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Abstract. For each compact subset K of the complex plane C which does not
surround zero, the Riemann surface Sζ of the Riemann zeta function restricted
to the critical half-strip 0 < �s < 1/2 contains infinitely many schlicht copies
of K lying ‘over’ K. If Sζ also contains at least one such copy, for some K
which surrounds zero, then the Riemann hypothesis fails.
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1. An universality theorem

The critical strip for the Riemann zeta-function is the strip 0 < �s < 1. Because
of the symmetry properties of the zeta-function, one often restricts one’s attention
to the strip S = {s ∈ C : 1/2 < �s < 1}, which we shall call the critical half-strip.
If f is a function defined on S and τ is a real number, we denote by fτ the vertical
translate of f given by fτ (s) = f(s+iτ). Let K be a closed disc centered at 3/4 and
contained in the half-strip S. Voronin has shown that the Riemann zeta-function
has the following remarkable universality property: the vertical translates of ζ are
dense in the space of functions holomorphic on K which have no zeros.

Recently [1] it has been shown that most holomorphic functions have a similar
universality property (without the restriction on zeros). However, it is difficult to
provide other explicit examples than the Riemann zeta function.
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It is not known whether one can remove the restrictions on zeros in Voronin’s
theorem, but doing so would negate the Riemann hypothesis. Indeed, suppose
the function s − 3/4 could be uniformly approximated on the disc K by vertical
translates ζτ of the Riemann zeta-function. Then, by Rouché’s theorem, some such
translate would have a zero in K. Thus, the zeta-function would have a zero in the
translate Kτ = K + iτ of K. Since Kτ is disjoint from the critical line �s = 1/2,
this would violate the Riemann hypothesis.

The following universality theorem of Bagchi improves Voronin’s theorem.

Theorem 1.1 (Bagchi). For each compact subset K of the critical half-strip S with
C \ K connected, for each function f holomorphic on K and having no zeros, and
for each ε > 0, there is a vertical translate ζτ of the Riemann zeta-function, such
that |ζτ − f | < ε on K.

For references to these and other results regarding the universality property of
the Riemann zeta-function, we refer to [4].

The following universality theorem is essentially a reformulation of the theorem
of Bagchi.

Theorem 1.2. For each function f holomorphic on the critical half-strip S and
having no zeros, there is a sequence of vertical translates of the Riemann zeta-
function which converges to f . That is, there is a sequence {τj} of real numbers,
such that ζτj → f uniformly on compact subsets of S.

Of course, this follows immediately from Bagchi’s theorem, since each compact
subset of S is contained in one whose complement is connected. The converse
implication also holds. That is, Bagchi’s theorem follows from Theorem 1.1 and
the following lemma.

Lemma 1.3. Let K be a compact subset of C with connected complement. Then,
each function holomorphic and having no zeros on K can be uniformly approximated
by entire functions having no zeros.

Proof. Let f be holomorphic on K and without zeros. Then, f is an exponential.
That is, f = expF for some function F holomorphic on K. By Runge’s theorem,
there is a sequence of polynomials Pn, such that Pn → F uniformly on K. Set
gn = exp Pn. Then, gn → f uniformly on K. �

2. Schlicht copies

If Y1 and Y2 are two Riemann surfaces, we shall use the expressions ‘Y1 and Y2

are conformally equivalent’ and ‘Y1 and Y2 are biholomorphic’ interchangeably.
Let us use the notation ρ : Y → C to signify a Riemann surface spread (with

possible branching) over C. That is, Y is a Riemann surface and ρ is a holomorphic
function on Y . We say that a point p ∈ Y lies ‘over’ ρ(p) and we think of ρ as a
projection. The Riemann surface Y has a natural metric which is the pullback by
ρ of the euclidean metric on the target space C. Let A be a subset of the target
C. We say that a subset Ã of Y is a schlicht copy of A lying over A, if ρ restricted
to Ã is a homeomorphism of Ã onto A. If moreover A is open, then Ã is a sheet
of Y and it is not only homeomorphic but in fact conformally isometric to A. In
general, we shall say that Ã is a conformally isometric copy of A lying over A, if
some open neighborhood of Ã is a conformally isometric copy of A lying over A.
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The most important example of a Riemann surface spread over C is the Riemann
surface Gf of a holomorphic function f defined on a domain G of C. In this case,
the function f lifts to a biholomorphic mapping f̃ : G → Gf and f = ρ ◦ f̃ .
Although the domain G and the Riemann surface Gf are equivalent as Riemann
surfaces, they are usually different as metric spaces, where Gf has the natural
metric defined above and G has the natural euclidean metric which it inherits as a
subset of C.

Suppose, for j = 1, 2, that ρj : Yj → C are Riemann surfaces spread over C. If
Aj are respectively compact subsets of Yj , we shall say that A1 lies schlicht over
A2 if there is a homeomorphism ϕ : A1 → A2 such that ρ1 = ρ2 ◦ ϕ. Of course,
this relation is symmetric. That is, A1 lies schlicht over A2 if and only if A2 lies
schlicht over A1. If A1 is schlicht over A2, then, by the Brouwer theorem, A1 is
open in Y1 if and only if A2 is open in Y2. In this case, ϕ is biholomorphic and A1

and A2 are conformally isometric. For general sets A1 and A2, we say that they
are conformally isometric if they are respectively contained in open subsets of Y1

and Y2 which are conformally isometric.

3. A covering property

Let Y be any simply connected Riemann surface endowed with a conformal
metric. For example, the Riemann surface Gg of a holomorphic function g defined
on a simply connected domain G is conformally equivalent to G and hence is also
simply connected. If Y is hyperbolic, Sζ and Y are conformally equivalent, and if we
take the conformal metric on Sζ induced by the conformal metric on Y , then Sζ and
Y are conformally isometric. On the other hand, if Y is not hyperbolic, and K is a
compact proper subset of Y , let YK be any simply connected neighborhood of K,
which is not all of Y . Then, YK is hyperbolic and hence conformally equivalent to
Sζ . With respect to the conformal metric induced on Sζ by the conformal metric on
YK inherited from Y , Sζ is conformally isometric to YK and, in particular, contains
a conformally isometric copy of K. But now, the metric on Sζ depends not only on
Y , but even on K. Moreover, we are only assured that Sζ contains one conformally
isometric copy of K in this manner. We wish to find infinitely many conformally
isometric copies of K in Sζ , and moreover we wish to always use the same metric
on Sζ , namely, the natural metric of Sζ as a surface spread over C.

If Y is a Riemann surface spread over C and μ ∈ C, we can define in an obvious
manner the translate Y + μ of Y , which is also a Riemann surface spread over C

and there is a natural biholomorphism from Y to Y +μ. For each subset K ⊂ Y we
denote by K+μ the subset of Y +μ which corresponds to K by this biholomorphism
and we call K + μ the translate of K in Y + μ.

Theorem 3.1. For each Riemann surface Y spread without ramification over C

and for each closed Jordan domain K ⊂ Y , there is a μK ∈ C such that, for each
|μ| > |μK |, the Riemann surface Sζ of the Riemann zeta-function restricted to the
critical half-strip S contains infinitely many conformally isometric copies over the
translate K + μ of K in the translated Riemann surface Y + μ of Y .

Proof. Suppose, first, that Y ⊂ C, that is, that ρ is just the inclusion mapping.
Suppose, moreover, that 0 �∈ K. Let W0 be a Jordan domain such that

K ⊂ W0 ⊂ W 0 ⊂ C \ {0}.
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Choose 0 < r0 < 1/4 and let D0 be the disc centered at 3/4 of radius r0. By the
Riemann mapping theorem, there is a biholomorphic mapping f from D0 onto W
and by the Osgood-Carathéodory theorem, f extends to a homeomorphism of D0

onto W 0. Let K be the inverse image of K and choose 0 < r3 < r2 < r1 < r0, such
that K ⊂ D3, where Dj denotes the disc centered at 3/4 of radius rj . Denote by
Wj the image f(Dj) of Dj.

The function f is the uniform limit on D0 of functions holomorphic on D0

and so by Voronin’s universality theorem, f is the uniform limit on D0 of vertical
translates of the Riemann zeta-function. In particular, setting m equal to the
distance between ∂W2 and ∂W1, there is a vertical translate ζτ of the zeta-function,
such that |f−ζτ | < m on D0. By Rouché’s theorem, for each w ∈ W2, the functions
f − w and ζτ − w have the same number of zeros (counting multiplicities) in D1.
But, for each w ∈ W2, the function f − w has precisely one zero in D1. Thus,
the function ζτ assumes each value w ∈ W2 precisely once in D1. Let h denote
the restriction of ζτ to D1. Then, ζτ maps h−1(W2) biholomorphically onto W2.
Now denote by W−1

2 the vertical translate of h−1(W2) by iτ . Then, ζ maps W−1
2

biholomorphically onto W2. Denote by W̃2 the biholomorphic copy of W−1
2 in the

Riemann surface Sζ of the function ζ restricted to the critical half-strip S. Then,
W̃2 is a conformally isometric copy of W2 lying over W2. Of course, since K ⊂ W2,
the set W̃2 contains a conformally isometric copy K̃ of K lying over K. We have
assumed that Y is a plane domain and that 0 �∈ K.

Now let ρ : Y → C be a Riemann surface spread over C without ramification
and let K be a closed Jordan domain in Y . Suppose, moreover, that 0 �∈ ρ(K).
Let W 0 be a closed Jordan domain in Y with interior W0 such that K ⊂ W0 and
0 �∈ ρ(W 0). By the uniformization theorem, there is a biholomorphic mapping f
from D0 onto W0 and by (a generalization of) the Osgood-Carathéodory theorem,
f extends to a homeomorphism of D0 onto W 0. Define Dj as before.

In order to adapt the proof we gave for Y , a plane domain, to the present
situation, where Y is a Riemann surface, we should require a Rouché theorem for
holomorphic mappings taking their values in a Riemann surface. This problem can
be circumvented in the following way. By the universality theorem, we can obtain
a translate ζτ of the Riemann zeta-function which approximates ρ ◦ f so well on
D0 that for each s ∈ D1, there is an open neighborhood Ns of s in D0 on which
ρ ◦ f is injective and such that ζτ (s) lies in (ρ ◦ f)(Ns). Now fix a point s ∈ D2.
Let ρ−1 be the germ at ζτ (s) of the inverse of ρ restricted to f(Ns). The germ
f−1 ◦ ρ−1 ◦ ζτ can be continued holomorphically along all paths in D1 and, by the
Monodromy Theorem, gives rise to a holomorphic function on D1 which, by abuse
of notation, we denote by f−1 ◦ ρ−1 ◦ ζτ . By approximating ρ ◦ f sufficiently well
on W0 by translates ζτ of the Riemann zeta-function, we may approximate the
identity f−1 ◦f as well as we please on W2 by functions f−1 ◦ρ−1 ◦ζτ . By Rouché’s
theorem, if the approximations are sufficiently good, then for each w ∈ D3, the
identity function and f−1 ◦ ρ−1 ◦ ζτ assume the value w the same number of times
in D2. Thus, f−1 ◦ ρ−1 ◦ ζτ assumes each value in D3 precisely once in D2. Denote
by W−1

3 the image of D3 by the inverse of f−1 ◦ ρ−1 ◦ ζτ restricted to D2. Then,
f−1◦ρ−1◦ζτ maps W−1

3 biholomorphically onto D3. We conclude from this that the
holomorphic continuation ρ−1 ◦ζτ is well defined and maps W−1

3 biholomorphically
onto W3. Writing

ρζ(ζ̃(s + iτ)) = ζ(s + iτ) = ζτ (s),



A COVERING PROPERTY OF THE RIEMANN ZETA-FUNCTION 5

we have that ρ−1 ◦ ρζ ◦ ζ̃ maps W−1
3 + iτ biholomorphically onto W3. Denote by

W̃3 the image of W−1
3 + iτ in Sζ by the biholomorphic mapping ζ̃. Then W̃3 is a

conformally isometric copy of W3 lying over W3 in the Riemann surface Sζ of the
Riemann zeta-function restricted to S. Since Sζ has a conformally isometric copy
W̃3 of W3 over W3, of course W̃3 contains a conformally isometric copy K̃ of K
over K.

One can revisit the above proof, to obtain, not only one, but in fact infinitely
many conformally isometric copies K̃j , j = 1, 2, . . ., of K lying over K. In fact,
by the universality Theorem 1.2, there is a sequence ζτj of translates of the zeta-
function which converges to ρ◦f on D0. Obviously, we can suppose that ρ◦f is not
itself the Riemann zeta-function, for example, by choosing W0 with non-analytic
boundary. Since ρ ◦ f is not the Riemann zeta-function, it follows that τj → ∞.
Hence, we may suppose that the vertical translates of D0 by iτj are disjoint. Thus,
the τj give rise to disjoint conformally isometric copies of W3 lying over W3. These
contain respectively infinitely many conformally isometric copies of K over K.

We have assumed that 0 �∈ ρ(K). To conclude the proof, we merely note that if
0 ∈ ρ(K), we may choose μK ∈ C such that, for each |μ| > |μK |, the projection of
K + μ does include 0. We then apply the previous arguments to the new set K + μ
in the Riemann surface Y + μ. �

Corollary 3.2. For each Riemann surface Y spread without ramification over C

and for each closed Jordan domain K ⊂ Y having no points over 0, the Riemann
surface Sζ of the Riemann zeta-function restricted to the critical half-strip S con-
tains infinitely many conformally isometric copies of K over K.

Proof. In proving the theorem, this is precisely what we showed, before the last
paragraph of the proof, since, up to that point, we were working under the assump-
tion that 0 �∈ ρ(K). �

Corollary 3.3. For each Riemann surface Y spread without ramification over C

and for each closed Jordan domain K ⊂ Y , the Riemann surface Sζ of the Rie-
mann zeta-function restricted to the critical half-strip S contains infinitely many
conformally isometric copies of K.

Proof. Choose an admissible μ. Then, the Riemann surface Sζ contains infinitely
many conformally isometric copies of K +μ over K +μ. Now these copies may not
be over K, but they are still conformally isometric to K since K +μ is conformally
isometric to K. �

4. Domains with ramification

Let us say that K is a closed Jordan domain spread over C if K is a closed Jordan
domain in some Riemann surface spread over C. In the above covering theorem,
we have considered only Jordan domains spread over C without ramification. Let
us now consider the situation when ramification is present. The following theorem
shows that we cannot always cover Jordan domains having a simple ramification,
but we can always cover certain translates thereof.

Theorem 4.1. For each Riemann surface X spread over C, in particular for the
Riemann surface Sζ of the Riemann zeta-function restricted to the critical half-strip
S, there exists a closed Jordan domain K over C having precisely one ramification
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point which moreover is simple, and X contains no conformally isometric copy of
K over K itself.

Proof. Consider the Riemann surface Ca of the function h(z) = a + z2, defined on
C. This is a two-sheeted surface spread over C and having a simple ramification
point over the point a. This surface is simply connected, since it is biholomorphic
to the domain of h, namely C. We denote the projection which spreads Ca over C

by ρa. Let Q be a closed disc in the domain C, and h̃(Q) = Ka the closed Jordan
domain in the surface Ca. Then ρ(Ka) = h(Q) is a closed disc of center a.

Let ρ : X → C be any Riemann surface spread over C, and suppose X contains
a conformally isometric copy K̃a of Ka over Ka. Then, since ρ−1 ◦ ρa maps K̃a

onto Ka bijectively, Ka is also a two-sheeted covering of the same disc Da, having a
ramification point xa over a. Thus ρ(xa) = a. Since ramification points are isolated,
the set RX of ramification points of the surface X is at most countable. These lie
over the countable set ρ(RX). Choose a �∈ ρ(RX). Then, the above discussion
shows that the Riemann surface X does not contain a conformally isometric copy
of Ka over Ka. This proves the theorem. �
Theorem 4.2. For each closed Jordan domain K over C, having precisely one
ramification point which moreover is simple, the surface Sζ contains infinitely many
conformally isometric copies of K over translates of K.

Proof. Let K be any Jordan domain over C having precisely one ramification point
which moreover is simple. In order to prove that Sζ contains conformally isometric
copies of K over translates of K, we need only make a slight modification of the
proof of Theorem 3.1. We may assume (by translation of K) that 0 �∈ ρ(K). From
our definition of a Jordan domain spread over C, we know that K lies in some
Riemann surface Y spread over C. Let W 0 be a closed Jordan domain in Y with
interior W0, such that K ⊂ W0 and 0 �∈ ρ(W 0). We may assume that the unique
ramification point of K is also the unique ramification point of W 0. Following the
notation in the proof of Theorem 3.1, we may assume that ζτ approximates ρ◦f so
well on D0 that the derivative of ζτ has only one simple zero in D0 and that it is as
near as we wish to the unique zero of (ρ ◦ f)′ in D0. We may also assume that not
only these critical points are closed, but also that the corresponding critical values
are close. Thus, by post-composing with a small shift by μ, we may obtain that
ρ ◦ f + μ and ζτ have the same unique critical value. This means that ζ̃τ (D0) has
a unique ramification point which is precisely over the unique ramification point of
K + μ and of the same order.

Let a be the unique zero of (ρ◦f)′ in D0. For some ε > 0, the portion of W0 lying
over the disc |w−f(a)| < ε is the two sheeted covering of this disc with ramification
point over the branch point f(a). Let Na be f−1 of the disc |w−f(a)| < ε/2. Since
both f(D0) and ζ̃τ (D0) have simple ramification points over (ρ ◦ f)(a) = ζτ (a), we
may assume that the approximation is so good that the composition ρ−1 ◦ ρζ is
biholomorphic on ζ̃τ (Na).

We may also assume that the approximation is so good that for each s ∈ D1 \Na

there is an open neighbourhood Ns of s in D0 on which ρ ◦ f is injective and such
that ζτ (s) lies in (ρ ◦ f)(Ns). Now fix a point s ∈ D2 \ Na. Let ρ−1 be the germ
at ζτ (s) of the inverse of ρ restricted to f̃(Ns). The germ f−1 ◦ ρ−1 ◦ ζτ can be
continued holomorphically along all paths in D1 and by the Monodromy Theorem
gives rise to a holomorphic function on D1 which, by abuse of notation, we denote
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by f−1 ◦ρ−1 ◦ ζτ . By approximating ρ◦ f sufficiently well on D0 by translates ζτ of
the Riemann zeta-function, we may approximate the identity f−1 ◦ f as well as we
please on D2 \ Na by functions f−1 ◦ ρ−1 ◦ ζτ . Since ρ−1 ◦ ρζ is an isometry near
the ramification point and in particular on ζ̃τ (Na), we may thus approximate the
identity function as well as we please on all of D2 by functions f−1 ◦ ρ−1 ◦ ζτ .

The rest of the proof that Sζ contains a conformally isometric copy of K over
K + τ is the same as in the proof of Theorem 3.1. We omit the details. This proves
the theorem. �

Moreover, there exist Jordan domains with two simple ramification points, for
which even translates cannot be covered.

Theorem 4.3. For each Riemann surface X spread over C, in particular for Sζ ,
there exists a closed Jordan domain K over C having precisely two ramification
points which moreover are simple and X contains no conformally isometric copy of
K (not even over translates of K).

Proof. Let X be any Riemann surface spread over C. Since X has at most countably
many ramification points, the distance between any two such ramification points
can only assume countably many values. Now let K be a Jordan domain over C

with two ramification points, such that the distance between these two points is
different from these countably many values. Then, X cannot contain a conformally
isometric copy of K. �

5. Compact sets not capturing zero

The topological hull of a set A ⊂ C is the union of A with the bounded com-
plementary components. Let us say that a subset A of C captures zero, if zero is
contained in the hull of A. A compact set K fails to capture zero if and only if
there is a path from zero to infinity in the complement of K.

Theorem 5.1. Over each compact subset K of C which does not capture zero, the
Riemann surface Sζ of the Riemann zeta-function restricted to the critical half-
strip S contains infinitely many conformally isometric copies of K. Moreover, if
the Riemann surface Sζ contains a schlicht copy of some compact set which does
capture zero, then the Riemann hypothesis fails.

Proof. Let K be a compact subset of C which does not capture zero. There exist
a Jordan domain J such that

K ⊂ J ⊂ J ⊂ C \ {0}.
The first part of the theorem follows immediately by applying the previous theorem
to the closed Jordan domain J , noting that in the proof translations of J are not
required, since 0 �∈ ρ(J) .

The second assertion follows from the following claim. Let f be a holomorphic
function in a simply connected domain G, whose restriction to some compact subset
Q of G is a homeomorphism of Q onto its image, which we denote by K. Then
f(G) contains the topological hull K̂ of K. Now we have only to verify the claim.

Fact 1: Homeomorphic compact subsets of C have the same number of comple-
mentary components. This follows from the following observations (see [2]). Firstly,
if K is a compact subset of C, then, for any cohomology theory, the number of com-
plementary components of K is given by the zeroth cohomology group of C \ K
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with real coefficients. Namely, H0(C\K, R) = ⊕n
1 R, where n is the number of com-

ponents of C \ K. Secondly, by Alexander duality, H0(C \ K, R) = H1(K, R) ⊕ R.
Thirdly, H1(K, R) is a topological invariant.

Let us define a Jordan set Γ in C to be a compact subset which satisfies the
conclusion of the Jordan curve theorem. That is, C\Γ has precisely two components
and each point of Γ lies on the boundary of each of these components.

Fact 2: If K is a compact subset of C whose complement is not connected, then
K contains a Jordan set Γ . We can prove this in the following way. Let V be a
bounded complementary component of K. Let K1 = V and let Γ = ∂K̂1. We
show that C \ Γ has precisely two complementary components. The complement
of Γ consists of the complement W of K̂1 and the interior K̂◦

1 of K̂1. From the
definition of the topological hull, it follows that W is connected. We show that K̂◦

1

is also connected. Any component of the interior of a compact set having connected
complement also has connected complement. In particular, if U is the component
of K̂◦

1 which contains V , then, the complement of U is connected from which it
follows that the complement of U is also connected. Since V ⊂ U ⊂ K̂1, it follows
that U is the topological hull K̂1 of K1 = V . Thus, U is dense in K̂1 and so U

is the unique component of K̂◦
1 . Hence, the complement of the boundary Γ of K̂1

has precisely two components, U and W . Since U is dense in K̂1, we have ∂U = Γ .
The boundary of any set is the same as the boundary of its complement. Hence,
Γ = ∂W . We have established that Γ is a Jordan set.

Fact 3: Let f be a homeomorphism of a compact subset Q ⊂ C onto the compact
set K ⊂ C. Then, Q is a Jordan set if and only if K is a Jordan set. Indeed, suppose
K is a Jordan set and let U and W be the complementary components of K. By
Fact 1, the complement of Q has two components and so, by Fact 2, Q contains
a Jordan set Q0. Set K0 = f(Q0). We wish to show that K0 = K. Clearly
K0 ⊂ K. We have only to show that if w �∈ K0 then w �∈ K. By Fact 1, K0 has
precisely two complementary components, say U0 and W0. Each of these contains a
complementary component of K and so they must contain different complementary
components of K. We may assume that U ⊂ U0 and W ⊂ W0. If w �∈ K0, then
w has an open neighborhood N disjoint from K0. Thus, N lies entirely in U0 or
W0 and consequently N is disjoint from W or from U . Thus, w �∈ ∂W or w �∈ ∂U .
Since K is a Jordan set, this means that w �∈ K. This completes the proof that
K = K0 and consequently, Q = Q0. Therefore, Q is a Jordan set. We have shown
that if K is a Jordan set then so is Q. The argument also goes the other way, since
f−1 too is a homeomorphism.

Let f be a function holomorphic in a simply connected domain G and let f map
a Jordan subset Γ ′ of G homeomorphically onto (the Jordan set) Γ . Let U ′ and
W ′ be respectively the bounded and the unbounded complementary components
of Γ ′. Similarly, let U and W be respectively the bounded and the unbounded
complementary components of Γ . Since G is simply connected, it is not hard to
see that U ′ ⊂ G.

Fact 4: f(U ′) ∩ U �= ∅. To prove this conjecture, suppose f(U ′) ∩ U = ∅. Then
f(U ′) ⊂ W . Choose a point in f(U ′). There is a path σ from this point to ∞ in
W . Since f(U ′) is bounded, σ must contain a boundary point of f(U ′). Now,

∂f(U ′) ⊂ f(∂U ′) = f(Γ ′) = Γ = ∂W,
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where the first inclusion is because f is an open mapping. This contradicts the fact
that σ lies in W .

We now show that f(G) contains every point of U . Let b be a point of U . By
Fact 4, there is a point a in U which is the image by f of some point α in U ′. Since
f is open, we may assume that a �= b. Let Uj be a decreasing sequence of Jordan
domains which contain U and which converge to U . Also, let U∞ be a Jordan
domain which contains the points a and b and whose closure is contained in U . By
the Riemann mapping theorem, there is a biholomorphic mapping hj of the unit
disc onto Uj such that hj(0) = b and h′

j(0) > 0. By Montel’s theorem, the family
hj is normal and so we may assume that hj converges to a holomorphic mapping
h of the unit disc into U with h(0) = b. By the Schwarz lemma, h′

j(0) > h∞′(0).
Thus h is non-constant and in fact biholomorphic onto its image V . Since V ⊂ U
and h is non-constant, V contains no point of ∂U . Now, ∂U = ∂U , since K is
a Jordan set. This implies that |h−1

j (w)| → 1 uniformly on ∂U . On the other
hand, by Pick’s lemma applied to h−1

j ◦ h∞, we see that h−1
j is bounded away from

1 on U∞. Thus, U∞ is contained in V . In particular, a ∈ V . We may fix j so
large that |h−1

j (a)| < |h−1
j (w)| for each w ∈ ∂U . By Rouché’s theorem (which

holds even though U ′ may not be smoothly bounded [1]), the functions h−1
j ◦ f and

(h−1
j ◦ f) − h−1

j (a) have the same number of zeros in U ′. Now (h−1
j ◦ f) − h−1

j (a)
has a zero at the point α ∈ U ′ and hence h−1

j ◦ f assumes the value 0 at some point
β ∈ U ′. Thus, f(β) = h(0) = b, which completes the proof of the claim.

The previous paragraph can perhaps be slightly simplified by invoking the Cara-
théodory kernel theorem. �

6. Bloch radius

Let X be a Riemann surface, let f be a holomorphic function on X , and let Gf

be the Riemann surface of f (possibly branched) over C. We say that Gf contains
a schlicht disc of radius r over a point w ∈ C if there is a domain in X which is
mapped by f biholomorphically onto the disc of radius r centered at w. We define
the Bloch radius of f over w, denoted by b(w) to be the radius of the ’largest’
schlicht disc over w. More precisely,

b(w) := sup{r : there is a schlicht disc of radius r over w}.
If there is no schlicht disc over w, we set b(w) = 0.

For the Riemann zeta-function we get the following covering theorem.

Theorem 6.1. For each w ∈ C the Bloch radius b(w) of the Riemann zeta-function
over w has the following lower bound:

b(w) ≥ |w|.
Moreover, if the Riemann hypothesis holds, we have equality.

Proof. The first part is an immediate consequence of Theorem 5.1. Indeed, for
w = 0 the theorem is trivial. For w �= 0, let K be an arbitrary closed disc centered
at w and of radius r < |w|. Then K does not capture zero, and so by Theorem 5.1
there is a schlicht copy K̃ of K lying over K in the Riemann surface Sζ . The set
K̃ is a schlicht disc of radius r over w. This gives the first part.

The Riemann hypothesis would imply b(w) ≤ |w|, which together with the first
part yields the second part. �
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7. Cyclicity of the Riemann zeta-function

The remarkable universality theorem of Voronin improved by Bagchi (Theorem
1.1) yields approximation by translates of the Riemann zeta-function. If we allow
not only translates but also linear combinations thereof, we obtain much more with
much less effort. In fact, as the following theorem shows, we can approximate on
arbitrary compact subsets, not just compact subsets of the fundamental half-strip
having connected complement. Nor do we need to assume that the functions to
be approximated have no zeros. We can approximate any holomorphic function on
any compact set.

Theorem 7.1 (Runge type). For each compact subset K of C, for each function f
holomorphic on K and for each ε, there are finitely many values a1, a2, . . . , an and
λ1, λ2, . . . , λn, such that

|
n∑

j=1

λj ζaj − f | < ε

on K.

In functional analytic terminology, the previous theorem implies that the Rie-
mann zeta-function is a cyclic vector for the translation operator in the space of
entire functions.

Proof. Let f be holomorphic on K. We may assume that f ∈ C∞
0 . Since the

function Φ(s) = π−1ζ(s + 1) is a fundamental solution for the Cauchy-Riemann
operator,

f(s) = (∂̄f ∗ Φ) (s)

=
∫∫

(∂̄f)(v)Φ(s − v) dxdy.

If s lies outside the support of ∂̄f , then f(s) can be approximated by Riemann
sums. Such sums have the form

n∑
j=1

λj ζaj .

Moreover, the approximation is uniform on compact subsets disjoint from the sup-
port of ∂̄f , in particular on K. �

More refined approximations are possible. For example, we have the following
result.

Theorem 7.2. Let K ⊂ C be a compact set and σ a subset of C \ K, such that
any holomorphic function on C \ K vanishing up to order A on σ is identically 0.
Then for each function f holomorphic on K and for each ε, there are finitely many
a1, a2, . . . , an ∈ σ and λ1,k, λ2,k, . . . , λn,k ∈ C, 0 ≤ k ≤ N < A, such that

|
n∑

j=1

N∑
k=0

λj,k ζ(k)(· − aj + 1) − f | < ε

on K.

Proof. This is a particular case of Theorem 5.3.2 in [3]. �
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