Meromorphic Symbolic Structures for Boundary Value
Problems on Manifolds with Edges

G. De Donno and B.—W. Schulze

ABSTRACT. We investigate the ideal of Green and Mellin operators with
asymptotics for a manifold with edge-corner singularities and boundary which
belongs to the structure of parametrices of elliptic boundary value problems
on a configuration with corners whose base manifolds have edges.

AMS Classification 35515, 35J70, 58J32

CONTENTS

Introduction 1
1. Mellin and Green operators in the cone calculus 3
2. Symbols with values in the cone algebra 16
3. Kernel cut-off for cone operators where the base is a manifold with

edge 29
References 36

Introduction

Parametrices of elliptic boundary value problems for differential operators on
a manifold with smooth boundary belong to a pseudo-differential calculus with a
symbolic hierarchy (interior and boundary symbols) and with typical contributions
from the boundary (Green, trace, and potential operators), cf. Boutet de Monvel
[1]. Similar structures may be obtained for the case of manifolds with geometric
singularities, e.g., conical points, edges, corners, etc., as they are natural in a num-
ber of applications. Such problems belong to the analysis of operators on stratified
and non-compact spaces. However, as is known from the analysis for conical and
edge-singularities, answers are far from being straightforward. This concerns, in
particular, the regularity and asymptotics of solutions near the singularities, the
nature of extra conditions along lower-dimensional skeleta (including topological
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abstructions for their existence), and the description of analogues of Green func-
tions (Green operators). Another experience from the known scenario for conical
singularities is that meromorphic operator functions operating on the base of cor-
ners play a crucial role, both as the conormal symbolic structure and for evaluating
the asymptotics of solutions and relative indices under changing of weights. In the
case of corner singularities, where the base itself has conical points or edges, this
has to be combined with an edge symbolic calculus. These ingredients contribute
to Green (plus Mellin) operators. The program of this paper is to characterise the
corresponding algebra of Green (plus Mellin) operators for the case of boundary
value problems on a manifold with edges and corners.

The geometry near the corner points is that of a local cone where the base
is a manifold with edges and boundary (that means, our configuration has edges
with conical singularities and in addition a boundary). Similar structures for the
case without boundary have been investigated in [10]. Other simpler special cases
are manifolds with smooth edges and boundary; this is studied systematically in
the monograph of Kapanadze and Schulze [2], motivated by applications in crack
theory. In particular, in such models it is interesting to analyse the mechanism
of how solutions to elliptic boundary value problems ‘acquire’ asymptotics close
to the singularities. By Kondratyev’s work [3] this is a famous story for conical
singularities with smooth base manifolds. Later on many other special cases have
been studied, cf. the references in [10] or [2].

For corner singularities the asymptotic information is complicated, already
from the point of view of discribing the singular functions in functional analytic
terms. For ‘simple’ corners (i.e., when the base is a (closed) manifold with conical
singularities) this is done in [5]. The case when the base is a (closed) manifold
with edges is treated in [10]. In all these theories it is importent to understand
the nature of parameter-dependent operators on manifolds with conical or edge
singularities. The dependence on the parameter is degenerate in some way (here
‘edge-degenerate’) and the contributions from the given operators to asymptotics
are governed by a hierarchy of various principal symbolic components. Roughly
speaking, there is always a splitting of the operator algebras into a ‘flat’ and an
‘asymptotic’ part; they determine together the elliptic regularity in a specific way.
Flat operators on manifolds with edge-corner singularities and boundary have been
investigated in Oliaro and Schulze [4]. In the present paper we study the comple-
mentary algebra of Green plus Mellin operators belonging to the ‘full’ structure
generated by both parts. Along the edges we adopt the concept of continuous
asymptotics (in axial direction of the inner model cone) caused by the (in general
very complex) behaviour of variable and branching poles of meromorphic operator
functions; along the corner axis we will consider discrete asymptotics.

Following the idea of symbolic hierarchies to organise the calculus for higher
singularities by repeated ‘conification’ and ‘edgification’ of an already achieved
structure, we start from conical singularities in simplest form and describe spaces
with asymptotics for this case. We then pass to the ‘asymptotic’ part of the cone
algebra by describing the corresponding Green and Mellin operators. Everything
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is done for compact base manifolds with smooth boundary. The next floor of the
hierarchy is that we study operator-valued symbols taking values in the algebra
of Mellin and Green operators on an infinite cone. We will need a variant with
holomorphic dependence on covariables which we obtain by applying a kernel cut-
off procedure. We show how the structure of smoothing Green plus Mellin symbols
is preserved in this process (this is remarkable for the Mellin part because of a very
specific dependence of cut-off functions on the covariables). After a globalisation
for a (stretched) manifold W with edges and boundary we obtain Green and Mellin
operators on W with parameters. They represent the raw material for our final
conormal symbolic structure which we construct by applying another kernel cut-
off in the covariable to the corner axis variable. In a concluding section we show
the shape of edge-corner degenerate operators which are the essential information
for the complete algebra to be generated by the present calculus together with the
flat operators mentioned before.

1. Mellin and Green operators in the cone calculus

1.1. Asymptotics.

1.1.1. Weighted Sobolev spaces. Given a topological space X we define the
cone X2 = (Ry x X)/({0} x X) as the quotient space, with {0} x X being
identified with a point, the tip of the cone. Moreover, we set X" := R, x X,
called an open stretched cone with base X. In our case the base X will be either
a compact C'*° manifold with boundary, or a closed C*° manifold. If X is a C'*
manifold with boundary, we also employ IV := 2X, the double of X, defined by
gluing two copies X+ of X along their common boundary in a canonical way.

To define Green operators of the cone calculus we first give a definition of
weighted Sobolev spaces and subspaces with asymptotics on the (infinite stretched)
cones X" and N\, respectively. In the following considerations we admit N to be
an arbitrary closed compact C'* manifold of dimension n.

Let L (N; R') denote the space of all classical parameter-dependent pseudo-
differential operators of order u € R on N. This means that in local (classical)
amplitude functions a(z,&,\) the parameter A € R is considered as a part of
the covariables (£, A), and L~ °°(N;R') is defined as S(R!, L~ °°(N)) (the Schwartz
space of L™°°(N)—valued functions) with L=°°(N) =2 C*°(N x N) being equipped
with its natural Fréchet topology.

Let H?(N), s € R, denote the scale of standard Sobolev spaces on N. It is
then well known that L% (N; R') for every real y contains an element R*()\) which
is parameter-dependent elliptic of order p and induces isomorphisms

(1.1) RM(N) : H*(N) — H*~#(N)

for all s € R and all A € R, cf. [8]. We now introduce weighted spaces H*7(:)
based on the Mellin transform on Ry > r. The Mellin transform
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first given for w € C§°(Ry) with z € C, will be employed in several variants.
In particular, M will be extended to larger function and distribution spaces on
R, ; then z often varies on a weight line I's := {# € C : Rez = j} for some
B € R. In addition, we employ M as a transformation on vector-valued functions
(where the values belong to a Fréchet space written as a projective limit of Hilbert
spaces). Now H*7(N") for s,7 € R is defined to be the completion of C§°(N") =
C§°(Ry,C*(N)) with respect to the norm

2
1

= /. IR0 b

Here R*(\) € L5 (N;Ry) is an order reducing element in the sense of the relation
(1.1), and n = dim N. Details on this type of spaces, may be found in [6], [9]. In
particular, we have H*7(N”*) C H§ (N"), moreover, H*7(N") = r7H"O(N"),
and HOO(N") =r~ 2 L2(N") with L? referring to dr dz.

In the sequel it will be convenient to employ the notion of a non-direct sum of
Fréchet spaces Ep, E; that are embedded in a Hausdorff topological vector space
H. We then have an isomorphism between Ey + E; = {eg+e€;1 : e € Ep,e; € E1}
and Ey ® E1 /A for A := {(e, —e) : e € Ey N E;} that turns Ey + E; to a Fréchet
space, called the non-direct sum of Ey and FE;. In particular, if Ey and E; are
Hilbert spaces, also Ey + E4 has a Hilbert space structure by an identification of
Ey + E; with the orthogonal complement of A in Ey @ Ej.

In addition, if a Fréchet space E is a (say, left) module over an algebra A, we
denote by [a]E for fixed a € A the completion of {ae:e € E} in E.

Observe that H*7(N") is a C§° (R, )-module. Throughout this paper a cut-off
function on Ry is any real-valued w € C§°(R,) such that w = 1 in a neighborhood
of r =0.

For purposes below we now modify the 7*7-spaces to a scale *7 by imposing
far from r = 0 the structure of ‘usual’ Sobolev spaces. For the case N = S§"
(the unit sphere in R"t!) we simply take the space H*(R"*!). More precisely, if
x : P\ {0} — R} x S™ is the diffeomorphism which describes polar coordinates,
we set

Hione(Ry x 8™) = {u [ xcsn: u € Hig (R x S™), {(1-w)u}ox € H(R")}

for any cut-off functions w(r) (clearly this definition is independent of the choice
of w). A straightforward generalisation of this definition to N (using a covering
of N by conical neighborhoods and invariance of elements in HZ (R; x S™)
supported in a conical set under diffeomorphisms that are homogeneous of order
1 with respect to homotheties in r) gives us the spaces HZ  .(N"), cf. [6]. The

spaces HS . (N") can be endowed with Hilbert space scalar products.

We now define
(1.2) KN = [WIHST(N?) + [1 = w]H e (N7)

as a non-direct sum which is independent of the specific of the cut-off function w.
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In KOO(N") = HOO(N") we take the scalar product from 7~ 2 L2(N").

If X is a compact C'* manifold with boundary we set H*(X) := H*(2X) |intx,
and

HE(XD) = HET (22X finexn, KST(X?) i= K57 (22X fiexn -

1.1.2. Discrete asymptotics. We now pass to subspaces with asymptotics of
our weighted Sobolev spaces on a cone, first for the discrete case. The base will
be either a closed compact C'*° manifold N or a compact C'>° manifold X with
boundary. To measure asymptotics we fix a reference weight v € R and set © =
(9, 0] for some —oo < ¥ < 0, interpreted as a weight interval. Then we define

KE7(N7) o= lim K77 (V)
e>0
and, similarly,
K& (XM = lm K77 75(X7) .
o (X7) E%) (X7)
These spaces will be taken in their natural Fréchet topologies. Discrete asymptotics
will have the form

m;

(1.3) u(r,x) ~ Z Z cjr(x)rPiloghr

i k=0
as r — 0, for certain coefficients ¢j, € C°°(N"). Notice that p € C and Rep <
odl — v entails w(r)e(z)r—Ploghr € K7 (N?) for every ¢ € C®(N"), k € N,
where w(r) is an arbitrary cut-off function. We shall control the coefficients c;;, in
(1.3) as elements in finite-dimensional subspaces L; C C*°(N) for 0 < k < m;,
and then call the sequence

(1.4) P ={(pj,mj, Lj) o<j<i

for a given I = I(P) € NU {00} a discrete asymptotic type.
Given weight data g := (7, 0) for © = (¢,0] we say that P is associated with
g if

n+1 n+1
ﬂ'(CP::{pj}OSjS[C{Z F +19—7<Rez<T—7}

where [ is assumed to be finite for finite ¢ and Rep; — —oo as j — oo for infinite
[ and . Let As(V,g*®) denote the set of all discrete asymptotic types associated
with g = (7, ©). For finite © the space of singular functions

m;
Ep(N") = {w(r) Z chk(:v)r_pj loghr :cjx € Ly, pj € mcP,
i k=0
0<k<m; 0<j <1}
(for any fixed choice of a cut-off function w), is a finite-dimensional subspace of
K7 (N, and we set
(1.5) KB (NN) := K§T(N?) + Ep(NT)
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endowed with the corresponding Fréchet topology of the sum (which is direct in this
case). For the case of infinite ® we have the sequence of spaces IC‘;D’:(NA), keN,
when we take P, € As(N,g}) with g, := (v,(=(k+ 1),0]) and Py, := {(p,m, L) €
P : Ml _(k+1)—v <Rep < 2L — 4} Then ICS’V ((N7) = KpI(N7) is
continuous, and we define

K5 (N - ICSW N"

% ) -

Applying this to N = 2X we obtain analogous spaces K3 (X) by restriction of
K37(2X) to int X; at the same time the spaces of coefficients L; are restricted
to int X, and we write As(X,g®) for the corresponding set of discrete asymptotic
types.

1.1.3. Continuous asymptotics. The notion of continuous asymptotics employs
the observation that asymptotics in the discrete sense, cf. the preceding section,
can be represented by meromorphy in the image under the Mellin transform. Let
U C C be an open set and E a Fréchet space; then A(U, E) denotes the space
of all holomorphic functions in with values in E. If K := {py,...,pn} C C lies
in {Rez : z < 2L — 4}, and if f(2) € A(C\ K, C*°(N)) is meromorphic with
poles at K of certain multiplicities m; +1, j =0, ...,{, for every counter clockwise
oriented (say smooth) curve C surrounding K

(1.6) A(C) 3 b — (s ) : /f

represents an analytic functional ¢ (with poles in C°(N")) carried by K. Con-
cerning C' we always assume that the winding number with respect to every z € K
is equal to 1 (such a choice of C is always possible). To fix notation, if K C C
is any compact set, E a Fréchet space, A'(K, E) denotes the space of E-valued
analytic functionals, carried by K. For E = C we simply write A’'(K); this is a
(nuclear) Fréchet space, and we then have A'(K,E) = A'(K)®;E (here ®, de-
notes the (completed) projective tensor product between the respective spaces).

Observe that
(Cror™ ZZCJ’“T Piloghr
j k=0

for certain coefficients cj;, € C°°(NN) comming from the Laurent coefficients of f.
We interpret the set K as the carrier of asymptotics of the element w((s, %) €
Ko7 (X7 (for any cut-off function w). Notice that the (weighted) Mellin transform
of the latter function is meromorphic with the same poles and multiplicities as f.

To define continuous asymptotics we pass to more general carrier sets (compact
ones for finite weight intervals ©). Let W! for any W C C defined to be the
smallest set containing W together with all points (1 — A)wo + Awy, 0 < A < 1,
wo,w; € W, such that Rewy = Rew;. By V denote the system of all closed
subsets V' C C such that VN {z : ¢ < Rez < ¢'} is compact for every ¢ < ¢
and V = V. Given Vi,Vo € V we write V. = (V,UW)!, If are g = (v,0)
weight data, first with finite ® = (¢,0], we now define continuous asymptotic
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types P associated with g. To this end we choose a compact set V' € V such that
Vc{z: 2 —y+9—e<Rez< % — 4} and form the space

Ev(N®) =A{w(r)(C,r %) + e A(V,C¥(N))}
for some cut-off function w. Note that there is an isomorphism Ey (N") 22 A'(V, C*°(N))
induced by ¢ — w(r)(¢,r~#). The inverse map is given by v — (, for u =
w(r) (G,

(¢, h) == % ; (My_zu) (w)h(w) dw

for any smooth curve C C {z : Rez < 2L — 4} counter clockwise surrounding
the set V. We thus have a natural Fréchet space structure in &y (N”). From the

position of V' in C we also obtain
Ey(N™) C KV(NM).

Notice that when V C {z : Rez < 2L —~ 4+ 9} we have &y (N") C K7 (N")
for © = (¥,0]. Writing u ~ v for u,v € Ey(N") when u —v € KJ"7(N") we
obtain an equivalence relation in the space &y (N”). Then the quotient space
Ev(NN)/ ~ is called a continuous asymptotic type P associated with g, and we
write P :=V N{z : Rez < 2L —~}. Let As(N,g) denote the set of all such
continuous asymptotic types. Similarly to (1.5) for P associated with g = (v, ©)
in terms of V' we set

K3 (V") = K5 (NY) + Ev (V)

in the Fréchet topology of the non-direct sum.
Let us extend the definition of spaces with continuous asymptotics to the case
© = (—00, 0] of arbitrary sets

1
Vevy, Vc{z: Rez<%—7}.

We first form Vi, := V. N{z : Rez > “:L — (k+1 — )} and then obtain for
the weight data g, := (v, (—(k + 1),0]) associated continuous asymptotic types
P, € As(N, g,,) for every k € N. It can easily be verified that we have continuous
embeddings

K3 (N™) < K37 (V%)
for all k, and we set
(1.7) KB (NN = @K}Z’J(NA)

keN

in the projective limit topology.

In (1.7) by P we undestand a continuous asymptotic type associated with
the weight data (v, (—00,0]) and represented by the set V. It would suffice to
simply write ‘V’ as subscript, but we prefer the former notation for unifying the
descriptions. In this connection we set 7¢P = V and denote by As(N,g) the set
of continuous asymptotic types P (which is bijectively related to the system of all
V €V for which V C {z: Rez < 2L — 4},
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Now, for N = 2X we set
(1.8) KT (X") = {u g x,r + v € KB7((2X)M)}

for every P € As(2X,g) or € As(2X,g*). To define the topologies we also consider
the subspaces
ICS”’(Xﬁ)O and IC‘;;”’(Xﬁ)O

of elements of K£*7((2X)") and L3 ((2X)"), respectively, which are supported by
X". These are, in fact, closed subspaces in the respective topologies, and there are
isomorphisms (first algebraic ones)

Ko7 (X7) = K27 ((2X)7) /K7 (X1,
and, similarly,
(1.9) K37 (X7) = K57 (2X)N) /K5 (XD),

which give rise to quotient topologies in the spaces (??) and (1.8), respectively.

The asymptotic types P referring to X in such quotient spaces can also be
defined directly by replacing NN in the above construction by X, in other words,
we have spaces A'(V,C*®(X)), &y (X"), etc. Asymptotic types for a manifold X
with boundary are then defined by £y (X”)/ ~, where the equivalence ~ is to
be understood analogously to the case N. We then obtain a system As(X,g) of
continuous asymptotic types also in this case, both for finite and infinite weight
intervals, and the subscript ‘P’ on the left hand side of (1.9) denotes an element
in As(X,g).

For purposes below we also introduce the spaces

(1.10) SHXMN) i={wu+ (1 —wv:ue LT (X"), ve S(Ry,C®(X))}
for any cut-off function w, and P €As(X,g*) (€As(X,g)).

ExampPLE 1.1. The space S}(X") is nuclear and Fréchet in the topology of
the non-direct sum

Sp(X™) = [WIKP (X7 + [1 = w]S (R4, O (X))
(which is independent of the choice of w).

1.2. Green and Mellin operators in the cone algebra.

1.2.1. Green operators with asymptotics on the cone. We now turn to a class
of typical elements of the cone algebra of boundary value problems, so called Green
operators.

Let X be a C'*° manifold with boundary, n = dim X. Fix a collar neighborhood
V of X and choose Riemannian metrics on X and 0X, respectively, such that V'
corresponds to 0X x [0,1) with the product metric. The measures associated with
the Riemannian metrics on X and 90X are denoted by dz and dy, respectively. In
V' we employ the corresponding splitting of variables z = (y,t), y € 0X, t € [0, 1).
Let T denote any first order differential operator on X with smooth coefficients
up to the boundary Y such that T |y= %.
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DEFINITION 1.2. By a Green operators of type 0 on the cone X" with con-
tinuous asymptotics and weight data g := (v,0,0) we understand a continuous
operator

G: K (XN) @ K¥ 73 ((0X)),C0)
— - SH(XM) @ 8 ((0X)", T*)
such that the formal adjoint G* induces a continuous operator
G* KO N(XMN @ K ((0X)", OF)
(112 —>857(XA)698_7+%((8X)A,(Cj—)
for suitable (G-dependent) pairs of asymptotic types

P € As(X, (5,0)), P' € As(0X, (5 — 5,0)),

Q € AS(X7 (_77 9))7 Q, € AS(aX, (_7 - %7@))7
where the continuity of (1.11) and (1.12) is required for all s,s' € R, s > —% (with
P,P" and Q, Q" being independent of s,s') and G* is taken in the sense

(U,G*’U) ) = (Guav)

KO0 (XM @K ™3 ((9X)1 0=

for all u € C°(XN) @ C((0X)",T-), v € CP(XN) @ CL((0X)",T+).

If we require operators G such that (1.11) and (1.12) hold with discrete as-
ymptotic types

KOO(XM) B2 (9X)",C+ )

P € As(X,(6,0)%), P' € As(0X, (6 — 1,0)"),

Q € AS(X7 (_77@).)7 QI € AS(aX, (_ry -3 9).):

27
we talk about Green operators with discrete asymptotics. Let C% (X", g) denote
the space of all G as in Definition 1.2, and define C& (X", g) for d € N as the space
of all operators of the form
d
(1.13) G =Gy + Y Gidiag(T*,0),
k=1
for arbitrary Gy, € C4(X",g*) for k=0, ...,d.

Analogous notation will be used for the case of discrete asymptotics; the cor-
responding space of operators is then denoted by Cg(XA, g°*). We call the elements
of C&(X",g) (CL(X",g®)) Green operators on the cone X" of type d, with con-
tinuous (discrete) asymptotics and weight data g.

This definition admits a slight generalisation to asymptotic types where the
weight intervals for @ and Q' are = := (&, 0] for arbitrary —oco < £ < 0 in place of
© = (9,0], —o0o < ¥ <0, i.e., for P,P" and @Q,Q" we can take independent weight
intervals ©® and Z, respectively. We then say that corresponding Green operators
are associated with weight data g := (v, 0;4,E).
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THEOREM 1.3. Let G be a Green operators of type d € N, associated with
weight data g := (y,0;06,2). Then G is compact as an operator

G: K (XN) @ K73 ((0X)),0)
S KX @ K03 ((0X)", TF)
for every s,s' € R,s > —1 >d — 1.

PROOF. From (1.11) it follows that G is a continuous operator into the space

(1.14) (ry NNt (XN @ (r)y NN =3 (9 X))

for every N € N and € > 0, ¢ less than the distance of 7¢ P and wc P’ to the weight
line Rez = %X — §. The spaces (1.14) are compactly embedded into the target
spaces for every sufficiently large N. O

REMARK 1.4. Let G be a Green operator on the cone X", associated with the
weight data (v,0;0,Z). Then

diag(r®,7%) G diag(r—<,r )

for a,8 € R is a Green operator on X", associated with the weight data (v +
a,0;6+5,2).

We now fix vector boundles E, F € Vect(X), J_, J; € Vect(0X), and set
E F;v=(E,F;J_,J;). There is a straightforward generalisation of Green oper-
ators on X" of type d (and discrete or continuous asymptotics) acting between the
respective weighted Sobolev spaces of distributional sections in the bundles E, F’
and J_, J.. We denote the corresponding spaces of operators by

CL(X", g;v) and CL(X", g% v),
respectively. Instead of (1.11) we then have

G: K (XN E)® K73 ((0X)", J2)

1

(1.15) -
= Sp(XNF) @ Spr * ((0X)", 1),

etc.

1.2.2. Green operators in boundary value problems. The chosen measures on
X and 0X allow us to identify the spaces C®(X x X ), C®(X x0X), C®(0X x X)
and C*(0X x 0X) with continuous operators C§°(X) = C>*(X), C5°(0X) —
C>(X), etc., by u(z) = [ c(z,z")u(z') dz', v(y) = [, d(z,y")v(y") dy' for ker-
nels ¢(z,z') € C°(X x X), d(z,y’) € C°(X x 0X), etc.

DEFINITION 1.5. Let B~°°(X;j_,j4) for j_,j+ € N denote the space of all
operators
C(X) > (X)
g: @ - ©
C§e(0X,0-) C>(0X,C+)
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g = (Gij)i7j=172’ where G11 has a kernel in C°°(X x X), while G2 is a row vector
(with j— components) of operators with kernels in C*° (X x 0X), Ga1 is a column
vector (with j+ components) of operators with kernels in C*°(0X x X), and G2
is @ j+ X j— matriz of operators with kernels in C*°(0X x 0X). Moreover, for
d €N, the space B~°%(X;j_,ji) is defined to be the set of all operators

d
(1.16) G =Go+ »_ Gidiag(T",0)

i=1

for arbitrary G; € B~°9%(X;5_,4.),i=0,...,d.

The elements of B~>%(X;j_, ) are called smoothing Green operators of
type d in the algebra of boundary value problems on X; especially the entries
of the form G5; are also called smoothing trace operators of type d, and Gi»
smoothing potential operators.

Note that the representation of elements in B7°%%(X;j_, j.) of the form (1.16)
is not unique. An alternative unique representation (see, for instance, [9]) gives rise
to a natural semi-norm system under which B~°¢(X;j_,j.) is a nuclear Fréchet
space.

Ifv=(EF;J_,J;)isatuple of bundles E, F' € Vect(X), J+ € Vect(0X), we
have an easy generalisation of the space of Definition 1.5 to a space B~°¢(X;v)
of operators

H*(X, E) (X, F)
g: & - ©®
e (0X,7) C(8X, T, )

which are continuous for all s,s' € R, s > d — % Also this space if Fréchet, and
there is then a parameter-dependent analogue

(1.17) B4 X;u; R

of such operator families G(\), A € R, where (1.17) is defined as S(R!, B—>¢(X; v)).
A similar notation is used for the case [ = 1 when R is replaced by Imz on any
‘weight line’
I'g:={z€C: Rez=p4}.
1.2.3. Mellin operators and conormal symbols. Let As®®(X) denote the set
of all sequences

(1.18) R ={(rj,m;, Lj)}jex
for r; € C, m; € N, and finite-dimensional subspaces L C B~°¢(X;v) of opera-
tors of finite rank, here icRN{z € C : ¢ < Rez < ¢} is a finite set for every
¢ < ¢, where e R := {r;}jez.

The space MI_%OO’d(X;'u) for R € As®*(X) is defined to be the set of all

elements f(z) € A(C\ mcR, B~ °%(X;v)) that are meromorphic with poles at all
r; of multiplicity m; + 1 and Laurent coefficients at (z — r;)~(*+1) belonging to
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L; for all 0 < k < mj, where for every mcR — excision function x(z) we have
x(2)f(z) |, € B7°4(X;v; ') for every 8 € R, uniformly in ¢ < 8 < ¢ for every
¢ < ¢. Note that M,;Oo’d(X, v) is a Fréchet space in a canonical way.

With every f(z) € M,™*(X,v) we can associate an operator

(1.19) ophy (f) = M5 f(z)Mj

where Mp is the weighted Mellin transform of weight 8 € R, i.e., (Mgu)(z) :=
M(r=Pu)(z + 8). We are interested in the behaviour of operators (1.19) near
r = 0. Therefore, we mainly consider them in combination with cut-off functions,
i.e., look at w(r)rjopﬁ/[(f)cb(r) for cut-off functions w,®. To normalise weights we
insert 3 =y — ¢ for a weight v € R, where n = dimX.

We now turn to the space of Green plus smoothing Mellin operators with
asymptotics on the (stretched) cone X*, first for discrete and then for continuous
asymptotics.

Let us fix weight data g := (7,4,0) for 7,6 € R and a weight interval © :=
(—=(k+1),0] for some k € N.

The space de\4+G (X", g% ) is defined as the set of all operators of the form
M + @G, where G is a Green operator of type d associated with g, with discrete
asymptotics, cf. the preceding section, while

(1.20) =% eropM (fj)@(r)

for cut-off functions w,®, and elements f; € Mgfo’d(X;v), where the weights
v; € R, satisfy the conditions (1.26) and

(1.21) meRyNlapa =0 forall j=0,..k.

PROPOSITION 1.6. Fvery A € Cj‘f/HG(XA,g';'U) induces continuous operators

SR KT
(1.22) A D —
N 2 00,0 —
K @), 1) K (@X), g)
foralls,s' €eR, s >d— , where subscripts (P)’, {P')’ etc. mean corresponding

continuity properties for spaces without asymptotics as well as for spaces with
asymptotics of type P € As(X;(y,0)%), P' € As(0X;(y — £,0)°) and resulting
asymptotic types Q) € As(X;(9,0)%), Q' € As(0X, (6 — %, ©)*), that depend on the
operator A (not on s).

If AeCf (X" g% v)is written as before, we set

on T (A)(2) = fiz)

called the conormal symbols of A of order 6 —~ —j, j =0, ..., k.
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THEOREM 1.7. The conormal symbols of A € Cj‘f/[+G(XA,g';'U) are uniquely
determined by A. If A € Clrra(X",g%v) is another element such that

ot T (A)(z) = oh T (A)(2)
for j=0,...k, we have A = A mod C&(X",g°%v).

PRrROOF. Uniqueness of the conormal symbols in terms of the action of the
operator A can be proved in an analogous manner as for a manifold X with-
out boundary, cf. [6]. What remains is to show that for every fixed j > 1 and

f e Mp™"(X;v), mcRN {FnTJrl,a u FnT-I—liﬁ} = () for different weights with the
property 0 <y —a <j,0<vy—f <j, we have

(123) = furopsy E (HE) - o(ropy; ¥ (N5 } € CA(X",g%v),

where w, @ and 0,6 are arbitrary cut-off functions. By definition the operators of
type d can be written as sums of operators of type zero composed with differen-
tiations in ¢ of orders 0 < k < d. A similar representations holds for the involved
Mellin symbols. In order to get (1.23) it suffices to consider the summands sepa-
rately, and to ignore the differentiations in ¢. This reduces the considerations to
the case d = 0. In this case we can proceed as in the case without boundary. First
we see that a change of cut-off functions only changes our Mellin operators by
Green ones, cf., similarly [9], and then it is admitted to change weights modulo
Green remainders, analogously to [9]. a

THEOREM 1.8. Let A € C{;, (X", g% v) and B € C5;, (X", h*;w) for g :=
(6,8,0), v:=(Jo,Jy), h:=(7,6,0), w:= (J_, Jo). Then AB € C3, (X", (go
h)*;vow) forgoh :=(v,5,0), vow := (J_,J;). We have for the composition
the following Mellin translation formula

(1.24) oh By = 3 (TPl ) o T ()
p+r=I

forl=0,..k, (T?f)(z) == f(z+p). If A or B belongs to the space with subscript
G, then the same is true of AB.

The calculus of operators on a manifold with edges requires an extension of
Mellin symbols with discrete asymptotics to continuous asymptotics.

To every V € V we want to define a space M;OOA(X; v) of operator-valued
Mellin symbols. We shall first consider the ‘quasi-discrete’ case, i.e., there is a
sequence {K};cz of compact sets K; € V such that o; := sup{Rez : z € K}
< pj = inf{Rez : z € K41} for all j, and 0; - —o0 for j = —o0, p; = +00
for j — +oo (this refers to the case that we have an infinite sequence in both
directions; we also admit V' to be compact or contained in a half plane Re z < ¢ or
Rez > p for some o, p; but this case is easier, so we do not discuss it separately).

As in the preceding section we consider the space B~°4(X;v) forv = (J_, J,)
with its Fréchet topology as well as the parameter-dependent analogue B=°%%(X;v; '3),
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B € R. For every compact subset K C C we have the space A’ (K,B’Oo’d(X; v))
of B~°>4(X;v)-valued analytic functionals, carried by K.

DEFINITION 1.9. The space M;m’d(X;'u) for V. = UjezK; with component
sets K; is defined to be the subspace of all f(z) € A(C\V,B~4(X;v)) such
that for every V -excision function x(z) we have

X(2)f(2) Ir,€ B~%(X;v;Tp)
for every § € R, uniformly in ¢ < 8 <, for every ¢ < .

The definition gives rise to a canonical nuclear Fréchet topology in the space
M, X ).

Given an element f(z) € M‘_,C’o’d(X ;v) we can form a sequence of analytic
functionals

G e A (K;,B>%X;v)), je€L,
defined by

(¢, h) = 2%” /C f(z)h(z)dz, h € A(C),

where C is a smooth counter-clockwise oriented compact curve, surrounding K
in a strip {z : ¢ < Rez < ¢'} that does not intersect V'\ K. In this way we obtain
a sequence of continuous maps

G MU Xv) — A (K, B~4(X;v)) , j € L.
Let now V € V be an arbitrary element. Then V' can be written as V =V, U V5,
where Vi, = Ujez K, is quasi-discrete for £ = 1,2. We then have the Fréchet
spaces ./\/l;,:o’d(X;U), k = 1,2, and they are subspaces of A ((C \ V,B’Oo’d(X;'u)).
This enables us to define
(1.25) MG X v) = MO (X w) + MO (X v)

as a non-direct sum of Fréchet spaces.

ProposITION 1.10. The space M‘_,OO’d(X; v) for V€V is independent of the
specific choice of the decomposition V = Vi + Vs into quasi-discrete sets.

The proof employs a (vector-valued) Cousin problem argument. Let us now
fix an element f(z) € M, °>%(X;v), V € V, and assume that Pop NV = 0 for

some ; € R Then the Mellin pseudo-differential action opﬁ_% (f) makes sense,
and similarly to (1.20) we can form operators for j > 0 which are continuous for

(1.26) 0<y - <J

In addition the restriction to subspaces with continuous asymptotic types P €
As(X,(v,0)), P' € As(0X, (v — %,0)) induces continuous operators (1.22) for
resulting asymptotic types @ € As(X, (7,0)), Q" € As(0X, (y — 3,9)).

Let us now formulate similar structures and results for operators with continu-
ous asymptotics. Green operators in this context have been defined in Sectionl1.2.1.
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To define Mellin operators associated with symbols f € ./\/l;,oo’d(X; v) for arbitrary
V € V we have to be aware that, in general, V N I'g is not empty for arbitrary
B € R. For this reason we decompose the Mellin symbol f in a appropriate way,
according to the following observation which is a modification of Proposition 1.10.

REMARK 1.11. For every f € M‘_,OO’d(X;v) and arbitrary reals 1,82 € R,
B1 # B2, there is a decomposition

f=h+ffor fi€ M;/iood(X;U),
for suitable V; € V, such that V; NTs, =0, i =1,2, where V=V, + V,

According to (1.20) and to the result of Theorem 1.7 we want to form operator
A with prescribed conormal symbols

oh " (A)(2) = f(2) € MK )

for arbitrary V; € V, j =0, ..., k. To obtain an analogue of the continuity (1.22)
we assume

VonT LESRRVES 0.
In general, in a composition result as in Theorem 1.8, because of the expected
Mellin translation behaviour of resulting conormal symbols also in the case with
continuous asymptotics, we cannot require fixed gaps in the asymptotic types V;
for j > 1. Therefore we decompose f; € M‘_,jOO’d(X;v) as

(1.27) fi(z2) = f1,5(2) + f2,5(2)
with symbols fp, ; € M‘_,io]?d(X ;v) for Vi, ; € V, such that, similarly to condition
(1.21) we have

(1.28) Ving N T s =0, m=1,2,

—Ym,j
for weights 1 j,72,; € R, satisfying
(1.29) 0<y—Ym,; <j, m=1,2

Decompositions of the type (1.27) with these properties always exist by Remark
1.11.

Now C§4+G(X/\,g; v) is defined as the set of all operators A := My + My + G
where

My 2= 17w Zpﬁ (F)é0(r)

for arbitrary fo,; € ./\/lvOo 4X;v) and Vin,j €V, Ym,; € R, satisfying relations
(1.28) and (1.29). The elements of C§;, (X", g; v) are called (smoothing) Mellin +
Green operators, of type d, in the cone algebra of boundary value problems on X,
Similarly as before we define the sequence of conormal symbols 0}5\;7_]' (A)(z) =
fj(2), in this case with (1.27), j =0, ..., k.

REMARK 1.12. For Mellin + Green operators with continuous asymptotics we
have an immediate anlogue of Theorem 1.8.
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2. Symbols with values in the cone algebra

2.1. Green edge symbols.

2.1.1. Operator-valued symbols and kernel cut-off. Edge symbols with asymp-
totics will be introduced as operator-valued symbols that pointwise act as contin-
uous operators between spaces of a specific structure. To start with we consider a
Hilbert space E that is equipped with a strongly continuous group of isomorphisms
kx: E = E, A€ Ry, where k\s\ = kax for all A, X' € Ry (recall that ‘strongly
continuous’ means that xyu € C(Ry, E) for every u € E). Then {sx}rcr, is said
to be a group action on E. More generally, if £ = lim is a Fréchet space, written

JEN
as a projective limit of Hilbert spaces F;, with continuous embeddings F;; < E;
for all j and a group action {sx}xer, on Ep that restricts to a group action K
for every j, we say that {x\}rer, is a group action on E.

EXAMPLE 2.1. In our applications we have, for instance, E = K*7(X") with
the group action Iig\n) su(r,z) — /\"T“u(/\r, x) where n = dimX. Similarly, for
E = K*7((0X)") we take Iig\n_l) co(r,2') = A2v(Ar,2'), A € Ry. Below we use
the fact that for every P there is a sequence of Hilbert spaces Ej, j € N, with
continuous embeddings Ej1 — E;j — ...Ey = IC%’Y(XA) where {kx}rer, on Ey
induces group actions on E; for every j, such that SH(X") = @EJ

JEN

To define symbols we first consider Hilbert spaces E and E with group actions
{Fatrer, and {Rx}rer,, respectively. Then SH(U x RY; E, E) for any open set
U CRP, € R, is defined to be the subspace of all a(y,n) € C°(U x R?, L(E, E))
such that

(2.1) 17 D5 D aly, )}l o5y < clm) 7
for all multi-indices « € NP, « € N? and all y € K, n € R?, for arbitrary K CC U,
1

with constants ¢ = (a,3,K) > 0. Here, as usual, (n) = (1+ |n|?)2. The best
possible constants c(a, 8, K) in the estimates (2.1) are a semi-norm system that
turn S*(U x RY; E, E) to a Fréchet space. Notice that this space remains the same
when we replace n — (y) by any strictly positive function n — [n] in C*(R?)
where [n] = |n| for |n| > ¢ for some ¢ > 0.

We also have a definition of symbol spaces when E (or both E and E) are
Fréchet spaces with group actions. In the case that E is a Hilbert and E = l&n E;

JEN
a Fréchet space, we first have the symbol spaces S*(U x R?; E, E;), j € N, contin-
uously embedded in that with respect to F;4; for all j > 1, and we then set
SH(U x RY; B, E) = lim S*(U x RY; E, E))
JEN

in the Fréchet topology of the projective limit. Concerning the case that both E
and E are Fréchet, see, for instance, [9].
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Let S(U x (R? \ {0}); E, E) denote the set of all f(y,n) € C®(U x (R? \

{0}); L(E, E)) such that

Fly, M) = Ny fy, eyt

forall A e Ry, (y,n) € U x (R \ {0}).

An element a(y,n) € S*(U x R%; E, E) is said to be classical if there are elements
au—j(y,n) € Sw=)(U x (R?\ {0}); E,E), j € N, such that for any excision
function x(n) we have

N
(22)  rnym) = aly,n) —x(m) Y ag—j(y,n) € S#NVHV(U x R, E, E)
7j=0

for all N € N. The homogeneous components a,_j)(y,n) are uniquely determined
by a(y,n); therefore, the maps a — a(,_j; and a — ry (for a fixed choice of x)
define operators

(2.3) SH(U xR B, E) — SW (U x (R \ {0}); E, E) ,
and
(2.4) SH(U x R E,E) — SP- W)U x R ELE)

for all j and N. Here, subscript ‘cl’ indicates the space of all classical symbols.
The spaces on the right of (2.3) and (2.4) are Fréchet, and we then endow S%(U x

R?; E, E) with the Fréchet topology of the projective limit with respect to all the
maps (2.3) and (2.4).
For classical symbols a(y,n) of order p we often set

oa(a)(y,mn) = ag)(y,n)

which is the principal symbol of a of (‘twisted’) homogeneity p.

Let Sél)(U x R? x C'; E, E) denote the subspace of A(C!, S(”d)(U x R?; E, E))
such that elements h(y,n,w) € S(Cl)(U x R x C'; E,E) satisfy the condition
h(y,m A +ir) € S(Cl)(U X ]RZ*;\Z,E E) for each 7 € R, uniformly in 7 € K for
every K CC R!. The space S(Cl)(U xR x C B, E) is Fréchet in a natural way.

Let E and E be Hilbert spaces with group action {Eatrer, and {Kx}rer,,
respectively, and let g(y,n,)\) € S(Cl)(U x Ritt; B, E). Set

k(9)(y,n, ) := /6’“ 9(y,n, \) @A
and
(2.5) H(@)g(y,m,w) = / e (0) k(g) (5,1, C) dC

where ¢(¢) € C(R'), w = X + it € C. For every fixed (y,n) € U x R?, we then
have
k(9)(y,n, ) € S'(R',L(E, E)) = L(S(R'), L(E, E)).
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It is easy to verify that
(2.6) C*k(9)(y,m,¢) = k((=D3)g)(y,n,¢)
for every multi-index a.

PROPOSITION 2.2. For every ¢ € Cg°(R') and fived g € S, (U x Ritt; B, E)
we have
H(p)g(y,n,N) € Sfey) (U x RI* B, E),

and the map p — H(p)g induces a continuous operator
C5°(R') — Sy (U x R B E).

The proof is based on generalities on the symbol spaces and is left to the
reader.

PROPOSITION 2.3. Let p € C§°(R') and assume () = 1 in a neighborhood of
¢ = 0. Then we have H(p)g(y,n,w) € Séﬁzl)(Ux]R{q xCH EVE) and H()g(y,n, ) =

9(y,m,A) mod S=°(U x RI*\; E, E).
PRrROOF. We have
J—oo(y,mA) 1= Feon(1 = 0(0)k(9)(y,m, A) € (U x R E,E)

and

9y A) = Feonk(9)(y,m,A) = Feonp(QOk(9) (W, 15 A) + 9—co (Y, 15 A)

gives us that

H(p)g(y,n,A) = Feoae(Qk(9)(y,m,A) = g(y,m,A) = 9 (4,1, A)
which belongs to () (U x Ret!; B E). This yields
H(p)g(y,n,A) = g(y,n,A) mod S~*(U x RI*; B, E) .
To show H(p)g(y,n,w) € Sé‘cl)(U x R? x C!; E, E) we first observe
H(p)g(y,n,w) € A(C,,,S{) (U x R, E, E)) .

For w = X\ + i7 we obtain

H@»m%nnw::/Q*W%AOk@x%nxwx
2.7)

=/eﬂ%ﬂwommwmxm<.

Applying Proposition 2.2 to the family of functions e™¢p(¢) in place of ¢({) we
see that

H(p)g(y,n, A +i7) € S{yy (U x R B E)
for every fixed 7 and uniformly in 7 € K for every K CC R.. O
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Let ¢(¢) be given as in Proposition 2.3. We want to derive an asymptotic
expansion of H(¢)g(y,n, A\+i7) in terms of g(y,n, A) for every 7 € R'. To this end
we write the right hand side of (2.7) in the form

M
Hgw A +i7) = [ 23 5 60F Ok ,m,0) dC
(2.8) k=0
+ [ P vn(Ok(o) im0 dg

where ¥7(¢) = p()(e™¢ — S ply L(TO)*) € C3°(RY). For every N € N we can
choose M so large that v (¢) := |¢| 2N ¢m () € C§(R). The second term on
the right of (2.8) takes the form

/ =M (OIS k(9) (w1, €) dC

(2.9) .
_ / e M (Ok(g)(AY )y, m, O dC |

cf. the formula (2.6). Using of AVg € S(”C;)ZN(U x Rit!: B, E) we obtain from

Proposition 2.2 that the right hand side of (2.9) belongs to SES)ZN(U xR+ B E).
To characterise the first term on the right of (2.8) we write

(2.10) SOF = (1B ()

where ai(7) and Si(¢) are corresponding homogeneous polynomials of order k.
Then

M
(g m.w) = Y- au(r) [ € o0 KB Da)g) v, C) de
k=0

= Z (6773 (T)H((p) (ﬁk (_D)\)g) (ya m, /\) .
k=0

We then have B,(—Dy)g(y,n, \) € Ség)k(U x Ritt; B, E). By the first part of the

proof this is equal to H()(8r(—Dx)g) mod S=>°(U x Ritt; E, E) for all k. This
shows the following corollaries.

COROLLARY 2.4. We have
(2.11) H(p)g(y,m, A +i71) ~ > ag(T)Be(=Da)g(y, m, N)
k=0

in the space S(“CI)(U x RITL B E) for every T € R, where the polynomials ay(T)
and Br(T) are defined by the formula (2.10).
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COROLLARY 2.5. If 9(¢) € C§°(R!) is a cut-off function, i.e., p(¢) =1 in a
neighbourhood of ( = 0, we have

ok (9)(y,m,\) = o (H(2)(9)) (y,n, N).

THEOREM 2.6. Let h(y,n,w) € Séﬁzl)(Ux]Rq xC'; E, E). Then for every 70,1, €
R! there are constants c(79,71), a € N', such that
h(y,m, A +im) ~ Z ca(10,71) DXA(y, 1, A + i0)
a€eN!

where co(19,71) = 1.
PROOF. For every p € C5°(R') with ¢(¢) = 1 near ¢ = 0 we have
d(y,n,A) = hiy,n,\) = H(p)h(y,n,\) € S™(U x R, B, E),

cf. the proof of Proposition 2.3. ABplying Corollary 2.4 to d(y,n,A) we obtain
d(y,n, A\ +it) € S™®(U x R*!; B E) for every 7 € R\, Again from Corollary 2.4
it follows that

h(y,m, A +it) = H(@)h(y,n, A +it) + d(y,n, A + i)
~ Zak(T)ﬂk(_DA)h(yana >‘)
k=0

Applying this for lNL(y, 1, A) := h(y,n, A + i1p) we obtain

h(y,mA+im) ~ > ap(r)Be(=Dr)h(y,n, A)
k=0

which just means our assertion. d

2.1.2. Green symbols. We now turn to a specific class of operator-valued sym-
bols, the so-called Green symbols which are in the pseudo-differential calculus on
a manifold with edges responsible for a part of asymptotics

of solutions to elliptic equations. At the same time the symbols of extra trace
and potential operators may formally be treated as Green symbols. For that reason
we shall introduce them as 3 x 3 block matrices g(y,7) = (9mk(Y,7))m.k=1,2,3
continuous operators

(2.12)
’Cs,’y(X/\) Koo,é(X/\)
9 D
(G (M) mo=1.23 1 K772((0X)),T-) = K0 72((0X)",C+)
D D
(CL (Cl+

g9(y,m) € U x R?, for given weights v,d € R and dimensions ji, where j; corre-
sponds to the number of trace symbols and j_ to the number of potential symbols.
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Instead of the spaces K°%(X") in (2.12) we will take subspaces with asymptotics.
To this end we define

(213)  SS(XMN) i={wu+ (1 -w : ue K°(X"), ve SR,C®(X))}

for any asymptotic type P € As(X,g) or P € As(X,g*), with weight data g =
(6,0). A similar observation holds the spaces S, ((X)") on the boundary, P’ €
As(0X,g) or P' € As(0X,g®). We will use the fact that there is a sequence
of Hilbert spaces {E;}jen with continuous embeddings Ej1; — E; — ... <=
Ey = K%(X") for all j, such that {mf\")}AGRJr restricts to a group action Ej;
for all j. On direct sums of the kind K*7(X") @ K*~ 272 ((0X)") ® T~ or
SS(XM) oS * ((0X)™) @ T+ we take the group action diag{mg\"), mg\"fl) Jid}baer,
with ‘id’ being the identity in the respective finite-dimensional spaces.

DEFINITION 2.7. Ré’O(U x R, g;w) for p € R, U C RP open, and g =
(7,9,0), w = (j_,j+;1l_,1+) denotes the space of all C™ operator families (2.12)

. 1 _nt1 . 1 n1 )
such that go(y,n) = diag(1,(n) *,(m) = )g(y,n)diag(l,(n)2,(n) =) satisfies
the following relations

(2.14) go(y,m) € SHU xRGE® C-,SaC),
and
(2.15) gs(y,m) € SHUxRG;EaC+,SaC-)

where the pointwise adjoints are taken as in Definition 1.2, and

E = K7(XMN) @ K573 ((0X)),T-), §:= S5(XM) @ S5 ((9X)",T+),
and
B =KX @ K0 ((0X),00F), §i= 857 (XN @ S, T2 ((0X)",T-),

for all s,s' € R, s > —1, with certain asymptotic types P € As(X, (6,0)), P' €

As(0X,(6—1,0)), Q € As(X, (—7,0)), Q" € As(0X, (— — £,0)).

More generally, Ré’d(U xR?, g;w), for d € N denotes the space of all operator

families g(y,n) = go(y,n) + 2?21 g;(y,n) diag(77,0,0) for arbitrary g;(y,n) €
Réﬁj’o(U x RY,g;w), j = 0,..,d where TV is of the same meaning as in the
beginning, cf. formula (1.16).

The elements of Ré’d(U x R?, g;w) are called Green symbols of type d, with
continuous asymptotics. By replacing the asymptotic types P, P', @, Q' in Defini-
tion 2.7 by corresponding discrete ones, cf. the notation in Section 1.2.2, we obtain

a narrower class of Green symbols which we denote by Ré’d(U x RY, g% w).
Let

(2.16) RENU x R, g;w)pg
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denote the subspace of all Green symbols with given pairs of asymptotic types P =
(P17 PZ) € AS(X, (67 9)) XAS(aX, (6_%7 9)) and Q = (Ql: QZ) € AS(X, (_77 @)) X
As(0X,(—y — £,0)). We then have

RENU x R, g;w) = U RENU x R, g;w) pg
P,Q
A similar notation may be used for pairs of corresponding discrete asymptotic
types. In future, for simplicity, we will formulate relations and results for continu-
ous asymptotics. If we say nothing other, the discrete case is completely analogous
and will tacitly be used if necessary.

REMARK 2.8. The spaces (2.16) are Fréchet in a canonical way.
REMARK 2.9. Differentiations D;‘Dg induce continuous operators
—18],d
DeDY : REYU x R gsw)pg — RETPHU x R gsw)po
foralla e NP g e NI,

ProposITION 2.10. Let g;(y,n) € Ré’j’d(U x R g;w)pg, 7 € N, be an
arbitrary sequence. Then there is an asymptotic sum

o0
g~ Zgj in RENU x R g;w) e,
j=0
i-e., for every N € N we have
N
9=y g € RE VU xR gy w)p g,
j=0

and g is unique mod Raoo’d(U xR g;w)pg -

Let Ré’d(U x R? x C!'; g;w) p denote the space of all f(w) € A(C, Ré’d(U X
RY;g;w)p,g) such that

f(A+ir) € Ré’d(U X RZT;;Q;UJ)I{Q

for every 7 € R, uniformly in 7 € K for every K CC R'.
The space R‘é’d(U x R? x C'; g;w)p,q is Fréchet in a canonical way.

Next we consider symbols which holomorphically depend on complex param-
eters. The general notion is as follows. Let E and E be Hilbert spaces with group
actions {kx}rer, and {Kx}rer,, respectively; then S(”d)(U x RY x C'; B, E) de-

notes the subspace of all f(w) € A(C!, S(”d)(U x RY; E, E) such that f(A +i7) €

S(’f:l)(U X ]R?:;\l i B, E’) for every 7 € R, uniformly in 7 € K for every K CC R..

In order to specify this definition to Green symbols we first observe that there
is another equivalent formulation of Definition 2.7 without order reducing factors
in the n-variables. In fact, those factors have the only effect that the entries g;; of

g have different orders p;j, e.g., p11 = p, 12 = p — %, M3 = B — "TH, etc. The
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equivalent definition of g now consists of a system of conditions for the entries
separately, for instance, for g2 that

g2y, m) € STH(U x R K (X1), S5 ((9X7)),

% _1 r_ s 1 _
912(ym) € S 2 (U x RG K °72((0X)), 87 (X)),
forall s,s' € R, s > —%. This allows us to extend the notion of Green symbols (first

for type 0 and then for arbitrary type d) to the case of covariables (n,\) € R? x C',
i.e., we have spaces of the form

Ré’d(U xR x C;g;w)po.

THEOREM 2.11. For every g(y,n,A) € Ré’d(U X ]Rfﬁ)\l;g;w)pg there exists an
h(y,n,w) € REHU x RZ x C.,;g;w)pq such that

g(y,1m, ) = hy,1,A) € RG™(U x Ry \sgiw)pg
and h(y,n,w) is unique mod R&m’d(U X ]Rgﬁ\l;g;w)p@.

ProOF. Without loss of generality we assume d = 0; otherwise we apply the
arguments for the factors at diag(T7,0,0) separately. Let us choose an arbitrary
function ¥(¢) € C§°(R") such that ¥(¢) = 1 in a neighborhood of ¢ = 0. Then

H) gly,m,w) == / e C(C) k(g) (9,1, €) dC

is holomorphic in the variable w = A+i7 € C'. To analyse the nature of H(1)g we
go back to the definition. The Green symbol g is a 3 x 3 block matrix (g;); j=1,2,3 of
operator-valued symbols g;;. Let us consider, for instance, gi1; the other entries can
be treated in an analogous manner. To simplify notation we write g instead of g1;
which is an element of Séf:l) (U % ]R{Zﬁ\l ST (X)), 8%(XN)). Setting B := K57 (X1)
for fixed s > —3 and writing SL(X") = 1&1]@]— with spaces E; where {r)} ek,
)EN
act as strongly continuous groups of isomi)rphisms for all j, we have to interpret
g as an element of S(“C])(U X RZT)\Z;ES,E’J-) for all s > —1 and all j. The formal
adjoint g* can be treated in an analogous manner, i.e., the assertion is reduced to
Proposition 2.3. |

THEOREM 2.12. Let h(y,n,w) € Ré’d(U x R? x C';g;w)pg. Then for every
70, 1 € RY we have

h(y,m, A +i10) — h(y,n, A +in) € REVHU xR x T g5w)pg

and there are constants co(70,71), @ € N, where co(79,71) = 1 such that

h(y,n, A +ir) ~ Z ca(10, ) DSh(Yy, 1, A + i70) -
a€eN!
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COROLLARY 2.13. Let h(y,n,w) € Ré’d(U x RY x C';g;w)pg and assume
h(y,n, A + itp) € Ré_l’d(U x R? x C';g;w)pg for some 79 € R'. Then we have
h(y,n,w) € RE V(U xR x Cig;w)pg

THEOREM 2.14. Let o(¢) € C°(RY), and define H()g(y,n, w) for g(y,n,w) €
RE d(U X ]Rq Ni19;w)pq by the expression (2.5). Then H(p) induces a continuous
operator

H(p) : REU xR giw)po — REN(U xR x T g5w)pg

For h(y,n,w) := (H(p)g) (y,n,w) and every 7o € Rl we have asymptotic expan-
S10NS
h(y,mA+im0) ~ Y da(p,70) DSh(y,n, A)
aeN?

in R d(U » ]R{q 39 w)pq with constants dy (i, 70).

PROOF. Analogously as in the preceding proof we may assume d = 0. Again
we consider, for instance, upper left corners. Then the assertion reduces to the
case of operator-valued symbols in the abstract set-up of Section 2.1.1, and the
result is consequence of Theorem 2.6 |

2.2. Mellin edge symbols.

2.2.1. Basic properties. There is another interesting class of operator-valued
symbols for edge boundary value problems, namely Mellin symbols with asymp-
totics. Let us first consider discrete asymptotics.

In the following definition we set g = (y,7—pu,©) for ©® = (—(k+1),0], k € N,
and v := (J_, J1;0,0).

DEFINITION 2.15. Rﬁ,}iG(U x R?,g%v) for U CR? open and p € R, d € N,
denotes the space of all operator families m(y,n) + g(y,n) for arbitrary g(y,n) €
RLYU x RY, g% v) and

m(y,n) := w(r n]r“zﬂzop 5 (f1.0) ()@ (rn))
J=0  |a|<j
for arbitrary f; o(y,z) € C”(U,Mgfo’d(X;v)) with certain R; € As®*(X), and
weights v; € R such that WCijFnT-I—l_,Yj =0 and0<y—vy; <jforallj=0,..k.
The elements of RM+G(U x RY,g®%;v) are called Mellin + Green edge symbols of
order u and type d, with discrete asymptotics.

THEOREM 2.16. Let a(y,n) = m(y,n) + g(y,n) € RM+G(U x R?, g% v) and
set

ao(y,n) = diag(1, (n) " ¥)a(y, n)diag(1, (n)¥).
Then we have
ao(y,n) € SH(U x R%; E, E)
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E:= (X" & K773 ((0X)",0-),

E = K0 1(XN) @ K713 ((0X)", T+,
s,s' €R, s> —%. Moreover, if we assume the Mellin symbol f; to be independent

of y € U, we have
ao(y,n) € Sy(U x R'; F, F)

for
F=K3(XMeKky 2((0xX)"N,0-),

B KM @ k5T (0x)), 00,
for every pair of asymptotic types
1
P e As(X,(7,0)*), P' € As(0X, (v — 5,@)')

with some resulting

L] ]' L]
QEAS(Xa(’Y_Nﬂ@) )7 Q’EAS(@X,(’)/—/L—ﬁ,@) )
depending on P, P' and the Mellin symbols f; .

DEFINITION 2.17. Rﬁ,}iG(U x R?,g;v) for U C R? open, u € R, d € N,
denotes the space of all operator families a(y,n) := m(y,n) + g(y,n) for arbitrary

g(y,n) € REY(U x RY, g;v) and m(y n) == my(y,n) +ma(y,n), for

(2.17) my = w(r[n))r ”ZT’ > v " () W@ rn)

=0 |al<j
for arbitrary fi ;(y,z) € C* (U,M‘_/lof’d(X;v)), Vij €V, and weights v ; € R
such that V ; ﬂl"l =0 and0<~y—r,; <jforalj=0,..,kandl=1,2.

The elements of RM+G(U x R?, g;v) are called Mellin+Green symbols of order u
and type d, with continuous asymptotics.

Vz,

Let us set
(2.18) ohi @)y, zm) = D {f1ja(y,2) + fajaly, 2)In”
la|<j

called the conormal symbol of a(y,n) of (conormal) order y — j, j =0, ..., k. Note
that o', (a), the principal conormal symbol, is independent of the covariable 7.
Moreover, define the homogeneous principal edge symbol of order u by

on(a)(y,n) = ok(m)(y,n) + ox(g)(y,n)

as the principal part of a as a classical operator-valued symbol. For the Green
summand ¢, this was introduced before, while for m = m; + mo we have
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o (mi)(y,n) = w(rl))r “Zr’ 3" opai T () (W)t @(rn).-

la|=j

Notice that an analogous definition makes sense when n € R? is replaced by
(n,\) € Rt then the corresponding ok (a)(y,n, ) has the meaning of parameter-
dependent homogeneous principal edge symbol.

PRrROPOSITION 2.18. Let a(y,n), a(y,n) € RM+G(U x R?,g;v) and assume
that o7 (a) = 0477 (@), for j =0, ..., k. Then we have a —a € R4 (U x RY, g; v).
In other words, the specific choice of cut-off functions, the weights vy, ;, or of the
functionn — [n] does not affect a(y,n), up to Green operators. A similar statement
holds for the case with discrete asymptotics.

REMARK 2.19. Note in particular, that when we replace w or @ in the expres-
sion (2.17) by a function in C3°(Ry) then the corresponding operator function is
a Green symbol.

PROPOSITION 2.20. Rﬁ,}iG(U x R, g;v) is a subspace of
(2.19) SK(U x RY; H; H)
both for
H =KX E)& K773 ((0X)", J-)
H = K0 1(XM F) & K713 ((0X)", J4)
and
H=K3'(XMNE)e Ky TTE(OX)N, )
H=Kg" "(X"F) o Ko "2 ((0X)", J4)

for every pair (P, P") of asymptotic types, with some resulting (Q,Q'); here the

order u in (2.19) refers to the group actions diag(ng\n),/\%))\eR+.

PROPOSITION 2.21. We have
DSDIRY, (U x R, g;v) C R 12U x RY, g;v)
for every o, 3 € N'. Moreover, a(y,n) € RYy,, (U x R?, g;v) entails
D;‘Dga(y,n) € Réf"gl(U x R?, g;v)

for every a, B € N? with |B| > k (where k is linked to the weight interval © =
(—=(k+1),0], involved in g ).
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2.2.2. Holomorphic families of Mellin plus Green symbols. We now single out
suitable Fréchet subspaces in
(2.20) RiLa(U xR, g;v),

cf. Definition 2.17. We consider the case of continuous asymptotics; the discrete
case is simpler and easily follows from the general construction. It will be conve-
nient to normalise the choice of the weights 7y, ; in the relation (2.17). For j =0
we have necessarily v,,,0 =y for m = 1, 2. Otherwise we set

(2.21) Ymj = — % for m = 1,2 and j > 1.
We employ the fact that for every V' € V there are elements V7, V2 € V such that
(2.22) V =V1 + Vs and anr%“—(v—%) =0 form=1,2.

Analogously as the relation (1.25) we have

2
C (U, My (X50)) = D C(U, My (X;v))
m=1

as a non-direct sum of Fréchet spaces. This implies the following result:

PROPOSITION 2.22. Let us fix elements Vo,V € V and such that ‘/OﬁrnTﬂ_,Y =

(. Then Rﬁ/}iG(U x RY, g;v),, for m = 1,2 denote the subspace of all elements a
in (2.20) such that
(i) ohr(a) € C(U,M5™"(X;0)),
(ii) the coefficients of the polynomial (2.18) belongs to C>°(U, M;?’d(X; v))
forj>1.

By definition we then have
2
(2.23) Rhf (U xR, giv) = Y Ry LU X R, g50)m,
m=1

and every a in (2.20) belong to (2.23) for a suitable choice of the sets Vy and V.
We shall Fréchet topologise the summands on the right of (2.23) separately and
then endow (2.20) with the topology of non-direct sum.

Let P, j(n) denote the space of all polynomials in 1 of degree j such that the
coefficients belong to /\/l‘_,jo’d(X; v). Proposition 2.18 then gives us linear operators

oht  Rhiha(U X BRI, giv) — C%(U, M5 (X; ),
(2.24)
U]*\L,;j : R“M‘iG(U X RY, g;0)m = Pum,j(n)
forj=1,.. k.
Let, for a moment, F}, denote the Cartesian product of all spaces that oc-
cur on the right of (2.24); this is a Fréchet space in canonical way. Set o =
(6%77)j=0.._ k- Then (2.24) represents a surjective map
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(2.25) om Ry — Fiy

for R, := Rﬁ/}iG(U x R?,g;v)m. The kernel of (2.25) is the space of the Green
edge symbols Ré’d(U xR?, g;v) since (2.25) has a right inverse, given by expression
(2.17) for a fixed choice of w, @, [n] and Ym0 =¥, Ym,; = v — % for j > 1. It follows
that
R“M‘iG(U xR, g;v)y =2 Fyy, @Ré’d(U x R?, g;v).

Write for a moment
(2.26) Rt a(U X R, g50) poim = Frn @ RE(U X R, g50) p -
We then endow the space on the left with the Fréchet structure of the direct sum.
Finally, we have

REE (U X RY,g;0)m = UpoRATE (U x RY, g50) p.gim-

Our next objective is to apply the kernel cut-off procedure to symbols with
parameter A € R' and obtain symbols depending on the complex parameter
w e . Let R (U x R? x €, g;v)p,gm denote the subspaces of all f(w) €

A(C, R (U XRY, g5 v) p gim) such that f(A+ir) € RES o (UXREY  g:0) p.oim
for every 7 € R, uniformly in 7 € K for every K CC R'.
The space R”MiG(U x R? x C', g;v) p.gm is Fréchet in a canonical way.

THEOREM 2.23. For everya(y,n,\) € Rﬁ/}iG(UX]RZJ&l,g; W) p,Q;m there exists
a b(y,n,w) € R o(U x RE x Cy, g3 w)poym such that

(2.27) a(y,n,A) = by, 1, X) € Rg™(U x KfY g w)paq
and b(y,n,w) is unique mod Rg;oo’d(U x RIT g;w)p o, where
ox(@)(y,n,A) = ox (D) (y,n, ).

PROOF. The first steps of the proof are the same as in the proof of Theorem
2.11. We may restrict the consideration to the case d = 0 and formally replace g
by our a. When we form H (¢)a(y,n,w) we obtain a holomorphic operator-valued
function by the general cut-off technique of Section 2.1.1. It remains to verify that

H()aly,n,w) € RiA(U xR x C', g;w) p.gim

as well as the relation (2.27). From the formula (2.8) with ¢ and a instand of ¢
and g, we see that

(H()a) (y,m, A +i7) = aly,n, A) + ba(y,n, 7) + 70 (y,m, 7)

for

bar(y,m,7) == Soniy [ e ML (r0) ) (Q)k(a) (y, 7, ) dC
TM(yJ 1, T) = f eiiACipM(C)k(a’)(y: 7, C) g
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As in the proof of Proposition 2.3 we can apply integrations by part in the integral
of by which gives us

M
bM(ya n, T) = Z an(T)ﬁn(_D)\)a(ya m, /\)

in the notations of Corollary 2.4, modulo an error which is of order —oo in the
sense of operator-valued symbols. To see that the asymptotic sum in the sense of
Corollary 2.4 is valid in our narrower class of smoothing Mellin+Green symbols of
prescribed asymptotic types, it suffices to observe that for sufficiently large M the
difference bys11 —byy is of Green type; i.e. for sufficiently large M the remainder 7y
only contributes Green symbols, and the differentiations in A as they are contained
in formula (2.11) to not change P and @ in the expression, which allows us to apply
Proposition 2.10. (I

THEOREM 2.24. Leta(y,n,\) € Rﬁ/}iG(Ux]Rq‘H;g,v) and b(y,n,\) € Ryf o(Ux
]Rq+1;h7w)7 fOT’ h = (777 - /l’7®)7 w = (J—7J0)7 g = (7 — K7 R V7@)7
v = (Jo,J4). Then we have ab € Ry VE(U x RIY g o h,wowv) for goh :=
(7,7 =1 =v,0), wov = (J_,J3), and o} (ab) = o} (a)o% (b).

3. Kernel cut-off for cone operators where the base is a manifold with
edge

3.1. Operators for corner singularities.

3.1.1. Manifolds with edges. In this section we introduce a class of manifolds
with edges and boundary. Because we mainly consider analytic aspects from oper-
ator algebras and in order to limit the burden of formalities, we content ourselves
with a sufficiently simple case. In that sense a manifold W with edge Y C W and
boundary is a topological space such that W\ Y is a C* manifold with boundary,
Y is a compact closed C*° manifold, and Y has a neighbourhood U in W that is
homeomorphic to a wedge X x Y, where

X2 := Ry x X)/({0} x X)
is a cone with base X that is a compact C°° manifold with boundary 0X. In
addition we assume that the homemorphism h : V — X% x Y restricts to diffeo-
morphisms

U\Y=2X"xY,UNnYy =Y
for X" := Ry x X. In other words, in V' \ Y we fixed a global splitting of variables
into (r,z,y)€ Ry x X x Y. Other admissible splittings (7, z,§) are required to be
related to (r,z,y) by a diffeomorphism Ry x X xY — Ry x X x Y (in the sense
of C* manifolds with boundary) that extends to a diffeomorphism

(3.1) RxXxY->RxXxY.
In particular, we obtain homeomorphisms Ry x X x Y — Ry x X x Y with

smoothness up to r = 0 in the sense of (3.1), and there is then a so-called stretched
manifold W associated with W that has Ry x X x Y as local model near r = 0
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(rather than X© x Y for W). The space W is a manifold with corners of a specific
kind caused by 0X (the case 0X = () is also admitted; W is a C'°™° manifold with
boundary W = 90X x Y).
The space (W \Y)UY =:V is then a manifold with edge without boundary
as in the definition before with dX = ().
Another exmple of such a ‘closed’” manifold with edge Y is the double 2WW of
W which we obtain by gluing together two copies of W\ 'Y along (W \ Y') which
gives us 2(IW \'Y) and then set 2WW = {2(W \ Y)} UY. The associated stretched
manifold 2W is a smooth manifold with boundary 9(2W), and this boundary is a
2X bundle over Y.
Let us set
Wing := 0(2W) N W
where W is identified with one of the copies Wi of W in 2W, and
Wreg =W \ Wsing-
In a similar manner we set for the stretched manifold V associated with V'
Vsing = 8V, Vreg =V \ Vsing-

3.1.2. Edge spaces with asymptotics. Let us now introduce some classes of
weighted spaces and subspaces with (continuous) asymptotics on a (stretched)
manifold W with edges and boundary. It will be easier to start from the case when
the base X of the model cone has an empty boundary; then in order to reach the
case with boundary, we first consider the double of the base which is then closed
and compact and finally restrict our distributions to the given configuration (the
plus-side of the double). The structure of weighted Sobolev spaces near the edge is
formally linked to the constructions of Section 2.1.1 on Hilbert spaces or Fréchet
spaces E/ with group action {sx}rer,-

If E is first a Hilbert space, W*(R?, E) for s € R is defined to be the completion
of S(R?, E) (the Schwartz space of E-valued functions) with respect to the norm

{/ <n>23||»e<;>a(n>||2dn}é ,

with @(n) being the Fourier transform in R?.
For the case of a Fréchet space E with group action, written as a projective
limit ¥ = @ E* of Hilbert spaces, we have by the above construction the spaces
keN
W#(R?, E*) with continuous embeddings

W (R?, EFFL) < WH(R?, E¥) for all k,

and we then set
W*(R?, E) := lim W# (R, E¥)
keN
in the Fréchet topology of the projective limit.
For the case of spaces on a (stretched) wedge Ry x X x R? with edge R¢
we take the spaces E := K®7(X") or Fréchet subspaces E := K37(X") with
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(discrete or continuous) asymptotics of any fixed type P. The group action is

(kaw)(r,x):= A u(Ar,z), A € Ry where n = dimX. We then have the spaces

(3.2) WH(R?, K*7 (X)) and W?(R?, K37 (X))
for every s,v € R. It can easily be verified that
HE o (X2 X R C WH(R?, K57 (X)) C He (X2 x RY)

comp

and the same for spaces with subscript P in the middle. This allows us to define
global spaces on a (for simplicity compact) stretched manifold W with edge

WY (W) and Wi (W),

respectively, (first for the case of closed cone base X). The space Wi (W) is
define as the set of all u € H;,.(intW) such that pu € W?*(R?, IC?}J) (X)) for every
p € C*°(W) supported in a coordinate neighbourhood intersecting W (subscript
‘(P)’ means that we are talking on spaces without or with asymptotics; definitions
are valid in both cases). On the space W (W) we fix a scalar product (-, -); then
(,) : C§°(intW) x C§°(intW) — C extends to a non-degenerate sesquilinear
pairing
() : W (intW) x W™= (intW) —» C

for all s,y € R

Now, if X is a compact manifold with boundary, we can form the double 2.X,
and the pass to the double 2W of our given (stretched) manifold W with edge and
boundary; let W be identified with W, , cf. Section 3.1.1.

Let WFPV) (2W), denote the subspace of all W(SPW)(2W’) that vanish on W_. We
then have isomorphisms

W (W) 5= W W) i 2 Wi (2W) /Wi (2Wo,

(for simplicity, asymptotic types on 2W and W are denoted by the same letter;
clearly the coefficient spaces refer to 2X and X, respectively, where the ones on
2X restrict to X in a natural way). This gives us the corresponding quotient
topologies in the spaces Wf jj) (W) that are Hilbert (Fréchet) for the case without
(with) asymptotics.
3.1.3. Parameter-dependent edge Green operators. Let W be a compact stretched

manifold with edge and boundary V, cf. the notation in Section 3.1.1, and set

v :=(J_,Jy;L_,Ly) for vector bundles J_,Jy €Vect(V), L_,L, €Vect(Y).
Then yg“’o(w;g;u) for g := (v,6,0), for weight 7,6 € R and a weight interval
© = (6,0] is defined to be the space of all operators

W (W) W (W)
D N
(3.3) G: W BV, UD) = WRTTR(V )

1" n+1

H =" (Y,L_) H>(Y,L,)
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that are continuous for all s,s’,s"” € R, s > —%, and some asymptotic types
P € As(X,(0,0)), P' € As(0X,(6 — £,0)) such that the formal adjoint defines
continuous operators

W= (W) Wo (W)
® ®
(3.4) G WSV, L) W TRV, IS)
1" n+1 @
H* == (Y,Ly) H>(Y,L-)

for all s,s',s” € R, s > —%, and some asymptotic types @ € As(X, (-7, 0)),
Q' € As(0X, (—v — £,0)). Moreover, define yaoo’d(W;g;v) for d € N to be the
space of all operators of the form

d
(35) g = gO + Z gjdiag(Tja 07 0)7
j=1

for arbitrary G; € Vg oo’d(VV; g;v) and T any differential operator of first order on
W that is represented by a vector field transversal to the boundary V.

Finally, let YV, Oo’d(VV;g; v;R') denote the space of all Schwartz functions on
R with values in Vg °:4(W, g; v) which refers to natural Fréchet topologies in the
subspaces with fixed P, P’ and @, Q'.

We now pass to Green operators on W with a local symbolic structure as in
Definition 2.7. We define yG’O (W; g;v;R') as operator families

G(A) =Go(A) +C(N)

for arbitrary C(\) € yg”’o(w;g; v;IR') and operators Go(A) that are locally near
Wsing given as Op,(g)(A) for symbols

9(y,m,A) € R*O(Q x R g3 w)

(with j+ and IL being the fibre dimensions of Jy and Li, respectively, and
2 C R? an open set, corresponding to local coordinates on Y). Finally, the
space yg’d(w;g; v;R') of parameter-dependent Green operators of type d is de-
fined as the set of all operator families of the form (3.5) for arbitrary G;()\) €
yg‘j ’O(W; g;v;RY). There is also a natural notion of holomorphic dependence of
operator families G(w) = Go(w) + C(w), on w € C', by requiring the local ampli-
tude functions of G(w) to belong to Rg’d(ﬂ x RE x C; g; w) for fixed asymptotic
types P, P' and @, Q' and the smoothing family C(w) to be holomorphic as a
function with values in operators of the form (3.3) such that the pointwise ad-
joints take values in operator of the form (3.4) and is such a way that C(\ + i7)
for every 7 € R is a Schwartz function in A € Rl with values in such operators
uniformly in compact subsets with respect to 7 € RE. Let V4% (W; g;v; C') denote
the corresponding spaces of operator functions G(€2).

3.2. Meromorphic corner symbols.
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3.2.1. Mellin plus Green operators on a manifold with edges. Let W and V be
as in Section 3.1.3. We then define the space
Vil (Wig; v R
for g = (v,y — 1, 0), © := (—(k + 1), 0], as the set of all operator families
AA) := M)+ G\

with arbitrary G(\) € yg’d(W;g;v;]Rl) and M()\) being a 2 x 2 block matrix
family

W7 (W) WeEeT 1 (W)
M) : @ - ) :
Ws=57=3(V, J_) WoRN—h=5(V, ], )

that is locally near Wying given as Op,, (m)()) for m(y,n, A) € RM+G(QXRZ7+)\Z ;g; W)

for w = (J_,J;), & C R? open. Every A(\) € yM+G( ;g;v;R) has an invari-
antly defined parameter-dependent homogeneous edge symbol ok (A)(y,n, A) that
is which locally on  x (R?*! \ {0}) which an operator family

]Cs,w(X/\) ]Coogyf/,L(X/\)
D
oK (A)(y,m,\) : K522 ((0X)M), ) — Keor—s—r((0X)N,J.)
D D
Cl- Cl+

given by corresponding edge symbols of amplitude functions m(y,n, A) € Rﬁ,ﬂ_G (Qx
]Rq AW w). There is then a family of subordinate conormal symbols

1 (X) oo (X)
oy (A)(y,m ) - O - D ,
K3 (0X, ) K> (0X, J4)

yeY,z€lnn . - The conormal symbols are uniquely determined by ah(A).

THEOREM 3.1. Let A € yM+G(W;g;v;Rl) and B € yM+G(W;h;w;]R§l) for
g = (ry - v,y =V _/l’7®)7 = (J07J+;L07L+)7 h = (7 v V7@)7 w =
(J_,Jo; L_, Ly). Then we have AB € ym”g(w, (goh);vow), and ok’ (AB) =
on(A)o (B)

3.2.2. Kernel cut-off and holomorphic representatives. The definition of y;(;ig (W;g;v; R
can be modified to a space

Vit (Wig;v; C)
of operator functions A(w) = M(w) + G(w) + C(w) where the local amplitude
functions a(y, n, w) belong to Rﬁ/[ia QxRS x C,,; g;w) and the smoothing family
C(w) to Y5 (W; g;v;C).
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THEOREM 3.2. For every A(\) € yM+G( ;g;0;RY) there ezists a B(w) €

yM+G( ;g;v;C) such that

AN = B(A) € Y4 (W; g5 05 R,
and B(w) is unique mod y&oo’d(W;g;'u; C"). Moreover, we have
(3.6) op(B)(y,2) = ox(A)(y, 2)

Proor. We employ the fact that our operator families A()\) (modulo families
of order —00), are locally given in the form Op,(a)(A) for an amplitude function
a(y,n,\) € Rﬁ,}iG(Q X Rq+l,g, ), Q € R? open, corresponding to a chart on
the edge Y. Then it sufﬁces to apply Theorem 2.23 and to replace a(y,n,A) by
b(y,n,w) := H()(y,n,w) for any cut-off function 1 (¢). To show (3.6) we may
apply Theorem 2.23 which gives us

a(y,n,A) = b(y,n, A) mod Ry & (2 x Ry g5 w).
This implies equality of the principal edge symbol of order u. d

3.2.3. Meromorphic functions with iterated asymptotics. Let us apply the con-
struction of the preceding section to the case [ = 1 and g = (7 v,0), v =

(J,J; L, L) for some J € Vect(V). Consider an element, h(w) € yM+G( ;9;0;C)
and look at the family of operators

W (W) W (W)
(3.7) 1+ h(w): W27 =3(V,J) = W 3773(V,J) |
H "2 (Y, L) H* "2 (Y, L)

where 1 is the identity operator in the respective spaces, s > d — %

THEOREM 3.3. Assume that the operator function (3.7) is elliptic in the sense
that

’CSN(X/\) ’CSN(XA)
1 169 1®
oh(L+h)(y,n,A) : K723 ((0X)%),]) = K*=3775((0X)", ) ,
D D
c c

is an isomorphism for all (y,m,\) € (T*Y x R')\ 0. Then there exists a countable
discrete set D C C with finite intersection D N {c < Imw < '} for every ¢ < ¢,
such that (3.7) is invertible for every w € C\ D and all s > d — .

PROOF. The operators (3.7) form a holomorphic family of continuous opera-
tors between the respective Hilbert spaces. In addition o/ (1 + h)(y,n, A) can be
inverted in the sense that there are locally near Y elements p(y,n, A) € RX/[“JFG(Q X
R?; g;v) (2 C R? open, corresponding to charts on Y) such that o (1+p)(y,n, A)
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are inverses of ok (1+h)(y,7, A). The amplitude functions associated with p give rise
to a global operator function 1+ FPy(A) such that (1 4+ Py(A)) (1+h(N)) = 1—-R(N),
where R()\) € y];,ig(w; g;v;R). Then a formal Neumann series argument yields

a Pi(A\) € V' o(W; g;v; R) defined by
L+ Pi(A) =D RN p (1+ Py(V)
7j=0

with {...} being a corresponding asymptotic sum, such that (1 + P;(\)) (1 + h(\)) =
1 mod Y~*°(W; g;v;R). Note that the asymptotic sum is admissible in the sense
of Proposition 2.10 concerning the involved asymptotic types. Then, since the re-
mainder in Y~°(W; g;v; R) behaves like a Schwartz function in A, the operator
family 1+ h(\) becomes invertible for large |A|. For any fixed A the operators are
Fredholm between the respective Hilbert spaces, because the remainders which
are produced pointwise are Green operators and as such compact operators. The
same is true for the unique extensions to w € C. Now we can apply a well known
theorem on the behaviour of the inverse of a holomorphic Fredholm function which
gives us a meromorphic function with poles at most in a set D as claimed. d
Operator functions in KﬂrG(W; g;v; C) are part of the corner conormal sym-

bolic structure for boundary value problems in domains or on manifolds with
corner singularities, where the base is a manifold W with boundary V and edge Y
(recall that W and V in our notation are the corresponding stretched manifolds).
Corresponding differential operators in a stretched corner Ry x W (with ¢ € Ry
being the corner axis) have the form

(3.8) A=t* z;aj(t) (—t%)j,

with coefficients a;(t) that are assumed to be smooth in ¢ (up to ¢t = 0) and take
values in edge-degenerate differential operators on W of order p— j that are locally
near Wiing in the splitting of variables into (r,z,y) € Ry x X x Q, Q C R? open,
of the form

i a\"
’I°( H+J) Z bj;k,@(ray) <_ra) (rDy)ﬂ
k+|8|<p—j

with coeflicients bj;,3(r,y), smooth in r,y (up to r = 0) and with values in
Diff”*j*(k*"gl)(x), where X, the base of the model cone for W is a compact C*
manifold with boundary. Consider, for simplicity, the case that the coefficients a;
in (3.8) are independent of ¢. Then

m
h(w) == Z a;w;
=0
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is a (non-smooting) holomorphic operator-valued Mellin symbol, and we can pass
to weighted Mellin operators

(3.9) oply T E L (R) s HEO (W) s IR0 (W)
WA := R, x W operating between corner spaces in a similar sense as the ones in
the beginning in Section 1.1 with X in place of W. In the present case we have two
weights, namely v, € R, where v belongs to the inner cone axis variable r € Ry
and § to the corner axis variable t € Ry . The spaces H®7°(W") are defined in a
similar manner as the ones in [7] for the analogous case of B instead of W, where
B is a (stretched) manifold with conical singularities (formally, it corresponds to
the case of a space W with ¢ = dimY = 0). Comparing (3.9) and (3.8) we see that

_y  0—itnte

A=t""op,, 2 (h).
Under ellipticity assumptions on A (cf. [7] and [10] for the case without bound-
ary) and adding boundary operators of analogous corner-degenerate form shape as
(3.8), we can construct parametrices of the corresponding elliptic boundary value
problem on W" near t = 0. A typical part of the parametrix consists of operators
of the form
§—1tntq

(3.10) thopy, 2 (f)
for a suitable element f(w) := f(iw),

f(w) € Vit (W, g;v;0).

Operators of the form (3.10) are the contribution to Green’s function of the corre-
sponding elliptic boundary value problem that generates (iterated) corner asymp-
totics of solutions. (Because of this structure we might better speak of Green’s
plus Mellin’s function). As a result of the parametrix construction one concludes
iterated corner asymptotics of solutions u(t) (taking values in spaces with edge
asymptotics on W), that are reflected by meromorphy of the Mellin transform of
u(t) in the covariable w € C. The nature of such corner asymptotics for the case
without boundary was analysed in [10]. The present results, in particular, the
analysis of meromorphic corner conormal symbols, play a similar role in boundary
value problems on the ones in the boundaryless case. The full description of the
parametrix constructions needs a certain conterpart of our paper that just deels
with non-smoothing Mellin operators with holomorphic symbols, cf. Oliaro and
Schulze [4]. The algebra generated by the present calculus together with that of
[4] will be investigated elswhere. It will contain the parametrices of elliptic bound-
ary value problems on manifolds with corners where the corner bases are manifolds
with edges.
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