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Abstract

We study the dynamics of four wave interactions in a nonlinear quan-
tum chain of oscillators under the “narrow packet” approximation. We
determine the set of times for which the evolution of decay processes
is essentially specified by quantum effects. Moreover, we highlight the
quantum increment of instability.

Introduction

In a nonlinear environment with dispersion waves may be instable under decay
processes, cf. for instance [11]. The instability is observed by effective inter-
action of waves with vectors k; and frequencies w(k;) in a neighbourhood of

resonances
.
E njwk;) = 0,

] Znﬂgj == 0,
J

whence the wave amplitudes change exponentially fast in time at the initial

(0.1)

stage, and nonlinear effects turn out to be essential for describing their dy-
namics.

The wave decay processes are of considerable interest in problems of chem-
istry, hydrodynamics of liquid and gas, plasma physics, nonlinear optics, solid
physics, etc.
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Usually the dynamics of wave decay processes is described in the framework
of classical approach. Such approach seems to be justified so far the energy of
interacting waves is sufficiently large and effects related to quantities of order
h are not in time for becoming transparent. However, it is not always possible
to neglect the influence of quantum mechanics corrections on system dynamics
even in the quasi-classical setting, if particularly the classical approximation is
instable. The study of dynamical stochasticity in classical and quantum me-
chanics shows that if the classical system is strongly instable then its quantum
dynamics may essentially differ from the classical one, cf. [3], [5], [12].

The present paper is devoted to quantum mechanics analysis of the dynam-
ics of decay processes of type (0.1) which occur in a one-dimensional nonlinear
chain of connected oscillators, cf. [8]. The Hamiltonian of the system has the
form

H:i<ﬁ+5(u L= un)? 4 L (u 1—u)4> (0.2)
e \om g T g e '

where p,, is the momentum of the nth oscillator, u, the displacement of the
nth oscillator from the equilibrium position, /N is the number of oscillators,
¢ is an elasticity constant, v is the parameter of nonlinearity, and m is the
mass of an oscillator. In the sequel the boundary conditions are chosen to be
periodic, i.e., pan = p, and u, N = Uy,

The system (0.2) for & = 0 is one of the simplest models for finding con-
ditions of appearance of stochastic properties in nonlinear systems with many
degrees of freedom. It is intensively investigated beginning with 1955, cf. [8],
[6], etc. There is certain connection between the instability of the decay type
in question and the stochastic instability of [4]. This latter paper presents a
numerical investigation of system (0.1) in the case of initiating short waves
(“narrow packet” approximation). If the parameter v exceeds a critical value
v, four wave decay processes seem to appear corresponding to resonances (0.1).
Under further increase of v diverse resonances of type (0.1) might interact with
each other, which finally results in a stochastic behaviour of the chain. The
availability of decay processes in a classical chain seems thus to be a prelimi-
nary step to arising a stochastic instability in the system.

Hence the study of the dynamics of four wave decay processes for system
(0.2) in the quantum case seems to be well motivated. This paper is organised
as follows. In Section 1 we have compiled some basic facts on the dynamics
of four wave decay processes in a classical chain. The equations describing
the dynamics of quantum decay are presented in Section 2. Sections 3, 4 and
5 contain a detailed study of the quantum decay system. The local solution
of the system guaranteed by the Cauchy-Kovalevskaya Theorem is proved to
analytically extend to all time, space and parameter values. In Section 6 we
treat the asymptotic behaviour of the solution for large times. It is shown in
particular that quantum effects lead to slowing down the rate of the develop-
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ment of decay instability as compared with the classical case. Moreover, the
quantum effects force the disappearance of the critical value v..

1 Classical limit

Before discussing the decay instability in the quantum case we look more
closely at some peculiarities of the dynamics of four wave decay processes in a
classical chain. To this end, we pass in (0.2) to the canonical variables aj; and
ay by

1
= — (P, — Ug), 1.1
ak /72mhwk( k — wirUy) (1.1)
where
| X
Pk — D e—27r%nz7
oD
| N
Uk - U, €2W%7u7
oD

_ € . k
wr = msm7rN.

In the classical case, the commutator [a;, al] = 0 vanishes, and I = h |ay|?
is a classical action of the phonon with momentum k.

Suppose that the initial data of system (0.2) satisfy the condition of “narrow
packet” approximation

Skko < 1, (1.2)

where 6k = |k — ko| is the characteristic size of a packet of initiated modes
by k, and kg is the characteristic wave number of the packet (kg ~ N/2, the
number of oscillations of anti-phase oscillations). In the variables ay, af the
Hamiltonian (0.2) takes the form

N 1
* 2 * *
H = h E wragag + §h E Viikakaks @y @y @y @y Oky+ky—ks— kg 0
k=1 k1 ,k2 k3, ke

+ 0(1), (1.3)

where
3v . ko ky . ks . ky\1/2
Vi hokaks = oy \ SN SN sin 7o sin 7S .

mN N N N N
In (1.3) the terms a} aj ag,ax, represent the resonance four wave interaction
processes of modes, which are decisive under the condition (1.2). By O(1) are
meant the non-resonance terms like ay, ax,ay, ay,, aj, a,ax,ay,, etc., which can
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be neglected under the approximation in question, at least at the initial stage.
Under the condition (1.2) one can set

u)ko —|— C(k — ko) — Q(k — ko)z,
Vo

Wk

(1.4)

R

‘/kl kokaky

where

B e /ymN\2 . ko 3 ko 2
c—21/ —cos7r— Q= E<N> sm7rﬁ, VO_emN<Sm7Tﬁ>'

Substituting (1.3) and (1.4) into the equations of motion

. 0H
1k = day
we get
Ay = —PQA + RV > AL AL AL S0 (1.5)
J2,J3 4
where

Aj =exp <(wko + CJ)“) ko

The equation (1.5) describes the dynamics of four wave interactions in chain
(0.2). As is shown in [4], if v <« 27%ko /3N Ey, ~ 1/E, E being the energy of
the system, then the “narrow packet” approximation survives in the course of
time. It follows that equations (1.5) actually simulate the dynamics of (0.2)
for all times. In the sequel we think of equations (1.5) as the input ones.

We next present a condition for arising the decays. It is easy to verify that
the equation (1.5) has an explicit solution of the form of finite amplitude wave

Ap(t) = exp <(Qk - FLVO|Ak|2)tl> Ag,

(1.6)
A1) = o0, i £k,

where Q; = k%Q). Let us examine the stability of solution (1.6) with respect to
the decay in neighboring modes 2k — (k—1)+ (k+1). Suppose that the modes
with j # k are slightly perturbed at the initial instant, so that |A;| < |Ag|.
By linearising equations (1.5) in A; one easily arrives at the system

ZAk = —OQpAg + hVo|AL]?) Ag,
ZAk_l = _Qk—lAk—l —|— 2h%|Ak|2Ak_l —|— FL‘/OAQA};_H, (17)
1Appr = —QpyrAgr + 20V0| AP Apyr + RV AT AL,

These equalities show that the dynamics of a “large” wave does not change at
first approximation of perturbation theory. The amplitudes of “small” waves
grow exponentially with the increment

AQN? Vol
)\l:\/\/o[(AQ)—<T> =10 e, (1.8)
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where AQ = Qp_; + Dy — 29, = 2/%Q is a destruction characteristic of
resonance (0.1), and I = h|Ag|?. From (1.8) we get the desired condition for
existence of decays, namely 2V5//Q > 1. In terms of original system (0.2) this

condition reads

2 1

o 1.9
Y2 3NE, © NE (1.9)

2 Quantum equations of decay

We now pass to analysis of the quantum case where p, and w, in (0.2) are
operators with commutativity relation [uj, px] = 1hdjz. Changing the vari-
ables by (1.1) and (1.4) as in the classical case (see [1] for more details), we
get the following system of operator equations which describe the four wave
interactions in the quantum case

ZA] = _j2(1 + q)QA] + 1V Z A}QAjSAjAI 5j+j2—j3—j4,07 (21)
J2,03,74
where
[A], Az] = 5jk7
T
vcot —
2N

- p— 2N
1 2NV me?

Q) and Vy being defined in (1.4). The renormalisation of the frequency  is
explained by the ordering of operators. It will cause no confusion if we use the
same letter Q; to designate 72(1 + ¢)€.

To treat the system (2.1) we use the techniques of projection onto the basis
of coherent states, cf. [2] and [10]. Assume that at the initial instant each mode
of the bosonic field rests on a coherent state described by a number «;. We
denote

a;j(t) = (a]A;(1)]a)

= a5(t,d,d%),

where |@') is the vector of states of the phononic field at the initial instant.
From (2.1) it follows that the operator A;(¢) satisfies the Heisenberg equation

ZFLA]‘ = [A]‘(t),Heff], (22)

with the effective Hamiltonian

Heg = _EZQkA A+ = h2V0 Z AT Ak2Ak3Ak4 Okiy +hiy — kg —hq 0-

k1 k2 k3 kg
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Applying the projection thus yields

wi(t) = T ay(l),

a;(0) = oy 29
where
. 0
o= ;Qk <O"“a—ak _ c.c.)
+ AV Z <a};1 Oy Qg % - C'C'>5k1+k2—k3—k470

k1 k2 k3 kg

+ %h‘/o Z <ak1 0 i - C'C'>5k1+k2—k3—k4707

ozk2 -_—
day,, Do
k1 k2 k3 kg ks ka

the C.C. meaning complex conjugate terms (cf. [1] for more details).
The equation (2.3) is easily checked to possess a solution of the form of
finite amplitude periodic wave

ag(t) = exp <thz —-(1- exp(—ﬁ%t@))|0zk|2> g,
Oé]‘(t) = 0, lf ] 7£ k

Note that the solution (2.4) turns into the classical wave (1.6) when h — 0,
lag| — oo, and h|ag|* — I. We now examine the stability of solution (2.4)
relatively to the decay in neighboring modes 2k — (k — ) + (k + ). Assume
that at the initial instant the amplitudes of the modes j # k are small, i.e.,
la;| < |ag]. In this case one can look for a solution agy; of (2.4) in the form

(2.4)

of expansion in a;,

ak+l(t7&7&*) = cl,O(tvakva};)
+ Z <c§71j’0)(t,ozk,oz2)ozk+j + c}?j’l)(t,ak,a@azﬂ>
J#0
+ ..., (2.5)

the dots meaning the terms containing the products agyj Okt %y Qi)
Qf 4 s, ete. From the initial condition agy(0,d,d%) = axyy we readily
deduce that

C;Jf )(070%70/1;) = 5lj7 c;,j )(0,0ék,OéZ) =0

for [ # 0. In (2.5) agy; and aj, ; are the initial amplitudes of “small” waves,

(1,0)

¥ and

and «y the initial amplitude of a “large” wave. The coeflicients ¢, ¢
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cﬁ 1), etc. do not explicitly contain smallness related to the amplitudes oy,

with 7 # 0.

Below, we will study the dynamics of functions ¢ g, cﬁfo) and 052,1)7 for they
determine the evolution of small perturbations with amplitudes oy ;. Substi-
tuting (2.5) into (2.3) and gatherings the coefficients of the same powers of
Q4;, we arrive at a system of equations for the coeflicients which is not closed
in general, i.e., the equations for ¢, cﬁfo) and 0570]71) also include higher order
coefficients. However, one can show that higher order coefficients describe the
influence of small waves on each other and on the large wave. Hence they do
not essentially contribute to the dynamics of the system at the initial stage.
A quasi-classical asymptotic of the contribution of higher order coefficients is
discussed in [1].

On account of the above remark, we cut off the expansion (2.5) upon the
linear terms. In this way we get the following closed system of differential
equations

1610 = Mcy,

. 0
N = MO — Qs — 20V |ay)? )Cu + 2hVoay 5— ( V= Voot

& l] O o l,—7
: ’ 0
ZC?,OLIJ‘) = Mc ; ]) (Qpy — 27;6V0|Oék| )Cl ] — ZE‘/oozka—kc; ]) + ﬁ\/oozkcgj ),
(2.7)
cf. [1], where
~ a 1 82

the C.C. stand for complex conjugate terms.

The solution of the first equation (2.7) has the form (2.4) and describes
the dynamics of a “large” wave at first approximation. The remaining system
of two equations can be further simplified. For this purpose we conclude from
(2.6) and the linearity of (2.7) that only two relevant summands in (2.5) are
different from zero, namely 0511,0) and cgo_’ll). Let us now substitute the unknown
functions by 7 7

;11 0= exp < — (g — ZQk)tz>f,

;0_11) = a—f exp < — (g — ZQk)tz>g.
ay

(2.8)

Under this notation the average of the operator Agy(t) is

appi(t) = (] Apu(t)|4)
= exp < — (g — ZQk)tz> <ozk_|_lf(t) + %az_lg(t))

k
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Substituting (2.8) into (2.7) we deduce that both f and g depend only on |ay/|?
and satisfy the system

: 9
= @Vl — (Rt Qs — 200V 4+ 200 19 g,

. al (2.9)
1g = Wlf+hWg

with initial data £(0)
0) = 1,
g(0) = 0. (2.10)

where I = h|ay|? stands for the classical action of the kth mode.

Equations (2.9) describe the decay instability in the quantum case. From
now on they will be referred to as equations of quantum decay. In the classical
case h = 0 they can be solved explicitly, which shows once again the exponen-
tial growth of “small” waves when the increment A; (1.8) increases, provided

that 251 > Q, cf. § 1.

3 Analysis of quantum equations

Before we pass to the analysis of equations (2.9) we make necessary simplifi-
cations. We reset

[ = exp(=hVte)f,
g — exp(=hWti)g

and Q — Q — Vyt. Moreover, we introduce dimensionless time ¢ — ¢/ and
dimensionless variable @ = V5[ /Q. For simplicity we restrict our attention to
the case [ = 1. Then (2.9) takes the form

: af
o f = 2(:1;—1)f—|—25:1;%—:1;g, (3.1)
g = af,
where v
—_ 50
e=nh 0

1s a quantum parameter.

The system (3.1) is of mixed type with hyperbolic degeneracy on the line
x = 0. The general theory yields merely that (3.1) has a real analytic solution
in (t,z,¢) in some neighbourhood of the plane t = 0. We prove in § 4 that
this solution actually extends analytically in (¢,z,¢) to all of R?, the extension
satisfying

VTP TP < 22 exp (1) 32)

for all ¢,  and e.
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The last inequality shows that decays in the quantum case run not faster
than exp(yt), where v does not depend on t. This enables us to apply the
Laplace transform in the analysis of system (3.1).

Since the solution of (3.1) for ¢ = 0 has an explicit analytic form, it is
interesting to develop the quasi-classical approach for describing the dynamics
of decays. Denote by fu, ga the solution of (3.1) for ¢ = 0. We prove in § 5
that

fltae) =) 0 fa(t,z) e, (3.3)
k=0

¥ being the integro-differential operator

£
Vu(t,z) = —2@:1:/ Jalt — s, ) a—u(s,x) ds.
o Ox

The series (3.3) converges uniformly on all subsets of Ry x Ry x Ry of the
form

{t<T}x{z <X} x{e< (2T63XT)_1}.
Hence it follows that

in the domain of quasi-classical approach /e > 1. The time of applicability of
the quasi-classical approach is therefore logarithmically small, i.e., T' ~ log 1/h
in contrast to T' ~ 1/R" for classically stable dynamics. This is a consequence
of instability of the dynamics of the classical system.

A similar result was earlier obtained in the paper [3] studying conditions of
applicability of quasi-classical approximations for describing dynamics of non-
linear quantum systems whose classical limits have the property of stochastic
instability.

4 Existence of solutions

Let us formulate the problem more precisely. By (3.1), we have the following
system for approximate description of the dynamics of quantum decays

= —(z—-1)f - 2@5:1;6—f + g,

Ox (4.1)
g = —af
in the half-plane (¢,2) € R4 x R under the initial conditions
f(0,z) 1,
9(0,z) = 0. (4.2)
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In fact, the domain of x = V51 /Q is @ > 1/2, the last condition guarantying
the existence of decays by (1.9).
The principal symbol of (4.1) is given by the matrix

it — 2exé 0
0 1T

with the determinant —7(7 4+ 21exf). It follows that (4.1) is a mixed type
system with hyperbolic degeneracy on the line x = 0. The real characteristics
of this system are lines & = const, hence the Cauchy problem (4.1), (4.2) is
noncharacteristic.

The system (4.1) has normal form with respect to the time variable ¢, and
the coefficients of the system and the Cauchy data (4.2) are entire functions
of ¢, z and . Therefore, it fulfills the conditions of the Cauchy-Kovalevskaya
Theorem, which implies that the problem (4.1), (4.2) has a real analytic solu-

tion . ( e )

g(t,z,€)

in some neighbourhood U of the hyperplane {t = 0} in R® The solution is
unique in the class of real analytic functions. Moreover, the solution is unique
in the class of continuously differentiable functions, which is due to Holmgren’s
uniqueness theorem.

The question arises whether the solution actually extends analytically to
all of the half-space {t > 0}. To treat the problem we eliminate one unknown
function of the system.

Lemma 4.1 Given any entire function ®o(x), the Cauchy problem for the
truncated equation
i oo
{ ¢ = —za—-1)¢— 2@€xa—x for t >0, (4.3)
o0) = o)

hat a unique solution which is an entire function of (t,x,¢).

Proof. Since the functions we work with are entire we can change the
variables by
t = 1z,

loge = —2¢z+w,

with z,w € R. For the function u(z,w) := @(1z,exp(—2¢ z + w)) the Cauchy
problem (4.3) becomes

9z

{ Ou = 2(6_252+w—1>u for z€eR,
u(0,w) = Py(e”).
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This latter problem has a unique entire solution which can be moreover ex-
plicitly written,

1
u(z,w) = @o(e") exp <—ew(1 — e — 22).
€
Returning to the variables ¢ and x yields
O(t,z,5) = Go(x) exp (f(e—w 1)+ m), (4.4)
€

as desired.
O
Note that @(t,x,¢) converges to ®g(x) exp(—21t(x — 1)) for ¢ — 0, as is
easy to see.
From now on we tacitly assume that &, = 1. By abuse of notation, we use
the same letter @ to designate the solution of (4.3) with @, = 1. Set

It x,e)= —Z:L'/O D(s,x,¢)ds. (4.5)

Lemma 4.2 Suppose P is a continuous function of (t,x,¢) in the half-
space Ry x R x R. Then the solution of the Cauchy problem for the system

f = —2@(:1;—1)f—2@5:1;g—£—|—]3,

g = —wuf

(4.6)

under initial conditions (4.2) is given by the formula
¢
flt,x,e) = @(t,x,s)—l—/ O(t — s,x,e)P(s,x,¢)ds,
0

t
g(t,z,e) = F(t,x,e)—l—/ I'(t—s,x,e)P(s,x,¢)ds.
0

Proof. To simplify notation, we will not indicate the dependence of f, g,
etc. on x and €.
Since @(0) =1 and I'(0) = 0 both f and g satisfy (4.2). Furthermore, an

easy calculation shows that

fi)y = o)+ @(O)P(t)—l—/ot G(t — s)P(s)ds

- gb(t)+<p(0)P(t)—/0 <2z(:1;—1)@(t—3)—|—2@5:1;aa—x§b(t—s)>P(s)ds

= b1) + B(O)PU) ~ 2(x ~ D(J(1) ~ D) — 2w (1) — B(1)

= e ()~ 2z () + P,
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the last equality being a consequence of (4.3), and similarly

g(t) = f(t)—|—F(O)P(t)—|—/0tf(t—s)P(s)ds

= I'(t)+ I'(0)P(t) — 1z /t B(t — 5)P(s)ds
= I'(t)+ T(0)P(t) =z (f(1) — ®(1),

showing the lemma.
O
Lemma 4.2 allows one to reduce the Cauchy problem (4.1), (4.2) to an
integral equation of Volterra type, namely

o) = o)+ [t s)ats)ds,

t (4.7)
g(t) = I'(t)+ Z:L'/O I'(t—s)g(s)ds.

Theorem 4.3 The problem (4.1), (4.2) has a unique solution {f, g} which
is a real analytic function of (t,x,¢) on all of R x R x R, satisfying (3.2).

Proof. Since both @ and [ are entire functions of (¢, x,¢), the existence
and uniqueness of a solution follow from the classical Volterra theory. This
solution can be actually obtained by successive approximations. It remains to
establish (3.2).

To this end, we apply the successive approximation method to solve the
second equation of (4.7), and then we substitute ¢g to the first equation, thus
obtaining f. For simplicity, we restrict our discussion to the case of nonnegative
t, x and e, which involves no loss of generality. Setting gy = I, we define
iterations

ge(t) = I'(t) + /0’5 I'(t— s)gr-1(s)ds

for k=1,2,....
Since
:1;
lgo(t)] < / exp < cos 2e5 — 1)> ds

€
T

< / exp< 253
€

1
S 5 <€2t1’ 1) 7
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one easily obtains by induction

(0] < (5-7)¢+gia,
l92()] < (% — 11—6 + 11—6(t:1;)2><,o + %tw,
lg3(1)] < (% — %)99 + <%tw + 91—6(m)3>¢,
lga(t)] < @ — % + %(m)? + %(taj)‘l)@ + <%m _ 72_8(m)3>¢7
where o ey
o= 41

Given any £k =1,2,..., we get
lgr ()] < (ckp +epa(te)® + .. ) © + (cmt:z; + epa(te)® + .. ) P,

where ¢, = 0 for n > k. The coefficients ¢;, can actually be estimated
uniformly in & by
ehal < 5 o (4.8)
Chn, - — — )
Bl =9 9m gl

for all n.
Letting &k — oo we deduce that the limiting function ¢(t) fulfills the esti-
mate

1 - 1 tx\2n 1 o 1 b 2t
= i) e
o 2;(%)! 2 ¢+2;(2n+1)! ) v
1 1 1 y
< 3 cosh?x (em _ 1) + 5 sinh; (ezm i 1)
for all £ > 0. Using the definitions of functions cosh x and sinh z we readily
obtain
lg(t)] < % <e(5/2)m’ — e—(1/2)tx>
< 16(5/2)1‘1’
- 2
and
t 1
|f(t)| < et + l’/ ezl’(t_s) 5 6(5/2)595 ds
0
< 6(5/2)1‘907 (4‘9)
which implies (3.2).
O

As already mentioned, the solution {f, g} of (4.1), (4.2) is also unique in
the space of continuously differentiable functions.
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5 Successive approximations

(T,

Ar = il —a)+ V22 -1,
Ao = z(l—x)—m

stand for the eigenvalues of the matrix A. The system (4.1) for ¢ = 0 takes
the form

Set

and let

Fcl — AFC]
with (t.2)
fcl t,l’
F. 2 = ’
l( x) ( gcl(tvx)

hence the solution of the Cauchy problem (4.1), (4.2) corresponding to ¢ = 0
can be written in the form

FC] = ZAkFO (l’) y,
k=0 )
= oAt _+€/\_t - (5.1)
VY

where

The inequality (4.9) certainly applies to fu, thus giving an estimate for all
real ¢ and z. In order to derive an estimate of £ on all of C x C we need the
following lemma.

Lemma 5.1 As defined above, Fy is an entire function of t and x, satis-
Tying
[Fa(t, z)| < exp ((2[1 — 2|+ [])[t])

for all (t,2) e Cx C.

Proof. To shorten notation, set z = 2 (1 — 2) and w = 1x. An easy

calculation shows that
k

k 2,2 k-4, 4
A E (:1;) . CLz" — Cp_22" T W F cp_y 2" W — ..
0 —er 12+ TP e s P L )
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where the coefficients ¢, ¢i_1,...,co are natural numbers determined by the
table
1
1 1
1 1 1
1 1 2 1

Ck Ck—1 1 Co.
(5.2)
Using the inequality +/|a|*> 4+ [b]? < |a| + |b] and comparing (5.2) with the
Pascal triangle we get
[ASFy ()] < J2]" + (2] + Jw])* e
< (=] + )

Substituting this estimate into (5.1) yields

Sy 1
Falt.a)l < 3R @I

< exp ((|z] + [w])[t])

for all (¢,2) € C x C, as desired.
O

Theorem 4.3 shows immediately that F(¢,2,0) = Fy(t,z) for all ¢ and
x, 1.e., the classical solution is the pointwise limit of the quantum solution if
¢ — 0. Given any small ¢ > 0, the question arises of the range of times ¢ for
which the classical limit still satisfactory describes the dynamics of quantum
decays.

To study the problem we make use of the geometric series to get an asymp-
totic expansion of F(¢,x,¢) in powers of .

Lemma 5.2 Let P be a continuous function of (t,x) in the quarter-plane
Ry x Ry. Then the solution of the Cauchy problem for the system

f = —2(x—1)f+wxg+ P,

PR (5.3)
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under initial conditions (4.2) is given by the formula
) = Jaltr) + [ alt = son)Plo.e)ds
g(t,z) = galt,x)+ /Otgcl(t —s,2)P(s,x)ds.
Proof. To shorten notation, we write f(¢) and g¢(t) instead of f(¢,x),
g(t, ), etc.

Since f4(0) = 1 and ga(0) = 0 both f and g satisfy (4.2). Furthermore, an
easy calculation shows that

o) = fatt) + S0P + Sl — 3)P(s) ds

= 'Cl(t) + fa(0)P(t) + /0 (—=2u(x — 1) falt — s) +rxga(t — s)) P(s)ds

= fa(t) + fa(0)P(t) — 2o(x — 1)(f(t) — fa(t)) +12(g(t) — ga(?))
= —2i(x — 1) f(1) +xg(t) + P(t),
and similarly
5O = dalt) +ga P+ [ dalt =P ds

= ga(t) + ga(0)P(t) — /Otfcl(t—S)P(S)dS
(f

= ga(t) + ga(0)P(t) —w (f(1) — falt)),

which completes the proof.
O
Using Lemma 5.2 reduces the Cauchy problem (4.1), (4.2) to an integral
equation of Volterra type, namely

t
flt,z,e) = fa(t,x) — 2@5:1:/ fal(t — S,x)g—f(s,x,s) ds. (5.4)
0 x
As in § 3, we denote by ¥ the integro-differential operator
t
Vu(t,z) = —2@1‘/ falt —s,x) a—u(s, x)ds,
0 aw

then the equation (5.4) can be written in the form

(I —c¥)f = fa
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whence

flyee) = (I—eW)™ fy(t,z)
= > WFfa(tx)eh (5.5)

One verifies by induction that

=0 =0
for k =1,2,..., where cg () are irrational functions having the only singu-
larity at the point x = 1/2. Since f. is an entire function, the iterations ¥* fg
are entire functions of ¢t and z, too.
Note that (5.5) is a regular asymptotic series in powers of the small pa-
rameter. No boundary layer is required, for the degeneracy at ¢ = 0 does not
affect the nature of the Cauchy problem.

Theorem 5.3 The series (5.5) converges uniformly in t, x and ¢ on com-
pact subsets of R x R x R of the form

(Il < T} x {Ja] < X} x {Je] < (27 T)71}.

Proof. From the Cauchy formula it follows that if () is an entire function
of x € R then
sup 42
rl<rix | 0%
for all X > 0 and 0 <7’ < r.
By Lemma 5.1 we conclude that

sup | fa(t,z)] < CrX+l
|=<r X

< m |ZS|;17PX |p(2)] (5.6)

for any r > 0. We next show by induction that for all £ = 1,2, ... the estimate
holds
sup | WF [ (1, 2)] < (2Jt])F BXHDL, (5.7)
2| <X/k+1

For k =1 we get, by (5.6),

sup Wha(t2) < swp (=2l [ alt=s2)110/02) o) ds
lz[<X/2 lz[<X/2
2
< X/ exp 3E—|—2>( —3)> ¥ ©XP <(3X—|—2) >d
X ! X
= 2exp <<3? + 2>t> /0 exp <3?3>d5
< 20t exp ((3X +2)[E]),
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as desired. Having granted the inequalities (5.7) up to the number k, we derive,

by (5.6),

sup | ka+1fc1 (t,z)]
o< X k42

2X 1 X (k+1)(k+2) .
< = 3 1 9)(t—s)) RS 0L (s, )|d
= k42 o exe iz Jt-9) =% oap 1 (s, 2)lds

< 2(k+1)exp <<3ki—|—2 + 2) t> /Ot(gs)k exp <3 %XS) ds
< 2(k+1) exp((3X +2)[t]) /t(Zs)k ds

< 2D exp (BX +2)1)),

thus completing the induction step.
Since X is actually arbitrary in (5.7) we easily deduce from this inequality
that

k
sup |05 fo (1, 2)] < XM (]
|z]<X

for all t € R. Hence it follows that the series (5.5) converges uniformly in ¢,
and ¢ on each compact set

{It < T} x{la] < X} x {le] < 7€)1,

for

Je)] < e (X 42l Y (2l exspBX))
k=0
c(BX+2)l1

<
=T 20t X

showing the theorem.
O
Theorem 5.3 implies that (5.1) is an asymptotic series in the powers of
e for the solution of (4.1), (4.2) on bounded subsets of R; x R,, provided
that ¢ is small enough. Let us express T as function of ¢ and = from the
inequality ¢ < (27¢**T)~! entering into the theorem. This will enable us to
evaluate the characteristic times of applicability of the classical approximation
corresponding to ¢ = 0.

Corollary 5.4 Let X/e > 1. Then Fy approximates F'(t,x,¢) for small e
if t < T with

1 X
T~ oy log —.
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Proof. Rewrite the inequality ¢ < (27¢**T)~! in the form
2eT X1 < 1. (5.8)

Since the left-hand side is an increasing function of 7" > 0, the set of all T
satisfying (5.8) is an interval [0, Ty], where Ty = To(X,e) is the root of the
equation 27 X7 = 1.

Let us evaluate Ty. From e*X7 > 143X T it follows that T' < (eSXT—l)/?)X
for all T"> 0. Hence T7 < Ty < T3 where T7 and T5 are the unique positive
solutions of the equations

€3XT1 _1
2 3XT — 1
S 73)( € 5
2€T2 (1—|—3XT2) = 1,

respectively. The solutions of these equations can be explicitly found, more

1 1 5%
T, o= — 1 —(1 W1 —)
! 3y oeg (I HyI+o7)
1 5%
T, = —<—1 W1 6—>.
2 6X + + 5

The asymptotic of Ty in the domain of quasi-classical approach x/¢ > 1 is
actually

precisely,

1 X
Ty ~ — log —
AN
as 1s easy to check.
O

To gain the factor 2 we invoke successive approximations for solving the
equation 2eT ¢**T = 1, or equivalently T' = F(T) with
1 | 1
= — log —.
3X 82T
Namely, if the initial approximation Ty is chosen sufficiently close to the so-

lution then the iterations Ty4; = F(T}) converge to the solution. We thus
get

F(T)

1
T2 = _3—X log (2€T1)

11 <251 1>
= ——log{—=lo
8\3x BT,

11 X—I— <1 X>
~ — log — + ol log —
3X ga ga

for ¢ = 0+, as desired.
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6 Asymptotic under large time

Since the time of applicability of the quasi-classical approach is logarithmically
small, the question arises on the behaviour of f and ¢ for large ¢, cf. [1]. To
study the problem we invoke the Laplace transform in the variable ¢ > 0, which
is denoted by

F(r) = /0 e F(t)dt.

By Theorem 4.3, the solution F' of (4.1), (4.2) is of exponential growth
exp(vt) in t > 0, where v = 5/2x. Hence the Laplace transform of F' is an
analytic function of 7 in the lower half-plane 37 < —~. Taking into account
that .

P(r) = —F(0) + 7 F(7)
and applying the Laplace transform to both sides of (4.1) we reduce the prob-
lem to

N

of
25:1;a—£—l— <T—|—2(:1;—1)>f—:1;§] = —Z,A
Tg = —uaf.

Eliminating § from this system we arrive at the Cauchy problem for f on the

half-axis @ € R

Ve
5:1;ax—l—

of <T2+x2—|-2(:1;—1)>f I

fro) = —.

T

(6.1)

the initial condition being an immediate consequence of the differential equa-
tion. Note that the term in the parentheses in the differential equation is equal
to

a(r, ) = (T4 A4 ) (7 + z)\_)‘

T

Note that (6.1) is a Fuchs-type equation on the half-axis. Such equations
are usually treated in weighted Sobolev spaces and no boundary conditions are
posed at x = 0. In fact, we derived a condition at x = 0 from the differential
equation itself. Qur approach is however justified by the fact that we deal with
the solution f(T, x) whose existence and analyticity for all @ € R are known a
priori.

The solution of the Cauchy problem (6.1) on Ry is given by a familiar
formula

= =50 [ ()2 e (g (T e y>>>(dy>)
6.2
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obtained of the standard formula by a single partial integration. Further par-
tial integration leads to an asymptotic expansion of f in powers of ¢ which
corresponds to (5.5).

In order to evaluate the inverse Laplace transform of f

1 )
f(t) = g/R_ e’ f(r)dr

we expand the exponential function in (6.2) in a power series and integrate it
termwise over y € [0, z]. This gives

2

Pt (DL HO SO ) P

where ¢, = 2 — 2¢(n + k). Hence the computation of f reduces to that of

integrals
1 1 1
Lopi(t)=— wr - d
#i(1) 2 /R_we 1T —1Cnk (07)RF T

which can be done by residue theory. Namely,

Zooo(t) = exp(icnot),

exp (1€, 1) I'(k+7,0¢11)
Loii(t) = T < - . >
(16 1)t (k4+j5—1)!
where
N-1 g
P(N,z)=(N—=1le” > ~
n=0
is the incomplete gamma-function. Setting (—1)! = oo and integrating f

termwise over 7 € R — 1y, we get

2

e (DS A (-5 S . 0

Note that the dependence on ¢ occurs only in the last sum of (6.3). We
now sum up over 5 = 0,1,.... It is easy to check that

N LAY
ZT(E) Lk, (1)
=0 7

1 x 4an€
- (161" <exp <chkt 4e ke) + —1c kt Tt < > j(v)>’

]:1 7=0
(6.4)
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where J;(v) is Bessel’s function of order j and

x2t
vo= 1 —
€

N 2
= z<—> et.
€

Since the quantity v is complex the function J;(v) grows exponentially when
|v| — oo.
From now on we restrict ourselves to the case et > 1. Then the principal

term in (6.4) is
4ec, peNd
<_ Qk > J](U)v

X

B

-1

Il
=]

J

hence the expansion (6.3) takes the form

Peen (-5 X HE) X (D) X ) o

n=0 k=0 7=0

For |v| > 1 one can invoke a familiar asymptotic of Bessel’s function, more

/2 , 1
Ji(v) ~ — cos <v +gm+ §7T>
2¢
J(te.) = exp | 5= Qt.a.e)
€

provided that ¢ > 1 and |v| > 1, where @) is a slowly varying nonincreasing

precisely

It follows that

function of ¢.

Note that this result can be also derived by the saddle-point method. The
advantage of using the above analysis of large ¢ lies in the fact that it allows
one to study also other limit cases.

7 Conclusion

We have described the decay processes in a nonlinear quantum chain with
Hamiltonian (0.2). The analysis is based on the approximate equation (1.5).
This approach is justified in the framework of the so-called “narrow packet” ap-
proximation. For the classical limit the condition of “narrow packet” amounts
to the fact that the parameters and initial conditions of excitation of the chain
meet certain restrictions.
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The equation (1.5) is equivalent to a nonlinear Schrédinger equation with
periodic boundary conditions. The latter is known to be a completely inte-
grable system both in the classical and quantum cases, cf. [9].

In the classical limit A = 0 the four wave decays of the above type are
possible merely in the domain (1.9), i.e., > 1/2. In this case the increment
of instability is determined by (1.8), or

Ak:l:l(t) ~ Ak:l:l(o) exXp <ZQ\/ 2r — l2 t>
Ar(0) exp (Qut).

IA

Quantum effects result in slowing down the development of instability for large

times
Api(t) ~ Agx1(0) exp <Q:1; 1/ L)
Voh

provided t > 1/Voh. The slowing-down of the development of instability was
earlier observed in [7] where the dynamics of a quantum rotator stimulated by
a periodic sequence of § -impulses was studied.

The second peculiarity of quantum effects in the dynamics of decays is the
gap in the critical value of amplitude of the initial wave. In the quantum case
the periodic wave (2.4) is therefore always instable.

It is also worth mentioning that the result on the applicability times of
quasi-classical approach for systems (3.1) is of independent interest. Because
of exponential instability of the classical system the time of applicability of
the asymptotic series (5.5) in powers of & is logarithmically small in the quasi-
classical domain /¢ > 1.
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