
GREEN FORMULAE FOR CONE DIFFERENTIAL OPERATORS

INGO WITT

ABSTRACT. Green formulae for elliptic cone differential operators are established. This is achieved
by an accurate description of the maximal domain of an elliptic cone differential operator and its
formal adjoint; thereby utilizing the concept of a discrete asymptotic type. From this description,
the singular coefficients replacing the boundary traces in classical Green formulas are deduced.
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1. INTRODUCTION

1.1. The main result. Let � be a compact ��–manifold with non-empty boundary, �� . On the
interior �Æ �� � � �� , we consider differential operators � which on � � �� for some collar
neighborhood � �� ��� �� � � of �� , with coordinates ��� 	� and � being diffeomorphic to �� ,
take the form

� � ���
��
���


���� 	����������
� � (1.1)

where 
� � ������ ���	
������ �� for � � � � . Such differential operators � are called
cone-degenerate, or being of Fuchs type; written as � � 	
��cone���. They arise, e.g., when polar
coordinates are introduced near a conical point.
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Throughout, we shall fix some reference weight Æ � �. This means that we will be working
in the weighted ��–space � ��Æ ��� as basic function space, cf. (1.12) and also Appendix B. Let
�� � 	
��cone��� be the formal adjoint to �, i.e,

���� �� � ������� � �� � � ��comp��
Æ�� (1.2)

where � � � denotes the scalar product in ���Æ ���. Then it is customary to consider the maximal
and minimal domains of �,

���max� ��
�
� � � ��Æ ���

�� �� � � ��Æ ���
�
�

and ���min� is the closure of ��comp��
Æ� in ���max� with respect to the graph norm. Similarly

for ����max�, ����min�.

Our basic object of study is the boundary sesquilinear form

��� ��� �� ���� ��� ������� � � � ���max�� � � ����max�� (1.3)

By virtue of (1.2), ��� ��� � � if � � ���min� or � � ����min�. Therefore, the boundary sesquilin-
ear form � � �� descents to a sesquilinear form

� � �� � ���max�
Æ
���min������max�

Æ
����min�� � � (1.4)

denoted in the same manner.

Our basic task consists in computing (1.4). The result will be called a Green formula in analogy
to the classical situation arising in mathematical analysis. Assuming ellipticity for �, cf. Defini-
tion 3.1, what we will actually do is to compute the value of � � �� on distinguished linear bases of
���max�

Æ
���min� and ����max�

Æ
����min�, respectively.

The starting point is as follows: Assuming ellipticity for �, any solution � � ���� to the equation
�� � ���� on �Æ possesses an asymptotic expansion

���� �
�
�

�
��	�
���

�����

�
��� ���� � �

���
	 �	� as �� ��, (1.5)

where the set �� � � 	�� 
 �� is discrete, �� � � �� as 	�	 � � on this set, and �
���
	 �

���� � for all �� �, provided that the right-hand side � possesses a similar expansion. Introduce
the linear operator � acting on the space of all formal asymptotic expansions of the form (1.5) by�

�

�
��	�
���

�����

�
��� ���� � �

���
	 �	� �

�
�

�
��	�
���

�����

�
��� ���� � �

���
	 �	�� (1.6)

As will be seen,

� the quotient ���max�
Æ
���min� is finite-dimensional,

� it consists of finite sums of the form (1.5), where �
�����Æ� � �� � � �
�����Æ,
� it is left invariant under the action of � .

In particular, � as acting on ���max�
Æ
���min� is nilpotent. Similarly for ����max�

Æ
����min�.

Theorem 1.1. Let � � 	
��cone��� be elliptic. Then, to each Jordan basis

��� ���� � � � � �

������ � � � ���� ���� � � � � �


����� (1.7)

of ���max�
Æ
���min�, there exists a unique Jordan basis

��� ���� � � � � �

������ � � � ���� ���� � � � � �


����� (1.8)

of ����max�
Æ
����min� such that, for all �� �� �� �,

�� ��� �
��� �� �

�
������� if � � �, � � � � � � �,

� otherwise.
(1.9)
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Corollary 1.2. (a) Both spaces ���max�
Æ
���min� and ����max�

Æ
����min� have the same Jordan

structure (with respect to � ).

(b) The sesquilinear form � � �� in (1.4) is non-degenerate.

(c) The operator � is skew-adjoint with respect to � � ��, i.e.,

������� � ��� ���� � � (1.10)

for all � � ���max�
Æ
���min�, � � ����max�

Æ
����min�.

Remark 1.3. The conjugate Jordan basis ��� ���� � � � � �

������ � � � ���� ���� � � � � �


����� in
(1.8) can be found, at least in principal, once one controls the first  conormal symbols ����� ���� �
for � � �� �� � � � �  � � of �, see (3.1). More precisely, let

�
������ �� � � ��

�
be the inverse

to the complete conormal symbol
�
����� � �� � � ��

�
of � under the Mellin translation product,

see (3.5). In particular, ������ � for � � �� �� �� � � � is a meromorphic function on � taking
values in the space ���cl �� � of classical pseudodifferential operators of order � on � . Then the
Jordan basis in (1.8) can be computed from the Jordan basis in (1.7) and the principal parts of the
Laurent expansions of ������ �� around the poles in the strip �
����� Æ��� � ��  �
�
����� Æ for � � �� �� � � � � � �, see Theorem 4.1.

1.2. Description of the content. In Section 2, we discuss discrete asymptotic types for conor-
mal asymptotics of the form (1.5). The central notions are properness of an asymptotic type and
complete characteristic bases for proper asymptotic types. In Section 3, we study complete Mellin
symbols that form an algebra unter the Mellin translation product. Here, the main result due to
LIU–WITT [11] states that the type for the asymptotics annihilated by an elliptic, holomorphic
complete Mellin symbol is proper; thus linking to cone differential operators, cf. Theorem 3.10.
Then in Theorem 4.1, in Section 4, we establish a formula for the principal parts of the Laurent
expansions around the poles of the inverses to holomorphic complete Mellin symbols under the
Mellin translation product. This formula involves a complete characteristic basis and its conju-
gate complete characteristic basis, similar to the situation arising in Theorem 1.1. In fact, Theo-
rem 4.1 is one of the two main technical results of this paper from which Theorem 1.1 is easily
deduced. The other one is Theorem 5.1 in Section 5, where certain “bi-orthogonality” relations
between the two complete characteristic bases of Theorem 4.1 are established. Theorem 1.1 is
proved in Section 6. We start with a formula for the boundary sesquilinear form � � �� taken from
GIL–MENDOZA [3], cf. Theorem 6.1. The proof of Theorem 1.1 then consists in evaluating this
formula, where the latter basically means to “take the residue” of the formula from Theorem 5.1.

In Section 7, we discuss two examples showing how one can proceed from the “Green for-
mula” (1.9) to genuine Green formulas in concrete situations. The two appendices are not manda-
tory for the main text, but improve understanding. In Appendix A, we are concerned with local
asymptotic types, i.e., asymptotic types at some fixed singular exponent � from (1.5). Already
here, all the ingredients from the main text of the paper occur in embryonic form. For instance, the
forerunner of Theorem 5.1 is a famous formula due to KELDYSH [6], see Remark 5.2 (b). An ana-
logue of the boundary sesquilinear form � � �� is also provided, cf. (A.3) and Proposition A.4. In
Appendix B, we describe ���max�, ���min� as function spaces with asymptotics. Among others,
this gives a concise way of identifying the quotient ���max�

Æ
���min�.

Let us mention some related work: Green formulae have been under investigation for a long period,
see, e.g., CODDINGTON–LEVINSON [1] for O.D.E. and LIONS–MAGENES [10] for P.D.E. For
singular situations, see, e.g., NAZAROV–PLAMENEVSKIJ [12]. Our approach to cone-degenerate
differential operators is built upon work of SCHULZE [14, 15]. For instance, the fact that the quo-
tient ���max�

Æ
���min� is finite-dimensional and consists of formal asymptotic expansions of fi-

nite length is an easy consequence, see also LESCH [9, Section 1.3]. Recently, GIL–MENDOZA [3]
received results similar to ours. Without reaching the final formula (1.9), they studied much of the
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structure of the boundary sesquilinear form (1.4). In case � is symmetric, they applied their re-
sults to describe the self-adjoint extensions of �. Keldysh’s formula was thoroughly discussed in
KOZLOV–MAZ’YA [8, Appendix A].

1.3. Notation. Notation introduced here will be used without further comments.

� Scalar products on ���� � are given by

��� !� ��

�
�
��	�!�	� "�	�� ��� !� ��

�
�
��	�!�	� "�	�� (1.11)

where " is a fixed positive ��–density " on � . For an operator � on ���� �, its formal adjoint
�� is defined with respect to the scalar product � � �, while the transpose �� is defined with respect
to � � �. In particular,

��� � �� ��� � � ���� ��

For �� � � � ��Æ ��� supported in the collar neighborhood � of �� ,

��� �� ��

�
�������

��	
���Æ�� ���� 	����� 	� "�"�	�� (1.12)

cf. (1.2), (1.3). There should be no ambiguity of usage the same symbol � � � in the two different
situations (1.11), (1.12).

� Let # be a finite-dimensional linear space and � be a nilpotent operator acting on # . Then
��� � � � ��� is called a characteristic basis of # (with respect to � , where the latter is often under-
stood from the context) if

��� ���� � � � � �

������ � � � ���� ���� � � � � �


����� (1.13)

for certain integers ��� � � � ��� 
 � form a linear basis of # . The matrix of � with respect to
such a linear basis has Jordan form. Therefore, a characteristic basis ��� � � � ��� always exists,
the integers ��� � � � ��� are uniquely determined (up to permutation) and equal the sizes of the
Jordan blocks, and $ is the number of the Jordan blocks. The tuple ���� � � � ���� is called the
characteristic of # (or of the characteristic basis ��� � � � ���).

� Let % be either the space ���� � (in Section 2) or a Banach space (in Appendix A). Then
%� ��

�

�� %
 denotes the space of finite sequences in %, where we identify %
 as linear

subspace of %
�� through the map ���� � � � � �
��� � ��� ��� � � � � �
���, i.e., by adding a lead-
ing zero. For � � %�, let ���� be the least integer � so that � � %
. The right shift operator �
sending ���� ��� � � � � �
��� to ���� ��� � � � � �
��� acts on %�. In particular, �
���� � �, while
� � �� � for � � � � ���� � �. (In case % � ���� �, the operator � is directly related to the
operator � in (1.6), see Remark 2.2.)

� For % as above, � � � , let ���%� be the space of germs %–valued meromorphic functions
and ���%� be the space of germs of %–valued holomorphic functions at  � �. We identify the
quotient���%�

Æ
���%� with the space %� through the map

��
� � ��


�
��

� � ��
��
� � � ��

�
��
 � �

� ���� ��� � � � � �
����

Then � corresponds to multiplication by  � �. For & ����%�, let �& � ���� denote the principal
part of & � � at  � �. For � � ���� ��� � � � � �
��� � %�, we set

�� � �� ��
��

� � ��

�

��
� � ��
��

� � � � �
�
��
 � �

����%��

� Now let % � ���� �. For �� ! � ���� �, let �� ! be the rank-one operator ���� � � ' �
�'� !�� � ���� �. More generally, for &� ( � ����

��� ��, we introduce the meromorphic
operator family & � ��(� � by

& � ��(� �' ��
�
'�(�� �

	
& � �� ' � ���� ��
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where
�
'�(�� �

	
�


'� �(� �

�
and �(� � �� (�� �. For �� � � ����� ���, we further set

������ � ��

��
�� � !�

� � ��

�

�� � !� � �� � !�

� � ��
��
� � � �

�� � !
�� � � � �� �
�� � !�

 � �
� (1.14)

where � � ���� � � � � �
���, � � �!�� � � � � !
���. In particular,

������ � �� � � � ��

�
�� � ����� � ��

�
�
� (1.15)

where � � max�����������.

� If % is a Banach space, then we use the same notation, but with � � � replaced by the dual pairing
� � � between % and %�. This is due to the circumstance that in this situation we are working with
the dual instead of the anti-dual to %. In particular, �� ! for � � %, ! � %� means the rank-one
operator % � '� �'� !�� � %, while (1.14), (1.15) are formally unchanged.

� On ����� ���, we introduce three commuting involutions by

�� �� ����� ���� � � � � ��
��� ��
����

�� �� �����
 ���� ����

�� ���� � � � � ��
������
����

�� �� �����
��� ����

����� � � � � �
�����
����

where � � ���� ��� � � � � �
��� �
���. Note that � � �� , �� � �� , �� � �� � �, and
�� � �� � �.

� The cut-off function ) � ��comp���� satisfies )��� � � if � � ���, )��� � � if � 
 �. It is used
to localize into the collar neighborhood � �� ��� �� � � of �� .

2. DISCRETE ASYMPTOTIC TYPES

The notion of discrete asymptotic type for conormal cone asymptotics goes back to REMPEL–
SCHULZE [13] in the one-dimensional and SCHULZE [14] in the higher-dimensional case. It allows
to integrate asymptotic information into a functional-analytic setting, cf. also Appendix B. The
refinements of this notion presented here are due to LIU–WITT [11].

2.1. Preliminaries. Let ���Æ
as ��� be the space of all � � ����Æ� possessing an asymptotic

expansion as in (1.5), as �� �� , where, additionally, �� � � �
����� Æ if �� 
 �. Moreover,

let ��� ��� be the space of all � � ����Æ� vanishing to the infinite order on �� (i.e., ����	 �	� � �
for all �� � in (1.5)).

Henceforth, we shall fix a splitting � � �� �� ��� �� � � , � � ��� 	� of coordinates near �� . It
turns out, however, that our constructions are independent of this chosen splitting of coordinates,
cf. Remarks 2.2, 2.4, and 2.10 and Proposition B.4.

Definition 2.1. (a) A discrete subset * � � is called a carrier of asymptotics if 	�� �	 � � on
* as 	�	 � �. For Æ � �, we write * � �Æ if, in addition, * � � � � � ��  � �
����� Æ�.

(b) For * � �Æ , we define �Æ� �� � to be the space of all mappings �� � � ����� ��� satisfying
�� � � 	���� �� �� � * . In particular, �Æ� �� � �

�
��� ��

��� ���� , where ����� ���� is an

isomorphic copy of ����� ���. Moreover, we set �Æ�� � ��
�
� ��Æ �

Æ
� �� �.

The operations � , � , � , and � are point-wise defined on �Æ�� �, cf. Section 1.3. For instance,
����� � � ������ for � � �Æ�� �, � � � . We also write ����� instead of �������.

We next provide an isomorphism

���Æ
as ���

Æ
��� ���� �Æ�� � (2.1)
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that is non-canonical in the sense that it depends on the choice of splitting of coordinates near ��:
With the vector � � �Æ� �� �, where ���� � ��

���
� � � � � � �

���

���

� for � � * , we associate the formal
asymptotic expansion

���� �
�
���

�
��	�
���

�����

�
��� ���� � �

���
	 �	� as �� ��,

see (1.5). (To see that (2.1) is surjective needs to invoke a Borel-type argument.)

Remark 2.2. The operator � acting on the quotient ���Æ
as ���

Æ
��� ���, as introduced in (1.6), is

well-defined, i.e., it is independent of the chosen splitting of coordinates near �� . Moreover, the
isomorphism (2.1) intertwines this operator and the right-shift operator � acting on �Æ�� �.

We need some further notation: For � � �Æ�� �, we introduce

�������� �� �
�����max��� �� ���� �� ��

(the “conormal order” of � understood in an ��-sense). Note that �������� + Æ if � � �Æ�� �,
and ������� ��� � � as � � �. Note also that, for � � �Æ�� �, , � � for � � �� �� � � �
satisfying �������� � � as � � �, the series

��
�� ,� is explained in �Æ�� � in a natural

fashion. In particular,
��
��

,� � � �� �����
� ��
��

,�
	
�� as �� ���

Furthermore, � � �Æ�� � is called a special vector if � � �Æ���� �� � for some � � � . If � �� �,
then � is uniquely determined by � and the additional requirement that ���� �� �. This complex
number � is denoted by -���.

2.2. Definition of discrete asymptotic types. Discrete asymptotic types are certain linear sub-
space of the space ���Æ

as ���
Æ
��� ��� of all formal asymptotic expansions.

Definition 2.3. A discrete asymptotic type, . , for conormal cone asymptotics as � � �� , of
conormal order at least Æ, is a linear subspace of ���Æ

as ���
Æ
��� ��� that is represented, in the

given splitting � ��� �� ��� ���� , � � ��� 	� of coordinates near �� , through the isomorphism
(2.1) by a linear subspace # � �Æ� �� � for some * � �Æ satisfying the following conditions:

(i) �# � # .

(ii) �
�#Æ�� �� for all � � �� , where #Æ
�

�� #��# � �Æ
�

�� �� for Æ� 
 Æ.

(iii) There is a sequence ��� � � � � $ � �� � � , where $ � �� � ���, such that �� � �
�
����� Æ for all �, �� � � �� as ��� if $ ��, * �

��
����� � �� , and

# �

��
��

�
# � �Æ����� �� �

�
�

The empty asymptotic type, �, is represented by the trivial subspace ��� � �Æ�� �. The set of all
asymptotic types of conormal order at least Æ is denoted by ��Æ�� �.

Remark 2.4. It can be shown that this notion of discrete asymptotic type is independent of the split-
ting of coordinates near �� . The latter means that changing coordinates . � ���Æ

as ���
Æ
��� ���

is represented by another linear subspace #� � �Æ� ��� � for some * � � �Æ that also satisfies
(i) to (iii) of Definition 2.3.

Let .� . � � ��Æ be represented by #� #� � �Æ�� �, respectively. For Æ� 
 Æ, we say that .� . �

coincide up to the conormal order Æ� if #Æ
�

� # �Æ
�

as subspaces of �Æ�� �
Æ
�Æ

�

�� �. Similarly, for
Æ� + Æ, we say that .� . � coincide up to the conormal order Æ� � � if .� . � coincide up to the
conormal order Æ� � / for all � � / � Æ� � Æ.
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It is important to observe that the set ��Æ��� of asymptotic types is partially ordered by inclusion
of the representing spaces. This partial order on ��Æ��� will be denoted by �. One of the fun-
damental principles in constructing asymptotic types obeying certain prescribed properties ensues
from the following:

Proposition 2.5. ���Æ������ is a lattice with the property that each non-empty subset (resp.
each bounded subset) possesses a greatest lower bound (resp. a least upper bound).

As example, consider . � ��Æ and let Æ� 
 Æ. Then let . Æ� � . denote the largest asymptotic
type that coincides with the empty asymptotic type, �, up to the conormal order Æ�. Similarly, for
Æ� + Æ, let . Æ��� � . denote the largest asymptotic type that coincides with the empty asymptotic
type up to the conormal order Æ� � �. Of course, in this situation it is easy to provide representing
spaces for . Æ� and . Æ���, respectively, but in more involved situations such a task might be not
that simple.

Remark 2.6. There is an abstract concept of introducing asymptotic types if a unital algebra �
acting on some linear space � “modulo a distinguished linear subspace �� in the image” is given.
In our case, � �

�
���� �!�� �� � is the algebra of complete Mellin symbols, cf. Section 3,

� � ���Æ
as ���, and �� � ��� ���. See WITT [18].

2.3. Proper discrete asymptotic types. Here we investigate properties of linear subspaces # �
�Æ� �� � satisfying (i) to (iii) of Definition 2.3.

Proposition 2.7. Let # � �Æ� �� � be a linear subspace for some * � �Æ . Then there are an
$ � �� � ��� and a sequence ��� � � � � $� �� of special vectors satisfying ����������
as ��� if $ �� such that the vectors ��� for � � � � $��, � � �� span the space # if and
only if (i) to (iii) of Definition 2.3 are fulfilled.

For the rest of this section, assume that # � �Æ� �� � is a linear subspace satisfying (i) to (iii)
of Definition 2.3. Let "� � # � #Æ�� be the canonical surjection. For �� + �, there is a natural
surjective map "��� � #

Æ��� � #Æ�� such that "���� � "���"����� for ��� + �� + � and�
#�"�

	
� �
�
 �

�
#Æ�� �"���

	
�

Note that � � #Æ�� � #Æ�� is nilpotent, where the operator � is induced by � � # � # . Let
���

�� � � � ��
�
�� � be the characteristic of #Æ�� , cf. (1.13) and thereafter.

The sequence ��� � � � � $ � �� � # is said to be a characteristic basis of # if there are
numbers � � �� � ���, � 
 �, such that �
�� � � if � � �, while the sequence
�� ��� � � � � $� �� � � � � �� forms a basis of # .

Proposition 2.8. Let # � �Æ� �� � be a linear subspace as above and assume that ��� � � � �
$� �� is a characteristic basis of # . Then the following conditions are equivalent:

(a) For each �, �"���� � � � �"��
�
��� is a characteristic basis of #Æ�� .

(b) For each �, �

�
������ � � � � �


������� are linearly independent over the space �Æ���� �, while

� �� � �
Æ���� �, where either � � � � $� , � 
 ��

 or � + $� .

If these conditions hold, then the numbering within the tuples ����� � � � ��
�
�� � can be chosen in

such a way that, for each � 
 �, there is a characteristic basis ���� � � � ��
�
�� of #Æ�� such that, for

all �� + �,

"����
��

 �

�
�� if � � � � $� ,

� if $� � � � � � $�� .
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Furthermore, the scheme

$� rows

���
��

$� � $� rows

���
��

$� � $� rows

���
��

��
� ��

� ��
� �

� � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
��
�� ��

�� ��
�� �

�� � � �

��
����

��
����

�
����

� � �
� � � � � � � � � � � � � � � � � � � � � � � � �
��
�� ��

�� �
�� � � �

��
���� �

���� � � �
� � � � � � � � � � � � � � � � �
��
�� �

�� � � �

...
. . . �

(2.2)

where in the �th column the characteristic of the space #Æ�� appears, is uniquely determined up
to permutation of the �th and the ��th row, where $� � � � �� �� � $��� for some � ($� � �).

Definition 2.9. An asymptotic type . is said to be proper if its representing space # possesses
a characteristic basis ��� � � � � $ � �

�
consisting of special vectors that fulfill the equiv-

alent conditions of Proposition 2.8. If the tuples ����� � � � ��
�
�� � are re-ordered according to this

proposition, then the sequence��
-�����

��
 ��

����
 ������

 � � � �
	
� � � � � $� �

�
(2.3)

is called the characteristic of . .

Remark 2.10. The characteristic of a proper asymptotic type . � ��Æ�� � is independent of the
splitting of coordinates near �� .

An asymptotic type need not be proper. For an example, see LIU–WITT [11, Example 2.23].
However, we have the following result, which will be generalized in Theorem 3.10 below:

Theorem 2.11. Let � � 	
��cone��� be an elliptic cone-degenerate differential operator. Then�
� � ���Æ

as ���
�� �� � ��� ���

�Æ
��� ��� (2.4)

is a proper asymptotic type.

3. THE ALGEBRA OF COMPLETE MELLIN SYMBOLS

We study the algebra of complete Mellin symbols under the Mellin translation product. Further-
more, we introduce the important notion of a complete characteristic basis for the asymptotics
annihilated by a holomorphic complete Mellin symbol.

3.1. Cone differential operators. Recall that we have fixed a splitting of coordinates � �
��� �� � � , � � ��� 	� near �� , � being a collar neighborhood of �� . Let �0� 1� be the co-
variables to ��� 	�. The compressed covariable �0 to � is denoted by #0 , i.e., �#0 � 1� is the linear
variable in the fiber of the compressed cotangent bundle #� �� .

For � � 	
��cone��� as given in (1.1), we denote by ������ its principal symbol, by #������ its

compressed principal symbol defined on #� �� by

��������� 	� 0� 1� � ���#��������� 	� �0� 1�� ��� 	� 0� 1� � � ��� � ��� � ��

and by ����� ���� � for � � �� �� �� � � � its �th conormal symbol,

����� ���� � ��

��
���

�

�

��
�
���

��� 	���� 
��  � � � (3.1)
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#��������� 	� #0 � 1� is smooth up to � � � and ����� � � for � � �� �� �� � � � is a holomorphic function
in  taking values in 	
���� �.

Furthermore, if � � 	
��cone���, 2 � 	
��cone���, then �2 � 	
����cone ��� and

�����	� ��2�� � �
�
����	

����� ���� � 3 � ������� �2�� �

for � � �� �� �� � � � This formula is called the Mellin translation product.

Definition 3.1. (a) The operator � � 	
��cone��� is called elliptic if � is an elliptic differential
operator on �Æ and

#��������� 	� #0 � 1� �� �� ��� 	� #0 � 1� � #� �� � �� (3.2)

(b) The operator � � 	
��cone��� is called elliptic with respect to the weight Æ � � if � is elliptic
in the sense of (a) and, in addition,

��� ���� � � 4
��� �� 4����� �� ��  � �
����� Æ� (3.3)

is invertible for some � � � (and then for all � � �).

Proposition 3.2. If � � 	
��cone��� is elliptic, then the set�
 � �

�� ��� ���� � regarded as operator in (3.3) is not invertible
�

is a carrier of asymptotics. In particular, there is a discrete set � � � such that � is elliptic with
respect to the weight Æ for all Æ � � ��.

3.2. Meromorphic Mellin symbols. We consider the class of meromorphic operator-valued
functions arising in point-wise inverting elliptic conormal symbols ��� ���� �. For further details,
see SCHULZE [15].

Definition 3.3. For  � �� ����, the space��
as�� � of Mellin symbols of order  is defined as

follows:

(a) The space��
��� � of holomorphic Mellin symbols of order  is the space of all ��cl�� �–valued

holomorphic functions �� � on � such that �� �
��
�����

� ��cl�� ��� � uniformly in 5 � �5�� 5��,
where �� � 5� � 5� ��.

(b) ���
as �� � is the space of all meromorphic functions �� � on � taking values in ����� �

satisfying the following conditions:

(i) The Laurent expansion around each pole  � � of �� � has the form

�� � �
��

� � ���
�

��

� � �����
� � � ��

����

 � �
�
�
�	�

����� � ��� � (3.4)

where ������ � � � ����� � ����� � are finite-rank operators.

(ii) If the poles of �� � are numbered in a certain way, ��� ��� ��� � � � , then 	�� �� 	 � � as
� �� if the number of poles is infinite.

(iii) For any function 6� � � ���� � such that 6� � � � if �
�$� �
�
������ � ��� and 6� � � �

if �
�$� �
�
������ 
 �, we have 6� ��� �

��
�����

� ����� ��� � uniformly in 5 � �5�� 5��,
where �� � 5� � 5� ��.

(c) We eventually set��
as�� � ����

��� � ����
as �� �.

Write � ���
as�� � for  � � as�� � � ��� ����� �, where �� ��

�
��� �,�� ��

��
as �� �.

Then the (parameter-dependent) principal symbol ���
�
��� �

��
�����

	
� 7

���
cl ��� �� ��� � � �� is

independent of the choice of the decomposition of �� � and also independent of 5 � �.

Definition 3.4. � ���
as�� � for  � � is called elliptic if ���

�
��� �

��
�����

	
�� � everywhere.



10 INGO WITT

Proposition 3.5. (a)
�
����

�
as�� � is a filtered algebra with respect to the point-wise product as

multiplication.

(b) � � ��
as�� � is invertible within this algebra, i.e., with its inverse belonging to���

as �� �, if
and only if �� � is elliptic.

We further introduce the algebra � �!�� �� � of complete Mellin symbols.

Definition 3.6. For  � � � ����, the space � �!�� �� � consists of all sequences �� �

������ �� � � ��� ��
�
as�� �. Moreover, an element �� � � �!�� �� � is called holomorphic if

�� � ������ �� � � ��� ��
�
��� �.

Proposition 3.7. (a)
�
���� �!�� �� � is a filtered algebra with involution with respect to the

following operations:

(i) The Mellin translation product �� Æ� �� � ������	� �� � � ��� � � �!���� �� � for �� �

������ �� � � ��� � � �!�� �� �, �� � ������ �� � � ��� � � �!�� �� �, where

�����	� � �
�
����	

����� � 3 � ������� �� � � �� �� �� � � � � (3.5)

as multiplication.

(ii) The operation ������ � �	���� �� � � ��� � � �!�� �� � for �� � ������ �� � � ��� �
� �!�� �� �, where

	���� � � ������
�� � �Æ � � � � ���� � � �� �� �� � � � � (3.6)

as involution.

(b) The complete Mellin symbol ������ �� � � ��� � � �!�� �� � is invertible within the filtered
algebra

�
���� �!�� �� �, i.e., with its inverse belonging to � �!��� �� �, if and only if ��� � is

elliptic in the sense of Definition 3.4.

(c) The map�
����

	
��cone����
�
���

� �!�� �� �� � �
�
����� ���� � � ��

�
� (3.7)

is a homomorphism of filtered algebras with involution.

3.3. The space �Æ
��

. For a complete Mellin symbol ��, we introduce a special notation for
the representing space of the “asymptotics annihilated” by ��. We actually restrict ourselves to
holomorphic complete Mellin symbol (although the definition can be generalized to meromorphic
complete Mellin symbol by taking into account the possible “production of asymptotics,” cf. LIU–
WITT [11]). The reason for that is that Theorem 3.10, in general, fails to hold without assuming
holomorphy.

Definition 3.8. Let �� � � �!�� �� � be holomorphic. Then the linear space �Æ
�� � �Æ�� � is

spanned by all special vectors � � �Æ�� � satisfying�
����	

����� � ������ ��� � �� �� � ���	��
��� �� (3.8)

for � � �� �� �� � � � , where � � -���.

We also introduce a notation for the expression occuring on the left-hand side of (3.8):

�	���� � � �	����
��� � ��

�
����	

����� � ������ ��� � �� ��� (3.9)

Proposition 3.9. For � � 	
��cone�� �, the subspace of ���Æ
as �� �

Æ
��� ��� from (2.4) is repre-

sented by the linear space �Æ
�� , where �� �

�
����� � �� � � ��

�
.
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In this situation we sometimes write �Æ� instead of �Æ
�� .

Generalizing Theorem 2.11, we have:

Theorem 3.10 (LIU–WITT [11, Theorem 2.31]). For an elliptic, holomorphic �� � � �!�� �� �,
�Æ
�� represents a proper asymptotic type.

We also need:

Lemma 3.11. The adjoint relation to (3.8),�
����	

	���� � ����8 � ��� � 8 � �� � ���	��
��� ���

where 
� � � �!�� �� � is as in (3.6), is equivalent to�
����	

����� �� ���8 � ��� � �� �� � ���	��
��� ��� (3.10)

where 8 � �
�� � �Æ � ��� .

3.4. Complete characteristic bases. The control of asymptotics of the form (1.5), of conor-
mal order at least Æ, is equivalent to the control of the conormal symbols ����� ���� � for � �
�� �� �� � � � in the half-spaces ��  � �
����� Æ � �. We now investigate what is going on as
Æ � ��.

Let

��� � ��
�
Æ��

�Æ�� �� (3.11)

and ��� ��
�
Æ�� �Æ

�� for a holomorphic �� � � �!�� �� �.

Definition 3.12. A complete characteristic basis of ��� is the inductive limit

�
�
��

�
��Æ�� ' � !

Æ�� 0Æ�Æ

�
of the following inductive system:

(a) For each Æ � �, ��Æ�� ' � !Æ� is a characteristic basis of �Æ
�� of characteristic�

-��Æ����
���Æ
� �������Æ

� � � � �
	

satisfying conditions (a), (b) of Proposition 2.8.

(b) For all Æ + Æ�, 0Æ�Æ � !Æ � !Æ
�

is an injection such that, for any ' � !Æ,

(i) -��Æ
�

��� � -��Æ�� � 
 for some 
 � �� ,

(ii) �Æ� � �

�
��
����	Æ�

�� �Æ
�

�� ,

where '� � 0Æ�Æ�'� (as well as 0Æ��Æ � 0Æ��Æ�0Æ�Æ for Æ + Æ� + Æ��.)

We write ! �� �
�
��

�
!Æ� 0Æ�Æ

	
with injections 0Æ � !

Æ � ! (such that 0Æ � 0Æ�0Æ�Æ for Æ + Æ�) and

���� ' � !� � �
�
��

�
��Æ�� ' � !

Æ�� 0Æ�Æ

�
�

where each �� for ' � ! is the collection
�
�Æ
�Æ

�
with ' �

�
'Æ
�

.

The proof of (a) in the next proposition relies on the finite-dimensionality of the spaces #Æ�� :

Proposition 3.13. (a) For each holomorphic �� � � �!�� �� �, ��� possesses a complete char-
acteristic basis.

(b) For any complete characteristic basis ���� ' � !� of ��� , the expression

�

��
��������� �� �


��
��Æ
�Æ
�
�Æ�Æ����
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where � � � , � � �� , 'Æ � 0Æ�'�, and Æ is chosen in such a way that

Æ � max
�

min
�
Æ� � �

�� -��Æ�
�Æ�

���� � � ��
�
��
����� ��� �� ��

�
�

is well-defined. (If there is no Æ such that -��Æ
�Æ
���� � � �� , then �


��
��������� �� �.)

4. SINGULARITY STRUCTURE OF INVERSES

In the sequel, let�� � ������ �� � � ��� � � �!�� �� � be holomorphic and elliptic. The inverse
to�� will then be denoted by��� � ������� �� � � ��� � � �!��� �� �, cf. Proposition 3.7 (b).
In particular,�

����	

������ � ������ � �� � Æ�	 
�� � � �� �� �� � � �

Before stating Theorems 4.1 and 5.1, we simplify the situation to be considered in their proofs.
Due to the facts that

� in the process of inverting �� with respect to the Mellin translation product, the “produc-
tion of singularities” of ������ �� at  � � and �����

�

� �� at  � ��, respectively,
influences each other only if �� �� � �,
� control on the singularity structure of ������ �� in the half spaces ��  � �
�����Æ

for each Æ � � provides control on the singularity structure of ������ � � in the whole
of � ,

we are allowed to assume the following model situation: The complete characteristic basis of ���

under consideration consists of special vectors � for � � � � $ � �, where $ � �� � ���,
-���� � �, and

-��� � �� �� $	 � � � � � $	�� (4.1)

Then � � $� � $� � $� � � � � and $ � max�$	 	 � � ���. When referring to this model situation,
we denote

�	��
 �� ���	����

Theorem 4.1. Let �� � � �!�� �� � be holomorphic, elliptic. Then, for each complete character-
istic basis ���� ' � !� of ��� , there is a unique complete characteristic basis ���� � '� � !��
of ��� , where 
� is given by (3.6), and a bijection 0� � ! � !� such that, for all � � � and
� � �� �� �� � � � ,�

������ � �
�
�
�
�
�

�

���
� ����� ��� �


�����
�� �����8�� � ��� (4.2)

where 8 � �
�� � �Æ� ���, '� � 0��'�, ����
� � ��������, and ������

�� � �����������.

Proof. We assume the model situation (4.1).

Step 1. The elements � of ��� (� �Æ
��) are given by the relations

���� ��� � �� �� �

	�
���

�
������ � �����	���� �

��
��	��

� (4.3)

for � � �� �� �� � � � , where ������ �
��

��� �
�����
� � ������ � ������

��� �� for � � �� �� �� � � � ,

cf. LIU–WITT [11]. In fact, the Taylor coefficients �
�����
� � ���� � can be chosen arbitrarily,

since only a finite number of them enters the computation of ���� ��.
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Since ���� �� � �%&'
�
���� ��� � � � � $	��

�
for � � ��� , we conclude that

�
������ � �

�
��	��

�

�
���
��

���� ���4
��	�
 � � �� � � �� (4.4)

for certain 4
��	�
 �

�
'
��	�
� � '

��	�
� � � � � � '

��	�



��
� ���

�
� ����� ���, which are a priori of length

�	��
 . Employing (4.4), we rewrite (4.3) as

���� �� �

�
���
��



��
� ���
���

�
� 	�
���

��
���

�
�
���	���
��� � '

��	�
�

	��� ����� �� (4.5)

for � � �� �� �� � � �

Step 2. We are going to show that (4.5) provides the unique representation of � as linear combi-
nation of the vectors ���. More precisely, by induction on � � �� �� �� � � � , we construct functions
'
�	�
� � ���� � for � 
�	

 such that, for each �,

'
�	�




��

for all � satisfying �	
 � �	��

 are linearly independent (4.6)

and

'
��	�
� �

�
'
�	���
� if � 
 �	��

 ,

� otherwise.
(4.7)

This means that the coefficient in front of ��� equals
�	

���

��
��
�

�

�
�
�����
��� � '

���
�

	
provided that

�	
 � � � �	��

 � �.

After the �th step, '�	
��

� will have been constructed for all ��� �� � satisfying �� � �, � � � � $	��,
�	�
 � � � �	��

 � �. Moreover, (4.7) will have been proved for all �� � satisfying � � � � $	��,
� � � � �	��

 � �.

Base of induction � � �: We set '���� �� '
����
� for � � � � $�, � � � � ��

 � �.

Induction step �� � �� �: We write (4.5) as

���� �� �

�
�
��




����
���

�
� 	�
���

��
���

�
�
���	���
��� � '

��	�
�

	��� ����� ��

�

�
���
��



��
� ���
��



�

�
� 	�
���

��
���

�
�
���	���
��� � '

��	�
�

	��� ���� � ���

� regarded as a vector in �Æ
�� modulo �Æ

�

�� for some Æ� satisfying �
���� � Æ� � � � � �
�
���� � Æ� � � is a unique linear combination of the vectors ��� for � � � � $	��, � � � �

�	��
 ��. The coefficient in front of ��� for � � � � $	, � � � � �	

�� is known if one knows �

modulo �Æ
���
�� . By inductive hypothesis, this coefficient equals

�	��
���

��
��
�

�

�
�
�����
��� � '

���
�

	
. Thus,

we obtain (4.7) for � � � � $	, � � � � �	
��, since the functions ������� � ���� � are arbitrary.

It remains to set '�	
��

� �� '
�	�	��	�
� for � � �� � �, �	

 � � � �	��
 � �.

In particular,

4
��	�
 �

�
'
�	���



��
� �

� '
�	���



��
� ��

� � � � � '
�	���



��
� ���

�

is actually of length �	��
 ��	��

 .
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Step 3. We now fix some 
 � �� and set

4
�	�
 � 4

�	�
�� ��

�
'
�	�




��
� '

�	�



��
� ��

� � � � � '
�	�

�
� ���

�

for � � � � 
� �. Then 4
��	�
 � �


�
��



��
� 4

�	���
 and�

������ � � ��
�
���

�

�
�����
��

�

��
� ���� � � 9� � �


�
��



����
� 4

�����
 � � �� 9� (4.8)

for all �� �� �� 9 satisfying � � � � �, � � 9 � 
. We shall employ (4.8) to show that the vectors
��� � � � ���� defined by

��8 � �� �� �4
�	�
 � � � � � 
� �� (4.9)

where 8 � �
�� � �Æ � ��� , form a characteristic basis of �Æ����
�� modulo �Æ��

�� .

In view of (4.6), ��� � � � ���� form a characteristic basis of the �–invariant subspace of �Æ�� �
modulo �Æ���� � generated by these vectors, of characteristic��

8 � ����
 ��	

��
�
 ��	��

 � � � � ���
 ���

 ��
�


	
� � � � � $�

�
�

where, for a given �, � is the least integer such that �	��
 � ��

 . In particular, the dimension of this
space equals �
��Æ

��

Æ
�Æ��
�� �

���
���

�
 . Invoking a duality argument, we see that it suffices to

prove that each � belongs to �Æ����
�� modulo �Æ��

�� .

Step 4. By virtue of (3.10), we have to show that�
����	

����� ���4
�������
 � � #�� �� � :��� as  � #�� � (4.10)

for � � � � $�, � � � � 
� �, where #� �� �� 
� �.

For � � 9 � 
� �, we infer from (4.8)

Æ�	 
� �
�
����	

������ � � ������� �

�
�
����	

���
��

� � #�� ��

�
� �


�����
�

�
�


�����
� ��#��� � #�� ��

�

�
�
����� ��4

�������
 � � #�� ��

�
� :��� as  � #�� �.

Since the leading entries of the vectors �

�����
� ��#�� (if there are any) for different � are linearly

independent, we arrive at (4.10).

Step 5. Returning to the notation 4
�	�
 � 4

�	�
�� , we see that the � defined by (4.9) for � � � �

$�� as 
�� constitute a complete characteristic basis of ��� modulo �Æ��
�� . Furthermore, the

considerations also show uniqueness for the complete characteristic basis of ��� modulo �Æ��
��

just constructed. �

5. GENERALIZATION OF KELDYSH’S FORMULA

Conjugacy of complete characteristic bases in the sense of Theorem 4.1 forces certain bilinear
relations between the bases elements to hold, as for local asymptotic types. We are now going to
derive these relations keeping the notations of the previous section.
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Theorem 5.1. For all �� '� '�� �� � satisfying � � �,

	�
���

 
�	����


��
��
� ���� � ��� �


���
�� �����8 � ��� � ��

!

� Æ���� � ����

�
��


��
��
� � � :�� � ����


�
��


���
� �� as  � �, (5.1)

where 8 � �
�� � �Æ � ��� , ����
� � ��������, �

���
�� � ���������,

Æ��� �

�
� if '� � 0��'�,

� otherwise,

and�	����

��
��
� ���� � �� was defined in (3.9).

Remark 5.2. (a) (5.1) constitutes an asymptotic expansion formula, with � � � being the basic
case and further correction terms added as � is getting smaller. In Section 7, we will be in need of
the most refined case � � �.

(b) In case � � �, we recover Keldysh’s formula 
��� ��


���
� ������ � ��� �


���
�� �����8�� � ��

!
� Æ���� � ����


�
��


���
� � � :��� as  � �,

cf. (A.2).

To prove Theorem 5.1 we need the following simple result:

Lemma 5.3. Assume the model situation (4.1). Let 
�� � � ���	�� � for some � � �� . Then

�
���
��

	�
���


�� ��

�
����� ��� � �� �� � ���	��

��� ��

if and only if

��
���

� � �� ��

�
� 
�� � � :�� � �� ��


���
� �

for all � � � � $	 � �, � � � � �.

Proof of Theorem 5.1. We again assume the model situation (4.1).

We reenter the scene at formulas (4.8). Using these formulas, we write

������ � �

�

������
���

�������
��

��

�
����� � � 9��� ��


�
��


�����
� 4

���
 �� � �� 9� �(�� �

for � � � � 
 � �, where (�� � is holomorphic on the strip �
���� � Æ � 
 � � � ��  �
�
����� Æ. For any � � �� � 
� �, we get

Æ�	� 
� �
�

����	�

������ � � ������� � ���

�
�

����	�

��	����
���

�
������
��

� ������9�


�����
� �
��

�

�
�


��
� ���� �� � 9�� � �� �� � 9�

�
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�

�
����� � �����


�
��



�����
� 4

�����
 � � �� �� � 9�

�
�

�
����	�

(�� �������� � ���

(5.2)

We now apply the operator (5.2) to �

���

�� ���� � #9 � ���� � � � #9�, where � � #9 � 
 � �, and

then sum up for �� from � to �. Since�
���
	

(�� � ������� � � � ���

���

�� ����� #9� � � ��� � ��#9�

�
	�

���

(�� � ��

"
	���
���

����� � � � ���

���

�� ����� #9� � � ��� � ��#9�

#

�
	�

���

(�� � ���	����


���

�� ���� � �� � �������

��� ���

taking the principal value at  � ��#9 on both sides of the resulting equation, we obtain

�

���

�� ����� #9�� � ��#9� �

�
���
	

������
��

� � ��#9�

����
� �
��

�

$
����� � � � ���


���

�� ����� 9�� � ��#9�� �


�
� �


����
� �4

�����
 � � ��#9�

%

�

��
� ��� � #9�� � � � #9� � :��� as  � �� #9,

where #9 � 9� � � �. We get

�

���

�� ����� #9�� � ��#9� �

������
��

	�
���


�� ��


����
� ���� #9�� � ��#9� �:���

�

������
��

���
�����	


������ ��

�
����� #9�� � ��#9� � :��� as  � �� #9,

where


�� � � � � ��#9�

����
� �


����
�

�

$
�	����



���

�� ���� � ��� �


�
� �


����
� �4

������
 � � ��#9�

%
�

By virtue of Lemma 5.3, we conclude that, for all � � � � �,

	�
���

� � �� ��

����
� 
�� �

� Æ�� � �� ��

���

� � :�� � �� ��


������
� � as  � �� �,

i.e.,

	�
���

$
�	����



���

�� ���� � ��� �


�
��


����
� �4

������
 � � ��#9�

%

� Æ�� � �� ����

����
� �


���

� � � :�� � �� ����


����
� �


������
� �� as  � �� �.

In view of (4.9), the latter is (5.1) in the model situation (4.1). �
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6. THE BOUNDARY SESQUILINEAR FORM

In this section, we shall prove Theorem 1.1. From GIL–MENDOZA [3, Theorem 7.11], we first
quote:

Theorem 6.1. For all � � ���max�, � � ����max�,

��� ��� � �

����
���

�
�	
����Æ������� ���	
����Æ

������
�
����� ���� ��)��#� �� �)��#��
�� � �Æ � � � � ��

	
� (6.1)

where )��� is a cut-off function and �)��#� � �� � ;�����)����� ��� denotes the Mellin transform,
see before (B.1).

Proof of Theorem 1.1. We divide the proof into several steps.

Step 1. Because of ���max� � �
��Æ

� Æ
�

��� and ���min� � �
��Æ

� Æ����
�

���, see Theorem B.6, and

similarly for ����max�, ����min� with . Æ
� replaced with . Æ

�� , we have to compute the induced
sesquilinear form

� � �� � �
Æ
��

Æ
�Æ����
�� � �Æ��

Æ
�Æ����
�� � � � (6.2)

Here �� � ������ �� � � ���, where ����� � � ����� ���� �, and 
� � �	���� �� � � ���,
where 	���� � � ����� ����� �. For the relation between ����� �, 	���� �, see (3.6). We will
evaluate the sesquilinear form (6.2) using formula (6.1).

From this description, it is also seen that the spaces ���max�����min�, ����max������min� are
invariant under the action of the operator � from (1.6). (This result is implicitly contained in
Theorem 2.11.)

Step 2. It suffices to prove (1.9) for an arbitrary characteristic basis ��� � � � ��� of the quotient
�Æ
��

Æ
�Æ����
�� . For then non-degeneracy of the sesquilinear form (6.2) and also property (1.10)

follow, where the latter holds for all � � �Æ
��

Æ
�Æ����
�� , � � �Æ

��

Æ
�Æ����
�� . If ���� � � � ��

�
� another

characteristic basis of the quotient �Æ
��

Æ
�Æ����
�� , we have (after a possible renumbering)

�� � � �� � � � � $

for some linear invertible operator � � �Æ
��

Æ
�Æ����
�� � �Æ

��

Æ
�Æ����
�� that commutes with � .

Denoting by �� the adjoint to � with respect to the non-degenerate sesquilinear form (6.2) (��

also commutes with � ), the conjugate characteristic basis ���� � � � ��
�
� to ���� � � � ��

�
� is given by

�� � �������� � � � � $�

where ��� � � � ��� is the conjugate characteristic basis to ��� � � � ���.

Step 3. Let ��� � � � ��� be a characteristic basis of �Æ
��

Æ
�Æ����
�� , of characteristic ���� � � � ����

say, and let ��� � � � ��� be the conjugate characteristic basis of �Æ
��

Æ
�Æ����
�� according to The-

orem 4.1. The latter means that there are corresponding versions of Theorems 4.1, 5.1 valid for
the Mellin symbols ������ � for � � � �  of the strip �
����� Æ �  � � � ��  �

�
����� Æ�, where now in (4.2), (5.1) elements of the quotients �Æ
��

Æ
�Æ����
�� , �Æ

��

Æ
�Æ����
��

enter. Likewise, we may assume that ��� � � � ��� stem (by projection) from a characteristic basis
of �Æ

�� that can be extended to a complete characteristic basis of ��� .

We will make this latter assumption to keep the notation from Theorems 4.1, 5.1.
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For � � �Æ
��

Æ
�Æ����
�� , � � �Æ

��

Æ
�Æ����
�� , rewrite (6.1) as

������ � �

����
���

�
�	
����Æ������� ���	
����Æ

� ������

 
����� ������ � ��� ���8 � ��� � ��

!
� (6.3)

where 8 � �
�� � �Æ � ��� .

Now choose � belonging to the Jordan basis ��� � � � � �

������ � � � ���� � � � � �


����� of the
quotient �Æ

��

Æ
�Æ����
�� and � belonging to the conjugate Jordan basis ��� � � � � �


������ � � � �

��� � � � � �

����� of the quotient �Æ

��

Æ
�Æ����
�� . That means that

� � � �

��
��
� ��

for some '� �� �� �, where �
����� Æ �  � �� � � �
����� Æ � � � ��, �� � � � �

�
����� Æ, and � � � � ���	
� ����	��

� . We may further assume that

� � � ��

���
�� ��� �

where 8 � �
�� � �Æ � ���  and � � � � ���	��
�� �����

�� , since otherwise ������ � �.

Under these hypotheses, in (6.3) there are non-zero residues at most at  � �� � for � � �� � � � � �,
i.e.,

������ � �������
	�

���

	�
���

��������

 
����� �� �


��
��
� ����� ��� � �� ���

� ���

���
�� ����8 � � � ��� � �� ��

!

� �������
	�

���

	�
���

����������

 
����� � ��� �


��
��
� ����� ��� � �� � � ���

� ���

���
�� ����8 � � � ��� � �� � � ��

!

� �������
	�

���

	���
���

��������

 
����� � ��� �


��
��
� ����� � � ��� � �� ���

� ���

���
�� ����8 � ��� � �� ��

!

� �������
	�

���

��������

&
	���
���

����� � ��� �

��
��
� ����� � � ��� � �� ���

� ���

���
�� ����8 � ��� � �� ��

!

� �������
	�

���

��������� � �� ����
 
�	����


��
��
� ���� ��

��

���
�� ����8 � ��� � �� ��

!
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� �������������� � ����
	�

���

 
�	����


��
��
� ���� � ���

��

���
�� ����8 � ��� � ��

!

Therefore,

������ �

�
������� if 0��'� � '�, �� � � ��

� ����	��
� � �,

� otherwise,

by virtue of Theorem 5.1.

This completes the proof. �

7. EXAMPLES

We discuss two examples of ordinary differential operators on the half-line �� . The first example
demonstrates the usage of Theorem 1.1 for the computation of the boundary sequilinear form,
while in the second example it is shown how our fundamental formulas like (4.2) can be indepen-
dently verified.

7.1. First example. This example concerns the cone-degenerate third-order operator

� � ��� � ������ on �� .

The conormal symbols are

��� ���� � � � � � ���

and ����� ���� � � � for � 
 �. Thus, �, � ��� �, and � are exact solutions to the equation �� � �.
A complete characteristic basis ����� of �� is given by

����� � ���� ������ � ��� ���

and ����� � � for � �� �, ����� � � for � �� ��.

We choose Æ � ��. Then we have �� � ���� � (������ � )�����, ��� ��
��� � �  � � ���, and

����� ����� � � � for � 
 �. From

�
�

 � � ���
�

�

� � ���
�

�

 � �
�

�

 

we infer that the complete characteristic basis ����� of ��� that is conjugate to ����� is given
by

����� � ������� ����� � ����

and ����� � � for � �� �, ����� � � for � �� �, where 0���� � �, 0���� � �.

Writing

���� � )��� �,� 5�� ��� �� 5��� � ������

���� � )���
�
-��

�� ��� �� -��
�� � Æ

	
� �����

for ,� 5�� 5�� -�� -�� Æ � � , where )��� is a cut-off function and �� � ���min�, �� � ����min�,
we then obtain

��� ��� � �,�Æ � 5��-� � 5��-� � 5��-��
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7.2. Second example. We consider the non-degenerate, second-order, constant coefficient oper-
ator

� � ��� � 
�� � 9 on �� ,

where 
� 9 � � . We have �� � ��� � �
�� � �9 (with Æ � �) and the Green formula is directly
checked to be

��� ��� � ����������� ����������� 
���������� �� � � "����� (7.1)

The space ��
� has characteristic ����� �� �� � � � �� � � �� ��. Therefore, ����� � ���, ���max��

���min� �� ��
� is two-dimensional, and the elements of ���max�����min� are in one-to-one

correspondence with the (in fact, analytic) solutions ���� � ����,� 5� for ,� 5 � � to

�� � �� ���� � ,� ����� � 5�

In the following, we shall make this identification.

A complete characteristic basis of �� � ��
� is given by

����� � ���� �� ��� ����� � ���� �� ���

We look at (7.1) to find the conjugate complete characteristic basis of ��� to be

����� � ���� �� �
�� ����� � ���� ������

where ���� � ����,� 5� is the solution to ��� � �, ���� � ,, ����� � 5.

Proposition 7.1. (a) We have

����� � � �
�
�	�

�������
9"����
� 9�

�
��� ����� �

�
�	�

�������
"����
� 9�

�
��

and

����� �
�
�	�

"���
��9�

�
�� � ����� � �

�
�	�

"�����
��9�

�
���

where "��
� 9� � �, "��
� 9� � 
,

"��
� 9� � 
"����
� 9�� 9"����
� 9�� � � �� *� � � �

(i.e., "��
� 9� � 
� � 9, "��
� 9� � 
� � �
9, "�
� 9� � 
 � *
�9� 9�, etc.).

(b) We also have

������ � �� �
"��
� 9�

� � ��� � � � �� � � �  � � ��
� � � �� �� �� � � � �

where ������ � has the same meaning as before. In particular, the poles of ������ � are simple
and, for � � ��� �� �� � � � � �,

�����	 �
����� � �� �

������	"��
� 9�

�� � ���� � ��
�

The key in re-proving formulas like (4.2) is:

Lemma 7.2. (i) For � 
 �, � � � � � � �,

"	�
� 9� � "����
� 9�"	�����
� 9�� 9"��
� 9�"	�����
� 9��

(ii) For � 
 �,

"����
��9� � ����� "��
� 9��
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APPENDIX A. LOCAL ASYMPTOTIC TYPES

We briefly discuss the notion of local asymptotic type, i.e., asymptotic types at one singular expo-
nent � � � in (1.5). Moreover, we investigate an analogue of the boundary sesquilinear form in
this simpler situation, see (A.3). Most of the material is taken from WITT [17].

Let % be a Banach space, %� be its topological dual, and let � � � denote the dual pairing between
%� %�. Pick � � � . For notations like���%�, ���%�, %�, the right-shift operator � acting on
%�, � � �� � �� for � � %�, � � %��, and the identification ���%�

Æ
���%� �� %�, see

Section 1.3.

Let�fin
� �#�%�� be the space of germs of #�%�–valued finitely meromorphic functions & � � at

 � �, i.e.,

& � � �
&�

� � ���
�

&�
� � �����

� � � ��
&���
 � �

�
�
�	�

&�� � ���� (A.1)

where &�� &�� � � � � &��� � #�%� are finite-rank operators. Let �nor
� �#�%�� be the space of

germs of #�%�-valued normally meromorphic functions & � � at  � �, i.e., the space of finitely
meromorphic functions & � �, where, in addition, & � � for  �� � close to � is invertible and
&� � #�%� is a Fredholm operator.�nor

� �#�%�� is the group of invertible elements of the algebra
�fin

� �#�%��.

For & � ���#�%��, let � denote the space of all ���� ��� � � � � �
��� � %� such that

& � �

�
��

� � ��

�

��
� � ��
��

� � � ��
�
��
� � ��

�
� ���%��

Remark A.1. The theory can be developed for & ��fin
� �#�%�� upon an appropriate modification

of the definition of � . For & � �nor
� �#�%��, � is again an asymptotic type, and Propositions

A.4, A.5, and A.7 continue to hold in this case. See WITT [17].

Definition A.2. A local asymptotic type # � %� is a finite-dimensional linear subspace that is
invariant under the action of the right shift operator � . The set of all local asymptotic types is
denoted by $ �%�.

Note that � as acting on # is nilpotent. The characteristic ���� � � � ���� of � on # is called the
characteristic of the asymptotic type.

Proposition A.3. We have

$ �%� �
�
� 

�� & � ���#�%�� ��nor
� �#�%��

�
�

Proposition A.4. For & � ���#�%�� ��nor
� �#�%��, we have & � � ���#�%�� ��nor

� �#�%���.
Moreover, for each characteristic basis ��� � � � ��� of � , there exists a unique characteristic
basis ��� � � � ��� of � � such that

�
&��� �

�
�
�

��
��

�� ���� � ���

In particular, both asymptotic types � , � � have the same characteristic.

The next result is Keldysh’s formula, cf. KELDYSH [6], KOZLOV–MAZ’YA [8].

Proposition A.5. For ��� � � � ��� and ��� � � � ��� as in Proposition A.4,

& � ��� � ����� � � ��

�
� Æ�� � ���
� �:��� as  � �. (A.2)
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Remark A.6. Writing & � � as in (A.1), (A.2) can be rewritten as�
������
��	



&��

��
� � !���

�

�
� Æ�Æ�	

for � � � � �� � �, where summation is restricted to the range � � � � �� �, � � � � �� � �

and � �
�
�
��
� � �

��
� � � � � � �

��

���

	
, �� �

�
!
���
� � !

���
� � � � � � !

���

���

	
.

For & � ���#�%����nor
� �#�%��, we then consider the bilinear form � � � defined on the space

� � � � by

����� �� ������


& � ��� � ����� � ��

�
� (A.3)

Proposition A.7. Evaluated on the bases ��� for � � � � $, � � � � � � � of � and � ���

for � � � � $, � � � � �� � � of � � ,

�
� ��� �

���


 
�

�
� if � � �, � � � � � � �,

� otherwise.

Proof. This follows immediately from Proposition A.5. �

APPENDIX B. FUNCTION SPACES WITH ASYMPTOTICS

The maximal and minimal domains of cone-degenerate elliptic differential operators are cone
Sobolev spaces with asymptotics, as we are going to demonstrate now. We refer to SCHULZE [14,
15] for more on function spaces with asymptotics, where, however, asymptotics are observed on
so-called “half-open weight intervals,” a setting leading to Fréchet spaces. The present setting due
to LIU–WITT [11], where asymptotics are observed on “closed weight intervals,” provides a scale
of Hilbert spaces.

B.1. Weighted cone Sobolev spaces. Let ;�� � � #�� � �
'�
� �������� "� for  � � (or

subsets thereof) be the Mellin transformation, suitably extended to certain distribution classes.
Recall that

; � ����� � ���Æ"��� ���+����Æ � ��<��
��" �� (B.1)

is an isometry, where +! �� � � � 	 ��  � -� for - � �. Moreover,

;���

�
�������

�
� � �  #�� ��

;���

�
����

�
� � � #�� � ��� � � � �

The function

����� � 	� �� ;���

(
�����

�
)������ ���� � ��	�

)
�

where � � � , � � �� , � � ���� �, and )��� is a cut-off function, belongs to ���
as �� �.

Furthermore,

����� ��
��	�

� � �����
� ��� ����� ���

For �� Æ � �, the space %��Æ��� consists of all � � 4�
loc��

Æ� such that ;����)��� � �
��

loc

�
+�	
����Æ �4

��� �
	

and

�

�<�

�
���	����Æ

**=�� �;����)��� �
**�
"��� �

" ���

Here, =�� � � ���� � +�	
����Æ� is an order-reducing family, i.e., =�� � is parameter-dependent

elliptic and =�� � � 4������ � � 4���� � is invertible for all �� � �,  � +�	
����Æ . For
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instance, if �� � � ��
as�� � is elliptic and the line +�	
����Æ is free of poles of �� �, then

�� �
��
���	����Æ

is such an order-reduction.

B.2. Cone Sobolev spaces with asymptotics. The starting point is the following observation:

Theorem B.1 (LIU–WITT [11, Theorem 2.43]). Let �� Æ � � and . � ��Æ�� � be a proper
asymptotic type. Then there exists an elliptic Mellin symbol ��� � � � �

�
��� � such that the line

+�	
����Æ is free of poles of ��� � �
�� and, for �� �

�
��� � �� �� �� � � �

�
� � �!�� �� �, �Æ

��

represents the asymptotic type . .

Definition B.2. Let � 
 �, Æ � �, and . � ��Æ�� � be proper. Then the space � ��Æ� ��� consists of
all functions � � %��Æ��� such that ;����)��� � is meromorphic for ��  + �
����� Æ � �
with values in 4��� �,

��� � �;����)��� � � �
�
� � � 	 ��  + �
����� Æ � ������� �

	
�

where ��� � � is as in Theorem B.1, and

�,%
������

�

�<�

�
���	����Æ���

**��� � �;����)��� �
**�
"��� �

" ���

We list some properties of the spaces ���Æ� ���:

Proposition B.3. (a)
�
�
��Æ
� ���� � 
 �

�
is an interpolation scale of Hilbert spaces with respect

to the complex interpolation method.

(b) � ��Æ� ��� � %��Æ�����.

(c) We have

�
��Æ
� ��� � �

��Æ
� ���&

+
)���

�
�� �#�	
����Æ��

�
��	�
���

�����

�
��� ���� � �

���
	 �	�

���
���� � ��

���
� � � � � � �

���

���

� for some � � #
,
�

where the linear space # � �Æ� �� � represents the asymptotic type . , provided that

�� � �� �
����� Æ � �� � � *�

(d) � ��Æ� ��� � �
�� �Æ�

� � ��� if and only if � 
 ��, Æ � � 
 Æ� � ��, and . � . � up to the conormal
order Æ� � ��.

(e) ��� ��� ��
-
�	� �

��Æ
� ��� is dense in � ��Æ� ���.

Proposition B.4. The spaces � ��Æ� ��� are invariant under coordinate changes in the sense ex-
plained in Remark 2.4.

B.3. Mapping properties and elliptic regularity. Here we are concerned with the regularity and
asymptotics of solutions � to the equation

����� � ���� on �Æ� (B.2)

where � � 	
��cone��� is elliptic. Assuming � � � ��Æ ��� and � � �
��Æ
$ ���, where � 
 � and

> � ��Æ�� �, we are going to show that � � �
����Æ
� ��� for some resulting . � ��Æ�� �. By

interior elliptic regularity, we already know that � � 4���
loc ��Æ�. So we are left with the behavior

of � � ���� as �� �� .

Let . Æ
� be the asymptotic type represented by �Æ�. Similarly, let . Æ����

� � . Æ
� be the asymptotic

type represented by �Æ����� . Then . Æ����
� is the largest asymptotic type that coincides with the
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empty asymptotic type, �, up to the conormal order Æ �  � �. Note that, for each . � ��Æ�� �
satisfying . � . Æ

� up to the conormal order Æ � , there is a > � ��Æ�� � such that

� � � ����Æ� ���� �
��Æ
$ ���

for all � 
 �. The minimal such > � ��Æ�� � is denoted by >Æ�. ���. In particular, >Æ�.���� �
>Æ����� � �.

The question raised for equation (B.2) is answered by the next result:

Proposition B.5. Let � � 	
��cone��� be elliptic. Then:

(a) The map�
. � ��Æ�� � � . � . Æ

�� . coincides with .Æ
� up to

the conormal order Æ � 
�
� ��Æ�� �� . � >Æ�. ��� (B.3)

is an order-preserving bijection.

(b) For any solution � to (B.2), � � � ��Æ ��� and � � � ��Æ$ ��� implies � � � ����Æ
� Æ �$���

���, where

> � . Æ�>��� is the inverse to (B.3).

Note that >Æ�. Æ�>������ � >. Therefore, . � . Æ�>Æ�. ������ is a hull operation. Note
also that both maps . � >Æ�. ��� and > � . Æ�>��� to (B.3) can be computed purely on the
level of the complete conormal symbols ������ ���� �� � � ���.

Theorem B.6. Let � � 	
��cone��� be elliptic. Then

���max� � �
��Æ

� Æ
�

���� ���min� � �
��Æ

� Æ����
�

���� (B.4)

In particular,

���max�
Æ
���min� �� �Æ�

Æ
�Æ����� � (B.5)

Proof. (B.4) is a consequence of elliptic regularity, while (B.5) follows from the description given
in Proposition B.3 (c) and interpolation. �
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