s,d),Hs

0(Rd)∩S(Rd)). In other
words, we have

Pk(λ)Cj(λ) ∼ Rkj(λ), 1 ≤ j, k ≤ L. (3.12)
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Moreover,
Tk(λ)Eju(z) = ψ′

k Op(t)(λ)ϕkϕjEψju(z) ≡ 0, 1 ≤ j, k ≤ L, (3.13)

since ϕkϕjEψju(z) takes values in ker t(ζ, λ). Furthermore, again using Remark 1.2.8 from the
pseudo-differential calculus we obtain

Tk(λ)Cj(λ)v(z) ∼ ψ′
k Op(t)(λ)ϕkϕj Op(k)(λ)ψ′

jv(z) = ϕ′
kϕ′

jv(z) + R′
kj(λ)v(z)

for R′
kj(λ) = ψ′

k Op(r′kj)(λ)ψ′
j , with a symbol r′kj(z, ζ, λ) ∈ S−1

cl (Rq × R
q+l; Cι(s,d), Cι(s,d)).

For L + 1 ≤ j ≤ N , 1 ≤ k ≤ L we have

Pk(λ)Ej ∼ ψkP (λ)ϕkϕj = ϕkϕj , Pk(λ)Cj(λ) = Tk(λ)Cj(λ) = 0,

and Tk(λ)Ej = ψ′
kT (λ)ϕkϕj = 0, since suppϕj ∩ Z = ∅, i.e., ϕkϕj ∈ ker T (λ).

Moreover, for 1 ≤ j ≤ L, L + 1 ≤ k ≤ N ,

Pk(λ)Ej = ϕkϕjEψj = ϕkϕj , Tk(λ)Ej = Tk(λ)Cj(λ) = 0,

and Pk(λ)Cj(λ) = ϕkϕjK(λ)ψ′
j := Ckj(λ) is of order −∞ in λ ∈ R

l, cf. Remark 3.2.1.

Finally, for L + 1 ≤ j, k ≤ N it follows that

Pk(λ)Ej = ϕkϕj , Pk(λ)Cj(λ) = Tk(λ)Ej = Tk(λ)Cj(λ) = 0.

For the expression (3.9) we first assume 1 ≤ j, k ≤ L. Then

EjPk(λ) + Cj(λ)Tk(λ) = ϕjEψjψkP (λ)ϕk + ϕjK(λ)ψ′
jψ

′
kT (λ)ϕk

= ϕjϕk − ϕjψkK(λ)T (λ)ϕk + ϕjK(λ)ψ′
jψ

′
kT (λ)ϕk ∼ ϕjϕk + R̃jk(λ)

for R̃jk(λ) = −ϕjψk Op(kt)(λ)ϕk + ϕj Op(k)(λ)Op(ψ′
jψ

′
kt)(λ)ϕk. From Remark 1.2.8 we obtain

ϕj Op(k)(λ)Op(ψ′
jψ

′
kt)(λ)ϕk ∼ ϕjψ

′
jψ

′
k Op(kt)(λ)ϕk + ϕj Op(r̃jk)(λ)ϕk

∼ ϕjψ
′
k Op(kt)(λ)ϕk + ϕj Op(r̃jk)(λ)ϕk

for a symbol r̃jk(z, ζ, λ) ∈ S−1
cl (Rq × R

q+l;Hs(Rd),S(Rd)). In the latter relation we employed
ψj = ψ′

jτ, ϕjψj = ϕj , and τk(ζ, λ) = k(ζ, λ).

For L + 1 ≤ j ≤ N , 1 ≤ k ≤ L we have

EjPk(λ) + Cj(λ)Tk(λ) = ϕjψkP (λ)ϕk = ϕjψk(1 − Op(kt)(λ))ϕk = ϕjϕk + C̃jk(λ)

for C̃jk(λ) = −ϕjψk Op(kt)(λ)ϕk = Op(c̃jk)(λ) for a symbol c̃jk(z, ζ, λ) ∈ S−∞(Rq×R
q+l;Hs(Rd),

S(Rd)). The latter relation can be obtained by similar arguments as in Remark 3.2.1.

For 1 ≤ j ≤ L, L + 1 ≤ k ≤ N we have

EjPk(λ) + Cj(λ)Tk(λ) = ϕjEψjϕk = ϕjϕk.

Finally, in the case L + 1 ≤ j, k ≤ N we have

EjPk(λ) + Cj(λ)Tk(λ) = ϕjϕk.

From these calculations we obtain the following result (with 1 denoting identity operators in
different spaces):
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Proposition 3.2.2. We have(
P0(λ)
T0(λ)

)(
E K(λ)

)
∼

(
1 0
0 1

)
+

(
0 R(λ)
0 R′(λ)

)
, (3.14)

and (
E K(λ)

) (
P0(λ)
T0(λ)

)
∼ 1 + R̃(λ) (3.15)

with remainders R(λ), R′(λ), R̃(λ) of order −1 in λ ∈ R
l in the sense of the pseudo-differential

calculus along Z with corresponding operator-valued symbols.

Proof. We obtained (
Pk(λ)Ej Pk(λ)Cj(λ)
Tk(λ)Ej Tk(λ)Cj(λ)

)
∼

(
ϕjϕk Rkj(λ)

0 ϕ′
kϕ′

j + R′
kj(λ)

)
and

EjPk(λ) + Cj(λ)Tk(λ) ∼ ϕjϕk + R̃jk(λ),

where Rkj(λ), R′
kj(λ), R̃jk(λ) are of order −1, concentrated near Z. Taking the sums over j, k =

1, . . . , N we just obtain the relations (3.14) and (3.15), respectively.

Summing up we have (
P0(λ)
T0(λ)

)(
E K(λ)

)
= 1 + R(λ)

modulo a Schwartz function in λ; where 1 is the 2 × 2 identity matrix and R(λ) :=
(

0 R(λ)
0 R′(λ)

)
is locally on Z in coordinates z ∈ R

q a parameter-dependent pseudo-differential operator with
symbol in

S−1

⎛⎝R
q × R

q+l;
Hs

0(Rd)
⊕

C
ι(s,d)

,
Hs

0(Rd) ∩ S(Rd)
⊕

C
ι(s,d)

⎞⎠ .

There is asymptotic summation in symbols and associated operators of that kind. This allows us
to form ∞∑

j=0

(−1)jRj(λ)
(

P0(λ)
T0(λ)

)
=:

(
P1(λ)
T1(λ)

)

and we then have
(

P1(λ)
T1(λ)

)(
E K(λ)

)
= 1+C(λ) for an operator function C(λ) which is Schwartz

in λ ∈ R
l. Since 1+C(λ) is invertible for |λ| large enough we conclude that

(
E K(λ)

)
is invertible

for those λ, and the inverse of
(
E K(λ)

)
has the form(

P (λ)
T (λ)

)
= (1 + C(λ))−1

(
P1(λ)
T1(λ)

)
.

This gives us an analogue of Theorem 3.1.1 for the case without boundary.

Remark 3.2.3. Replacing λ in this conclusion by (λ0, λ) ∈ R
1+l we obtain the isomorphism result

for |λ0| large and all λ ∈ R
l. So we obtain invertibility of such operator families for all λ ∈ R

l.

Proof of Theorem 3.1.1. An inspection of the proof of Proposition 3.2.2 shows that the calculations
remain valid for the case with boundary when we reinterpret the meaning of the involved operators
in an evident manner. First the functions (ϕL+1, . . . , ϕN ) in the second sums of (3.6) and (3.7)
are chosen as in the beginning of this section. The local operator-valued symbols involved in
T (λ), K(λ) and P (λ) are now given by (2.1) and (2.2), respectively. The generalisation of the
calculations of the proof of Proposition 3.2.2 to the case with boundary is now straightforward.
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4 Edge operators for arbitrary weights

4.1 Relative index relations

As we saw in Chapter 1, ellipticity in the calculus on a manifold W with edges makes sense in
weighted edge Sobolev spaces of arbitrary weights, provided that the corresponding principal edge
symbols are bijective in the sense of (1.23). In Chapter 3 we constructed elliptic edge problems for
the case when the weight is equal to the smoothness s, cf. Theorem 3.1.3. According to Remark
3.1.2 we now realise the upper left corner of As as a continuous operator

Aγ : Wt,γ(W) → Wt−2m,γ−2m(W) (4.1)

for sufficiently large t and any real γ (we hope this will not cause confusion compared with (3.1);

the operator A =
(

A
T

)
in polar coordinates induces continuous maps (4.1) for all reals γ and

sufficiently large t).

Assuming the Shapiro-Lopatinskij ellipticity of A, the question is now to calculate the number
of extra edge conditions for arbitrary γ ∈ R (possibly up to a discrete set of exceptional values)
such that a corresponding operator Aγ in the edge calculus having (4.1) as the upper left corner
is Fredholm. This will be done in terms of relative index results for the associated edge symbols.

Proposition 4.1.1. If a weight γ ∈ R satisfies the condition

γ − 2m >
d

2
, γ − 2m − d

2
�∈ N, γ − μj >

d

2
, γ − μj −

d

2
�∈ N, for j = 1, . . . ,m, (4.2)

the operator family
σMσ∧(Aγ)(z, w) : Ht(Sd−1

+ ) → Ht−2m(Sd−1
+ )

is a family of isomorphisms for all w ∈ Γ d
2−γ and all z ∈ Z (concerning the spaces, cf. the formula

(2.37)).

Proof. From the ellipticity of As for the weights as in (3.4) we have the bijectivity of σ∧(As)(z, ζ)
on T ∗Z \ 0 which entails the Fredholm property of σ∧(As)(z, ζ) in Ks,s-spaces, according to the
upper left (m + 1)× 1 corner of (2.35). A necessary condition for that is that σMσ∧(As)(z, w) has
no non-bijectivity points on the line Γ d

2−s; clearly the operators σMσ∧(As)(z, w) are independent
of s, cf. the right hand side of (2.38). This allows us to interpret s as our weight γ and to apply
this information for σMσ∧(Aγ)(z, w).

In the following consideration we admit arbitrary weights γ, β. Assume that the operators

σ∧(Aγ)(z, ζ) : Kt,γ
(
(Sd−1

+ )∧
)
→ Kt−2m,γ−2m

(
(Sd−1

+ )∧
)

(4.3)

are Fredholm for all (z, ζ) ∈ T ∗Z \ 0 and t large enough, cf. Remark 2.3.3. Recall that (4.3) is
Fredholm if and only if the conormal symbol σMσ∧(Aγ)(z, w) which has the form

a(z, w) :=

⎛⎜⎜⎜⎜⎝
2m∑
k=0

ak0(0, z)wk

(
r

Sd−2

μj∑
k=0

bj,k0(0, z)wk
)
j=1,...,m

⎞⎟⎟⎟⎟⎠ : Ht(Sd−1
+ ) → Ht−2m(Sd−1

+ ) (4.4)

is bijective for all w ∈ Γ d
2−γ , z ∈ Z.
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Let us fix (z, ζ) and form the operator

Kγ := diag(r2m, (rμj )j=1,...,m)σ∧(Aγ)(z, ζ),

Kγ : Kt,γ → K̃t−2m,γ
(4.5)

for Kt,γ := Kt,γ
(
(Sd−1

+ )∧
)
, K̃t−2m,γ

:=
r2mKt−2m,γ−2m

(
(Sd−1

+ )∧
)

⊕
⊕m

j=1rμj Kt−μj− 1
2 ,γ− 1

2
(
(Sd−2)∧

) for any fixed sufficiently large

t (the index is independent of t). Analogously, we consider the Fredholm operator

Kβ : Kt,β → K̃t−2m,β
(4.6)

for another weight β ∈ R (the subordinate principal conormal symbol σMσ∧(Aβ)(z, w) is then
bijective for all w ∈ Γ d

2−β , z ∈ Z). Choose a cut-off function ω(r) and form the operator

Bγ := opγ− d−1
2

M (a) + ω

⎛⎜⎜⎜⎜⎜⎜⎝

∑
k+|α|≤2m

|α|>0

akα(0, z)
(
−r

∂

∂r

)k(rζ)α

(
r
(Sd−2)∧

∑
k+|β|≤μj

|β|>0

bj,kβ(0, z)
(
−r

∂

∂r

)k(rζ)β
)
j=1,...,m

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Bγ : Ht,(γ,δ) → H̃t−2m,(r,δ)
, (4.7)

where Ht,(γ,δ) := ω1Ht,γ
(
(Sd−1

+ )∧
)
+(1−ω1)Ht,δ

(
(Sd−1

+ )∧
)

for weights γ < δ and a cut-off function
ω1,

H̃t−2m,(γ,δ)
:= ω1

⎛⎝ Ht−2m,γ
(
(Sd−1

+ )∧
)

⊕
⊕m

j=1Ht−μj− 1
2 ,γ− 1

2
(
(Sd−2)∧

)
⎞⎠ + (1 − ω1)

⎛⎝ Ht−2m,δ(
(
(Sd−1

+ )∧
)

⊕
⊕m

j=1Ht−μj− 1
2 ,δ− 1

2
(
(Sd−2)∧

)
⎞⎠ .

In a similar manner we consider the operator

Bβ : Ht,(β,δ) → H̃t−2m,(β,δ)
(4.8)

for another weight β < δ.

For every R > 0 such that ω = 1 on [0, R) we have Kγ |0<r<R = Bγ |0<r<R, Kβ |0<r<R =
Bβ |0<r<R, and Kγ |R<r<∞ = Kβ |R<r<∞, Bγ |R<r<∞ = Bβ |R<r<∞ (modulo some compact opera-
tors in the respective spaces). In the following proposition, without loss of generality, we assume
γ < β.

Proposition 4.1.2. Let γ < β < δ be arbitrary weights such that Γ d
2−γ , Γ d

2−β, and Γ d
2−δ have

no non-bijectivity points of (4.4) (for any fixed z ∈ Z and sufficiently large t). Then the operators
(4.5), (4.6), (4.7) and (4.8) are Fredholm, and we have

indKγ − indKβ = indBγ − indBβ = n(β, γ), (4.9)

where n(β, γ) is the sum of null-multiplicities of the non-bijectivity points of a(z, w) in the strip
{w ∈ C : d

2 − β < Re w < d
2 − γ} (in the sense of Gohberg and Sigal [12]).

Proof. The Fredholm property of Kγ and Kβ is satisfied when σ∧(Aγ) and σ∧(Aβ) are Fredholm.
From the structure of these operators, cf. the formula (2.36), we know that the ellipticity conditions
for r > 0 (up to r = ∞ in the sense of exit ellipticity) are satisfied. The Fredholm property is then
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equivalent to the bijectivity of σMσ∧(Aγ) and σMσ∧(Aβ) on the lines Γ d
2−γ and Γ d

2−β , respectively.
Concerning the operators Bγ and Bβ we are in the situation of [13], up to a transformation of the
infinite (stretched) cone R+ × Sd−1

+ to the infinite cylinder R × Sd−1
+ . From that we know that

when a(z, w) has no non-bijectivity points on Γ d
2−γ and Γ d

2−δ for γ < δ the operator

opγ− d−1
2

M (a) : Ht,(γ,δ) → H̃t−2m,(γ,δ)

is Fredholm, and we have ind opγ− d−1
2

M (a) = n(δ, γ). Since Bγ = opγ− d−1
2

M (a) modulo a compact
operator it follows that indBγ = n(δ, γ). Analogous arguments yield the Fredholm property of
Bβ and indBβ = n(δ, β). This yields

indBγ − indBβ = n(δ, γ) − n(δ, β) = n(β, γ). (4.10)

Because of the above mentioned compatibility conditions between the operators Kγ , Kβ and Bγ ,
Bβ over corresponding subregions of R+×Sd−1

+ and corresponding compatibilities of the respective
spaces we can apply a relative index result of [22] which says

indKγ − indKβ = indBγ − indBβ . (4.11)

Combining (4.10) and (4.11) gives us the relation (4.9).

Corollary 4.1.3. (i) Let σMσ∧(Aγ)(z, w) and σMσ∧(Aβ)(z, w) have no non-bijectivity points on
the lines Γ d

2−γ and Γ d
2−β , respectively. Then

indσ∧(Aγ)(z, ζ) − indσ∧(Aβ)(z, ζ) = n(β, γ). (4.12)

(ii) If the weights γ and β both satisfy the condition (4.2), γ < β, then we have

n(β, γ) = {ι(β − 2m, d) +
m∑

j=1

ι(β − μj −
1
2
, d − 1) − ι(β, d)}

− {ι(γ − 2m, d) +
m∑

j=1

ι(γ − μj −
1
2
, d − 1) − ι(γ, d)}.

The consideration so far concerns index shifts for fixed (z, ζ) ∈ S∗Z. If we associate the
Fredholm family σ∧(Aγ)(z, ζ) and σ∧(Aβ)(z, ζ) with the K-theoretic index elements

ind
S∗Z

σ∧(Aγ), ind
S∗Z

σ∧(Aβ) ∈ K(S∗Z),

by Theorem 1.3.2 we then have

ind
S∗Z

σ∧(Aγ) ∈ π∗K(Z) ⇔ ind
S∗Z

σ∧(Aβ) ∈ π∗K(Z). (4.13)

4.2 Construction of edge conditions

Let A =
(

A
T

)
be an elliptic boundary problem on M . As we know, for every γ ∈ R we can realise

A as a continuous operator

Aγ : Wt,γ(W) → Wt−2m,γ−2m(W) (4.14)
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for every sufficiently large t, cf. the notation in the formula (1.22). As soon as γ satisfies the
condition (4.2) we can complete Aγ to a block matrix operator Aγ

Aγ :
Wt,γ(W)

⊕
Ht(Z, Cι(s,d))

) −→
Wt−2m,γ−2m(W)

⊕
Ht−2m(Z, Cι(γ−2m,d))

, (4.15)

which is Fredholm and belongs to the edge calculus of boundary value problems on W.

The case which is not automatically covered by this construction are small weights β. To
construct edge conditions which complete (4.14) to a corresponding Fredholm operator Aβ we
need two assumptions:
(i) The conormal symbol

σMσ∧(Aβ)(z, w) : Ht(Sd−1
+ ) → Ht−2m(Sd−1

+ ) (4.16)

has no non-bijectivity points on Γ d
2−β for all z ∈ Z;

(ii) we have
ind

S∗Z
σ∧(Aβ) ∈ π∗K(Z). (4.17)

Proposition 4.2.1. If A =
(

A
T

)
is an elliptic boundary problem on M . Then we have

ind
S∗Z

σ∧(Aγ) ∈ π∗K(Z)

for every γ ∈ R such that σMσ∧(Aγ)(z, w) has no non-bijectivity points on Γ d
2−γ for all z ∈ Z.

Proof. For large γ as in (4.2) we know that

ind
S∗Z

σ∧(Aγ) = [Cj+ ] − [Cj− ],

for j+ := ι(γ, d), j− := ι(γ − 2m, d) +
∑m

j=1 ι(γ − μj − 1
2 , d − 1) (here [Cj ] means the equivalence

class in K(Z) generated by the trivial bundle Z × C
j). This shows that (4.17) holds for those γ.

Then it suffices to apply the relation (4.13).

If γ ∈ R is a weight satisfying the condition (4.2) we explicitly know the number of additional
edge conditions such that the corresponding edge problem (4.15) is Fredholm. For small γ (for
instance, γ < 0) we do not have any information of that kind, but our relative index result gives
us the following theorem:

Theorem 4.2.2. Let A =
(

A
T

)
be an elliptic boundary value problem on M , and let β ∈ R be an

arbitrary weight such that the conormal symbol (4.16) has no non-bijectivity points on Γ d
2−β for

all z ∈ Z. Then the operator Aβ : Wt,β(W) → Wt−2m,β−2m(W) can be completed by additional
edge conditions to a Fredholm operator

Aβ :
Wt,β(W)

⊕
Ht(Z, J−)

−→
Wt−2m,β−2m(W)

⊕
Ht−2m(Z, J+)

for suitable vector bundles J± over Z, where the fibre dimensions j± of J± satisfy the relation

j+ − j− = {ι(γ − 2m, d) +
m∑

j=1

ι(γ − μj −
1
2
, d − 1) − ι(γ, d)} − n(β, γ) (4.18)

for any γ ∈ R as in (4.2) (the right hand side of (4.18) is independent of γ).
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Proof. By assumption the conormal symbol (4.16) has no non-bijectivity points on Γ d
2−β for all

z ∈ Z. Thus
σ∧(Aβ)(z, ζ) : Kt,β

(
(Sd−1

+ )∧
)
→ Kt−2m,β−2m

(
(Sd−1

+ )∧
)

(4.19)

is a family of Fredholm operators. The main step of the construction of Aβ is to fill up (4.19) to a
family of isomorphisms. By virtue of (4.13) there exist elements J± ∈ Vect(Z) such that

ind
S∗Z

σ∧(Aβ) = [J+] − [J−] ∈ π∗K(Z).

Applying Remark 1.3.1 we find a family of isomorphisms

σ∧(Aβ) =
(

σ∧(Aβ) σ∧(Kβ)
σ∧(T β) σ∧(Qβ)

)
(z, ζ) :

Kt,β
(
(Sd−1

+ )∧
)

⊕
J−,z

→
Kt−2m,β−2m

(
(Sd−1

+ )∧
)

⊕
J+,z

smoothly depending on (z, ζ) ∈ S∗(Sd−2). In order to verify (4.18) we first note that the bijectivity
of σ∧(Aβ) entails the relation indσ∧(Aβ)(z, ζ) = j+ − j−. Moreover, we have a relation for
indσ∧(Aγ)(z, ζ) by (2.33) for s := γ. Then (4.18) is a consequence of (4.12).

4.3 Edge parametrices

Ellipticity for edge operators A has been studied for the case of differential operators A in the upper
left corner and differential boundary conditions (both edge-degenerate). In order to show the Fred-
holm property from the ellipticity with respect to (σψ, σ∂ , σ∧) we should construct parametrices in
the pseudo-differential edge calculus. In this section we outline the most important steps of that
construction. The general background will be Boutet de Monvel’s calculus of pseudo-differental
boundary value problems with the transmission property at the boundary.

First recall that for every (not necessary compact) C∞ manifold X with boundary there is
the space Bμ,d(X; Rl) of all parameter-dependent boundary value problems of Boutet de Monvel’s
calculus, of order μ ∈ Z and type d ∈ N. The elements are 2 × 2 block matrices of operators

A(λ) :
Hs

comp(X)
⊕

H
s− 1

2
comp(∂X,G−)

−→
Hs−μ

loc (X)
⊕

H
s−μ− 1

2
loc (∂X,G+)

(4.20)

for (smooth complex) vector bundles G± over ∂X (in the first component we take, for simplicity,
scalar operators). Here Hs

comp(X) := Hs
comp(2X)|intX , and, similarly, with ‘loc’, while ‘comp’ and

‘loc’ in the second component of the expression (4.20) is used in the standard meaning. In (4.20)
we assume s > − 1

2 .

Let us first give a definition of B−∞,d(X; Rl), the parameter-dependent smoothing operators
of type d ∈ N. For d = 0 and l = 0 this space is defined to be the set of all 2 × 2 block matrix
A that are (for the case of trivial G± of fibre dimension 1) integral operators with kernels in
C∞(X ×X), C∞(X × ∂X), C∞(∂X ×X) and C∞(∂X × ∂X), respectively (the generalisation to
non-trivial G± is straightforward). The space B−∞,0(X) then has a Fréchet topology, and we set
B−∞,0(X; Rl) := S(Rl,B−∞,0(X)). Moreover, B−∞,d(X; Rl) is the space of all operator families
of the form

C(λ) = C0(λ) +
d∑

j=1

Cj(λ)diag(Dj , 0)

for elements Cj(λ) ∈ B−∞,0(X; Rl) and any differential operator D of first order on X that is equal
to ∂xn

in a collar neighbourhood of ∂X.
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The space Bμ,d(X; Rl) of parameter-dependent pseudo-differential boundary value problems on
X with the transmission property of order μ ∈ Z and type d ∈ N is defined to be the set of all

A(λ) = diag(A(λ), 0) + G(λ) + C(λ) (4.21)

for arbitrary C(λ) ∈ B−∞,d(X; Rl), a Green operator family G(λ) (cf. the definition below) and
A(λ) = r+Ã(λ)e+ for an element Ã(λ) ∈ Lμ

cl(2X; Rl) that has the transmission property at the
boundary. Here e+ is the operator of extension by zero from intX to the double 2X, and r+ the
restriction from 2X to intX. Concerning the notation Lμ

cl(M ; Rl), cf. Section 1.1. Finally, G(λ)
is locally near the boundary in coordinates (x′, xn) ∈ R

n−1 × R+ of the form Opx′(g)(λ) for a
g(x′, ξ′, λ) of Green symbol of order μ and type d ∈ N. To recall the definition, a Green symbol of
order μ and type 0 is of the form

g0(x′, ξ′, λ) = diag(1, 〈ξ′, λ〉 1
2 )g̃0(x′, ξ′, λ)diag(1, 〈ξ′, λ〉− 1

2 )

for a g̃0(x′, ξ′, λ) ∈ Sμ
cl(R

n−1
x′ ×R

n−1+l
ξ′,λ ;L2(R+)⊕C

g− ;S(R+)⊕C
g+), such that the pointwise formal

adjoint g̃∗0(x′, ξ′, λ) is a symbol of the same kind with interchanged g±. A Green symbol of order
μ and type d ∈ N is then a sum

g(x′, ξ′, λ) = g0(x′, ξ′, λ) +
d∑

j=1

gj(x′, ξ′, λ)diag(
∂j

∂xj
n

, 0)

for Green symbols gj(x′, ξ′, λ) of order μ − j and type 0.

Remark 4.3.1. The space of all A(λ) ∈ Bμ,d(X; Rl) for fixed G± is a Fréchet space in a natural
way. More details on Boutet de Monvel’s calculus of boundary value problems may be found in
[5, 31].

Similarly as in boundary value problems for differential operators, cf. Section 1.2, every A ∈
Bμ,d(X; Rl) has a pair of parameter-dependent principal symbols

σ(A) = (σψ(A), σ∂(A)). (4.22)

We only need this here for l = 0. In particular, if we replace X by Wreg, we also have a pair of
stretched symbols locally near Wsing, namely, σ̃(A) = (σ̃ψ(A), σ̃∂(A)), cf. (1.12) and (1.14). There
is then a straightforward analogue of Definition 1.2.2 for Bμ,d(Wreg).

Theorem 4.3.2. There is a (so-called) Mellin quantization

C∞(R+ × Ω,Bμ,d(X; R1+q

ρ̃,ζ̃
)) → C∞(R+ × Ω,Bμ,d(X; C × R

q

ζ̃
)), p̃(r, z, ρ̃, ζ̃) �→ h̃(r, z, w, ζ̃)

such that opr(p)(z, ζ) = opγ
M (h)(z, ζ) mod C∞(Ω,B−∞,d(X∧; Rq

ζ)) for

p(r, z, ρ, ζ) := p̃(r, z, rρ, rζ), h(r, z, w, ζ) := h̃(r, z, w, rζ).

In addition, setting

p0(r, z, ρ, ζ) := p̃(0, z, rρ, rζ), h0(r, z, w, ζ) := h̃(0, z, w, rζ),

we also have opr(p0)(z, ζ) = opγ
M (h0)(z, ζ) mod C∞(Ω,B−∞,d(X∧; Rq

ζ)).

A proof of Theorem 4.3.2 is given in [14].

Let W be a compact manifold with edge Z and boundary, V = ∂(W \Z)∪Z, and W and V be
the associated stretched manifolds, cf. the notation in Remark 1.1.1. The parametrices which we
want to express belong to the edge algebra Yμ,d(W), μ ∈ Z, d ∈ N, of boundary value problems
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on W. Set Ws,γ(W;G) := Ws,γ(W) ⊕Ws− 1
2 ,γ− 1

2 (V, G) for any vector bundle G on V. Operators
in the edge algebra are 3 × 3-block matrices

A = (Aij)i,j=1,2,3 :
Ws,γ(W;G−)

⊕
Hs(Z, J−)

−→
Ws−μ,γ−μ(W;G+)

⊕
Hs−μ(Z, J+)

(4.23)

with vector bundles G± on V and J± on Z, where (Aij)i,j=1,2 ∈ Bμ,d(Wreg). The continuity of
(4.23) will be a consequence of Definition 4.3.3 below.

Global smoothing operators C in the edge calculus for type d = 0 are characterised by the
mapping property

C :
Ws,γ(W;G−)

⊕
Hs(Z, J−)

−→
W∞,γ−μ+ε(W;G+)

⊕
H∞(Z, J+)

for some ε > 0, together with a similar mapping property for the formal adjoint C∗, and an
ε(C) > 0. For arbitrary type d ∈ N the global smoothing operators have the form

C = C0 +
d∑

j=1

Cjdiag(Dj , 0, 0) (4.24)

with D being of similar meaning as in Boutet de Monvel’s calculus on a smooth manifold with
boundary, and Cj global smoothing operators of type 0. Let Y−∞,d(W) denote the space of all
such operators C.

Let us fix cut-off functions ω(r), ω0(r), ω1(r), σ(r), σ0(r), where ω0 ≡ 1 on suppω, ω ≡ 1 on
suppω1, and form the 2 × 2-block matrix operator

a(z, ζ) := r−μσ(r){ω(r[ζ]) opγ−n
2

M (h)(z, ζ)ω0(r[ζ])
+ (1 − ω(r[ζ])) opr(p)(z, ζ)(1 − ω1(r[ζ]))}σ0(r), (4.25)

where p is related to h via the Mellin quantisation. We then have

a(z, ζ) = diag(1, 〈ζ〉 1
2 )ã(z, ζ)diag(1, 〈ζ〉− 1

2 )

for a symbol ã(z, ζ) ∈ Sμ
cl(Ω × R

q;Ks,γ(X∧;G−),Ks−μ,γ−μ(X∧;G+)); the spaces are defined by

Ks,γ(X∧;G) :=
Ks,γ(X∧)

⊕
Ks− 1

2 ,γ− 1
2 ((∂X)∧;G)

for any vector bundle G over X∧ with the group action diag({κ(n)
δ }δ∈R+ , {κ(n−1)

δ }δ∈R+). More-
over, let M−∞,d(X; Γβ) denote the space of all functions f(w) that are holomorphic in β − ε <
Re w < β + ε taking values in the space B−∞,d(X) for some ε(f) > 0, such that f(δ + iρ) ∈
S(Rρ,B−∞,d(X)) for every β − ε < δ < β + ε, uniformly in compact subintervals. Then, for any
f(z, w) ∈ C∞(Ω,M−∞,d(X; Γn+1

2 −γ)) we form the operator family

m(z, ζ) := r−μω(r[ζ]) opγ−n
2

M (f)(z)ω0(r[ζ]) (4.26)

for any fixed choice of cut-off functions ω, ω0. If we assume f to take values in smoothing operators
of Boutet de Monvel’s calculus referring to bundles G± on the boundary, we have m(z, ζ) =
diag(1, 〈ζ〉 1

2 )m̃(z, ζ)diag(1, 〈ζ〉− 1
2 ) for a symbol

m̃(z, ζ) ∈ Sμ
cl(Ω × R

q;Ks,γ(X∧;G−),K∞,γ−μ(X∧;G+)).
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It remains to explain the contribution of trace (and potential) operators to the edge calcu-
lus on the symbolic level. For parametrices it turns out that (similarly as in boundary value
problems) we also need an analogue of Green operators. These can be formulated together with
the trace and potential operators at the same time. For the definition we set Sγ(X∧;G) :=
Sγ(X∧) ⊕ Sγ− 1

2 ((∂X)∧, G). A Green symbol g(z, ζ) of order μ ∈ R and type 0 is an operator-
valued symbol g(z, ζ) = diag(1, 〈ζ〉 1

2 , 1)g̃(z, ζ)diag(1, 〈ζ〉− 1
2 , 1) for a symbol g̃(z, ζ) that belongs

to Sμ
cl(Ω × R

q;E, Ẽ) with spaces E := Ks,γ(X∧;G−) ⊕ C
j− for arbitrary s > − 1

2 , and Ẽ :=
Sγ−μ+ε(X∧;G+) ⊕ C

j+ for some ε(g̃) > 0, such that the pointwise formal adjoint g∗(z, ζ) is of
analogous structure. Moreover, a Green symbol g(z, ζ) of order μ ∈ R and type d ∈ N is defined as

g(z, ζ) = g0(z, ζ) +
d∑

j=1

gj(z, ζ)diag(Dj , 0, 0) (4.27)

for Green symbols gj(z, ζ) of order μ and type 0, where D is of similar meaning as in (4.24).

Definition 4.3.3. Let W be a compact manifold with edge Z and boundary, and W be the
associated stretched manifold. A 3 × 3-block matrix operator A is said to belong to the space
Yμ,d(W) of edge boundary value problems of order μ ∈ Z and type d ∈ N if A is modulo an
operator in Y−∞,d(W) of the following structure:
(i) (Aij)i,j=1,2 ∈ Bμ,d(Wreg);
(ii) locally near Wsing in the splitting of variables into (r, x, z) ∈ X∧ × Ω we have A = Opz(a),
where a(z, ζ) is an amplitude function of order μ of the form

a(z, ζ) =
(

a(z, ζ) + m(z, ζ) 0
0 0

)
+ g(z, ζ)

for symbols (4.25), (4.26) and (4.27), respectively.

Operators A ∈ Yμ,d(W) induce continuous operators (4.23) for s ∈ R, s > d − 1
2 . This is

an easy consequence of the continuity of local operators with amplitude functions a(z, ζ) in edge
Sobolev spaces (together with the continuity of (Aij)i,j=1,2 in standard (local) Sobolev spaces on
Wreg). Modulo compact operators an operator A ∈ Yμ,d(W) is determined by its principal symbol

σ(A) =
(
σψ(A), σ∂(A), σ∧(A)

)
,

similarly defined as (1.11). The interior symbol σψ(A) is nothing other than the homogeneous
symbol of A11 ∈ Lμ

cl(intWreg). In the local splitting of variables (r, x, z) near Wsing we can write

σψ(A)(r, x, z, ρ, ξ, ζ) = r−μσ̃ψ(A)(r, x, z, rρ, ξ, rζ)

for the compressed interior symbol σ̃ψ(A)(r, x, z, ρ̃, ξ, ζ̃) which is smooth up to r = 0. Moreover,
from (Aij)i,j=1,2 ∈ Bμ,d(Wreg) we have the homogeneous boundary symbol

σ∂(A) := σ∂((Aij)i,j=1,2).

In the local variables (r, x′, z) near Vsing we have

σ∂(A)(r, x′, z, ρ, ξ′, ζ) = r−μσ̃∂(A)(r, x′, z, rρ, ξ′, rζ)

for the compressed boundary symbol σ̃∂(A)(r, x′, z, ρ̃, ξ′, ζ̃) which is smooth up to r = 0.

Finally, we have the homogeneous principal edge symbol

σ∧(A)(z, ζ) :
Ks,γ(X∧;G−)

⊕
J−,z

−→
Ks−μ,γ−μ(X∧;G+)

⊕
J+,z

(4.28)
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for (z, ζ) ∈ T ∗Z \ 0. Here

σ∧(A)(z, ζ) :=
(

σ∧(a + m)(z, ζ) 0
0 0

)
+ σ∧(g)(z, ζ)

for

σ∧(a)(z, ζ) = r−μ{ω(r|ζ|) opγ−n
2

M (h0)(z, ζ)ω0(r|ζ|) + (1 − ω(r|ζ|)) opr(p0)(z, ζ)(1 − ω1(r|ζ|))},

σ∧(m)(z, ζ) = r−μω(r|ζ|) opγ−n
2

M (f)(z)ω0(r|ζ|),
and σ∧(g)(z, ζ) is the homogeneous principal part of g as a classical operator-valued symbol.

Remark 4.3.4. Let A ∈ Yμ,d(W), B ∈ Yν,e(W) and assume that the bundles in the range of B
fit to the ones in the domain of A. Then we have AB ∈ Yμ+ν,h(W) for h = max(d + ν, e) and
σ(AB) = σ(A)σ(B) with componentwise composition.

Definition 4.3.5. An A ∈ Yμ,d(W) is said to be elliptic if
(i) A := (Aij)i,j=1,2 ∈ Bμ,d(Wreg) is elliptic in the sense of Definition 1.2.2 (here in the correspond-
ing pseudo-differential set-up, cf. the notation (4.22));
(ii) (4.28) is a family of isomorphisms for (z, ζ) ∈ T ∗Z \ 0 and s > max(μ, d) − 1

2 .

Theorem 4.3.6. The ellipticity of an operator A ∈ Yμ,d(W) entails the existence of a parametrix
P ∈ Y−μ,(d−μ)+(W) such that AP−I and PA−I are smoothing and of type (d−μ)+ and max(μ, d),
respectively (with I being the respective identity operators). Moreover, an elliptic operator A induces
a Fredholm operator (4.28) for every s > max(μ, d) − 1

2 (here ν+ := max(ν, 0) for any ν ∈ R).

The existence of a parametrix can be proved in a similar manner as a corresponding result in
[14] which concerns subclasses with (discrete or continuous) asymptotics.

4.4 Concluding remarks

In the general calculus of the preceding section we made a few simplifying technical assumptions on
the orders of the operators referring to ∂Wreg and the edge Z. They are not really essential, because
there are order and weight reducing isomorphisms within the edge calculus on the boundary. First
observe that our space Yμ,d(W) of edge operators contains a subspace of 2× 2-lower right corners
which may be identified with the space Yμ(V) of edge operators of order μ on V (recall that V

is the stretched manifold belonging to V = ∂(W \ Z) ∪ Z which is a (compact) manifold without
boundary and with edge Z). Ellipticity in Yμ(V) is induced by the one on Yμ,d(W).

In order to reduce orders it suffices to employ the following result:
For every ν, γ ∈ R there exists an elliptic element Rν ∈ Yν(V) which induces isomorphisms

Rν : Ws,γ(V, G) → Ws−ν,γ−ν(V, G) (4.29)

for every vector bundle G over V. Then, in order to reduce our operators Aγ of the kind (4.15) to
the set-up of Definition 4.3.3 it suffices to compose Aγ with diagonal matrices of operators (4.29)
for suitable ν, plus (in the ⊕ sense) the identity in the upper left corner, and diagonal matrices of
standard reductions of orders on Z in the space of classical pseudo-differential operators on a C∞

manifold. Here we also use Remark 4.3.4.

Theorem 4.4.1. An elliptic operator of the form Aβ, cf. Theorem 4.2.2, has a parametrix in the
edge pseudo-differential calculus on W, modified by reductions of orders on V and Z, respectively.

This is an immediate consequence of Theorem 4.3.6.
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Remark 4.4.2. Theorem 4.4.1 can be regarded as a result on Mellin quantisation of an element
of Boutet de Monvel’s calculus on a smooth manifold with boundary, relative to a ‘fictitious’ edge
which is an embedded compact C∞ manifold Z on the boundary. This gives us wide classes of
examples of elliptic edge boundary value problems in weighted edge Sobolev spaces, where ellipticity
refers to all three principal symbolic components, including the evaluation of the (difference of the)
number of trace and potential edge conditions.

Let Yμ,d(W) denote the space of all 2 × 2 upper left corners of operators in Yμ,d(W); by
definition we then have Yμ,d(W) ⊂ Bμ,d(Wreg). In Yμ,d(W) we also have the three components
(σψ, σ∂ , σ∧).

Theorem 4.4.3. Let Aγ ∈ Yμ,d(W) be elliptic with respect to (σψ, σ∂) (which induces the corre-
sponding conditions with respect to (σ̃ψ, σ̃∂) near Wsing). Then for every z ∈ Z there is a countable
set D(z) ⊂ C as in Theorem 1.2.3 such that

σ∧(Aγ)(z, ζ) : Ks,γ(X∧;G−) → Ks−μ,γ−μ(X∧;G+)

is a Fredholm operator for every ζ �= 0 and every γ ∈ R satisfying (1.18).

This result is a direct generalisation of Theorem 1.2.3 to the operator classes of Definition 4.3.3.

Remark 4.4.4. Theorem 1.3.2 can be generalised to the space Yμ,d(W). More precisely, if γ ∈ R

is a weight such that (1.18) holds for all z ∈ Z we can form an index element ind
S∗Z

σ∧(Aγ) ∈
K(S∗Z). Then if Aγ is an element of Yμ,d(W) with respect to different weights γ0, γ1 (which is
not always the case) then we can prove again the relation (1.26). The property (1.24) is just a
necessary and sufficient condition for being able to complete Aγ by additional edge conditions to
an elliptic element Aγ ∈ Yμ,d(W).

Remark 4.4.5. If (1.26) is satisfied the index elements ind
S∗Z

σ∧(Aγi) for i = 0, 1 are related
to each other by a similar relative index relation as formulated in Corollary 4.1.3 in parameter-
dependent form. This is related to the parameter-dependent spectral flow of the conormal symbol,
similarly as in [20].

Remark 4.4.6. The general edge calculus for boundary value problem, introduced in Definition
4.3.3 is more general than that treated in [14] which is a subcalculus with continuous (and also
discrete) asymptotics near the edges. Let us also note that the calculus admits a generalisation
to the case that ∂W is not necessarily a trivial X-bundle, similarly as in [9] for the case without
boundary.
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