Crack Theory with Singularities at the Boundary

B.-W. Schulze

Abstract

We investigate crack problems, where the crack boundary has conical
singularities. Elliptic operators with two-sided elliptic boundary condi-
tions on the plus and minus sides of the crack will be interpreted as ele-
ments of a corner algebra of boundary value problems. The corresponding
operators will be completed by extra edge conditions on the crack bound-
ary to Fredholm operators in corner Sobolev spaces with double weights,
and there are parametrices within the calculus.
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Introduction

This paper is aimed at studying elliptic operators in a domain of the form G\ S,
where G is an open bounded subset of R?® with smooth boundary and S C G a
closed subset such that intS is an oriented smooth hypersurface of codimension 1
with conical singularities at the boundary. An exampleis G = {z € R® : |z| < 1}
with § = {z € R® : @3 = 0,|z1| + |z2| < 1}. If the elliptic operator A in
consideration is the Lamé system we have a situation of (linear) crack theory



with S being a crack in a medium G. Boundary value problems for the operator
A are given as

Au=f in Q\S, Tiu=g+ on int Sy, Tu=g on O0G. (1)

Here Sy indicate the plus and minus sides of S, and the operators Ty are of
the form Ty = ry B, with differential operators By in a neighbourhood of S
with smooth coefficients and r1 denoting the operators of restriction to intS.
from the respective sides. We assume that the operators T satisfy the Shapiro-
Lopatinskij condition with respect to A uniformly up to dS. Moreover, T' is
a boundary condition which satisfies the Shapiro-Lopatinskij condition with
respect to A on 0G.

A special case of our investigation is the ‘quarter plane problem’ which means
a boundary value problem for the Laplace operator (or any other elliptic opera-
tor) in R® \ S for S:={z € R® : 23 = 0, 21 > 0, 22 > 0} with two sided elliptic
boundary conditions on St (i.e., for 3 \, 0 and z3 ,* 0). The specific problem
consists of an adequate description of the behaviour of solutions near the origin
which is a corner singularity. Outside the

origin on the positive x;-axis, ¢ = 1,2, we have the typical behaviour of
‘smooth crack theory’, cf. [6]. For ; — oo on these parts of the crack boundary
we have an effect from the calculus on manifolds with edges and exits to infinity
(however, the latter aspect is not studied in the present article).

We will construct a pseudo-differential calculus containing the operators (1)
together with the parametrices of elliptic elements. Another interesting point is
the nature of weighted Sobolev spaces which encode elliptic regularity.

For our methods the assumptions on the dimensions are not essential, but
in dimension 3 some elements of the calculus become easier. The crack theory
(in arbitrary dimensions) within a pseudo-differential calculus for the case of
a smooth crack boundary is systematically treated in the author’s joint mono-
graph with Kapanadze [6], see also the article [15]. Let us also note that the
scenario has much in common with mixed problems, cf. the authors joint papers
[5], [2] with Dines and Harutjunjan for elliptic operators, and Krainer and Zhou
Xiaofang [9] for the parabolic case.

Mixed elliptic and parabolic problems as well as crack problems have been
studied by many authors from different aspects before, see the bibliography of
[6]. Let us mention, in particular, the work of Vishik and Eskin [21], [3] with
a calculus of boundary value problems for pseudo-differential operators without
the transmission property at the boundary, Rempel and Schulze [11], or a more
recent paper jointly with Seiler [19] on the edge algebra structure of boundary
value problems.

In the present note we want to demonstrate how the general calculus of the
author’s joint articles with Oliaro [10], De Donno [1] and Krainer [8] can be
applied to crack problems with conical singularities at the crack boundary.

In order to illustrate the scenario we want to consider an example, namely the
Laplace operator A = A and Dirichlet conditions on the minus side, Neumann
conditions on the plus side of S and Dirichlet conditions on dG. Then the
associated column matrix operator A := *(A T_ T T) (i.e., T—u := u|ints_,
Tiu = %Uhnts . with % being the differentiation in normal direction to .S,



and Tu := u|pq) induces a continuous operator
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for every s > 2. Here H?(G) is the standard Sobolev space of smoothness s on
G (more precisely, H*(G) := {u|g : v € H*(R®)); similarly we have H*(0G) in
the standard sense on the manifold 0G, and H®(intS1) means the restriction
of Hlsoc(g) to intS, where S is any €' manifold (here of dimension 2) which
contains S as an embedded manifold with conical singularities and boundary
(see Section 1.4 below); subscripts ‘+’ mean the interpretations as + or — sides
of int S.

It is clear that the problem (1) cannot be solvable in the space H*(G) unless
the data g4 satisfy a corresponding compatibility condition. Instead of the
standard Sobolev spaces we therefore employ certain weighted Sobolev spaces.
We interpret G\ S as a ‘crack configuration’ Mcrack, cf. Section 2.3 below,
introduce corner Sobolev spaces

Vs7(%6) (Mcrack)a VSV(MJ) (Sﬂ:)

with double weights (v,d) € R?, cf. Section 2.1 below, and realise A as a
continuous operator

9572’(’772’672) (Mcrack)
A . Vsy(%(S) (Mcrack) - Iy (3)
Hs—3 (0G)

for any s > % Here

Vsiz’(viZ’(s*Z)(Mcrack)
N S
VIO (M) i= VB 0m80-8)(5_)
S
Vs—8.0-8.0-3)(5.)

We then obtain that for all v ¢ D for some discrete set D of real numbers and
all 0 ¢ D, for another discrete set D of reals (depending on v) the operator
A can be completed by additional trace and potential conditions along 05 to a
Fredholm operator

9572’(’772’672) (Mcrack)

VSV(%&)(Mcrack) D
<¢ g) P - H*=%(8@) (4)
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for s > %, cf. Theorem 3.1 and Remark 3.2 below. The crack boundary
0S is interpreted as a one-dimensional manifold with conical singularities, and
H%9(8S, M) are the corresponding weighted Sobolev spaces on 85 of distribu-
tional sections in the vector bundle M, cf. Section 1.3 below.

Our approach is completely general and can be applied to other conditions on
int Sy as well, e.g., Dirichlet or Neumann conditions on both sides, cf. Section
3.1 below. Also the elliptic operator A itself is arbitrary and may also be a
system, e.g., Lamé’s system, and also the dimension of G is unessential.

The ideas come from the theory of elliptic operators on manifolds with ge-
ometric singularities, here with corners and boundary. Comparing the results
with [17] or [18] which consist of a corner calculus without boundary, here we
treat the case of boundary value problems.

The technicalities are voluminous and cannot be given here in a selfcontained
way. However, after the material of [16], [17], [6] and [2] it should be easy
to complete the details. In the present exposition we mainly formulate the
structure of operators A in suitable scales of weighted Sobolev spaces and a
corresponding principal symbolic hierarchy

o(A) = (0y(A),05(A),0n(A),0¢(A)) (5)

which determines ellipticity and parametrices. The first components o, (A)
and o5(A) are the principal interior and boundary symbols as they are known
from the standard calculus of boundary value problems with the transmission
property. The principal edge symbol on(A) comes from the theory of pseudo-
differential boundary value problems on a manifold with edges, cf. [6]. The
conormal symbol o.(A) is the typical novelty compared with the crack theory
for a smooth crack boundary.

Let us finally note that there is a similarity between our crack problems and
mixed boundary value problems. The case with conical (or other) singularities
at the interface seems not to be treated yet in the literature. An interesting
problem is to characterise for relevant examples the number of extra interface
(or crack) conditions (cf. also [2] for the case of smooth interfaces and Section
3.1 below) and to explicitly calculate the corner weights for which the operators
are Fredholm (which is known in general up to a certain discrete set of weights).

1 Elements of the edge calculus

1.1 Edge Sobolev spaces and symbols

By assumption the crack boundary 9S is smooth outside a finite set of conical
singularities. For simplicity we assume that there is only one conical point
v € 0S5 the general case can be treated by similar arguments, using localisations
and partitions of unity. The set (0S)reg := 0S5 \ {v} can be regarded as an
edge and G \ (0S)reg locally near any y € (05)reg as the interior of a wedge
K x € for an open set @ C R?, ¢ = dim(0S)reg (= dimG — 2), and K =
(R4 x I)/({0} x I), I := [0,2n], interpreted as the model cone of the wedge.
The interval I corresponds to the unit circle in the normal plane R? to (05)reg
with distinguished end points which correspond to the plus and minus side of
the crack. In other words, K is represented by (R*\R; ) U (]R{([) u ]RS:F)) where
R, locally corresponds to the intersection of intS with the 2-dimensional normal



plane to 8S at some y € (05)reg, and intSy by two copies ]Ri(f) of the half-axis
that replace Ry by the + sides of the slit. As is common, instead of K\{v}
we often look at the stretched cone I = Ry x I 5 (r,¢). Then the domain
(including plus and minus sides of the crack) near a point y € (05)reg is locally
identified with a streched wedge Ry x I x Q. This is just the starting point in
[6]. We want to describe here some elements of the crack calculus for a smooth
crack boundary for being able to organise the next step in the hierarchy of
singularities, namely when the edge has conical singularities.

Note that pseudo-differential operators on manifolds with edges that have
conical singularities are treated in [17] for the boundaryless case.

Let E be a Hilbert space equipped with a group k) : E — E, A € R}, of
isomorphisms such that kxryx = kxax for all A\ € Ry, strongly continuous
in A € Ry (we then simply say that {kx}icr, is a group action on E). An
example is E = H*(RY') := H*(R™)[py for RY ={z = (z1,...,2n) : 2m > 0},
with (kyu)(z) = AT u(Az), A € R.

Definition 1.1. The ‘abstract’ edge Sobolev space W?*(R?, E) of smoothness s €
R is defined as the completion of S(RY, E) with respect to the norm ||(n>s||m<771>ﬁ(n)

~

|Ell2ma) (@(n) = (Fy—nu)(n) is the Fourier transform in RY).
Remark 1.2. For E = H*(R}') we have

W (R, H°(RY)) = H*(R! x RY)
for every s € R, in particular,

WH R, ¥ (R, ) = HE(RY).

Remark 1.3. Let E = l‘gljeN EJ be a Fréchet space written as a projective limit

of Hilbert spaces E7 with continuous embeddings E7t' — EJ, and let {Fatrery
be a group action on E° which restricts to group actions on E? for every j (we
then say that the Hilbert space E is endowed with a group action). In that case
we have continuous embeddings W*(R?, EI+L1) — W#(RY, E7), and we write

W4 (R, E) :@WS(JRQ,EJ').
JEN

Similarly to standard Sobolev spaces we also have ‘comp’ and ‘loc’ versions
Wcsomp(QJ E) and Wlsoc(Q7 E)

for any open set 2 C R?. More details on the nature of abstract edge Sobolev
spaces may be found in [14] or [16].

Definition 1.4. (i) Let E and E be Hilbert spaces with group actions {Fatrery
and {Kx}rer., respectively. Then the space of (operator-valued) symbols

SH(U x ]R{q;E,E) for an open set U C RP, u € R, is defined as the set of
all a(y,n) € C*(U x R?, L(E, E)) such that

sup { () VRS Dy D aly, )il oy () € K xR1} - (6)

is finite for every KU and all multi-indices « € NP, f € N7



(ii) SW(U x (R \ {0}); E, E) denotes the set of all fwy(y,m) € C(U x (RT\

{0}),L(E, E)) such that
Fow (@, An) = NEXf) (y,meyx

for all (y,m) € U x (R? \ {0}), A € R;.

(iii) The space SH(U x ]Rq;E,E) of classical symbol is defined as the set of
all a(y,n) € SH(U x RY; E, E) such that there are elements a(,_j)(y,n) €
Sw=i(U x (R1 \ {0}); B, E), j € N, such that

N
ZX nag—j) (y,n) € S*N(U x RY; E,E)
7j=0

for every N € N. Here x(n) is any excision function, i.e., x € C*(RY),
x(n) =0 for |n| < co, x(n) =1 for |n| > ¢1 for certain 0 < ¢o < ¢;.

Remark 1.5. Definition 1.4 reproduces standard scalar symbols when we insert
E = E = C with the trivial group actions.

A symbol a(x,&,A) € SE(Qer x Ry, x R x RY) for p € Z, Q2 CR*™ open,
x= (2, xy,), £ = (£,£&), is said to have the transmission property at x,, = 0, if

DI;HD?’J\{G(M—J')(xlaxnaflafm/\)_(_1)N_ja(u—j)( ) 'n,J f; fna_/\)} (7)

vanishes on the set {(z',%,,&, &, ) 12" € Qan, =0,(€,0) =0,&, € R\ {0}}
forall k€ N, « € N*~1+! and all j € N.

Let S%(Qx RxR™™"), denote the space of all symbols with the transmission
property in that sense, and let S% (€ x Ry x R**);, be the space of restrictions
of such symbols to @ x Ry x R**. With every a(z, &, A) € SH (2 x Ry x R,
we associate a family of pseudo-differential operators on Ry by setting

op*(a)(@', &', Nu(@s) :=r"op(a)(a’, &', e u(zn), (8)

where op(a)(z', &', Nu(zy,) := [[ el@n=F)ng(a! 2y, €', N) w(@p)dTndEy, e de-
notes the operator of extension of u from Ry > z,, by zero to R_ and rtu :=
ulr,, d&, = (2m) 1d&,. (op(a) basically refers to any extension of a to R with
respect to x,, but (8) is independent of this extension). In (7) we assume
ue H*(Ry) for s > —1.

Remark 1.6. For every a(z,&,\) € Sk (€ x Ry x R*t), which is independent
of x,, for large x,, we have

op*(a)(a’, €', N) € SH(Q x Ry H (R ), H* #(Ry.))

for every s > —%. If a is independent of x,,, then op™(a)(z',&', ) is a classical
operator-valued symbol in the sense of Definition 1.4 (iii).

Definition 1.4 has a generalisation to pairs of Fréchet spaces E and E with
group actions, cf. Remark 1.3. For instance, if E is a Hilbert space, E a Fréchet



space, £ = L EJ, EJ Hilbert spaces, etc., then we have the symbol spaces
S(Cl)(U x R?; E, E7) for all j and we then set

Sty(U x RG B, E) := (1) Sty (U x R B, EY).
JEN

Here ‘(cl)’ means that the considerations are valid for classical and general
symbols. The case when also E is Fréchet may be found, e.g., in [16].

Let Sé‘ N (R?; E, E) be the subset of all symbols with constant coefficients,
i.e., which are independent of y. Then we have

Sty (U x RY; B, E) = C=(U, Sty

here we use the symbol spaces in their natural locally convex topologies which
immediately follow from the definition.

(R%; E, E);

Example 1.7. Let us write the space S(R;) := S(R)|g, as a projective limit
of Hilbert spaces _
S(R.‘r) - 1&1 Ek
keEN
for E* .= (z,) " *H*(R,.) with the group action (kxu)(zn) = AY2u(Azy), A > 0.
Then we have the space of symbols

SEQ xR x RS LA(Ry) & C™, S(Ry) @ C™) (9)

with the group actions diag(ky,id) on the respective direct sums.

An element g(z',€',\) € C°(Q x R* 1+ (L2 (Ry) @ C™, L2(R,) & C™)
is said to be a Green symbol of order p and type 0 (of the calculus of boundary
value problems with the transmission property at x, = 0) if go(z', &', N) =

diag(L, (¢', ) 2)g(a', €', Ndiag(L, (€', ))2) and g5(«',€',\) belong to be space
(9), where %’ indicates pointwise adjoints in the sense

(g(xlagla )‘)uav)L2(R+)@(Cm' = (U,g ( f )‘) )L2(R+ eCm
forallu e L2(Ry) ® C™, v e L3(Ry) ® C™ . An operator family g(z', &', \) is
called a Green symbol of type d € N, if it has the form

g(z', &' \) = go(a', &, N) + Zgj ,&' N diag <86xj 0) (10)

for Green symbols g;(z',&', ) of order ;1 — j and type 0,i = 0,...,d. In this
case we have

9@, €3 € S (Vx B U Ry) © O, S(Ry) 0 C)
for every real s > d — %
Definition 1.8. We set

Ligy (% B, E) := {Op(a) a(y,y',n)ES&I)(QXQXR‘I;E,E)}

where Op(a)u(y) = [[ WY a(y,y' n)u(y')dy'dy, dy = (2r)~%dy, Q@ C R?
any open set.



Operators A € Lé‘cl) (Q; E, E) are continuous in the sense

A:CP (N, E) —» C®(0, E)
and extend to continuous operators

AW (L E) = W H(Q, E) (11)

loc

for all s € R.

1.2 Boundary value problems

The present section gives an outline of standard pseudo-differential boundary
value problems with the transmission property at the boundary which depend
on a parameter A € R'. First let X be a compact C°° manifold with boundary
0X, and let 2X denote the double of X obtained by gluing together two copies
X4 and X_ of X along the common boundary such that 2.X is a smooth and
closed manifold. The given manifold X will be regarded as the plus side of 2.X.

If M is any closed compact C* manifold we denote by L% (M;R') the space
of all classical parameter-dependent pseudo-differential operators on M, i.e.,
with local amplitude functions a(z, ¢, ) which are classical symbols in (£, A) of
order y, and L=°(M;R!) := S(R', L=>°(M)), with L=°°(M) being the space
of all smoothing operators on M. More generally, for E, F € Vect(M) (with
Vect(.) denoting the set of all smooth complex vector bundles on the mani-
fold in brackets) we have the space L% (M; E, F;R") of all classical parameter-
dependent pseudo-differential operators on M acting between Sobolev spaces
H*(M,E) and H**(M, F) of distributional sections in the bundles.

On all smooth manifolds in consideration we fix Riemannian metrics; in the
case of a C'*° manifold X with boundary we choose a collar neighbourhood
0X x [0,1) > (2',zy) and assume the Riemannian metric to be the product
metric of a metric on 0X and the standard metric on [0,1). The complex vector
bundles in consideration are assumed to be equipped with Hermitian metrics.

Let LY (2X;R'), denote the subspace of all 4 € L (2X;R') the local am-
plitude functions of which have the transmission property at the boundary
(this concerns the charts intersecting 0X). More generally, we have the spaces
LY (2X;E,F;R'), for E,F € Vect(2X).

An operator family C11(A) : C*(X) — C*°(X) is called parameter-dependent
smoothing and of type d € N if it has the form

Cu(\) =) G;(NT (12)

d
=0

<

with G;(\) having kernels in S(R',C>*(X x X)) and a first order differential
operator 7' on X which is locally near 0X of the form 8/0z,. An operator
C21(N) : C*(X) = C*(0X) is called parameter-dependent smoothing of type
d if it has the form

Ca1(\) =Y Bj(NTY

M-

Il
S

J

with B;()\) having kernels in S(R',C*(6X x X)). Finally C12()\) : C*(0X) —
C*®(X) and C(N) : C®(0X) — C*(X) are called parameter-dependent



smoothing if the kernels belong to S(R/,C*®°(X x 0X)) and S(R',C>(0X x
0X)), respectively.

All these notions have straightforward generalisations to operators between
spaces of sections in smooth complex vector bundles on the corresponding man-
ifold. In this sense by B~°4(X;v;R') we denote the space of all smoothing
operator families C(A) = (Cy5(A))s,j=1,2

C>®(X,E)  C>(X,F)
® — @ (13)
C*®(0X,H) C*(0X,J)

of type d; here v := (E,F; H,J) for E, F € Vect(X) and H,J € Vect(0X).

Let V4,..., VN be coordinate neighbourhoods on 90X, let {p1,...,on} be
a subordinate partition of unity and {¢1,...,9¥n} a system of functions +; €
C§°(V;) which are equal to 1 on supp ¢; for all j, and let x; : V; = Q be charts,
QC ]R” ! open, n = dim X. Moreover, let w € C*(X) be a function which is
equal to 1 in a neighbourhood of 0.X and 0 outside X x [0, ). With symbols
gr(x', &', )\) as in Example 1.7 we can associate operator families

Gr(\) = diag(wer, o) (X5 1)« Op, (gr) (V) diag (wik, Pr), (14)

where Op,. (gx)(A = [[ === g (2! €' Nu(z")dz' @€' is interpreted as
an action _ _
CR(QxRy) C®(QxRy)
Opulg)N: & o s
Cee(R,Cm) Cc>(Q,C™)
Such operators can easily be generalised to block matrices also in the upper
left corners (i.e., when L?(R;) and S(R.) in the formula (9) is replaced by
L*(R;,C¢) and S(R, C¢") for some dimensions e and ', respectively). We then
have invariance with respect to substituting transition maps of vector bundles.
Then, if @ x Ry x C¢, @ x Ry x C¢', Q@ x C™ and Q x C™ are regarded as
trivialisations of bundles E, F, H and J, respectively, we interpret the operator
push forwards (X;l)* in the sense of maps between sections of bundles.
Let Bg’d(X;'U;]Rl) for p € R, d € N, be the space of all families G(\) of
operators (13) of the form

N
G =D G(N)+C(N)
k=1

for arbitrary Gi(\) of the form (14), and C(\) € B~4(X;v; R').

Definition 1.9. Let B»Y(X;v;R!) for any p € Z,d € N, v = (E,F;H,J),
defined to be the space of all families A(X) = (A;ij(N))sij=1,2 of operators (13),
X € R, which have the form

A(N) = diag(rTA(N)e™,0) + G(\) (15)

with A(X\) € L5 (2X; E,F;R'), for elements E,F € Vect(2X) such that E =
E|X, F = F|X, and €T denoting the operator of extension by zero to 2X \ X,

't the operator of restriction to intX, and G(\) € BLY(X;v;R). Forl =0 we
simply write B»4(X;v).



Note that A(\) € B#4(X;v; RY) implies A()\g) € B#4(X;v) for every fixed
Ao € R

A standard property of operators in B*4(X;v) in the case of compact X is
the following result:

Theorem 1.10. Every A € B»4(X;v) extends to continuous operators

H*(X,E) H*~"(X,F)
A: ® — ®
H* 3(0X,H) H* 2 "8X,J)

1
for every real s > d — 5.

The operator families A € B*#4(X;v; R) have a principal symbolic structure
consisting of two components

o(A) = (o4 (A),00(A)) (16)
with the (parameter-dependent) homogeneous principal interior symbol of .4
op(A) :7xE — X F, (17)

7x : T*X x R\ 0 — X, which is the principal symbol of A()\)|x, and the
(parameter-dependent) homogeneous principal boundary symbol of A

E'® H*(Ry) F'® H*7*(Ry)
o5(A) : mhy @ — Thx & , (18)
H J

mox 1 T*(0X) x R\ 0 — 0X; here E' := E|px, F' := F|px. Concerning more
explanations and notation in this context, cf. [16, Chapter 4]. An operator
family A()\) € B*4(X;v;R') is called (parameter-dependent) elliptic if both
(17) and (18) are isomorphisms.

Remark 1.11. (i) Definition 1.9 has an immediate generalisation to the case
of a non-compact manifold X with C* boundary; as before, the corre-
sponding operator classes are denoted by B*4(X;v;RY). For instance, if G
and S are as in the introduction we can form X := (G\S)U(indS_UintS, ),
i.e., to G\ S we add two copies of intS corresponding to the plus and mi-
nus sides of S. In this case we have 0X = 0G UintS_ U intS,. Since
0X has several connected components it may be necessary to indicate the
vector bundles on the different components separately.

(ii) For operators in Bé’d(X;v; R') we may admit arbitrary p € R.

The principal symbolic structure and ellipticity also make sense for a non-
compact manifold X with C° boundary, or if 90X has several connected com-
ponents.

Another situation when X has several connected components is the case
X :=1I for an interval I = [a, 3] on the real line. The operator families of the
space B*94(I;v; R) then have the form

Hs(I,C¢)  H*"(I,C)

A(N) : @ — @ ,
C-aoC™  C- pC

10



continuous for s > d — L; in this case v consists of the tuple of dimension data

(e;e'sn_,ny,n’_,ny). :

Since the latter case is basic for this exposition we want to formulate the
classes of operator families for the case ' = e=n_=n, =n_ =n/, =1
independently. The generalisation to arbitrary dimensions is then straightfor-
ward. Also for the case of different orders in the entries we can easily define
corresponding operators if we first have formulated the operators for the same
order p in all entries. We will define the spaces

B*4(I;RY)

for p € Z,d € N and
BLY R
for arbitrary p € R.
Let B;>"(I) defined to be the space of all 3 x 3 block matrix operators

H*(I) C>()
9="(9i)ij=123: ® — @& |,
C? 2

s > —%, where g1; is an integral operator with kernel in C*(I x I), gijc :=
fij(@)c for j = 2,3, c € C, gnu = [; fu(P)u(p)dep for i = 2,3, with arbitrary
functions fi;, fn € C°°(I) fori,j = 2,3, and an arbitrary 2x2 matrix (g;;); j—2,3
with entries in C. The components of ¢ = (cn,c3) € C* are related to the end
points {a} and {8} of the interval I. The space B;°°(I) is Fréchet in a
natural way (as a direct sum of its 9 components), and we set Bg(I;R!) :=
S(]RZ,BE)O’O(I)). Moreover let Bé"o’d(I; R') for arbitrary d € N be the space
of all operator families g(\) := go(\) + Z?:l Gj()\)diag(aé, 0,0) for arbitrary
9; € B (L RY).
Let us now consider 2 x 2 block matrix symbols g(\) of the class

Sa(R; L*(R) ® C, S(Ry) @ 0), (19)

where the group actions on L?(R, )@ C or S(R;) @ C are defined by u(¢) e —
/\%u()\(;ﬁ) @ ¢, A € Ry such that the pointwise adjoint g*(\) with respect to the
L?(Ry) @ C scalar product belongs to the space (19).

With every such g(\) we can associate an operator family

H*(I) C=(I)

a(A) =wgNo: @& — @ (20)
C C

5> —%, for any fixed choice of functions w,w € C*°(I) which are equal to 1
near ¢ = « and vanish in a neighbourhood of the end point #. In a similar
manner we can form operators

HA(I)  C>=(I)

b(A) = xs(lwgNw): & — & (21)
C C
where x : I — I is the diffeomorphism defined by x(¢) := —¢ + o + S which

interchanges the role of a and 3. In other words, the direct summands C in
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the spaces of (20) belong to the end point «, those in the spaces of (21) to the
end point 5. Writing (20) and (21) as block matrices with entries a;; and b;;,
respectively, we now form

HA (1) C>=(I)

ai; +biy arz bio ) ®
g()\) = a1 a22 0 C - C (22)

b21 0 ba ® ®

C C

More generally, we consider the operator families
d .
g(\) = go(N) + Y g;(\)diag(8,0,0) (23)
j=1

for any d € N, where g;(A) are of the kind (22), of order p — j.

The space Bg’d(I; R') for w € R, d € N is defined to be the set of all
operator functions g(A) + ¢(A) for arbitrary families of the form (23) and ¢(A) €

B&Oo’d(l; R!). Let Bg’d(l; R!) denote the space of upper left corners of elements
of BLY(I;R).

Remark 1.12. The space Bé’d(I;]Rl) has a natural Fréchet topology. So we
can form spaces of the kind C*= (R, x U, Bg’d(I; R')) or A(D,Bé’d(I; R')); here
A(D, E) for an open set D C C and a Fréchet space E denotes the space of all
holomorphic functions in D with values in E.

Let S5 (I x Ry x RY)r denote the space of all classical symbols of order
i € Z in the variable ¢ and covariables (¢, A) (with ¢ being the covariable to
¢). Recall that the transmission property at the end points of the interval I
(for instance, at ¢ = a) of a symbol a(¢,¥,\) means that the homogeneous
components a(,_j)(#,9,A) of order u — j satisfy the conditions

DED {agu- (6,9, 0) = (=1)* Tag, (¢, =9, =N} =0

on the set {(¢,9,A) : ¢ =a, 9 € R\ {0}, A\ =0} forall k € N, vy € N, and all
j € N. A similar condition is imposed at ¢ = 5.
Given a symbol a € S4(I x Ryt )i we set

op’ (a)(Nu(¢) := rop(a(A) eu(¢) (24)
where a(¢,9,A) € SH(R x R}f)\l) is any symbol such that a = d|IxR}9+j5 here e is

the operator of extension by zero from I to R\ I and r the restriction to intl.
We then have continuous operators op!(a)(\) : H¥(I) — H* #(I) for all reals
s> —% (clearly the operators do not depend on the choice of @).

Definition 1.13. The space B»Y(L;RY) for p € Z, d € N, is defined to be
the set of all operator families of the form op!(a)(\) + g()\) for arbitrary a €
SH(I % R,llg-j_)\l )or and g € BEY(I;RY). Moreover, we set

B RY) := {diag(p,0,0) + g : p € B*YI;R), g € BLY(I;R)}.
In the case p # 0 we assume p € Z, otherwise we admit u € R.

The space B~4(I;R') is Fréchet in a natural way.

12



1.3 Mellin operators and weighted spaces

For the calculus near (regular) geometric singularities such as conical points,
edges and corners it is convenient to employ pseudo-differential operators based
on the Mellin transform on the half-axis. This has been observed by many
authors before, see, e.g., Kondratyev [7]. Introducing polar coordinates (r,z) €
Ry x S™in R2T \ {0} a differential operator

Av(iayaDi":Dy) = Z ca(§7y)D%,y

la|<p

in R*"! x Q with coefficients ¢, (Z,y) € C®° (R x ), 2 C R? open, takes the
form

_ 2’
A(raxayaDraDmDy) =r7# . Z ajﬁ(ra y) <_TE> (rDy)ﬂ (25)
J+IBISu

with coefficients a;g € C°(Ry x Q, Diff*~+18D (7)), Here Diff”(.) denotes
the space of all differential operators of order v on the manifold in the brackets,
with smooth coefficients. The typical Fuchs type differentiations —r% in (25)
can be regarded as ‘Mellin’ operators with symbol z, i.e.,

0

—r—=M"1*2M
rw z

where Mu(z) = [ r* *u(r)dr is the Mellin transform, first on C§°(Ry) (with
z varying in the complex plane) and later on extended to more general function
and distribution spaces. Then the variable z will often vary on a ‘weight line’

I3 ={z€ C:Rez =0}

for some # € R. Mellin pseudo-differential operators with respect to some weight
v € R have the form

dr'

> —(3—v+ip)
ook (N = [ [ (5) T s 5 =y i At Tode

where f(r, ', z, \) is a parameter-dependent amplitude function with covariables
(2,A) € Ty_, x R'. In our applications f will be smooth in (r,7') € O (R x
R, ) and takes values in B9 (X;v; R, x R') for a compact C* manifold X with
boundary, e.g., X = I = [0, 2x], cf. the preceding section.

We want to specify this kind of Mellin symbols with respect to the depen-
dence on z. If U C C is an open set, E a Fréchet space, by A(U, E) we denote
the space of all holomorphic functions in U with values in E.

Let B*4(X;v;C x R') denote the space of all operator functions h(z,\) €
A(C, B+ (X;v;R)) such that

h(B +ip,\) € B"Y(X;v; R, x RY)
for every € R, uniformly in 8 € [¢/, "] for every ¢ < ¢”. We also write
BMY(X;v;T5 x RY)

for the parameter-dependent space of boundary value problems on X if the
parameter (z,\) varies on 'y x R (i.e., (Imz, \) plays the role of the parameter).

13



Theorem 1.14. For every f(z,)) € B4 (X;v; s x R') there exists an element
h(z,)\) € B"4(X;v;C x R')
such that
h(B+io,A) = f(B+ig,A) mod B~4(X;v;RLY).

Starting from functions f(r,p,\) € CW(@JF,B“@(X;U;R;F}%)) we can con-

struct Mellin symbols ﬁ(r, Z,X) € C°(Ry,B»Y(X;v;C x R)) such that, if we
set

flryp,N) == f(r,rp,rA), h(r,z,\) := E(r,z,r)\),
fo(r,p, ) == F(0,7p,7X), ho(r,2,A) := h(0,2,T))
we obtain
opy(A)(A) = op,(f)(A) mod B~>4(X";v;R') (26)
and
opas(ho)(A) = op,.(fo)(A) mod B~4(X";v;R') (27)

for all v € R Here op,(.) means the pseudo-differential action with respect
to the Fourier transform in 7. The relations (26) and (27) are interpreted as
equations in B#4(X";v;R!), i.e., X is regarded as a non-compact C° manifold
with boundary, and operators are first applied to u(r,z) € C5° (R, C*®(X)).

Relations of the kind (26), (27) are of a similar structure as the corresponding
ones for parameter-dependent pseudo-differential operators on a closed compact
C*° manifold, cf. [16]. The case of boundary value problems is treated in [10].
For the calculus below it will also be useful to define the subspace

B=d(X;v;T5 x RY). (28)

of all (so called smoothing Mellin symbols of the cone algebra with weight
control in an e-strip around the weight line I'g) f(z,A) € A({# —¢ < Rez <
B+ e}, B74(X;v;R)) for any ¢ > 0 which satisfy the condition

6 +ip,N) € SR, B9 (X))

for every 6 € (8 — ¢, + ¢) and uniformly in 0 for every compact subinterval.
In the considerations below it will be sufficient to have such smoothing Mellin
symbols for the case [ = 0.

Starting from operator families

.]7(7'7 Y, ﬁ; 777 X) € COO(KJF X Q, Bu7d(X; v; R1+q+l ))
for an open set 2 C R? we can find similarly as before an element
h(r,y,7,71,3) € C Ry x 0, B"(X;0;C x RI*))

such that, if we set

fry,pom ) == f(roy,rp,rn,mA), h(r,y, z,m,X) == h(r,y,z,m1,TA)
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we have
opy () (y,m,A) = op,(f)(y,m,A) mod C®(, B4 (X";v; RIT).

A relation similar to (27) also holds for the corresponding families with subscript
0.

By a cut-off function in this paper we understand any real-valued function
w € C§°(R4) which is equal to 1 near r = 0. Let us choose cut-off functions
wo, w1 and wy such that w; =1 on supp wp, wo = 1 on supp w=, and set

par(y,m, A) i= o (rln, N)op g 2 (B)(y,m, Nwr ([n, A]),
Py, m, ) i= (L= wo(r[n, A]))op, (f) (g, 1, AV (L — wo ([, A])).-

Here [, \] is any strictly positive C* function in R¢* which is equal to |7, A|
for |n, A] > C for some constant C' > 0.
Moreover, for arbitrary cut-off functions o(r) and &(r) we set

p(y,m, A) == o(r){pa (y,m, ) + py(y,m,A) o (r). (29)

Set

on (D) (y, 1, A) == wo(rln, AJopay * (ho)(y,m, Nwr (r]m, Al)
+ 17 (1 = wo(r[n, Al))op,.(fo) (¥, n, A)(1 — wa(rln, Al)). (30)

Let us now introduce weighted Sobolev spaces on an infinite stretched cone
with base N, first for the case that N is a closed compact C'*° manifold. We
use the fact that for every pu € R there exists a parameter-dependent elliptic
operator family R*(\) € L¥(N;R') which induces isomorphisms

R*(\) : H*(N) — H*""(N)

for every s € R, A € R'. Let us apply this to [ = 1.
By H®7(N”") for N* := Ry x N, 5,7 € R we denote the completion of

Cg°(N") with respect to the norm {(2mi) "' [, - [|R* (Imz)(Mu)(2) ||i2(N) dz}%

ntl
2

n = dim N. We then define the space
KN = {wu+ (1 —w)v:u € HP(NY), veHE (NN}

Here H . (N") denotes the subspace of all v = ¥|yr, ¥ € HE (R x N), such
that for every coordinate neighbourhood U on N, every diffeomorphism x :
U — U to an open set of S, x(z) = &, and every ¢ € C§°(U) the function
o(x @) (1 — w(r))v(r,x~(z)) belongs to the space H*(R"*!) (where (r, )
has the meaning of polar coordinates in R"** \ {0}). The spaces K*7(N") are
independent of the specific choice of w. They are Hilbert spaces with natural
scalar products which we choose for s = v = 0 in such a way that K%°(N") =
HOO9(N") =r=2L3(Ry x N) with L2(Ry x N) referring to drdx.

For the case N = 2X for a compact C* manifold X with boundary we set

K57(X™) = {ufinexs :u € K¥7((2X)M)} (31)
with the quotient topology from K%7(X") =2 K57((2X)") /K57 (X "), where
K57 (X ™) denotes the subspace of all w € K7 ((2X)") which vanish on int X".
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Let us finally define the Fréchet space

Sg(NA) — @1(7‘>_k’Ck’7+5_(1+krl (N/\)
keN

for every weight v € R and € > 0.
Analogous constructions are possible for the case of distributional sections
in vector bundles, i.e., we have spaces of the kind

HS7FY(N/\, E)7 ICs,FY (N/\7 E)7 Sg (N/\7 E)7

E € Vect(N"), both for the case of closed compact C* manifolds N as well as
for compact C*° manifolds N with boundary.

Similarly, if B is a compact manifold with conical singularities, first without
boundary, and B its stretched manifold, cf. Section 1.4 below, for every J €
Vect(B) we have the weighted spaces

H*7 (B, J) (32)
defined by wu € H*7(N",J), (1 —w)u € H,, (int B, J), where Ry x N is the

local model of B near 0B = N and w a cut-off function on B which is supported
in a collar neighbourhood of 0B and equal to 1 near 0B. For brevity we denoted
by J also the bundle associated with that in (32) as the pull back of J|sp
under the canonical projection Ry x N — N. Analogously, if D is a compact
manifold with conical singularities and boundary, D its stretched manifold and
2D the stretched manifold associated with 2D, cf. Section 1.4 below, for every
E € Vect(2D) we have the spaces H®7(2D, E) and H*7(D_, E)o (the closed
subspace of all w € H*7(2D, E) supported by the ‘negative’ copy of I in 2I).
Then we form

H>V(D, E) = {ulinn,., :u € H> (2D, E)}
for £ := E|D (with D being the ‘positive’ copy of D in 2D) with the quotient
topology of H*7(2D, E)/H*"(D_, E)o.
Theorem 1.15. The family of operators (29) is a symbol of the class S* (2 x

]R{Zj;\l;é',é') for

£ := K*7(X", E) & K7~ (9X, H), (33)
£ .= K5 # (XN F) @ ]CS*%*HN*%*N@X, J) (34)

1

for every s > —3, as well as for

€= SI(XMNE) @ SI7*0X, H), (35)
E:= ST MXN Py Sl (9K, ) (36)
for every e > 0.

There are other important categories of operator-valued amplitude functions
of the edge calculus, the so called smoothing Melling symbols and the Green
symbols. The smoothing Mellin symbols are of the form

m(y,m, A) :=r~w(r[n, opy, * (F)(w)@(rn, ) (37)
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for some cut-off functions w,® and a Mellin symbol

fy) € C2(Q,B™YX;v;Fapa_)e) (38)

for some & > 0. These are elements of S* (2 x RIt; £, €) for the spaces (33),
(34), s > —1, as well as for (35), (36). Let us set
oA (m)(y,m, A) = rw(rln, Aopay * (F)®)@(rln, Al (39)
Green symbols (of order u € R and type 0) are defined as operator families
gy, N) €= -, (ym,A) € @ x R, (40)
for
£:=K"(XNE)® K27 3((0X)",H) & C™,
S = ST HXN F) e ST ((9X), J) @ O

for certain dimensions m,m’ which refer to the number of additional conditions
on the edge, with some € > 0 that depends on g, such that

go(y,m, A) == diag(L, (1, N, (1, \))a(y, n, Ndiag(L, (9, )%, (9, \) ™)

is an element of S& (xRt ; £, 8.) and g (y, 7, A) (the pointwise formal adjoint)
an element of S¥(Q x RIT; €, S,) for

£:= K> (XN F) e KS 57t 3 ((0X)N, H) @ C™

S = STNXNE) S TE(OX)N, ) @ Cn

for every s > —%. A family of operators (40) is said to be a Green symbol of
order u € R and type d € N if it has the form

d

9y, A) = g0(y,m, A) + Y g;(y,m, Ndiag(T7,0,0) (41)
j=1

for a differential operator T' similarly as in (12) (here operating in sections of
the bundle E) and Green symbols g;(y,n, A) of order p and type 0, j = 1,...,d.

An operator function (41) represents a 3 x 3 matrix of classical operator-
valued symbols with a corresponding matrix of orders

o p—3 1
pts  m p—g (42)
pt+1 u—f—% 1.

Let oA(g)(y,n,A) denote the matrix of homogeneous principal symbols.

Now the parameter-dependent amplitude functions of the edge pseudo-differential

calculus of boundary value problems are defined as

a(y,m, A) = p(y,n,A) +m(y,n,A) + gy, n, A) (43)
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fOI‘ P(ZJ:TLA) = (p(y,(;’;A) 8) ) m(yﬂla)\) = (m(behA) g) Wlth the COor-
responding 2 x 2 upper left corners (29) and (37), respectively, and a Green

symbol g(y,n, A) of order u and type d.

Let us set
;M A) + oa(m)(y,n,A) 0
or@)n. ) o= (OB LEIA ) o g0, 0
regarded as a family of operators
K>7(X", E) K== i(X A F)
b b
aa(@)(y,m,\) 1 KS=27=3((OX), H) — Ke~37#7=37#((X)N, ),
® b
com (Cm’

(y,mA) € T*Q xR \ 0, s >d — . We then have the homogeneity

O (Cl) (ya 57)7 5>‘)
= o diag(sy", 0% 5§, 8)o () (y,n, N diag(k”, 83 k", 5) 7!

for all § € Ry; (/@gn)u)(r, x) = 5nT+1u(5r, x), (ngnfl)v)(r, z') == 83v(6r, 2").

For crack problems we modify this for the case when X is an interval I with
two end points (this gives then corresponding 4 x 4 matrices because of the
two components of the boundary). In addition in the final calculus below we
consider the entries separately and allow them to have different orders, according
to the ‘realistic’ boundary value problems for differential operators and their
parametrices.

Let R*4(Q x RIT;w) for w = (E, F; H,J;m,m') denote the space of all
operator families (43). The weight -y is given in connection with every element of
that space. We employ this for the case X = I, ¢ = 0 (then also 2 disappears)
and [ = 1. Then we have the class R*4(R;w). There is a natural version of
holomorphic families R*4(C; w) studied in the author’s joint papers with Oliaro
[10] and De Donno [1]. The elements h(w) € R*?%(C;w) are characterised by
holomorphy in w € C together with the property

h(d +it) € RMY(R,;w)

for every § € R, uniformly in compact d-intervals.

1.4 Parameter-dependent cone boundary value problems

Let A be a C'*° manifold with compact boundary dA. Then A can be regarded as
the stretched space of a manifold A = A/JA with conical singularity represented
by OA =: X collapsed to a point V. Then A is called the stretched manifold as-
sociated with A. Isomorphisms in the category of manifolds with conical singu-
larities can be defined via diffeomorphisms of the associated stretched manifolds
as C*° manifolds with boundary.
Let us set
Asing = 8A7 Areg =A \ Asing .
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Another equivalent definition of a manifold A with conical singularity starts
from a topological space A with a chosen point v € A such that A\ {v} is a
C*° manifold, and there is a neighbourhood V' of v in A with a homeomorphism
0:V = (Ry x X)/({0} x X) =: X2 for a closed compact manifold X, such
that

oy V\ {v} = Ry x X = X" (45)

is a diffeomorphism. By attaching X to R, x X we obtain Ry x X; this
allows us to attach X also to V' '\ {v} which gives the stretched version V of
the neighbourhood V. Under a suitable restriction on the nature of transition
maps X2 — X2 for different representations of V' we obtain the definition in
an invariant way which gives us globally the stretched manifold A associated
with A. Analogous definitions make sense for manifolds with more than one
conical singularity; for simplicity we consider the case of one conical singularity.
These definitions concern the case of a manifold A with conical singularity and
‘without boundary’. Let us generalise this to the case with boundary.

A topological space D is called a manifold with conical singularity v € D
and boundary if D\ {v} is a C* manifold with boundary, and there is a neigh-
bourhood V of v in D with a homeomorphism ¢ : V — X for a compact C>®
manifold X with boundary, such that (45) is a diffeomorphism in the sense of
C* manifolds with boundary. Again under a natural condition for the transi-
tion maps for different choices of ¢ we can attach a copy of X to D\ {v} in an
invariant way to obtain the stretched manifold D associated with D.

There is a natural notion of doubling up D to a manifold A := 2D with
conical singularity and closed A = 2X. We then set

IDsing = Asing N D; Dreg =D \ ]D)sing .

It follows that D, is diffeomorphic to X, and Dreg is a C°° manifold with
boundary. Moreover, B := 0Dz UOX is the stretched manifold of the manifold
B = 0D with conical singularity v and without boundary.

Recall from [12], [13], or [6] that there are spaces C*4(D;v) of pseudo-
differential boundary value problems of order y and type d on D which constitute
the corresponding cone algebra on D. Here v := (E, F'; H, J) is a tuple of smooth
complex vector bundles E, F € Vect(D), H,J € Vect(B). The operators A in
the cone algebra are continuous between weighted Sobolev spaces

H*7 (D, E) Hs—HI—H(D, F)
A ® — ©®
W3 E(BH)  HEE i H(B, )

foralls e R, s >d— % The weight v € R is given together with the operator A
(the weight belongs to weight data (v, y—pu, ¥-) for a weight interval 9. = (—¢, 0],
e =¢&(A) > 0, which defines strips

1 1
n—; —B—€<Rez§i—ﬂ}

{zE(C: 5

for § = v and 8 = v — p, referring to the involved smoothing Mellin and Green
operators, cf. Section 3.2 below, and n = dim X .

In this paper we need a parameter-dependent calculus of such cone opera-
tors. The notion of parameter-dependence in this case is not so straightforward
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as for pseudo-differential operators on smooth manifolds. On manifolds with
conical singularities without boundary the parameter-dependent calculus was
introduced in [18] in connection with operators on manifolds with corners. This
was later on applied by Gil [4] for studying heat trace expansions for cone op-
erators. The specific aspect in the parameter-dependent cone theory is that the
parameter plays the role of an edge covariable of a corresponding edge calculus.
For the infinite (stretched) cone X” with a base X with boundary such edge
amplitude functions have the form (43), see also the author’s joint papers with
Oliaro [10], De Donno [1], and Krainer [8].

For the applications to the corner theory which is also the point in the
present theory we have to pass to block matrices with extra finite-dimensional
entries. In other words, instead of v = (E, F; H, J) we consider

w:=(E,F;H,J;m,m')

for any m,m' € N.

The space C*4(D;w; R!) of pseudo-differential boundary value problems of
order p and type d on I, with parameters A € R', is defined to be the set of all
operator families of the form

H* (D, E) HE (D, F)
b b
AN +C(\) : HE—37~5 (B, H) — HE~3#=37K(B, J)
® ®
cr c

such that, if we write A(A) = (Ai;(A))i,j=12,3, we have the following properties:
(1) Ai1()) restricted to int Dyeg belongs to LY (int Dreg; E, F; R'),
(i) (Aij(N))ij=1,2 restricted to Dyeg belongs to B4 (Dyeg; v; RY);
(iii) A(X) restricted to a neighbourhood of Dying belongs to the space R*4 (R, ; w);
(iv

The latter space for d = 0 is defined to be the set of all operators

C()\) is a Schwartz function in A € R with values in C~°4(D; w).

#H (D, E) Hoo—mte (D, F)
® ®
C: M =3(B, H) — H®""27HF<(B,.])
® ®
cr cm

for some ¢ = ¢(C) > 0, continuous for all s,s' € R, s > —%, such that the
formal adjoint (referring to the scalar products in the corresponding spaces for
s = s' =y =0) satisfy an analogous condition with the corresponding opposite
weights. The space C~°°4(D;w) for arbitrary d € N is defined to be the set of

all sums
d

C=Co+ ) _ Cjdiag(17,0,0)

=1
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for arbitrary C; € C=%(D;w), j = 0,...,d, and a differential operator 1" of
first order which differentiates transversally to the boundary.

The parameter-dependent principal symbolic structure of elements A €
C*(D;w; R') consists of triples

o(A) = (04 (A),00(A),07(A))
with the interior principal symbol oy (A) := 0y (A11) in the sense of
LY (intDyeg; B, F; R,

the boundary symbol o5 (A) := 05((Aij)i,j=1,2) in the sense of B4 (Dyeq;v; RY)
and the ‘edge’ symbol o (A) which is locally given by (44) (only depending on
A; the variables (y,7n) do not occur in this case).

2 Corner boundary value problems

2.1 Corner Sobolev spaces

We now introduce corner Sobolev spaces with double weights in the two axial
directions r € R} and t € R;. Let H be a Hilbert space which is endowed with
a strongly continuous group of isomorphisms k) : H — H, A € R4, such that
kax = kaky for all A, X" € Ry ; in this case we say that {x)}rer, is a group
action on H.

Recall from Definition 1.1 that the space W*(R?, H) is the completion of

1
S(R?, H) with respect to the norm {f ||(7))sf€671>ﬁ(77)||%1d77} ", More generally,
if H is a Fréchet space, written as a projective limit of Hilbert spaces H7,
j € N, with continuous embeddings H’*! — HJ for all j, such that a group
action {rx}rer,, first given on the space H, restricts to a group action on
HY for every j, we say that {kx}\cr, is a group action on H. Then we define
W#(R?, H) as the projective limit of the spaces W*(R?, H’) over j € N.

This construction will be applied, in particular, to H = K*7(N") for some
compact C* manifold N (with or without boundary), where the group action
is defined by (ku)(r,z) = /\HTHu(/\r, z), A € Ry; n = dim N. The resulting
spaces

WEY(N" x R?) := W9 (R?, K57 (N")) (46)
are called weighted edge Sobolev spaces. Spaces of this kind can also be globally
defined on a manifold W with edge Y, locally near points of ¥ modelled on
wedges N x Q, where y € Q C R? are local coordinates on ¥ and N& =
(Ry x N)/({0} x N). We shall work with the stretched manifold W of W which
is obtained from W \ Y by attaching the base manifold N over points of ¥
such that W is locally near the singular subset Wg;,, of the form @+ x N while
W\ Wging =: Wieg is diffeomorphic to the manifold W\ Y (as smooth manifolds
with boundary in the case of N with boundary).

Abstract corner Sobolev spaces V(R x R?, H) of smoothness s € R and
corner weight 0 € R (first for a Hilbert space H with group action) are defined
as the completion of C§° (R} x R?, H) with respect to the norm

o si - 1/2
{em [ [ w0 Iy (i o,y dun
A
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with M;_,,, being the Mellin transform in the corner axis variable t € R, and
w € C the corresponding covariable, Fy_,, the Fourier transform in y € RY.
The number m € N is an information which is given together with the space H;
in the case H = K*7(N") we set m = n + 1 for n = dim N. Corner spaces of
that kind have been introduced in [18], see also [17].

In analogy of (46) we form the spaces

VoS (R, x BI, K5 (N)

and the corresponding global variants V*?(Ry x Y;K*7(N")) by using charts
on Y and the invariance of the local definition under transition diffeomorphisms.
Finally, if W is a compact (stretched) manifold with edge ¥ we form the spaces

Vo) (W) = {wotxh v € V9O (Ry xY,K5Y(N7)),  heH™ (M)}, (47)

where M denotes the double of W which is a smooth compact manifold (with
boundary if so is the base N of the local model cone for W); moreover, w is a
cut-off function on W (i.e., C*° and supported in a neighbourhood of Wi, and
equal to 1 near Wyipn, ), and x =1 —w.

Note, in particular, that the construction of spaces of the kind (47) also
works for a (stretched) manifold D with conical singularities and boundary, i.e.,
there are also the spaces V#(7:9) (D). In the applications below we employ
generalisations of these spaces to distributional sections of vector bundles.

2.2 Operators in the model corner near singular crack
points

The next step of the construction of the crack operator calculus is to build up
the corresponding operator-valued amplitude functions near the singular point
v of the crack boundary 95.

First we have the space B*4(I;v;R!) of parameter-dependent boundary
value problems on an interval I = [0,27], with parameter A € R'. These oper-
ator families form the raw material of the operator-valued amplitude functions
near the smooth part of the crack boundary, cf. [6]. They give us local descrip-
tions of the crack operators represented by the given problem with two-sided
boundary conditions and additional conditions of trace and potential type along
the smooth crack boundary. In a neighbourhood of the conical point of the crack
boundary we apply the corner calculus of boundary value problems which is a
version of the theory from [18] for the case of boundary value problems instead
of a ‘closed’ corner manifold. Here, for simplicity, we assume that our crack
configuration is of dimension 3, i.e., the crack boundary is of dimension 1. By
introducing suitable local coordinates we may assume that S locally near the
conical point v is represented by a two-dimensional cone in R? of the form

{reR:2=0 or z/|z| € Z} (48)

where Z is a (closed) smooth curve on S? of finite length, with two end points
to and ¢; and without self-intersection.

The sphere S? with the embedded curve Z can be interpreted as a two-
dimensional crack situation, where on the crack Z we impose boundary condi-
tions from both sides which satisfy the Shapiro-Lopatinskij conditions with re-
spect to an elliptic operator given on S2. The calculus of elliptic boundary value
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problems on S?\ Z with such conditions is a special case of the calculus of bound-
ary value problems on a manifold with conical singularities and boundary. The
conical singularities here are the points ¢y and ¢1, the boundary consists of two
copies Z4 of Z (where the respective points ¢y from the + sides are identified)
and the local model of the configuration near ¢, is (R4 x [0, 27])/({0} x [0, 27]),
k=0,1.
Let S2. . denote the configuration consisting of (S? \ intZ) UintZ_ UintZ,
where the two sides of int Z are distinguished as different parts of the correspond-
ing boundary which has the conical points ¢g, ¢t1. For a general (stretched) mani-
fold D with conical singularities and boundary we have the parameter-dependent
calculus of operators of the space C*4(ID; w; ]Rl)\), the cone algebra of boundary
value problems on D, with the parameter \. Here w := (E,F;H,J;m,m')
are bundle data in the corresponding operators, i.e., E, F € Vect(D), H,J €
Vect(B) where B is the stretched manifold belonging to the boundary of D.
We can specify this to D := S2_, with ¢ and ¢; as conical points and
therefore have C*4(S2 ,; w; ]R ) We will only need the cases I = 0 or [ = 1.
The bundle data w are as follows. Let Z denote the configuration which consists
of two copies Z_ and Z,; of the curve Z where the respective end points are
identified. Then we set w = (E, F; H, J;m,m') for E, F € Vect(S2...), H,J €
Vect(Zreg) (for Zipeg = intZ — U intZ). The set Z,e, consists of two connected
components; so the elements H and J consist of pairs of bundles (which are of
course trivial in this case), namely Hy and Ji, the restrictions of H and J,
respectively, to intZy. The stretched cone Z™ = Ry X Z contains two border
lines I := Ry U R, (disjoint union belonging to the end points 1y and ¢;.)

Let C*9(S2,.; w; C) be the space of all h(w) € A(C,C*9 (52, ,;w)) such
that

(6+ZT) Ecud( crack) W :]R-r)

for every d € R, uniformly in § € [¢, "] for every c < ' We also write
Crd(S2, .;w; L) for the space of all f(w) € CM4(S2, . ;w ,]R.,) (1,A) for

crack’
7 = Im w plays the role of the parameter.

Theorem 2.1. For every f(w) € C*9(S?

crack?

h( ) € Cﬂd(‘s’crack)w (C)

;w;L's) there exists an element

such that
h(§ +it) = f(§ +ir) mod CT°(S2  ;w;RL).

Applying the construction of (47) to W = 52, (modified for distributional

sections of a vector bundle E on (5%, )" we obtain the spaces
VS7(’Y g ((Scrack) ’ E)

Proposition 2.2. Given an element f(w) € C*9(S2, ,;w;T1_5) the operator

crack’
ophr’(f) induces continuous maps
VD (S20g)B) VRO (S0) )
S b
ophr (f) 1 V=8 0m50=5) (7 HY) — VemEm 5 0m5mmi=smm) (2N ) (49)
2 ®
Hs—l,é—l(]l/\,(cm) 7—[3—1—”7‘5—1—“(11/\, (Cm/)

1
for every real s > d — 5.
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Similarly as the spaces of smoothing Mellin symbols (38) in the cone algebra
of boundary value problems we need smoothing Mellin symbols in the corner
operator algebra on (S2...)" with a control of weights in a prescribed e-strip
around a given weight line I'3. Let

C_007d(sgrack; w; Fﬁ)s (50)
for some £ > 0 denote the space of all
f(w) € A({B —& < Rew < B +¢}, €U q;w))

such that
f0+ir) € CUSE s wi Ry)

for every ¢ € (8 — ¢, +¢€), and uniformly in ¢ for every compact subinterval.
A Green operator G in the corner algebra on (S2,.)" belonging to the

weight data ((v,9); (v — u,0 — p)) of type 0 is an operator which is continuous
as

VEOO((S2 )" E)  Veolmmtedmute) ((S2 )N F)
57 57
G 1 VWb D (BN H) Yoo ibed— i) (g )
©® ©®
'Hs”,é—l(]l/\,(cm) Hoo,é—l—u+5(HA,Cm')

for all s,s',s"” € R, s > —%, and for some ¢ = (G) > 0, such that the formal
adjoint G* has analogous mapping properties. Here the formal adjoint refers
to the scalar products in the spaces V(@0 ((S2 )", ) @ VO(=2-3) (2 ) @
HO~L(I", ). A Green operator on (S2._ )" of type d € N is an operator of the

crack
form

d
G=Go+ Y Gjdiag(17,0,0)
j=1
for arbitrary Green operators G; on (S2,.)" of type 0 in the former sense and
a differential operator T of first order which differentiates transversally to the
boundary components (intZ4)".

Let us interpret for the moment (S2 )" = Ry x S2. . as a cylinder Cerack
without any special attention for ¢ — 0. This cylinder is then a crack config-
uration with a crack B := Ry x Z with smooth boundary J consisting of two
copies of Ry (although not compact). The crack theory from [6, Chapter 5]
then gives rise to a corresponding crack operator algebra constituted by spaces

C*9(Crack; w) of continuous operators

W(fé?np(ccracka E) Ws_ﬂﬂ_“(ccracka F)

loc
D D
A Wend 7H(B,H) = Wi 75 (B, ).
D D
Hik (1,Cm) HE M@0

The ‘comp’ and ‘loc’ notation in the W% 7-gpaces admits elements to have their
support ‘up to’ the edge and the boundary, however, only for corresponding
compact sets.
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)" is the union of all spaces C*4((S2, )" w)

)A;w) is the subspace of all

The corner algebra on (52,
over p € Z,d € N, defined as follows: C*9((S2, .
operators

Ae Cuyd(ccracld w);

such that for arbitrary cut-off functions w(t),@(t), we have
wAD = wr™ropS t (h)@ + wr™ opS H(f)o + G (51)
for certain elements

h(t,w) € C® Ry, CM (S w; ), f(w) € € (SZ i w3 T1—)-
and a Green operator G in the abovementioned sense, for some € = ¢(A) > 0.
The principal symbolic hierarchy of elements

A= (Cij)ij=1,23 € C*((Sirac); W)
consists of tuples
o(A) = (oy(A),05(A), 01 (A),0c(A)).

Here oy (A) = oy(A11) is the principal symbol of A;; as a classical (cor-
ner degenerate) pseudo-differential operator of order u. Moreover, os(A) =
09((Aij)i,j=1,2) is the principal boundary symbol of the 2 x 2 upper left corner
of A; it refers to the two-sided boundary conditions on R} X intZ4; thus o5(A)
consists of two components os +(A) belonging to the corresponding =+ sides.
In the general definition of the space C*4((S2%,)"; w) we have assumed, for
convenience, that the orders of these conditions are the same on both sides. In
the examples of Section 3.1 below we admit independent orders. Furthermore,
on(A) is the principal edge symbol, expressed in the sense of edge boundary
value problems of the class C*%(Cerack; w), belonging to the edges Ry x {i1},
k = 0,1. Finally, 0.(A) is the corner conormal symbol of the operator A, cf.
also [8].

The components oy (A) and 05(A) are as usual in the calculus of boundary
value problems, see also Section 3.1 below. The principal edge symbol consists
of a pair of families of operators oa(A) = (oa0(A), oa1(A)) with op,(A)
belonging to Ry x {ux}, £ = 0,1, which are of the form

K=1(R* \ Ry, E) K= (R \ Ry, F)
®

©
Ko=2073(Ry Ho) K02 w0 E MRy, )
onk(A)E,T) &) — ) , (52)
’CS_%N_%(]R—FaH+) ]CS—%—NFY—%—N(RF,J_‘_)
© ©
cm cm'

s>d—1%, (t,7) € Ry x (R\ {0}).

Here, in abuse of notation, we wrote the bundles E, F', etc., also in the %7-
spaces, although these bundles are suitable restrictions of the original ones,
combined with pull backs to infinite cylinders; the subscripts ‘+” at H and J
indicate the ‘+ sides’ of the boundary of the infinite cone R? \ Ry (consisting
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of two copies of Ry belonging in R? \ Ry to the angles 0 and 27 in polar
coordinates).

Let us point out once again that Ry x {¢} are the two edges starting from
the corner point, while R} in the spaces in the formula (52) represents the
intersection of the crack with the two-dimensional normal plane to Ry x {¢}.

The corner conormal symbol of the operator A is defined as the operator
family

oc(A)(w) := h(0,w) + f(w)

with the Mellin symbols contained in (51), and w running on the weight line
['s 53 w (see also the explanations in Section 3.1 below),

Hs,ﬁy(s(?rackJE) HS_277_2(S2 F)

crack’
® ®
oc(A) (w) s M2 (L, H) = W R, ),
b b
(C2m (sz’
s >d-— % Again the notation with the bundles is to be interpreted in the

right way in terms of restrictions of the originally given bundles. The weighted
Sobolev spaces H® 7 (S? ) and H* 27" 2(Z,-) refer to the interpretation

crack’
of S%_ .. as a manifold with conical singularities {o, ¢, } with boundary and Z
(consisting of two copies Z+ of Z that are pasted together at (o and ¢;) as a
one-dimensional manifold with conical singularities {¢o, ¢1}.
An element A € CH*4((S%, )" w) is called elliptic, if all components of
o(A) are bijective; for oa(A) that means bijectivity in the representation of
(52) in the form oa (A)(E,T) =t #6ak(t, T)|7=tr, Where G 1 (t,7) is bijective

for 7 #0 up to t = 0.

2.3 The crack operator algebra

By the crack operator algebra we understand a calculus of (pseudo-differential)
boundary value problems which contains the original crack problems with two-
sided boundary conditions together with the parametrices in the elliptic case.
The typical novelty here compared with [6] is the corner geometry near the
singular points of the crack boundary.

Let us denote by Mcpack the crack configuration described in Section 1.1.
That means Meyacx is equal to (G \ int.S) UintS_ UintS; which is a space with
singularities, the boundary dG and the crack S which is defined by two copies
S+ of S where the boundaries S+ are identified. Then intS = intS_ UintS,.
The space Mcrack \ 05 is a C* manifold with boundary 0G U intS_ U intS. .
Thus on Mcrack \ S we have the calculus of boundary value problems of the
class

Bmd(Mcrack \ 65’) C)

of order p and type d, ¢ := (E,F;H,J;K,L) for E,F € Vect(G),H,J €
Vect(S), K, L € Vect(0G). The elements Ajy, of that space represent continuous

26



operators

Hgomp(@\saE) Hlso;u(a\S:F)
© ©
At Heonlo(intS, H) — HY_* " (intS, J)
S5 S5
Hind,(0G,K)  HS-* (G, L)

forall s > d— % The principal symbolic hierarchy of these operators consists
of tuples

U(Aint) = (Ul/z(Aint); 037S(Aint)7 U&BG’(Aint)); (53)

where oy () denotes the usual interior symbol, o5 s(-) the pair of boundary sym-
bols on the +-sides of intS, and 05 s (+) the boundary symbol on the boundary
OG of the domain. The picture is analogous to (16); the only difference here is
that the boundary symbols split into components according to the parts S+ and
OG of the boundary. The ellipticity of an operator Ainy € B4 (Merack \ 05;€)
is determined by the bijectivity of the components of (53).

Furthermore, if v € S denotes the conical point of the crack, the space
Merack \ {v} is a manifold with ‘smooth’ crack S\ {v} in the sense of [6, Chapter
5]. This gives rise to the corresponding crack algebra C*%(Meack \ {v}; ) for
b:= (E,F;H,J;K,L; M,M'). The elements A, in this calculus represent
continuous operators

Wgé?np(MCraCk \ {’U}, E) WS?NN?H(Mcrack \ {'U}a F)

o loc &
Weods " Srege ) Wie® ™77 (Sreg, )
Areg : & — @
Hepk (06, K) HF 06, L)
5) 5)
Honp (05 \ {v}, M) HE 08\ {v}, M)

fors >d— % and a chosen weight v € R which is given and fixed in connection
with the operator.
The principal symbolic hierarchy of the operators A,e; consists of tuples

U(Areg) = (Uz/J(Areg): UB,S(Areg): UB,BG(Areg): U/\(Areg))- (54)

The meaning of the first three components is similar to (52). In the global
situation we do not make a difference between the edge symbols for different
components of oa(+), so we do not have an extra index k as in (52). The
ellipticity of an operator Ay € C P Merack \ {v}; b) is defined as the bijectivity
of all components of (54) in the same sense as in [6].

The space Meack is a manifold with corner {v} and boundary, locally near
v modelled on (S%,.,)", locally far from {v} on a manifold with edge 95 \
{v} and boundary, and locally far from 95 modelled on a C*° manifold with
boundary. We then have the weighted corner spaces V* (79 (M aa, E) given
by VS’(WS)((SfraCk)A,E) near v, moreover, locally far from {v} by the space
Wi (Meraek \ {v}, E) and locally far from 8S by HE (G \ S, E).

The crack operator space C”’d(Mcrack; b) on Mcrack of order p and type d
and with bundle data

b= (E,F;H,J;K,L; M, M
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on M ack is defined to be the set of all operators

Vs7(%6)(Mcrack:E) VS?H’(Viméiu) (McrackaF)
S¥) S5
Ve—5:0—2.0-3)(S, H)  Yemz—m(ms—md—z—u) (S J)
A+C: @ — ) , (55)
H*2(0G,K) H* 2 #(dG, L)
S¥) S5
Hsfl,dfl(a& M) Hsflfp,dflfu(a& MI)
continuous for s > d — § such that if we write A = (Ay)ij=1,...4 the op-

erator (A;j)i j—1,23 restricts far from 9S to an element Ajne in B4 Mepaer \
0S; c), moreover A restricts far from the point v € 05 to an element Az in
CH 9 Merack \{v};b), and (A;;); j=1,2,4 localised near v defines a corner boundary
value problem

VRO (S20g ) B) VIO (52, )M F)
D ®
Acorner . VS*%(’Y*%"S*%) (ZA; H) — Vsiéim(nri%i%di%iu) (ZAJ J)
D ®
Hs—L-L(IA, M) HELmmO == (A MY

belonging to the space C*9((S2,.,)";w) in the sense of Section 2.2; w =
(E,F;H,J; M,M'"). These operators are continuous for all s > d — %
Finally, C is a smoothing operator of type d, which means the following. The

operator C is a sum
d

C=Co+ ) Cjdiag(1”,0,0,0)
j=1
where T is a first order differential operator in G which differentiates transver-
sally to OG as well as to S (cf., similarly, the formula (12)), and the operators

Cj,j =0,...,d, are smoothing and of type 0. The latter property of an operator
C means the continuity of the map

VO (Megaetey B) VoS 1427059 (M oy, F)

S S
V(3§ H)  peer-bomted—fmute) (S )
C: ® - ® (56)
H" (G, K) H>(8G, L)
S S
0108, M) MOt (98, M)

for all s,s',s",s" € R, s > —3 and some ¢ = £(C) > 0 and a similar condition
for the formal adjoint of C (referring to the scalar products in the corresponding
spaces for s =s' =" =s"" =0and § = =0).

The principal symbolic hierarchy of operators A € C*%(Merac; b) consists
of tuples (5) with oa(A) = (08,5(A), 0s,0¢(A)).

Recall that the domain G is assumed to be bounded. Then

Ae€ C”’d(Mcrack; b): -"I € Cﬁ’a(MCraCk; i))
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implies AA € crimax(itdd) (A7 b o b), provided that the weights in the
image of A fit to those in the domain of A. Here b = (E, E; H, H; K, K; M, M)
and bob = (E,F;H,J;K,L;M,M'), and we have

o(AA) = o(A)o(A)

with componentwise composition, with the rule (oc(A)oc(A))(w) = oc(A)(w +
f)oe(A)(w).

2.4 Ellipticity and regularity of solutions

We now turn to ellipticity with extra conditions along the crack boundary and
to the regularity of solutions in weighted corner Sobolev spaces.
Let

b:=(E,F;H,J;K,L; M,M'"),¢:=(E,F;H,J;K,L),w:= (E,F;H,J; M,M").
Definition 2.3. An operator A € C*Y(Meraci; b), is called elliptic if

(i) Aing is elliptic in B»Y( Meraac \ 0S;¢),

(i) Areg is elliptic in CH Y Merack \ {v};0),

(iii) Acorner is elliptic in CH4((S?, 4)"\; w).

crack

Remark 2.4. Note that (ii) in Definition 2.3 depends on the chosen weight y €
R and the fibre dimensions m(7y) and m'(~y) of the bundles M = M () and M' =
M'(y) may depend on ~y. In fact, the cone conormal symbol op;0oa(Areg)(2) is
required to be bijective on the weight line I'i_ in the z-plane; the dimension of
the base of the model cone (which is an interval) is equal to 1. Analogously, the
condition (iil) in Definition 2.3 depends on the weight § € R, because the corner
conormal symbol oc(A)(w) = o¢(Acorner)(w) has to be bijective on the weight

line 1"%75 in the w-plane; the dimension of the corner base S%., . is equal to 2.

Cr

In the following theorem we set v = max(v, 0) for some real v, and
b~!:=(F,E;J H;L,K;M' M),
b:=(E,E;H,H;K,K;M,M), b, :=(F,F;J,J;L,L; M',M").

Theorem 2.5. An elliptic operator A € C*4(Merack; b) has a parametriz P €
C’”’(d*“)Jr(Mcrack;b_l) in the sense that C; .= 7 — PA and C, := T — AP
belong to C™°Y(Meraa; v7) and C~°%4 (Meraci; by), respectively; here d; =
max(u,d),d, = (d — p)T. Moreover, an elliptic operator A € C*4(Merack; b)
defines a Fredholm operator

VS7(%6) (Mcracka E) VS?M(IY?HJ?H) (Mcrack7 F)
57 57
Vs—2:(r=2.0=3)(S, H)  Vsmz—m(ma—md—z=m) (S J)
A ® o ® (57)
H*"3(0G, K) Hs=2~#(3G, L)
5% 5%
Hs—1,6—1(857 M) Hs—l—p,d—l—y(857 MI)

for every s > max(u,d) — %
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Corollary 2.6. Let A € C*Y(Meraci; b) be an elliptic operator. Then Au = f
with f being in the space on the right of (57) and u in the space on the left for
some r > max(u,d) — L in place of s entails that u belongs to the space on the

left of (57). ’

3 Examples and Remarks

3.1 Examples

We now specify our results on general pseudo-differential crack problems for the
case of differential operators with differential boundary and crack conditions.
Let A be an elliptic differential operator of order p,

A:H*(G,E)—> H ™G,F)
for vector bundles E, F' € Vect(G). Then A also induces continuous operators
A VO (Meraere, E) = VOO0 (Mpe, F)

for every s,7,0 € R (as before we employ the same notation for bundles over
different spaces when they are linked to each other in a natural way; in the case
of the Lamé system we simply have a 3 x 3 system, i.e., the bundles are trivial
and of fibre dimension 3). Moreover, consider vectors of trace conditions

Ty = (T+,i)i=1,....1, Tx,i=r+B1;,

with differential operators By ; of order u4 ;, in a neighbourhood of S, mapping
(distributional) sections of E to sections in bundles Ji ; (in that neighbour-
hood). Then, setting J1 ; = J4 ilints, We obtain continuous operators

Tii: VOO (Mepper, B) — V™3 Hna (05—t id=d=uz.) (5, ], )

for all s > max{ps; + % : i = 1,...,I}. We assume that the operators
(T4 ,i)i=1,...,1 satisfy the Shapiro-Lopatinskij condition on S1 (uniformly up to
0S from the respective sides). Moreover, let T' be a vector of boundary condi-
tions on 05, also satisfying the Shapiro-Lopatinskij condition with respect to
A. For convenience, after a (pseudo-differential) reduction of orders we assume
that 7" induces continuous operators

T : H*(G,E) — H* 3 "(0G, L)

for p = ord 4, s > p + %, for some L € Vect(dG). From the definition of the
spaces V* (19 (Maa, E) (which are equal to H*(G, E) in a neigbourhood of
0@) it follows that T also induces continuous operators

T : Vo) (Myack, E) = H* "2 #(0G, L)

for s > p+ % In other words the operator A together with the boundary
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conditions gives rise to a continuous operator

stm(”rfu,dfu)(Mcrack, F)

S
@i, Ve E e i (S )

Al : VS7(7’6) (Mcrack; E) — D
S R R C R )

S

H*~ 270G, L)

(58)
for every s > max{p+; + %,u + %} Compared with the 3 x 3 upper left
corners of operators (55) in the present case of differential operators we do not
need potential operators. Recall that in (55) we have assumed unified orders
i (except for the shift by %) also in the boundary operators belonging to St
(therefore, it was adequate to represent Sy US_ by S).

The corner pseudo-differential calculus on S also contains elliptic reductions
of orders. In particular, there are isomorphisms

Vs_%_ﬂi,i,(7—%—%@75—%—“*’1’)(Si, Jii) =
ys=Emm=3=md=3=w) (5, 1. ) (59)

within the corner algebra on Si.

By composing (58) from the left by a corresponding diagonal matrix of order
reductions (59) we can pass to the situation of (51). The construction of such
isomorphisms is voluminous.

Therefore, it is preferable to avoid such reductions of orders in the concrete
examples and to slightly modify the general calculus for the case of different
orders in the trace (and also potential) operators. In other words we tacitly
employ the crack calculus of Sections 2.3 and 2.4 in a version of different orders
as they are generated in (58).

Under the ellipticity assumptions on the operators A and T'y, T' the operator
(58) satisfies the condition (i) of Definition 2.3. For (ii) we have to impose
additional conditions of trace and potential type along 05 (it may happen that
only trace or only potential conditions are necessary, or no conditions at all).
The existence of such extra conditions is not always guaranteed. The crack
boundary plays the role of an edge, and there is a topological obstruction for
the existence of edge conditions, cf. [20]. In the present case the edge 0S has
conical singularities. However in this situation the condition is very similar;
the only modification is that we have to replace locally near ¢ = 0 the edge
covariable 7 by t7 (¢t € Ry is the corner axis variable in the notation of Section
2.2 with the dual variable 7). From now on we assume that the abovementioned
topological obstruction vanishes for the operator (58) in consideration which is
the case in the examples below. Then, according to a variant of a result of [20]
for boundary value problems, similarly as (51) there exists an operator

ﬁsfu,(vfuﬁ*u)(Mcrack, ﬁ)

A K Vs7(%6) (Mcracka E) L @
A= (7' Q> ‘ o - H*T27H(0G, L) (60)
He=19-1(9S, M) o

'Hs—l—u,é—l—y(aS, MI)
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for

stm(”rfu,dfu)(Mcrack, F)
_ _ 57
st;h('yfu,dfu) (Mcrack; F) — @z(:l VS—%—N+,1'(’Y—%—N+,i,5—%—ﬂ+,i)(S+, J—i—,i)
©®
@y Vet (S )

for a suitable choice of the weight ¢ such that A belongs to the crack calculus
and satisfies the condition (ii) of Definition 2.3 for all weights ¢ outside some
discrete set of reals. The explanation for the latter effect is a follows. First we
can generate the extra crack boundary conditions near the conical singularity
v € 05 on the level of operator-valued Mellin amplitude functions with ellipticity
referring to the edge symbolic component o,. Then, by applying a kernel cut-off
argument to the Mellin symbols we can pass to holomorphic amplitude functions
in the complex covariable w. This has the consequence that the ellipticity of the
crack conditions holds for all weights § outside a discrete set, since the associated
conormal symbol is a holomorphic family of Fredholm operators between spaces
on 52 . and takes values in isomorphisms outside some discrete set. This allows
us to apply the corresponding modification of Theorem 2.5 to the operator (60),
i.e., we obtain that (60) is a Fredholm operator and has a parametrix in our
crack operator calculus.

Let us now have a look at the example (3) for the Laplace operator in 3
dimensions, with Dirichlet conditions 7" and Neumann conditions 7y on the
respective sides of S. In contrast to the unified choice of orders of the operator
on 0G, cf. the formula (60), we will take the order as in (3).

Theorem 3.1. For every v ¢ +(Z + %) there ewists a discrete set D, C R
such that for every 6 € R\ D, the operator (3) can be completed to an elliptic
operator (4) in the corner algebra which defines a Fredholm operator for every
s> %, and there is a parametriz of (4) in the corner algebra.

The existence of a parametrix is a special case of Theorem 2.5 (up to the
trivial modification of orders on 8G). The construction of extra edge conditions
on 0S \ {v} in abstract terms is nothing other than a corresponding construc-
tion of the edge calculus; this is possible, provided that the abovementioned
topological obstruction vanishes. This is true in the present problem. In fact,
from the point of view of the index of Fredholm families the crack situation with
Dirichlet/Neumann conditions is homotopy equivalent to the Zaremba problem
as is treated in [2].

To see this we compare the present operator family represented by the prin-
cipal edge symbol

o R (B \ Ry)
D
OAAD(ET) K B\ R ) > KA (R (61)
@
oemdn (k)

for some weight v; € R with the corresponding principal edge symbol belonging
to the Zaremba problem
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Ke=20=2(R3\ {0})
S
on(Ao)(t,7) s K2 (R \ {0}) — K™ 2702 (Ry) (62)
S
Ke-bo-i(r,)
for another weight 7o € R, cf. [2, formula (47), where the half-axis for the

Dirichlet side was denoted by R_]. It follows that there is a homotopy through
Fredholm families

,Cs—2,fy,,—2 (Kr)
D
oA(A)(t,7) K37 (K — K273 (Ry) (63)
D
Ko=27=3 (Ry)

when we choose a weight

1 3

70€Z+_7 706(__k7__k)
2 2

for some k € Z and set

T 14r 1472 "2

Tr _k)a OSTS]-a (64)

(the notation in the formula (64) means that the end points of the interval
are multiplied by (1 4+ 7)7!); here K, = {(z1,72) € R? \ {0} : (z1,22) =
|21, 220", 0 < ¢ < ¢ = (1+7)7}

For r = 1 we distinguish the angles 0 and 27 such that X7 (K;) = K57 (R? \

Ry).
Then, as a corollary of [2, formula (55)] it follows that

indon(Ar-) =k forall 0<r<1,

in particular, ind oa(A;) = k for

11 3
71€§(§_k:§_k)- (65)
In fact, the weights v, for which the operators (63) are Fredholm for 7 # 0
are determined by the non-bijectivity points z € C of the subordinate conormal
symbol

oan(A) (1)
omon(Ar)(z) = [ omon(T2) | (2): H3(I,) > @
OMOA (T+) (C S5 (C

for I, :={¢:0< ¢ < (1 +7)r}. Here opron(A)(z) = 36722 + 2%, and

Ou
omon(T-)u = ulp—o0, omon(Ty)u = a_¢|¢>:(1+r)ﬂ"
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Writing z = a+1ib we easily see that for z # 0 the kernel of opr0x(A)(2) consists
of all functions

u(p) = {c1e %€ 4 cpePPe 1% : ¢y, ¢y € C}.
Now «(0) = 0 for such a function implies ¢ := ¢; = —c2. Moreover, we have
u'(¢) = c(—b+ia)(e PPe!®? 4 0o i09),

Assuming ¢ # 0 (otherwise we have v = 0) from u'(¢.) = 0 we obtain the
condition

e~ {cos(ag,) + isin(ap,)} + P {cos(—ap,) + isin(—ap,)}
= (€7 + ") cos(ag,) +i(e™"" — e"")sin(ag,) = 0.

Since e~%? + e never vanishes we obtain cos(a¢,) = 0; then sin(a¢,) # 0 yields
e — et = 0 and then b = 0. This gives us a¢, = (k + 3)7, k € Z, ie.,
a= (1+7r)"'(k+1). In other words, the non-bijectivity points of oo (Ar)(2)
are

1 1
{z€eC:Imz=0, Rez= m(k+§)’ kelZ}.
Remark 3.2. Weights v = v1 € R which satisfy the condition (65) are an
admissible choice for the result of Theorem 3.1, and the vector bundles M and
M'" are trivial and of fibre dimension m(y) and m'(7y), respectively where

F=m'()—m() for vE (ks

2°2
In other words, we have calculated the number of the additional trace and
potential conditions on the crack boundary, more precisely, the difference of
these numbers.
In a similar manner we can treat the case when instead of Dirichlet conditions
on one side, Neumann conditions on the other we have Dirichlet or Neumann
conditions on both sides.

— k).

3.2 Asymptotics

In this section we make some concluding remarks on the role of the ‘weight
improvement’ parameter € > 0 and refinements of the calculus with a control of
asymptotic data.

The method which has been applied here may be regarded as a ‘confication’
of the edge algebra of boundary value problems. The meaning of the notation
‘edge algebra’ depends on some details concerning the choice of amplitude func-
tions and asymptotic data. The edge amplitude functions are operator families
with values in the cone algebra of boundary value problems on the infinite model
cone. As such they contain so called smoothing Mellin and Green edge ampli-
tude functions. Those are connected with the chosen control of asymptotics
in the underlying cone calculus. This control can either mean, for instance,
that the conormal symbols are meromorphic operator functions with values in
boundary value problems on the base of the model cone

(here a compact C* manifold with boundary), or that they are only given in

an open weight strip around the weight line I' nfl_ Weare looking at. The latter
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point of view gives rise to a more general calculus, where the Green operators,
in contrast to those with a complete control of asymptotics, ‘only’ map weighted
Sobolev distributions to smooth weighted functions with a weight impovement
e >0, cf. the formula (40).

In other words, what we are doing here in our calculus, is ignoring the
possible asymptotic information for  — 0 on the model cones of wedges. For
the conified edge theory, i.e., in the corner axis direction ¢ € R, we do the
same, i.e., we do not observe asymptotics for ¢ — 0. Also the corner conormal
symbols are controlled in an e-weight strip, cf. the formula (50).

The full asymptotic information for corner boundary value problems of the
present type could be analysed as well. The program would be analogous to that
of the article [17] which treats iterated corner asymptotics for r — 0 and ¢t — 0
for the case of a closed compact base of the model cones. This is a voluminous
program and goes beyond the scope of the present exposition.
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