GREEN FORMULAE FOR CONE DIFFERENTIAL OPERATORS

INGOWITT

ABSTRACT. Greenformulaefor elliptic conedifferential operators are established. Thisisachieved
by an accurate description of the maximal domain of an elliptic cone differential operator and its
formal adjoint; thereby utilizing the concept of a discrete asymptotic type. From this description,
the singular coefficients replacing the boundary tracesin classical Green formulas are deduced.
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1. INTRODUCTION

1.1. Themainresult. Let X beacompact C>°—manifold with non-empty boundary, X . Onthe
interior X° := X \ 09X, we consider differential operators A which on U \ dX for some collar
neighborhood U = [0,1) x Y of X, with coordinates (¢,y) and Y being diffeomorphic to 0.X,
take the form

N
A=t "aj(t,y, Dy)(—td), (1.1)
j=0

where a; € C>([0,1); Diff*~7(Y’)) for 0 < j < p. Such differential operators A are called
cone-degenerate, or being of Fuchs type; written as A € Diffy,,o(X). They arise, e.g., when polar
coordinates are introduced near a conical point.
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2 INGOWITT

Throughout, we shall fix some reference weight § € R. This means that we will be working
in the weighted L?—space H’ (X) as basic function space, cf. (1.12) and also Appendix B. Let
A* € Difft,o(X) betheformal adjoint to A4, i.e,

(Au,v) = (u, A*0), u, v € Cgn,(X°), 1.2

where ( , ) denotes the scalar product in H? (X). Then it is customary to consider the maximal
and minimal domains of A,

D(Ama) = {u € H (X) | Au € H™(X)},

and D(Amin) is the closure of Cg5,,(X°) in D(Amax) with respect to the graph norm. Similarly
for D(A;‘nax)v D( ;‘nin)-
Our basic object of study is the boundary sesquilinear form

[u,v]4 := (Au,v) — (v, A*v), © € D(Amax), v € D(Ana)- (1.3

By virtue of (1.2), [u,v]4 = 0if u € D(Amin) Orv € D(Ar;,,). Therefore, the boundary sesquilin-
ear form [ , ] 4 descents to a sesquilinear form

[ ]a: D(Amax)/ D(Amin) X D(Afa)/D(Afin) = C, (14
denoted in the same manner.

Our basic task consists in computing (1.4). The result will be called a Green formula in analogy
to the classical situation arising in mathematical analysis. Assuming dlipticity for A, cf. Defini-
tion 3.1, what we will actually do isto compute the value of | , |4 on distinguished linear bases of
The starting point is as follows: Assuming ellipticity for A, any solution v = u(z) to the equation
Au = f(x) on X° possesses an asymptotic expansion
-1k
u(z) ~ SN % tPlogkt ¢ (y) ast — +0, (15)
P k+l=mp—1

where the set {p € C|m, > 1} isdiscrete, Rep — —oo as|p| — oo on this set, and ¢§”) €

C>(Y) for al p, [, provided that the right-hand side f possesses a similar expansion. Introduce
the linear operator T' acting on the space of al formal asymptotic expansions of the form (1.5) by

Z Z (_l)kt—plo kt¢(p)( s (_l)kt—pl kg pP) 16
gt g Y, Y e M (). (16)
P k+Hl=mp—1 ) P k+l=m,—2 )
Aswill be seen,
e the quotient D (Amax) /D (Amin) isfinite-dimensional,

e it consists of finite sumsof the form (1.5), wheredim X /2—d—u < Rep < dim X/2 -4,
e itisleft invariant under the action of T.

In particular, T' as acting on D(Amax) / D (Amin) is nilpotent. Similarly for D(Af.) /D (Afin)-

min

Theorem 1.1. Let A € Diff,o(X) beeliptic. Then, to each Jordan basis

O, Tdy,..., T™ '0y,... 0, TD,,..., T '3, (1.7
of D(Amax)/D(Amin), there exists a unique Jordan basis

U, TO,..., T™ Ny, T, T, ..., T, (1.8)
of D(Afa) /D (Afn) such that, for all 4, 4, k, I,

(=15t ifi=4,r+s=m; — 1,

1.9
0 otherwise. (1.9)

[T"®;, T°V |4 = {
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Corollary 1.2. (a) Both spaces D(Amax) /D (Amin) and D(Aja)/D(A%,) have the same Jordan
structure (with respect to 7).

(b) The sesquilinear form [ , ]4 in (1.4) is non-degenerate.
(c) The operator T' is skew-adjoint with respect to | , |4, i.€,

[T®, ¥]q + [®,T¥]4 =0 (1.10)
for al ® € D(Ama)/D(Amin), ¥ € D(Aja)/D(A

:%in)-

Remark 1.3. Theconjugate Jordan basis Uy, T+, ..., T™ 10y, ..., ¥, TV,,..., T™ ¥, in

(1.8) can befound, at least in principal, once one controlsthefirst ;. conormal symbolsd' 7 (A4)(z)

forj = 0,1,...,u — 1 of A, see (3.1). More precisely, let {t #*(2); k € Ny } be the inverse
to the complete conormal symbol {a’c‘_j (2); 7 € Ny } of A under the Mellin translation product,
see (3.5). In particular, € #~*(z) for k = 0,1,2,... is a meromorphic function on C taking
valuesin the space L (Y") of classical pseudodifferential operators of order — onY. Then the
Jordan basis in (1.8) can be computed from the Jordan basis in (1.7) and the principal parts of the
Laurent expansions of t #~*(z + 1) around the polesinthe strip dim X/2 — § — p+k < Rez <

dimX/2 —-6fork=0,1,...,u — 1, see Theorem 4.1.

1.2. Description of the content. In Section 2, we discuss discrete asymptotic types for conor-
mal asymptotics of the form (1.5). The central notions are properness of an asymptotic type and
complete characteristic bases for proper asymptotic types. In Section 3, we study complete Mellin
symbols that form an agebra unter the Mellin trandation product. Here, the main result due to
Liu-WITT [11] states that the type for the asymptotics annihilated by an €elliptic, holomorphic
complete Méellin symbol is proper; thus linking to cone differential operators, cf. Theorem 3.10.
Then in Theorem 4.1, in Section 4, we establish a formula for the principal parts of the Laurent
expansions around the poles of the inverses to holomorphic complete Méellin symbols under the
Méllin trangdation product. This formula involves a complete characteristic basis and its conju-
gate complete characteristic basis, similar to the situation arising in Theorem 1.1. In fact, Theo-
rem 4.1 is one of the two main technical results of this paper from which Theorem 1.1 is easily
deduced. The other one is Theorem 5.1 in Section 5, where certain “bi-orthogonality” relations
between the two complete characteristic bases of Theorem 4.1 are established. Theorem 1.1 is
proved in Section 6. We start with aformula for the boundary sesquilinear form [ , J4 taken from

GIL-MENDOZA [3], cf. Theorem 6.1. The proof of Theorem 1.1 then consists in evaluating this
formula, where the latter basically means to “take the residue” of the formula from Theorem 5.1.

In Section 7, we discuss two examples showing how one can proceed from the “Green for-
mula’ (1.9) to genuine Green formulas in concrete situations. The two appendices are not manda-
tory for the main text, but improve understanding. In Appendix A, we are concerned with local
asymptotic types, i.e., asymptotic types at some fixed singular exponent p from (1.5). Already
here, all the ingredients from the main text of the paper occur in embryonic form. For instance, the
forerunner of Theorem 5.1 isafamous formula due to KELDY SH [6], see Remark 5.2 (b). An ana
logue of the boundary sesquilinear form [ , |4 is aso provided, cf. (A.3) and Proposition A.4. In
Appendix B, we describe D (Amax), D(Amin) as function spaces with asymptotics. Among others,
this gives a concise way of identifying the quotient D(Amax)/D(Amm).

L et us mention some related work: Green formulae have been under investigation for along period,
see, e.g., CODDINGTON-LEVINSON [1] for O.D.E. and LIONS—MAGENES [10] for PD.E. For

singular situations, see, e.g., NAZAROV—PLAMENEVSK1J [12]. Our approach to cone-degenerate
differential operatorsis built upon work of ScHULzE [14, 15]. For instance, the fact that the quo-
tient D (Amax) /D (Amin) is finite-dimensional and consists of formal asymptotic expansions of fi-
nite length isan easy consequence, see al'so LESCH [9, Section 1.3]. Recently, GIL—MENDOZA [3]

received results similar to ours. Without reaching the final formula (1.9), they studied much of the
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structure of the boundary sesquilinear form (1.4). In case A is symmetric, they applied their re-
sults to describe the self-adjoint extensions of A. Keldysh's formula was thoroughly discussed in
KozLov-MAZ’ YA [8, Appendix A].

1.3. Notation. Notation introduced here will be used without further comments.

e Scalar products on L?(Y') are given by

($19) : /¢ duly), () /¢ (v), (111)

where dy isafixed positive C°°—density dy, on'Y . For an operator A on C*°(Y'), itsformal adjoint
A* isdefined with respect to the scalar product ( , ), while the transpose 4 is defined with respect
to(, ). In particular,

Arp=Alg, e C®(Y).
For u, v € H' (X supported in the collar neighborhood U of 0X,
(o) = [N T dedu(y), (112
(0,1)xY
cf. (1.2), (1.3). There should be no ambiguity of usage the same symbol ( , ) in the two different

situations (1.11), (1.12).

e Let J be afinite-dimensional linear space and T' be a nilpotent operator acting on J. Then
®q,...,D, iscaled acharacteristic basis of J (with respect to T', where the | atter is often under-
stood from the context) if

O, Tdy,..., T™ '0,...,0,,TD,,..., T™ '3, (1.13)
for certain integers my,...,m, > 1 form alinear basis of .J. The matrix of T" with respect to
such a linear basis has Jordan form. Therefore, a characteristic basis @i, ..., ®. aways exists,
the integers my, ..., m, are uniquely determined (up to permutation) and equal the sizes of the
Jordan blocks, and e is the number of the Jordan blocks. The tuple (rm,...,m,.) is cdled the
characteristic of .J (or of the characteristic basis @y, . .., ®,.).

e Let F be ether the space C*°(Y") (in Section 2) or a Banach space (in Appendix A). Then
E> := J,,en E™ denotes the space of finite sequences in E, where we identify F" as linear
subspace of E™*! through the map (¢o, ..., ¢m—1) — (0, ¢o, ..., dm_1), 1., by adding alead-
ing zero. For & € £, let m(®) betheleast integer m so that & € E™. Theright shift operator T
sending (o, ¢1, - - - » Pm_1) 10 (G0, 1, - - -, dm_2) actson E*. In particular, T"(®) & = 0, while
Ti® #0for0 <i <m(®)—1.(Incase E = C®(Y), the operator T is directly related to the
operator T'in (1.6), see Remark 2.2.)

e For £ asabove, p € C, let M,(F) be the space of germs E-valued meromorphic functions
and A, (E) be the space of germs of E—valued holomorphic functions at =z = p. We identify the
quotient M, (E) / A,(E) with the space E* through the map

(z jszg)m - (Z _q;l)m—l ’ + ¢m L ((,250,(,251, .. 'a¢m—1)-

Then T corresponds to multiplication by z — p. For F € My(E), let [F(z)], denote the principal
partof F(z)a z = p. For ® = (¢o, b1, ..., Im-1) € B>, weset

Po $1 bm-—1

Plz — = —+ 44

R P L P e

e Nowlet B = C>®(Y).For ¢, p € C(Y), let ¢ ® 1) be the rank-one operator C*°(Y') 5 h —

(h,¥)p € C*(Y). More generaly, for F, G € M,(C*>(Y)), we introduce the meromorphic
operator family F'(z) ® G(z) by

F(2) ® G(z)h = (h,G(2))F(2), heC®(Y),

€ M,(E).
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where (h, G(2)) = (h,G(z)) and G(z) := G(2). For @, ¥ € [C*°(Y)]*, we further set

(@ ®¥)[z —p]
_ %0 ®%o ¢0®¢1+¢1®7/}0+“‘¢0®7/}m—1+"'+¢m—1®7/}0, (1.14)
(z —p)™ (z —p)m~! Z—=p
where ® = (¢g, ..., dm-1), ¥ = (%o, ..., ¥m—1). In particular,
(@®U)[z—p] = (z —p)" [2[z — p] ® ¥[z —p]] , (115)

where m = max{m/(®), m(¥)}.

e If £ isaBanach space, then we use the same notation, but with ( , ) replaced by the dual pairing
(, ) between E and E'. Thisis due to the circumstance that in this situation we are working with
the dual instead of the anti-dual to E. In particular, ¢ ® ¢ for ¢ € E, 1) € E means the rank-one
operator £ 5 h — (h,9)¢ € E, while (1.14), (1.15) are formally unchanged.

e On[C*°(Y)]>, weintroduce three commuting involutions by

Co := (&07 @1, ey ngf% szfl)a
I®:= ((=1)"¢o, (=1)" "1, -2, ~Pm-1),
TP = ((=1)" g0, (=1)" " b, b2, — 1),

where ® = (o, b1,-.-, Pm—2,Pm-1). Notethat I = CJ, TC = CT, IT + TI = 0, and
JT+TJ =0.

e The cut-off function w € ngmp(@g satisfiesw(t) = 1ift <1/2, w(t) = 0if ¢t > 1. Itisused
to localize into the collar neighborhood U =2 [0,1) x Y of 0X.

2. DISCRETE ASYMPTOTIC TYPES

The notion of discrete asymptotic type for conormal cone asymptotics goes back to REMPEL—
SCHULZE [13] inthe one-dimensional and SCHUL zE [14] in the higher-dimensional case. It allows
to integrate asymptotic information into a functional-analytic setting, cf. also Appendix B. The
refinements of this notion presented here are due to LIu-WITT [11].

2.1. Preliminaries. Let C&f”‘s(X) be the space of al v € C°°(X°) possessing an asymptotic
expansion asin (1.5), asz — 0X, where, additionally, Rep < dim X /2 — ¢ if m, > 1. Moreover,
let C (X)) bethe spaceof al u € C°°(X*°) vanishing to theinfinite order on 9.X (i.e., ¢z(p) (y)=0
for al p, 'in (1.5)).

Henceforth, we shall fix asplitting U \ 0X = (0,1) x Y, z — (¢, y) of coordinates near 0X. It
turns out, however, that our constructions are independent of this chosen splitting of coordinates,
cf. Remarks 2.2, 2.4, and 2.10 and Proposition B.4.

Definition 2.1. (&) A discrete subset V' C C iscalled acarrier of asymptoticsif | Re p| — oo on
V as|p| — oo. For § € R, wewrite V € € if, in addition, V C {z € C; Rez < dim X/2 — §}.

(b) For V € C°, we define Eé(Y) to be the space of al mappings ®: C — [C*(Y")]> satisfying
{p € C|®(p) # 0} C V.Inpaticular, &)(Y) = [,c [C®(Y)]5°, where [C>(Y)]5° is an
isomorphic copy of [C>°(Y)]*°. Moreover, we set £2(Y) := Uy ces EX(Y).

The operations 7', C, I, and J are point-wise defined on £ (Y"), cf. Section 1.3. For instance,
Td(p) = T(®(p)) for & € £2(Y), p € C. We aso write mP () instead of m (P (p)).
We next provide an isomorphism

CR(X)/CE(X) = £(Y) (22)
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that isnon-canonical in the sense that it depends on the choice of splitting of coordinates near 9.X :
With the vector @ € &) (Y), where ®(p) = (¢(()”), ceey gzsfﬁifl) for p € V', we associate the formal
asymptotic expansion

(=* _ k4 4(P)
x)wz Z Tt Plog"t ¢, (y) ast — +0,

pEV k+l=mp—1
see (1.5). (To see that (2.1) is surjective needs to invoke a Borel-type argument.)

Remark 2.2. The operator T' acting on the quotient G§’5(X)/080(X), asintroduced in (1.6), is
well-defined, i.e., it isindependent of the chosen splitting of coordinates near 0 X. Moreover, the
isomorphism (2.1) intertwines this operator and the right-shift operator 7' acting on & (Y').

We need some further notation: For ® € £ (Y"), we introduce

c-ord(®) := dim X /2 — max{Re p; ®(p) # 0}
(the “conormal order” of ® understood in an I?-sense). Note that c-ord(®) > § if & € £(Y),
and c-ord(T*®) — oo as k — oo. Note aso that, for &; € £°(Y), oy € Cfori = 1,2,...
satisfying c-ord(®;) — oo asi — oo, the series Y°2°, «;®; is explained in £2(Y') in a natural
fashion. In particular,

o0
Zai®i20 <— cordZaz — 00 857y — 00.

Furthermore, ® € £°(Y) is caled aspeC|aI vector if @ € & _ (V) for somep € C. If @ # 0,
then p is uniquely determined by ® and the additional requirement that ®(p) # 0. This complex
number p is denoted by v(®).

2.2. Definition of discrete asymptoatic types. Discrete asymptotic types are certain linear sub-
space of the space CX° (X)) /C& (X)) of al formal asymptotic expansions.

Definition 2.3. A discrete asymptotic type, P, for conormal cone asymptotics as x — 90X, of
conormal order at least 4, is a linear subspace of C&f’ / )/ C& (X) that is represented, in the
given splitting U \ 0X = (0,1) x Y, z — (¢, y) of coordi nates near 8X through the isomorphism
(2.1) by alinear subspace J C &} (Y) for some V' € C° satisfying the following conditions;

()T.J CJ.
(i) dim JoH < oo forall j € Ny, where JO := J/(J N EY (Y)) for &' > 6.

(iii) Thereisasequence {p;; 1 < j < e+ 1} C C, wheree € Ny U {oo}, such that Rep; <
dim X/2 — ¢ foral ¢, Rep; » —c asi — o ife =00,V C Ui_{pi} - No, and

J= @(Jmﬁ ).

The empty asymptotic type, O, is represented by the trivial subspace {0} ¢ & (Y'). The set of all
asymptotic types of conormal order at least § is denoted by As)(Y').

Remark 2.4. It can be shown that this notion of discrete asymptotic typeisindependent of the split-
ting of coordinates near 0.X . The latter means that changing coordinates P C C&f”‘s(X )/CF (X

is represented by another linear subspace J C &9, (Y) for some V! € (° that also satisfies
(i) to (iii) of Definition 2.3.

Let P, P’ € As’ berepresented by J, J' C £9(Y), respectively. For & > §, wesay that P, P’
coincide up to the conormal order § if J% = .J'% as subspaces of £ (Y /8‘5' ). Similarly, for
d' > 4, we say that P, P’ coincide up to the conormal order & — 0 |f P, P' coincide up to the
conormal order &' —eforal 0 <e <§ — 6.
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It isimportant to observe that the set As’(X) of asymptotic typesis partially ordered by inclusion

of the representing spaces. This partia order on As‘s(X ) will be denoted by <. One of the fun-

damental principles in constructing asymptotic types obeying certain prescribed properties ensues
from the following:

Proposition 2.5. (As’(X), <) is a lattice with the property that each non-empty subset (resp.
each bounded subset) possesses a greatest lower bound (resp. a least upper bound).

As example, consider P € As® and let ' > 4. Then let P* < P denote the largest asymptotic
type that coincides with the empty asymptotic type, O, up to the conormal order §. Similarly, for
&' > §,let P~ < P denote the largest asymptotic type that coincides with the empty asymptotic
type up to the conormal order & — 0. Of course, in this situation it is easy to provide representing
spaces for PY and P% —0, respectively, but in more involved situations such a task might be not
that simple.

Remark 2.6. There is an abstract concept of introducing asymptotic types if a unital algebra 9t
acting on some linear space § “modulo a distinguished linear subspace § in the image” is given.
Inour case, M = ez, Symbh, (V) is the algebra of complete Mellin symbols, cf. Section 3,

F = CX°(X), and Fo = CX(X). See WITT [18].

2.3. Proper discrete asymptotic types. Here we investigate properties of linear subspaces J C
Sé(Y) satisfying (i) to (iii) of Definition 2.3.

Proposition 2.7. Let J C &%(Y) be a linear subspace for some V € €. Then there are an
e € Ny U {oo} and a sequence {®;; 1 < i < e+ 1} of special vectors satisfying c-ord(®;) — oo
asi — oo if e = oo such that the vectors T#®; for 1 < i < e+ 1, k € Ny span the space .J if and
only if (i) to (iii) of Definition 2.3 are fulfilled.

For the rest of this section, assume that J C E{Z(Y) is a linear subspace satisfying (i) to (iii)
of Definition 2.3. Let TL;: J — JO+J be the canonical surjection. For 7 > j, there is a natural
surjective map Il : Jo+7" — Jo+i such that I1;;» = I1;; 11,1 for §” > j' > j and

(J,11) = Lim (J+, Tl;).
Note that 7': JotJ — J°t7 is nilpotent, where the operator 7" is induced by 7': J — J. Let

(mi,...,ml;) bethe characteristic of J*+/, cf. (1.13) and theresfter.

The sequence {®;; 1 < i < e+ 1} C J issaid to be a characteristic basis of .J if there are
numbers m; € Ny U {oo}, m; > 1, such that 7™i®; = 0 if m; < oo, while the sequence
{TF®;; 1 <i<e+1,0<k<m;}formsabasisof J.

Proposition 2.8. Let J C &)(Y) be alinear subspace as above and assume that {®;; 1 < i <
e + 1} isacharacteristic basis of .J. Then the following conditions are equivalent:

(a) For each 7, {II; @4, ... ,Hj'i)ifj} isa characteristic basis of Jo+7.

(b) For each j, T™ 1, . .. ,Tmef’l'@ej arelinearly independent over the space £7(Y'), while
Tk®; € £99(Y), whereeither 1 < i < ej, k > m] or i > e;.

If these conditions hold, then the numbering within the tuples (m{, e ,ij) can be chosen in
such a way that, for each j > 1, there isa characteristic basis @{, ey @éj of Jo*7 such that, for
al j' > 4,

V) . ) .
0 |f€]+1§7,§6j/,
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Furthermore, the scheme

m{ m% my my
£1 TOWS SERRER R ERREEE i
me, Mg, my, My,

ep — e1 rTOwWsS 9 3 4 o
mg, my, Mg, - (2.2
4
meg-l—l meg—i—l
63 — e9 FOWS SEPRRRLEES e
my, M,

where in the jth column the characteristic of the space 17 appears, is uniquely determined up
to permutation of the £th and the ¥'th row, wheree; + 1 < k, k' < e;,1 for some j (ep = 0).

Definition 2.9. An asymptotic type P is said to be proper if its representing space J possesses
a characteristic basis {®;; 1 < i < e + 1} consisting of special vectors that fulfill the equiv-

aent conditions of Proposition 2.8. If the tuples (m], . .. ,méj) are re-ordered according to this
proposition, then the sequence
{(’y('i)i);mgi,mgiJrl,mgiJrQ,...); 1 §i<e+1} (2.3)

is called the characteristic of P.

Remark 2.10. The characteristic of a proper asymptotic type P € As’(Y) isindependent of the
splitting of coordinates near 9.X .

An asymptatic type need not be proper. For an example, see LIU-WITT [11, Example 2.23].
However, we have the following result, which will be generalized in Theorem 3.10 below:

Theorem 2.11. Let A € Diff%, (X)) be an eliptic cone-degenerate differential operator. Then
{ue CE(X) | Aue CF(X)}/CF(X) (2.9)
isa proper asymptotic type.

3. THE ALGEBRA OF COMPLETE MELLIN SYMBOLS

We study the algebra of complete Mellin symbols under the Mellin translation product. Further-
more, we introduce the important notion of a complete characteristic basis for the asymptotics
annihilated by a holomorphic complete Mellin symbol.

3.1. Cone differential operators. Recall that we have fixed a splitting of coordinates U —
0,1) x Y, z — (t,y) near 90X, U being a collar neighborhood of 9X. Let (,n) be the co-
variables to (¢,y). The compressed covariable ¢7 to ¢ is denoted by 7, i.e,, (7,7) is the linear
variable in the fiber of the compressed cotangent bundleT*U .
For A € Diff%, .(X) asgiven in (1.1), we denote by af‘/}(A) its principal symbol, by 5{;(14) its
compressed principal symbol defined on7*U by

ol (A)(t,y, 7o) = 1L (A)(t g, tmm),  (ty,7,m) € TH(U \ 8X) \ 0,
and by o7 (A)(z) for j = 0,1,2, ... its jth conormal symbol,

p .
. 1 &a
TI(A)(2) = :ﬁ a—tjk(O,y,Dy)zk, zeC. (3.1)
k=0""



GREEN FORMULAE FOR CONE DIFFERENTIAL OPERATORS 9

&Z(A)(t,y,%,n) issmooth upto ¢ = 0 and o2 7 (z) for j = 0,1,2, ... isaholomorphic function
in z taking values in Diff* (V).
Furthermore, if A € Difft .(X), B € Diff%,,.(X), then AB € Diff£;t%(X) and
ot AB)(2) = Y ot I(A)(z+v — K)ol F(B)(2)
k=l
forl =0,1,2,... Thisformulais caled the Mellin translation product.

Definition 3.1. (a) The operator A € Diffh,.(X) is caled dliptic if A isan elliptic differential
operator on X° and

(At y, 7,m) #0,  (t,y,7,m) € T*U\ 0. (3.2)
(b) The operator A € Diffh,.(X) iscalled dliptic with respect to the weight § € R if Aiselliptic
in the sense of (&) and, in addition,

ol (A)(z): H*(Y) - H**(Y), Rez=dimX/2 -4, (3.3
isinvertible for some s € R (and then for al s € R).
Proposition 3.2. If A € Difff,,o(X) isdliptic, then the set

{z € C| o (A)(2) regarded as operator in (3.3) isnot invertible}

isacarrier of asymptotics. In particular, thereisa discrete set D C R such that A iselliptic with
respect to the weight J for all § € R\ D.

3.2. Meromorphic Méllin symbols. We consider the class of meromorphic operator-valued
functions arising in point-wise inverting elliptic conormal symbols &' (A)(z). For further details,
see SCHULZE [15].

Definition 3.3. For u € Z U {—o0}, the space M&s(Y') of Mellin symbols of order 1 is defined as
follows:

(a) The space M, (Y') of holomorphic Mellin symbols of order 1 isthe space of all If; (Y )—valued
holomorphic functions m(z) on C such that m(z)\z:ﬂHT € LL(Y;R;) uniformly in 8 € [5y, B1],
where —oo < fy < 1 < 00.

(b) Mz>*(Y) is the space of al meromorphic functions m(z) on C taking values in L>°(Y)
satisfying the following conditions:

(i) The Laurent expansion around each pole z = p of m(z) hasthe form

mp m my—1 ;
m(z) = + +oo +» myyi(z—p), (3.9
&= Gy G e T e
where mg, my,...,m,_; € L™°(Y) arefinite-rank operators.
(i) If the poles of m(z) are numbered in a certain way, pi, p2,ps, ..., then |Rep;| — oo as

j — oo if the number of polesisinfinite.

(iii) For any function x(z) € C*°(C) such that x(z) = 0 if dist(z, U,;{p;}) < 1/2and x(2) =1
if dist(z,U,{p;}) > 1, we have x(z)m(2)| € L=°(Y;R,) uniformly in 3 € [, B1],
where —oo < By < 1 < oo.

(c) We eventually set Mas(Y) := MU(Y) + M2 (Y).

z2=p+iT

Writem € M&(Y) for p € Z asm(z) = mg(z) +my(2), wheremg € MY (Y), my € M2 (Y).
Then the (parameter-dependent) principal symbol of; (m(z)|,_ 5 Lin) € SE{L)((T*Y xR;)\0)is
independent of the choice of the decomposition of m(z) and also independent of 5 € R.

Definition 3.4. m € M&(Y) for p € Z iscaled dliptic if a{Z(mO(z)\ # 0 everywhere.

z:ﬁ+i’r)
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Proposition 3.5. (&) U,z Mbs(Y) isafiltered algebra with respect to the point-wise product as
multiplication.

(b) m € Mks(Y) isinvertible within this algebra, i.e., with its inverse belonging to M (Y), if
and only if m(z) iselliptic.

We further introduce the algebra Symb;, (Y") of complete Mellin symbols.

Definition 3.6. For u € Z U {—oo}, the space Symb/;,(Y') consists of all sequences & =
{s"7(2); j € No} C MAs(Y'). Moreover, an element # € Symb, (Y) is called holomorphic if
Gt = {st77(z);5 e Ng} C Mis(Y).

Proposition 3.7. (a) UueZ Symbh,(Y) is a filtered algebra with involution with respect to the
following operations:

(i) The Méllin translation product & oy; ¥ = {ut~!(2); I € Ng} € Symbh,”(Y) for G+ =
{s"77(2); j € No} € Symbh,(Y), TV = {t"7F(2); k € Ng} € Symb’,(Y), where

Wl z) = Y ezt r—k)ETRz), 1=0,1,2,..., (3.5)

jAk=1

as multiplication.
(i) The operation (G#)*M = {t#77(z); j € Ng} € Symbh,(Y) for &* = {577 (2); j e Ny} €
Symbh, (Y'), where

"I (z) = (dim X —20 —zZ —p+75)*, 7=0,1,2,..., (3.6)
asinvolution.
(b) The complete Mellin symbol {~7(z); j € Ny} € Symb',(Y') isinvertible within the filtered

algebra |, Symby,(Y), i.e, with its inverse belonging to Symby/(Y'), if and only if ¢(z) is
dliptic in the sense of Definition 3.4.

(c) The map
U Diﬁgone(X) - U Symb’](/[(Y), A {Ug_j (A)§ J € No}a (3.7)
1ENp WEZ

isa homomor phism of filtered algebras with involution.

3.3. The space L‘é“. For a complete Mellin symbol &#, we introduce a special notation for
the representing space of the “asymptotics annihilated” by &*. We actualy restrict ourselves to
holomorphic complete Méellin symbol (although the definition can be generalized to meromorphic
complete Mellin symbol by taking into account the possible “production of asymptotics,” cf. Liu—
WITT [11]). The reason for that is that Theorem 3.10, in general, fails to hold without assuming
holomorphy.
Definition 3.8. Let &* € Symbh,(Y) be holomorphic. Then the linear space I, C £°(Y) is
spanned by all special vectors ® € £ (Y) satisfying
Y ROz —p+1] € A (CP(Y)) (398

j+k=l

fori =0,1,2,...,wherep = v(®).

We a'so introduce a notation for the expression occuring on the left-hand side of (3.8):
©1(P)[2] = ©:1(®;6")[z] == Y " Tz +k)B(p — )z —p +1] (3.9)

k=
Proposition 3.9. For A4 € Difft,,(Y), the subspace of C5" (V) /C%(X) from (2.4) is repre-
sented by the linear space L%, where &* = {o£77(2); j € Ny }.
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In this situation we sometimes write L), instead of L%,,.
Generalizing Theorem 2.11, we have:

Theorem 3.10 (LIu-WITT [11, Theorem 2.31]). For an elliptic, holomorphic & € Symb¥ (Y,
LY. represents a proper asymptotic type.
We al'so need:
Lemma 3.11. The adjoint relation to (3.8),
Yo RV — )z — g+ 1] € A1 (C%(Y)),

k=l
where ®R* € Symbh, (V) isasin (3.6), is equivalent to
Y ) TU(g— )z —p 1] € A u(CP(Y)), (3.10)
k=l

whereqg =dim X — 20 — p — p.

3.4. Complete characteristic bases. The control of asymptotics of the form (1.5), of conor-
mal order at least 4, is equivalent to the control of the conormal symbols &' 7 (A)(z) for j =
0,1,2,... inthe half-spaces Re z < dim X/2 — § — j. We now investigate what is going on as
6 — —oo.

Let

Ey) =] &), (3.12)
dER

and Lgu = Jsep L, for aholomorphic & € Symbh, (V).

Definition 3.12. A complete characteristic basis of Lg. isthe inductive limit
lim <{‘I’g; h eI’} 76'5)

of the following inductive system:

(@ For each 6 € R, {®);h € I° is a characteristic basis of L%, of characteristic
(y(®); mI® mdn 10 ) satisfying conditions (&), (b) of Proposition 2.8.

(b) Foral 6 > &, 755: Z° — Z% isan injection such that, for any h € 27,
(i) 7(®2)) = 7(®)) + a for some a € Ny,

jhl+a—1,5’

(ii) ®0 = 7™ o7,

where ' = 755(h) (aswell as 7515 = T5u5 755 for 6 > &' > 6".)

We write Z := lim (Z°, 755) withinjections 75: Z° — T (such that 75 = 75755 for § > ¢') and
{®n; h € I} = lim (*@’2; h e IJ},T(M) :

where each @, for h € T isthe collection {®?;} with h = {Ar’}.

The proof of (a) in the next proposition relies on the finite-dimensionality of the spaces ./ *7:

Proposition 3.13. (a) For each holomorphic & € Symb,(Y), Lgu possesses a complete char-
acteristic basis.

(b) For any complete characteristic basis {®,; h € 7} of Lg, the expression

TmpH(q)h)(I)h(p) — TmPﬂ(@i(;)q)gg (p),
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wherep € C, 1 € Ny, b’ = 75(h), and § is chosen in such a way that
§ < max{min{s' € R | 7(®?5) — Rep € Ny },dim X/2 — (Rep+1)},

is well-defined. (If thereisno & such that v(®);) — Rep € Ny, then T (@)@, (p) == 0.)

4. SINGULARITY STRUCTURE OF INVERSES

Inthe sequel, let &* = {s"77(2); 5 € Ny} € Symb#(Y') be holomorphic and elliptic. Theinverse
to G+ will then bedenoted by T+ = {t #*(2); k € Ny} € Symb,/'(Y), cf. Proposition 3.7 (b).
In particular,

Yo Tz )z k) = duid, 1=0,1,2,...
k=

Before stating Theorems 4.1 and 5.1, we simplify the situation to be considered in their proofs.
Due to the facts that

e in the process of inverting G* with respect to the Mellin trandation product, the * produc-
tion of singularities” of t#~7(z+ ) atz = pand t #~7' (2 4 1) at z = p/, respectively,
influences each other only if p — ¢ € Z,

e control onthesingularity structure of £ #~7(z+u) inthe half spacesRe z < dim X/2—§
for each § € R provides control on the singularity structure of £#~7(z + 1) in the whole
of C,

we are alowed to assume the following model situation: The complete characteristic basis of Igw
under consideration consists of specia vectors @, for 1 < i < e + 1, wheree € Ny U {00},
v(®1) = p, and

V(@) =p—1I, e+1<i<eq (4.1)

Then0 =ep <e; <ey < ... ande =max{e |l € Ny }. When referring to this model situation,
we denote

mé“ = mP (D).

Theorem 4.1. Let S* € Symb¥ (Y") be holomorphic, elliptic. Then, for each complete character-
istic basis {®;,; h € T} of Lgk, there is a unique complete characteristic basis {U,«; h* € 7%}
of Ly, Where R* is given by (3.6), and a bijection 7*: Z — Z* such that, for all p € C and
i=0,1,2,...,

[+ ], = T e — ) @ T T ()] - (42)
h

where g = dim X — 26 — p — i, h* = 7*(h), m?! = mPt1(®,,), and mI T = matitl(w,.).

Proof. We assume the model situation (4.1).

Step 1. The elements @ of Lgu (= LY &) are given by the relations

I
D(p-Dlz—p+1 =Y [(" e )] (4.3)
ico p—ltj
forl =0,1,2,...,where®=9) = 3" 4P, p+]) € A, ;(C®(Y))forj=0,1,2,...,
cf. LIu-WITT [11] In fact, the Taylor coefficients #* 7 € C°°(Y") can be chosen arbitrarily,
since only afinite number of them enters the computation of ®(p — [).
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Since ®(p — 1) € span{®;(p —1); 1 < i < ;41 } for ® € Lex, we conclude that

€141

[+ ], Z‘I’ H 2 —p+i- ] (4.4)

for certain Hi(ﬂ) = (hé’lil),hgl),...,hgﬁl_u> € [C>°(Y)]>°, which are a priori of length

i

m!1. Employing (4.4), we rewrite (4.3) as

-3y (zz szw) - .

i=1 r=0 7=0 s5=0
fori=0,1,2,...
Step 2. We are going to show that (4.5) provides the unique representation of @ as linear combi-
nation of the vectors 7" ®,. More precisely, by inductionon/ = 0,1, 2, ..., we construct functions
hffi) € C(Y) for r > m! such that, for each [,
n'") for all i satisfying m! < m!*! are linearly independent (4.6)
and
—j) I—j
L _ it = mi, (4.7)
" 0 otherwise.

This means that the coefficient in front of 77®; equals %, 327 ( (»=9) p1)Y) provided that

r—s sz
mﬁﬁrﬁmé“—l.

After the Ith step, A, ilz.,) will have been constructed for al 7, 7, r satisfying I’ < 1,1 <1 < ejyq,
m <r< ml+1 1. Moreover, (4.7) will have been proved for al 7, r satisfying 1 < < g1,
0<r< miﬂ 1.

Base of inductionl = 0: We set hff;.) = hffzo) forl <i<e,0<r< m} - 1.
Induction step I’ < I — 1. Wewrite (4.5) as

ZE(ZZ ’”“,J)>T’" =0

1 r=0 7=0 s=0

ermi 7=0 s=

81+1m o I r l l
+
ADIDIRINHS PR | (e - 1),
® regarded as a vector in L, modulo Lg# for some ¢ satisfying dimX/2 — ¢ < p—-1 <
dim X/2 — ¢’ + 1 isaunique linear combination of thevectorsT"@ forl <i<ey,0<r<

m!1 —1. The coefficient in front of 77®; for 1 < i < ¢;,0 < r < m! 1|sknown|f oneknows ®
modulo L%, *. By inductive hypothesis, this coefficient equalsz Zs i ( ) pU )) Thus,

r—s 1'%sq

weobtain (4.7)for1 <i<e¢,0<r < m -1, smcethefunctlonngS ) € C>*(Y) arearbitrary.
It remainstosethfmi) : h(l "Dtoro <1 <1, mb <r <mt -1,
In particular,

g = (hffllj} RUAPEEINUOY Xov >

mlTI 41T Tl 1

7

isactually of length m!t! — m! ™7,
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Step 3. Wenow fix some a € Ny and set

HY = 1Y = (h“, Y 1) )

7 50 mt i’ ml Jy14 mg—1,i

I+1

for0 <1 <a—1. Then B = pmi-m™ gl=7) ang

[t (z+p— k:)];_b
€l4+b+1

Z T o p—1—b) @ T T HI L _p b)) (4.8)

foral j, k, [, b satisfying j + k = [, 1 + b < a. We shal employ (4.8) to show that the vectors
Uy,..., ¥, defined by

Ti(g+1):=JHY, 0<i<a-1, (4.9)
where ¢ = dim X — 26 — p — u, form acharacteristic basis of L, * modulo L.
In view of (4.6), ¥y,..., T, form acharacteristic basis of the T—invariant subspace of £ (Y))
modulo £*¢(Y") generated by these vectors, of characteristic

{(Q"i_l;m? _m'liam"il - mi'_la-" am? _ml m?); 1< < ea}a

where, for agiven i, [ isthe least mteger such that m, l“ = m{. In particular, the dimension of this
space equals dim LY, /L& = 052, mg. Invoki ng aduality argument, we see that it suffices to
prove that each ; belongs to LY\~ modulo L.

Step 4. By virtue of (3.10), we have to show that
S R CH T -] =0(1) ezl (4.10)
jk=1
forl1 <i<e,,0<Il<a-1,wherep:=p—a-+1.
Forl+b=a — 1, weinfer from (4.8)

Sorid = Y t7F (2 + p — k)s"F(2)

k=1
=3 S e—pm T (1 () - - 1))
jtk=l1i=1

® (5"*’“(;:)* B~ - ”) o) @zl

Since the leading entries of the vectors i ®,(p) (if there are any) for different  are linearly
independent, we arrive at (4.10).

Step 5. Returning to the notation Hi(l) — g

za’

we see that the ¥; defined by (4.9) for 1 < i <
e+1asa — oo condtitute a complete characteristic basis of Iy modulo Lg;;” Furthermore, the

considerations also show uniqueness for the complete characteristic basis of Iz. modulo L‘””
just constructed. O

5. GENERALIZATION OF KELDYSH’'S FORMULA

Conjugacy of complete characteristic bases in the sense of Theorem 4.1 forces certain bilinear
relations between the bases elements to hold, as for local asymptotic types. We are now going to
derive these relations keeping the notations of the previous section.
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Theorem 5.1. For all p, h, h*, [, j satisfying j <[,
[
4
SO0 (T ) o o, T T (g = 1)z )
r=j

P p+j

+0((z=p) ™ ™)) asz—p, (5.1)

1+1
(m¥ 7m£+ 1

= Onn+(z —p)~
whereq = dim X — 26 —p — p, mf;rj = mPti(dy), mgfl = mIt(Uy.),

{1 if h* = 7*(h),

Oppr =
hih 0 otherwise,

P41

and @, _,(T™r  &,)[z + r] was defined in (3.9).

Remark 5.2. (a) (5.1) constitutes an asymptotic expansion formula, with 5 = [ being the basic
case and further correction terms added as j is getting smaller. In Section 7, we will be in need of
the most refined case j = 0.

(b) Incasel = 0, we recover Keldysh's formula

mp+1 mq+1
(s(2) 75" @p(p)[z — p), T4 TWy-(g)[2 — p])
= e (2 = p) "D £ O(1) sz p,
cf. (A.2).

To prove Theorem 5.1 we need the following simple result:

Lemma 5.3. Assume the model situation (4.1). Let a;;(z) € A,—;(C) for somel € Ny. Then

e+1 1 )
Y aii(z) T ®i(p — )]z —p +1] € Ay (CP(Y))
i=1 j=0
if and only if
J

Y (z—p+1)"ai(z) =0((z—p+1)"
r=0

forall<i<e+1,0<j5<I.

Jj+1
i

)

Proof of Theorem 5.1. We again assume the model situation (4.1).

We reenter the scene at formulas (4.8). Using these formulas, we write

(24 )
a—j—le€j+bt1

=3 Y @ap—j-b) o @B —p+ b+ Gi(2)
b=0 =1

for 0 < j < a — 1, where G;(z) is holomorphic on the strip dim X/2 — 0 —a +j < Rez <
dimX/2 —46.Forany 0 <!’ <a—1, weget

Sorid= > t# I (24 p+j)s" F(z+1)
k=l

a—1'—1€"ypt1

= 3% X Gty (1 iyt ) 414 1)

j+k=l' b=0 i=1
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® <suk(z ey g bl) + Y, Gilz i) 2+l
jHk=1
(5.2)

We now apply the operator (5.2) to T @y (p — b+ ')z — p + b], where ! < b < a — 1, and
then sum up for I’ from 0 to /. Since

b—1 ~ -
> Gilz+ ) F 4+ E)T™ Da(p—b+j+k)z—p+b
J+k<l

l l—j7 _
3 Gz +j) <Zs"k(z iR Bp(p— bt E)z—p b])
=0 k=0

l

Gy(z+ 1)@y (T @)z + ] € A 5(C=(Y)).
0

<.
Il

taking the principal value at = = p — b on both sides of the resulting equation, we obtain

€541

b—1 b 1 k4b
T™" &y (p—b)[z —p+ 0] = E g (z —p+b)™ Hom;
j+k<l i=1

<5“k(z LR T B — bz —p BT CHE [~ p ot 5]>

k+b

T™ ®i(p—b)[z—p+b+0(1) asz—p—b,
where b = b + j + k. We get

e+l ]
% By (p —D)z—p+b =3 ai(z2) ™ Bi(p — b)[z —p + 0] + O(1)

i=1 j=0

65—1—1 b

= Zai’g_](z)Tiq)( —b)z—p+b+0(l) asz—p—>b
=1 j:(;—l
where
= b+l b—j

m’j’*l m$ m (b 7)
< (O, 8+ T O - p 7).

By virtue of Lemma 5.3, we conclude that, for all 0 < j </,

l

Z(z—p-i—l) m” rai,n(z)

r=j

m Loz —p 4y

=0i(z—p+1)" ) asz—p-—1,

[ -
Z<el_,(Tmi-’7 &)z + ), T o ’[z—p+5]>
r=j

b+1 b—j+1)

= G (2 —p+ 1) =D L O((z = p 1)~ (m ) asz—sp—L.
In view of (4.9), the latter is (5.1) in the model situation (4.1). O
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6. THE BOUNDARY SESQUILINEAR FORM

In this section, we shall prove Theorem 1.1. From GIL—-MENDOZA [3, Theorem 7.11], we first
quote;

Theorem 6.1. For all u € D(Ama), v € D(Afa),

>

J=0 dim X/2—0—p+j<Re p<dim X/2—§
Res,—p (Ué‘_j (A)(2)(wu) (2), (wv) (dim X — 2§ — Z — pu + j)), (6.1)

—_

p—

wherew(t) isacut-off function and (wu)(z, -) = M, . {(wu)(¢,-)} denotesthe Mellin transform,
see before (B.1).

Proof of Theorem 1.1. We divide the proof into several steps.
Step 1. Because of D(Amax) = H‘I‘;f (X) and D(Amin) = H’Iﬁfﬂ_o (X), see Theorem B.6, and
A A

smilarly for D(A} ), D(A}

xin) With P4 replaced with PS., we have to compute the induced
sesquilinear form

L, /LU0 % Ly JL " = € (6.2)

Here G+ = {5”*j(z); j € No}, wheres#J(z) = ot I (A)(2), and R* = {tr I (2); j € Ny},
where t#77(z) = o 7 (A*)(z). For the relation between s#~7(z), t*~7(z), see (3.6). We will
evaluate the sesquilinear form (6.2) using formula (6.1).

From this description, it is aso seen that the spaces D(Amax)/D(Amin), D(Apa) /D (Ar,,) ae
invariant under the action of the operator T' from (1.6). (This result is implicitly contained in
Theorem 2.11.)

Step 2. It suffices to prove (1.9) for an arbitrary characteristic basis @, ..., ®, of the quotient
L‘s@,# /L‘”" 0. For then non- degeneracy of the sesquilinear form (6.2) and also property (1.10)
follow, where the latter holdsfor all @ € LY, /L3, 0 € LY, /L3t# 0. 1f ®,..., @ another
characteristic basis of the quotient L‘({y / L‘”” 0 we have (aefter a possible renumbering)

O =Cd;, 1<i<e

for some linear invertible operator C': L%, /L#" — LY, /LAF° that commutes with T
Denoting by C* the adjoint to C with respect to the non- degenerate sesquilinear form (6.2) (C*
also commutes with T'), the conjugate characteristic basis ¥, ..., U/ to @, ..., ®, isgiven by

U= ("', 1<i<e,
where ¥, ..., ¥, isthe conjugate characteristic basisto @y, .. ., ®..

Step 3. Let @y, ..., P, beacharacteristic basis of L‘éu/L‘f;“*o of characteristic (my,...,m)
say, and let ¥y, ..., ¥, be the conjugate characteristic basis of [w / L‘”" 0 accordi ng to The-
orem 4.1. The IaIter means that there are corresponding versions of Theorems 4.1, 5.1 vaid for
the Mellin symbols t#~7(z) for 0 < j < p of the strip dimX/2—6 — pu+j < Rez <
dim X/2 — §—p, wherenow in (4.2), (5.1) elements of the quotients L, /L5 %, Ld,, /Lo °
enter. Likewise, we may assume that @4, ..., ®. stem (by projection) from acharacterlstlc bass
of L%, that can be extended to a complete characteristic basis of L.

We will make this latter assumption to keep the notation from Theorems 4.1, 5.1.
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For ® € LY, /LS 0, W € L, /LY, rewrite (6.1) as

n—1

[Q)’\II]A:— Z Z

k=0 dim X/2—6—p-+k<Rep<dim X/2—0

x Res.— (5"~ (2)2(p)[z = pl, T¥(g + k)=~ p]), (63)
whereq =dim X — 2§ — p — p.
Now choose ® belonging to the Jordan basis @;,..., 7™ '®,..., ®,,..., T 1®, of the
quotient L‘éu/L‘ét“’O and ¥ belonging to the conjugate Jordan basis ¥, ..., T 10y, ...,
Ue,...,T™ 10, of the quotient Ly, /L3 ~°. That means that

p+I+1

O =TT &
for some h, p, [, i, where dim X/2 — 6 — p < Rep < dimX/2 -6 — (u — 1), Rep+1 <
dim X/2 — §,and 0 < i < mP™" — mP " We may further assume that

T = TIT™ Ty,
whereq = dim X — 26 —p— pand 0 < j < mIT*" — mIF! since otherwise [®, U], = 0.

Under these hypotheses, in (6.3) there are non-zero residuesat mostat z = p+r forr =0,...,1,
ie.,
41 e —k irmP T
(@, U] = (-1) Z Z Res,—pir <5u ()T @p(p+r)[z —p—r],
k=0 r=~k

TjITmZJ*rl‘Ilh*(q —r+k)z—p-— 7"]>

[ l
= (_1)j+1 Z Z Res,—pir—k

k=0 r==k
(s (e + W™ B+ —p— 7+ B

TIIT™ Wy (q— 1+ k)2 —p— 1 + k]>

I -k
= (_1)j+1 Z Z Resz:p+r

k=0 r=0
(s H( 4 DT By 1 4+ Rz —p— 1),

TIIT™ Wy (g — )z — p —
n Upe(g—r)lz —p—r]

l
= (=17 "Res.—p
r=0

l—r
<Zs“—’“(z F R B+ k) —p— 1],
k=0

TjITmZJ*rl‘Ilh*(q —r)z—p— 7"]>

[
p+I+1

= (=173 Resempar(z = p = 1) (@ (T @),
r=0

mat1
IT™w Wy(q—r)[z —p— 7"]>
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p+i+1

l
= (—1)j+1 R,eSZ:p(Z - p)z—l—] Z <®l—r(Tmh q)h)[z + ’)"],
r=0

I (g = 1)z - p])

Therefore,

o, = { YT =i =l =,
’ 0 otherwise,

by virtue of Theorem 5.1.

This completes the proof. O

7. EXAMPLES

We discuss two examples of ordinary differential operators on the half-line R.. The first example
demonstrates the usage of Theorem 1.1 for the computation of the boundary sequilinear form,
while in the second example it is shown how our fundamental formulas like (4.2) can be indepen-
dently verified.

7.1. First example. Thisexample concerns the cone-degenerate third-order operator
A=} +t7'0} onR,.

The conorma symbols are

03(A)(2) = —z(z + 1)?

c

and ag’j(A)(z) =0forj > 1. Thus, 1, tlogt, and ¢ are exact solutions to the equation Au = 0.
A complete characteristic basis ®,, ®; of L4 isgiven by

2,(0) = (1), @2(-1)=(1,0),
and ®1(p) = 0forp # 0, Po(p) = 0forp # —1.

We choose § = —1. Then we have A* = —3} — 57197 — 4t720;, 02 (A*)(2) = 2(z — 1)?, and
oo (A*)(z) = 0 for j > 1. From
1 1 1 1

S 2(z+ 12 (z2+1)2 +z+1 oz
we infer that the complete characteristic basis ¥y, U, of L 4« that is conjugate to &, @, is given
by

(1) = (1,-1), ¥y(0) = (1),
and ¥y (p) =0forp # 1, ¥a(p) = 0 for p # 0, where 7%(1) = 2, 7%(2) = 1.

Writing
u(t) = w(t) (a + Potlogt + Bit) + uo(t),
v(t) = w(t) (Yot tlogt+yit ' +6) + vo(t)

for a, fo, B1, Y0, 11, 6 € C, where w(t) isacut-off function and uy € D(Amin), vo € D(A%n),
we then obtain

[u,v]4 = —ad + Boyo + Bo1 — BiYo-
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7.2. Second example. We consider the non-degenerate, second-order, constant coefficient oper-
ator

A=0?+ad+b onRy,

where a, b € C. We have A* = 07 — a0, + b (with § = 0) and the Green formula is directly
checked to be

[u,v]4 = u(0)2'(0) — u/(0)v(0) — au(0)v(0), wu,v € S(R,). (7.2
The space LY, has characteristic {(—j;1,1,...); 7 = 0,1}. Therefore, I ° = {0}, D(Amax)/

D(Anin) = L(j1 is two-dimensional, and the elements of D(Amax)/D(Amin) a@e in one-to-one
correspondence with the (in fact, analytic) solutions u(t) = u(t; «, ) for o, g € Cto

Au=0, u(0)=a, 4(0)=4.
In the following, we shall make this identification.
A complete characteristic basisof Ly = LY isgiven by
wi(t) = u(t;1,0), wua(t) = u(t;0,1).
We look at (7.1) to find the conjugate compl ete characteristic basis of L4+« to be
vi(t) = u(t;1,a), va(t) = v(t0,-1),
where v(t) = v(t; a, 8) isthe solution to A*v = 0, v(0) = «, v'(0) = 3.
Proposition 7.1. (a) We have

ul(t) =1+ Z(_l)j—l M tj’ UQ(t) — Z(_l)j—l H]'—l'(a'a b) 4
i>2 I >

and

I,(a,b) . I, 1(a,b) .
v (t) = Z ](.av ) 1, wy(t) = _Zwtﬂ’
J>0 ’ izl
whereIly(a,b) = 1,11 (a,b) = a,
H]'(a, b) = aHj_l(a, b) - ij_g(a, b), j = 2, 3, ces
(i.e, y(a,b) = a® — b, [I3(a,b) = a® — 2ab, I14(a, b) = a* — 3a%b + b?, etc.).
(b) We also have
Hk(a’a b)
(z—k)(z—k+1)...2(z+1)’

where t%72(z) has the same meaning as before. In particular, the poles of £#~2(z) are simple
and, for/ = —-1,0,1,...,k,

F 2z 4 2) =

E=0,1,2,...,

(=1)*"MI(a, b)
CEE

Res,_;t ¥ 2(z+2) =

The key in re-proving formulas like (4.2) is:
Lemma7.2. (i)Forl>2,0<j<1[-2,

II(a,b) =141 (a, b)ILi—j—1(a, b) — bIl;(a, b)IL;—;_2(a, b).
(i) For 5 > 0,

I(~a,b) = (~1) T;(a, D).
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APPENDIX A. LOCAL ASYMPTOTIC TYPES

We briefly discuss the notion of local asymptotic type, i.e., asymptotic types at one singular expo-
nent p € C in (1.5). Moreover, we investigate an analogue of the boundary sesquilinear form in
this simpler situation, see (A.3). Most of the material is taken from WiTT [17].

Let F be a Banach space, E’ beitstopological dual, and let ( , )} denote the dual pairing between
E, E'. Pick p € C. For notations like M, (E), A,(E), E>, the right-shift operator 7" acting on
E>, & @ Uz —p| for ® € E®, ¥ € E'™, and the identification M, (E)/A,(E) = E>, see
Section 1.3.

Let ME”(L‘(E)) be the space of germs of L(F)—vaued finitely meromorphic functions F'(z) at
z=p,i.e,
Fy F

FO=py T oo Tt

f”_; + 3" Fi(z —p), (A.2)
J=0

where Fy, Fy,...,F,_1 € L(E) are finiterank operators. Let M) (L(E)) be the space of

germs of L(F)-valued normally meromorphic functions F'(z) at z = p, i.e., the space of finitely

meromorphic functions F'(z), where, in addition, F(z) for z # p close to p is invertible and

F, € L(E) isaFredholm operator. M (L(E)) isthe group of invertible elements of the algebra

MNL(E)).

For F' € A,(L(E)), let Ly denote the space of al (¢, ¢1, ..., ¢m—1) € E> such that

F(z)<( b, n ¢m_1>€Ap(E).

z—p)™ (2 —p)™! (z—p)

Remark A.1. Thetheory can be developed for F' € MQ”(L‘(E)) upon an appropriate modification
of the definition of Ly. For F € Mp*(L(E)), Ly isagain an asymptotic type, and Propositions
A.4, A5, and A.7 continue to hold in this case. See WITT [17].

Definition A.2. A local asymptotic type J C E* is afinite-dimensional linear subspace that is
invariant under the action of the right shift operator T'. The set of all local asymptotic types is
denoted by J (E).

Note that T" as acting on .J is nilpotent. The characteristic (my, ..., m.) of T on J is called the
characteristic of the asymptotic type.

Proposition A.3. We have
J(E) = {Lr | F € Ay(L(E)) N My (L(E))}.

Proposition A.4. For F € A,(L(E)) N M) (L(E)), wehave F' € A,(L(E)) N M (L(E")).
Moreover, for each characteristic basis @,...,®, of L, there exists a unique characteristic
basisUy,..., ¥, of Ly« such that

e

[FH ()], = (@i © ¥)[z - p).

i=1
In particular, both asymptotic types Ly, L+ have the same characteristic.
The next result isKeldysh’s formula, cf. KELDY SH [6], KOzLov—MAZ' YA [§].
Proposition A.5. For ®4,...,®.and ¥4,..., ¥, asin Proposition A .4,
<F(z)¢>l[z —p], Y[z — p]> =0;j(z —p) ™ +0O(1) asz— p. (A.2)
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Remark A.6. Writing F'(z) asin (A.1), (A.2) can be rewritten as
Z (F,d, 90y = 600

v4r+s=m;+1
for 0 <1 <m; — 1, where summation isrestricted totherange 0 <r <m; —1,0 <s <m; —1

and ®; = (45, ¢\, g ) 0y = (5 ) ).
For I € A,(L(E)) N M (L(E)), wethen consider the bilinear form [, | defined on the space
Lr x LFt by

[®, U] := Res,—p (F(2)®[z — p], Uz — p]). (A.3)

Proposition A.7. Evaluated onthe bases7"®; for 1 <i <e,0 <r <m; —10of Ly and T°¥;
for1 <j<e0<s<mj—10f L,

T SRS S AR
0 otherwise.
Proof. Thisfollowsimmediately from Proposition A.5. O

APPENDIX B. FUNCTION SPACES WITH ASYMPTOTICS

The maximal and minimal domains of cone-degenerate elliptic differential operators are cone
Sobolev spaces with asymptotics, as we are going to demonstrate now. We refer to SCHUL ZE [14,
15] for more on function spaces with asymptotics, where, however, asymptotics are observed on
so-called “half-open weight intervals,” a setting leading to Fréchet spaces. The present setting due
to Liu—WITT [11], where asymptotics are observed on “closed weight intervals,” provides ascale
of Hilbert spaces.

B.1. Weighted cone Sobolev spaces. Let Mu(z) = a(z) = [;°t* " u(t)dt for = € C (or
subsets thereof) be the Méellin transformation, suitably extended to certain distribution classes.
Recall that

M: L*(Ry,t72dt) — L*(T jo—g; (2mi) "' dz), (B.1)
isan isometry, where T, := {z € C| Rez = v} for v € R. Moreover,

M (—td)u}(z) = za(z),

My {t Pu}(z) =a(z —p), peC.
The function

_1\k
ma(z) = Moo { S w0 P10t 00 |

wherep € C, k € Ny, ¢ € C®(Y), and w(t) is a cut-off function, belongs to Mz (Y').
Furthermore,

P(y)

Mpk(7) — oyt € AGCT ).
For S, 6 € R, the Space ’HS,ﬁ(X) consists of al u € Isoc(Xo) such that Mtﬁz{wu}(z) c
L?oc(rdimX/Q—é;Hs(Y)) and

1

o HRs(z)Mt_)z{wu}(z)Hiz(y) dz < 00.

Faim x/2-6
Here, R*(z) € L*(Y; [gim x/2—5) iSan order-reducing family, i.e., °(z) is parameter-dependent
dliptic and R*(2): H***(Y) — H*(Y) is invertible for al s € R, z € Ty x/o 5. FOr
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instance, if m(z) € Mg(Y) is dliptic and the line Tyir, x/2—s is free of poles of m(z), then

m(z)| is such an order-reduction.
1—‘dim X/2-8

B.2. Cone Sobolev spaces with asymptotics. The starting point is the following observation:

Theorem B.1 (LIU-WITT [11, Theorem 2.43]). Let s, § € R and P € As’(Y) be a proper
asymptotic type. Then there exists an elliptic Mellin symbol n,(2) € M§,(Y") such that the line
Tdim x/2—s IS free of poles of m$,(z)~" and, for &° = {m$(2),0,0,... } € Symbj,(Y), L%,
represents the asymptotic type P.

Definition B.2. Lets > 0,6 € R, and P € As’(Y) be proper. Then thespaceHj;‘s (X)) consists of
al functions u € H*(X) such that M;_,,{wu}(z) ismeromorphic for Re z > dim X/2 — § — s
with valuesin H*(Y),
mp(2) My {wu}(2) € A({z € C| Rez > dim X/2 — 6 — s}; L*(Y)),
where m%,(z) isasin Theorem B.1, and
1

2
sup Hmf;(z)Mle{wu}(z)HLz(Y) dz < oo.
0<s'<s 2T Ty x /o5

We list some properties of the spaces IHE;‘S (X):

Proposition B.3. (8) {H5’(X); s > 0} isan interpolation scale of Hilbert spaces with respect
to the complex interpolation method.

(b) H (X) = HoT+5(X).
(c) We have

s,0 _o7s,0 (_l)k -p k (p)
() =Hy (O e {wn Y > gk el |

Rep>dim X/2—0—s k+l=mp—1
P(p) = (¢(()p),...,¢££i_1) for some @ ¢ J},

where the linear space J C 5{5/(Y) represents the asymptotic type P, provided that
Rep#dimX/2—-6—-s, peV.

(d) B (X) € |57 (X) ifand only if s > &/, 6 +5 > & + &', and P < P’ up to the conormal
order &' + s'.

(€) CF(X) = N,20 Hp (X) isdense in 1 (X).

Proposition B.4. The spaces Hj;‘s (X) are invariant under coordinate changes in the sense ex-
plained in Remark 2.4.

B.3. Mapping propertiesand elliptic regularity. Herewe are concerned with the regularity and
asymptotics of solutions u to the equation

Au(z) = f(z) onX°, (B.2)
where A € Diffly,,o(X) is elliptic. Assuming u € H¥ (X) and f € I}’ (X), where s > 0 and
Q € As’(Y), we are going to show that u € H5™ (X)) for some resulting P € As(Y). By
interior elliptic regularity, we already know that u € H»o"(X°). So we are left with the behavior
of u =u(zr) asz — 0X.

Let P be the asymptotic type represented by ;. Similarly, let P}~ < P? be the asymptotic
type represented by L‘i;r“_o. Then Pf“_o is the largest asymptotic type that coincides with the
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empty asymptotic type, @, up to the conormal order § + ;. — 0. Note that, for each P € As)(Y)
satisfying P < P up to the conormal order § + p, thereisaq € As’(Y) such that

A HE (X)) — HY (X)
foral s > 0. Theminimal such Q € As’(Y) isdenoted by Q°(P; A). In particular, Q°(P4; A) =
QY (0;A) = 0.
The question raised for equation (B.2) is answered by the next result:
Proposition B.5. Let A € Diftf,.(X) bedliptic. Then:
(&) The map

{P € As°(Y): P = P}, P coincides with P} up to

the conormal order § + u} — As’(Y), P — Q°(P;A) (B.3)

is an order-preserving bijection.
(b) For any solution u to (B.2), v € B’ (X) and f € ]ng‘S (X) impliesu € Hj;‘(Lg;A)(X), where
Q — P(Q; A) istheinverse to (B.3).
Note that Q°(P°(Q; A); A) = Q. Therefore, P — P°(Q°(P; A); A) is a hull operation. Note

also that both maps P — Q°(P; A) and Q — P°(Q; A) to (B.3) can be computed purely on the
level of the complete conormal symbols {047 (A)(z); § € Ny }.

Theorem B.6. Let A € Difff,.(X) bedliptic. Then

D(Amax) = Hy5 (X), D(Amin) = HEY,, o (X). (B.4)
A A

In particular,

D(Amax) /D(Amin) = LY /1570, (B.5)
Proof. (B.4) isaconsequence of eliptic regularity, while (B.5) follows from the description given
in Proposition B.3 (¢) and interpolation. O
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