MIXED PROBLEMS WITH A PARAMETER

A. SHLAPUNOV AND N. TARKHANOV

ABSTRACT. Let X be a smooth n-dimensional manifold and D be an open
connected set in X with smooth boundary 9D. Perturbing the Cauchy problem
for an elliptic system Au = f in D with data on a closed set I" C 9D we obtain
a family of mixed problems depending on a small parameter € > 0. Although
the mixed problems are subject to a non-coercive boundary condition on 9D\ I’
in general, each of them is uniquely solvable in an appropriate Hilbert space
Dr and the corresponding family {uc} of solutions approximates the solution
of the Cauchy problem in Dp whenever the solution exists. We also prove
that the existence of a solution to the Cauchy problem in Dy is equivalent to
the boundedness of the family {us}. We thus derive a solvability condition
for the Cauchy problem and an effective method of constructing its solution.
Examples for Dirac operators in the Euclidean space R™ are considered. In the
latter case we obtain a family of mixed boundary problems for the Helmholtz

equation.
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INTRODUCTION

This paper is based on the following simple observation. Consider an operator
equation Tu = f with a bounded operator T : H — H in Hilbert spaces. If there
is a u € H satisfying Tu = f then f is orthogonal to the null-space of the adjoint
operator T* in H. On the other hand, for f € (ker T*)* the equation Tu = f
is obviously equivalent to T*Tu = T*f. The latter need not have any solution,
however, the slightly perturbed equation T*T'u 4+ eu = v is uniquely solvable for

any v € H, provided that ¢ > 0. Note that the solution of the equation can be
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effectively constructed, for the operator T*T + ¢ is positive definite. We thus get a
family

ue = (T"T +¢)7'T*f
in H, whose limit is a good candidate for the solution of Tu = f that is orthogonal

to the null-space of T'. Indeed, if v € H satisfies Tv = 0 then by Lemma 12.1.25 of
[Tar95b] we get

(ue,v)g = (f,T(T*T—I—E)_lv)H
= (£, (TT* +e) 'Tv)g
= 0,

as desired. If f = T for some u € H, then u. = u — e(T*T + &)~ 'u is obviously
bounded in H.

Conversely, if the norm ||uc|| g is bounded uniformly in € < 1 then u. converges
for € \, 0 to the only solution u € H of Tu = f that is orthogonal to ker T

In this way we derive a solvability condition and an approximate solution to the
equation Tu = f in H. We refer the reader to Section 12.1.5 of [Tar95b] for an
extremal property of u..

When applying the approach in the study of the Cauchy problem for solutions
of an elliptic equation Au = f, one needs to complete it by refined analysis. By
the above, the calculus of the Cauchy problems which are ill-posed by the very
nature can be elaborated in the framework of the calculus of operators T*T + €l
depending on a parameter € > 0. In order to avoid sophisticated adjoint operators
one uses L2 -scalar products which necessarily leads to unbounded closed operators
with dense domains. Hence, it requires much more efforts to make use of the
construction described above.

The operator T is given the domain consisting of those functions w in D which
are square integrable along with Au and whose Cauchy data with respect to A
vanish on a closed set I' C dD. Then the domain of the adjoint operator T* is
proved to consist of square integrable functions g on D, such that the Cauchy data
of g with respect to A* vanish in the complement of I'. It follows that the natural
domain of the Laplacian T*T is a subspace of square integrable functions v on D,
such that the Cauchy data of u with respect to A vanish on I" and the Cauchy data
of T with respect to A* vanish on 9D \ I'. This gives rise to a mixed boundary
value problem for the elliptic operator A*A in D similar to the classical Zaremba
problem [Zar10].

Our paper demonstrates rather strikingly that the calculus of Cauchy problems
for solutions of elliptic equations just amounts to the calculus of mixed bound-
ary value problems for elliptic equations with a parameter, cf. [Sim87]. While
this observation seems to be of purely mathematical interest, the explicit solutions
we construct by the classical Fourier method may be of practical importance in
applications.

1. PRELIMINARIES

Let X be a C°° manifold of dimension n with a smooth boundary 0.X. We
tacitly assume that it is embedded into a smooth closed manifold X of the same
dimension.
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For any smooth C-vector bundles E and F over X, we write Diff " (X; E, F') for
the space of all linear partial differential operators of order < m between sections
of F and F.

We denote by E* the conjugate bundle of E. Any Hermitian metric (.,.), on
E gives rise to a sesquilinear bundle isomorphism *g : E — E* by the equality
(xgv,u), = (u,v), for all sections v and v of E.

Pick a volume form dx on X, thus identifying dual and conjugate bundles. For
A € Diff""(X; E, F), denote by A’ € Diff™(X; F*, E*) the transposed operator and
by A* € Diff™(X; F, E) the formal adjoint operator. We have A* = ;' A'sp, cf.
[Tar95b, 4.1.4] and elsewhere.

For an open set O C X, we write L2(O, E) for the Hilbert space of all measurable
sections of & over O with a finite norm (u, u) 20,5y = fo (u,u)ydz. We also denote
by H*(O, E) the Sobolev space of distribution sections of E over O, whose weak
derivatives up to order s belong to L?(O, E).

Given any open set O in X°, the interior of X, we let S4(O) stand for the
space of weak solutions to the equation Au = 0 in O. Obviously, the subspace of
H?(0, E) consisting of all weak solutions to Au = 0 is closed.

Write 0™ (A) for the principal homogeneous symbol of the operator A, ¢"(A)
living on the (real) cotangent bundle 7*X of X. From now on we assume that
o™ (A) is injective away from the zero section of T*X. Hence it follows that the
Laplacian A* A is an elliptic differential operator of order 2m on X.

If the dimensions of E and F are equal then A is elliptic, too. Otherwise we will
call it overdetermined elliptic operator.

We can assume without restriction of generality that A is included into a com-
patibility complex of differential operators A* € Diff™ (X; E?, E‘T1) over X, where
i=0,1,...,N and A° = A. This complex is elliptic in a natural way, see for
instance [Tar95a, 4.1.2]). If A is elliptic then the compatibility complex is trivial,
ie., A =0 for all i > 0.

Let D be a relatively compact domain in X° with a smooth boundary 0D. For
u € L*(D, E) we always regard Au as a distribution section of F over D.

A large class of operators A possess the following property which is usually
referred to as Unique Continuation Property,

(U)s : Given any domain D C X°, if u € S4(D) vanishes on a non-empty
open subset of D then v = 0 in all of D.

This property implies in particular the existence of a left fundamental solution
for A in the interior of X.

Consider the Hermitian form

D(u,v) = (u,v)r2(p,g) + (Au, Av)12(p,F)

on the space C*(D, E) of all smooth sections of E over the closure of D. The func-
tional D(u) = y/D(u,u) is usually called the Graph Norm related to the unbounded
operator A : L?(D, E) — L*(D, F). Write D4 for the completion of C*°(D, E) with
respect to D(+). Then D4 is a Hilbert space with the scalar product D(.,.), and A
maps D4 continuously to L?(D, F).

Note that if A = V is the gradient operator in R™ then D4 = H(D). Let us
clarify what kind elements are in this space in the general case.

To this end we fix a Dirichlet system B;, j =0,1,...,m — 1, of order m — 1 on
0D. More precisely, each B; is a differential operator of type £ — Fj; and order
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m; < m —1in a neighbourhood U of 0D, where m; # m; for i # j. Moreover, the
symbols 0™ (Bj), if restricted to the conormal bundle of D, have ranks equal to
the dimensions of F}. Set
t(u) = &7 Bju
foru e H™(D, E).
For s > 0 we denote by H~*(0D, F;) the dual of the space H*(0D, F;) with
respect to the pairing in L?(0D, F}).

Lemma 1.1. For every u € D, we have v € H'.(D, E). Moreover t(u) has weak
boundary values on OD belonging to @T:_OlH*mrl/Q (0D, F;).

Proof. Fix an element u € D4. Since A is elliptic we deduce from Au € L?(D, F)
that u € H.(D, E).
As usual, we denote by H~™(D, E) the completion of C°°(D, E) with respect
to the norm
|(w, v)2(p,p)|
ol om = sup  LePED.E)

uec(oo@,E) HU”H’“(D,E) '
t

v)=0
Then we easily verify that A* extends to a map of L?(D, F) to H~™(D, E), more
explicitly,
(A" f,v) = (f, AU)L?(D,F)

for each f € L*(D,F) and v € H™(D, E).

By the very definition, the distribution A*f is always orthogonal under the
pairing in L?(D, E) to the null-space of the Dirichlet problem for A* A. Therefore,
for every f € L?(D, F) there exists a section Gf € H™(D, E) satisfying A*AGf =
A*fin D and t(Gf) = 0 on 0D, see for instance [SST03]. Any u € D4 can be thus
presented in the form

u=GAu+ (u— G Au).

By the construction, we get G Au € H™(D,E) and u — G Au € Dy N Sa-a(D).
As u— G Au € L*(D, E) is of finite order growth near D, we conclude by Lemma
9.4.4 of [Tar95b] that t(u — G Au) has weak boundary values on 9D belonging to
& H =120, Fy).

As t(G Au) € @ngle_mj_l/z(ﬁD, F;) vanishes on the boundary even in the
usual sense for Sobolev spaces, the proof is complete. O

Let {C; };-”:_01 be the adjoint Dirichlet system for {B; }”:_01 with respect to the
Green formula for A (see for instance [Tar95b, Remark 9.2.6]). For g € H™(D, F),
we set

n(g) = &7' Cig.

Suppose I is a closed subset of 0D. The cases I' = ) and I' = 0D are permitted,
too. We write I'° for the interior of I" in the relative topology of dD.

Given any u € L%(D, E) with Au € L?(D, F), we say that t(u) = 0 on the set I"
if

(L1) /D ((Aus 9)s — (u, A*g),) diz = 0

for all sections g € C>(D, F) satisfying n(g) = 0 on 0D \ I'°.
Lemma 1.2. Ifu € Dy and t(u) =0 on I' thenuw € HJ.(DUTI°, E).
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In particular, ¢(u) has zero boundary values on I'° in the usual sense of Sobolev
spaces.

Proof. The case I' = () has been already treated in Lemma 1.1. Assume that I is
non-empty.
Choose a smooth real-valued function ¢ on X with the property that

(1.2) D={zeX: olx) <0}

and Vo(x) # 0 for all z € 9D. Set D. ={x € X : o(x) < e}, then D_. € D € D,
for all sufficiently small ¢ > 0, and the boundary of D.. is as smooth as the
boundary of D.

We first show that the weak boundary values of ¢(u) vanish on I" in the sense
that

m—1
lim / (Bju,gj)zds =0
e—0+ 8D _. jgﬂ J J

for all g; € C*°(U, F;), j =0,1,...,m — 1, satisfying (suppg,;) N 0D C I'. To this
end, choose a function g € C=(D, F), such that n(g) = @7 ;'g; on 9D, cf. Lemma
9.3.5 in [Tar95b]. Since u € L*(D, E) and Au € L?*(D, F), we obtain by the Green
formula

m—1
lim / S (Bjug)ads = lm [ ((Au,g)e — (u, A*g),) du
oD _

e—0+ <%0 e—0+ D_.
- / (At 9)s — (u, A"g),) de
D

=0

because t(u) = 0 on I in the sense of (1.1) and g € C°°(D, F) satisfies n(g) = 0 on
oD\ I'°.

We thus have A*Au € H~™(D, E) and the weak boundary values of ¢(v) vanish
on I'. As A*A is an elliptic operator of order 2m and u — ¢(u) is a Dirichlet system
of order m — 1, we conclude using the local regularity theorem for solutions of the
Dirichlet problem for A*A that u € H]7'.(D UI'°) (see for instance Theorem 9.3.17
of [Tar95b]), as desired. O

The proof actually shows that for sections u € L*(D, E) with Au € L*(D, F)
the equality (1.1) just amounts to saying that the weak boundary values of ¢(u)
vanish on I'°.

Let D7 stand for the completion of the space of all sections u in C*®(D, E),
satisfying ¢(u) = 0 on I', with respect to the norm u — D(u). By the very
definition, Dt is a closed subspace in D4, and it is a Hilbert space itself with the
induced Hilbert structure. .

It is well known that if I is the whole boundary then Dy = H™(D, E), the
closure of C2 (D, E) in H™(D, E).

comp

Lemma 1.3. If u € Dy then t(u) =0 on I' in the sense of (1.1).

Proof. If u € Dr then there exists a sequence {ug}ren in C®(D, E) satisfying
t(ur) =0 on I', such that
lim D(uy —u) = 0.

k—o0
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Hence
/ ((Auag)w - (ua A*g)w) de = khm ((Aukag)w - (uka A*g)m) dx
D —Jp
m—1
= 1im/ Bjug,C,g)zds
i [, S

= 0
for all g € C®(D, F) satisfying n(g) = 0 on 9D \ I'°, because t(uy) = 0 on I
Therefore, t(u) = 0 on 9. O

We are now in a position to characterise the space Dr in a much more convenient
way.

Theorem 1.4. As defined above, Dr is a closed subspace of D4 consisting of all
u € Dy satisfying t(u) =0 on I.

Proof. Write H for the subspace of D4 consisting of all u € Dy satisfying t(u) = 0
on I'. Tt is easy to see that H is a closed subspace of D4. Lemma 1.3 states that
Dr is a subspace of H. Since D is complete by the very definition, we shall have
established the theorem if we prove that the orthogonal complement D7 of D in
H is zero.

To this end, pick a section u € H satisfying D(u,v) = 0 for all v € C*(D, E),
such that ¢(v) = 0 on I'. If moreover v fulfills n(Av) = 0 on 9D \ I'"° then we
readily get

(13) (u, (A*A + I)U)L2(D,E) = 0,

which is due to (1.1).

We now observe that every w € C*°(D, E) can be approximated in the L?(D, E) -
norm by sections of the form (A*A + 1)v, where v € C*®(D, E) satisfies t(v) = 0
on I' and n(Av) = 0 on 9D \ I'°. This latter is a consequence of the fact that the
unbounded operator T*T + 1 in L?(D, E) with domain Dr-7 is positive, and so
invertible, see § 3 below. We thus deduce from (1.3) that u = 0. It follows that
D7 = {0}, as desired. O

2. THE CAUCHY PROBLEM

A rough formulation of the Cauchy problem for the operator A in the domain D
reads as follows: Given any sections f of F' over D and wug of @Tz_ole over I, find
a section u of E over D, such that Au = f in D and t¢(u) has suitable limit values
on I' coinciding with ug.

Note that some regularity of u up to I is needed for ¢(u) to possess limit values
on I'. Moreover, we are going to use Hilbert space methods for the study of the
Cauchy problem. Hence the space D4 seems to be a natural choice for posing the
problem.

What is still lacking is a proper function space B(I") for the Cauchy data ug on
I'. Tt is not difficult to introduce such a space in the case where I' is the entire
boundary, namely

B(dD) = Da/H™ (D, E).
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By Lemma 1.1, this quotient space can be specified within @;7;51 H-"5~Y2(9D, F;)
under ¢, although the norm of the former is essentially stronger than the norm of
the latter.

Theorem 1.4 suggests us to set
- Dr
in general. Using the approach of [Tar95b, Ch. 1] one can specify B(I') within
@T:_OlH ~mi=1/2(1 F;) under t. Of course, it is difficult to explicitly describe the
elements of B(I"). However, for applications it suffices to know that there is a
natural embedding

B(I')

© " V(D Fy) — B(D).

Using the spaces B(I") allows one to reduce the Cauchy problem with non-
zero Cauchy data on I' to the Cauchy problem with homogeneous boundary data.
Indeed, given f € L?(D, F) and ug € B(I"), we look for a section u € D4 satisfying
Au = fin D and t(u) = up on I'. By the very definition of the space B(I") there is a
Uy € D4 with the property that 7(Up) = ug on I'. This latter equality just amounts
to saying that Uy —ug € Dr. Set u = Uy+ U, then u € D4 is equivalent to U € D 4.
Furthermore, t(u) = uo on I' is equivalent to t(U) = 0. Since AU = f — AU, and
AUy € L?*(D, F), substituting u = Uy + U into the problem leads to the Cauchy
problem with ug = 0.

Problem 2.1. Let f € L?(D, F) be an arbitrary section. Find u € Dz such that
Au= fin D.

If I'° # () and the Unique Continuation Property (U)s holds for A then Problem
2.1 has at most one solution, cf. Theorem 10.3.5 of [Tar95b]. Otherwise we can not
guarantee that the null-space S 4(D)NDy of this problem is trivial. It is well known
that the Cauchy problem for elliptic equations is ill-posed in general. Moreover, if
A is overdetermined then additional necessary conditions arise for the problem to
be solvable. In fact, these conditions reflect the fact that the image of Dr by A
may be not dense in L?(D, F).

Let us formulate this more precisely. To this end, we invoke as usual the bound-
ary conditions which are adjoint for ¢ with respect to the Green formula in D.
Similarly to (1.1), for g € L?(D, F) with A*g € L?(D, E), we say that n(g) = 0 on
the set 0D \ I'° if

(21) ~/D ((Auag)w - (u7 A*g)w) dr =0

for all sections u € C°°(D, E) satisfying t(u) = 0 on I.

Recall that A € Diff™* (X; F, E?) stands for a compatibility operator for A over
X, ie., A' is in a sense “smallest” differential operator with the property that
A'A =0 on X. We make use of the Green formula for A! in the same way as above
to introduce the relations “n(v) = 0 on 9D \ I'°”, for all sections v € L?(D, E?)
with A'*v € L?(D, F), and “t(f) = 0 on I, for all sections f € L?*(D, F) with
Alf e L*(D, E?).

The boundary equations n(v) = 0 for sections of E? and t(f) = 0 for sections of
F are no longer induced by any Dirichlet system on 0D as those at steps 1 and 0,
respectively.
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Lemma 2.1. Assume that f € L?(D, F) belongs to the closure of ADr in L?(D, F).
Then
1) A'f =0 in D in the sense of distributions;
2) t(f)=0o0nT;
3) (f,9)r2p,r) =0 forallg L?(D, F) satisfying A*g = 0 in D and n(g) =0
on D\ I'°.

Proof.
1) Let f belong to the closure of ADr in L?(D, F). Then there is a sequence
{ug}ren in Dr, such that {Aug}ren converges to f in L2(D, F). Without loss of

generality we may assume that each uy, is of class C°°(D, ), for such functions are
dense in Dy. As A'A =0, we get

(f,A"0)2(ppy = klijglo(AukaAl*U)L%D,F)
= k]i{glo(u,“ (AlA)*U)[p(D)E)

= 1lim O
k—oo

= 0
for all v € C°(D, E?) satisfying n(A'*v) = 0 on dD \ I'°. In particular, this
equality is fulfilled for all sections v € C*°(D, E?) of compact supports in D, which
implies A'f =0 in D.
2) Suppose v € C*°(D, E?) is any section satisfying n(v) =0 on dD \ I'°. Then
n(A*v) = 0 holds on D \ I'°, too, which is a consequence of A*A'* = 0 and
Stokes’ formula. By 1), we get

_(faAl*'U)L2(D7F) = /D((Alf,v)r—(f,Al*v)z)dx
= 0,

the first equality being a consequence of the fact that A'f = 0 in D. Hence it
follows that t(f) =0 on I'.
3) Finally,

(f,9) 2D,y = klirilo(AUk,g)Lz(D,F)

k—oo Jp

= lim 0
k—oco

— 0
provided that g € L?(D, F) satisfies A*g = 01in D and n(g) =0 on D \ I'°. This
proves 3). O

The condition 3) is not only necessary but also sufficient in order that f would
belong to the closure of ADr in L?(D, F).

Lemma 2.2. If f satisfies the condition 3) of Lemma 2.1 then f lies in the closure
of ADr in L?(D, F).

Proof. Write V for the space of all g € L?(D, F) satisfying A*g = 0 in D and
n(g) = 0 on 9D \ I'°. We shall have established the lemma if we show that V
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coincides with the orthogonal complement of the image ADr in L?(D,F). By
definition, g € (A D)t if

(2.2) (9, Au)p2(p,Fy = 0

for all u € Dp. Since Dr contains all smooth functions of compact support in D, we

conclude that (ADr)t C Sa-(D). Then equality (2.2) imlplies that (ADp)* Cc V
because

(9, Au) 2.5y = — /D (A9, w)s — (9, Au)y) da

forallg e V.
On the other hand, the inclusion V C (A Dr)* follows from (1.1) because each
u € Dz can be approximated in the norm D(-) by sections u, € C*(D, E) satisfying
t(ur) =0on I O
Denote by HY(D, I') the space of all g € L?(D, F) satisfying A*g = A'g = 0 in
D and n(g) = 0 on dD \ I'"°. Following [SST03] we call H'(D, I') the harmonic
space in the Cauchy problem with data on I". This is an analogue of the well-known

harmonic spaces in the Neumann problem for the Laplace operator, cf. [Tar95a,
4.1].

Lemma 2.3. When combined with

4) (f,9)r2(p,r) =0 for all g € H'(D, T,
the condition 1) of Lemma 2.1 implies that f belongs to the closure of ADyp in
L*(D,F).
Proof. Let the conditions 1) and 4) are fulfilled for f € L?(D, F). The proof of
Lemma 2.2 shows that
(2.3) f=rh+/f,

where f belongs to the closure of ADr in L?(D,F) and fo € V. As A'f =0in D,
we deduce by Lemma 2.1 that A'f, = 0 in D. This means fo € H'(D, I'). Finally,
4) implies

0 = (f,f2)r2p,p)
= (f2, fo)r2(p.F)
whence fo = 0, and so f belongs to the closure of AD7 in L?(D, F). O

Obviously, if f belongs to the closure of ADy in L?(D, F) then it satisfies 4)
by Lemma 2.1, 3). It follows that the condition 3) of Lemma 2.1 is equivalent to
1)+4).

Lemma 2.4. When combined with

5) (f,9)r2p.r) =0 for all g € H'(D, T') satisfying t(g) =0 on I,
the conditions 1) and 2) of Lemma 2.1 imply that f belongs to the closure of ADp
in L*>(D, F).

Proof. Let the conditions 1), 2) and 5) hold true for f € L?(D, F). Taking into
account Lemma 2.1 and decomposition (2.3) we readily conclude that A'f = 0 in
D and t(f2) =0 on I'. Finally, 5) implies

0 = (f,f2)r2p.F)
(f2, f2)r2(D,F)
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whence fo = 0. Thus, f = f1 belongs to the closure of ADy in L?(D,F), as
desired. 0

Remark 2.1. Of course, if A is elliptic then A! = 0 and the conditions 1) and
2) are always fulfilled. As for the condition 3), one easily proves that each g €
L?(D, F) satisfying A*g = 0 in D and n(g) = 0 on dD \ I'° vanishes identically
in all of D, provided that A* is elliptic, I' # 0D and A* possesses the Unique
Continuation Property (U)s in a neighbourhood of D (see, for instance, [Tar95b,
Theorem 10.3.5]). If A is overdetermined elliptic then the domain D should possess
some convexity property relative to A, in order that H*(D, I") or {g € H(D, ) :
t(g) = 0 on I'} might be trivial. In the case I' = () we refer the reader to [Tar95a,
4.1.3] for more details.

We have thus described the closure of ADr in L?(D, F). It is a more difficult
task to describe the image A Dy itself. The following lemma is the first step in this
direction.

Lemma 2.5. Let f € L%(D, F) belong to the closure of ADr in L?>(D,F). Then
a section u € Dr is a solution to Problem 2.1 if and only if

(2.4) (AuvA'U)LQ(D7F) = (f, A'U)LQ(D7F)
for allv € Dp.

Proof. If Problem 2.1 is solvable and u is one of its solutions then (2.4) is obviously
satisfied.

Conversely, if (2.4) holds for an element v € Dr then A*(Au — f) = 0 in D
because the space D contains all smooth functions of compact support in D. It
follows that

/D (A" (Au — f),v)e — (Au — f, Av),)dx = —(Au— f, Av)r2(p, )
=0

for all v € C*°(D, E) satistying t(v) = 0 on I', which is due to (2.4). Hence
n(Au— f) =0 on 9D \ I'°. Finally, since both Au and f belong to the closure of
ADr in L?(D, F), Lemma 2.1, 3) shows that

(Au — f, Au— f)r2(p,r) = 0,
ie, Au= fin D. O

In conclusion of this section let us clarify the meaning of (2.4). Namely, this
equality amounts to saying that a solution u € Dr of the Cauchy problem Au = f
is actually a solution to the mixed problem

A*Au = A*f in D;
(2.5) ttu) = 0 on [,
n(Au) = n(f) on 9D\ I°.

Indeed, the proof of Lemma 2.5 shows that A*Au = A*f in D in the sense of
distributions and n(Au) = n(f) in the sense that n(Au — f) =0 on 0D\ I'°. In
particular, if n(f) is well defined on 9D \ I'° then also n(Au) is well defined on
oD\ I°.

Of course, the mixed problem (2.5) considered in appropriate spaces gives noth-
ing but (2.4).
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In the next sections we will systematically use the generalised setting (2.4) of
Problem 2.1 in order to derive its solvability conditions.

3. A PERTURBATION

Equation (2.4) surprisingly shows that Problem 2.1 may be well posed in many
cases. Namely, this is the case if the Hermitian form (A-, A-)p2(p r) is actually
a scalar product on Dr inducing the same topology as the original scalar product
D(-,-). For example, not only the gradient operator V in R™ meets this latter condi-
tion but also many other overdetermined elliptic operators A with finite-dimensional
kernel Sa(D). Of course, (A-, A-) 2 (p,py is always a scalar product on Dr if I" # ()
and A possesses the property (U)s. However, the completion of Dy with respect
to (A, A-)p2(p,r) may lead to a space with elements of arbitrary order of growth
near 0D.

This observation suggests us to perturb the Hermitian form (A-, A-)r2(p, ) thus
obtaining a “good” scalar product on Dr. For this purpose let us introduce a family
of Hermitian forms

(u,v)e = (Au, Av)2(p,F) + € (4, V) L2(D, B)

on Dr, parametrised by ¢ > 0. For each fixed ¢ > 0, the corresponding norm
[lu|le = v/ (u,u)e is equivalent to the graph norm D(u) on Dr. More precisely, we
get

(3.1) min{1, e} D(u) < |lul: < max{1,v/c} D(u)

for all u € Dy4.
Taking into account Lemma 2.5 we now consider the following perturbed Cauchy
problem:

Problem 3.1. Given any f € L?(D, F) and h € L%(D, E), find an element u. € Dr
satisfying

(3.2) (Aue, Av)r2(p,py + € (ue,v)2(p,E) = (f, AV)2(p,F) + € (A, V) 2(D,E
for all v € Drp.

Note that the equation (3.2) leads to a perturbation of mixed problem (2.5),
more precisely,

A*Auc +eu. = A*f+eh in D;
(3.3) tlue) = 0 on I,
n(Au:) = n(f) on 90D\ I°.

Indeed, since the space Dy contains all smooth functions with compact support
in D, (3.2) implies A* Au. +cu. = A* f+ehin D in the sense of distributions. The
boundary condition ¢(u.) = 0 on I" follows from Lemma 1.3. Finally, n(Au.) = n(f)
holds in the sense that n(Au. — f) on 0D \ I'° because

A (Au. — f) = e(h—u.)
€ L*(D,E)
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in D and

/D ((A*(Aue — f),v)e — (Aue — f, Av),) dx

= e(h—ue, U)L?(DJ;) — (Au. — f, A'U)L2(D7F)
=0

for all v € C®(D, E) satisfying t(v) = 0 on I', the latter equality being due to
(3.2). If the restriction of n(f) to 9D \ I'° makes sense, then the restriction of
n(Au) does so.

If considered in appropriate function spaces, the mixed problem (3.3) gives cer-
tainly nothing but (3.2).

In general, mixed problems (2.5) and (3.3) have non-coercive boundary condi-
tions on D\ I'°. Hence they fail to be well-posed in the relevant weighted Sobolev
spaces, cf. [HSO01]. The principal difference between Problems 2.1 and 3.1 is that
the last one is well-posed in Dr.

Lemma 3.1. For every e > 0, f € L?*(D,F) and h € L*(D,E) there exists a
unique solution uc(f, h) € Dp to Problem 3.1. Moreover, it satisfies

lue(f, D)lle < IfllL2o,r) + VE IRll2(D,B)-

Proof. Really, the estimates (3.1) imply that the vector space Dr endowed with
the scalar product (-,-)) is a Hilbert space. The Schwarz inequality yields

|(f7 Av)r2(p,Fy + € (h, U)L?(D,E)}

< N flle2o,p)lAv| L2, Fy + € Bl 2D, 7y 101 L2(D, B
< N fllzzo,mllvlle + Ve lbllL2(p,ry \/ellv] 22 p g
< co(f h) |vle

with
ce(f,h) = I fllz2(p,F) + Ve 2l 2 (D, )-
Hence the map
v (f, Av)r2(p,r) + € (h,v)L2(D,E)

defines a continuous linear functional Fy; on Dr, whose norm is majorised by

[ Fnll < ce(f,h).
We now use the Riesz theorem to conclude that there exists a unique element

u:(f,h) € Dy with

Frn(v) = (ue(f,h), v)e
for every v € Dyp. Clearly, u-(f,h) is a solution to Problem 3.1. Finally, by the
Riesz theorem we get

lluc(f, R)|le < co(f,h),
as desired. O

The equations (3.3) show that Lemma 3.1 gives information on the solvability
of a mixed problem for the elliptic operator A*A + ¢ with very special data on D,
I' and 0D \ I'°. Let us clarify what kind solvability theorems can be obtained for
arbitrary data.
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For a triple w € L?(D, E) and

ug € @Y HITMTVA(T Fy),

(34) uy c @T:?Jle_mj_l/2(8D\Fo,Fj),

we investigate the problem of finding a section w of the bundle £ over D which
satisfies

A*Au+eu = w in D;
(3.5) t(u) = wy on I,
n(Au) = w; on 9D\ TI°,

the equations in D and on the boundary of D being understood in a proper sense.
From what has already been proved it is clear what we mean by this proper sense,
namely

(Au,g)r2(p,ry — (W, A*g)2(p,py = (v0,n(9))eL2(r,F))s
(u,v)e = (w,v)r2(p,E) — (u1,t(v))ar20D\°,F))
(3.6)
for all g € C=(D, F) satisfying n(g) = 0 on 0D \ I'°, and for all v € C>(D, E)
satisfying t(v) = 0 on I', respectively.

Theorem 3.2. Let (A*A)? possess the Unique Continuation Property (U)s. Then,
for every triple (w,ug,uy) there exists a unique solution u € Dy N HE™(DU I, E)

loc
to Problem 3.5. Moreover, there is a constant C(e) > 0 which does not depend on

(w, up,u1), such that
(3.7)

lul2 < € (Iwl3ap,m) + 18012 fam-my 172y + NI 172 91 o))
Proof. Choose arbitrary ug and u; as in (3.4). Obviously, there are sections

Up € & H*™mi~1/2(D, F)),

Up € e tHmmi=1/2(dD, Fy),
such that Uy = ug on I', Uy = uy on 0D \ I'° and

”UOH§GH2m7mJ’71/2(8D7Fj) + ||U1||§9Hm7m1'71/2(8D,Fj)

< 2ol o172 gy + 10112 sy 12 0 o )
(3.8)

As the pair {t,n o A} is a Dirichlet system of order 2m — 1 on 9D, solving the
Dirichlet problem for (A*A)? yields a section U’ € H?™(D, E) with the following
properties

(A*A)?U" = 0 in D;
(3.9) t({U"y = Uy on 09D,
n(AU') = U; on 0D.
Moreover, there exists a positive constant C' > 0 which is independent of U, such
that

(810) U Im (1) < C(ITON2 o, 172

AT

(8D, F; Hm_mj_1/2(8D,Fj))’

see for instance [Tar95b.
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According to Lemma 3.1 there exists a solution U” € Dz to Problem 3.1 with
f =0 and

1
h = g(w—A*AU’)—U’
€ L*D,E).

Set u = U’ + U”. Then, integrating by parts and using Lemma 3.1 we easily
obtain

((A*A + E)U/, U)L2(D,E) — (n(AU/), t(v))EBL2(8D,Fj)
(w,v)r2(p,py — ((A"A+ e)lu’, V)L2(D,E)

(w,v)r2(p,E) — (U1, 1(V))oL2(0D\I°, F))

(u,v).

+

for every v € C*(D, E) satisfying t(v) = 0 on I, i.e., the second equality of (3.6)
holds true. o

On the other hand, for every g € C*°(D, F) satistying n(g) = 0 on 9D \ I'°, we
get

(AU,Q)L2(D7F) — (u, A*Q)L2(D7E)
= (AU’ g)r2p,r) — (U, A%9)12(p,5) + (AU", 9) 2,7y — (U", A*9) 12(D, B
= (AU/ag)L2(D7F) - (U/, A*g)L2(D7E)

because U” € Dr. Once again integrating by parts we obtain

(AU",9)r2p,ry — (U A" g)r2p,m) = (HU'),n(9))er2(0p,Fy)

= (uovn(g))@m(r,F,-),

i.e., the first equality of (3.6) is fulfilled.

By the elliptic regularity of the Dirichlet problem for the operator A*A + ¢ we
deduce that uw € HE"(DUI'°, E).

If all of w and wg, uy vanish then (3.6) and Theorem 1.4 imply that the corre-
sponding solution u lies in Dr. On the other hand, the second equality of (3.6)
means that v is orthogonal to Dp with respect to (-, )¢, i.e., u = 0 which proves
the uniqueness.

Finally, according to Lemma 3.1 we get
lulle < 11Ul +11U"]|e

1 *
< 0o, + 2 (lleeo.e +14° AT Nz2,5)) + VAN 20,5,
Combining this estimate with (3.8) and (3.10) we arrive at (3.7), as desired. O

One sees that the regularity up to 9D of the solution « in Theorem 3.2 fails
to correspond to the smoothness of the data w and ug, u;. To justify this we
recall that the boundary conditions no A on 9D \ I'° are not coercive in general.
Were n o A coercive we would have u € HZ™(D \ OT', E). However, we could not
guarantee even in this case that u € H*(D,E) for some s > m unless certain
additional conditions were imposed on the triple (w, ug,u1) on 9I'. This is typical
for the mixed problems, cf. [Esk73], [HS01] and elsewhere.
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4. THE MAIN THEOREM

Set us(f) = ue(f,0). The inequalities (3.1) and Lemma 3.1 give us a rough
estimate for the family {u.(f)}e>0, namely

D(u.(f)) < % T

Thus, it might be unbounded while ¢ — 0+.
Let us see how the behaviour of the family {u.(f)}eso reflects on the solvability
of Problem 2.1.

Theorem 4.1. The family {u.(f)}eso is bounded in Dr if and only if there exists
u € D satisfying (2.4).

Proof. We first prove the following lemma.

Lemma 4.2. Let there be a set A C (0,+00), such that

1) zero is an accumulation point of A;
2) the family {us(f)}sea is bounded in Dr.

Then there exists u € Dy satisfying (2.4).

Proof. Suppose zero is an accumulation point of A and the family {us(f)}sea is
bounded in Dr. By (3.2), we have

(Aus(f), Av)2(p,r) + 6 (us(f),v)r2(p,E) = (f, Av) L2(D,F)

for all v € Dp. Passing to the limit, when A 5 § — 0, in the last equality and using
the fact that {us(f)}sea is bounded, we obtain

(4-1) (Au5(f)a AU)L2(D,F) = (f7 AU)L?(D,F)

lim
5—0+
for all v € Dr.

It is well known that every bounded set in a Hilbert space is weakly compact.
Hence there is a subsequence {us;(f)} C Dr weakly convergent in Dr to an element
u € Dp. Here, {0,} converges to 0 when j — oo.

Note that (3.2) implies

(ue(f)sv)r2(p,E) =0

for all v € Dy N Sa(D), ie., both {us,(f)} and u are L?(D, E)-orthogonal to
Dy NSa(D). Let us show that {us,(f)} converges weakly to u in L?(D, E) when
j — o0.

Given any v € L*(D, E), the map u — (u,v)2(p,g) defines a continuous linear
functional F, on Dr with ||F,| < ||UHL2(D7E)- We now invoke the Riesz repre-
sentation theorem to conclude that there exists a unique element v € Dr with
D(u,?) = Fy(u) for every u € Dr. Hence

jhjgo(wj (f), U)L2(D,E) = Jli{glo D(Uéj (f),0)
D(u,v)

= (U,’U)L2(D’E).

This exactly means that {us, (f)} converges weakly in L?(D, E).
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Now we easily calculate

ABI;IEOJF(Aw(f), Av)r2(p,p)y = AaltiSrEOJr (D(us(f),v) = (us(f):v)r2(0.1))
= D(uv U) - (uv U)Lz(D7E)
= (AU,A’U)[;(D)F)
(4.2)

for all v € Dy. Combining (4.1) and (4.2) we see that (2.4) holds true for u. O

Note that if (2.4) is solvable then there exists a solution u which is L?(D, E)-
orthogonal to Dy N Sa(D).

We will have a stronger statement than Theorem 4.1 if we prove the following
lemma.

Lemma 4.3. If there exists u € Dy satisfying (2.4) then the family {u-(f)}eso0 is
bounded in Dt and

Jim A = w0, =0

Moreover, {uc(f)}eso converges weakly to u € Dr as ¢ — 0+, if u is L*(D, E) -
orthogonal to Dy NS 4(D).

Proof. Let there exist u € Dy satisfying (2.4). Set Re = uc(f) —w. Then (2.4) and
(3.2) imply
(4.3) (ARe, Av)p2(p,F) + € (Re,v)2(p,p) = —€ (U, V) L2(D, E)
for all v € Dy, i.e., Re = uc(0, —u) is the solution to Problem 3.1 with f = 0 and
h=—u.

According to (3.1) and Lemma 3.1 we have
€
Ve

1
% \/EHUHB(D,E)

D(R.) < | Re ||

<

= ||U||L2(D,E)-
Therefore, the family {R.}.~o is bounded in Dr, and so the family {u.(f)}eso is
bounded, too. Now (4.3) implies

5£%1+ [ Aue(f) — u)||%2(D,F) = 6@&_ ||AR5||2L2(D7F)

= — lim & (IR:ep.6) + (0 R)12o,m)
= 0.

Finally, let us prove that {u.(f)}cs0 converges weakly to u in Dy as ¢ — 0+,
provided that u is L?(D, E) -orthogonal to DrNS 4(D). We argue by contradiction.
Indeed, if {uc(f)}e>0 does not converge weakly to u in Dr then there are v € Dr,
7 > 0 and a sequence {¢;} tending to 0+ as j — oo, such that
(4.4) [D(ue,; — u,v)| =

for every j € N. But the sequence {u.,} is bounded in the Hilbert space Dr, and
S0 it possesses a subsequence which converges weakly in Dp. By abuse of notation
we denote it again by {u.,}. As we have already seen in the proof of Lemma 4.2,
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the weak limit of {uc,} is u. This contradicts (4.4), and thus the assertion of the
lemma is proved. O

The proof of Theorem 4.1 is complete. O

Note that if Problem 2.1 is solvable then there exists a unique solution u which
is L?(D, F) -orthogonal to Dr NS (D).

Corollary 4.4. Suppose f belongs to the closure of ADr in L*(D,F). Then the
family {us(f)}eso is bounded in D if and only if Problem 2.1 is solvable. Moreover,

|Aue(f) = fllL2(p,r) =0

and even {us(f)}eso converges weakly, when ¢ — 0+, to the solution u € Dy of
Problem 2.1 which is L?(D, E) -orthogonal to Dr NS a(D).

Proof. This follows from Theorem 4.1 and Lemmas 4.3 and 2.5. O

lim
e—0+

Is it true that {u-(f)}e>0 converges to u in the topology of H?.(D U I'°, E) if
u € Dr is the solution to Problem 2.1 which is L?(D, E) -orthogonal to DrNS 4 (D)?
To answer this question we observe, by Lemma 4.3, that the family {u.(f) — u}es0
is bounded in Dt and

Sim A () =l = 0,

tue(f) —u) = 0
on I for every € > 0. Then, applying [Tar97, Theorem 7.2.6] we see that {us(f)}es0
converges to u in H? (DU I'°, E).

5. THE WELL-POSED CASE

It is well known that a linear operator T : H — H in normed spaces has a
continuous inverse if and only if ||u| g < c||Tu| z for every uw € H, the constant
¢ > 0 being independent of u. Hence, the (Cauchy) Problem 2.1 is well-posed if
and only if there exists a constant ¢ > 0 such that

(5.1) llull2(p,py < cllAullz2(p,F)
for all u € Dy.
Theorem 5.1. Let the (Cauchy) Problem 2.1 be well posed. Then for every f €

L?(D, F) there exists a limit

4= 61—1>I(IJI+ Ug(f)

in Dp. Moreover, u is the solution to Problem 2.1 if f belongs to the closure of
ADy in LA(D, F).
Proof. Indeed, it follows from (5.1) that the Hermitian form

h(u,v) == (AuaAU)L2(D,F)

defines a scalar product on Dr inducing the same topology as the original one. We
now use the Riesz representation theorem to see that for every f € L?(D, F) there
is a unique element u € Dy satisfying (2.4).

Moreover, (5.1) yields

D(uc(f) —u) < Vet 1 ue(f) — ulle.
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Then using (4.3) and Lemma 3.1 we see that
D(uc(f) —u)

ﬁ

1|ue(0, —u)lle

1y/e ||U||L2 D.E)-

<
<

Therefore, we get

lim D(us(f) —u) =0,
e—0+
and so Corollary 4.4 shows that u is a solution to Problem 2.1 provided f belongs
to the closure of ADr in L*(D, F). O

Apparently, if A is a differential operator with finite-dimensional kernel S 4(D)
then the (Cauchy) Problem 2.1 is well posed for A.

Example 5.1. Let X = R, A = d/dz, D = (a,b) with —co < a < b < o0, and
I' ={a}. Then D4 = HY(D). The Cauchy problem

{u’(x) = f(x) for =z € (a,b),
u(a) = wup,

with ug € R, is known to be well posed in Sobolev spaces as well as in spaces of
smooth functions on [a, b]. Its solution can be easily found by the formula

x)=uo+/mf(y)dy-

Let us look at the corresponding family of mixed problems. In this case we have
A* = —d/dx and 0D \ I'° = {b}, hence the mixed problems are
) —euc(z) = f'(z) for =€ (ab),

us(a) = o,

uc(b) = f(b),

where ug € R is arbitrary. One easily calculates that

sinh(y/e(z — a)) /b
cosh(y/z(b — a))

U

ue() = o+ / £(y) cosh(va(z—y)) dy + £(y) sinh(VE(b—y)) dy
and

lim u. =u
e—0+

even in the norm of C'[a, b}, if f € Cla, b].

6. FINDING THE SOLUTION

Let us discuss the very important question of how to find the solution of Problem
3.1, and hence a solution to Problem 2.1. Of course, if an explicit orthonormal basis
{e;}ien in the space Dr with the scalar product (-, ) is available, then one easily
obtains

(6'1) Z Ue fa
j=1
According to (3.2) we have
(6.2) (ue(fh),ei)e = (f, Aei)L2(D,F) + e (h, ei)L2(D7E)a
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hence (6.1) and (6.2) give us a complete description of the solution wu.(f,h) to
Problem 3.1. Unfortunately, it is not an easy task to construct an explicit basis

{ei}iel\L

Example 6.1. Let I' = 9D NS where S is a sufficiently smooth hypersurface near
0D. Choose a defining function §(z) for S. Then we can start with a linearly inde-
pendent system of the form {(6(z))™ ' P;(x)} in Dr, where P;(z) are polynomials
of increasing degree taking their values in F,. Orthogonalising it by the standard
Gram-Schmidt procedure we arrive at an orthonormal system in Dr. In order to
obtain a basis we have certainly to guarantee that the system {(§(x))™ 1 P;(x)} be
dense in Dp. However, for applications it suffices to have merely a finite number
of basis elements.

Let us describe an alternative way of finding the solution. Assume that the oper-
ator A* A+ ¢ possesses the Unique Continuation property (U)s in a neighbourhood
of D. Then it has a two-sided fundamental solution there (see for instance [Tar95al).
Fix such a fundamental solution &, (z,y) for A*A +¢. For each s > 0, it induces a
continuous linear map &, : H*(D, E) — H**?>™(D, E) by u — 7, ®.(esu) where
e4 means the extension by zero to all of X and r; the restriction to D. This map
actually extends to a continuous map &, : H*(D, E) — H*"2™(D, E) for all s € R,
being a right inverse of A*A + e. Every element u € D4 may be thus written in
the form

(6.3) w="U+ &.((A*A + ),

where U € Do NS a-a1e(D). Indeed, fix u € Dy. Since Au € L?(D, F) we deduce
that A*Au € H=™(D, E). It follows that

P ((A*A+eu) € H™(D,E)
C Dy

Setting U = u— P.((A*A+¢)u) yields readily (6.3) with U € DaNSaxa+:(D), as
desired.

In practice one usually has only a complete linearly independent system {U;};en
of solutions to (A*A + €)U = 0 on neighborhoods of D, or even on all of X°.

Lemma 6.1. Assume that A*A + ¢ possesses the Unique Continuation Property
(U)s. If M C Sa<ate(D) is a dense set in C™ Y(D,E) N Sa-ate(D) then it is
dense in Dg NSaxate(D).

Proof. When endowed with the scalar product (-, )e, Da NS a+ate(D) is a Hilbert
space. Hence it suffices to prove that the orthogonal complement of M in this space
is zero.

To this end, pick u € Da N Sa=a1e(D). Since u belongs to L?(D, E) it has a
finite order of growth near 9D, cf. [Tar95b]. It follows that the expressions ¢(u)
and n(Au) have weak boundary values ug and w; in the space of distributions on
oD.

Let vy € @;’;51000(30, F}). As t is a Dirichlet system of order m — 1 on 0D,
there is a section v € C*(D, E) satisfying t(v) = vo. Then

< up,vp >=: lim (n(Au),v),, dss(x)
6—0— 8D5
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and the definition does not depend on the particular choice of v. Since the Dirichlet

problem for A*A+-¢ in D is uniquely solvable over the whole scale of Sobolev spaces,
we can take v € (D, E) N Sa-ate(D).

If u is orthogonal to M C Saxa+.(D) with respect to the scalar product (-, -)c
then

0 = (u,v)e

lim (Au, Av)y dx + € (u,v) L2(D, B)
§—0— Ds ?

lim (/8[)6 (n(Au), t(v))y dss(z) + /Dé (A* Au,v), da:) + & (u,v)12(p,B)

0—0—

lim (n(Au),t(v))y dss(z)
0=0=Jap;
forallv € M. As M is dense in C™ 1 (D, E)NS A« a4¢(D) it follows that n(Au) = 0
on dD.
On the other hand, since u € D4 it can be approximated in the norm D(-) by a
sequence {uy} C C*°(D, E). Then

(u,u)e = klim (u, up)e
= lim lim (n(Au), ug)y dss(x)
k—)OO 6*»07 8D5
= 0
whence v =0 in D. O

For M = Sa»a+:(X°), the hypothesis of Lemma 6.1 is not too restrictive. It
is fulfilled, e.g., if the complement of D has no compact components in X°, see
[Tar95al. In particular, this is the case if 9D is connected.

Applying to {U; }ien the Gram-Schmidt orthogonalisation procedure with respect
to the scalar product (-,-)c, we obtain an orthonormal basis {b; = b;(¢)}ien in
DaNSa are(D).

The equality (6.3) suggest us to look for solutions to mixed Problem 3.1 of the
form

oo

(6.4) ue(f,h) = (A" f +eh) + > ci(e)bi(e)

i=1
where the series on the right-hand side converges in D4. The point is to find
the coefficients ¢;(e) through f and h. For this purpose, we denote by IIr . the
orthogonal projection

DA mSA*A+E(D) — DT ﬂSA*AJrE(D)
with respect to the scalar product (-, )c.

Lemma 6.2. Fach solution uc(f,h) € Dr of Problem 3.1 may be written as the
series (6.4) where

ci(e) = (f, Allr cbi)r2(p,py + € (M, IIr i) 2D, By — (P (A™f 4 €h), b;)-.
Proof. Indeed, let u. € Dr be a solution of Problem 3.1. As we have seen in §3,
(A*A+e)u. = A" f +¢h
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in D. Using (6.3) we easily arrive at (6.4) with some uniquely defined coefficients

Ci(é‘).
Write IIr . for the orthogonal projection D4 — Dr with respect to (-, ). Since
IIr . is self-adjoint in D4, we get
(usv bl)s = (ﬁF,sus; bz)s
(65) = (UE, Hp7€bi)€
= (f,Allr cbi)p2(p,Fy + € (h, 1 bi)12(p, B),

the last equality being a consequence of (3.2).
Now (6.4) implies

(usa bz)s = (Qs (A*f + Eh), bz)s + Ci(a)'
Combining this with (6.5) yields
ci(e) = (f. Alp :bi)p2(ppy + € (hy I cbi) 2 (py — ($e(A* f +€h), by)-.
Finally, for every v € CSS, (D, E) we get

comp
(Ircbiy (A"A+e)0)2p gy = (Al by, Av)p2(p.ry + € (IIr 2biy 0) 12D, gy
(bi7 ﬁF7€v)€

= (bi7 U)E

= ((A"A+e)bi,v)r2(p, k)

= 0.
This means that ﬁ]"7€bi belongs to Dy N Sa+at:(D) whence ﬁ]"7€bi = Ilp b,
showing the lemma. (I

We have thus derived expressions for the coefficients ¢;(g) through f and h.
However, it is not an easy task to explicitly construct the family of projections
{Ir:}.

Lemma 6.3. For every u € Da NSaxate(D), the projection IIp cu just amounts
to the solution of Problem 8.1 with f = Au and h = u .

Proof. By the very definition, IIr ;u € Dr N Sa+a+.(D) and
(w—Iru,v)e =0

for all v € Dy satisfying (A*A+¢)v =0in D.

Further, the solution u, = u.(Au,u) of Problem 3.1 with f = Au and h = u
belongs to Dy NS axate(D) because A* f +eh = (A*A + ¢)u = 0. Moreover, (3.3)
gives

(u—ue,v)e =0
for all v € Drp.

We wish to show that IIr cu = u., which is equivalent to ||IIr cu — u.||c = 0. To
this end, write

(HF,EU — Ug, HF,EU - us)s = - ((u - HF,EU) - (u - us); HF,EU - us)s
= - (u - HF7€U7 HF7€U - Ua)a - (u — Ue, HF,EU - Ua)€~

By the above, both summands on the right-hand side vanish because IIr .u — u.
belongs to Dr NS ax ate(D). O
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Of course, the lemma does not allow one to effectively determine the Fourier
coeflicients ¢;. On the one hand, to find ¢; we only need to know Il .b;. On the
other hand, this requires, by Lemma 6.3, a solution of Problem 3.1 with very special
data f and h.

Let us now describe how to find solutions to Problem 3.1 for “good” data. For
this purpose we introduce for s > 2m the Hermitian form

h(u, 1}) = (t(u),t(’U))@H‘sfmj-fl/2(F7Fj) + (n(Au), n(AUDGBHS*m*mJ‘71/2(8D\F°,Fj)
on the space H of all u € Dg NS a«a1c(D) with the property that

t(u) € @T:_OlHS_mj_l/Q(FaFj),
n(Au) € @7 H T Y2(@D\ I°, Fy),

the expressions t(u) and n(Au) being understood in the sense of weak boundary
values.

Lemma 6.4. Suppose s > 2m. When endowed with the scalar product h(-,-), H is
a Hilbert space.

Proof. Indeed, (3.7) implies that h(-,-) is a scalar product on H. Moreover, if {uy}
is a Cauchy sequence in H then it a Cauchy sequence in D4 NS 4+ a4 (D). Since this
latter is a Hilbert space, {ux} has a limit w in this space. Moreover, both {t(ux)}
and {n(Auy)} converge to t(u) and n(Au) in the space of distributions on 9D,
or, more precisely, in @Tz_olH*mrlﬂ(aD,Fj) and EB?:_OlH*m*mflﬂ(@D,Fj),
respectively. By assumption, {t(ux)} and {n(Aug)} are Cauchy sequences in the
Hilbert spaces EB}”:_OlHS*mflﬂ(F,Fj) and @;’l‘olHS*m*mJ‘ﬂﬂ(@D \ I'°, Fj), re-
spectively. Hence, they converge to elements ug and w; in these spaces. Finally,
the uniqueness of a limit yields t(u) = ug on I" and n(Au) = uy on 9D \ I'°, i.e.,
u € H, which completes the proof. (I

Let {U;}ien be a complete linearly independent system in H. Applying the
Gram-Schmidt orthogonalisation to {U;};cn we get an orthonormal basis {B;}ien
in H.

Theorem 6.5. Let s > 2m. Then, for every w € H*~*™(D, E) and

ug € @Y HTTYA(LL ),
u € @;nzBle—m—mj—l/2(aD \ FO,FJ‘),

the series -
u= & (w)+ Z k;B;
i=1
converges in Dy and satisfies (3.5), provided that
ki = h(u — & (w), B;).

Proof. This is a direct consequence of Theorem 3.2. Recall that the boundary
equations t(u) = up on I and n(Au) = u; on 9D \ I'° are interpreted in the sense
of (3.6). O

From this theorem we deduce, in particular, that

IIr .b; = i k; B,

q=1
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with the coefficients

ki = (n(Abi))’n(ABi))@Hsfmfmj71/2(8D\F°,Fj)'

Knowing I .b; we can find, by Lemma 6.2, the solution of Problem 3.1 for any
data f € L*(D,F) and h € L*(D,F). Of course, if both f and h are smooth
enough, namely f € H*=™(D, F) and h € H*~?>™(D, E) with s > 2m, then we can
determine the solution of Problem 3.1 directly by Theorem 6.5.

One question still unanswered is whether a complete system {U;};en in H may
be chosen to consists of solutions to (A*A 4 e)u = 0 on neighbourhoods of D.
Analysis similar to that in the proof of Lemma 6.1 shows that this is always the
case if D is smooth enough, e.g., of class C?™ 1,

7. DIRAC OPERATORS

Let X = R", where n > 2, and E = R" x C¥, F = R" x C!. The sections of F
are functions of n real variables with values in C*, and similarly for F.

Let A be a Dirac operator, i.e., a homogeneous first order differential operator
with constant coefficients in R™,

- 0
A= ;Aj By
such that
(7.1) (0(A)(€)*a(A)(€) = [¢” Bx

for all £ € R™. Here, A; are (I x k)-matrices of complex numbers and Ej, is the
identity (k x k)-matrix.

The Dirac operators satisfy A*A = —Ey A, where A is the usual Laplace oper-
ator in R™.

The perturbed mixed problem (3.3) reads as

(—A+eu. = A*f in D;
tue) = 0 on [,
n(Aus) = n(f) on 0D\I°,

where
n(f) = (a(A)(Vo))" f

and g is a defining function of D in the sense of (1.2). Thus, this is a family of
mixed problems for the Helmholtz equation.

We are going to study the (Cauchy) Problem 2.1 on the unit ball D =B in R™.
To this end, we pass to spherical coordinates x = r .S(p) where ¢ are coordinates on
the unit sphere 9D = S in R™. The Laplace operator A in the spherical coordinates
takes the form

(7.2) A= %((7‘%)24—@—2)(7"%) —AS),

where Ag is the Laplace-Beltrami operator on the unit sphere.
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To solve the homogeneous equation (—A + €)u. = 0 we make use of the Fourier
method of separation of variables. Writing u.(r, ) = g(r,e)h(p) we get two sepa-
rate equations for g and h, namely

() =) =)o = o
Ash = Ch,

¢ being an arbitrary constant.

The second equation has non-zero solutions if and only if ¢ is an eigenvalue of
As. These are well known to be ¢ = i(n +1i —2), for i = 0,1, ... (see for instance
[TS72]). The corresponding eigenfunctions of Ag are spherical harmonics h;(p) of
degree 1, i.e.,

Consider now the following ordinary differential equation with respect to the
variable r > 0

(7.4) ((r%)Q + (n— 2)(7“%) — (i(n+i—2)+er?) )g(r, £) =0.

This is a version of the Bessel equation, and the space of its solutions is two-
dimensional.

For example, if ¢ = 0 then g(r,0) = ar® + br?~*~" with arbitrary constants a
and b is a general solution to (7.4). In this situation any function r'h;(¢) is a
homogeneous harmonic polynomial. In the general case the space of solutions to
(7.4) contains a one-dimensional subspace of functions bounded at the point r = 0,
cf. [TS72].

Fori=0,1,..., fix a non-zero solution g;(r, ) of (7.4) which is bounded at r = 0.
Then
(7.5) (=A+¢) (gi(r, €)hi()) = 0

on all of R™. Indeed, by (7.2), (7.3) and (7.4) we conclude that this equality holds
in R™\ {0}. We now use the fact that g;(r,e)h;(¢) is bounded at the origin to see
that (7.5) holds.
It is known that there are exactly
N (m+2i—=2)(n+i-3)!
J(i) = S '
il(n—2)!
linearly independent spherical harmonics of degree i. In [Sh196] a system
{HP(9)} izon.,

1,...,k J(i)

of CF -valued functions is constructed, such that
1) the components of Hl-(j ) (¢) are spherical harmonics of degree ;
2) {Hi(j)(cp)} is an orthonormal basis in L%(S, E);
3) {4 (riHi(j)(@))} is an orthogonal system in L*(B, F').

More precisely, this system {Hz(j )(go)} consists of eigenfunctions of the operator
noA,

(7.6) (@A) A (FE () =27 (FHED ().

where )\Z(-j) > 0.
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Lemma 7.1. The system

is orthogonal with respect to both Hermitian forms (-,-)r2m gy and (A-, A-)r2(m,F).

Proof. Indeed, as {H i(j )} is an orthonormal basis in the space L*(S, E) on the unit
sphere, the system {b\"'} is orthogonal in L2(B, E) because

‘ ) 1
O ) 2w = (Hfj),H(“))L%SE)/ R gi(r)gp(r. ) dr
0
-0

for i # por j #q.
Further, integrating by parts we get

(7.7) (AbY, AbD) 12 oy = — (B, ADD) 125 1oy + gs(1,€) (HE, n(ABD)) 2 oy
On the other hand, (7.5) implies

(78) (b(J) Ab(q))L2(]E E) +e€ (b b(q))L2 B,E) — 0

for i #por j#q.

Let us write the expression n o A in spherical coordinates. Denote by S’(¢) the
Jacobi matrix of S(p). Set

(') " = ()T @) (SN

Since the rank of S’(¢) is equal to n— 1, the inverse matrix of (5'(¢))" () exists
and is smooth. Moreover, (S'()) " is a left inverse for S(¢). An easy calculation

shows that
0 0
gy =S+ SO g
where (S"(0));

. s the (i, j)-entry of (S/(‘P))_l-
Now (7.1) implies

(7.9) noA=> A;rS(p ;Aa— ron T R(#,0p)

where
n n n—1 X 8
= AL YA Y (S 5
k=1 j=1 i=1 Pi
Using (7.6) and (7.9) we conclude that
MWD (9) = n(ACHD (9)))
= ir HP () + 17 R(p,9,) H ().

Hence

R(e,0,)H7 () = (W i) B (),
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and so (7.9) yields

(7.10) n(A) = rgiH” + g, R(p,0,)H”
= (Tgé + (7 - i)gi) .

Therefore,

(7.11) (H, n(AbY)) 125, = 0

for i # por j #q. .
Combining (7.7) (7.8) and (7.11) we see that the system {bgj)} is orthogonal with
respect to (A-, A-) 2, F)- O

Remark 7.1. Note that g} (1, 5)+()\Z(-j)—i)gi(1, ) # 0 for all e > 0. Indeed, otherwise
n(AbZ(-J)) =0 on S and (7.7), (7.8) would imply bz(-J) = 0, which is wrong.

Theorem 7.2. For every § > 0, the system
(09 (r,0,6)} imon,.

i
J=1,...,k J(i)

is an orthogonal basis in the space Da NS_ater, (B) with the scalar product (-, -)s.

Proof. The orthogonality follows immediately from Lemma 7.1. As for the com-

pleteness of the system {bz(-j)} in Da NS_a4er, (B), we observe that the estimates
(3.1) guarantee that every scalar product (-,-)s with § > 0 induces in D4 the same
topology as D(-,-). Hence it is sufficient to prove the completeness for 6 = 1. Fi-

nally, since the system of harmonics {H”} is dense in C™~1(S, E) we see that

{bl(-j)} is dense in C™ (S, E) N S_atcr, (B). Then the completeness is a conse-
quence of Lemma 6.1. O

As a fundamental solution @.(z,y) of the operator —A + ¢ in R? we may choose
one of the standard kernels
P (x,y) = et Velz—yl
In R? we can take as &.(x,y) a Hankel function, see for instance [TS72].
Example 7.1. Let A = V be the gradient operator in R"”. For every domain

D cC R", we have Dy = H!(D). Since the estimate (5.1) holds true for V (see
[Mik76]), the (Cauchy) Problem 2.1 is well posed in Dr. In this case k = 1, [ = n,

A* = —div is a multiple of the divergence operator in R™ and
0 0
noA=lz|—=r—
o1 on or

where 9/0n is the derivative along the outward unit normal vector to dD. In
particular, this means that every homogeneous harmonic polynomial rh; is an
eigenfunction of n o A corresponding to the eigenvalue \; = i. For example, in R?
we can take

1

b(()l) = \/—2—7_(_ 9o (’f’, 8)7
1

bz(-l) = ﬁ gi(r,€) cos(ip),
1

bz('2) = 7 gi(r, ) sin(ip),
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where g; are Hankel’s functions. In the case s =5/2 and I' = {r = 1, ¢ € [0, 7]}
the Gram-Schmidt orthogonalisation in H gives

m _ go(r,€)

0 - )

ﬁ\/|g0(17 €)|2 + |gé(17 5)|2
2g1(r,e)cosg
ﬁ\/|g1(17 €)|2 + |gi(17 5)|2 7
2ago(r,€) + /791 (r, ) sin ¢
\/[; )

B =

with
@ = golLen(l,e) —gh(1e)gi(1.e)
b= Srda(l +Hleo(Lo) +lgh(1e)),
and so on.

Example 7.2. Let A := 01 + +/—102 be (2-multiple of) the Cauchy-Riemann
operator in C. Then the (Cauchy) Problem 2.1 is ill-posed in Dy. In this case
k=1=1, A* = —01 ++/—109 and

noAzzéz7~£+\/—1i
or o)

hold. The system {bl(-j )} may be chosen as follows

1
1
bé ) \/ﬂ go(ra 8)7
1 )
b = — gi(r,e)eY ¥
3 ﬁ ) )
1 )
b = — gi(r,e)e V1w
3 ﬁ ) bl

with A0V =0, A{Y =0 and A? = 2i.
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