Mellin-Edge Representations of Elliptic Operators

N. Dines and B.—W. Schulze

Abstract

We construct a class of elliptic operators in the edge algebra on a manifold
M with an embedded submanifold Y interpreted as an edge. The ellipticity
refers to a principal symbolic structure consisting of the standard interior
symbol and an operator-valued edge symbol. Given a differential operator
A on M for every (sufficiently large) s we construct an associated operator
A, in the edge calculus. We show that ellipticity of A in the usual sense
entails ellipticity of As as an edge operator (up to a discrete set of reals s).
Parametrices P of A then correspond to parametrices Ps of As, interpreted
as Mellin-edge representations of P.

AMS-classification: 35J30, 35J70, 58J05
Keywords: Pseudo-differential operators, edge algebra, ellipticity with interface
conditions

Contents

Introduction 2

1 Edge-representations of differential operators 3
1.1 Edge Sobolev spaces and operator-valued symbols . . . ... ... 3
1.1.1  Mellin transform and Fuchs type operators . . ... .. .. 3

1.1.2 Edge spaces and symbols with twisted homogeneity )

1.1.3 Trace and potential symbols . . . . . . .. ... .. ... .. 9

1.2 Edge-representations . . . . . . ... ... L L. 10
1.2.1 Decompositions of Sobolev spaces . . . .. ... ... ... 10

1.2.2 Edge-representations of differential operators . . . . . . .. 17



INTRODUCTION 2

2 Parametrices in the edge calculus 19

21 Edgecalculus . . ... .. ... ... 19

2.1.1 Manifolds with edges and edge-degenerate symbols . . . . . 19

2.1.2 The global Mellin operator convention . . . . . . ... ... 22

2.1.3 Edge amplitude functions from the interior . . . ... ... 24

2.1.4 Edge amplitude functions of Green type . . . . . ... ... 27

2.1.5 Smoothing symbols of Mellin type . . . . .. .. ... ... 28

21.6 Theedgealgebra . . .. ... ... ... ... . ...... 29

2.2 Ellipticity . . . . . . o e 33

2.2.1 Elliptic operators in the edge algebra . . . . . . . ... ... 33

2.2.2 Invertibility and parametrices . . . . . .. ... ... 34

3 Invariance properties of the edge algebra 36

3.1 Edge Sobolevspaces . . . . . . .. . ... 36

3.2 Trace and potential operators . . . . . .. . ... ... .. .. ... 39

3.3 Ellipticity of edge operators in the general case . . . .. ... ... 42

References 42
Introduction

Ellipticity of (pseudo-) differential operators 4 on a manifold M with edges YV
is a bijectivity condition for the components of a principal symbolic hierarchy
0(A) = (0y(A),on(A)), where o, (A) is the (‘scalar’) interior and oa(A) the
(operator-valued) edge symbol. The edge symbol oa(A) has a 2 x 2 block ma-
trix structure, with an upper left corner acting in weighted Sobolev spaces on
infinite cones, while the other entries are of finite rank. The bijectivity of oa(A)
is an analogue of the Shapiro-Lopatinskij condition for additional data of trace
and potential type on the edge. In concrete cases it may be very difficult to con-
trol this condition explicitly. In particular, we need information on the position of
‘non-linear’ eigenvalues of a subordinate so called conormal symbol in the complex
plane. It may happen that there are no edge conditions at all for a given elliptic
(edge-degenerate) operator A on M; the existence is guaranteed if and only if a
certain topological obstruction vanishes, cf. [17] or [21] (which is an analogue of
a corresponding condition of Atiyah and Bott [1] for the case of boundary value
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problems). If the obstruction vanishes, the number of trace and potential condi-
tions depends on the dimension of kernels and cokernels of o4 (A) as well as on the
chosen weights in the Sobolev spaces.

The main result of the present paper is the explicit construction of a class of ellip-
tic edge operators that are interesting for a number of applications. We start from
elliptic operators A : H*(M) — H* #(M) on a C* manifold M with an em-
bedded C'°° submanifold Y regarded as a ‘fictitious’ edge of codimension > 1. We
then show the ellipticity of associated edge operators A, with trace and potential
operators at Y depending on the choice of s. In the edge algebra we then have
parametrices Ps of A; which can be interpreted as ‘Mellin-edge’ representations
of pseudo-differential parametrices P of the original operator A.

This result has relations to the asymptotic properties of potentials of densities
supported by a hypersurface in M with edges, when the densities themselves have
‘edge asymptotics’, cf. Kapanadze and Schulze [9]. There are also connections with
the solvability of the Zaremba problem in edge Sobolev spaces, see the author’s
joint paper with Harutjunian [4] and to crack problems with singular interfaces,
cf. [20].

Our approach is based on ideas of the edge pseudo-differential calculus, cf. [17],
which is a step in an iteratively organised hierarchy of calculi for configurations
with higher geometric singularities, cf. [19]. In such cases the edges themselves
may have (conical, etc.) singularities, as is typical in models of mechanics.

Our constructions are also related to problems of Sobolev type, where solutions
of Au= f on M \Y for an elliptic operator A are considered under conditions of
‘Shapiro-Lopatinskij-type’ on Y, cf. Sobolev [23], Sternin [24].

Aknowledgements : The authors thank T. Krainer and I. Witt (University of Pots-
dam) for valuable remarks on the manuscript.

1 Edge-representations of differential operators

1.1 Edge Sobolev spaces and operator-valued symbols
1.1.1 Mellin transform and Fuchs type operators

In this section we introduce some background on the Mellin transform on
Ry, Mu(z) = [;° r*‘u(r)dr and weighted spaces on infinite cones.

Mu(z) for u € C§°(R+ ) is an entire function in z € C; otherwise, for more general
(weighted) distributions, z will vary on

I'g:={z€ C:Rez =0},

for a suitable real 5. We will also apply the weighted Mellin transform,
(Myu)(z) == M(r—"u)(z +), with v € R interpreted as a power weight at
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r = 0. Given a pseudo-differential symbol f(r,r’,z) € C°(Ry x M,S“(F%_W))
with S#(R) being Hormander’s space of symbols of order u (with ‘constant co-
efficients’) and S*(I'z) the corresponding space on I'z under the identification
I's = R, z = Im 2z, we can form a corresponding Mellin pseudo-differential opera-
tor

opy; (fu(r) = //0 (%)_(%_%ip)f(r,T’,z)u(r’)%dm

first on C§°(Ry ) and later on extended to suitable distribution spaces. Analogous
notation will be used for vector-valued u and operator-valued amplitude functions
f(r,r', z). Concerning more details on Mellin operators, see [17] or Dorschfeldt [5].
Our next goal is to define weighted Sobolev spaces on a stretched cone
X" =R, x X with a closed compact C*° manifold X as base, n = dim X. Let
LE(X; R') denote the space of all classical parameter-dependent pseudo-differential
operators on X. Homogeneous principal symbols and ellipticity in this context then
refer to (&, \) # 0 where ¢ is the covariable on X and A € R the parameter. We use
the fact that for every p € R there exists an elliptic element R*()) in L (X;R')
such that R*()\) induces isomorphisms H*(X) — H* #(X) forall A e R, s € R.
Here H®(X) are the standard Sobolev spaces of smoothness s € R on X.

We now choose such a family RF(p) with parameter p € R and de-
fine H%7(X") as the completion of C§°(X") with respect to the norm

2

7 fFLﬂ, ||R“(Imz)Mu(z)||i2(X)dz} . The space L?(X) is equipped with a
2 kl

scalar product, defined in terms of a fixed Riemannian metric on X.

The spaces H*7(X”) have the meaning of Sobolev spaces based on the Fuchs type

derivative in r € Ry and (local) usual derivatives on X. More precisely, for s € N

we have

HY (X)) = {U(r, x) € rTELA (XN (T%>kDU(T, Y eI, (1.1)

0<k<s,De Diffs_k(X)}.

Here Diff ™(X) denotes the space of all differential operators of order m on X
(with smooth coefficients). It can easily be proved that (1.1) is an equivalent
definition of H%7(X") for s € N, and the full scale could be defined by duality
and interpolation. Notice that H%?(X") = r=2 L?*(R; x X) (with L? being taken
with the measure drdz).
By a cut-off function on the half-axis we understand any real-valued
w(r) € C§°(R4) which is equal to 1 in a neighbourhood of r = 0.
In the considerations below we will also use a modified scale of weighted Sobolev
spaces, namely %7 (X"), defined by

KX =A{wf+ (1 —w)g: f €M (X"), g € Hippo(X")}

cone
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for any cut-off function w. Here HE  (X") denotes the subspace of all g = g|x»,
g € H{ .(Rx X) such that for every coordinate neighbourhood U on X, every dif-
feomorphism x : U — V to an open set V' C S™, x(z) = v, and every ¢ € C§°(U)
the function p(x =1 (v))(1—w(r))g(r, x "1 (v)) belongs to the space H®(R"!) (where
(r,v) has the meaning of polar coordinates in R**1 \ {0} = (S™)").

The spaces K*7(X”) are independent of the specific choice of w. They are Hilbert
spaces with the scalar product

(f1, f2) = (W, wfa)pemnxny + (L =w)fi, (L=w)fo)ms, _(xn)

cone

for any fixed w. The space C§°(R) is dense in K7 (X") for every s, v € R.

Remark 1.1.1. Let x : X — X be a diffeomorphism. Then the function pull
back with respect to idp, x x : Ry x X — Ry x X, first on C§°(X"), extends to
an isomorphism K7 (X") — K7 (X") for every s, v € R.

1.1.2 Edge spaces and symbols with twisted homogeneity

As noted in the beginning, operators in R™ as well as Sobolev spaces will
be reformulated in an anisotropic manner with respect to a splitting R™ =
R'*™ x RY, where R? is regarded as an edge and R''™ as a model cone
(SM)A == (Ry x S™)/({0} x S™) of the ‘wedge’ R™ =2 (S")* x RY.

Let E be a Hilbert space, and let {“5}66R+ be a strongly continuous group of
isomorphisms ks : E — FE, such that ksks = kgsr, for all §, §' € R (strongly
continuous means kse € C(R;,E) for every e € E). In that case we will say
that E is endowed with a group action. In particular, for E = H®(R**™") we
take (ksu)(Z) = 51+Tnu(5i“), 0 € Ry. The anisotropic reformulation of the stan-
dard Sobolev space H*(R!*"*¢) with respect to the edge R? is now formulated in
terms of so called (‘abstract’) edge Sobolev spaces.

Definition 1.1.2. Let E be a Hilbert space with group action {Ks}tscp, - Then
WE(R?,E), s € R, is defined as the completion of the space S(RY, E) with respect

to the norm )

b oy = { [ 007 e o}
where (n) = (14 [n|*)%, a(n) = Fu(y) = [ e~¥"u(y) dy.

More details on the functional analytic properties of this category of spaces may
be found in [17], see also Hirschmann [8]. Note that we obtain an equivalent norm
if we replace () by any other strictly positive function p(n) with the property
c1(n) £ p(n) £ can) for certain constants ¢y, c2 > 0. In particular, if [n] denotes a
strictly positive C°° function in R? that is equal to || for |n| 2 ¢ for some ¢ > 0,

we may set p(n) = [1].
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If @ C R? is an open set we introduce W, (2, E), Wi .(Q, E) similarly as in the
scalar case: WS, (2, E) is the space of all u € W?(R?, E) with compact suppu C

comp
Q; moreover, W} .(Q, E) is the space of all u € D'(Q, E) with pu € Wi,,,,(Q, E)
for all ¢ € C§°(Q).

Remark 1.1.3. For E = H*(R*™) with the abovementioned group action we
have H*(RYT7+e) = WH(Re, H*(RY™)) for every s € R.

Example 1.1.4. For the weighted cone Sobolev spaces E = K7(X") with the
group action (ksu)(r,x) = 5"7“11(67", z),0 > 0,n = dim X, we have so called
weighted edge Sobolev spaces

WY (XN x RY) = WH(R?, K57 (XM)).
They have the property HZ, (X" x R") C W*7(X" x R?) C Hf; (X" x R?) for
all s, v € R
For references below we define for any open set ! € R? the spaces
Wj;:;lp(y) (X" % Q) 1= Wi (L7 (X)),

and, analogously, Wil (X" x Q).

loc(
Let us now consider a differential operator
A= Y us(dy)DeD? (1.2)
la|+]B]=p

with coefficients @q,5(Z,y) € C®(R'™"7), and write A := A|(R1+n\{0})qu in
polar coordinates with respect to the Z- variables. Setting r = |#| and X := S™

we then obtain

J
A=rt 5 aplea)( =g ) (D) (1.3

J+181<w

with coefficients a;s(r,y) € C° (R x R?, Diff#=U+I8D(X)).

Differential operators of the form (1.3) will also be called edge-degenerate; clearly,
not every such operator admits a reformulation (1.2).

With (1.3) we can associate the symbolic structure of the calculus of edge differ-
ential (or pseudo-differential) operators. First we have the standard homogeneous
principal symbol of order p which is in the variables (r,z,y) € Ry x ¥ x R? for
open sets ¥ € R™, and covariables (p,£,n) of the form

op(A)(r,z,y,p,&,n) =1 puy(r,z,y,p,6m),

with p,) (r,2,y,0,6,m) = B (r,2,9,6,6,1)|;_,, 7., for a polynomial p(,) in

(p,€,7) of order u with coefficients in C®(R; x X xR?); € ¥ are local coordinates
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on X.

Operators of the form (1.3) will play the role of local representatives of global
operators on a manifold; therefore the behaviour of coefficients for large r and
ly| will be unessential, and we assume, for convenience, that the coefficients are
independent of r and y for r + |y| > C for some constant C > 0.

Let us set

o J
aly,n) :=r™* Y aplry)| —ro-) (),
JiFIBIZu < 8r>

regarded as a family of continuous operators
a(y,n) : K27 (X7) — K771 (X7), (1.4)

for every s, v € R. We want to interpret (1.4) as an operator-valued symbol in
the variables y and covariables 7. To this end we briefly recall the corresponding
general definition.

Definition 1.1.5. Let E and E be Hilbert spaces, endowed with group actions
k= {kKs}ser, and k= {Rs}sep , , respectively. Then SH(U x R?; E, E) for p € R
and an open set U C RP is defined to be the set of all a(y,n) € C®(UxR?, L(E, E))
such that

sup () AR (DS D a(y,m) } kil ) (1.5)

(y,n)EK xR

is finite for every K CC U, o € N?, 3 € N¢. The elements of S*(U x RY; E, E)
are called operator-valued symbols on U x R?.

The space S#*(U x RY; E, E) is Fréchet with the semi-norm system (1.5); this allows
us asymptotic summation, similarly as for standard symbols.

Remark 1.1.6. The point-wise composition of operator functions gives us an
inclusion S*(U x RY; Ey, E) - S¥(U x RY; B, Ey) C SHT(U x R; B, E) for every
u, vEeR

By S%(U x RY; E, E) we denote the subspace of so called classical symbols a(y, )
that can be written as an asymptotic sum Z;’;O x(mag.—j)(y,n) for any excision
function x(n) in R? and a suitable sequence of functions

agu—j)(y,m) € C(U x (R* \ {0}),L(E, E)), j €N,
satisfying '
agu—j)(y,0n) = " Rsag_j (y,mK; (1.6)

for all § € Ry. The homogeneous components a(,_j) are uniquely determined by

a(y,n). i
The space S5 (U x R?; E, E) is also Fréchet in a canonical way (in a corresponding
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stronger topology than that induced by S*(U x R; E, E)).
The relation (1.6) will also be referred to as twisted homogeneity of the corre-
sponding order. We also set

onla)(y,n) = ag(y,n)

for the homogeneous principal component of order p (in our cases p will be known
from the context).

If a relation is valid in the classical or non-classical case, we often write as subscript
‘(cl)’. Let Sé‘d) (R?; E, E) denote the subspace of all a() € S(‘;l)(U x RY; E,E)
which are independent of y (i.e., symbols with ‘constant coefficients’). The spaces
S(”d)(]Rq;E,E) are closed in S(”d)(U x RY; E, E), and we have

SN

ey (U x R B, B) = C°(U, Sty (RY; B, E)).

(c1)
Note that for the case E = E = C and ks = idg, &y = idg for all 6 € Ry, we just
recover the standard ‘scalar’ spaces of symbols, also used below.

Example 1.1.7. Let f(y,n) € C°(U xR?, L(E, E)) be a function that is homoge-
neous of order pu for large ||, i.e., f(y,on) = F&sf(y,n)k; " for all§ 2 1, (y,n) €
U xR?, |n| 2 ¢ for some ¢ > 0; then we have f(y,n) € SL(U x RY; E, E).

Example 1.1.8. Let [(Z,y) € CR™) and consider the y-
dependent family of continuous operators b(y) : w(Z) — B(Z,y)u(),
b(y) € Cg° (R, L(H*(R?), H*(R?))). Then we have b(y) € S°(RY x
]R%;HS(]Rd),HS(]Rd)) for every s € R (although b is independent of the covariable
).

Remark 1.1.9. Let A be given by (1.3) and assume the coefficients ajo to be
independent of v for large r. Then the operator family a(y,n) from (1.4) represents
an element

a(y,n) € S"(Q x RY; L7 (X7), L7771 (X))

for all s, v € R. If the coefficients a;q are independent of r then a(y,n) is classical.

There is a calculus of pseudo-differential operators with operator-valued symbols,
similar to the scalar case (i.e., when E = E = C and the groups K and K consist
of the identity). Details may be found in [17]. The corresponding tools will be
systematically employed here.

In particular, there is an analogue of the standard continuity of pseudo-differential
operators in Sobolev spaces, here for the case of edge Sobolev spaces.

Theorem 1.1.10. Let a(y,y',n) € S*(Q x Q x R E E), Q € R? open, and
Op(a)uly) = [[e W ¥a(y,y' n)uly')dy' dn, dy = (2) %dn. Then Op(a) is
continuous as an operator Op(a) : C°(Q, E) — C°(Q, E), and extends to con-
tinwous operators Op(a) : WE (0, E) — WE *(Q, E) for every s € R. For the

comp loc
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case 0 = R? and a(y,n) independent of y for large |y|, we also have continuous
operators

Op(a) : W¥(R?, E) — W *(R?, E), (1.7)
for all s € R.

1.1.3 Trace and potential symbols

As noted before, an admitted choice for the spaces E or E is also CN for any
N € N, with the trivial group action, i.e., the identity for all § € R, .

Elements of the spaces S4(U x R?; E,CV) and S4(U x R?; CM | E) will be called
(abstract, classical) trace and potential symbols, respectively.

Example 1.1.11. (i) Let E = H*(R?), endowed with the group action
(ksu)(Z) = 62u(0%),6 € Ry, and let s € R o € Nt s > 4+ |af.
Then the operator v* : S(RY) — C, v%u := Du(0) extends to a clas-

d
sical trace symbol v* € Sleal(Rq;Hs(Rd),C) (although it is independent
of n € RY). In fact, we have smoothness in 1 and homogeneity v*u =
5%""“‘70‘/@51% for all § € Ry. Then, for

—_d_

t(n) == [n] =571l

we have
t*(n) € Sa(R?; H*(R?),C). (1.8)

(ii) Let w(#) € C§°(RY), w(Z) = 1 in a neighbourhood of & = 0. Then

al
2

k% (n)e = [n]* —([n]2)*w([nlz)e
for ¢ € C defines a potential symbol
k*(n) € Sa(R7;C, H* (RY)), (1.9)
for arbitrary s € R. In fact, we have k%(n) € C*(R?, L(C, H*(R?)) and
KO(0m) = ok () for all 52 1, [n] 2 ¢,
for some ¢ > 0. This gives us the relation (1.9), cf. also Example 1.1.7.

Remark 1.1.12. If we define t*(n) and k*(n) in terms of (n) instead of [n] we also
obtain the relations (1.8) and (1.9), respectively. In both versions the homogeneous
principal symbols of order O have the form

o)) = a1 and 00 () (0) = Il (ml) ). (110)



1 EDGE-REPRESENTATIONS OF DIFFERENTIAL OPERATORS 10

1.2 Edge-representations
1.2.1 Decompositions of Sobolev spaces

Let M be a closed oriented C'*° manifold, m = dim M, and let Y C M be a closed
C*° submanifold with the induced orientation, ¢ = dimY <m — 1. On M and Y
we fix Riemannian metrics and assume that the metric on Y is induced by the one
on M. We will interpret M as a manifold with edge Y'; let us first assume that Y
has a trivial normal bundle in M.

In this section we want to derive certain anisotropic decompositions of the standard
Sobolev spaces H®(M), s > m — g, with respect to the edge Y.

Let us fix an atlas of charts on M

x;j:U; — R™ j=1,..,N, (1.11)

with coordinate neighbourhoods U; on M. Assume (without loss of generality)
that with U; and U; also U; U Uj is contained in a coordinate neighbourhood for
each i, j and that U;NY #Qfor1 £ j < Land U;NY =0 for L+1< j £ N. The
charts x; for 1 £ j £ L can (and will) be chosen in such a way that the restrictions
Xj = Xj vr t0 Uj =U;NY form an atlas ) : U; — R? on Y. Then we have a

splitting R™ = R? x RY, d := m — ¢, and we write (y,#) for the local coordinates
near Y. We then assume that the transition maps belonging to the charts x; for
1 £ j £ L are independent of & for & < e for some £ > 0. In other words the
local coordinates (y,#) near Y are chosen in such a way that Z is an invariant
coordinate in R, i.e., remains unchanged under transition diffeomorphisms.

We first establish certain edge-decompositions of Sobolev spaces on R¢ x R? and
then pass to a corresponding global construction.

Let us define the space

HS(RY) := {u € H°(R?) : D2u(0) = 0 for all || < s — g}
for any s > 0, s — ¢ ¢ N. The space H§(R?) is closed in H*(R?), and (ksu)(Z) =
5%u(0%F), & € Ry, represents a group action in HE(RY).
Remark 1.2.1. For every s € R, s > 0, we have
oo (RO {0) = HE(RY),
cf. Kondratyev [12] or Dauge [3], see also [10]. The associated edge space
WH(R?, HE(R?)) ¢ H*(R*T), (1.12)
(cf. Definition 1.1.2 and Remark 1.1.3) can be characterised as follows:

WE(R?, HE(RY)) = {u(:z,y) € H5(R*7) : D2u(0,y) =0 for all || < s — g}

foranysZO,s—%géN.
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Let us now construct complementary spaces in H*(R?*¢) in terms of families of
edge-potential operators.
First, we form the vectors of symbols

tn,A) == "(t*(m, \) 1]l < s — g), E(n,A) == (k%(n,\) 1 |la] <s— g), (1.13)

cf. (1.8), (1.9), here, with covariables (n,A) € R/* instead of n € R?. We then
have

t(n,A) € Sq(RT; HY(RY),C7™)), k(n, A) € Sq(RT; €7, H(RY)),
for C709) = Dlaj<s— ¢ C, and
t(n, Vk(n,A) = idges) for all (n,\) € RTH, (1.14)

From the relation (1.7) and Remark 1.1.3 we see that the associated pseudo-
differential operators with respect to y induce families of continuous operators

K(\) i=Op(k)(A)  H*(RY,C7)) — W*(RY, H*(R')) = H*(R*T),  (1.15)
T(\) := Op(t)(\) : W*(R?, H*(R?)) — H*(R?,C7()).
As a consequence of (1.14) we obtain that
TNK(A) : H (R, C7%)) — H¥(R?, 7)),

is the identity map for all A € R!. The operator (1.15) is surjective, and we have
ker T'(\) = W?*(RY, HE(R?)) for all A € R'. Moreover,

K(NT(A) : W (R, H*(R?)) — W*(R?, H*(R?))
is a family of continuous projections to the spaces
VIR N = {K(A)w Lw e HS(]R{‘I,C"(S))} ,
for all A € R'. Thus for each s € R, s >0, s — % ¢ N, it follows that
W (R?, H*(R?)) = W*(R?, HS(R?)) @ V¥(RTT;0), A € R,

The latter relation is referred to as an edge-decomposition of the space H?*(R?*?)
with R? being regarded as an edge, embedded in R?*t¢ and R? as the model cone
of the corresponding ‘wedge’ R? x R?.
The operators

T(\) : VAR \) — H*(R?,C7)) (1.16)

are isomorphisms, and K ()) is the inverse of (1.16) for every A € R'.
Summing up, we obtain the following assertions:
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Proposition 1.2.2. Let E : W¥(RY, H§(R?)) — W*(R?, H*(R?)) be the canon-
ical embedding, cf. the formula (1.12); then the operators

W#(RY, Hi (R?))
(E K(\): @ —  HS(RHH9) (1.17)
H*(RY,C7))

are isomorphisms, and
WE(RY, H(RY))

< PO > . HARMT) — o (1.18)
H*(R?,Co(5))

for P(\) :== 1 — K(\)T(\) define the inverses of (1.17), for all A € RL.

Lemma 1.2.3. Let ¢ € C§(RTY) be an arbitrary function. Then for every
a € N¢ we have

7 p(F,y)k(n,A) € Sy '*I(RE x RIH; C7) 1o (RY)),

t(n, N3 p(&,y) € Sy *|(RE x R B2 (RY), (),

Moreover,
Fk(n,\) € S, IR C70), B (RY), tn, NE* € S, e B (RT), €79).

The potential symbols exist for all s € R, the trace symbols for all |a] < s — %.

Our next objective is to derive similar relations on the manifold M with respect
to the edge Y. Let us choose functions ¢;, ¢; € C§°(U;), 1 £ j < L, such that
Zle ¢j =1 in a neighbourhood of Y and ¢; = 1 on supp ¢;. Then the functions
@) = <pj|Y € C5°(Uj), 1 £ j £ L, form a partition of unity on Y, subordinate
to the covering {Uj,...,U}, and ¢} := 1/1j|y are functions in C§°(U}) such that
Y; = 1onsuppy}, 1 < j < L. After the above splitting of variables near Y into
y € Y and a global normal variable & € R? without loss of generality we assume
that the functions ¢; and 1; are of the form

P = Piwo, Yj = Pjwi

for functions wo (%), wi (&) € C§°(R?) which are equal to 1 in a neighbourhood of
Z = 0 and have the property w; = 1 on supp wp.

We now apply the operator push forwards of Op(t)(A) and Op(k)(\) to operators
on the manifold ¥ with respect to the charts x/; : U; — R?.

Let aj, B; € C§°(R4*7) denote functions with the property Xja; =i, X;8; = v¥;,
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[ I ._ 9. [ ] [N YY)
and set o := a]|Rq, B = ﬁ]|Rq, such that ¢} = xj"a}, ¥; = X7 5}

We now form the operator-valued amplitude functions
bj(y,y'sm, ) 1= aft(n, \)B; € S°(Ry x Ry, x R HP(RY), C70),  (1.19)

9i(w,y',m,A) = ajk(n,\) B} € SO(RZ X ]R{Z, x R+ o) H3(RY)). (1.20)

The factor 8; = B;(&,y') in the formula (1.19) is interpreted as an operator of
multiplication by 3;(Z,y') in the space H*(R?) for every fixed y; this represents
an element 3; € S°(R}, x Re+l: He(RY), H*(R?)), cf. Example 1.1.8. In a similar
manner we interpret «;; in the expression (1.20) as an operator-valued symbol.
The operators of multiplication by o (y) and 8j(y') in (1.19) and (1.20), respec-
tively only contribute a dependence of amplitude functions on the respective vari-
ables y or y’' and represent symbols of order zero, not depending on the covariables.
The associated pseudo-differential operators give us families of maps

Op(bj) (A) : ey (RE1) —5 HE, (RY), Op(g5) (A) 5 Hpp (RT) —> HE,p (REH).
Remark 1.2.4. Let &; € C3°(R™7) be any other function such that aj — &;
vanishes in some neighbourhood of & = 0. Then setting §; = a;k(n, \)B;, we
have Op(g;)(A) = Op(g;)(A) modulo a smoothing potential operator, depending on
A € R as a Schwartz function. A similar remark holds for the trace operators
when we replace B; by Bj such that B; — Bj vanishes near & = 0.

The pull backs under x; and X induce isomorphisms xj : Hg,,,(R*™?) —
Heomp(Uj), XJt Hogmp (R?) —> Hioy,, (U}) which give us

comp comp comp
B;j(A) = x5 0p(b;) (N () ™+ Heomp(Uj) — Heomp(U)),
Gi(N) = X;0p(g7) N OG) ™+ Heomp(U}) — Heomp (Uj)-
We now form the operator families B()) := Zle Bj(A) and G(A) := Zle Gji(N)
B(\) : H*(M) — H*(Y,C°®)), G(\) : H*(Y,C7®)) — H*(M).

Definition 1.2.5. Let H(M,Y') denote the subspace of all w € H*(M) such that
for every ¢ € C§°(U;) and every chart x; : U; — R that induces by restriction
a chart x; : Uj — R?, 1 < j < L, we have

pu = xjv for some v € WH(R?, HE(R)), (1.21)

This is an invariant definition with respect to transition maps associated with the
system of charts {x1,...,xz} on M near Y.
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Remark 1.2.6. The space H{(M,Y) can equivalently be characterised as the sub-
space of all w € H*(M) such that for every chart x; : U; — R as mentioned
before we have D?y@)(Xfl)*Ub:O = 0forall |a| < s — £ and all y. This is an
invariant property under coordinate changes and does not employ the assumption
that the normal bundle of Y is trivial.

Let E : H§(M,Y) — H?(M) denote the canonical embedding. Similarly as the
operators in (1.17), (1.18) we now form operators

H§(M,Y)
(E G(\N): @ — H’(M) , (1.22)
H3(Y,Co0))
and H3(M,Y)
PA) '\ s o
(B(A) ) . H¥(M) —» HS(Y,@C"(S)) (1.23)
for .
P(A) == ZX} {a; P (N8 ()~ (1.24)

Here Pj(\) : H¥(R¥T?) — We(R?, HS(R?)) is the first component of (1.18),
interpreted as an operator in local coordinates (Z,y) belonging to the chart
x; : Uj — R4T¢. The mapping property P(\) : H*(M) — H§(M,Y) follows
from the corresponding property of P;()) together with the definition of the space
H{(M,Y) and the fact that the multiplications by C'**° functions respect the spaces
WE(R?, H§(RY)).

Lemma 1.2.7. The composition B(A)G(\) represents a parameter-dependent el-
liptic element of LS(Y;R') @ C7(%) @ C7(5).

Proof. By definition the operator B(A)G()) is a finite sum of compositions

X5 0p(b;) (M) (X)X Op(g:) (N (i) (1.25)

fori, j =1,..., L. For every fixed 4, j we may transform (1.25) into a representation
in local coordinates in R?, using the fact that U; and U; belong to a common
coordinate neighbourhood on M. This gives us (1.25) in the form

Op, (@jt(n, \)B;)Op, (cik(n, \)B;) + R(A) (1.26)

where o}, 3; and «;, 8; are the former functions in the chosen local coordinate
system, and R(\) is an operator family in L;l(]Rq R,
We have

Op(;(y)t(n, N)B;(@',y")) = Op(t(n, N (y")B;(&,y") + Ri(N), (1.27)
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Op (e (,y)k(n, N)Bi(y')) = Op(ai(Z,y)Bi(y)k(1n, A)) + R2(A) (1.28)

for trace and potential families R;(\) and R2()\), respectively, of order —1.
Note that the notation of y or y’ in the latter formulas mean that y is regarded as a
‘left’ variable, y' as a ‘right’ variable in the sense of double symbols with variables
(y,y') under the oscillatory integrals. Writing (by Taylor formula at & = 0)

d
() Bi(E,y) — oY) = D EmYm(E,y)

with C*° functions 7, (depending on j) we obtain for the first summand on
the right of (1.27) Op(a(y)t(n, A)) + an:l Op(t(n, \)Zmym(Z,y)) which is equal
to Op(aj(y)t(n,A)) modulo a trace operator family of order —1 (where we use
Lemma 1.2.3). In a similar manner we can argue for (1.28) and replace this modulo
a lower order term by Op(k(n, A)aj(y')).

In sum it follows that (1.26) is equal to a}(y)Op, (t)Op,(k)ai(y') = aj(y)a;(y'),
modulo contributions of order —1 in A. Carrying out the summation over ¢, j from
1 to L we obtain the identity operator modulo a term of order —1. Concerning
the nature of the latter contribution we can easily verify that this is indeed a
classical parameter-dependent pseudo-differential operator of order —1 on Y, i.e.,
the operator in question is, in fact, parameter-dependent elliptic of order 0 (in a
trivial sense, insofar its parameter-dependent principal symbol of order 0 is equal
to 1). O

Let us write the composition of (1.22) and (1.23) in the form
(E GO)(PA) B()=1-C(\) (1.29)

for a corresponding operator family C(A) = —I — EP(A\) — G(A\)B(A) for I =
idgs (ar)- By construction, for arbitrary ¢, ¢» € C°°(M) such that suppp NY =
suppy NY = () the operators pC()\)¢ define an element in S(R', L~°°(M)). Lo-
cally near Y the operator C'()A) is a pseudo-differential operator with respect to
y € R? with classical operator-valued symbol in (7, A) and homogeneous prin-
cipal symbol of order —1. In order to verify this we first consider G(A\)B(\)
which is locally defined as a sum of compositions of pseudo-differential opera-
tors in y. Its homogeneous principal symbol in (7, A) of order zero is equal to
k) (n, A)t0)(n,A) (cf. the notation in the formula (1.6)). Similarly as (1.14) we
have to) (n, )\)k(o) (n,A) =idge(s) and, 1 — k(o) (n, )\)t(o) (n, ) is a family of projec-
tions to Hg(R?), while Ky (n, Nt (o) (1, A) is a family of projections to a complement
of H3(R%) in H*(R?). Thus the sum of the principal symbols of EP(X)+G(\)B(\)
is equal to id s (ra) for every (n, ) # 0 which shows that the local operator-valued
symbols of C'(\) are of order —1.

Thus we proved that the operator (1.23) is an approximation of a right inverse
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of (1.22) modulo C(A). In a similar manner we can show that (1.23) also approxi-
mates a left inverse modulo a remainder of order —1. We want to improve this by
a formal Neumann series construction. In fact, if we form

N
“(Px(A) By(V) = H(P(Y) BA) Y CFW), (1.30)

then we obtain a similar approximation of the (two-sided) inverse of (1.22) modulo
a remainder which is parameter-dependent smoothing outside Y and locally near
Y an operator with a symbol of order —NV.

Remark 1.2.8. The composition By(A)G(N) for every N € N is a parameter-
dependent elliptic element of LY (Y;R') ® C°) ® C7) with idgo(.) being the ho-
mogeneous principal symbol.

The relation (1.30) makes sense for every finite N. Let us generalise it for N = oo
by passing to an asymptotic sum on the right of (1.30). To this end we first observe
that the operators C*(\) can be written in the form

L
=Y (1)« (@;0p(¢))(N)B;) + Di(N) (1.31)

Jj=1

for (left-) amplitude functions ck(y,n,A) € S *(R? x RIH; He(RY), S(RY)) and
some element Dy (\) € S(]R{l,E(HS( ),C(M))). The meaning of Op(-) on the
right hand side of (1.31) is Op,(+); but the operators can be interpreted as op-
erators on M, more precisely, as operators on Y with symbols having values in
operators with kernels in (Z,7') € R? x R?, supported in a tubular neighbourhood
of Y, because of the specific structure of the amplitude functions generated by
the abovementioned local trace and potential symbols. In addition as for pseudo-
differential operators on a closed manifold with scalar symbols the local amplitude
functions c; ¥(y,n, \) can be arranged in such a way that they behave invariant with
respect to symbol push forwards under transition diffeomorphisms with respect to
y, modulo symbols of order —oo. This is true for every fixed k. This allows us to
form the asymptotic sums

o0
i(y,m,A) ~ > chy,m, A) in S7H(RY x RO HP(RY), S(RY))
k=1

which are invariant under transition maps as before and also have the abovemen-
tioned property of the support of kernels in (#,Z'). Thus, if we form

"(Poo(A) Bo(N) = "(P(\) B 1 +Za, (x;)+Op(c;)(N)B;
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we obtain another version of the relation (1.29), namely
(B GO)"(Po(N) Bx(N) =1-Cr(N) (1.32)

where now C,.(\) € S(R', L(H*(M),C>(M))). A similar construction is possible
for approximating the inverse from the left. This means that we also have

(P () Boo(N)(E G(N) =1-Ci(N) (1.33)
H§(M,Y) H§(M,Y) N C> (M)
for some C;(\) € S(]Rl;£< ® , ® >>
H3(Y,Co9) C>®(Y,C7®),

Theorem 1.2.9. Letus fits € R, s > %, s—% ¢ N. Then there is a constant C > 0
such that the operators (1.22) and (1.23) are isomorphisms for all A € R, |\| = C.

Proof. From the relation (1.32) we see that the operator (1.22) has a right inverse
for large |A|. Analogously the relation (1.33) shows us the existence of a left inverse
for large |A|. This gives us the invertibility of (1.22) for large |A|. In a similar manner
we can argue for (1.23). O

1.2.2 Edge-representations of differential operators

As in the preceding section, let M be a manifold of dimension m with an embedded
manifold Y of dimension ¢, and let

A: H5(M) — H*(M) (1.34)

be a differential operator, s — u > % for d = m — q. Let us fix |[A\| 2 C in such a
way that the operators (1.22), (1.23) are isomorphisms, and write the correspond-
ing operators as (Es Gs) and *(Ps Bs), respectively. The operator (1.34) is then
equivalent to the block matrix

Ay = (/}0 g) - ( gij; )A(Es Q). (1.35)

for Ag = Ps_,AE,, T = Bs;_,AE;, K = P;_,AG,, Q = B,_,AGs and A, is
continuous as an operator

H§(M,Y) Hy™"(M,Y)
A e ® — ® . (1.36)
H*(Y,C7®)) H*#(Y,Cos—m)

We want to identify A; with an operator in the edge algebra on M with respect
to the edge Y. To this end we associate with 4 a principal symbol

o(As) = (0'11) (As), on(As)),
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where oy (As) is the standard homogeneous principal symbol of Ay of order p
(or of A which is the same), and oA(As) the so called principal edge symbol
which is operator-valued (more details on the edge-calculus will be given below in
Section 2.1).

Let us now calculate oa(A;). The function oy (As) € C°(T*M \ 0) in local coor-
dinates (Z,y) € R? x R? with covariables (£,7) has the form

op(A) &y, 6n) = D aapl@y)En’.
la+|8l=p

Freezing coefficients at & = 0 and replacing 50‘ by D¢ yields a (y,n)-dependent
family of continuous operators

oaA(A)ym) = D aap(0,y)Den’ : HY(RY) — H7H(RY). (1.37)
la|+|B]=p

Observe that for (ksu)(Z) := 82 u(6) we have

on(A)(y, n) = 6" kson(A)(y, m)ry "
for all § € Ry, cf. the formula 1.6.

Proposition 1.2.10. Let A be elliptic on M in the standard sense. Then (1.37)
is a family of isomorphisms for all (y,n) € T*Y \ 0 and s € R.

Proof. Let (y,n) € R? xR?, n # 0. Then we can write o (A)(y,1) = Opz(p)(y,n),
where p(y,&,n) = Z\&IHBI:u Gap(0,y)€%n° has constant coefficients with respect
to & and

p(y,&,m) £0, for all € € R, (1.38)

) # 0, for all (€,7) # 0 and  # 0 in (1.38). It follows then
1“(R?) is an elliptic symbol of order —u. It is now evident
Op;(p~1)(y,n) is the inverse of the map (1.37). O

since oy (A4)(Z,

A)(%,y,¢
that p(y,&,n)~" €
that o (A)(y,n)~"

=

N

I

From the construction of the operators Ey, Gy, Ps—,, Bs—, we have n-dependent

families of isomorphisms o < ];s*“ ) (n) and oA (Es Gs)(n)
s—p

HTV(RY) HG(RY)
H*RY) — ® and ® — H*(R?Y) ,
Qo (s—n) Qe (s)

respectively, given by

(i Jor= (7 Sl ),
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and
on(Es Gs)(n) = (oa(Es)(n) oa(Gs)(n),
where p
on(Gs)(m) = (o (k) () : faf <s = 3)
and

oA (Boi)(0) = “(onlt_,)) ol <5~ = 5)

for the corresponding symbols
kg (n) € S4(RY;C, H? (RY)), t3_,(n) € S4(RY; H*~#(R?),C),
as in Section 1.1.3. Moreover, the canonical embedding
on(Es)(n) : Hy(RY) — H*(R?)

is also an operator-valued symbol of order 0 between the corresponding spaces.
We then define
P,_
on ) = on () hon( D mon(E. G,

as a family of continuous operators

HE(RY) HE(RY)
on(As)y,m): & — ® : (1.39)
Co(®) Cols—m)

which is homogeneous of order p in the sense

on(As)(y,61) = 6" (’B‘S (1)) oA (As) (y,m) (”gl 2)

for all 6 € Ry .

Corollary 1.2.11. Let A be elliptic on M. Then (1.39) is a family of isomor-
phisms for all (y,n) € T*Y \O and s € R, s — u > %.

2 Parametrices in the edge calculus

2.1 [Edge calculus
2.1.1 Manifolds with edges and edge-degenerate symbols
By a manifold W with edge Y we understand a topological space such that W\ YV’

and Y are C°° manifolds. In addition we assume that every y € Y has a neigh-
bourhood V which is homeomorphic to a wedge X* x 2, where 2 C R? is an open
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set, ¢ = dimY, and X* := (R} x X)/({0} x X), the cone with a closed compact
C'*° manifold X as base, n = dim X. We further assume that the homeomorphism
V — X2 x Q restricts to diffeomorphisms VNY — Q and V\Y — X" x Q for
X" := Ry x X, and the transition maps X" x  — X" x Q for different (admit-
ted) choices of diffeomorphisms of the latter kind are required to be restrictions

of diffeomorphisms _ _
Ri x X xQ—>Ry xX xQ (2.1)

to X x Q. The latter conditions give rise to a C°° manifold W with boundary
OW such that W\ OW is an X-bundle over Y, and diffeomorphisms V' — X% x Q
correspond to diffeomorphisms

X:V— Ry x X xQ (2.2)

from corresponding open subsets V. C W which intersect OW. A ‘singular
chart’ (2.2) on W gives us a splitting of variables (r,z,y), and the restrictions
of the transition maps for the system of charts (2.2) to r = 0 just define the
transition maps

XxQ—XxQ (2.3)

for the X-bundle OW.
We call W the stretched manifold of W, and we set

Wreg := W\ OW, Wgipg := OW. (2.4)

Example 2.1.1. As in the beginning of Section 1.1.2 we can interpret the Eu-
clidean space R'T"t2 as a manifold W with edge {0} x R? and model cone
R*™ = (S™)2. Then the stretched manifold is equal to Ry x S™ x RZ.

A manifold W with edge Y can be equivalently defined as the quotient space
W/ ~, starting from an arbitrary C'*° manifold with boundary OW which is an
X-bundle over Y for a compact closed C*° manifold X. The equivalence relation
~ means the contraction of fibres over any y € Y to the point y. It is then possible
to choose a collar neighbourhood 22 [0,1) x OW of OW such that the transition
diffeomorphisms in that neighbourhood are independent of r for 0 < r < ¢ for
some ¢ > 0. This gives us the following observation:

Remark 2.1.2. We find representations of the maps (2.2) such that the functions

(7(r,2,y), 2(r,z,y), y(r, 2,y)) (2.5)

belonging to the transition maps (2.1) are independent of r for 0 < r < e. In par-
ticular v — &(r,z,y) gives us the y-dependent family of diffeomorphisms X — X
for 0 £ r < & which belongs to the transition maps (2.3) for OW.

The connection of our considerations to manifolds with edges is that we interpret
the C'°° manifold M with the embedded manifold Y as a manifold W with edge
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Y. In this case we have X = S§™ when d = n + 1 is the codimension of Y in M,
and X2 = R? can be interpreted as the fiber of the normal bundle of Y in M.
In local coordinates near a point of Y we have a splitting of variables into (Z,y) €
R x Q,Q € R? open, and in R? \ {0} we introduce polar coordinates (r,z).
Then the operator (1.34) in local coordinates takes the form (1.3) for coefficients
ajg(r,y) € C=(Ry x Q,Diff #~UHBD (X)), If we also introduce local coordinates
on X, varying in an open set ¥ € R”, the operator (1.3) has an amplitude function
of the form r~#p(r,z,y, p,&,n) for

p(Ta €, Y,p, f: 77) = ﬁ(ra T,Y, p~7 g: ﬁ) |;5:7"Py7~7=7’ﬂ’ (26)

where p is a polynomial in (5, &, 77) of order p with coefficients smooth up to r = 0.

Definition 2.1.3. A symbol p(r,z,y,p,&,n) € SH(Ry x T x @ x RM"H9) is called
edge-degenerate, if it can be written in the form (2.6) for some p(r,z,y,p,&,7) €

SH(Ry x & x Q x Ry,

With p(r,z,y, p,&,n) we associate pseudo-differential operators on Ry x X, de-
pending on the variables (y,n) € 2 x RY. We set

0Py, (P) (y, Mu(r, ) = / / ! r=rr i@y gy p, € )u(r’, 2 )dr' da' dpde,
which gives us a family of continuous maps

op, . (P)(¥,m) : C5° (R4 X E) — CF(Ry x X).

To establish a calculus of operators in a suitable scale of weighted Sobolev spaces
we now formulate the Mellin operator convention (‘Mellin quantisation’) with re-
spect to the variable r € Ry . To this end we consider symbols that are holomorphic
in the complex variable z € C. If F is a Fréchet space and U € C an open set, by
A(U, F) we denote the space of all holomorphic functions on U with values in F.

Definition 2.1.4. Let S5 (R x ¥ x 2 x C x R**?) denote the space of all

such that h(r,z,y,B8 +ip,&,n) € SHRy x T x Q x ]Rtl)??q) for every B € R,
uniformly in ¢ £ 8 < ¢ for every ¢ £ .

Theorem 2.1.5. Let p(r,z,y,p,&n) € SH(Ry x ¥ x Q x RT") be an
edge-degenerate symbol in the sense of Definition 2.1.3. Then there exists an
h(r,z,y,z,€,1m) € SH(Ry x £ x 2 x C x ]Rg‘gq) such that for

h(r,e,y,2,6n) = h(r,z,y,2,& )

we have

op,. . (P)(y,m) = opy,0p, (h)(y,n) mod C*(Q, L™ (Ry x X;R?)) (2.7)
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for every v € R. The element h is uniquely determined by p, modulo an element
in STC(Ry x ¥ x Q x R+,

The idea of the relation (2.7) is to replace the pseudo-differential action in r € Ry
based on the Fourier transform by a corresponding action based on the Mellin
transform, under a corresponding change p — h of amplitude functions. Inciden-
tally, this process will be referred to as a Mellin operator convention. Theorem 2.1.5
is to be understood first as a relation between families of pseudo-differential on
R+ x X as continuous operators C3° (R x ¥) — C*°(Ry x X); then (2.7) is valid
for all v € R. However, the expression in Mellin terms admits an extension to
weighted Sobolev spaces; in this moment v becomes fixed.

2.1.2 The global Mellin operator convention

Let X be a closed compact C'*°° manifold, n = dim X, and choose an atlas of charts
xj:Uj — R*, j=1,...,N. Let {%}j:17...7N be a partition of unity on X subor-
dinate to {Uy,...,Un}, and let {¢;},_, 5 be asystem of functions ¢; € Cg°(Uj)
such that ¢; = 1 on supp ¢, for all j.

Consider the space L=°°(X) of all smoothing operators on X, i.e., operators
Cu(z) = [y c(z,2")u(z")dz’ for kernels ¢ € C*°(X x X), where dx refers to a Rie-
mannian metric on X. The space L~°(X) is Fréchet via its bijection to C* (X x
X), and we set L™ >°(X;R?) := S(R?,L *°(X)). Moreover, let p;(z,&,n) €
SEH(R™ x n;q), j=1,...,N, be asystem of local amplitude functions. We then de-
fine parameter-dependent pseudo-differential operators op, (p;)(n) in R” and form
the n-wise operator pull backs P; (1) := (Xj_l)*opz (p;)(n) to the manifold X. Then
L!(X;R?) is defined as the set of all P(n) = Z;V:1 @ Pj(m); + C(n) for arbitrary
P;j(n) as mentioned before, and C(n) € L=>°(X;R?). Note that L% (X;R?) is a
Fréchet space in a natural way.

Definition 2.1.6. Let M!,(X;R?) denote the subspace of all elements

such that h(B +ip,n) € LY (X;R, x RE) for every B € R, uniformly inc < B < ¢,
for every ¢ < ¢. For ¢ =0 we simply write M%(X).

As a consequence of the definition we have in M/,(X;R?) a natural semi-norm
system which makes it to a Fréchet space.

Theorem 2.1.7. Let p(r,y,p,7) € C®(R4 x Q,Lgl(X;]Ré;q)), Q2 C R? open,
and set p(r,y,p,n) = P, y,p,0)|j=rpi=rn- Then there exists an element
h(r,y,z,7) € C®(Ry x Q, Ml(X;RE)) such that h(r,y,z,n) = h(r,y,z,7)|z=rn
satisfies the relation

op,.(p)(y,n) = opy;(h)(y,n) mod C=(Q, L™ (X" RY))
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for ally € R, and iL(T y,2,7) is uniquely defined mod C (R x Q,M5(X; ]R%))

by B(r,y,p, 7). For po(r,y,p,n) = H(0,y,rp,rn) and ho(r,y,z,m) = h(0,y,z,rn)
it follows that op,.(po)(y,n) = opy;(ho)(y,n) mod C>(Q, L=°(X";RY)) for all
vyeR

Proof. The entire proof is rather long. In order to make the specific nature of our
Mellin-edge representations transparent, we sketch the main ideas of the proof;
more details can be found in [6] (there are in fact different proofs which point out
other aspects of what we call Mellin operator conventions, cf. [7]).

In the sequel we write ~ if an equality holds mod C*(Q, L= (X"; R?)). First

we prove that for any p(r,y,p,7) € C®(R; x Q,Lﬁfl(X;]R;%q)) there is an
folr,y, 2,17) € C=(Ry x Q, L% (X;To x RL)) such that

op, (p) (5> m) ~ 0p3s (fo) (> n) + opy (p1) (3, )

where fo(r,y,z,1) := fo(r,y,z,rn) and pi(r,y,p,n) = Pi(r,y,rp,ry) for an
p(r,y, pyi) € C®(Ry x Q, LA H(X; ]RHq)) In fact, fo(r,y,z,7) will be of the
(

form fO(Tayaipaﬁ) :ﬁraya_paﬁ)' -
By iterating this procedure we obtain a sequence f;(r,y,z,7) €
C®(Ry x Q, LI (X;T x RY)) for all j € N such that

1
op,.(p ZOpfw (f1)(ysm) +op,(pr+1)(y,n)

for pry1(r,y, p,m) == Pry1(r,y,rp, ) with
Praa(ry, pi) € C Ry x Q, LA FHGRYE).

The asymptotic sum

f(r7y7z7ﬁ) =

M8

fi(ryy,2,7) in C®(Ry x Q, L (X;To x RY))

Il
S

J

then gives us an f(r,y, z,1) = f(r,y, z,ry) such that

op, (0) (1) ~ opks (F) ().
€

)

Now, by a kernel cut-off argument it follows that to every f (r,
C®(R4+ x Q, L (X;To x RY)) there is an h(r,y, 2,7) € C®° (R4 x Q, Mg,
such that h(r,y, z,1) := h(r,y, z,r1) satisfies

y7 Z?
(X

ﬁi‘

’

1 1
opj; (h)(y,m) ~ opj, (f)(y,n)-
Finally, in view of the holomorphy of h in z, we obtain as a consequence of the

1
Cauchy theorem that opZ,(h)(y,n) = op},(h)(y,n) on functions with compact
support in r € Ry, for arbitrary v € R. O
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2.1.3 Edge amplitude functions from the interior

Let
(p(r,y,psm), h(r,y, z,m))

be a pair of operator families as in Theorem 2.1.7, related to each other by
the Mellin operator convention. If w(r), ©(r) are cut-off functions, we write
w < @if® = 1 on suppw. Given a cut-off function w = w(r) we pass to
n-dependent cut-off functions wy,(r) := w(r[n]), where n — [] was defined in
Section 1.1.2. Then w < & implies w;, < &y, for all n € RY.

Let us now choose cut-off functions w, @, @ such that

w=<oand & < w. (2.8)

Then op, (p)(y,n) ~ op},(h)(y,n) implies that the following result holds:

Lemma 2.1.8. Given (p,h) and cut-off functions w, ©, w satisfying the
relation (2.8), we have

wyopir () (y,m)@n + (1 = wy)op, () (y, m) (L = &y) ~ op,.(p) (y, )
for every v € R.

Proposition 2.1.9. For every h(r,y,z,n) = ﬁ(r,y,z,ﬁ)hwn with ﬁ(r,y,z,ﬁ) €
C®(Ry x Q, M5 (X;5RY)) the operator family wnop,, 2 (h)(y, )@y represents an
element in S°(Q x RZ; K7 (XN), K5~#7(XN)) for every s, v € R.

This result is an easy consequence of the smoothness in (y,n) as an
LLST(XN), K577 (XN))-valued function together with the homogeneity of
order 0 for large || when A is independent of r, otherwise combined with a simple
tensor product argument.

The following Theorem 2.1.10 is crucial for the structure of the edge calculus. In
the global calculus on W below we will refer to a generalisation to the case of
non-trivial X-bundle OW (cf. the notation in connection with (2.3)). Therefore,
we give the details of the proof; it employs ideas from [16]. One of the tools are
pseudo-differential operators on X” interpreted as a manifold with conical exit
to infinity r — oo; the general background may be found in [18]. The calculus
of such exit operators goes back to Parenti [14] and Cordes [2]. Other authors
then developed (partly independently) the calculus in different generality, see
Schrohe [15] or Chapter 3 in [10].

Let L*9(X") denote the space of all pseudo-differential operators of order u on
X" in this exit calculus of order zero in 7 — oo where r is treated as an additional
covariable in the symbolic estimates. This space is Fréchet in a natural way. If £
is a Fréchet space that is a (two-sided) module over an algebra A we denote by
[a]E (E[b], [a]E[b]) the closure of the set of all ae (eb, aeb) for all e € E in the
space FE.
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Theorem 2.1.10. Let o(r), 6(r) be arbitrary cut-off functions, and set

b(y,m) :==r""o {wnOPL £ (h)(y, M@y + (1 = wy)op, (p) (y, m) (1 - ‘f’n)} 6. (2.9)

Then b(y,n) as a C* family (in (y,n) € Q x RY) of continuous operators
K7 (XN) — K5 #7#(X7) defines an element

b(y,m) € SM(Q x R K7 (X7), K77 #(X ")),

for every s € R.

Proof. First note that the aspect of dependence on y € (2 will not affect the proof
in an essential way. So we simply omit y and focus on the typical dependence of
operators functions on 7. Let us write

bo(n) = ™" owyopy, * (W) (M6, bi(n) =1~ o(L —wy)op, () () (1 —&y)5.
We then have b(n) = bo(n) + bi1(n), and it suffices to consider the summands
separately. For bg(n)) we apply Proposition 2.1.9 together with the fact that bo(n)

can be written in the form by(n) = o@,r # {wnop}y\/f_% (h)(n)ay ¢ 6. We have
ooy € SH(RI; KPR (XN), KPR (X)), § € SURI; K (XN), K57(X 1))

for every s, € R, and then bg(7) has the required property, see Remark 1.1.6.
Concerning b1 (n) we decompose the result into different observations that will be
checked afterwards in more detail. We have

bi(n) € C™ (R, L(K™7(X™), K777 1(X 7)), (2.10)
for every s, v € R. In fact, op,.(p)(n) is a C* family of continuous operators

0P, (P)(1) + Heomp(X") — HipM(X7),

loc

for all s. Since the operators of multiplication

G(1—y) : KST(XN) — HE o (X7,

comp

and
or M1 —wy,) : Ho H(XD) — K77 H( X,

loc
both represent C'*° families of continuous operators between the respective spaces,
for all s, v € R, we immediately obtain (2.10).
Choose any excision function x(n) and write by () = x(7)b1(n) + (1 — x(n))b1(n).
Then, from (2.10) it follows that

(1= x(m)br(n) € C5°(RY, LT (X7), K7HT7H (X)),
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and hence
(1= x()bi(n) € STX(RY; L7 (X)), L37HIH(XN)),

for all s, v € R.

It remains to consider x(n)bi(n). As we know, the operators of multiplication by
o or & represent operator-valued symbols. Thus, it suffices to study the operator
function

ba (1) = x(m)r~*(1 = wy)op,.(p) ()(1 — wp). (2.11)
Because of the factors ¢ or ¢ in the original operator function, without loss of
generality, we take p as a double symbol in 7, ' € Ry vanishing forr > corr' > c.
In other words, p may assumed to be of the form p(r,r', p,n) = p(r,r',rp,rn), for
B, 5,77) € Cg° (B x By, LA (X RLTD)),
A standard tensor product argument tells us that there is a representation

plr,r', by ZAJQOJ )p; (B, MY (r") (2.12)

convergent in the Fréchet subspace of all elements in C*° (R4 x Ry, Lk (X; ]R:;;q))
that are supported by the set {(r,r') ERy xRy :0<r <¢, 0 S 7' S ¢}, where
(Aj)jen C C is a sequence with 3272 |A;| < 00, ¢; and ¢; are null-sequences in
C*>([0,¢)o) (the latter space denotes the subspace of all elements of C*°([0,c])
vanishing of infinite order at c), and p;(p,7) is a null-sequence in the space
Li(X; ]R:;;q). The operator of multiplication by some ¢ € C*°([0, ¢)o) represents
an element in our symbol space, in fact, it defines continuous maps

C([0,¢)0) — SO(RT; L7 (X7), K37(X7)),

for all s, v € R.
We now look at the symbol p;(5,7) in the middle of the summands on the right
hand side of (2.12). In order to show that

X (1) (1 —wy)r *op,(p)(n)(1—oy) ZAJ%X (1—wy)r *op,(p;) () (1 —@p)y,

for pj(r, p,n) = p;(rp,rn) converges in the space S#(R?; KL=V (X)), L5~ H(XN))
it suffices to show that

¢j(m) = x(m) (1 = wy)r™" op, (p;) (M) (1 = &) (2.13)

is a O family of elements in L(K*7(X"), K #7#(X")) which tends to zero
for j — oo in the operator norm, uniformly for |n| < R for some sufficiently large
R > 0. In fact, because of c;j(A\n) = Mrcj(n)ry ' for all A 2 1, |n| = R for a
suitable choice of R it follows then that ¢;(n) € SH(R?; Y (XN), KE—HI—H(XN))



2 PARAMETRICES IN THE EDGE CALCULUS 27

tends to zero for j — oo in that symbol space.

To complete the proof we show the required properties of (2.13). For abbreviation,
let us omit subscript j, and fix for the moment 1 # 0. We then have to observe,
in particular, that

e(n) = x() (1 = wy)r—*op,(p)(n)(1 = &y) € LICHT(XN), L5 7 7H(XN),
for p(r, p,n) = p(rp,rn) and that

LE(XG R 5 p = c € LK (XM), K5m771(X M)
is continuous.

We use the fact that supp(1 — w,) and supp(l — &,) are contained in a half-axis
like [ar, 00) for some a > 0 (independent of 1), which allows us to forget about -y
and to replace everywhere K%7(X") by HS, (X").

From the exit calculus we know that the map [JLAO(XM[I] —
L([WHE, o (X)), [9HE (X)) is continuous for every pair of excision func-

cone cone

tions ¥(r),d(r) (i.e., vanishing for r £ ap and #(r) = 1for r 2 ;) such that
¥ = 1 on supp 9. Moreover, the map p(p,7) — ¢()) defines a continuous operator
LE(X; ‘13?;7‘1) — [9]L#O(XM)[J], for fixed 1, where ¥(r) := x(1)(1 — w,(r)) and
D(r) := X(n)(1 — &, (r)) for another excision function ¥(n) that is equal to 1 on
supp x- The latter assertions are true uniformly in 7 varying on a compact set.
This completes the proof. O

Remark 2.1.11. Let us set with the notation of Theorem 2.1.7
ok (O)(y,m) = w(rln))opay * (ho)(y, m)@(rin))
+ (L= w(rlnl))op, (po) (v, m) (1 — & (r|n])
for every (y,n) € @ x (R?\ {0}). Then
oh I (B)(y,m) : KH7(X7) — Ko HITmRE (XY
is a family of continuous operators and
oh ! (0)(y,0m) = 8 w50k (D) (y, m)rs
for all 6 € Ry and (y,n) € @ x (R?\ {0}), s e R

2.1.4 Edge amplitude functions of Green type

This section develops some necessary material on another category of amplitude
functions that encodes (in analogy to boundary value problems) Green’s functions
as well as operators of trace and potential type with respect to the edge.
Let us form the Fréchet spaces Ko7 (X") := im K™7(X") and

meN

SI(X) = Yim (r) TR T (XA,
meN
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Remark 2.1.12. The Fréchet spaces K°7(X"), S2(X") can be considered with
the group action {Ks}sep,, (ksu)(r,z) = 5nT+1u((5r, x),d € Ry, forn = dim X.
More precisely, if E is one of these spaces, we find a sequence of Hilbert spaces
EJ, j € N, with continuous embeddings E’T' < EJ for all j and E = @jeN EJ,

such that {”5}66R+ induces a strongly continuous group of isomorphisms on EJ
for all j.

Definition 2.1.13. An operator function
gy, m) € CX(Qx R, LK™ (X") @ T, K= (X7) @ CF)),

for some s € R and j+ € N is called a Green symbol of order p € R (in the local
edge calculus, with weights v, 8 € R) if there is an € =e(g) > 0 such that

g(y,m) € SH(Q x R K57 (XM) @ T, S5 (XM @ T+),

and

g*(y,m) € SHQAXRG;K¥F(XM) o T+, ST (XM e T),
for every s € R. The pointwise adjoint ‘-*’ refers to (u7g*U)I_C°~°(XA)@Cff =
(9, v) o0 xryp+ Jor all u € C(XN) & U=, v € O (X") @ T+

Observe that there are useful (pointwise) kernel characterisations of Green sym-
bols, cf. Seiler [22] which refer here to the individual weight intervals of width
e>0.
Set g = (7, 3), and let RE(Q2xR?, g; j_, j;) denote the space of all Green symbols.
As classical symbols, the Green symbols g(y,7) have a unique sequence g(,—;) (¥, )
of components of homogeneity p — j for all j € N. Let us set

oh (9 Y,n) = 90u—i) (W5 )- (2.14)
In particular, as introduced before in the abstract context, for j = 0 we have the
homogeneous principal symbol of the Green symbol g(y,7),

ol (9)(y,m) € CX(T*Q\0; () LK (XN & T, SP(XN) @ T+)),

seR
satisfying the relation o/ (g)(y,dn) = d*diag(ks, 1)oh(g)(y,n)diag(k; ", 1) for all
0 eRy.

2.1.5 Smoothing symbols of Mellin type

Letusfix f € R, set S () :={z € C: B —e <Re(z) < f+¢e},andlet M7 >°(X)s
for any € > 0 denote the space of all f € A(S-(8), L >°(X)) such that f(a+ip) €
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L™ °(X;R,) forevery a € R, a € (8 —¢,+¢), uniformly in compact subintervals
of (8 —e,B+¢). Let us set
M™%(X)s = | MI®(X)s.
e>0
We use this, in particular, for g = ”T“ — 7 for some weight v € R, as-
sume f(y,z) € C>(Q, M*OO(X)nTH_,Y), and formulate smoothing Mellin pseudo-

differential operators wopjw_%(f) (y)w : K7 (XN) — K7 (X") which are con-
tinuous for all s € R, for any choice of cut-off functions w, @.

Remark 2.1.14. Let f(y,z) € COO(Q,M_OO(X)nT-Hi,Y), and let w, @& be arbitrary
cut-off functions. Then the operator family

m(y,n) :=r " w,opy ® (F)y)n° e, (2.15)
for every p € R, j €N, a € N?, || £ 4, represents an element
m(y,n) € St~V (@ x BRI KT (X7), K207 #(XY),

for all s € R, and for j > 0 we have m(y,n) € Réf(jf‘al)(ﬂ x RY,g), for g =
(7,7 = w)-

Note that the homogeneous principal symbol of (2.15) of order u — (j — |a]) is
equal to

oh U ) (y,m) = r T w(rnhop), (A Sl (2.16)

Let RYy;, (2 x R?,g;j_,j4) denote the set of all operator-valued symbols of the
form

c(y,n) = (m(%’") 8) +9(y,m),

for arbitrary m(y, n) of the form (2.15) for j = 0 and g(y,n) € RE(Q x R?,g;5-,j+).
For j € N\ {0} we set Ry /(2 xRY,g;j_,74+) =R (X xR, 955, 51).

2.1.6 The edge algebra

We now pass to the space R*(Q2 x R?,g;j_,j+) of so called edge amplitude func-

tions of order p € R, with weight data g = (v, — p) which is defined to be the
set of all families of operators

atyon) = (%" Q) + el (2.17)
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for arbitrary symbols b(y,7) of the type (2.9) and c(y,n) € Ry (2 x R?,g;5,j4).
More generally, let

REI(Q xR, g55,j+) (2.18)
for g = (7,7 — 1), j € N\ {0}, denote the space of all a(y,n) of the form (2.17)
such that c(y,n) € Ry {¢(Q xR, g;5_,j4) and b(y,n) replaced by an operator
family of the same structure as (2.9), but with p — j in place of u (which concerns
the order of symbols as well as the weight factor r—#+7),
We now turn to the global operators on a (stretched) manifold W with edge Y.
First we need global versions of the weighted edge Sobolev spaces. Assume, for

simplicity, that W is compact and choose finitely many ‘singular’ charts of the
kind (2.2), namely,

X;:V;, — Ry x X xRS forj=1,..,L

and ‘regular’ charts x; : U; — R'Y“"*¢ forj = L + 1,...,N, such that the
wedge neighbourhoods {V; }j:1 _; together with the ordinary coordinate neigh-
bourhoods {U;},_;,,  form an open covering of W. Choose a subordinate
partition of unity {p; }j:1 v » consisting of functions in C*°(W), supported in
V; and Uj, respectively.

Definition 2.1.15. The weighted edge Sobolev space W*7 (W) is defined to be the
completion of C§° (Wieg) with respect to the norm

L N 2
S NOG Y eiulliyen (xasrn + 2 10G ) @iullin @itnto
j=1 j=L+1

Remark 2.1.16. Definition 2.1.15 makes sense, i.e., it does not depend on the
charts and the chosen partition of unity. This is a consequence of Proposition 3.1.2
below. Note, in particular, that Definition 2.1.15 does not require that OW is a
trivial X -bundle over Y.

Observe that
Homp (Wreg) CWHT(W) C Hifyo(Wreg)

for every s, v € R, cf. Example 1.1.4.
A similar construction gives us global weighted edge Sobolev spaces of the kind
Weshp (W) and Wi (W) when W is not necessarily compact, using locally finite

loc

coverings by V; and Uj, respectively. Let us point out that for u € Wgg), (W)
the support supp v may intersect Wsi,,, in a non-empty compact set; similarly, for
u € W (W) we may have supp v N Wying # 0 (cf. also the meaning of ‘comp’ and

loc
‘loc’ spaces for abstract edge Sobolev spaces on an open set {2 3 y with values in

E, where ‘comp’ and ‘loc’ only refers to y). From the identification W>(W) =

loc
. O . . 0,0
L} (Wyeg) we have a corresponding sesquilinear paring (-, Do oy 1 Wige (W)
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when one of the factors belongs to Wegn,,(W). Similarly, in H{ (Y, J) (for any
J € Vect(Y) with a fixed Hermitian metric) we have a corresponding sesquilinear
paring (+,) o (y,s)- For operators C : C5°(Wreg) ® Cg° (Y, J-) — O™ (Wieg) ®
C>®(Y,J;), Jx € Vect(Y'), we define formal adjoints by (Cu, U)W&E(W)EBH&C(YJH
(u,C*v)W&g(W)@H&C(KL) for all u € C§°(Wieg) @ CG°(Y,J-), v € CF°(Weg) @
(Y, I, 5.

For the following notation we choose a cut-off function o € C'*°(W) which is equal

to 1 in a collar neighbourhood of OW and vanishes outside another neighbourhood
of OW. Let

V™ (W,g;J_,Jy) for g = (7,7 — p),

v, b € R, denote the space of all smoothing operators C = (C;;); j=1,2 in the sense
that C and C* induce continuous operators

Weshp (W) Wie ! (W) Wemp (W) Wige (W)
© — S and D BN o
Homp(Y, J-) H2(Y, Jy) Heo (Y, T4) H (Y )

for all s € R such that for every 8 € C§°(Y') we have
im(AoCiy 6C12) C Wegids 5 (W), im(0oCyy 6C51) C Wesip = (W)
for some € = ¢(6,C) > 0.
Definition 2.1.17. The space
YW, g;J-, Jy)

is defined to be the set of all operator functions

A = 0 Acdged + <(1 B ”)A(i)“t(l -9 8) +C,

with cut-off functions o(r), 6(r), o(r) satisfying o < &, & < o such that

(1) Aedge is a locally finite sum of operators of the form (X_l)*Opy(a) for ar-
bitrary singular charts of the form x : V — Ry x X x Q (cf. the notation
in the beginning of Section 2.1.1) and arbitrary edge amplitude functions
a(y,n) € R*(Q xRY,g;j_,75+) (with jL being the fiber dimension of Jy ),

(11) Aing € Lgl(Wreg):
(i) C € Y= (W,g;._, J).

Similarly as (2.18) we can define operator spaces

YHTI(W, g5 J-, Jy) (2.19)
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for g = (v,7 — u), j € N, by requiring the amplitude functions in (i) to belong to
the symbol class (2.18) and in (ii) the interior pseudo-differential operator Aiy to
be of order p — j.

Theorem 2.1.18. Every A € Y*(W,g;J_, J}) induces continuous operators

Weetp (W) Wige" " THW)
A ® — ® (2.20)
Hgomp (Y7 J—) HISOZN(Y: J+)

for every s € R.

Given p € C*°(W), ¢' € C*(Y), by M,, , we denote the operator of multiplica-
tion by diag(yp, ¢'-idy) for some J € Vect(Y). The bundle J will be clear from the
context, so it is omitted in the notation. Note that when ¢» € C*°(W) and ¢’ €
C*>(Y) are functions such that supp ¢ Nsupp ¢ = supp ¢’ Nsupp ¢y’ = ), we have
Mg, o AMy € Y (W, g;J_, J;) for every A € Y*(W,g;J_, J;). Let us now
formulate the principal symbolic structure of operators in Y*~4(W, g; J_, J. ), first
for the local situation W = Ry x X x Q and J4 replaced by 2 x CJ% . In this case
we have the homogeneous principal interior symbol in local coordinates x on X
with « varying in an open set ¥ C R", namely

ol I (A)(r,x,y,p,6,m) (2.21)

which is of the form r*““ﬁ(“_j) (r,z,y,rp,&,rn) for a C° function
Bus) (12,55, 1) in By x T x © x (R0 \ {0}), homogeneous in (7,,7) of
order p — j. '

As in the usual pseudo-differential calculus, 07,7 (A) is invariantly defined, with
respect to ¢ € X and y € Y.

Moreover, we have the homogeneous principal edge symbol

ICS7’Y(X/\) JCs—ntiy—ptj (X/\)
ol (A)(y,n) : D — @ (2.22)
J—,y J+,y

of order p — j, s € R, (y,n) € T*Q\ 0. The homogeneity means
oh ™! (A)(y, o) = 6" diag(ks, id)oh ! (A)(y, n)diag(k, *, id)

for all 6 € Ry, (y,nm) € T*Q \ 0; the identities in the right lower corners refer
to the fibers J_ , and J; ,, respectively. The entries in (2.22) were defined in
Remark 2.1.11, and (2.14), (2.16).

For A e Y*"(W,g;J_,J+), g = (7,7 — i), we simply write

o(A) = (a4(A),o1(A))
with oy (A) := 0y,(A), oA (A) = ok (A).



2 PARAMETRICES IN THE EDGE CALCULUS 33

Remark 2.1.19. A ¢ Y*(W,g;J_,Jy) and o(A) = 0 entails A €
VYW, g;J_,Jy). In addition, if W is compact the operator (2.20) is com-
pact for every s € R (in this case the subscripts ‘comp’ and ‘loc’ are superfluous).

Let us now discuss a class of examples in connection with the material of
Section 1.2.2. Let M be a C° manifold with an embedded manifold Y of di-
mension ¢ (with a trivial normal bundle). Then there is a stretched manifold W
with edge such that Wyeg = M\ Y and Wy, = X x Y for X := S4-1 For s > %,

we may write
H(R') = K**(X") and H§(M,Y) = W**(W),
see Remark 1.2.1, and Definition 1.1.2 in connection with the formula (1.21).

Remark 2.1.20. Let A be a differential operator on M of order p (with smooth
coefficients). Then, for s > p+ %, s — % ¢ N the operator (1.36) is an ele-
ment of Y*(W,g;C7(8) CoG=m) for g = (s,s — ). The principal interior sym-
bol 0,(As) near Y can be obtained by inserting polar coordinates into the stan-
dard homogeneous principal symbol of A (according to the transformation of (1.2)
to (1.3)). Moreover, the homogeneous principal edge symbol of (1.36) is nothing
other than (1.39).

Remark 2.1.21. The principal edge symbol or(A) of an operator
Ae YW, g;J_,J+) determines a so called conormal symbol o.(A), derived
from the upper left corner of (2.22) in the framework of the cone algebra on X"

for every fized (y,n) € T*Y \ 0. It has the form o.(A)(y,z) = h(0,y,2,0) + f(y, z)
with the Mellin symbols ﬁ(r,y,z,f)) contained in the non-smoothing part of the
(local) amplitude function b(y,n), cf. the formula (2.9), and the smoothing Mellin
symbol f(y, z) in the M + G-part of (2.17), cf. the formula (2.15) for j = |a| = 0.
The conormal symbol defines a family of continuous operators

oc(A)(y,2) : H(X) — H""(X), (2.23)
r € R, parametrised by (y,z) € Y x AEES I
2.2 Ellipticity

2.2.1 Elliptic operators in the edge algebra

Let us now pass to the ellipticity in the edge pseudo-differential calculus.

Definition 2.2.1. An operator A € Y*(W,g;J_,J+), g = (7,7 — ), is called
elliptic if
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(i) oyp(A) # 0 on T*(Weeg) \ 0, and, near Wyiyg in the splitting of variables
(r7 w? y)7
oy (A)(r,z,y,r7 p, & r ) £ 0

(i)

ICS,’Y(X/\) ]CS*I—LN*N(X/\)
on(A) 7y @ — Ty ® (2.24)
J_ Jy

is an isomorphism (with 7y : T*Y \ 0 — Y being the canonical projection).

Theorem 2.2.2. Let A be an elliptic differential operator on M, and form the
operator As, according to (1.36), cf. also Remark 2.1.20. Then the operator As is
elliptic in the sense of Definition 2.2.1.

Proof. As noted in Remark 2.1.20 the operator A, belongs to the edge calculus
(s is fixed as before). The ellipticity of A on M in the standard sense entails the
ellipticity also in the sense of Definition 2.2.1 (i) which can be easily verified by
introducing polar coordinates in the local representations of A near Y. Moreover,
Corollary 1.2.11 gives us the bijectivity of the edge symbol (2.24) when we identify
the spaces H§(R?) with 5 ((ST-1)M). O

Remark 2.2.3. If an operator A in the edge calculus is elliptic, the conormal
symbol 0.(A)(y, z) represents an element in C>°(Y, L5 (X; FW.T-H_,Y)) which is (for
every y € Y) parameter-dependent elliptic with parameter |Im z| for z € FnTHJr,
and (2.23) is a family of isomorphisms, parametrised by y € Y, z € I‘HTHJV. In
fact, the bijectivity of (2.24) for any firedy € Y and n # 0 has the consequence that
the operators in the upper left corner are Fredholm between the weighted Sobolev
spaces on X”\. Since these operators for every fized n # 0 belong to the cone algebra
on the (infinite stretched)cone X" their principal symbols from the cone algebra
are bijective, in particular, the principal conormal symbol (2.23) on the respective
weight line. For the operators as in Example 2.2.2 we have n =d — 1 and v = s,
i.e.,

oc(As)(y,2) : H'(X) — H"™"(X)

is a family of isomorphisms for ally € Y, z € I‘% and for all v € R.

—8

2.2.2 Invertibility and parametrices

Given an A € Y*(W,g;J_,J;)forg = (v,v — p), an operator P €
Y H(W,g 0, J ) for g7t = (y — u,7) is said to be a parametrix of A, if for
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every ¢, ¢ € C§*(W), ¢, ¢ € C®°(Y) with v = 1 on suppy and ' = 1 on
supp ' we have

Mg, ot = My, o PMy A€ Y (W, (v,7); J—, J-), (2.25)
and
an,np’ - an,cp’Asz,w’,P € y_oo(wa (7 — WY = ,LL), J+7 J+) (226)
Theorem 2.2.4. Every elliptic operator A € Y*(W,g;J_, J;) has a parametriz
PeY W, gt g, J).

A proof of Theorem 2.2.4 in the edge calculus with asymptotics may be found
in [18], see also [10]. Note that when W is compact, the relations (2.25), (2.26)
simplify to

1—-PAEY (W, (v,7);J-,J-), 1 = AP € Y °(W, (v — p,y — p); J+, J4).

These remainders are compact in the respective spaces and we can conclude elliptic
regularity of solutions in our spaces. Another consequence is the following result:

Theorem 2.2.5. Let W be compact and let A € Y*(W,g; J_, J1) be elliptic. Then
A induces Fredholm operators

W (W) We=mI =1 (W)
A: ) — ) (2.27)
Hs(Ya J—) HS_N(Ya J+)

for all s € R, and the dimensions of ker A and coker A are independent of s. More-
over, if (2.27) is an invertible operator (for some s which entails the invertibility
for all s), we have A=t € Y"H(W, g1 J4, J_).

We can make now a few remarks on relations between pseudo-differential operators
based on the Fourier transform and operators based on the Mellin transform.
We want to do this locally in R > (%,y). Let (1.2) be a differential operator
in R4 with coefficients in C°°(R¢+?). Then, by introducing polar coordinates
R?\ {0} — Ry x S?1 & — (r,z), we can transform A into edge-degenerate
form (1.3). Let us form an operator-valued Mellin symbol

h(r,y,z,m) = h(r,y,z,mn)

for h(r,y,z,7) := 2181 <u a;js(r,y)z7P, cf. the formula (1.3). Then the operator
A can be written as -
A= r*“Opyop;\'/I(h)

for every weight v € R, if we interpret A as an operator
CP(XN x R?) — O (XN x R?) for X := S9! In that sense we can talk



3 INVARIANCE PROPERTIES OF THE EDGE ALGEBRA 36

about a Mellin-edge representation of the operator A, originally regarded as an
operator in terms of the Fourier transform in R? x R?. Mellin reformulations
of a similar kind for pseudo-differential operators are usually connected with
smoothing remainders outside the ‘edge’ {0} x R?; however, those remainders
have singularities at the edge. Such remainders may be very undesirable in
certain applications to the asymptotics of potentials, cf. the article [9]. However,
Theorem 2.2.2 combined with Theorem 2.2.4 gives us also Mellin-edge repre-
sentations of parametrices of elliptic differential operators with remainders in
the respective )Y ~*°-classes. The mapping properties of remainders in Y~ are
characterised in Section 2.1.6.

3 Invariance properties of the edge algebra

3.1 Edge Sobolev spaces

We now consider the case of embedded manifolds Y C M without the assumption
of a trivial normal bundle N (Y') in M. As is known, there is a tubular neighbour-
hood of Y in M which can be identified with the ball bundle induced by N(Y),
equipped with some Euclidean metric. We assume in this connection that N(Y")
is represented by a system of trivialisations

Ul xR, j=1,..,L

and transition maps which are isomorphisms of R? of determinant 1. Then we
obtain an induced sphere bundle on Y with fibre S, If we define global weighted
edge Sobolev spaces on M we have to take into account the non-trivial transition
diffeomorphisms of the base of the cone.

In the following considerations we assume X to be an arbitrary closed compact
C*° manifold of dimension n.

Lemma 3.1.1. Let 19 : R — R? be a diffeomorphism such that 7o(y) = y for
all y € RY, |y| 2 ¢, for a constant ¢ > 0. Then the pull back under Ty induces
isomorphisms 1§ : W7 (X" x R?) — W7(X" x R?) and the same for the
‘comp’, ‘loc’ spaces for all s, v € R.

A proof may be found in [18].

Proposition 3.1.2. Let 7 : X X R — X x R? be an isomorphism in the sense
of X-bundles on RY. Then the pull back under T, induces an isomorphism

WS (XN X RY) — W (XN x RY) (3.1)

for all s,y € R.
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PT’OOf. Write (53727) = Tl(xay) = (T(ﬂf,y),To(y)), with & = CE(ZL“,y) and ?j = g(y)
Here, 79 : RY — RY is a diffeomorphism with 7o(y) = y, for |y| > ¢ for some ¢ > 0
and 7(-,y) : X — X is also a C°°-diffeomorphism for all y € R?. Because of

(z,9) = (2,75 () = (r(z, 75" (%)), )

without loss of generality, we can take 79(y) = y for each y € R?. Moreover, by
virtue of Remark 1.1.1 the pull back under 7, := 7(-,y) induces an isomorphism

T KPT(XN) — K27(X7) (3.2)

for each y € RY.

Setting a(y) := 7, we have that a(y) € C*(R?, L(K>7(X"),KL>7(X"))). It can
easily be checked that ky'a(y)kn = a(y), A € Ry, where ry : K¥7(X") —
K57 (XN, kau(r,x) = )\nTHU()\T‘, x), A € Ry is the group action on K%7(X7").
This implies

a(y) € Sq(R? x RI; L27(X"), K27 (X7))
for every s, v € R. It follows that the associated pseudo-differential operator Op(a)
is continuous as an operator

Op(a) : W37

eomp(y) (X X RT) — WET (X7 x RY).

loc(y)

Because of

Op(@)u(r,z,y) = (F~ a(y)Fu(r, z,y) = aly)u(r,z,y)

for every u(r,z,y) € ngznp(y) (X" x R?) it follows that Op(a) is the same as the

operator of multiplication by a(y) = 7.
Since (3.2) is an isomorphism for each y € R?, we see that
Op(a) : ch’;;lp(y) (X" xRY) — Wlso’g(y) (X" x RY)
is an isomorphism for all s,v € R. Finally, using Lemma 3.1.1 we obtain that the
pull back under 7; induces the isomorphism (3.1) for all s, v € R. O

We now extend our constructions to the case when Y has not necessarily a trivial
normal bundle in M. Recall that then M corresponds to a manifold W with edge
Y where in the notation of Section 2.1.1 the singular subset Wi of the stretched
manifold W is an X-bundle on Y, not necessarily trivial. Recall from Section 2.1.6
that we have the scale of global weighted Sobolev spaces W?#7 (W) also in this
general case. The constructions for Proposition 3.1.2 and Definition 2.1.15 can be
generalised as follows.

Let E be a Hilbert space with group action {sx},cg, , consider a family of isomor-
phisms E — E given by an element g € C°(Q, L(E,E)), Q2 S R? open. Assume
that

Bly) = kaBy)ry "
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for all y € 2, A € Ry. Then we have 8 € SQ(Q x R?; E, E), and
Op(ﬂ) : Wcsomp(ﬂaE) — Wgomp(ﬂa E)

is an isomorphism (the same is true for the subspaces with subscripts ‘loc’).

Let us interpret the isomorphisms § as transition maps d x E — 2 x E of a vector
bundle £ on a C'*° manifold Y. Then, as an easy generalisation of Definition 2.1.15
we can form ‘abstract’ edge Sobolev spaces W (Y, &) of distributional sections
in the bundle &; moreover, let W, (Y, €) denote the subspace of elements with
compact support.

Let E be another Hilbert space with group action {frx}rer, and B e

QOO(Q,ﬁ(E,E)) a family of isomorphisms, also with the homogeneity property
Bly) = Fa;ﬁ(y)k;l for all y € 2, A € R;. Then for every

aly,n) € Sfyy (2 x RY; B, E) (3.3)
we can form the symbol
Byaly,nB~ (y) € Sfy (2 x BT E, E). (3.4)
A pseudo-differential operator
loc

Op(a) : Weomp (2, B) — Wi " (2, E) (3.5)

can be interpreted as an operator between sections in the trivial bundles 2 x £
and Q X E respectively. Then, if we pass to other trivialisations via

B:QXxE—QxXE B:QxE—QxE (3.6)
with the induced isomorphisms

ﬁ* : Wgomp(ﬂaE) — Wcsomp(QJE); B* : WS?H(QJE) — WS*H(Q,E) (37)

loc loc

we obtain a corresponding push forward

Op(@) = £x0p(@) (B:) ™"+ Weonp (2 B) — WirH (2, E) (3-8)

loc

with a symbol a(y,n) which is equal to (3.4) modulo lower order terms.
Combining (3.6) with a coordinate diffeomorphism x : 2 — Q, i.e., replace (3.6)
by corresponding bundle isomorphisms

(,B):AxE —QxE,(x,f): OxE—QxE (3.9)
we obtain an operator push forward

Op(@) = (X, £)0p(a) (x; B) " = Weomp (2, B) — Wit (0, B).
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Instead of (3.4) the transformation rule a(y,n) — a(y,7) of associated symbols
now has the form

a@m|  s=w = BWaly,nB ()
i=(tdx(y)~1n
modulo lower order terms in 7. This invariance shows that similarly as in the
standard calculus of pseudo-differential operators on C'>° manifolds we have global
pseudo-differential operators between distributional sections in our vector bundles
A WS

comp

(Y,E) — WEH(Y,E)

loc

locally described by (3.5), modulo global (on Y') smoothing operators (charac-
terised by C' : W, (Y, &) — WE(Y,E) for all s,t € R). Let Lé‘cl)(Y;E,z‘j)
denote the space of these operators. In the case of dependence on extra parame-
ters A € R' we write Lé‘cl)(Y; E,ERY.

Note that pseudo-differential operators on Hilbert bundles in another context have
been studied by other authors before, cf. Luke [13]. The new aspect here is that
our spaces of symbols are connected with group actions in the fibres of the Hilbert

bundles.

3.2 Trace and potential operators

We now discuss the transformation behaviour of trace and potential symbols un-
der the symbol push forward belonging to push forwards of associated pseudo-
differential operators along Y. Consider the local representative of a potential
symbol (also dependent on a parameter A € R' as an additional component of
the covariables) k() (y(j),m(j),A) in the variables y;y € R? under the j ™ chart
xj : Uj — R, with the covariables (1), A) (for brevity, we will omit subscripts
‘() below). These local symbols are generated by the potential symbols (1.13)
plus lower order terms coming from the global construction, see (1.20). The vec-
tors in E := C?(*) have the interpretation of coefficients (ca)| 4 in the Taylor

al<s—
expansion of a function u(#) € H*(R?) at # =0, i.e.,
. 1, .
u(z) = Z acaw modulo a flat remainder

d
la]<s—%

(i.e., belonging to Hg(R?)). These vectors will be regarded as elements in the fibre
of a vector bundle £ := J77(5) over Y. The transition maps

c—0 fOr ¢ .= (ca)|a\<57%7 0:= (d’Y)"Y|<S*g
for different trivialisations R x C°(¢) of the bundle J°(*) are generated by
1
u(z) — v(2) = Z —dZ" modulo a flat remainder

d
[v[<s—3%



3 INVARIANCE PROPERTIES OF THE EDGE ALGEBRA 40

when we insert in the coordinates in u(Z) the linear transition map
F—v(y)z =2 R — R?, with v(y) € C*®(R?,GI(R,d)) being the cocycle
of the normal bundle of Y in M. These transformations just constitute the
transitions 3 : E — F in the formula (3.9) for £ = C°(®) (up to the substitution
of the coordinate diffeomorphism).

Moreover, we set E = H*(R?) and obtain by substituting the linear maps v(y) in
the functions u € H*(R?) the cocycle 3 for the bundle £. The basic observation
for the invariance of our potential symbols k(y,7n,\) and l%(gj,ﬁ,/\) is that the
diagram

Ll

is commutative modulo remainders Wthh vanlsh in a neighbourhood of £ = 0 and
modulo lower order terms in the covariables (plus parameters A). In fact, on the
level of highest order terms in the variables (y,n, A) we have

K Ne= A Y (0 N2 ([ A e (3.10)

d
|a|<s—%

Then the linear substitution & — v(y)# = Z which represents 3 at the point y
and ¢ — 0 which represents 3 at y gives us

k(n, A0 = Bk(n, \)B 10

modulo the abovementioned remainders, because w([n, A\|z) = w([n, A]Z2(Z)) in a
neighbourhood of Z = 0. On the level of pseudo-differential operators on Y the
latter remainders cause Schwartz functions in A € R with values in smoothing
operators on Y.
Similarly as in Section 1.2.1 (using local representations Op,, (k)(A) combined with
partitions of unity and pull backs to the manifold) we now form global potential
operators G(A)
G\ : H*(Y,J°%) — H*(M)

(the image consists of functions in C°°(M) supported by a tubular neighbour-
hood of Y). G()) is a parameter-dependent pseudo-differential operator of the
class LY (Y; Jo) E:R') on Y with operator-valued symbols k(y,y’,n, \) locally
belonging to SY (R? x R? x RS x R, ; C7(*) H*(R?)) and the homogeneous principal
symbol

onG 13T — 3 €, (3.11)

my : (T*Y x R') \ 0 — 0, is locally given by

4 1 o .
TAG(y,mA) re— [, A2 Y a(ln,klw) w(|n, Al#)ca
lal<s—¢
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In a similar manner we form the trace operators
B(\) : H*(M) — H*(Y,J°")),

B(X\) € LY(Y; E,J76);R), with corresponding operator-valued local amplitude
functions
t(y,y',m,A) € Sq(R! x RY x R x R; H*(R?),C"))

that have left symbols (modulo lower order terms in (1, A)) of the form
E, ) = (8, M) g 200, Nu = [, A7 70D2u(0). (3.12)
The homogeneous principal symbol is a map
oaB: 1€ — 13 T

with the projection 7y as before.

Analogously as (1.24) we now form an operator family P(\) : H*(M) —
HG(M,Y), using local operator families P;j(A) of the form 1 — Op, (k(n, \)t(n, A))
with k(n, A) and ¢(n, \) as in (3.10) and (3.12), respectively.

The following result is an analogue of Theorem 1.2.9 for the case of an arbitrary
embedded submanifold Y C M.

Theorem 3.2.1. Let s € R, s > %, 5 — % ¢ N. Then there is a constant C > 0
such that the operators (E G(X)) and *(P(X) B(X)) induce isomorphisms
HG§(M,Y) HG(M,Y)
® — H*(M) and H*(M) — @ :
H* (Y, ju(s)) HS(Y, ju(s))

respectively, for all A\ € R, |\ = C.

Proof. The proof is similar to that of Theorem 1.2.9. The properties which are
essential for an analogoue of the relations (1.32) and (1.33) are satisfied in the
present situation, too, namely that

IA(B)oA(G) = idny T

and 1 — o5(G)oa(B) is a projection in the bundle £ with fibres H*(R?) to
the subbundle with fibres H§(R?). Thus, for similar reasons as in the proof of
Theorem 1.2.9 we have

(B G)'(P() B(N) =1-Cor(N), “(P(N) BONE GO) =1~ Coi(N)

where Cy , and Cp; have local amplitude functions of order —1 in (1, A). Hence,
we can apply a formal Neumann series argument to obtain remainders C,.(\) and
C;(\) which are strongly decreasing for A — oo, where C).()) is as before while

H§(M,Y) Hy(M,Y)nC>(M)
Ci(\) eS(Rﬂﬁ( ® , P ))
HS(Y, ja(s)) COO(Y, ja(s))'



3 INVARIANCE PROPERTIES OF THE EDGE ALGEBRA 42
O

Note that invariance properties of cone operators have been studied in another
context in [11]. In our case here the situation (for cone operator-valued edge sym-
bols) is simpler because we could assume r-independence of the transition maps
for small r).

3.3 Ellipticity of edge operators in the general case

Let W be the stretched manifold of a manifold W with edge Y where the X-
bundle over Y is not necessarily trivial. Then there is a straightforward extension
of the definition of the spaces of edge operators Y* (W, g;J_,J,) as well as of
Definition 2.2.1. The Theorems 2.2.4 and 2.2.5 remain true in the corresponding
modified form. We now formulate an analogue of Theorem 2.2.2 for the case of an
arbitrary Y C M.

Theorem 3.3.1. Let A be an elliptic differential operator on M and form (the
analogue of ) the operator (1.36) for any fized s — pu > %, 5 — % ¢ N, namely,

H§(M,Y) Hy *(M,Y)
As @ — @ , (3.13)
H*(Y,7°0) A CAVAR )

(where the spaces HS(M,Y') can equivalently be replaced by W**(W)). Then A; is
elliptic as an element of Y*(W,g; 77 70— for g = (5,5 — p).

Proof. The ellipticity is a local property for the interior symbol oy (As) in co-
ordinate neighbourhoods on W and for the edge symbol oa(As) in coordinate
neighbourhoods on Y. Thus the bijectivities of the components can be obtained in
the same way as for Theorem 2.2.2. O

Remark 3.3.2. There is a straightforward extension of Theorem 3.3.1 for the case
of differential operators

A: H¥(M,E) — H*"(M,F)

acting between distributional sections of vector bundles E, F' on M. In this case
we have to replace (3.13) by

Wes (W, E) Vs (W, F)
A &) — )
H* (Y, E'® ja’(s)) Hsfu(Y, F'w ‘70'(87/11))

where E' ;= E|y, F' := F|y, and the interpretation of E in the YW**-space is the
pull back of the former E under the canonical projection Wyeg — M \ Y.
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