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1. This paper deals with some model examples of first order semilinear non-
strictly hyperbolic systems and with the singularities of the solutions of the corre-
sponding generalized Cauchy problem for them. The initial data are assumed to
have finite jump type discontinuities along two characteristic surfaces Σ1, Σ2 which
cross transversally along Γ0 = Σ1 ∩ Σ2. We are interested in the production of log-
arithmic singularities from the interaction of these piecewise smooth waves at the
surface Γ0 which is not contained in a spacelike manifold. The result proposed here
was influenced by the considerations in [M-R1] and [L]. For the sake of complete-
ness we remind of the reader /see [B]/ that for a regular embedded hypersurface
Σ, a distribution u, defined in a neighbourhood of Σ, is said to be conormal of
order s iff for any finite set of vector fields V1, . . . , VN tangent to Σ we have that
V1 . . . VNu ∈ Hs

loc. Suppose now that Σi, 1 ≤ i ≤ µ are regular characteristic sur-
faces for the strictly hyperbolic semilinear system Pm(D)u = F (x,Dm−1u), m ≥ 1
and that Σ1, Σ2 cross transversally in Γ0 = Σ1 ∩Σ2, while Σi, 3 ≤ i ≤ µ are passing
through Γ0. We assume that Dm−1u is locally bounded on the domain of definition
Ω of u and Σi ∩ {t > 0} is located in the domain of determinacy of Ω ∩ {t < 0} for
all i, 1 ≤ i ≤ µ. The solution u is conormal with respect to Σ1 and Σ2 for t < 0
and it has singular support disjoint from Γ0. Then one can prove /see [B]/ that
singsupp u ⊂ ∪µ

i=1Σi and u is conormal at all points of Σi \Γ0. Let us note that the
characteristic surfaces Σi locally cut space-time into 2µ wedges and by definition u
is said to be piecewise smooth in t < 0 or t > 0 if u is smooth in the closure of each
wedge.

Suppose now that we have an interaction of two piecewise smooth in t < 0 waves
described by the previous system. Then it was shown in [M-R2] that the solution
u remains piecewise smooth in t > 0 provided that Γ0 is contained in a spacelike
hypersurface. Similarily, if one studies the Cauchy problem with piecewise smooth
data singular accross Γ0 ⊂ {t = 0}, there is a local existence of a piecewise smooth
solution singular along the characteristic hypersurfaces passing through Γ0.

In contrast with [M-R1, M-R2] and [L] we investigate a non-strictly hyperbolic
12000 AMS Subject Classificalion: Primary 35L60, 35L67; Secondary 35L45, 35A30.
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semilinear system (the generalized Cauchy problem) and we find out a necessary
and sufficient condition for creation of logarithmic type singularity.

§1. Statement of the problem and formulation of the main results
Consider the following semilinear non-strictly hyperbolic 5 × 5 system in R1

t ×
R2

x1,x2
:

(1)





√
2∂tu1 +

√
2∂x1u1 + ∂tu2 + ∂x1u2 + ∂x2u2 = 0

∂tu1 + ∂x1u1 + ∂x2u1 +
√

2∂tu2 +
√

2∂x2u2 = 0

(∂x1 + ∂x2 + ∂t)v = w1

∂tw1 + 2∂x1w1 + 2∂x2w2 = 0

2∂x1w1 + ∂tw2 − 2∂x1w2 = ψ(4t− x1 − x2)u1u2

equipped by Cauchy data on the non-characteristic hyperplane α : t =
x1 + x2

4
:

w1, w2, v|t< x1+x2
4

= 0 and such that u1 = (t−x1)k1θ(t−x1), u2 = (t−x2)k2θ(t−x2)

for t <
x1 + x2

4
, ψ(τ) = τk3θ(τ), ∀τ ∈ R1. As usual, θ(τ) stands for the Heaviside

function and ki ∈ Z+, i = 1, 2, 3. Classical solutions can exist for ki ≥ 3, i = 1, 2, 3.
Moreover, supp ψu1u2 ⊂ {t ≥ x1, t ≥ x2}.

This is our main result.
Theorem 1. There exists a (k1+k2+2) order linear partial differential operator

with constant coefficientd M(D), D = (∂x1 , ∂x2 , ∂t) and such that M(D)w1 has a
square root-logarithmic type singularity across the light cone surface of the future
K+

2 = {2t = |x|} and singsupp Mw1 = K+
2 ∪ Γ+, where Γ+ = {x1 = x2 = t ≥ 0}.

Consider now the stright line collinear with the radial vector field l = ∂t + ∂x1 + ∂x2,
starting from the point P3 ∈ α and hitting the cone K+

2 at the point P1. Then
M(D)v is C∞ smooth in a neighbourhood of the line segment P3P1 located outside
K+

2 and over the plane α and M(D)v has a logarithmic-square root type singularity
accross K+

2 , singsupp Mv = K+
2 ∪ Γ+.

Remark 1. At the end of this paper a necessary and sufficient condition for the
existence of logarithmic type singularity of M(D)w1 is found. The operator M(D)
is given by: M(D) = (3∂x1 + ∂x2 + ∂t)k1+1(∂x1 + 3∂x2 + ∂t)k2+1.

M(D)w1 has a loharithmic-square root type singularity accross K+
2 if, by def-

inition, M(D)w1 = P (x, t)
√
f1(x, t) + Q(x, t) log f2(x, t) near K+

2 , where P,Q ∈
C∞((1− ε)|x| < 2t < (1+ ε)|x|) for some 0 < ε¿ 1 and f1, f2 ∈ C∞(0 < |x| ≤ 2t <
|x|(1 + ε)), f1|K+

2
= 0 f2|K+

2
= 1, f1 > 0, f2 > 0 for 0 < |x| < 2t < |x|(1 + ε).

We propose in Fig. 1 a physical interpretation of the just formulated theorem.
We are studying the propagation of five semilinear waves. Two of them are piecewise
smooth travelling waves starting from −∞ and the corresponding characteristics are
Σ1 : t − x1 = 0, Σ2 : t − x2 = 0. Certainly, Σ1, Σ2 are transversal each to other.
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Figure 1:

The other three waves have initial data prescribed on the noncharacteristic plane α.
Moreover, α ∩ Σ1 ∩ Σ2 = 0, 0 being the origin in R3. Our waves have a collision
at the ray Γ+||l. The stright line Γ+ is not contained in a space like manifold.
The hyperplanes Σ1, Σ2 are tangential to the characteristic cone surface of the
future K+

1 = {t = |x|, x ∈ R2} of the system (1) but they are transversal to the
second characteristic cone surface of the future K+

2 and 0l is located between K+
1

and K+
2 . Due to the interaction of the waves at Γ+ and the tangencity of Σ1,2 to

K+
1 new singularities of w1, w2, v were born. More precisely, singsupp Mw1,2 =

singsupp Mv = K+
2 ∪ Γ+ and Mw1,2, Mv possess logarithmic-square root type

singularities accross K+
2 .

Some preliminary notes
At first we shall show that (1) is non-strictly hyperbolic system with respect to

t. To do this we shall write (1) in the following form:

(2) A0∂tU +A1∂x1U +A2∂x2U = F,

where

A0 =




√
2 1 0 0 0

1
√

2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



, A1 =




√
2 1 0 0 0

1 0 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 −2



,
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A2 =




0 1 0 0 0
1

√
2 0 0 0

0 0 1 0 0
0 0 0 0 2
0 0 0 2 0



, F =




0
0
w1

0
ψu1u2



, U =




u1

u2

v
w1

w2



.

Thus, det(τA0+ξ1A1+ξ2A2) =
[
2(τ + ξ1)(τ + ξ2)− (τ + ξ1 + ξ2)2

]
(τ+ξ1+ξ2)(τ2−

4ξ21 − 4ξ22) = (τ2 − ξ21 − ξ22)(τ + ξ1 + ξ2)(τ2 − 4ξ21 − 4ξ22). So we find the real smooth
roots of the characteristic equation

τ1,2 = ±
√
ξ21 + ξ22 , (ξ1, ξ2) 6= 0

τ3,4 = ±2
√
ξ21 + ξ22 , (ξ1, ξ2) 6= 0

τ5 = −(ξ1 + ξ2)

Obviously, τ1 6= τ2, τ3 6= τ4, τ1,2 6= τ3,4 and τ3,4 = τ5 ⇐⇒ ξ1 = ξ2 = 0. On
the other hand, τ5 = τ1,2 ⇐⇒ ξ1ξ2 = 0, (ξ1, ξ2) 6= 0. So we conclude that (1) is
non-strictly hyperbolic system w.r. to t. Geometrically, the line τ = −(ξ1 + ξ2),
ξ1, ξ2 = 0 is a generatrix of the characteristic cone τ2 = (ξ21 + ξ22). We shall see now

that the hyperplane t =
x1 + x2

4
is non-characteristic to (1). More generally, let

Φ ≡ t+ α1x1 + α2x2. Then Φ = 0 is non-characteristic to (1) iff

det(ΦtA0 + Φx1A1 + Φx2A2) 6= 0 on Φ = 0, i. e. iff

(3) det(A0 + α1A1 + α2A2) 6= 0.

But we know that det(τA0 + ξ1A1 + ξ2A2) = (τ + ξ1 + ξ2)(τ2− (ξ21 + ξ22))(τ
2−4(ξ21 +

ξ22)) ⇒ det(A0 + α1A1 + α2A2) = det(τA0 + ξ1A1 + ξ2A2)|τ=1,ξ1=α1,ξ2=α2 .
Conclusion. The hyperplane Φ = t+α1x1+α2x2 = 0 is noncharacteristic to our

system (1) iff
{

α2
1 + α2

2 6= 1, 1/4
α1 + α2 6= −1

. As α1 = α2 = 1/4 for t =
x1 + x2

4
we conclude

that the initial hyperplane is non-characteristic /free surface /or/ space-like one/ to
(1).

As each classical solution of the linear PDE (∂t + ∂x1)u1 = 0 has the form
u1 = f1(t − x1), f1 ∈ C1, (∂t + ∂x2)u2 = 0, u2 = f2(t − x2), f2 ∈ C1, f1, f2 being
arbitrary functions we see that the 1st and 2nd equations of the system (1) are
identically satisfied in R2 by u1 = (t − x1)k1θ(t − x1), u2 = (t − x2)k2θ(t − x2).
Our next step is to eliminate w2 from the last two equations of (1). To do this we
differentiate the 4th equation w.r. to x1 and the 5th equation w.r. to x2. Therefore,

(∂2
tx1

+ 2∂2
x1

)w1 + 2∂2
x2
w2 + ∂2

tx2
w2 =

∂

∂x2
(ψu1u2).
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On the other hand, the 4th equation gives:

∂2
tw1 + 2∂2

x1tw1 + 2∂2
x2tw2 = 0.

This way,

(4) ∂2
tw1 − 4(∂2

x1
+ ∂2

x2
)w1 = −2

∂

∂x2
(ψu1u2), i. e.

¤2w1 = −2
∂

∂x2
(ψu1u2) = −2ψ

∂

∂x2
(u1u2) + 2ψ′u1u2

and ψ ≡ ψ(4t− x1 − x2).

§2. Lorenz transformations applied to some hyperbolic equations
A non-degenerate linear change of the variables (x1, x2, t) /respectively (x1, x2, x3, t)/
is called a Lorenz change iff it concerves the hyperbolic equation ¤cu = utt −
c2(ux1x1 + ux2x2) = f /respectively ¤cu = utt − c2(ux1x1 + ux2x2 + ux3x3) = f/,
c = const > 0, up to the constant c /see [N]/.

We are looking for a Lorenz transformation of the following form:

(5)





y1 = λ(t− x1) + (t− x2)
y2 = (t− x1) + λ(t− x2)

τ = 4t− x1 − x2, λ = const 6= 0.

Thus the Cauchy data of (1) are prescribed on the hyperplane τ = 0 and we are

looking for a solution in the half space τ > 0 (i.e. t >
x1 + x2

4
). We point out

that singsupp u1 = {t = x1} = Σ1, singsupp u2 = {t = x2} = Σ2 and that the

wedge W = {(x1, x2, t) : t ≥ x1, t ≥ x2} has the edge Γ :
∣∣∣∣
x1 = t
x2 = t

. Assuming

the change (5) to be nondegenerate we see that (5) transforms the wedge W into
the wedge W̃ whose edge Γ̃ is the τ axes: (τ = 2t, y1 = y2 = 0). Equivalently,
ψ(4t− x1− x2) = ψ(τ) = τk3θ(τ) ≡ τk3

+ . Moreover, if λ > 0 then W̃ turns out to be
a wedge /acute cenral angle/ contained in R2

y1y2
. So (5) can be rewritten as




y1 = t(λ+ 1)− λx1 − x2

y2 = t(λ+ 1)− x1 − λx2

τ = 4t− x1 − x2

and 0 6=
∣∣∣∣∣∣

−λ −1 λ+ 1
−1 −λ λ+ 1
−1 −1 4

∣∣∣∣∣∣
= 2(λ2 − 1),

i.e. we must take λ 6= 1. Easy computations give us:

∂u

∂x1
= −λ ∂u

∂y1
− ∂u

∂y2
− ∂u

∂τ

∂u

∂x2
= − ∂u

∂y1
− λ

∂u

∂y2
− ∂u

∂τ
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∂u

∂t
= (λ+ 1)

∂u

∂y1
+ (λ+ 1)

∂u

∂y2
+ 4

∂u

∂τ
.

The change (5) is Lorenzian one iff λ 6= ±1 and ¤2 is transformed in ¤c with some
c > 0.

Then

¤2u = utt − 4(ux1x1 + ux2x2) =
[
(λ+ 1)

∂

∂y1
+ (λ+ 1)

∂

∂y2
+ 4

∂

∂τ

]2

u

−4
(
λ
∂

∂y1
+

∂

∂y2
+

∂

∂τ

)2

u− 4
(

∂

∂y1
+ λ

∂

∂y2
+

∂

∂τ

)2

u

=
[(

(λ+ 1)2 − 4(λ2 + 1)
) ∂2

∂y2
1

+
(
(λ+ 1)2 − 4(λ2 + 1)

) ∂2

∂y2
2

+ 8
∂2

∂τ2
+ (2(λ+ 1)2

− 16λ)
∂2

∂y1∂y2
+ (8(λ+ 1)− 8(λ+ 1))

∂2

∂y1∂τ
+ (8(λ+ 1)− 8− 8λ)

∂2

∂y2∂τ

]
u.

We put 2(λ+1)2−16λ = 0 ⇒ λ1,2 = 3±2
√

2 and we take λ = 3+2
√

2 = (1+
√

2)2 6=
1.

So the operator ¤2 takes the form

(6) ¤2u = 8
∂2u

∂τ2
−16(3+2

√
2)

(
∂2u

∂y2
1

+
∂2u

∂y2
2

)
= 8(uττ −2(3+2

√
2)(uy1y1 +uy2y2)).

This way we conclude that (4) has the following form in the new coordinates
(y1, y2, τ):

1
8
¤2w1 =

∂2w1

∂τ2
− 2(3 + 2

√
2)

(
∂2w1

∂y2
1

+
∂2w1

∂y2
2

)

(7) =
1
4
ψ(τ)u1(t− x1)u′(t− x2) +

1
4
ψ′(τ)u1(t− x1)u2(t− x2).

Thus, ¤2 = 8¤c, c =
√

2(3 + 2
√

2) = 2 +
√

2.

On the other hand, the first two equations from (5) show that t−x1 =
λy1 − y2

λ2 − 1
,

t− x2 =
λy2 − y1

λ2 − 1
. So

∂2w1

∂τ2
− 2(3 + 2

√
2)

(
∂2w1

∂y2
1

+
∂2w1

∂y2
2

)
=

1
4
ψ(τ)u1

(
λy1 − y2

λ2 − 1

)
u′2

(
λy2 − y1

λ2 − 1

)

(8) +
1
4
ψ′(τ)u1

(
λy1 − y2

λ2 − 1

)
u2

(
λy2 − y1

λ2 − 1

)
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λ = 3 + 2
√

2, and the support of the right hand side is contained in λy1 − y2 ≥ 0,
λy2 − y1 ≥ 0, τ ≥ 0, w1|τ<0 = 0.

There are no difficulties to compute the inverse transformation of (5). It is of
Lorenz type, certainly. According to the 3rd equation in (5):

τ = 2t+ (t− x1) + (t− x2) = 2t+
y1 + y2

λ+ 1
i.e.

t = τ − y1 + y2

2(λ+ 1)
.

So the inverse transformation of (5) is given by:

(9)





x1 =
τ

2
− (λ− 3)y2 + y1(3λ− 1)

2(λ2 − 1)

x2 =
τ

2
− (λ− 3)y1 + y2(3λ− 1)

2(λ2 − 1)

t =
τ

2
− y1 + y2

2(λ+ 1)

.

Suppose now that u(x, t) ∈ C1(R3). Then the Lorenz change (5) implies:
∂u

∂τ
=

1
2

(
∂u

∂x1
+

∂u

∂x2
+
∂u

∂t

)
. Therefore, the radial vector field l =

∂

∂x1
+

∂

∂x2
+

∂

∂t
is

transformed under the diffeomorphism (5) into the vector field 2
∂

∂τ
.

Let us consider the smooth nondegenerate change in R3:

(10) z1 =
λy1 − y2

λ2 − 1
, z2 =

λy2 − y1

λ2 − 1
, τ = τ, i. e.

the 0τ axes is conserved.

Having in mind that
∂u

∂y1
=

∂u

∂z1

λ

λ2 − 1
− ∂u

∂z2

1
λ2 − 1

=
1

λ2 − 1

(
λ
∂

∂z1
− ∂

∂z2

)
u

and
∂u

∂y2
=

1
λ2 − 1

(
λ
∂

∂z2
− ∂

∂z1

)
u,
∂u

∂τ
=
∂u

∂τ
we rewrite (8) as:

(11)
∂2w1

∂τ2
− 2(3 + 2

√
2)

(λ2 − 1)2

[(
λ
∂

∂z1
− ∂

∂z2

)2

+
(
λ
∂

∂z2
− ∂

∂z1

)2
]
w1 =

=
1
4
ψ(τ)u1(z1)u′2(z2) +

1
4
ψ′(τ)u1(z1)u2(z2).

Thus,

(12)
∂2w1

∂τ2
− 1

16(1 +
√

2)2

(
(λ2 + 1)

∂2

∂z2
1

+ (λ2 + 1)
∂2

∂z2
2

− 4λ
∂2

∂z1∂z2

)
w1 =

7



=
1
4
(∂τ + ∂z2)ψu1u2.

Certainly, the second order operator in the brackets is strictly elliptic in the plane
0z1z2 / λ = (1 +

√
2)2/.

The inverse change of (10) is given by the formula

(13) y1 = λz1 + z2, y2 = λz2 + z1, τ = τ, i.e. in matrix form
(
z1
z2

)
= A

(
y1

y2

)
, A =

1
λ2 − 1

(
λ −1
−1 λ

)
, A−1 =

(
λ 1
1 λ

)
,

detA = λ2 − 1. Put c2 =
λ2 + 1

16(1 +
√

2)2
, a = − 4λ

1 + λ2
⇒ c2 =

3(3 + 2
√

2)
8(1 +

√
2)2

=
3
8
,

a = −2
3
.

This way (12) takes the form:

(14)
∂2w1

∂τ2
− c2

(
∂2

∂z2
1

+
∂2

∂z2
2

+ a
∂2

∂z1∂z2

)
w1 =

=
1
4
(∂τ + ∂z2)ψ(τ)u1(z1)u2(z2),

where c =
1
2

√
3
2
, a = −2

3
.

Our next step is to find the fundamental solution E(x, t) of the linear operator
Q(D) participating in the left hand side of (14). Thus:

(15)
∂2E

∂τ2
− c2

(
∂2E

∂z2
1

+
∂2E

∂z2
2

+ a
∂2E

∂z1∂z2

)
= δ(τ)⊗ δ(z),

where δ is the standard Dirac delta function supported at the origin. Applying the

inverse change
∣∣∣∣
y = A−1z
τ = τ

to (10) we know that (15) transforms into

(16)
∂2E

∂τ2
− 2(1 +

√
2)2

(
∂2E

∂y2
1

+
∂2E

∂y2
2

)
= δ(τ)⊗ δ(Ay),

The identity δ(Ay) =
δ(y)
| detA| =

δ(y)
λ2 − 1

=
δ(y)

4
√

2(1 +
√

2)2
gives us

(17) ¤2+
√

2E =
δ(τ)⊗ δ(y)

4
√

2(1 +
√

2)2

and therefore E.4
√

2(1 +
√

2)2 is a fundamental solution of ¤2+
√

2.
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Conclusion: Put

(18) E(y, τ) =
1

4
√

2(1 +
√

2)2
· θ((2 +

√
2)τ − |y|)

2π(2 +
√

2)
√

(2 +
√

2)2τ2 − |y|2

=
1

16
√

2(1 +
√

2)3π
θ((2 +

√
2)τ − |y|)√

2(1 +
√

2)2τ2 − |y|2
.

Then ¤2+
√

2E = δ(τ, y) /see [V] for example or [H]/.
Going back to the coordinates (z1, z2) we obtain:

Q(D)E(z, τ) = δ(τ)⊗ δ(z), E(z, τ) =
1

16
√

2(1 +
√

2)3π
· θ(

√
2(1 +

√
2)τ − |A−1z|)√

2(1 +
√

2)2τ2 − |A−1z|2
.

So according to (14):

(19)





Q(D)w1 = g(z, τ), g(z, τ) =
1
4
(∂τ + ∂z2)ψ(τ)u1(z1)u2(z),

w1|τ<0 = 0.

Certainly, the Cauchy problem (19) is satisfied in the sense of Schwartz distributions
D′(R3). Obviously, supp g ⊂ {τ ≥ 0} and more precisely, supp g ⊂ {τ ≥ 0, z1 ≥
0, z2 ≥ 0}, supp E ⊂ {0 ≤ |A−1z|

2 +
√

2
≤ τ}.

The theory of the generalized Cauchy problem for strictly hyperbolic constant
coefficients differential operators in D′ /[V]/ gives that (19) has a unique solution
that can be written in a convolutional form:
(20)

w1(z, τ) = E ∗ g(z, τ) = c̃

∫ ∫ ∫

R3

θ(τ − µ− |A−1( z−ν
2+
√

2
)|)g(ν1, ν2, µ) dν1dν2dµ√

2(1 +
√

2)2(τ − µ)2 − |A−1(z − ν)|2
=

= c1

∫ ∫ ∫

R3

θ(τ − µ)− | A−1

2+
√

2
(z − ν)|)g(ν1, ν2, µ) dν1dν2dµ√

(τ − µ)2 − | A−1

2+
√

2
(z − ν)|2

, c1 =
1

32(1 +
√

2)4π
.

We point out that K̂(z,τ) = {(ν, µ) : µ ≥ 0, τ − µ ≥ | A−1

2+
√

2
(z − ν)|} is the interior

of the cone / cone of the past/ with vertex at the point (z, τ), τ ≥ 0. Fix some
0 ≤ µ = µ0 ≤ τ . Then K(z,τ) = ∂K̂(z,τ) ∩ {µ = µ0} = {(ν1, ν2) : | A−1

2+
√

2
(z − ν)| =

τ − µ0}. Evidently, | A−1

2+
√

2
(z − ν)|2 = (τ − µ0)2 is a second order curve contained

in the 2 dimensional plane R2
ν . On the other hand, |z − ν| = |AA−1(z − ν)| ≤

9



‖A‖|A−1(z − ν)| ≤ (2 +
√

2)‖A‖(τ − µ0) and consequently K(z,τ) is located inside
a circle centered at z and with radius (2 +

√
2)‖A‖(τ − µ0). So we conclude that

K(z,τ) is an ellipse /not circle/. Therefore, K̂(z,τ) is a cone whose basis is an ellipse.
The integral (20) exists if g ∈ C(τ ≥ 0), supp g ⊂ {τ ≥ 0}. Then

(21) w1(z, τ) =

= c1

∫ τ

0

∫ ∫

|A−1(ν−z)|≤(2+
√

2)(τ−µ)

g(ν1, ν2, µ) dν1dν2dµ√
(2 +

√
2)2(τ − µ)2 − |A−1(z − ν)|2

.

The standard change
∣∣∣∣
A−1(ν − z) = τp(2 +

√
2), p ∈ R2

τ − µ = ατ, α ∈ R1 in (21) gives us:

(22) w1(z, τ) =

=
c1

(2 +
√

2)τ

∫ 1

0

∫ ∫

|p|≤α

g(z + τ(2 +
√

2)Ap, τ(1− α))√
α2 − |p|2 τ3(2 +

√
2)2|A| dp1dp2dα

= c2τ
2

∫ 1

0

∫ ∫

|p|≤α

g(z + τ(2 +
√

2)Ap, τ(1− α))√
α2 − |p|2 dpdα, c2 = const > 0.

Assume that g ∈ C(τ ≥ 0). Then w1(z, τ) ∈ C(τ ≥ 0). Moreover, if g ∈ Ck
γ (τ ≥ 0),

where γ ∈ R1, γ = z1, z2 or τ then w1 ∈ Ck
γ (τ ≥ 0), k ∈ Z+. Suppose now that

g ∈ C0,1(τ ≥ 0) on each compact D ⊂ {τ ≥ 0}, i.e. g is Lipschitz continuous with
respect to (z1, z2, τ ≥ 0) on each compact D ⊂ {τ ≥ 0}. Then w1 ∈ C0,1(τ ≥ 0) on
D.

We point out that if g ∈ C(R3) and supp g ⊂ {τ ≥ 0} then g(z, 0) = 0. The
assumption g ∈ C0,1(D), where D is an arbitrary compact in R3 implies w1 ∈
C0,1(D) and supp w1 ⊂ {τ ≥ 0}. Assume that α0 = min(k1 − 2, k2 − 2, k3 − 2) ≥ 0.
Then g ∈ Cα0 and therefore w1 ∈ Cα0(τ ≥ 0).

Our next step is to estimate from above supp w1(x, t). As we know, supp w1 ⊂
supp E + supp g in the (z, τ) coordinates and the symbol + stands for the arith-
metical sum of the sets supp E and supp g. Thus

supp w1(z, τ) ⊂ {(z, τ) : |A−1z| ≤ (2 +
√

2)τ}+ {(z, τ) : z1 ≥ 0, z2 ≥ 0, τ ≥ 0},
as supp g = {(z, τ) : z1 ≥ 0, z2 ≥ 0, τ ≥ 0}.

Consequently,

supp w1 ⊂ {(z, τ) : τ−µ ≥ |A−1(z − ν)|
2 +

√
2

for some (ν, µ) ∈ R3, ν1 ≥ 0, ν2 ≥ 0, µ ≥ 0}

=
⋃

ν1≥0,ν2≥0,µ≥0

ˆ̂
K(ν,µ),

10



ˆ̂
K(ν,µ) being the interior of the cone of the future with vertex at (ν, µ).

From geometric reasons it is clear that ∪ ˆ̂
K(ν,µ) will be contained in the union

of the following sets: I octant, the ”solid” cone of the future ˆ̂
K(0,0) and the located

outside of the first octant envelopes of two 1-parameter families of characteristic
conical surface of the future, namely {K(p,0,0)}p≥0 and {K(0,q,0)}q≥0 with vertexes at
(p, 0, 0), (0, q, 0). We shall find the envelope of the first family of characteristics only.
Thus τ2(2 +

√
2)2 = |A−1(z − p)|2 = (λ2 + 1)(z1 − p)2 + (λ2 + 1)z2

2 + 4λ(z1 − p)z2,
i.e. τ2 = 3(z1 − p)2 + 3z2

2 + 2(z1 − p)z2. We differentiate the last equality with

respect to p and we get: 6(z1 − p) + 2z2 = 0 ⇒ z1 − p = −1
3
z2. So the equation of

the envelopes takes the form τ2 =
8
3
z2
2 . One can easily see that we are interested

in the plane Γ1 : τ = −
√

8
3
z2, z2 ≤ 0. There are no difficulties to verify that the

characteristic hyperplane Γ1 is tangential to the cone K(0,0) surface along the cone

generatrix l0 :

∣∣∣∣∣∣∣

z1 = −z2
3

τ = −
√

8
3
z2

.

In a similar way we find the envelope Γ2 : τ = −
√

8
3z1, z1 ≤ 0, of the char-

acteristic cones {K(0,q,0)}q≥0. The characteristic hyperplane Γ2 is tangential to the

cone surface K(0,0) along the cone generatrix m0 :

∣∣∣∣∣∣∣

z2 = −z1
3

τ = −
√

8
3
z1

. Having in mind

the fact that the characteristics are invariant under smooth nondegenerate changes
we can go back to the old coordinates (x1, x2, t) and conclude that supp w1(x, t) is
contained in a domain located over α, i.e. 4t − x1 − x2 ≥ 0 and bounded by the
characteristic cone surface K̃(0,0) : 2t =

√
x2

1 + x2
2 and the characteristic hyperplanes

/surfaces/ Γ̃1 : t =
x1

4 +
√

8/3
+

1 +
√

8/3
4 +

√
8/3

x2, Γ̃2 : t =
x2

4 +
√

8/3
+

1 +
√

8/3
4 +

√
8/3

x1.

Certainly, Γ̃1, Γ̃2 are tangential to K̃(0,0) along some generatrixes l̃1, m̃1 of K̃(0,0).
The details are left to the reader.

Put L =
1
4
(∂τ + ∂z2). Then (19) is rewritten as:

(23)

{
Q(D)w1 = L(ψu1u2) ≡ g, supp g ⊂ {τ ≥ 0}
w1|τ<0 = 0

.

11



Consider now the generalized Cauchy problem in D′(R3):

(24)

{
Q(D)w2 = ψu1u2, supp ψ ⊂ {τ ≥ 0}
w2|τ<0 = 0

.

According to the theory of generalized Cauchy problem /[H], [V]/ there exists a
unique solution of (24) which is given by w2(z, τ) = E ∗ ψu1u2. In fact we have
in D′(R3) : Q(D)w2 = Q(D)(E ∗ ψu1u2) = Q(D)E ∗ ψu1u2 = δ ∗ ψu1u2 = ψu1u2

which implies L(Qw2) = L(ψu1u2) in D′(R3), i.e. Q(Lw2) = g(z, τ). Moreover,
supp w2 ⊂ {τ ≥ 0} ⇒ supp Lw2 ⊂ {τ ≥ 0}. Thus,

(25)

{
Q(Lw2) = g, supp g ⊂ {τ ≥ 0}
Lw2|τ<0 = 0

According to the uniqueness result of the generalized Cauchy problem applied to
(23), (25) we get: w1 = Lw2 and therefore w1 = L(E ∗ ψu1u2). On the other
hand, u1(λ) ∈ Ck1−1(R1), u1(λ) ∈ Ck1−1,1(R1), ∂k1+1

z1
u1 = k1!δ(z1), ∂k2+1

z2
u2 =

k2!δ(z2), u2 ∈ Ck2−1,1(R1). So M(∂z1 , ∂z2)w1 ≡ ∂k1+1
z1

∂k2+1
z2

L(E ∗ ψu1u2) = L(E ∗
ψ(τ)δ(z1)δ(z2))k1!k2! and therefore Q(D)(M(∂z1 , ∂z2)w1) = Q(E∗L(ψδ(z1)δ(z2)))×
×k1!k2! = k1!k2!L(ψδ(z1)δ(z2)) ⇒ {z1 = z2 = 0, τ ≥ 0} = singsupp L(ψδ(z1)δ(z2))
⊂ singsupp Mw1. A simple modification of formulas (20), (21) enables us to con-
clude that /see [C] or [V]/:

(26) Mw1 = ∂k1+1
z1

∂k2+1
z2

w1(z, τ)

=
c

4

(
∂

∂τ
+

∂

∂z2

)

θ

(
τ − |A−1z|

2 +
√

2

)∫ τ− |A−1z|
2+
√

2

0

ψ(µ) dµ√
(τ − µ)2 −

( |A−1z|
2+
√

2

)2


 ,

c = const 6= 0, z 6= 0.
Further on we shall carefully investigate the properties of

(27) I(z, τ) = θ

(
τ − |A−1z|

2 +
√

2

)∫ τ− |A−1z|
2+
√

2

0

ψ(µ) dµ√
(τ − µ)2 −

( |A−1z|
2+
√

2

)2
.

Remark 2. supp L(E ∗ ψ(τ)δ(z1)δ(z2))) ⊂ supp (E ∗ ψδ(z1)δ(z2)) ⊆ supp E +

{(z, t} : z = 0, τ ≥ 0} = supp E = {(z, τ) : τ ≥ |A−1z|
2 +

√
2
} = ˆ̂

K(0,0) and singsupp E =

{(z, τ) : τ =
|A−1z|
2 +

√
2
} = K(0,0), singsupp Mw1 = {z1 = z2 = 0, τ ≥ 0} ∪ {τ =

|A−1z|
2 +

√
2
, z 6= 0}.
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Proof of the main Theorem 1
Consider the third equation of our system (1):

(28)

{
(∂t + ∂x1 + ∂x2)v = w1(z, t)

v|
t<

x1+x2
4

= 0

As we know, in the (z, τ) coordinates it takes the form

(29)





2
∂v

∂τ
= w1(z, τ)

v|τ<0 = 0,

v ∈ D′(R3), w1 ∈ D′(R3), w1|τ<0 = 0.
Differentiating the generalized Cauchy problem (29) with respect to z1 and z2

we get for z 6= 0:

(30)





∂

∂τ
(∂k1+1

z1
∂k2+1

z2
v) =

1
2
∂k1+1

z1
∂k2+1

z2
w1 =

= c1

(
∂

∂τ
+

∂

∂z2

)

θ

(
τ − |A−1z|

2 +
√

2

)∫ τ− |A−1z|
2+
√

2

0

ψ(µ) dµ√
(τ − µ)2 −

( |A−1z|
2+
√

2

)2




∂k1+1
z1

∂k2+1
z2

v|τ<0 = 0,

c1 = const 6= 0, where supp ∂k1+1
z1

∂k2+1
z2

w1 ⊂ ˆ̂
K(0,0) and Mw1 = ∂k1+1

z1
∂k2+1

z2
w1.

Thus,

(31)





∂

∂τ
Mv =

1
2
Mw1

Mv|τ<0 = 0,

supp Mw1 ⊂ ˆ̂
K(0,0) and therefore Mv = 0 outside the cone of the future ˆ̂

K(0,0).
Under the additional assumption that Mw1 is continuous we have:

(32) Mv(z, τ) =





0, τ ≤ |A−1z|
2 +

√
2

1
2

∫ τ

|A−1z|
2+
√

2

Mw1(z, s) ds, τ ≥ |A−1z|
2 +

√
2
, z 6= 0
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i.e.

(33) Mv(z, τ) =





0, τ ≤ |A−1z|
2 +

√
2

c

8




∫ τ− |A−1z|
2+
√

2

0

ψ(µ) dµ√
(τ − µ)2 −

( |A−1z|
2+
√

2

)2
+

∫ τ

|A−1z|
2+
√

2

∂

∂z2




∫ s− |A−1z|
2+
√

2

0

ψ(µ) dµ√
(τ − µ)2 −

( |A−1z|
2+
√

2

)2


 ds


 , τ >

|A−1z|
2 +

√
2
.

So for τ >
|A−1z|
2 +

√
2
> 0: Mv =

c

8

(
I(z, τ) +

∫ τ

|A−1z|
2+
√

2

∂

∂z2
I(z, s) ds

)
. After the

standard change τ − µ→ µ we can rewrite (33) as;

(34) Mv(z, τ) =





0, τ ≤ |A−1z|
2 +

√
2

c

8


−

∫ |A−1z|
2+
√

2

τ

ψ(τ − µ)dµ√
µ2 −

( |A−1z|
2+
√

2

)2
+

∫ τ

|A−1z|
2+
√

2

∂

∂z2




∫ s

|A−1z|
2+
√

2

ψ(s− µ) dµ√
µ2 −

( |A−1z|
2+
√

2

)2


 ds


 , τ >

|A−1z|
2 +

√
2
.

Certainly, z 6= 0 in (34).

Conclusion: We have to compute
∫ τ

|A−1z|
2+
√

2

ψ(τ − µ) dµ√
µ2 −

( |A−1z|
2+
√

2

)2
= I(z, τ).

Remark 3. Consider the equation
(

∂

∂x1
+

∂

∂x2
+
∂

∂t

)
v1 = w1, v1|t−x1+x2

4
<0

=

0. One can easily see that the straight line Γ passing through each point 0 6= Ã ∈ α
and colinear with the vector l = (1, 1, 1) is hitting the cone surfaces of the future
and the past K+

(0,0),K
−
(0,0) = {(x, t) : ±2t =

√
x2

1 + x2
2} at one point only.

In fact, Γ :
x1 = s+ a1

x2 = s+ a2

x3 = s+ a3

, Ã = (a1, a2, a3) ⇒ 4a3 = a1 + a2. In order to find

K(0,0)∩Γ we have to solve the system 4t2 = x2
1+x

2
2, xi = s+ai, i = 1, 2, t = s+a3. So

14



s21,2 = s2 =
a2

1 + a2
2 − 4a2

3

2
=

3a2
1 + 3a2

2 − 2a1a2

4
and the quadratic form in the right

hand side is positively definite. Therefore s1,2 are real roots and s1 6= s2 ⇐⇒ Ã 6= 0.

Lemma 1. Consider the integral Vm =
∫
Pm(x) dx√
x2 + c

, c = const < 0, x >
√−c,

Pm = xm+a1x
m−1+a2x

m−2+. . .+al−2x
m−l+2+al−1x

m−l+. . .+am−1x+am. Then
there exists a uniquely determined polynomial of order m − 1, Qm−1 = b0x

m−1 +
b1x

m−2 + b2x
m−3 + . . .+ bl−2x

m−l+1 + bl−1x
m−l + . . .+ bm−3x

2 + bm−2x+ bm−1, and
a constant λm such that

(35) Vm = Qm−1

√
x2 + c+ λmV0, V0 =

∫
dx√
x2 + c

= ln(x+
√
x2 + c),

V1 =
√
x2 + c+ a1V0.

This is the elementary and well known proof, m ≥ 2. Differentiating (35) we have

Pm√
x2 + c

= Q′m−1

√
x2 + c+

x√
x2 + c

Qm−1 +
λm√
x2 + c

. i.e.

Pm = (x2 + c)Q′m−1 +Qm−1 + λm /in the case m = 0 : Q−1 ≡ 0, λ0 = 1; m = 1 →
Q0 ≡ 1, λ1 = a1/. For the unknown coefficients of the polynomial Qm−1 and for λm

/i.e. m+ 1 unknown coefficients/ we get the following linear system:

mb0 = 1
(m− 1)b1 = a1

c(m− 1)b0 + (m− 2)b1 = a2

. . .
c(m− l + 1)bl−2 + (m− l)bl = al

. . .
2cbm−3 + bm−1 = am−1

cbm−2 + λm = am

; am+1




b0
b1
...

bm−1

λm




=




1
a1

a2
...

am−1

am



,

where the matrix Am+1 has the following structure. We have on the main diagonal
the elements m, (m− 1), . . . , 1, 1; on the first line paralel to the main diagonal and
located below it stands 0 and on the second line paralel to the main diagonal and
located below it we have: c(m− 1), c(m− 2), . . . , c. All the other elements of Am+1

are 0. So we conclude that detAm+1 = m! and that λm = det Bm+1

det Am+1
, where the

matrices Am+1, Bm+1 coincide up to the last column. The last column of Bm+1 is
(1, a1, . . . , am−1, am)t.

Corollary: λm 6= 0 in (35) iff detBm+1 6= 0 and note that Vm ∈ C∞ for
x >

√−c.
Let us compute now I(z, τ).
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Certainly, ψ(τ − µ) = θ(τ − µ)(τ − µ)k3 = θ(τ − µ)
k3∑

k=0

(
k3

k

)
τk3−k(−1)kµk.

To simplify the notations in computing I(z, τ) we put ϕ(z) =
|A−1z|
2 +

√
2
∈ C∞(z 6=

0) and we shall write k instead of k3. So if z 6= 0 and τ ≥ ϕ(z):

(36) I(z, τ) =
∫ τ

ϕ(z)

ϕ(τ − µ) dµ√
µ2 − ϕ2(z)

=
k∑

l=0

(
k

l

)
τk−l(−1)l

∫ τ

ϕ(z)

µl dµ√
µ2 − ϕ2(z)

The change µ = λϕ(z), ϕ(z) ≥ 0, ϕ(z) = 0 ⇐⇒ z = 0 trandforms (36) into

I(z, τ) =
k∑

l=0

(
k

l

)
τk−lϕl(z)(−1)l

∫ τ
ϕ(z)

1

λl dl√
λ2 − 1

, λ ≥ 1.

According to (35) there exist a polynomial Ql−1(λ) of order (l − 1) and a constant
λl such that

(37) I(z, τ) =
k∑

l=0

(
k

l

)
(−1)lτk−lϕl(z)

[
Ql−1(λ)

√
λ2 − 1+

+ λl ln(λ+
√
λ2 − 1)

]
|λ= τ

ϕ(z)

λ=1 =⇒ I(z, τ) =

=
k∑

l=0

(
k

l

)
(−1)lτk−lϕl(z)

[
Ql−1

(
τ

ϕ(z)

)√
τ2

ϕ2(z)
− 1 + λl ln

(
τ

ϕ(z)
+

√
τ2

ϕ2(z)
− 1

)]
.

Evidently, l = 0 ⇒ Q−1 ≡ 0, λ0 = 1; l = 1 ⇒ λ1 = 0, Q0 = 1 and I(z, τ) ∈ C∞(τ >
ϕ(z) > 0). Logarithmic terms participate in I(z, τ) if λl0 6= 0 /0 ≤ l0 ≤ k/.

Consider now (38)
∫ τ

ϕ(z)

∂

∂z2
(I(z, s)) ds, where I(z, s) =

∑k
l=0

(
k
l

)
(−1)lsk−lϕl(z)×

×
[
Ql−1

(
s

ϕ(z)

)√
s2

ϕ2(z)
− 1 + λl ln

(
s

ϕ(z)
+

√
s2

ϕ2(z)
− 1

)]
, s ≥ ϕ(z) > 0.

One can easily see that (38) contains the following four different types of integrals:

1.
∫ τ

ϕ(z)

(
s

ϕ(z)

)p

Q′l−1

(
s

ϕ(z)

)
·
√

s2

ϕ2(z)
− 1 ds = ϕ(z)

∫ τ
ϕ(z)

1
λpQ′l−1

(λ2 − 1)√
λ2 − 1

dλ ∈
C∞(τ > ϕ(z) > 0), p ≥ 1, and the last integral is of the type (35).

2.
∫ τ

ϕ(z)

sp

ϕp(z)
Ql−1

(
s

ϕ(z)

)
· 1√

s2

ϕ2(z)
− 1

ds = ϕ(z)
∫ τ

ϕ(z)

1
λpQl−1(λ)

dλ√
λ2 − 1

∈

C∞(τ > ϕ(z) > 0), p ≥ 2.
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3.
∫ τ

ϕ(z)

sk−l

ϕk−l(z)
Ql−1

(
s

ϕ(z)

)√
s2

ϕ2(z)
− 1 ds = ϕ(z)

∫ τ
ϕ(z)

1
λk−lQl−1(λ)

√
λ2 − 1 dλ =

ϕ(z)
∫ τ

ϕ(z)

1
λk−lQl−1(λ)(λ2 − 1)

dλ√
λ2 − 1

∈ C∞(τ > ϕ(z) > 0).

4.
∫ τ

ϕ(z)

(
s

ϕ(z)

)p 1 + s
ϕ(z)/

√
s2/ϕ2 − 1

s/ϕ(z) +
√
s2/ϕ2(z)− 1

ds = ϕ(z)
∫ τ

ϕ(z)

1
λp 1 + λ/

√
λ2 − 1

λ+
√
λ2 − 1

dλ,

p ≥ 1. Thus,
∫ τ

ϕ(z)

(
s

ϕ(z)

)p 1 + s
ϕ(z)/

√
s2/ϕ2 − 1

s/ϕ(z) +
√
s2/ϕ2(z)− 1

ds = ϕ(z)
∫ τ

ϕ(z)

1

λp

√
λ2 − 1

dλ ∈
C∞(τ > ϕ(z) > 0), p ≥ 1.

Combining (30)–(34), (37), (38) – p. 1, 2, 3, 4 and using the fact that un-
der the inverse change (z, τ) → (x, t) the characteristic cone surface {(z, τ) : τ =
|A−1z|
2 +

√
2
, z 6= 0} is mapped onto the characteristic cone {4t2 = x2

1 + x2
2, t > 0} and

the ray {z1 = z2 = 0, τ ≥ 0} is mapped onto the ray {t = x1 = x2, t ≥ 0} we
complete the proof of our Theorem 1.
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