Lorenz transformations and creation of logarithmic singularities to the solutions of some nonstrictly hyperbolic semilinear systems with two space variables ${ }^{12}$

P. R. Popivanov
Institute of Mathematics of the Bulgarian Academy of Sciences 1113 Sofia, Bulgaria, E-mail: popivano@math.bas.bg.

1. This paper deals with some model examples of first order semilinear nonstrictly hyperbolic systems and with the singularities of the solutions of the corresponding generalized Cauchy problem for them. The initial data are assumed to have finite jump type discontinuities along two characteristic surfaces Σ_{1}, Σ_{2} which cross transversally along $\Gamma_{0}=\Sigma_{1} \cap \Sigma_{2}$. We are interested in the production of logarithmic singularities from the interaction of these piecewise smooth waves at the surface Γ_{0} which is not contained in a spacelike manifold. The result proposed here was influenced by the considerations in [M-R1] and [L]. For the sake of completeness we remind of the reader /see [B]/ that for a regular embedded hypersurface Σ, a distribution u, defined in a neighbourhood of Σ, is said to be conormal of order s iff for any finite set of vector fields V_{1}, \ldots, V_{N} tangent to Σ we have that $V_{1} \ldots V_{N} u \in H_{l o c}^{s}$. Suppose now that $\Sigma_{i}, 1 \leq i \leq \mu$ are regular characteristic surfaces for the strictly hyperbolic semilinear system $P_{m}(D) u=F\left(x, D^{m-1} u\right), m \geq 1$ and that Σ_{1}, Σ_{2} cross transversally in $\Gamma_{0}=\Sigma_{1} \cap \Sigma_{2}$, while $\Sigma_{i}, 3 \leq i \leq \mu$ are passing through Γ_{0}. We assume that $D^{m-1} u$ is locally bounded on the domain of definition Ω of u and $\Sigma_{i} \cap\{t>0\}$ is located in the domain of determinacy of $\Omega \cap\{t<0\}$ for all $i, 1 \leq i \leq \mu$. The solution u is conormal with respect to Σ_{1} and Σ_{2} for $t<0$ and it has singular support disjoint from Γ_{0}. Then one can prove /see $[B] /$ that singsupp $u \subset \cup_{i=1}^{\mu} \Sigma_{i}$ and u is conormal at all points of $\Sigma_{i} \backslash \Gamma_{0}$. Let us note that the characteristic surfaces Σ_{i} locally cut space-time into 2μ wedges and by definition u is said to be piecewise smooth in $t<0$ or $t>0$ if u is smooth in the closure of each wedge.

Suppose now that we have an interaction of two piecewise smooth in $t<0$ waves described by the previous system. Then it was shown in [M-R2] that the solution u remains piecewise smooth in $t>0$ provided that Γ_{0} is contained in a spacelike hypersurface. Similarily, if one studies the Cauchy problem with piecewise smooth data singular accross $\Gamma_{0} \subset\{t=0\}$, there is a local existence of a piecewise smooth solution singular along the characteristic hypersurfaces passing through Γ_{0}.

In contrast with [M-R1, M-R2] and [L] we investigate a non-strictly hyperbolic

[^0]semilinear system (the generalized Cauchy problem) and we find out a necessary and sufficient condition for creation of logarithmic type singularity.
§1. Statement of the problem and formulation of the main results
Consider the following semilinear non-strictly hyperbolic 5×5 system in $\mathbf{R}_{t}^{1} \times$ $\mathbf{R}_{x_{1}, x_{2}}^{2}$:
\[

\left\{$$
\begin{array}{c}
\sqrt{2} \partial_{t} u_{1}+\sqrt{2} \partial_{x_{1}} u_{1}+\partial_{t} u_{2}+\partial_{x_{1}} u_{2}+\partial_{x_{2}} u_{2}=0 \tag{1}\\
\partial_{t} u_{1}+\partial_{x_{1}} u_{1}+\partial_{x_{2}} u_{1}+\sqrt{2} \partial_{t} u_{2}+\sqrt{2} \partial_{x_{2}} u_{2}=0 \\
\left(\partial_{x_{1}}+\partial_{x_{2}}+\partial_{t}\right) v=w_{1} \\
\partial_{t} w_{1}+2 \partial_{x_{1}} w_{1}+2 \partial_{x_{2}} w_{2}=0 \\
2 \partial_{x_{1}} w_{1}+\partial_{t} w_{2}-2 \partial_{x_{1}} w_{2}=\psi\left(4 t-x_{1}-x_{2}\right) u_{1} u_{2}
\end{array}
$$\right.
\]

equipped by Cauchy data on the non-characteristic hyperplane $\alpha: t=\frac{x_{1}+x_{2}}{4}$: $w_{1}, w_{2},\left.v\right|_{t<\frac{x_{1}+x_{2}}{4}}=0$ and such that $u_{1}=\left(t-x_{1}\right)^{k_{1}} \theta\left(t-x_{1}\right), u_{2}=\left(t-x_{2}\right)^{k_{2}} \theta\left(t-x_{2}\right)$ for $t<\frac{x_{1}+x_{2}}{4}, \psi(\tau)=\tau^{k_{3}} \theta(\tau), \forall \tau \in \mathbf{R}^{1}$. As usual, $\theta(\tau)$ stands for the Heaviside function and $k_{i} \in \mathbf{Z}_{+}, i=1,2,3$. Classical solutions can exist for $k_{i} \geq 3, i=1,2,3$. Moreover, supp $\psi u_{1} u_{2} \subset\left\{t \geq x_{1}, t \geq x_{2}\right\}$.

This is our main result.
Theorem 1. There exists a $\left(k_{1}+k_{2}+2\right)$ order linear partial differential operator with constant coefficientd $M(D), D=\left(\partial_{x_{1}}, \partial_{x_{2}}, \partial_{t}\right)$ and such that $M(D) w_{1}$ has a square root-logarithmic type singularity across the light cone surface of the future $K_{2}^{+}=\{2 t=|x|\}$ and singsupp $M w_{1}=K_{2}^{+} \cup \Gamma^{+}$, where $\Gamma^{+}=\left\{x_{1}=x_{2}=t \geq 0\right\}$. Consider now the stright line collinear with the radial vector field $l=\partial_{t}+\partial_{x_{1}}+\partial_{x_{2}}$, starting from the point $P_{3} \in \alpha$ and hitting the cone K_{2}^{+}at the point P_{1}. Then $M(D) v$ is C^{∞} smooth in a neighbourhood of the line segment $P_{3} P_{1}$ located outside K_{2}^{+}and over the plane α and $M(D) v$ has a logarithmic-square root type singularity accross K_{2}^{+}, singsupp $M v=K_{2}^{+} \cup \Gamma^{+}$.

Remark 1. At the end of this paper a necessary and sufficient condition for the existence of logarithmic type singularity of $M(D) w_{1}$ is found. The operator $M(D)$ is given by: $M(D)=\left(3 \partial_{x_{1}}+\partial_{x_{2}}+\partial_{t}\right)^{k_{1}+1}\left(\partial_{x_{1}}+3 \partial_{x_{2}}+\partial_{t}\right)^{k_{2}+1}$.
$M(D) w_{1}$ has a loharithmic-square root type singularity accross K_{2}^{+}if, by definition, $M(D) w_{1}=P(x, t) \sqrt{f_{1}(x, t)}+Q(x, t) \log f_{2}(x, t)$ near K_{2}^{+}, where $P, Q \in$ $C^{\infty}((1-\varepsilon)|x|<2 t<(1+\varepsilon)|x|)$ for some $0<\varepsilon \ll 1$ and $f_{1}, f_{2} \in C^{\infty}(0<|x| \leq 2 t<$ $|x|(1+\varepsilon)),\left.f_{1}\right|_{K_{2}^{+}}=\left.0 f_{2}\right|_{K_{2}^{+}}=1, f_{1}>0, f_{2}>0$ for $0<|x|<2 t<|x|(1+\varepsilon)$.

We propose in Fig. 1 a physical interpretation of the just formulated theorem. We are studying the propagation of five semilinear waves. Two of them are piecewise smooth travelling waves starting from $-\infty$ and the corresponding characteristics are $\Sigma_{1}: t-x_{1}=0, \Sigma_{2}: t-x_{2}=0$. Certainly, Σ_{1}, Σ_{2} are transversal each to other.

Figure 1:
The other three waves have initial data prescribed on the noncharacteristic plane α. Moreover, $\alpha \cap \Sigma_{1} \cap \Sigma_{2}=0,0$ being the origin in \mathbf{R}^{3}. Our waves have a collision at the ray $\Gamma^{+}| | l$. The stright line Γ^{+}is not contained in a space like manifold. The hyperplanes Σ_{1}, Σ_{2} are tangential to the characteristic cone surface of the future $K_{1}^{+}=\left\{t=|x|, x \in \mathbf{R}^{2}\right\}$ of the system (1) but they are transversal to the second characteristic cone surface of the future K_{2}^{+}and $0 l$ is located between K_{1}^{+} and K_{2}^{+}. Due to the interaction of the waves at Γ^{+}and the tangencity of $\Sigma_{1,2}$ to K_{1}^{+}new singularities of w_{1}, w_{2}, v were born. More precisely, singsupp $M w_{1,2}=$ singsupp $M v=K_{2}^{+} \cup \Gamma^{+}$and $M w_{1,2}, M v$ possess logarithmic-square root type singularities accross K_{2}^{+}.

Some preliminary notes

At first we shall show that (1) is non-strictly hyperbolic system with respect to t. To do this we shall write (1) in the following form:

$$
\begin{equation*}
A_{0} \partial_{t} U+A_{1} \partial_{x_{1}} U+A_{2} \partial_{x_{2}} U=F \tag{2}
\end{equation*}
$$

where

$$
A_{0}=\left(\begin{array}{ccccc}
\sqrt{2} & 1 & 0 & 0 & 0 \\
1 & \sqrt{2} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right), \quad A_{1}=\left(\begin{array}{ccccc}
\sqrt{2} & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & -2
\end{array}\right),
$$

$$
A_{2}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
1 & \sqrt{2} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 2 & 0
\end{array}\right), \quad F=\left(\begin{array}{c}
0 \\
0 \\
w_{1} \\
0 \\
\psi u_{1} u_{2}
\end{array}\right), \quad U=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
v \\
w_{1} \\
w_{2}
\end{array}\right)
$$

Thus, $\operatorname{det}\left(\tau A_{0}+\xi_{1} A_{1}+\xi_{2} A_{2}\right)=\left[2\left(\tau+\xi_{1}\right)\left(\tau+\xi_{2}\right)-\left(\tau+\xi_{1}+\xi_{2}\right)^{2}\right]\left(\tau+\xi_{1}+\xi_{2}\right)\left(\tau^{2}-\right.$ $\left.4 \xi_{1}^{2}-4 \xi_{2}^{2}\right)=\left(\tau^{2}-\xi_{1}^{2}-\xi_{2}^{2}\right)\left(\tau+\xi_{1}+\xi_{2}\right)\left(\tau^{2}-4 \xi_{1}^{2}-4 \xi_{2}^{2}\right)$. So we find the real smooth roots of the characteristic equation

$$
\begin{gathered}
\tau_{1,2}= \pm \sqrt{\xi_{1}^{2}+\xi_{2}^{2}}, \quad\left(\xi_{1}, \xi_{2}\right) \neq 0 \\
\tau_{3,4}= \pm 2 \sqrt{\xi_{1}^{2}+\xi_{2}^{2}}, \quad\left(\xi_{1}, \xi_{2}\right) \neq 0 \\
\tau_{5}=-\left(\xi_{1}+\xi_{2}\right)
\end{gathered}
$$

Obviously, $\tau_{1} \neq \tau_{2}, \tau_{3} \neq \tau_{4}, \tau_{1,2} \neq \tau_{3,4}$ and $\tau_{3,4}=\tau_{5} \Longleftrightarrow \xi_{1}=\xi_{2}=0$. On the other hand, $\tau_{5}=\tau_{1,2} \Longleftrightarrow \xi_{1} \xi_{2}=0,\left(\xi_{1}, \xi_{2}\right) \neq 0$. So we conclude that (1) is non-strictly hyperbolic system w.r. to t. Geometrically, the line $\tau=-\left(\xi_{1}+\xi_{2}\right)$, $\xi_{1}, \xi_{2}=0$ is a generatrix of the characteristic cone $\tau^{2}=\left(\xi_{1}^{2}+\xi_{2}^{2}\right)$. We shall see now that the hyperplane $t=\frac{x_{1}+x_{2}}{4}$ is non-characteristic to (1). More generally, let $\Phi \equiv t+\alpha_{1} x_{1}+\alpha_{2} x_{2}$. Then $\Phi=0$ is non-characteristic to (1) iff

$$
\operatorname{det}\left(\Phi_{t} A_{0}+\Phi_{x_{1}} A_{1}+\Phi_{x_{2}} A_{2}\right) \neq 0 \text { on } \Phi=0, \text { i. e. iff }
$$

$$
\begin{equation*}
\operatorname{det}\left(A_{0}+\alpha_{1} A_{1}+\alpha_{2} A_{2}\right) \neq 0 \tag{3}
\end{equation*}
$$

But we know that $\operatorname{det}\left(\tau A_{0}+\xi_{1} A_{1}+\xi_{2} A_{2}\right)=\left(\tau+\xi_{1}+\xi_{2}\right)\left(\tau^{2}-\left(\xi_{1}^{2}+\xi_{2}^{2}\right)\right)\left(\tau^{2}-4\left(\xi_{1}^{2}+\right.\right.$ $\left.\left.\xi_{2}^{2}\right)\right) \Rightarrow \operatorname{det}\left(A_{0}+\alpha_{1} A_{1}+\alpha_{2} A_{2}\right)=\left.\operatorname{det}\left(\tau A_{0}+\xi_{1} A_{1}+\xi_{2} A_{2}\right)\right|_{\tau=1, \xi_{1}=\alpha_{1}, \xi_{2}=\alpha_{2}}$.

Conclusion. The hyperplane $\Phi=t+\alpha_{1} x_{1}+\alpha_{2} x_{2}=0$ is noncharacteristic to our system (1) iff $\left\{\begin{array}{c}\alpha_{1}^{2}+\alpha_{2}^{2} \neq 1,1 / 4 \\ \alpha_{1}+\alpha_{2} \neq-1\end{array}\right.$. As $\alpha_{1}=\alpha_{2}=1 / 4$ for $t=\frac{x_{1}+x_{2}}{4}$ we conclude that the initial hyperplane is non-characteristic /free surface /or/ space-like one/ to (1).

As each classical solution of the linear $\operatorname{PDE}\left(\partial_{t}+\partial_{x_{1}}\right) u_{1}=0$ has the form $u_{1}=f_{1}\left(t-x_{1}\right), f_{1} \in C^{1},\left(\partial_{t}+\partial_{x_{2}}\right) u_{2}=0, u_{2}=f_{2}\left(t-x_{2}\right), f_{2} \in C^{1}, f_{1}, f_{2}$ being arbitrary functions we see that the 1 st and 2 nd equations of the system (1) are identically satisfied in \mathbf{R}^{2} by $u_{1}=\left(t-x_{1}\right)^{k_{1}} \theta\left(t-x_{1}\right), u_{2}=\left(t-x_{2}\right)^{k_{2}} \theta\left(t-x_{2}\right)$. Our next step is to eliminate w_{2} from the last two equations of (1). To do this we differentiate the 4 th equation w.r. to x_{1} and the 5 th equation w.r. to x_{2}. Therefore,

$$
\left(\partial_{t x_{1}}^{2}+2 \partial_{x_{1}}^{2}\right) w_{1}+2 \partial_{x_{2}}^{2} w_{2}+\partial_{t x_{2}}^{2} w_{2}=\frac{\partial}{\partial x_{2}}\left(\psi u_{1} u_{2}\right)
$$

On the other hand, the 4th equation gives:

$$
\partial_{t}^{2} w_{1}+2 \partial_{x_{1} t}^{2} w_{1}+2 \partial_{x_{2} t}^{2} w_{2}=0
$$

This way,

$$
\begin{gather*}
\partial_{t}^{2} w_{1}-4\left(\partial_{x_{1}}^{2}+\partial_{x_{2}}^{2}\right) w_{1}=-2 \frac{\partial}{\partial x_{2}}\left(\psi u_{1} u_{2}\right), \text { i. e. } \tag{4}\\
\square_{2} w_{1}=-2 \frac{\partial}{\partial x_{2}}\left(\psi u_{1} u_{2}\right)=-2 \psi \frac{\partial}{\partial x_{2}}\left(u_{1} u_{2}\right)+2 \psi^{\prime} u_{1} u_{2}
\end{gather*}
$$

and $\psi \equiv \psi\left(4 t-x_{1}-x_{2}\right)$.
§2. Lorenz transformations applied to some hyperbolic equations
A non-degenerate linear change of the variables $\left(x_{1}, x_{2}, t\right) /$ respectively $\left(x_{1}, x_{2}, x_{3}, t\right) /$ is called a Lorenz change iff it concerves the hyperbolic equation $\square_{c} u=u_{t t}$ $c^{2}\left(u_{x_{1} x_{1}}+u_{x_{2} x_{2}}\right)=f /$ respectively $\square_{c} u=u_{t t}-c^{2}\left(u_{x_{1} x_{1}}+u_{x_{2} x_{2}}+u_{x_{3} x_{3}}\right)=f /$, $c=$ const >0, up to the constant $c /$ see $[\mathrm{N}] /$.

We are looking for a Lorenz transformation of the following form:

$$
\left\{\begin{array}{c}
y_{1}=\lambda\left(t-x_{1}\right)+\left(t-x_{2}\right) \tag{5}\\
y_{2}=\left(t-x_{1}\right)+\lambda\left(t-x_{2}\right) \\
\tau=4 t-x_{1}-x_{2}, \lambda=\text { const } \neq 0 .
\end{array}\right.
$$

Thus the Cauchy data of (1) are prescribed on the hyperplane $\tau=0$ and we are looking for a solution in the half space $\tau>0$ (i.e. $t>\frac{x_{1}+x_{2}}{4}$). We point out that singsupp $u_{1}=\left\{t=x_{1}\right\}=\Sigma_{1}$, singsupp $u_{2}=\left\{t=x_{2}\right\}=\Sigma_{2}$ and that the wedge $W=\left\{\left(x_{1}, x_{2}, t\right): t \geq x_{1}, t \geq x_{2}\right\}$ has the edge $\Gamma: \left\lvert\, \begin{aligned} & x_{1}=t \\ & x_{2}=t\end{aligned}\right.$. Assuming the change (5) to be nondegenerate we see that (5) transforms the wedge W into the wedge \tilde{W} whose edge $\tilde{\Gamma}$ is the τ axes: $\left(\tau=2 t, y_{1}=y_{2}=0\right)$. Equivalently, $\psi\left(4 t-x_{1}-x_{2}\right)=\psi(\tau)=\tau^{k_{3}} \theta(\tau) \equiv \tau_{+}^{k_{3}}$. Moreover, if $\lambda>0$ then \tilde{W} turns out to be a wedge /acute cenral angle/ contained in $\mathbf{R}_{y_{1} y_{2}}^{2}$. So (5) can be rewritten as

$$
\left\{\begin{array}{c}
y_{1}=t(\lambda+1)-\lambda x_{1}-x_{2} \\
y_{2}=t(\lambda+1)-x_{1}-\lambda x_{2} \\
\tau=4 t-x_{1}-x_{2}
\end{array} \quad \text { and } \quad 0 \neq\left|\begin{array}{ccc}
-\lambda & -1 & \lambda+1 \\
-1 & -\lambda & \lambda+1 \\
-1 & -1 & 4
\end{array}\right|=2\left(\lambda^{2}-1\right),\right.
$$

i.e. we must take $\lambda \neq 1$. Easy computations give us:

$$
\begin{aligned}
\frac{\partial u}{\partial x_{1}} & =-\lambda \frac{\partial u}{\partial y_{1}}-\frac{\partial u}{\partial y_{2}}-\frac{\partial u}{\partial \tau} \\
\frac{\partial u}{\partial x_{2}} & =-\frac{\partial u}{\partial y_{1}}-\lambda \frac{\partial u}{\partial y_{2}}-\frac{\partial u}{\partial \tau}
\end{aligned}
$$

$$
\frac{\partial u}{\partial t}=(\lambda+1) \frac{\partial u}{\partial y_{1}}+(\lambda+1) \frac{\partial u}{\partial y_{2}}+4 \frac{\partial u}{\partial \tau} .
$$

The change (5) is Lorenzian one iff $\lambda \neq \pm 1$ and \square_{2} is transformed in \square_{c} with some $c>0$.

Then

$$
\begin{gathered}
\square_{2} u=u_{t t}-4\left(u_{x_{1} x_{1}}+u_{x_{2} x_{2}}\right)=\left[(\lambda+1) \frac{\partial}{\partial y_{1}}+(\lambda+1) \frac{\partial}{\partial y_{2}}+4 \frac{\partial}{\partial \tau}\right]^{2} u \\
-4\left(\lambda \frac{\partial}{\partial y_{1}}+\frac{\partial}{\partial y_{2}}+\frac{\partial}{\partial \tau}\right)^{2} u-4\left(\frac{\partial}{\partial y_{1}}+\lambda \frac{\partial}{\partial y_{2}}+\frac{\partial}{\partial \tau}\right)^{2} u \\
=\left[\left((\lambda+1)^{2}-4\left(\lambda^{2}+1\right)\right) \frac{\partial^{2}}{\partial y_{1}^{2}}+\left((\lambda+1)^{2}-4\left(\lambda^{2}+1\right)\right) \frac{\partial^{2}}{\partial y_{2}^{2}}+8 \frac{\partial^{2}}{\partial \tau^{2}}+\left(2(\lambda+1)^{2}\right.\right. \\
\left.-16 \lambda) \frac{\partial^{2}}{\partial y_{1} \partial y_{2}}+(8(\lambda+1)-8(\lambda+1)) \frac{\partial^{2}}{\partial y_{1} \partial \tau}+(8(\lambda+1)-8-8 \lambda) \frac{\partial^{2}}{\partial y_{2} \partial \tau}\right] u .
\end{gathered}
$$

We put $2(\lambda+1)^{2}-16 \lambda=0 \Rightarrow \lambda_{1,2}=3 \pm 2 \sqrt{2}$ and we take $\lambda=3+2 \sqrt{2}=(1+\sqrt{2})^{2} \neq$ 1.

So the operator \square_{2} takes the form
(6)

$$
\square_{2} u=8 \frac{\partial^{2} u}{\partial \tau^{2}}-16(3+2 \sqrt{2})\left(\frac{\partial^{2} u}{\partial y_{1}^{2}}+\frac{\partial^{2} u}{\partial y_{2}^{2}}\right)=8\left(u_{\tau \tau}-2(3+2 \sqrt{2})\left(u_{y_{1} y_{1}}+u_{y_{2} y_{2}}\right)\right) .
$$

This way we conclude that (4) has the following form in the new coordinates $\left(y_{1}, y_{2}, \tau\right)$:

$$
\begin{gather*}
\frac{1}{8} \square_{2} w_{1}=\frac{\partial^{2} w_{1}}{\partial \tau^{2}}-2(3+2 \sqrt{2})\left(\frac{\partial^{2} w_{1}}{\partial y_{1}^{2}}+\frac{\partial^{2} w_{1}}{\partial y_{2}^{2}}\right) \\
=\frac{1}{4} \psi(\tau) u_{1}\left(t-x_{1}\right) u^{\prime}\left(t-x_{2}\right)+\frac{1}{4} \psi^{\prime}(\tau) u_{1}\left(t-x_{1}\right) u_{2}\left(t-x_{2}\right) . \tag{7}
\end{gather*}
$$

Thus, $\square_{2}=8 \square_{c}, c=\sqrt{2(3+2 \sqrt{2})}=2+\sqrt{2}$.
On the other hand, the first two equations from (5) show that $t-x_{1}=\frac{\lambda y_{1}-y_{2}}{\lambda^{2}-1}$, $t-x_{2}=\frac{\lambda y_{2}-y_{1}}{\lambda^{2}-1}$. So

$$
\begin{gather*}
\frac{\partial^{2} w_{1}}{\partial \tau^{2}}-2(3+2 \sqrt{2})\left(\frac{\partial^{2} w_{1}}{\partial y_{1}^{2}}+\frac{\partial^{2} w_{1}}{\partial y_{2}^{2}}\right)=\frac{1}{4} \psi(\tau) u_{1}\left(\frac{\lambda y_{1}-y_{2}}{\lambda^{2}-1}\right) u_{2}^{\prime}\left(\frac{\lambda y_{2}-y_{1}}{\lambda^{2}-1}\right) \\
+\frac{1}{4} \psi^{\prime}(\tau) u_{1}\left(\frac{\lambda y_{1}-y_{2}}{\lambda^{2}-1}\right) u_{2}\left(\frac{\lambda y_{2}-y_{1}}{\lambda^{2}-1}\right) \tag{8}
\end{gather*}
$$

$\lambda=3+2 \sqrt{2}$, and the support of the right hand side is contained in $\lambda y_{1}-y_{2} \geq 0$, $\lambda y_{2}-y_{1} \geq 0, \tau \geq 0,\left.w_{1}\right|_{\tau<0}=0$.

There are no difficulties to compute the inverse transformation of (5). It is of Lorenz type, certainly. According to the 3rd equation in (5):

$$
\begin{gathered}
\tau=2 t+\left(t-x_{1}\right)+\left(t-x_{2}\right)=2 t+\frac{y_{1}+y_{2}}{\lambda+1} \text { i.e. } \\
t=\tau-\frac{y_{1}+y_{2}}{2(\lambda+1)}
\end{gathered}
$$

So the inverse transformation of (5) is given by:

$$
\left\{\begin{array}{l}
x_{1}=\frac{\tau}{2}-\frac{(\lambda-3) y_{2}+y_{1}(3 \lambda-1)}{2\left(\lambda^{2}-1\right)} \tag{9}\\
x_{2}=\frac{\tau}{2}-\frac{(\lambda-3) y_{1}+y_{2}(3 \lambda-1)}{2\left(\lambda^{2}-1\right)} \\
t=\frac{\tau}{2}-\frac{y_{1}+y_{2}}{2(\lambda+1)}
\end{array}\right.
$$

Suppose now that $u(x, t) \in C^{1}\left(\mathbf{R}^{3}\right)$. Then the Lorenz change (5) implies: $\frac{\partial u}{\partial \tau}=$ $\frac{1}{2}\left(\frac{\partial u}{\partial x_{1}}+\frac{\partial u}{\partial x_{2}}+\frac{\partial u}{\partial t}\right)$. Therefore, the radial vector field $l=\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial t}$ is transformed under the diffeomorphism (5) into the vector field $2 \frac{\partial}{\partial \tau}$.

Let us consider the smooth nondegenerate change in \mathbf{R}^{3} :

$$
\begin{equation*}
z_{1}=\frac{\lambda y_{1}-y_{2}}{\lambda^{2}-1}, \quad z_{2}=\frac{\lambda y_{2}-y_{1}}{\lambda^{2}-1}, \quad \tau=\tau, \quad \text { i. e. } \tag{10}
\end{equation*}
$$

the 0τ axes is conserved.
Having in mind that $\frac{\partial u}{\partial y_{1}}=\frac{\partial u}{\partial z_{1}} \frac{\lambda}{\lambda^{2}-1}-\frac{\partial u}{\partial z_{2}} \frac{1}{\lambda^{2}-1}=\frac{1}{\lambda^{2}-1}\left(\lambda \frac{\partial}{\partial z_{1}}-\frac{\partial}{\partial z_{2}}\right) u$ and $\frac{\partial u}{\partial y_{2}}=\frac{1}{\lambda^{2}-1}\left(\lambda \frac{\partial}{\partial z_{2}}-\frac{\partial}{\partial z_{1}}\right) u, \frac{\partial u}{\partial \tau}=\frac{\partial u}{\partial \tau}$ we rewrite (8) as:

$$
\begin{gather*}
\frac{\partial^{2} w_{1}}{\partial \tau^{2}}-\frac{2(3+2 \sqrt{2})}{\left(\lambda^{2}-1\right)^{2}}\left[\left(\lambda \frac{\partial}{\partial z_{1}}-\frac{\partial}{\partial z_{2}}\right)^{2}+\left(\lambda \frac{\partial}{\partial z_{2}}-\frac{\partial}{\partial z_{1}}\right)^{2}\right] w_{1}= \tag{11}\\
=\frac{1}{4} \psi(\tau) u_{1}\left(z_{1}\right) u_{2}^{\prime}\left(z_{2}\right)+\frac{1}{4} \psi^{\prime}(\tau) u_{1}\left(z_{1}\right) u_{2}\left(z_{2}\right)
\end{gather*}
$$

Thus,

$$
\begin{equation*}
\frac{\partial^{2} w_{1}}{\partial \tau^{2}}-\frac{1}{16(1+\sqrt{2})^{2}}\left(\left(\lambda^{2}+1\right) \frac{\partial^{2}}{\partial z_{1}^{2}}+\left(\lambda^{2}+1\right) \frac{\partial^{2}}{\partial z_{2}^{2}}-4 \lambda \frac{\partial^{2}}{\partial z_{1} \partial z_{2}}\right) w_{1}= \tag{12}
\end{equation*}
$$

$$
=\frac{1}{4}\left(\partial_{\tau}+\partial_{z_{2}}\right) \psi u_{1} u_{2} .
$$

Certainly, the second order operator in the brackets is strictly elliptic in the plane $0_{z_{1} z_{2}} / \lambda=(1+\sqrt{2})^{2} /$.

The inverse change of (10) is given by the formula

$$
\begin{equation*}
y_{1}=\lambda z_{1}+z_{2}, \quad y_{2}=\lambda z_{2}+z_{1}, \tau=\tau, \text { i.e. in matrix form } \tag{13}
\end{equation*}
$$

$$
\binom{z_{1}}{z_{2}}=A\binom{y_{1}}{y_{2}}, \quad A=\frac{1}{\lambda^{2}-1}\left(\begin{array}{cc}
\lambda & -1 \\
-1 & \lambda
\end{array}\right), \quad A^{-1}=\left(\begin{array}{cc}
\lambda & 1 \\
1 & \lambda
\end{array}\right)
$$

$\operatorname{det} A=\lambda^{2}-1$. Put $c^{2}=\frac{\lambda^{2}+1}{16(1+\sqrt{2})^{2}}, a=-\frac{4 \lambda}{1+\lambda^{2}} \Rightarrow c^{2}=\frac{3(3+2 \sqrt{2})}{8(1+\sqrt{2})^{2}}=\frac{3}{8}$, $a=-\frac{2}{3}$.

This way (12) takes the form:

$$
\begin{align*}
\frac{\partial^{2} w_{1}}{\partial \tau^{2}} & -c^{2}\left(\frac{\partial^{2}}{\partial z_{1}^{2}}+\frac{\partial^{2}}{\partial z_{2}^{2}}+a \frac{\partial^{2}}{\partial z_{1} \partial z_{2}}\right) w_{1}= \tag{14}\\
& =\frac{1}{4}\left(\partial_{\tau}+\partial_{z_{2}}\right) \psi(\tau) u_{1}\left(z_{1}\right) u_{2}\left(z_{2}\right)
\end{align*}
$$

where $c=\frac{1}{2} \sqrt{\frac{3}{2}}, a=-\frac{2}{3}$.
Our next step is to find the fundamental solution $E(x, t)$ of the linear operator $Q(D)$ participating in the left hand side of (14). Thus:

$$
\begin{equation*}
\frac{\partial^{2} E}{\partial \tau^{2}}-c^{2}\left(\frac{\partial^{2} E}{\partial z_{1}^{2}}+\frac{\partial^{2} E}{\partial z_{2}^{2}}+a \frac{\partial^{2} E}{\partial z_{1} \partial z_{2}}\right)=\delta(\tau) \otimes \delta(z) \tag{15}
\end{equation*}
$$

where δ is the standard Dirac delta function supported at the origin. Applying the inverse change $\left\lvert\, \begin{gathered}y=A^{-1} z \\ \tau=\tau\end{gathered}\right.$ to (10) we know that (15) transforms into

$$
\begin{equation*}
\frac{\partial^{2} E}{\partial \tau^{2}}-2(1+\sqrt{2})^{2}\left(\frac{\partial^{2} E}{\partial y_{1}^{2}}+\frac{\partial^{2} E}{\partial y_{2}^{2}}\right)=\delta(\tau) \otimes \delta(A y) \tag{16}
\end{equation*}
$$

The identity $\delta(A y)=\frac{\delta(y)}{|\operatorname{det} A|}=\frac{\delta(y)}{\lambda^{2}-1}=\frac{\delta(y)}{4 \sqrt{2}(1+\sqrt{2})^{2}}$ gives us

$$
\begin{equation*}
\square_{2+\sqrt{2}} E=\frac{\delta(\tau) \otimes \delta(y)}{4 \sqrt{2}(1+\sqrt{2})^{2}} \tag{17}
\end{equation*}
$$

and therefore $E .4 \sqrt{2}(1+\sqrt{2})^{2}$ is a fundamental solution of $\square_{2+\sqrt{2}}$.

Conclusion: Put

$$
\begin{align*}
E(y, \tau) & =\frac{1}{4 \sqrt{2}(1+\sqrt{2})^{2}} \cdot \frac{\theta((2+\sqrt{2}) \tau-|y|)}{2 \pi(2+\sqrt{2}) \sqrt{(2+\sqrt{2})^{2} \tau^{2}-|y|^{2}}} \tag{18}\\
& =\frac{1}{16 \sqrt{2}(1+\sqrt{2})^{3} \pi} \frac{\theta((2+\sqrt{2}) \tau-|y|)}{\sqrt{2(1+\sqrt{2})^{2} \tau^{2}-|y|^{2}}}
\end{align*}
$$

Then $\square_{2+\sqrt{2}} E=\delta(\tau, y) /$ see $[\mathrm{V}]$ for example or $[\mathrm{H}] /$.
Going back to the coordinates $\left(z_{1}, z_{2}\right)$ we obtain:

$$
Q(D) E(z, \tau)=\delta(\tau) \otimes \delta(z), E(z, \tau)=\frac{1}{16 \sqrt{2}(1+\sqrt{2})^{3} \pi} \cdot \frac{\theta\left(\sqrt{2}(1+\sqrt{2}) \tau-\left|A^{-1} z\right|\right)}{\sqrt{2(1+\sqrt{2})^{2} \tau^{2}-\left|A^{-1} z\right|^{2}}}
$$

So according to (14):

$$
\left\{\begin{array}{l}
Q(D) w_{1}=g(z, \tau), g(z, \tau)=\frac{1}{4}\left(\partial_{\tau}+\partial_{z_{2}}\right) \psi(\tau) u_{1}\left(z_{1}\right) u_{2}(z) \tag{19}\\
\left.w_{1}\right|_{\tau<0}=0
\end{array}\right.
$$

Certainly, the Cauchy problem (19) is satisfied in the sense of Schwartz distributions $D^{\prime}\left(\mathbf{R}^{3}\right)$. Obviously, supp $g \subset\{\tau \geq 0\}$ and more precisely, supp $g \subset\left\{\tau \geq 0, z_{1} \geq\right.$ $\left.0, z_{2} \geq 0\right\}$, supp $E \subset\left\{0 \leq \frac{\left|A^{-1} z\right|}{2+\sqrt{2}} \leq \tau\right\}$.

The theory of the generalized Cauchy problem for strictly hyperbolic constant coefficients differential operators in $D^{\prime} /[\mathrm{V}] /$ gives that (19) has a unique solution that can be written in a convolutional form:

$$
\begin{align*}
& w_{1}(z, \tau)=E * g(z, \tau)=\tilde{c} \iiint_{\mathbf{R}^{3}} \frac{\theta\left(\tau-\mu-\left|A^{-1}\left(\frac{z-\nu}{2+\sqrt{2}}\right)\right|\right) g\left(\nu_{1}, \nu_{2}, \mu\right) d \nu_{1} d \nu_{2} d \mu}{\sqrt{2(1+\sqrt{2})^{2}(\tau-\mu)^{2}-\left|A^{-1}(z-\nu)\right|^{2}}}= \tag{20}\\
& =c_{1} \iiint_{\mathbf{R}^{3}} \frac{\left.\theta(\tau-\mu)-\left|\frac{A^{-1}}{2+\sqrt{2}}(z-\nu)\right|\right) g\left(\nu_{1}, \nu_{2}, \mu\right) d \nu_{1} d \nu_{2} d \mu}{\sqrt{(\tau-\mu)^{2}-\left|\frac{A^{-1}}{2+\sqrt{2}}(z-\nu)\right|^{2}}}, \quad c_{1}=\frac{1}{32(1+\sqrt{2})^{4} \pi} .
\end{align*}
$$

We point out that $\hat{K}_{(z, \tau)}=\left\{(\nu, \mu): \mu \geq 0, \tau-\mu \geq\left|\frac{A^{-1}}{2+\sqrt{2}}(z-\nu)\right|\right\}$ is the interior of the cone / cone of the past/ with vertex at the point $(z, \tau), \tau \geq 0$. Fix some $0 \leq \mu=\mu_{0} \leq \tau$. Then $K_{(z, \tau)}=\partial \hat{K}_{(z, \tau)} \cap\left\{\mu=\mu_{0}\right\}=\left\{\left(\nu_{1}, \nu_{2}\right):\left|\frac{A^{-1}}{2+\sqrt{2}}(z-\nu)\right|=\right.$ $\left.\tau-\mu_{0}\right\}$. Evidently, $\left|\frac{A^{-1}}{2+\sqrt{2}}(z-\nu)\right|^{2}=\left(\tau-\mu_{0}\right)^{2}$ is a second order curve contained in the 2 dimensional plane \mathbf{R}_{ν}^{2}. On the other hand, $|z-\nu|=\left|A A^{-1}(z-\nu)\right| \leq$
$\|A\|\left|A^{-1}(z-\nu)\right| \leq(2+\sqrt{2})\|A\|\left(\tau-\mu_{0}\right)$ and consequently $K_{(z, \tau)}$ is located inside a circle centered at z and with radius $(2+\sqrt{2})\|A\|\left(\tau-\mu_{0}\right)$. So we conclude that $K_{(z, \tau)}$ is an ellipse /not circle/. Therefore, $\hat{K}_{(z, \tau)}$ is a cone whose basis is an ellipse.
The integral (20) exists if $g \in C(\tau \geq 0)$, supp $g \subset\{\tau \geq 0\}$. Then

$$
\begin{equation*}
w_{1}(z, \tau)= \tag{21}
\end{equation*}
$$

$$
=c_{1} \int_{0}^{\tau} \iint_{\left|A^{-1}(\nu-z)\right| \leq(2+\sqrt{2})(\tau-\mu)} \frac{g\left(\nu_{1}, \nu_{2}, \mu\right) d \nu_{1} d \nu_{2} d \mu}{\sqrt{(2+\sqrt{2})^{2}(\tau-\mu)^{2}-\left|A^{-1}(z-\nu)\right|^{2}}} .
$$

The standard change $\left\lvert\, \begin{gathered}A^{-1}(\nu-z)=\tau p(2+\sqrt{2}), p \in \mathbf{R}^{2} \\ \tau-\mu=\alpha \tau, \quad \alpha \in \mathbf{R}^{1}\end{gathered} \quad\right.$ in (21) gives us:

$$
\begin{equation*}
w_{1}(z, \tau)= \tag{22}
\end{equation*}
$$

$$
\begin{gathered}
=\frac{c_{1}}{(2+\sqrt{2}) \tau} \int_{0}^{1} \iint_{|p| \leq \alpha} \frac{g(z+\tau(2+\sqrt{2}) A p, \tau(1-\alpha))}{\sqrt{\alpha^{2}-|p|^{2}}} \tau^{3}(2+\sqrt{2})^{2}|A| d p_{1} d p_{2} d \alpha \\
=c_{2} \tau^{2} \int_{0}^{1} \iint_{|p| \leq \alpha} \frac{g(z+\tau(2+\sqrt{2}) A p, \tau(1-\alpha))}{\sqrt{\alpha^{2}-|p|^{2}}} d p d \alpha, c_{2}=\mathrm{const}>0
\end{gathered}
$$

Assume that $g \in C(\tau \geq 0)$. Then $w_{1}(z, \tau) \in C(\tau \geq 0)$. Moreover, if $g \in C_{\gamma}^{k}(\tau \geq 0)$, where $\gamma \in \mathbf{R}^{1}, \gamma=z_{1}, z_{2}$ or τ then $w_{1} \in C_{\gamma}^{k}(\tau \geq 0), k \in Z_{+}$. Suppose now that $g \in C^{0,1}(\tau \geq 0)$ on each compact $D \subset\{\tau \geq 0\}$, i.e. g is Lipschitz continuous with respect to $\left(z_{1}, z_{2}, \tau \geq 0\right)$ on each compact $\bar{D} \subset\{\tau \geq 0\}$. Then $w_{1} \in C^{0,1}(\tau \geq 0)$ on D.

We point out that if $g \in C\left(\mathbf{R}^{3}\right)$ and supp $g \subset\{\tau \geq 0\}$ then $g(z, 0)=0$. The assumption $g \in C^{0,1}(D)$, where D is an arbitrary compact in \mathbf{R}^{3} implies $w_{1} \in$ $C^{0,1}(D)$ and supp $w_{1} \subset\{\tau \geq 0\}$. Assume that $\alpha_{0}=\min \left(k_{1}-2, k_{2}-2, k_{3}-2\right) \geq 0$. Then $g \in C^{\alpha_{0}}$ and therefore $w_{1} \in C^{\alpha_{0}}(\tau \geq 0)$.

Our next step is to estimate from above supp $w_{1}(x, t)$. As we know, supp $w_{1} \subset$ $\overline{\text { supp } E+\text { supp } g}$ in the (z, τ) coordinates and the symbol + stands for the arithmetical sum of the sets supp E and supp g. Thus

$$
\operatorname{supp} w_{1}(z, \tau) \subset\left\{(z, \tau):\left|A^{-1} z\right| \leq(2+\sqrt{2}) \tau\right\}+\left\{(z, \tau): z_{1} \geq 0, z_{2} \geq 0, \tau \geq 0\right\}
$$

as supp $g=\left\{(z, \tau): z_{1} \geq 0, z_{2} \geq 0, \tau \geq 0\right\}$.

Consequently,

$$
\begin{gathered}
\operatorname{supp} w_{1} \subset\left\{(z, \tau): \tau-\mu \geq \frac{\left|A^{-1}(z-\nu)\right|}{2+\sqrt{2}} \text { for some }(\nu, \mu) \in \mathbf{R}^{3}, \nu_{1} \geq 0, \nu_{2} \geq 0, \mu \geq 0\right\} \\
=\bigcup_{\nu_{1} \geq 0, \nu_{2} \geq 0, \mu \geq 0} \hat{\hat{K}}_{(\nu, \mu)}
\end{gathered}
$$

$\hat{\hat{K}}_{(\nu, \mu)}$ being the interior of the cone of the future with vertex at (ν, μ).
From geometric reasons it is clear that $\cup \hat{\hat{K}}_{(\nu, \mu)}$ will be contained in the union of the following sets: I octant, the "solid" cone of the future $\hat{\hat{K}}_{(0,0)}$ and the located outside of the first octant envelopes of two 1-parameter families of characteristic conical surface of the future, namely $\left\{K_{(p, 0,0)}\right\}_{p \geq 0}$ and $\left\{K_{(0, q, 0)}\right\}_{q \geq 0}$ with vertexes at $(p, 0,0),(0, q, 0)$. We shall find the envelope of the first family of characteristics only. Thus $\tau^{2}(2+\sqrt{2})^{2}=\left|A^{-1}(z-p)\right|^{2}=\left(\lambda^{2}+1\right)\left(z_{1}-p\right)^{2}+\left(\lambda^{2}+1\right) z_{2}^{2}+4 \lambda\left(z_{1}-p\right) z_{2}$, i.e. $\quad \tau^{2}=3\left(z_{1}-p\right)^{2}+3 z_{2}^{2}+2\left(z_{1}-p\right) z_{2}$. We differentiate the last equality with respect to p and we get: $6\left(z_{1}-p\right)+2 z_{2}=0 \Rightarrow z_{1}-p=-\frac{1}{3} z_{2}$. So the equation of the envelopes takes the form $\tau^{2}=\frac{8}{3} z_{2}^{2}$. One can easily see that we are interested in the plane $\Gamma_{1}: \tau=-\sqrt{\frac{8}{3}} z_{2}, \quad z_{2} \leq 0$. There are no difficulties to verify that the characteristic hyperplane Γ_{1} is tangential to the cone $K_{(0,0)}$ surface along the cone generatrix $l_{0}: \left\lvert\, \begin{gathered}z_{1}=-\frac{z_{2}}{3} \\ \tau=-\sqrt{\frac{8}{3}} z_{2}\end{gathered}\right.$.

In a similar way we find the envelope $\Gamma_{2}: \tau=-\sqrt{\frac{8}{3}} z_{1}, \quad z_{1} \leq 0$, of the characteristic cones $\left\{K_{(0, q, 0)}\right\}_{q \geq 0}$. The characteristic hyperplane Γ_{2} is tangential to the cone surface $K_{(0,0)}$ along the cone generatrix $m_{0}:\left\{\begin{array}{c}z_{2}=-\frac{z_{1}}{3} \\ \tau=-\sqrt{\frac{8}{3}} z_{1}\end{array}\right.$. Having in mind the fact that the characteristics are invariant under smooth nondegenerate changes we can go back to the old coordinates $\left(x_{1}, x_{2}, t\right)$ and conclude that supp $w_{1}(x, t)$ is contained in a domain located over α, i.e. $4 t-x_{1}-x_{2} \geq 0$ and bounded by the characteristic cone surface $\tilde{K}_{(0,0)}: 2 t=\sqrt{x_{1}^{2}+x_{2}^{2}}$ and the characteristic hyperplanes $/$ surfaces $/ \tilde{\Gamma}_{1}: t=\frac{x_{1}}{4+\sqrt{8 / 3}}+\frac{1+\sqrt{8 / 3}}{4+\sqrt{8 / 3}} x_{2}, \tilde{\Gamma}_{2}: t=\frac{x_{2}}{4+\sqrt{8 / 3}}+\frac{1+\sqrt{8 / 3}}{4+\sqrt{8 / 3}} x_{1}$. Certainly, $\tilde{\Gamma}_{1}, \tilde{\Gamma}_{2}$ are tangential to $\tilde{K}_{(0,0)}$ along some generatrixes \tilde{l}_{1}, \tilde{m}_{1} of $\tilde{K}_{(0,0)}$. The details are left to the reader.

Put $L=\frac{1}{4}\left(\partial_{\tau}+\partial_{z_{2}}\right)$. Then (19) is rewritten as:

$$
\left\{\begin{array}{l}
Q(D) w_{1}=L\left(\psi u_{1} u_{2}\right) \equiv g, \text { supp } g \subset\{\tau \geq 0\} \tag{23}\\
\left.w_{1}\right|_{\tau<0}=0
\end{array}\right.
$$

Consider now the generalized Cauchy problem in $D^{\prime}\left(\mathbf{R}^{3}\right)$:

$$
\left\{\begin{array}{l}
Q(D) w_{2}=\psi u_{1} u_{2}, \text { supp } \psi \subset\{\tau \geq 0\} \tag{24}\\
\left.w_{2}\right|_{\tau<0}=0
\end{array} .\right.
$$

According to the theory of generalized Cauchy problem $/[\mathrm{H}]$, $[\mathrm{V}] /$ there exists a unique solution of (24) which is given by $w_{2}(z, \tau)=E * \psi u_{1} u_{2}$. In fact we have in $D^{\prime}\left(\mathbf{R}^{3}\right): Q(D) w_{2}=Q(D)\left(E * \psi u_{1} u_{2}\right)=Q(D) E * \psi u_{1} u_{2}=\delta * \psi u_{1} u_{2}=\psi u_{1} u_{2}$ which implies $L\left(Q w_{2}\right)=L\left(\psi u_{1} u_{2}\right)$ in $D^{\prime}\left(\mathbf{R}^{3}\right)$, i.e. $Q\left(L w_{2}\right)=g(z, \tau)$. Moreover, supp $w_{2} \subset\{\tau \geq 0\} \Rightarrow \operatorname{supp} L w_{2} \subset\{\tau \geq 0\}$. Thus,

$$
\left\{\begin{array}{l}
Q\left(L w_{2}\right)=g, \text { supp } g \subset\{\tau \geq 0\} \tag{25}\\
\left.L w_{2}\right|_{\tau<0}=0
\end{array}\right.
$$

According to the uniqueness result of the generalized Cauchy problem applied to (23), (25) we get: $w_{1}=L w_{2}$ and therefore $w_{1}=L\left(E * \psi u_{1} u_{2}\right)$. On the other hand, $u_{1}(\lambda) \in C^{k_{1}-1}\left(\mathbf{R}^{1}\right), u_{1}(\lambda) \in C^{k_{1}-1,1}\left(\mathbf{R}^{1}\right), \partial_{z_{1}}^{k_{1}+1} u_{1}=k_{1}!\delta\left(z_{1}\right), \partial_{z_{2}}^{k_{2}+1} u_{2}=$ $k_{2}!\delta\left(z_{2}\right), u_{2} \in C^{k_{2}-1,1}\left(\mathbf{R}^{1}\right)$. So $M\left(\partial_{z_{1}}, \partial_{z_{2}}\right) w_{1} \equiv \partial_{z_{1}}^{k_{1}+1} \partial_{z_{2}}^{k_{2}+1} L\left(E * \psi u_{1} u_{2}\right)=L(E *$ $\left.\psi(\tau) \delta\left(z_{1}\right) \delta\left(z_{2}\right)\right) k_{1}!k_{2}$! and therefore $Q(D)\left(M\left(\partial_{z_{1}}, \partial_{z_{2}}\right) w_{1}\right)=Q\left(E * L\left(\psi \delta\left(z_{1}\right) \delta\left(z_{2}\right)\right)\right) \times$ $\times k_{1}!k_{2}!=k_{1}!k_{2}!L\left(\psi \delta\left(z_{1}\right) \delta\left(z_{2}\right)\right) \Rightarrow\left\{z_{1}=z_{2}=0, \tau \geq 0\right\}=\operatorname{singsupp} L\left(\psi \delta\left(z_{1}\right) \delta\left(z_{2}\right)\right)$ \subset singsupp $M w_{1}$. A simple modification of formulas (20), (21) enables us to conclude that /see [C] or [V]/:

$$
\begin{equation*}
M w_{1}=\partial_{z_{1}}^{k_{1}+1} \partial_{z_{2}}^{k_{2}+1} w_{1}(z, \tau) \tag{26}
\end{equation*}
$$

$$
=\frac{c}{4}\left(\frac{\partial}{\partial \tau}+\frac{\partial}{\partial z_{2}}\right)\left[\theta\left(\tau-\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}\right) \int_{0}^{\tau-\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}} \frac{\psi(\mu) d \mu}{\sqrt{(\tau-\mu)^{2}-\left(\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}\right)^{2}}}\right]
$$

$c=$ const $\neq 0, z \neq 0$.
Further on we shall carefully investigate the properties of

$$
\begin{equation*}
I(z, \tau)=\theta\left(\tau-\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}\right) \int_{0}^{\tau-\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}} \frac{\psi(\mu) d \mu}{\sqrt{(\tau-\mu)^{2}-\left(\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}\right)^{2}}} \tag{27}
\end{equation*}
$$

Remark 2. supp $\left.L\left(E * \psi(\tau) \delta\left(z_{1}\right) \delta\left(z_{2}\right)\right)\right) \subset \operatorname{supp}\left(E * \psi \delta\left(z_{1}\right) \delta\left(z_{2}\right)\right) \subseteq \operatorname{supp} E+$ $\{(z, t\}: z=0, \tau \geq 0\}=\operatorname{supp} E=\left\{(z, \tau): \tau \geq \frac{\left|A^{-1} z\right|}{2+\sqrt{2}}\right\}=\hat{\hat{K}}_{(0,0)}$ and singsupp $E=$ $\left\{(z, \tau): \tau=\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}\right\}=K_{(0,0)}$, singsupp $M w_{1}=\left\{z_{1}=z_{2}=0, \tau \geq 0\right\} \cup\{\tau=$ $\left.\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}, z \neq 0\right\}$.

Proof of the main Theorem 1

Consider the third equation of our system (1):

$$
\left\{\begin{array}{l}
\left(\partial_{t}+\partial_{x_{1}}+\partial_{x_{2}}\right) v=w_{1}(z, t) \tag{28}\\
\left.v\right|_{t<\frac{x_{1}+x_{2}}{4}}=0
\end{array}\right.
$$

As we know, in the (z, τ) coordinates it takes the form

$$
\left\{\begin{array}{l}
2 \frac{\partial v}{\partial \tau}=w_{1}(z, \tau) \tag{29}\\
\left.v\right|_{\tau<0}=0
\end{array}\right.
$$

$v \in D^{\prime}\left(\mathbf{R}^{3}\right), w_{1} \in D^{\prime}\left(\mathbf{R}^{3}\right),\left.w_{1}\right|_{\tau<0}=0$.
Differentiating the generalized Cauchy problem (29) with respect to z_{1} and z_{2} we get for $z \neq 0$:
$(30)\left\{\begin{array}{l}\frac{\partial}{\partial \tau}\left(\partial_{z_{1}}^{k_{1}+1} \partial_{z_{2}}^{k_{2}+1} v\right)=\frac{1}{2} \partial_{z_{1}}^{k_{1}+1} \partial_{z_{2}}^{k_{2}+1} w_{1}= \\ =c_{1}\left(\frac{\partial}{\partial \tau}+\frac{\partial}{\partial z_{2}}\right)\left[\theta\left(\tau-\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}\right) \int_{0}^{\tau-\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}} \frac{\psi(\mu) d \mu}{\sqrt{(\tau-\mu)^{2}-\left(\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}\right)^{2}}}\right] \\ \left.\partial_{z_{1}}^{k_{1}+1} \partial_{z_{2}}^{k_{2}+1} v\right|_{\tau<0}=0,\end{array}\right.$
$c_{1}=$ const $\neq 0$, where $\operatorname{supp} \partial_{z_{1}}^{k_{1}+1} \partial_{z_{2}}^{k_{2}+1} w_{1} \subset \hat{\hat{K}}_{(0,0)}$ and $M w_{1}=\partial_{z_{1}}^{k_{1}+1} \partial_{z_{2}}^{k_{2}+1} w_{1}$.
Thus,

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial \tau} M v=\frac{1}{2} M w_{1} \tag{31}\\
\left.M v\right|_{\tau<0}=0
\end{array}\right.
$$

$\operatorname{supp} M w_{1} \subset \hat{\hat{K}}_{(0,0)}$ and therefore $M v=0$ outside the cone of the future $\hat{\hat{K}}_{(0,0)}$.
Under the additional assumption that $M w_{1}$ is continuous we have:

$$
\operatorname{Mv}(z, \tau)=\left\{\begin{array}{l}
0, \quad \tau \leq \frac{\left|A^{-1} z\right|}{2+\sqrt{2}} \tag{32}\\
\frac{1}{2} \int_{\frac{\mid A^{-1 z \mid}}{2+\sqrt{2}}}^{\tau} M w_{1}(z, s) d s, \quad \tau \geq \frac{\left|A^{-1} z\right|}{2+\sqrt{2}}, z \neq 0
\end{array}\right.
$$

i.e.

$$
M v(z, \tau)=\left\{\begin{array}{l}
0, \quad \tau \leq \frac{\left|A^{-1} z\right|}{2+\sqrt{2}} \tag{33}\\
\frac{c}{8}\left[\int_{0}^{\tau-\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}} \frac{\psi(\mu) d \mu}{\sqrt{(\tau-\mu)^{2}-\left(\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}\right)^{2}}}+\int_{\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}}^{\tau} \frac{\partial}{\partial z_{2}}\right. \\
\left.\left(\int_{0}^{s-\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}} \frac{\psi(\mu) d \mu}{\sqrt{(\tau-\mu)^{2}-\left(\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}\right)^{2}}}\right) d s\right], \quad \tau>\frac{\left|A^{-1} z\right|}{2+\sqrt{2}} .
\end{array}\right.
$$

So for $\tau>\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}>0: \quad M v=\frac{c}{8}\left(I(z, \tau)+\int_{\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}}^{\tau} \frac{\partial}{\partial z_{2}} I(z, s) d s\right)$. After the standard change $\tau-\mu \rightarrow \mu$ we can rewrite (33) as;

$$
M v(z, \tau)=\left\{\begin{array}{l}
0, \quad \tau \leq \frac{\left|A^{-1} z\right|}{2+\sqrt{2}} \\
\frac{c}{8}\left[-\int_{\tau}^{\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}} \frac{\psi(\tau-\mu) d \mu}{\sqrt{\mu^{2}-\left(\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}\right)^{2}}}+\int_{\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}}^{\tau} \frac{\partial}{\partial z_{2}}\right. \tag{34}\\
\left.\left(\int_{\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}}^{s} \frac{\psi(s-\mu) d \mu}{\sqrt{\mu^{2}-\left(\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}\right)^{2}}}\right) d s\right], \quad \tau>\frac{\left|A^{-1} z\right|}{2+\sqrt{2}} .
\end{array}\right.
$$

Certainly, $z \neq 0$ in (34).
Conclusion: We have to compute $\int_{\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}}^{\tau} \frac{\psi(\tau-\mu) d \mu}{\sqrt{\mu^{2}-\left(\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}\right)^{2}}}=I(z, \tau)$.
Remark 3. Consider the equation $\left(\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial t}\right) v_{1}=w_{1},\left.v_{1}\right|_{t-\frac{x_{1}+x_{2}}{4}<0}=$ 0 . One can easily see that the straight line Γ passing through each point $0 \neq \tilde{A} \in \alpha$ and colinear with the vector $l=(1,1,1)$ is hitting the cone surfaces of the future and the past $K_{(0,0)}^{+}, K_{(0,0)}^{-}=\left\{(x, t): \pm 2 t=\sqrt{x_{1}^{2}+x_{2}^{2}}\right\}$ at one point only.

$$
x_{1}=s+a_{1}
$$

In fact, $\Gamma: \quad x_{2}=s+a_{2}, \tilde{A}=\left(a_{1}, a_{2}, a_{3}\right) \Rightarrow 4 a_{3}=a_{1}+a_{2}$. In order to find $x_{3}=s+a_{3}$
$K_{(0,0)} \cap \Gamma$ we have to solve the system $4 t^{2}=x_{1}^{2}+x_{2}^{2}, x_{i}=s+a_{i}, i=1,2, t=s+a_{3}$. So
$s_{1,2}^{2}=s^{2}=\frac{a_{1}^{2}+a_{2}^{2}-4 a_{3}^{2}}{2}=\frac{3 a_{1}^{2}+3 a_{2}^{2}-2 a_{1} a_{2}}{4}$ and the quadratic form in the right hand side is positively definite. Therefore $s_{1,2}$ are real roots and $s_{1} \neq s_{2} \Longleftrightarrow \tilde{A} \neq 0$.

Lemma 1. Consider the integral $V_{m}=\int \frac{P_{m}(x) d x}{\sqrt{x^{2}+c}}$, $c=$ const $\left.<0, x\right\rangle \sqrt{-c}$, $P_{m}=x^{m}+a_{1} x^{m-1}+a_{2} x^{m-2}+\ldots+a_{l-2} x^{m-l+2}+a_{l-1} x^{m-l}+\ldots+a_{m-1} x+a_{m}$. Then there exists a uniquely determined polynomial of order $m-1, Q_{m-1}=b_{0} x^{m-1}+$ $b_{1} x^{m-2}+b_{2} x^{m-3}+\ldots+b_{l-2} x^{m-l+1}+b_{l-1} x^{m-l}+\ldots+b_{m-3} x^{2}+b_{m-2} x+b_{m-1}$, and a constant λ_{m} such that

$$
\begin{gather*}
V_{m}=Q_{m-1} \sqrt{x^{2}+c}+\lambda_{m} V_{0}, \quad V_{0}=\int \frac{d x}{\sqrt{x^{2}+c}}=\ln \left(x+\sqrt{x^{2}+c}\right), \tag{35}\\
V_{1}=\sqrt{x^{2}+c}+a_{1} V_{0}
\end{gather*}
$$

This is the elementary and well known proof, $m \geq 2$. Differentiating (35) we have

$$
\frac{P_{m}}{\sqrt{x^{2}+c}}=Q_{m-1}^{\prime} \sqrt{x^{2}+c}+\frac{x}{\sqrt{x^{2}+c}} Q_{m-1}+\frac{\lambda_{m}}{\sqrt{x^{2}+c}} \text {. i.e. }
$$

$P_{m}=\left(x^{2}+c\right) Q_{m-1}^{\prime}+Q_{m-1}+\lambda_{m} /$ in the case $m=0: Q_{-1} \equiv 0, \lambda_{0}=1 ; m=1 \rightarrow$ $Q_{0} \equiv 1, \lambda_{1}=a_{1} /$. For the unknown coefficients of the polynomial Q_{m-1} and for λ_{m} /i.e. $m+1$ unknown coefficients/ we get the following linear system:

$$
\begin{array}{r}
m b_{0}=1 \\
(m-1) b_{1}=a_{1} \\
c(m-1) b_{0}+(m-2) b_{1}=a_{2} \\
\cdots \\
c(m-l+1) b_{l-2}+(m-l) b_{l}=a_{l} \\
\cdots \\
2 c b_{m-3}+b_{m-1}=a_{m-1} \\
c b_{m-2}+\lambda_{m}=a_{m}
\end{array} \quad a_{m+1}\left(\begin{array}{c}
b_{0} \\
b_{1} \\
\vdots \\
b_{m-1} \\
\lambda_{m}
\end{array}\right)=\left(\begin{array}{c}
1 \\
a_{1} \\
a_{2} \\
\vdots \\
a_{m-1} \\
a_{m}
\end{array}\right),
$$

where the matrix A_{m+1} has the following structure. We have on the main diagonal the elements $m,(m-1), \ldots, 1,1$; on the first line paralel to the main diagonal and located below it stands 0 and on the second line paralel to the main diagonal and located below it we have: $c(m-1), c(m-2), \ldots, c$. All the other elements of A_{m+1} are 0 . So we conclude that $\operatorname{det} A_{m+1}=m$! and that $\lambda_{m}=\frac{\operatorname{det} B_{m+1}}{\operatorname{det} A_{m+1}}$, where the matrices A_{m+1}, B_{m+1} coincide up to the last column. The last column of B_{m+1} is $\left(1, a_{1}, \ldots, a_{m-1}, a_{m}\right)^{t}$.

Corollary: $\lambda_{m} \neq 0$ in (35) iff $\operatorname{det} B_{m+1} \neq 0$ and note that $V_{m} \in C^{\infty}$ for $x>\sqrt{-c}$.

Let us compute now $I(z, \tau)$.

Certainly, $\psi(\tau-\mu)=\theta(\tau-\mu)(\tau-\mu)^{k_{3}}=\theta(\tau-\mu) \sum_{k=0}^{k_{3}}\binom{k_{3}}{k} \tau^{k_{3}-k}(-1)^{k} \mu^{k}$.
To simplify the notations in computing $I(z, \tau)$ we put $\varphi(z)=\frac{\left|A^{-1} z\right|}{2+\sqrt{2}} \in C^{\infty}(z \neq$ $0)$ and we shall write k instead of k_{3}. So if $z \neq 0$ and $\tau \geq \varphi(z)$:

$$
\begin{equation*}
I(z, \tau)=\int_{\varphi(z)}^{\tau} \frac{\varphi(\tau-\mu) d \mu}{\sqrt{\mu^{2}-\varphi^{2}(z)}}=\sum_{l=0}^{k}\binom{k}{l} \tau^{k-l}(-1)^{l} \int_{\varphi(z)}^{\tau} \frac{\mu^{l} d \mu}{\sqrt{\mu^{2}-\varphi^{2}(z)}} \tag{36}
\end{equation*}
$$

The change $\mu=\lambda \varphi(z), \varphi(z) \geq 0, \varphi(z)=0 \Longleftrightarrow z=0$ trandforms (36) into

$$
I(z, \tau)=\sum_{l=0}^{k}\binom{k}{l} \tau^{k-l} \varphi^{l}(z)(-1)^{l} \int_{1}^{\frac{\tau}{\varphi(z)}} \frac{\lambda^{l} d l}{\sqrt{\lambda^{2}-1}}, \quad \lambda \geq 1
$$

According to (35) there exist a polynomial $Q_{l-1}(\lambda)$ of order $(l-1)$ and a constant λ_{l} such that

$$
\begin{gather*}
I(z, \tau)=\sum_{l=0}^{k}\binom{k}{l}(-1)^{l} \tau^{k-l} \varphi^{l}(z)\left[Q_{l-1}(\lambda) \sqrt{\lambda^{2}-1}+\right. \tag{37}\\
\left.+\lambda_{l} \ln \left(\lambda+\sqrt{\lambda^{2}-1}\right)\right]\left.\right|_{\substack{\lambda=\frac{\tau}{\varphi(z)}} I(z, \tau)=}=\sum_{l=0}^{k}\binom{k}{l}(-1)^{l} \tau^{k-l} \varphi^{l}(z)\left[Q_{l-1}\left(\frac{\tau}{\varphi(z)}\right) \sqrt{\frac{\tau^{2}}{\varphi^{2}(z)}-1}+\lambda_{l} \ln \left(\frac{\tau}{\varphi(z)}+\sqrt{\frac{\tau^{2}}{\varphi^{2}(z)}-1}\right)\right] .
\end{gather*}
$$

Evidently, $l=0 \Rightarrow Q_{-1} \equiv 0, \lambda_{0}=1 ; l=1 \Rightarrow \lambda_{1}=0, Q_{0}=1$ and $I(z, \tau) \in C^{\infty}(\tau>$ $\varphi(z)>0)$. Logarithmic terms participate in $I(z, \tau)$ if $\lambda_{l_{0}} \neq 0 / 0 \leq l_{0} \leq k /$.

Consider now (38) $\int_{\varphi(z)}^{\tau} \frac{\partial}{\partial z_{2}}(I(z, s)) d s$, where $I(z, s)=\sum_{l=0}^{k}\binom{k}{l}(-1)^{l} s^{k-l} \varphi^{l}(z) \times$

$$
\times\left[Q_{l-1}\left(\frac{s}{\varphi(z)}\right) \sqrt{\frac{s^{2}}{\varphi^{2}(z)}-1}+\lambda_{l} \ln \left(\frac{s}{\varphi(z)}+\sqrt{\frac{s^{2}}{\varphi^{2}(z)}-1}\right)\right], \quad s \geq \varphi(z)>0 .
$$

One can easily see that (38) contains the following four different types of integrals:

1. $\int_{\varphi(z)}^{\tau}\left(\frac{s}{\varphi(z)}\right)^{p} Q_{l-1}^{\prime}\left(\frac{s}{\varphi(z)}\right) \cdot \sqrt{\frac{s^{2}}{\varphi^{2}(z)}-1} d s=\varphi(z) \int_{1}^{\frac{\tau}{\varphi(z)}} \lambda^{p} Q_{l-1}^{\prime} \frac{\left(\lambda^{2}-1\right)}{\sqrt{\lambda^{2}-1}} d \lambda \in$ $C^{\infty}(\tau>\varphi(z)>0), p \geq 1$, and the last integral is of the type (35).
2. $\int_{\varphi(z)}^{\tau} \frac{s^{p}}{\varphi^{p}(z)} Q_{l-1}\left(\frac{s}{\varphi(z)}\right) \cdot \frac{1}{\sqrt{\frac{s^{2}}{\varphi^{2}(z)}-1}} d s=\varphi(z) \int_{1}^{\frac{\tau}{\varphi(z)}} \lambda^{p} Q_{l-1}(\lambda) \frac{d \lambda}{\sqrt{\lambda^{2}-1}} \in$ $C^{\infty}(\tau>\varphi(z)>0), p \geq 2$.
3. $\int_{\varphi(z)}^{\tau} \frac{s^{k-l}}{\varphi^{k-l}(z)} Q_{l-1}\left(\frac{s}{\varphi(z)}\right) \sqrt{\frac{s^{2}}{\varphi^{2}(z)}-1} d s=\varphi(z) \int_{1}^{\frac{\tau}{\varphi(z)}} \lambda^{k-l} Q_{l-1}(\lambda) \sqrt{\lambda^{2}-1} d \lambda=$ $\varphi(z) \int_{1}^{\frac{\tau}{\varphi(z)}} \lambda^{k-l} Q_{l-1}(\lambda)\left(\lambda^{2}-1\right) \frac{d \lambda}{\sqrt{\lambda^{2}-1}} \in C^{\infty}(\tau>\varphi(z)>0)$.
4. $\int_{\varphi(z)}^{\tau}\left(\frac{s}{\varphi(z)}\right)^{p} \frac{1+\frac{s}{\varphi(z)} / \sqrt{s^{2} / \varphi^{2}-1}}{s / \varphi(z)+\sqrt{s^{2} / \varphi^{2}(z)-1}} d s=\varphi(z) \int_{1}^{\frac{\tau}{\varphi(z)}} \lambda^{p} \frac{1+\lambda / \sqrt{\lambda^{2}-1}}{\lambda+\sqrt{\lambda^{2}-1}} d \lambda$, $p \geq 1$. Thus, $\int_{\varphi(z)}^{\tau}\left(\frac{s}{\varphi(z)}\right)^{p} \frac{1+\frac{s}{\varphi(z)} / \sqrt{s^{2} / \varphi^{2}-1}}{s / \varphi(z)+\sqrt{s^{2} / \varphi^{2}(z)-1}} d s=\varphi(z) \int_{1}^{\frac{\tau}{\varphi(z)}} \frac{\lambda^{p}}{\sqrt{\lambda^{2}-1}} d \lambda \in$ $C^{\infty}(\tau>\varphi(z)>0), p \geq 1$.

Combining (30)-(34), (37), (38) - p. 1, 2, 3, 4 and using the fact that under the inverse change $(z, \tau) \rightarrow(x, t)$ the characteristic cone surface $\{(z, \tau): \tau=$ $\left.\frac{\left|A^{-1} z\right|}{2+\sqrt{2}}, z \neq 0\right\}$ is mapped onto the characteristic cone $\left\{4 t^{2}=x_{1}^{2}+x_{2}^{2}, t>0\right\}$ and the ray $\left\{z_{1}=z_{2}=0, \tau \geq 0\right\}$ is mapped onto the ray $\left\{t=x_{1}=x_{2}, t \geq 0\right\}$ we complete the proof of our Theorem 1.

References

[B] Bony, J.-M. Interaction des singularités pour les équations aux dérivées partielles non-linéaires, Sém. Goulaouic-Meyer-Schwartz, 1981-1982, exposé N 2.
[C] Courant R. Methods of Mathematical Physics, vol. II, New York, Intersc., 1966.
[H] Hörmander L. The Analysis of Linear Partial Differential Operators, vol. II, III, New York, Springer-Verlag, 1985.
[L] Laschon G. Creation and propagation of logarithmic singularities of two piecewise smooth progressing waves, Proc. of the A.M.S., 129, 2000, 1375-1384.
[M-R1] Métivier G., J. Rauch. The interaction of two progressing waves, Springer lecture notes in Math., vol. 1402, New York, Springer-Verlag, 1989, 216-226.
[M-R2] Métivier G., J. Rauch. Interaction of piecewise smooth progressing waves for semilinear hyperbolic equations, Comm. in P.D.E., 15, 1990, 239-289.
[N] Naimark M. Linear Representation of the Lorenz Group, Moscow, State Publ. House for physical and math. sciences, 1958 (in Russian).
[V] Vladimirov V. Generalized Functions in Math. Physics, Moscow, Nauka, 1976 (in Russian).

[^0]: ${ }^{1} 2000$ AMS Subject Classificalion: Primary 35L60, 35L67; Secondary 35L45, 35A30.
 ${ }^{2}$ Keywords: semilinear nonstrictly hyperboloic system, Cauchy problem, piecewise smooth wave, creation of singularity.

