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1 Introduction

This paper was originally planned as a field for cooperation between analysis of
partial differential operators on manifolds with singularities on the one hand,
and deformation quantization of symplectic manifolds on the other hand. A
symplectic orbifold seems to be a good object of interest for the following
reasons:

1o Orbifolds may have rather complicated singularities but with a rich sym-
metry. In particular, the symmetry conditions of [17], [9] leading to essential
simplifications of the index theory are a part of the orbifold structure. The
index theory for elliptic operators on compact orbifolds takes its final form
due to the works of Kawasaki [13] and Vergne [18]. Their formulas show that
for orbifolds we have well-defined contributions of the smooth part and of
singularities.

2o Deformation quantization as described in [4] goes almost without changes
for the symplectic orbifolds, cf. [14].

Our hope was that combining all these methods, we could generalize the
index theorem for deformation quantization on smooth symplectic manifolds to
the case of symplectic orbifolds. Unfortunately, we could not realize our plans
in their original form. Instead, some new interesting observations concerning
different versions of quantization, traces, eigenvalue problems were made in
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the process. These observations generate more questions than answers, and
we hope to continue somewhere our investigations in these directions.

Our main result is the trace construction on the algebra of quantum ob-
servables on a symplectic orbifold. This is done in Section 7 using the local
study of orbifold charts (Section 2) and orbifold vector bundles (Section 3).
In contrast to the smooth case the orbifold trace is not unique. On the set
of traces acts a finite group which we call the Picard group. Its description
as global sections of the sheaf of characters is given in Section 4. It seems
plausible that the trace is unique up to the action of the Picard group but at
the moment we can not prove this statement.

Section 5 contains a standard material on symplectic reduction. In par-
ticular, we show that any symplectic orbifold may be obtained by symplectic
reduction of a smooth symplectic manifold by a locally free Hamiltonian action
of a compact connected Lie group. It is a necessary step in the index theory of
Kawasaki and Vergne which reduces the orbifold index theorem to the Atiyah
index theorem for transversally elliptic operators [1]. We use the symplectic
reduction when considering examples in Section 9.

In Section 6 a brief description of the standard deformation quantization
procedure on symplectic orbifolds is given. We follow here [5] paying attention
to the ideas rather than the rigorous exposition.

Having constructed the trace, we define the index as the trace of the identity
element in the algebra of quantum observables. This is the simplest version
valid for compact symplectic orbifolds. We express the index as the sum of
contributions of fixed point orbifolds, but the form of each contribution remains
a conjecture which we can not prove at the moment. The matter is that the
generalization of the Atiyah theory of transversally elliptic operators is missing
for deformation quantization and we need either to develop it from the very
beginning or to invent some new tools. We hope to prove this conjecture in
future.

In the last Section 9 we try to explain that there is a reasonable version of an
eigenvalue problem in the framework of deformation quantization based on the
index theorem. The index is interpreted as a multiplicity of an eigenvalue and
the characteristic equation for eigenvalues appears by equating this multiplicity
to a positive integer number. The example also illustrates an essential role of
the Picard group in such an eigenvalue problem.

To our mind, our results, although incomplete, shed some new light on the
whole problem of quantization. There is a variety of quantization theories,
and this very fact shows that the right quantization theory is not yet invented.
Let us mention some of them. First of all it is the deformation quantization
[2] which during the latest years became a “fashionable” theory. The Planck
constant h is treated in deformation quantization as a formal parameter and the
observables are of the same nature as in the classical mechanics with quantum
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corrections given by higher powers of a formal power series in h. This approach
gives the maximal freedom, when dealing with observables, because almost any
classical construction with observables admits a lifting to the quantum case.
On the other hand, the quantum evolution defined by the Schrödinger operator
exp((ı/h)Ht) is lost in the deformation quantization approach. Moreover, the
spectral theory is also lost since the spectrum is given by the Fourier expansion
of the evolution operator.

Another quantization theory coming from the group representations is the
so-called geometric quantization. Here h is a number, the quantum observables
are operators, so the spectrum is correctly defined. The price for that is a
complicated nature of observables, so that the lifting of classical constructions
to the quantum level becomes non-trivial.

We also mention the Maslov quantization theory based on a version of
Fourier integral operators, cf. [11]. It tries to combine the merits of both
above-mentioned approaches, but possesses the shortcomings of the both as
well.

Our approach to quantization is the following. If one wishes to describe the
global picture, one needs to deal within the scope of deformation quantization.
But when considering the local details one may use the operator representation
of local deformation quantum algebra in case it exists. So, in the local picture
one takes h as a small numerical parameter, and to compute the quantity in
question one uses the operator machinery. If the result admits an asymptotic
expansion in powers of h as h tends to 0, one may treat this asymptotic series
as a formal one and thus return to the deformation setting. The only thing
one needs to check is that the final expression treated as a formal series is in-
dependent of the operator representation which has been used for calculations.
For example, the index formula usually possesses such invariance property be-
cause of the topological stability. Such reasoning was developed in the proof
of the index theorem for deformation quantization in [5]. Here we also use this
reasoning, when constructing the traces for quantum algebras on symplectic
orbifolds, see also the discussion in Section 7.

2 Symplectic orbifolds

As a background on orbifolds we recommend the book [3].

A symplectic orbifold is a Hausdorff topological space B which admits a
locally finite covering {Oi} with the following properties:

1o For each Oi there exists a domain Õi in the standard symplectic space
(R2n, ω) and a finite group Gi of symplectomorphisms of Õi, such that Oi is

homeomorphic to the orbit space Õi/Gi. We denote by pi the corresponding

projection pi : Õi → Õi/Gi = Oi. The domains Õi with the given group action
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are called orbifold charts.
2o If an open set O belongs to the intersection Oj ∩ Ok, then there exists

a domain Õ in (R2n, ω) with a finite group G of symplectomorphisms of Õ

and a projection p : Õ → Õ/G = O subject to the condition: there are
symplectomorphisms

Õj
ϕj← Õ

ϕk→ Õk (2.1)

and group embeddings

Gj
ij← G

ik→ Gk (2.2)

such that the maps (2.1) are equivariant with respect to the homomorphisms
(2.2).

For a point x ∈ Oi take one of its preimages x̃ ∈ Õi and consider a subgroup
G(x̃) ⊂ Gi leaving x̃ fixed. It is called a stabilizer or isotropy subgroup of x̃.
Any other preimage has the form γx̃ for some γ ∈ Gi, so that

G(γx̃) = γ G(x̃) γ−1. (2.3)

We see that G(γx̃) may be obtained by conjugation from G(x̃). In particular,
G(γx̃) and G(x̃) are isomorphic, and we may introduce the stabilizer of x ∈ Oi

as a group isomorphic to any of G(x̃). Moreover, the conditions (2.1), (2.2)
imply that G(x) is independent of the chart up to an isomorphism, so the
notion of the isotropy group G(x) makes sense for a point x ∈ B.

Theorem 2.1 For any compact symplectic orbifold B there exists a cover-
ing {Oj, Õj, Gj, pj} by orbifold charts with the following properties:

1o In each Oj there exists a point xj called the center, such that G(xj)
coincides with Gj.

2o There is a Gj -invariant complex structure on Õj, such that Õj is a
neighbourhood of the origin in Cn with the symplectic form

ω =
1

2ı
(dz̄1 ∧ dz1 + . . .+ dz̄n ∧ dzn). (2.4)

3o Gj acts on Õj by unitary transformations, that is Gj is a finite subgroup
of U(n).

This is the so-called linearization theorem.

Proof. Take a point x0 ∈ B and an orbifold chart {O, Õ, G, p} containing

x0. Pick one of the preimages x̃0 ∈ Õ and a smaller neighbourhood Õ1 ⊂ Õ,
such that γÕ1 ∩ Õ1 �= ∅ implies γ ∈ G(x̃0). Then {p(Õ1) = O1, Õ1, G(x̃0), p}
is a smaller orbifold chart. Because of compactness we may choose a finite
covering of such form, proving 1o. Further we will consider only orbifold charts
together with their centers.
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Let {O, Õ, G, p} be an orbifold chart with the center x0, so that x̃0 coincides
with 0 ∈ R2n. Introduce a G -invariant Riemannian metric α on Õ (averaging
over a finite group G makes any metric G -invariant). On the tangent space
T0R

2n = R2n the group G acts by orthogonal linear transformations. The
exponential map defined by α

exp0 : T0R
2n → R

2n

intertwines this linear action with the original action on Õ ⊂ R2n. Thus, in
normal coordinates the inclusion G ⊂ SO(2n) is valid, in other words, we
have linearized the group action. The determinant is equal to 1 because the
orientation given by the form ω is preserved.

Consider now the form ω in normal coordinates

ω =
1

2
ωij(x) dx

i ∧ dxj .

We apply a G -invariant version of the Weinstein-Moser trick to reduce ω to
the constant form

ω0 =
1

2
ωij(0) dxi ∧ dxj.

Consider the family of forms ω(t) = ω0 + t(ω−ω0). For each t ∈ [0, 1] they
are G -invariant and

ω − ω0 = dλ, (2.5)

where λ = λi(x) dx
i is a one-form. We may assume that λ is G -invariant since

the averaging defines a new form λ also satisfying (2.5). Moreover, we may
assume that λi(0) = 0, otherwise we replace it by (λi(x) − λi(0)) dxi, which
also satisfies (2.5) and is G -invariant. It gives a G -invariant vector field Xt

vanishing at the origin and satisfying

i(Xt)ω(t) = −λ. (2.6)

The flow ft(x) of this vector field is defined on the whole interval t ∈ [0, 1] for
sufficiently small x, because Xt(0) = 0. Moreover, the flow commutes with the
linear G -action since Xt is G -invariant. Then f ∗

1ω = ω0, because, in virtue of
the Cartan homotopy formula,

d

dt
f ∗

t ω(t) = f ∗
t

( ∂
∂t
ω(t) + LXtω(t)

)
= f ∗

t

(
ω − ω0 + di(Xt)ω(t)

)
= f ∗

t

(
dλ− dλ

)
= 0.



6 B. Fedosov, B.-W. Schulze, and N. Tarkhanov

At this step we have a constant symplectic form ω0 preserved by the group
G ⊂ SO(2n).

Taking any constant G-invariant metric α and applying a standard con-
struction (see for instance [5, Ch. 2]), we obtain a G-invariant positive com-
plex structure J and a new metric α0 = ω0(J ·, ·). The symplectic space R2n

with the complex structure J becomes Cn, the form α0 + ıω0 gives an Hermi-
tian metric and the group G which preserves this Hermitian metric is thus a
subgroup of U(n).

�
For paracompact orbifolds the existence of such a linearized covering will

be assumed. In some cases (for example, for vector bundles over a compact
base B) this assumption may be proved.

Next, we consider the whole set of symplectic linearizations. We will show
that this set is connected: any two linearizations may be linked by a smooth
one-parameter family. This fact will be crucial for the trace construction in
Section 7.

Let Õ be an orbifold chart with the finite group G of symplectomor-
phisms. Suppose we have two Darboux coordinate systems in Õ, namely
x = (x1, . . . , x2n) and y = (y1, . . . , y2n), so that G acts by linear symplec-
tomorphisms in both coordinate systems

g :
x 
→ gx,
y 
→ g̃y,

(2.7)

where g, g̃ ∈ Sp(2n). To put it differently, x and y are related by a non-linear
symplectomorphism

y = f(x) (2.8)

with the property
f(gx) = g̃f(x), g ∈ G. (2.9)

Theorem 2.2 There exists a smooth family ft(x), t ∈ [0, 1], of symplecto-
morphisms, such that f0(x) = x, f1(x) = f(x) and ft(x) satisfies the relation
(2.9) for each t ∈ [0, 1].

Proof. Consider first the case when the linear part of (2.8) is identity, that
is

f(x) = x+ ϕ(x) = x+O(|x|2). (2.10)

Comparing the linear parts on both sides of (2.10), we see that g = g̃. To
construct the homotopy ft(x), we will use generating functions (see for instance
[5, Section 2.4] or [6]).

Let the symplectomorphism (2.8) correspond to the Cayley generating func-
tion S, that is, the relation y = f(x) is obtained by elimination of the auxiliary



On Index Theorem for Symplectic Orbifolds 7

variable z from the following two equations

x = z −∇S(z)
y = z +∇S(z).

(2.11)

Here ∇S means the symplectic gradient, it is a vector satisfying the relation
i(∇S)ω = −dS, or in coordinates

∇iS = ωij ∂S

∂zj
.

From (2.11) it follows that

z =
x+ y

2
=

x+ f(x)

2
,

∇S =
x− y

2
,

(2.12)

and further, taking S(0) = 0, we get

S(z) =

∫ z

0

i
(x− y

2

)
ω. (2.13)

It is easy to verify that equations (2.11) actually define a symplectomorphism,
provided we can express z as an implicit function of x from the first equation
(2.11). This is always the case in a neighborhood of the origin if S(z) has a
third order zero at z = 0. Vice versa, if the linear part of f(x) is identity, then
x may be defined as an implicit function of z and the integrand in(2.13) is a
closed form.

Lemma 2.3 A symplectomorphism y = f(x) defined by a generating func-
tion S(z) satisfies (2.9) if and only if the generating function is invariant,
i.e.

S(gz) = S(z), g ∈ G. (2.14)

Proof. Differentiating (2.14), we get

∇iS(z) = ωijgk
j

∂S

∂zk
(gz),

and further, applying g to both sides,

gl
i∇iS(z) = gl

i ω
ijgk

j

∂S

∂zk
(gz)

= ωlk ∂S

∂zk
(gz).
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Here we have used the fact that g is a symplectic matrix, thus gl
i ω

ijgk
j = ωlk.

In other words, the vector ∇S(z) satisfies the relation

g (∇S(z)) = ∇S (gz).

Then (2.11) yields

gx = gz −∇S(gz) = z̃ −∇S(z̃)
gy = gz +∇S(gz) = z̃ +∇S(z̃),

where we have denoted gz by z̃. Eliminating z̃ from these equations, we see
that gx and gy satisfy the same relation gy = f(gx) as x and y, whence

gf(x) = f(gx). (2.15)

Vice versa, let (2.9) be fulfilled. Then the action x 
→ gx implies

y = f(x) 
→ gy,

z =
x+ y

2

→ gz,

∇S =
x− y

2

→ g (∇S).

We thus get
∇S (gz) = g (∇S(z)),

and this, in turn, implies in virtue of (2.14) that S(z) is invariant
�

Now, to construct the homotopy ft(z), we take the generating function
S(z) of the original symplectomorphism f(x), multiply it by t ∈ [0, 1] and
then consider the symplectomorphisms defined by the generating functions
tS(z). Because of (2.15) S(z) is invariant, hence so is tS(z), implying that
(2.15) is fulfilled for any t. This proves the theorem in the special case (2.10).

In the general case we rewrite the symplectomorphism f(x) in the form

y = a (b+ x+ ϕ(x)) (2.16)

where ab+ ax is a linear part and ϕ(x) = O(|x|2). Thus, a = f ′(0), ab = f(0),
and the property (2.9) gives

g̃ a (b+ x+ ϕ(x)) = a (b+ gx+ ϕ(gx)).

Hence it follows that g̃ = aga−1, gb = b and ϕ(gx) = gϕ(x). The group Sp(2n)
is connected, thus there exists a path at ∈ Sp(2n) linking a with the identity
matrix 1. After this homotopy the symplectomorphism (2.16) takes the form
y = b+ x+ ϕ(x) and, moreover, g̃ = g. The vector b belongs to ker(g − 1) for
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any g ∈ G, and so does tb for any t ∈ [0, 1]. Thus, we can pull b to zero. Our
symplectomorphism then becomes

y = x+ ϕ(x),

and this can be linked to the identity, as was already proved.
�

Remark 2.4 The homotopy ft(x) constructed in the theorem may be ex-
tended to a positive complex structure J . Indeed, let J be a constant complex
structure making the symplectic space R2n into Cn and the group G ∈ Sp(2n)
into a subgroup of U(n). It defines a constant metric α = ω(J ·, ·). Having a
homotopy y = ft(x) of the constant symplectic structure and the correspond-
ing group Gt ∈ Sp(2n), we define a new metric αt by averaging α with respect
to Gt and then construct a positive complex structure Jt in a standard way
starting with two bilinear forms ω and αt.

The group G for an orbifold chart Õ is not uniquely defined. For example,
the chart O = C/Z3, where Z3 acts by multiplication by

exp
(
2πı

k

3

)
, k ∈ Z mod3, (2.17)

may be replaced by the chart C/Z6 with the same action as in (2.17) but with
k ∈ Z mod 6. In the second case the action is not effective: the subgroup with
k = 3l mod 6 acts as identity. In general, denoting by G0 ⊂ G a subgroup
which acts on Õ as identity, we can pass on to the effective action by replacing
G by the quotient G/G0 (clearly, G0 is a normal subgroup). So, we will assume

as a rule that the actions of Gi on Õi are effective. In this case we have an
open dense set B0 ⊂ B, the so-called principal stratum, such that each point
x ∈ B0 has a trivial stabilizer. This is a smooth part of the orbifold B. The
remaining points form singularities, which in general may be very complicated.
In the above example (2.17) we have the only singular point z = 0 which is a
conical point.

Singular points (the points with non-trivial stabilizer) admit further strat-
ification but we will not touch this subject here.

Although B may have rather complicated singularities, the notion of a
smooth function still makes sense for orbifolds. Namely, f ∈ C∞(B) if its

lifting to any orbifold chart Õ is smooth and necessarily G -invariant, that is

f(γx̃) = f(x̃). (2.18)

Thus, a possibility appears to develop analysis and differential geometry
on orbifolds.
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3 Orbifold vector bundles

The notion of orbifold vector bundle requires some precautions. A naive def-
inition is that E is a continuous vector bundle over a topological space B,
which may be described by means of smooth functions. For example, any
matrix-valued function

P (x) =
(
pij(x)

)
(3.1)

whose values are projectors and whose entries pij(x) are smooth functions
defines an orbifold vector bundle. But this definition is too restrictive, even
tangent and cotangent bundles do not fit into this scheme.

Definition 3.1 An orbifold vector bundle E is an object which in an orb-
ifold chart {O, Õ, G, p} is given by a G -equivariant vector bundle ẼG. These
local equivariant bundles should be compatible with respect to symplectomor-
phisms (2.1) and homomorphisms (2.2).

Thus, the total space of E is an orbifold itself, with the same local groups
Gi as for the base B. Sometimes one considers a more general case when the
local groups of E are central extensions of Gi, in this case the bundle is called
improper orbifold vector bundle.

For the time being we will deal with proper bundles. In this case we have
a linearization theorem similar to Theorem 2.1.

Theorem 3.2 Let E be a compact proper orbifold vector bundle. Then for
any linearized orbifold chart {O, Õ, G, p}, G ⊂ U(n), there exists a frame of

the bundle ẼG and a complex representation g 
→ T (g) ∈ End(E0), such that
the sections s(z, z̄) are vector-valued functions with values in E0, and the group
G acts on sections as follows

s(gz, gz) = T (g) s(z, z̄). (3.2)

Proof. The point x̃ ∈ Õ may be written as a pair z, z̄ with z ∈ C
n, and

we will use both designations x̃ and z, z̄. Choosing any frame of ẼG over Õ,
we consider the sections s(x̃) as vector-valued functions. By the definition of
the equivariant vector bundle we have the action of the group G on sections
by s(gx̃) = T (g)(x̃) s(x̃), where the matrix-valued function T (g)(x̃) defines a
linear map

T (g)(x̃) : Ẽx̃ → Ẽgx̃. (3.3)

At the origin 0 ∈ Õ which is a fixed point we have thus endomorphisms
T (g)(0) : Ẽ0 → Ẽ0, and this is the desired representation. Clearly, we can
make it unitary by introducing a Hermitian metric and averaging it over the
finite group.
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In order to construct the needed frame, we now choose a G -invariant Her-
mitian connection on E (again using the averaging), take any unitary frame

in Ẽ0 and spread it over the whole Õ by parallel transports along the rays tx̃,
t ∈ [0, 1]. �

Remark 3.3 For linearized coordinates z, z̄ and frames (3.2), the simplest
invariant connection is given by the de Rham differential ds(z, z̄) of vector-
valued functions.

Now, smooth vector fields, differential forms and other geometric objects
are defined as sections of corresponding orbifold vector bundles TB, T ∗B and
so on.

The integral of a differential form of the top degree over the orbifold B
is defined in an obvious way. We take a smooth partition of unity ρi(x) on

B. When lifted to an orbifold chart Õi, the function ρi(x̃) is smooth and
Gi -invariant, and we define∫

B

α =
∑

i

1

|Gi|
∫

Õi

ρi(x̃)αi

where αi is a local expression of the form α. Now, since γ∗(ρiαi) = χi(γ) ρiαi

where χi(γ) is a one-dimensional character, the integrals are equal to zero
unless χi(γ) ≡ 1. In the latter case we may consider ρi(x̃)αi as the form
coming from B, and the integral will be simply equal to∫

B0

α,

that is the integral over the smooth part B0 of B.
We have tacitly assumed that the group Gi acts effectively. In general,

when the action is not effective, we pass on to the quotient G̃i = Gi/G0 where
G0 is a normal subgroup of Gi acting as identity. By compatibility conditions
(2.1) and (2.2), the number m(B) = |G0| does not depend on the chart (for
connected orbifolds), it is called the multiplicity of the orbifold. Then one
defines ∫

B

α =
∑

i

1

|G̃i|

∫
Õi

ρi(x̃)αi

= m(B)
∑

i

1

|Gi|
∫

Õi

ρi(x̃)αi.
(3.4)

4 The Picard group

Consider more attentively the case of one-dimensional orbifold vector bundles.
The representations T (g) of Theorem 3.2 in linearized orbifold charts are one-
dimensional characters χ(g), that is homomorphisms of the group G into U(1).
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The values are roots of unity since the group G is finite. Thus, the values of
χ(g) have the form

exp
(
2πı

k

n

)
,

with k ∈ Z modn.
A still more particular case we obtain if the representation T (g) is the

restriction of a representation of the whole unitary group U(n) to the subgroup
G. Such one-dimensional representation has the form χ(g) = (det g)k with
k ∈ Z. Sometimes one considers multi-valued characters, where k is rational,
that is a representation of the finite covering of U(n). This leads to improper
one-dimensional bundles.

Clearly, one-dimensional bundles form a commutative group with respect to
tensor product. Moreover, this group acts on any vector bundle by tensoring.
Under tensoring the local representations are multiplied, so that T (g) goes to
χ(g)T (g). Thus, we have a subgroup of one-dimensional bundles with trivial
local characters. In other words, these bundles are defined over a space B and
have a smooth description as the orbifold bundles. We denote the group of all
one-dimensional orbifold bundles by E1 and the subgroup by E1

B.

Definition 4.1 By the Picard group is meant the quotient

Pic = E1/E1
B. (4.1)

The notion of Picard group is specific for orbifolds and will play essential
role in the sequel, so, we need to consider it in more detail. Roughly speaking,
the elements of the Picard group are trivial (flat) one-dimensional bundles with
non-trivial local group actions. More precisely, they are global sections of the
sheaf of characters as described below.

Given a group G, we denote by χ(G) the set of all homomorphisms of G
to U(1) ∼= S1, i.e., χ(g1g2) = χ(g1)χ(g2) fulfills for all g1, g2 ∈ G. The product
of two characters is a character, hence χ(G) is a group. By the direct product
G × H of two groups G and H is meant the set {(g, h) : g ∈ G, h ∈ H}
along with the operation (g1, h1)(g2, h2) := (g1g2, h1h2). It is easy to see that
G × H is a group, the unit of this group being (1, 1). One can specify G, H
within the product G × H by identifications G � g 
→ (g, 1) ∈ G × H and
H � h 
→ (1, h) ∈ G × H . If χ is a character on the direct product G × H ,
then

χ(g, h) = χ((g, 1)(1, h))

= χ(g, 1)χ(1, h)

= χG(g)χH(h)

where χG(g) = χ(g, 1) and χH(h) = χ(1, h) are characters on G and H , re-
spectively, determined by χ in a unique way. Conversely, given any characters
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χG and χH on G and H , respectively, the function χ(g, h) := χG(g)χH(h) is a
character on G×H .

In the same manner we define the direct product of a finite number of
groups

∏
j Gj . The j -th factor Gj can be specified within the product by the

identification Gj � gj 
→ (1, . . . , 1, gj, 1, . . . , 1) ∈ ∏
j Gj , where gj takes the

j -th position. Any character on
∏

j Gj is then of the form χ(g) =
∏

j χj(gj)
where χj is a character on the group Gj , uniquely determined by χ, and
conversely. Write χ(

∏
j Gj) for the set of all characters on the product. Once

again χ(
∏

j Gj) is a group.
We are now in a position to introduce the sheaf of characters S over the

base B. Let O be an arbitrary open set in B. By assumption there are a finite
number of charts {Oj, Õj, Gj, pj}, such that O ⊂ ∪jOj. If Oj ∩ Ok �= ∅ then

there exists a domain Õjk in (R2n, ω) with a finite group Gjk of symplecto-

morphisms, and a projection pjk : Õjk → Oj ∩ Ok = Õjk/Gjk, subject to the
conditions (2.1) and (2.2). Set

S(O) :=
{
χ ∈ χ(

∏
j Gj) : χj(ijg) = χk(ikg) for all g ∈ Gjk

}
. (4.2)

It is easily verified that S(O) is a subgroup of the group of all characters
on

∏
j Gj.

For an open set U ⊂ O, the restriction operator rO
U : S(O) → S(U) is

defined as follows. There is a finite collection of indices J , such that the family
{Oj}j �∈J still covers U . Set

rO
U

∏
j χj(gj) :=

∏
j �∈J χj(gj)

for χ ∈ S(O), thus obtaining a homomorphism of groups S(O) → S(U), as
desired.

The presheaf S on B constructed in this way is actually a sheaf, called the
sheaf of characters. If B is compact, then the group of characters S(B) bears
full informations on S. Indeed, for any open set O ⊂ B the group S(O) has
been specified as a subgroup of S(B).

5 Symplectic reduction

It is known that any compact orbifold B may be obtained globally as an orbit
space B = M0/G of a smooth manifold M0 by a locally free action of a compact
Lie group G (see, for instance, [3]). If all the local groups Gi are subgroups of
SO(n), then G = SO(n) and M0 is the space of oriented orthonormal bases in
TB (it is a smooth manifold). For the case when B is a smooth manifold, M0

is a principal SO(n) -bundle over B = M0/G. The action of G is free in this
case, so the base is also smooth.
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For the case of symplectic orbifolds, M0 is a manifold of unitary bases (as
described in Theorem 2.1) and G = U(n). Let us describe this construction
in more detail. We use the notation G for U(n), G for its Lie algebra u(n), G∗
for a dual space to G (which, of course, may be thought of as the G itself for
the case of U(n)). We use the notation g−1 instead of g∗, the star is reserved
for pull-backs.

Consider a smooth manifold G× Õi. To obtain the space of unitary bases
over Õi, we need to identify the points (g, x̃) under the action of Gi, namely

(g, x̃) ∼ (gγ−1, γx̃) (5.1)

for γ ∈ Gi. That is, consider the space

Ui := G×Gi
Õi := (G× Õi) /Gi, (5.2)

the orbit space in (5.2) being taken with respect to the action (5.1). Ui is a
smooth manifold because this action is free (it acts freely on the group G by

g 
→ gγ−1). The standard symplectic form ωB on G× Õi factors to the 2 -form
on Ui since Gi preserves ωB. The group G acts on Ui from the left

γ (g, x̃) = (γg, x̃), (5.3)

commuting with the action of Gi. We thus have an action of G on Ui. More-
over, we have a closed two-form ωi on Ui, whose kernel coincides with the
tangent subspace along the orbit. These objects glue correctly together in a
manifold M0 with the action (5.3) of G and a closed two-form ωM0 which is
G -invariant and whose kernel coincides with the tangent space to the orbit of
action (5.3).

To recover the orbifold chart {Oi, Õi, Gi, p} as an orbit space of the action
(5.3), we fix g = 1 in (5.1) obtaining a slice S = (1, x̃) of the action (5.3).

Clearly, G · S = G× Õi.
The stabilizer subgroup of the point (1, 0) ∈ Ui is precisely Gi since for

γ ∈ Gi

γ (1, 0) = (γ, 0)

= (1, γ · 0)

= (1, 0).

This subgroup acts on the slice S since

γ (1, x̃) = (γ, x̃) ∼ (1, γ x̃).

Hence the slice gives our original orbifold chart Õi with all the original struc-
tures.

We can go one step further.
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Lemma 5.1 There exists a connection form θ for the G -action on M0.

Proof. Recall that by definition θ is a one-form on M0 with values in the
Lie algebra G of G with the following properties:

1o

i(XM0) θ = X, (5.4)

the so-called reproducing property;

2o

g∗M0
θ = g θ g−1 = Adg θ, (5.5)

the equivariance property.

Here X ∈ G is an element of the Lie algebra, XM0 the corresponding vector
field on M0 (generated by the G -action), gM0 means the action of the group
element g ∈ G on M0, and g∗M0

denotes the pull-back.
We take a right-invariant Maurer-Cartan form. For the unitary group it is

given explicitly by
θ = dg g−1. (5.6)

It may be considered on the direct product G × Õi. Since the form is right-
invariant, it factors through the action (5.1) to the form on Ui. For the left
action we have

γ∗θ = d(γg)(γg)−1 = γ (dg g−1) γ−1,

so that the equivariance property is also fulfilled. Hence it is correctly defined
on the whole M0.

�
Consider now a larger manifold

M = G∗ ×M0 (5.7)

with a closed two-form
ωM = −d 〈ξ, θ〉+ ωM0. (5.8)

Here G∗ is a dual space to the Lie algebra G with a coadjoint action. The form
ωM is thus a closed G -invariant two-form which is non-degenerate for ξ ∈ G∗
sufficiently small. So, after restriction to a neighborhood O ⊂ G∗ of ξ = 0, we
obtain a symplectic manifold M with an action of G preserving the symplectic
form 1.

Lemma 5.2 The action of G on M is Hamiltonian with the momentum
map

μ(X) = 〈ξ,X〉. (5.9)

1For a unitary group G and G∗ with adjoint and coadjoint actions may be identified by
the bilinear form 〈ξ, X〉 = tr ξX
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Proof. For a fixed X ∈ G we have

dμ(X) = 〈dξ,X〉.
On the other hand, the form ωM0 is horizontal, that is i(XM)ωM0 = 0, whence
by (5.8)

i(XM)ωM = −i(XM) d 〈ξ, θ〉
= −LXM

〈ξ, θ〉+ d 〈ξ, i(XM)θ〉
= d 〈ξ,X〉,

proving the lemma. We have used here the Cartan formula for the Lie deriva-
tive and the invariance of 〈ξ, θ〉, so that the Lie derivative vanishes.

�
Summarizing, we arrive at the following theorem.

Theorem 5.3 Any compact symplectic orbifold may be obtained by a sym-
plectic reduction of a smooth symplectic manifold by the action of the group
G ⊂ U(n) by symplectomorphisms.

Moreover, our consideration shows explicitly that locally M is a finite cov-
ering

G∗ × Ui = G∗ ×G× Õi /Gi. (5.10)

Observe also that G∗ × G = T ∗G since the tangent and cotangent bundles to
the Lie group manifold are always trivial.

6 Deformation quantization

We use the standard scheme of deformation quantization described in [4]. For
symplectic orbifolds it was generalized in [14]. The scheme was discussed many
times in literature, so we need not repeat it here in detail. Yet, we give a brief
non-formal survey paying attention to ideas rather than to proofs.

The starting data are:

1o a symplectic orbifold B with a symplectic connection ∂B;

2o an orbifold vector bundle E with a connection ∂E .

We emphasize that the connections ∂B and ∂E are global objects (to be
discussed later). They give rise to a global procedure of deformation quanti-
zation, although the construction requires local charts given by Theorems 2.1
and 3.2.

Consider the Weyl algebra W = W (R2n, ω) on a symplectic space R2n with
a constant symplectic form ω = (1/2)ωijdy

i ∧ dyj. Let ω−1 = (ωij) be the



On Index Theorem for Symplectic Orbifolds 17

corresponding Poisson tensor. The elements of W are polynomials a(y, h),
with y ∈ R2n and h ∈ R+, the product is defined by

a(y, h) ◦ b(y, h) =
1

(πh)2n

∫
R4n

exp
(2ı

h
ω(t, τ)

)
a(y + t, h)b(y + τ, h) dtdτ

= exp
( h

2ı
ω−1

( ∂
∂t
,
∂

∂τ

))
a(y + t, h)b(y + τ, h)

∣∣∣
t=τ=0

.

(6.1)

Here the integral is understood as an oscillatory one: we insert a convergence
factor exp(−ε|t|2 − ε|τ |2) under the integral sign and then take a limit for
ε → 0+. The last expression in (6.1) is the explicit value of such an integral.
It should be understood as follows: we expand the exponential into a Taylor
series and apply it termwise to the product a(y + t, h)b(y + τ, h) which is a
polynomial in t, τ . For this reason the series terminates, so the last expression
is meaningful. In particular, for a = yi and b = yj we obtain

yi ◦ yj = yiyj +
h

2ı
ωij. (6.2)

Thus,
[yi, yj] = −ıh ωij. (6.3)

The two expressions in (6.1) will be referred to as the Kirillov (integral)
form and the Weyl (formal) form of the ◦ -product. Observe that the Kirillov
form suggests that h is a fixed positive number while in the Weyl form h may be
a formal variable. Moreover, the Weyl form may be easily extended to formal
sums of polynomials. We introduce the total degree of a monomial hkyα as
2k + |α| in accordance with (6.2) and (6.3), and consider formal sums

a(y, h) =
∞∑

k,|α|=0

ak,α h
kyα (6.4)

having a finite number of terms with

k ≥ 0,
2k + |α| ≤ N,

(6.5)

for any N .
We preserve the notation W for the extended algebra and call it (formal)

Weyl algebra. We can extend it even more, when dropping the requirement
k ≥ 0 in (6.5). The product (6.1) in the Weyl form still makes sense for
this extension, which will be denoted by W+. An example for a ∈ W+ not
belonging to W is

a = exp
( ı
h
aijky

iyjyk
)
,
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which makes sense as formal series with the ordering by total degree.
The integral formula (6.1) may be regarded as the composition formula for

(pseudo-) differential operators in the Weyl calculus. For this we need to split
R2n into the sum Rn

q ⊕ Rn
p of two Lagrangian subspaces, so that the form ω

becomes dq ∧ dp, and introduce a differential operator

Op(a(y, h))u (q) =
1

(2πh)n

∫
R2n

exp
( ı
h
〈q − q′, p〉

)
a
(q + q′

2
, p, h

)
u(q′) dq′dp.

(6.6)
It is well known that (6.1) gives the composition rule for operators (6.6). More-
over, with fixed h > 0 the correspondence (6.6) may be extended to functions
a(y) which are not polynomials, for example, to the function

a(y) = exp
(
− 1

h
β(y, y)

)
with a positive definite quadratic form β. For such an extension we need to
use the Kirillov form of the product (6.1).

Let us observe that the Weyl correspondence (6.6) depends on the splitting
R

2n = R
n
q ⊕R

n
p while the composition formula does not. In particular, (6.1) is

invariant with respect to linear symplectic changes of variables y = (q, p).
Passing on to symplectic manifolds, we consider the Weyl bundle W over M

whose fibers at x ∈ M are (formal) Weyl algebras on the tangent space TxM
(note that the symplectic form ω on M defines a constant symplectic form
ω = (1/2)ωij(x)dy

i ∧ dyj on each TxM). The sections of W are “functions”
a = a(x, y, h) of x ∈ M and y ∈ TxM , which at a fixed x ∈ M are given by
the formal series (6.4) (the extension W+ is also possible), and the product is
given fiberwise by the Weyl form of (6.1). Clearly, the restriction W |O of the
Weyl bundle to an open set O ⊂ M is defined, and the Weyl bundle itself is
defined by its restrictions to any O ⊂ M . Maybe, the sheaf language is more
suitable, especially when we pass on to orbifolds.

When passing on to the symplectic orbifold B, we define W by its restric-
tions to orbifold charts given by Theorem 2.1. In such a chart {O, Õ, G, p} we
define a section of W by

a = a(x̃, y, h) =

∞∑
k,|α|=0

hk ak,α(x̃)yα (6.7)

with an additional invariance property

a(gx̃, gy, h) = a(x̃, y, h). (6.8)

Here x̃ ∈ Õ and y ∈ Tx̃Õ. Since g is a constant matrix in our chart, everything,
including the formula (6.1) for the ◦ -product, is correctly defined.



On Index Theorem for Symplectic Orbifolds 19

As for the operator interpretation similar to the Weyl correspondence (6.6),
it fails in general. However, it is still instructive to think of the Weyl bundle
as the endomorphism bundle End(Q) for some imaginary, that is non-existing,
“quantum” bundle Q.

The next step in the quantization program is to supply this “imaginary
bundle” with an “imaginary connection” which is nevertheless meaningful as
the connection on W . We define it on sections (6.7) by

∂a = dx̃a+
[ ı

2h
ΓB

ijky
iyjdx̃k, a

]
(6.9)

where dx̃ is the de Rham differential of (6.7) with respect to x̃, and ΓB
ijk are

connection coefficients of the symplectic connection ∂B on the orbifold B. We
thus need to consider W -valued one-forms with the group action

g :
x̃ 
→ gx̃,
y 
→ gy,
dx̃ 
→ gdx̃.

(6.10)

Then the words “∂B is a globally defined orbifold symplectic connection”
may be interpreted in terms of (6.9) as follows:

1◦ The differential operator ∂ on sections of W over Õ is a derivation of
the algebra, i.e.,

∂(a ◦ b) = ∂a ◦ b+ a ◦ ∂b.
2◦ It is invariant with respect to the group action (6.10).
3◦ The expression (6.9) does not depend on the orbifold chart.
The existence of such a connection, well known in the smooth case, was

proved by Pflaum [14] for the orbifold case.
The form

Γ =
ı

2h
ΓB

ijky
iyjdx̃k (6.11)

may be thought of as a local connection form for our imaginary bundle Q.
Its definition is ambiguous: we may add any central summand γidx̃

i (not
depending on y).

However, its adjoint action on section of W given by (6.9) is meaningful
and does not depend on the central summand. It turns out to be useful to
consider the forms Γ (6.11) normalized by Γ |y=0 = 0. This normalization does
not depend on the chart. Moreover, being normalized, the form Γ gives rise
to a curvature form

R = dΓ + Γ 2 =
ı

4h
RB

ijkly
iyjdx̃k ∧ dx̃l, (6.12)

where RB
ijkl is the curvature tensor for the symplectic connection, so that

∂2a := ∂(∂a) = [R, a]. (6.13)
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Again we have a situation where R is the curvature of the “imaginary bundle”
while its action (6.13) on W is correctly defined. Thus, we come to the notion
of Weyl normalization (symmetrical ordering) for connection and curvature
forms. It is given by the conditions

Γ |y=0 = 0,
R = dΓ + Γ 2.

(6.14)

The next step is to introduce non-trivial coefficients. Take a vector bundle
E with a connection ∂E and introduce the coefficient bundle K = End(E)
which inherits the connection ∂E by adjoint representation. We consider the
Weyl bundle with coefficients in K, that is W ⊗K. Its sections in linearized
charts are given by matrix-valued functions (6.7) satisfying the equivariance
condition

a(gx̃, gy, h) = T (g) a(x̃, y, h)T (g)−1. (6.15)

Again it is instructive to think of it as an endomorphism bundle End(Q⊗E).
This time the “quantum bundle” Q⊗E is partly “imaginary” (Q factor) and
partly actual (E factor). The connection (6.9) on W should be replaced by
∂B ⊗ 1 + 1⊗ ∂E on W ⊗K, so that the local connection form Γ is now

Γ =
ı

2h
ΓB

ijky
iyjdx̃k + ΓE

k dx̃
k. (6.16)

Here ΓE
k dx̃

k is a connection form for the bundle E (an actual part which is
correctly defined) and the “imaginary” part is the same as before, fixed by the
Weyl normalization. The curvature becomes

R =
ı

4h
RB

ijkly
iyjdx̃k ∧ dx̃l +

1

2
RE

kldx̃
k ∧ dx̃l. (6.17)

The result of the deformation quantization construction is a new connection
D on W ⊗K (or better on “Q ⊗ E”) with the property D2a = 0. We call it
Abelian, it means that its Weyl curvature is a central form. The connection D
has the form

D = ∂ +
[ ı
h
ωijy

idx̃j + r, ·
]

(6.18)

with deg r ≥ 1. Under some normalizations the global one-form r is uniquely
determined by the requirement that its Weyl curvature is equal to

Ω = − ı
h
ωB. (6.19)

It is automatically G -invariant with respect to the action (6.15).
Now, let us define the subalgebra WD of flat sections of W ⊗ K, that is

a ∈ WD means that Da ≡ 0. We call it the algebra of quantum observ-
ables. Moreover, we have a correspondence between classical and quantum
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observables. To see this, note that the classical observable is a section of K,
a(x) ∈ C∞(K), with the pointwise matrix multiplication. Let us extend this al-
gebra by formal parameter h, so that we consider “functions” from C∞(K)[[h]].
In a local chart such a section is given by a “function”

a(x̃, h) =

∞∑
k=0

hk ak(x̃). (6.20)

On the other hand, a quantum observable is given by a “function”

b(x̃, y, h) =
∞∑

k,|α|=0

hk bk,α(x̃)yα. (6.21)

Both functions satisfy the corresponding equivariance condition and b also
satisfies Db = 0.

The final result in our construction is the following statement.

Theorem 6.1 There exists a one-to-one correspondence between flat sec-
tions (6.21) and sections (6.20), given by

σ : b(x̃, y, h) 
→ b(x̃, 0, h).

The inverse map Q, called quantization map, gives for any classical observ-
able a(x) ∈ C∞(K) a flat section b = Qa such that

(Qa) |y=0 = a.

Using the maps σ and Q, we may transport the ◦ -product of flat sections
to a product defined directly on functions a(x̃, h) as follows

a(x̃, h) ∗ b(x̃, h) = σ(Qa ◦Qb). (6.22)

We will use both ◦ -product of flat sections and ∗ -product of functions.
This completes the global part. More detailed study requires restriction to

a linearized chart and subsequent operator representation similar to the Weyl
correspondence.

7 Orbifold trace

To define the trace, we have to consider operator representations of the quan-
tum algebra W restricted to an orbifold chart {O, Õ, G, p}.

So, let us consider the subalgebra WD |Õ of flat sections a(x̃, y, h) with

supports in Õ, that is a ≡ 0 if x̃ is outside a compact subset of Õ. The
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sections also satisfy equivariance conditions (6.15) with the linear action of
the finite group G ⊂ U(n) ⊗ U(N), where U(N) stands for the action of G
in fibers of the bundle E. Suppose for a moment that we have constructed a
representation of the algebra WD |Õ and the group G by operators in a Hilbert
space H with the following properties:

1o a homomorphism property

âb̂ = â ◦ b,
ĝ1ĝ2 = ĝ1g2;

(7.1)

2o a conjugation property

ĝâĝ−1 = ĝ∗a. (7.2)

Here hats mean the corresponding operators in H , and

(g∗a)(x̃, y, h) = T (g)−1 a(gx̃, gy, h)T (g) (7.3)

is the pull-back of the section a by the group action.
Then we define (locally) the orbifold trace by

Trorb a = Tr â |inv, (7.4)

â|inv on the right-hand side meaning an operator restricted to the subspace of
G -invariant elements of H . For a finite group G, the orthogonal projector to
this subspace is given by the averaging

Pinvu =
1

|G|
∑
g∈G

ĝu,

and (7.4) thus becomes

Trorb a =
1

|G|
∑
g∈G

Tr ĝâ. (7.5)

Our aim is to express each summand directly in terms of deformation
quantization, although the construction itself (see [8]) requires an operator
representation. We recall it briefly paying special attention to the invariance
properties. We will also use the notation Trga for the summands of (7.5) to
stress their deformation quantization nature.

At the first step we construct an isomorphism to the Weyl algebra. In a
linearized chart the de Rham differential defines connections ∂B and ∂E for
which the corresponding connection forms ΓB and ΓE are equal to 0. In this
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case the deformation quantization construction of the previous section leads
to the Abelian connection

D0 = d+
[ ı
h
ωijy

idxj , ·
]

with the same Weyl curvature (6.19). The quantization map for this connection
looks extremely simple:

Qa(x̃) = a(x̃+ y) :=
∞∑

|α|=0

1

α!
a(α)(x̃)yα, (7.6)

and the algebra WD0 |Õ consists of the formal Taylor series of matrix-valued
functions (7.6).

The following lemma describes the needed isomorphism [4, 5].

Lemma 7.1 There exists a section

U(x̃, y, h) = 1− ı

6h
ΓB

ijky
iyjyk − ΓE

k y
k + . . .

∈ C∞(W+ ⊗K)

such that for any flat section a ∈WD|Õ its image under the conjugation

a0 = Ia = U ◦ a ◦ U−1 (7.7)

belongs to WD0|Õ.

Consider now a homotopy ft(x̃) of a linearized symplectic chart constructed
in Theorem 2.2. The change of variables ft(x̃) and the conjugation isomor-
phism (7.7) applied to a flat section a ∈WD|Õ give a family of flat sections of
WD0|Õ

a0(x̃+ y, h, t) = It a(x̃, y, h)

= Ut ◦ a(ft(x̃), f
′
t(x̃)y, h) ◦ U−1

t

∈ WD0|Õ.
Differentiating in t, we come to the following Heisenberg equation (for more
detail see [5, Section 5.4])

ȧ0 = [H, a0] (7.8)

where H is a section of W+ ⊗K (depending on t).

Lemma 7.2 There exists a flat section H0 ∈ WD0 such that (7.8) may be
rewritten in the form

ȧ0 =
[ ı
h
H0, a0

]
. (7.9)
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Proof. Applying D0 to both sides of (7.8) and using the fact that a0, ȧ0

are flat with respect to D0, we get

[D0H, a0] = 0.

Being valid for any flat section a0, this equality implies that D0H is a central
one-form, that is independent of y. This yields

D0H = ϕ = ϕi(x̃, h, t)dx̃
i.

Applying D0 to both sides, we get 0 on the left since D0(D0H) ≡ 0. On the
other hand, D0ϕ = dϕ since ϕ is a central form. Hence, ϕ = dψ in the local
chart. It means that the section H̃ = H − ψ belongs to WD0. Clearly, the

section H in (7.8) may be replaced by H̃ , for they differ by a central function
ψ(x̃, h, t).

Comparing degrees on both sides of (7.8), one can see that H̃ must have
degree −2, thus it can be rewritten in the form ı/hH0 with H0 ∈WD0.

�
Now, putting y = 0, we conclude that WD0 is isomorphic to a standard

Weyl algebra on R2n. The Weyl product ◦ with respect to variables y goes
to the Weyl product with respect to x̃ which will be denoted by ∗. Using a
complex structure and writing x̃ = (z, z̄) with z ∈ Cn, we rewrite the ∗-product
in the complex form

a(z, z̄, h) ∗ b(z, z̄, h)

=
1

(πh)2n

∫
C2n

exp
(1

h
(u∗v − v∗u)

)
a(z + u, z̄ + ū, h)b(z + v, z̄ + v̄, h) dudūdvdv̄

=
∑
α,β

(−1)|β|
h|α|+|β|

α!β!

∂α+βa

∂zα∂z̄β

∂α+βb

∂z̄α∂zβ
. (7.10)

Again we have two expressions for the ∗-product. The integral (Kirillov) form
suggests that h is a positive number, a and b are polynomials in z, z̄. The
notation dudū means the usual Lebesgue measure in Cn, u, v, z are often
treated as column vectors, then u∗, v∗, z∗ mean the rows of complex conjugate
elements, so that v∗u = v̄1u1 + . . .+ v̄nun is a Hermitian scalar product. The
last expression in (7.10) gives the explicit value of the integral. This last
expression may be extended to the formal Weyl algebra.

At the second step we construct the representation of the Weyl algebra WÕ

and the group G ∈ U(n) in the Fock space. Here by Weyl algebra we mean

the algebra of smooth functions on Õ with the ∗ -product in the integral form
for a fixed positive h. Thus, there is the Weyl correspondence between such
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functions (Weyl symbols) and pseudodifferential operators in L2(Rn) defined
by (6.6). Unfortunately, the group U(n) can not be represented in L2(Rn)
in a single-valued manner, this is why we need a Fock space representation.
Consider an operator on L2(Rn) with the Weyl symbol

p(z, z̄) = 2n exp
(
− 1

h
|z|2

)
(7.11)

with a fixed positive h. The integral form of the ∗ -product shows that p∗p = p.
It means that the operator P = Op(p) is a projector in L2(Rn). Furthermore,
we have

TrP =
1

(2πh)n

∫
Cn

p(z, z̄) dzdz̄ = 1,

which means that P is a one-dimensional projector. Now, using again the
integral form, we see that

zi ∗ p = 0,
z̄i ∗ p �= 0.

For this reason zi are called annihilation operators while z̄i creation operators.
As a linear space the Fock space is generated by the symbols

u = a(z, z̄) ∗ p(z, z̄) (7.12)

where a(z, z̄) are polynomials in z, z̄.
Define the scalar product

(u, v) =
1

(2πh)n

∫
Cn

p ∗ b̄ ∗ a ∗ p dzdz̄ (7.13)

for u = a ∗ p and v = b ∗ p. Writing a(z, z̄) in (7.12) in the normal form
aα,β z̄

α ∗ zβ (first creation, then annihilation operators), we see that non-zero
vectors have the form

eα =
z̄α ∗ p√
α! (2h)|α|

(7.14)

and they form an orthonormal basis with respect to the scalar product (7.13).
The vector e0 = p is called a vacuum. Thus, the Fock space F is the left ideal
of the symbol algebra W generated by the vacuum vector. To obtain a Hilbert
space, we need a completion with respect to the scalar product.

On F we have a natural action of the symbol algebraW and the group U(n).
For a symbol b(z, z̄) we define an operator b̂ which acts on vectors (7.12) as

b̂u = b(z, z̄) ∗ a(z, z̄) ∗ p. (7.15)

The group U(n) acts by pulling back the symbols (7.12) which represent vectors
in F. On the vacuum vector, the action is trivial, for

ĝe0 = g∗(p(z, z̄)) = p(gz, gz) = p(z, z̄). (7.16)
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Then
ĝu = g∗(a(z, z̄) ∗ p(z, z̄)) = a(gz, gz) ∗ p(z, z̄). (7.17)

It is easy to see that the properties (7.1), (7.2) are fulfilled literary if a, b ∈W
are polynomials. But the representation (7.15) still makes sense for more
general symbols b(z, z̄), e.g., for compactly supported functions. Of course, in
this case we need the integral expression for the ∗ -product.

The final step in the definition of the Trga is now obvious. For a symbol

a(z, z̄) ∈ C∞(Õ,K), consider the corresponding operator â in the Fock space
and set

Trg a = Tr ĝâ

=
∑

α

(ĝâeα, eα).

The sum may be calculated explicitly (see [8])

Tr ĝâ =
1

(πh)n

1

det(1 + g)

∫
Cn

exp
(
− 1

h
z∗

1− g
1 + g

z
)
trT (g)a(z, z̄) dzdz̄, (7.18)

provided det(1 + g) �= 0. Here T (g) means the action of G on the bundle
E, tr means the coefficient trace. This is the Kirillov (integral) form of the
trace formula. To extend it to the formal Weyl algebra, we need to calculate
a stationary phase expansion of the integral. To this end decompose Cn into
the direct sum of the fixed point subspace

F̃ (g) = ker(1− g)

and its orthogonal complement N(g). Writing z = (z1, z2), n1 = dim F̃ (g),

n2 = dimN(g), and g = 1 on F̃ (g) and g = g2 on N(g), we get

Tr ĝâ =
1

(2πh)n1

∫
F̃ (g)

dz1dz̄1

1

(πh)n2

1

det(1 + g2)

∫
N(g)

exp
(
− 1

h
z∗2

1− g2

1 + g2
z2

)
trT (g)a(z1, z̄1, z2, z̄2)dz2dz̄2.

To calculate the inner integral, we expand a in a formal Taylor series at z2 = 0,
namely

a(z1, z̄1, z2, z̄2) =
∑
α,β

1

α!β!

∂α+β

∂zα
2 ∂z̄

β
2

a(z1, z̄1, 0, 0)zα
2 z̄

β
2 ,

and integrate this expansion termwise, thus obtaining

1

det(1− g2)
exp

(
h
∂

∂z2

1 + g2

1− g2

∂

∂z∗2

)
trT (g)a(z1, z̄1, z2, z̄2)

∣∣∣
z2=z̄2=0

.



On Index Theorem for Symplectic Orbifolds 27

Here ∂/∂z2 means the row (∂/∂z1
2 , . . . , ∂/∂z

n2
2 ) and ∂/∂z∗2 the column of com-

plex conjugate elements. Observe also that on N(g) the matrix 1 − g2 is
non-degenerate.

Consider further the symplectic form

ωF̃ (g) =
1

2ı
(dz̄1

1 ∧ dz1
1 + . . .+ dz̄n1

1 ∧ dzn1
1 ).

The measure dz1dz̄1 including the factor (2πh)n1 in the outer integral is defined
by the top degree of the non-homogeneous form

exp
(ωF̃ (g)

2πh

)
.

In the final expression we denote (z1, z̄1) by x̃, (z2, z̄2) by (z, z̄) and g2 by gN .
The trace formula reduces then to the so-called Weyl form

Trg a

=

∫
F̃ (g)

exp
(ωF̃ (g)

2πh

) 1

det(1− gN)
exp

(
h
∂

∂z

1 + gN

1− gN

∂

∂z∗

)
trT (g)a(x̃, z, z̄)

∣∣∣
z=z̄=0

.

(7.19)

This expression is meaningful for the formal Weyl algebra, and we take it as a
definition of Trg a.

Our next goal is to prove that this local formula is independent of a lin-
earized chart. The proof is based on the local properties of Trg a, considered
in [8]. Nevertheless, we are going to give a proof for the main property since
the reasoning here is typical when one deals with deformation quantization via
operator representations.

Lemma 7.3 The following relation holds

Trg a ∗ b = Trg b ∗ (g∗a). (7.20)

Proof. The operator counterpart of (7.20) is

Tr ĝâb̂ = Tr ĝb̂ĝ∗a. (7.21)

This equation is considered in the Fock space for a positive h and for opera-
tors defined by Weyl symbols a(z, z̄) and b(z, z̄), one of them (say a) being a
polynomial and another having compact support. Certainly, it is true since

Tr ĝâb̂ = Tr ĝâĝ−1ĝb̂ = Tr ĝb̂ĝ∗a.

We have used (7.2) and changed cyclically the order of factors under the trace
sign.
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Further, the operator identity (7.21) may be rewritten as a symbol identity
(7.20) with the integral form of ∗ -product. Taking stationary phase approxi-
mations, we obtain an asymptotic identity for symbols. Under our assumptions
on a and b the integral form of the ∗ -product reduces then to the Weyl form
where h is still treated as a positive number and the series as asymptotic ones.
Being valid in asymptotic sense, the identity (7.20) holds true in the sense of
formal series but still for our special symbols a and b. Finally, we can extend
it by linearity to any formal Weyl symbols

a =

∞∑
k,|α|=0

hk ak,α x̃
α,

b =
∑

k

hk bk(x̃)

with compactly supported bk.
�

We mention also without proof (see [8]) that Trg a does not depend on the
positive complex structure J needed for the Fock space construction.

This lemma has many important consequences.

Corollary 7.4 If one of the symbols is g -invariant, that is g∗a = a, then

Trg a ∗ b = Trg b ∗ a. (7.22)

Corollary 7.5 The functional Trg a on g -invariant symbols a with com-
pact support is independent of the choice of a linearized symplectic chart and
a positive complex structure.

Proof. First of all, it follows from (7.19) that a linear change z 
→ uz,
where u ∈ U(n), together with the conjugation g 
→ ugu−1 does not change
Trg a. Besides, the choice of a positive complex structure is also inessential.
So, we need to consider only homotopies ft(x̃) (cf. Theorem 2.2) of a linearized
symplectic chart with identical linear parts. Using Lemma 7.2, we get

Trg ȧ =
ı

h
Trg [H0, a].

Since a is a g -invariant symbol with compact support and H0 belongs to the
formal Weyl algebra, the right-hand side vanishes by Corollary 7.4, proving
that Trg a is independent of the choice of a linearized chart.

�
This finishes the trace construction for quantum observables with a support

in an orbifold chart. Our next goal is to combine the local expressions into a
global formula.
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We begin with a global formula for the orbifold trace of a flat section
a ∈WD. To this end, we first construct a partition of unity in the algebra WD.
We take a partition of unity {ρi(x)} of the space B subordinate to a covering

{Oi, Õi, Gi, pi} by orbifold charts. When lifting ρi to Õi, we get a Gi -invariant
smooth function ρi(x̃), and we quantize it obtaining a flat section Qρi ∈ WD.
Since deformation quantization is a global procedure, these sections actually
give us the needed partition of unity, i.e.

a =
∑

i

(Qρi) ◦ a (7.23)

for any flat section a. The summands in this decomposition are flat sections
with supports in Õi. Next, we apply the isomorphism Ii defined by (7.7)
obtaining a flat section Ii(Qρi ◦ a) in WD0 |Õi

. And putting y = 0, we get
a function ai(x̃, h), that is a Weyl symbol with values in K on the standard
symplectic space R2n:

ai(x̃, h) = Ii(Qρi ◦ a) |y=0

∈ W (R2n, K).
(7.24)

Taking local traces (7.19) and gathering all together, we come to the global
trace formula

Trorb a =
∑

i

Trorb ai =
∑

i

1

|Gi|
∑
g∈Gi∫

F̃ (g)

exp
(ωF̃ (g)

2πh

) 1

det(1− gN)
exp

(
h
∂

∂z

1 + gN

1− gN

∂

∂z∗

)
trTi(g)ai(x̃, z, z̄)

∣∣∣
z=z̄=0

.

(7.25)

What we would like to emphasize is that the choice of isomorphisms Ii
in (7.23) is irrelevant as was proved in the preceding section, we could take
instead any isomorphism I to a local linearized symplectic chart. In other
words, equation (7.25) gives a global quantity expressed in local terms.

We are going now to transform this formula to a more invariant form. Note
that the inner sum (over g ∈ Gi) contains many equal summands. Indeed,

the integrals over F̃ (g) and F̃ (γgγ−1) = γF̃ (g) are the same because of Gi -
ivariance of the integrand. Thus, decomposing Gi into a union of conjugacy
classes and choosing a representative gk in each conjugacy class (gk), we can
rewrite the inner sum as

∑
(gk)∈(Gi)

|(gk)|
|Gi|

∫
F̃ (gk)

. . . .
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Here (Gi) denotes the set of conjugacy classes of Gi, gk runs over the whole set
of representatives, and |(gk)| denotes the number of elements in the conjugacy
class. We have dropped the integrand, it is the same as in (7.25) with g
replaced by gk. To calculate the number |(gk)|, observe that the elements
γ1gkγ

−1
1 and γ2gkγ

−1
2 coincide if and only if γ1γ

−1
2 commutes with gk, that is

belongs to the centralizer of gk in Gi. (Recall that the centralizer ZGi
(gk) is

a subgroup in Gi consisting of elements commuting with gk). To obtain all
distinct elements γgkγ

−1, the element γ should run over all representatives of
left cosets Gi/ZGi

(gk). Thus,

|(gk)| = |Gi|
|ZGi

(gk)|
and the sum takes the form∑

(gk)∈(GI )

1

|ZGi
(gk)|

∫
F̃ (gk)

. . . .

The summands here may be interpreted as integrals over linearized charts of
some symplectic orbifolds. Indeed, F̃ (gk) = ker(1− (gk)N) is a complex space
where the group ZGi

(gk) acts by linear unitary transformations since

γF̃ (gk) = F̃ (γgkγ
−1) = F̃ (gk).

Thus, introducing the notation F (gk) for the orbit space F̃ (gk)/ZGi
(gk) and

p(gk) for the corresponding projection, we come to a quadruple

{F (gk), F̃ (gk), ZGi
(gk), p(gk)} (7.26)

which resembles an orbifold chart for some symplectic orbifold. In fact there
are many connected symplectic orbifolds of different dimensions (and even for a
given dimension there are many connected components) whose orbifold charts
form the set (7.26) with all possible k and i. We will denote these connected
components by F1, F2, . . . , Fm and call them fixed point orbifolds. To define
these orbifolds completely, we need to indicate what pairs from the set (7.26)

should be glued. Each chart (7.26) is contained in a chart Õi of the original
orbifold B. If Oi ∩ Oj = ∅ then, clearly, there is no gluing conditions for the

charts F̃ (gk) ∈ Õi and F̃ (gl) ∈ Õj. Otherwise, if O = Oi ∩ Oj �= ∅, we glue
F (gk) ∈ Oi and F (gl) ∈ Oj if and only if F (gk)∩O = F (gl)∩O. A connected
component of the fixed point orbifold consist of those charts from the set (7.26)
which can be connected with each other by a chain of pairwise glued charts
(7.26).

The action of the centralizer ZGi
(gk) on F̃ (gk) may be not effective, that is

the components Fk may have a multiplicity m(Fk) > 1, even if the multiplicity
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of the original orbifold B was equal to 1. Then by the integration formula
(3.4)

Trorb a =
∑

k

1

m(Fk)

∫
Fk

αk (7.27)

where the integrand αk is a differential form on Fk which in an orbifold chart
F̃ (g) is defined by

α = exp
(ωF̃ (g)

2πh

) 1

det(1− gN)
exp

(
h
∂

∂z

1 + gN

1− gN

∂

∂z∗

)
trTi(g)ai(x̃, z, z̄)

∣∣∣
z=z̄=0

.

(7.28)

Lemma 7.6 The functional

Trorb : W c
D → C[h−1, h]] (7.29)

possesses the trace property

Trorb a ◦ b = Trorb b ◦ a, (7.30)

where W c
D ⊂WD means the ideal of flat sections with compact supports.

Proof. The trace property follows from Corollaries 7.4 and 7.5 in virtue
of the chain of equalities

Trorb a ◦ b =
∑
i,j

Trorb (Qρi) ◦ a ◦ (Qρj) ◦ b

=
∑
i,j

∑
g∈Gi

1

|Gi|Trg Ii((Qρi) ◦ a ◦ (Qρj) ◦ b) |y=0

=
∑
i,j

∑
g∈Gi

1

|Gi|Trg Ii((Qρi) ◦ a) |y=0 ∗ Ii((Qρj) ◦ b) |y=0

=
∑
i,j

∑
g∈Gi

1

|Gi|Trg Ii((Qρj) ◦ b) |y=0 ∗ Ii((Qρi) ◦ a) |y=0

=
∑
i,j

∑
g∈Gi

1

|Gi|Trg Ii((Qρj) ◦ b ◦ (Qρi) ◦ a) |y=0

=
∑
i,j

∑
g∈Gj

1

|Gj|Trg Ij((Qρj) ◦ b ◦ (Qρi) ◦ a) |y=0

= Trorb b ◦ a.

The summation, of course, runs over those pairs i, j for which the inter-
section Oi ∩Oj is non-empty.

�



32 B. Fedosov, B.-W. Schulze, and N. Tarkhanov

In contrast to the smooth case the orbifold trace is not unique. The matter
is that the action of the group Gi on the Fock space is not uniquely defined. In
fact, the action on the vacuum may be non-trivial. In general we may replace
(7.16) by any one-dimensional representation, that is

ĝe0 = χi(g)e0,

with a one-dimensional character χi. This factor would appear in all the
subsequent formulas, giving another orbifold trace which may be obtained
from equations (7.27), (7.28) by replacing Ti(g) by χi(g)Ti(g) in (7.28). Glob-
ally these factors define a section of the sheaf of characters, that is a one-
dimensional flat orbifold vector bundle considered in Section 4 under the name
of the Picard group. Clearly, the new orbifold trace may be obtained from the
old one by tensoring the original vector bundle E by E0 ∈ Pic(B). This ten-
soring does not affect the structure of the algebra WD since E0 is flat and
End(E0) is commutative, but the trace will be different. It is plausible that
this ambiguity in traces is the only possible one. Unfortunately, at the moment
we can not prove this fact.

Summarizing, we arrive at the following theorem.

Theorem 7.7 There exist trace functionals (7.29) on the algebra WD sat-
isfying a trace property (7.30). The Picard group acts on the set of traces by
tensoring.

One of the components in (7.27) coincides with the original orbifold B
whose multiplicity is equal to 1 according to the assumption in Section 2. This
case corresponds to the conjugacy class (1) of identity element in any local
group Gi, the centralizer is then the whole group Gi. For g = 1 the integrand
(7.28) takes a more simple form

α = exp
( ω

2πh

)
tr ai(x̃, h).

This gives an integral over the principal stratum having the same form as in
the case of smooth manifold. The other components are even-dimensional, and
their dimension is at least by 2 less than the dimension of B.

8 An index formula

In this section we propose a conjecture for the index formula prompted by the
Kawasaki index theorem [13], the index theorem for deformation quantization
[5] and the G -index formula [8]. For the time being we can prove it only in
very particular cases, cf. [7]. We hope however to find a complete proof.



On Index Theorem for Symplectic Orbifolds 33

Restricting ourselves to the simplest case of a compact orbifold B, we define
the index of the algebra of quantum observables WD as Trorb 1.

Let us look at the integral over one of the fixed point orbifolds Fm in (7.27),
(7.28). Assuming that the original coefficient bundle was K = End(E) over
B, one can recognize in this integral an expression for the orbifold trace for a
deformation quantization on Fm with a coefficient bundle K ⊗W (N) where
W (N) is the Weyl algebra in fibers of the normal bundle N of Fm with the
coefficient trace on W (N) equal to Trg. Treating W (N) as the isomorphism
bundle of the Fock bundle F(N) and proceeding by analogy with the index
theorem for deformation quantization, cf. [5], we come to the following con-
jecture

Trorb 1 =
∑

k

1

m(Fk)

∫
Fk

exp
(ωFk

2πh

)
chg (E ⊗ F(N)) Â(Fk).

Here chg means the character of the bundle E ⊗ F(N) with respect to Trg. In
more detail,

chg (E ⊗ F(N)) = chg E chg F(N)

= trT (g) exp
(RE

2πı

)
Trg exp

(RF

2πı

)
.

To define the character of the Fock bundle, we introduce an Hermitian con-
nection ∂N on the normal bundle N and an associated connection on F(N).
If

ΓN = ΓN
αβkdx̃

k

is the connection form on N , then we take the form

Γ F =
1

2h
z∗ΓN ∗ z =

1

2h
ΓN

αβkz̄
α ∗ zβdx̃k

as the connection form on F(N). The normal ordering in the last expression is
very important, it implies that the vacuum is covariantly constant: ∂Ne0 = 0.
The curvature of this connection is

RF =
1

2h
z∗RN ∗ z =

1

4h
RN

αβklz̄
α ∗ zβdx̃k ∧ dx̃l (8.1)

where RN means the curvature of the normal bundle N .

Lemma 8.1 The following formula holds

Trg exp
(RF

2πı

)
= 1/ det

(
1− g−1 exp

(RN

2πı

))
. (8.2)
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Proof. The differential form

S(t) = exp
(tRF

2πı

)
is meaningful as an operator in the Fock space where h ∈ (0, 1] is a number.
Indeed, S is a polynomial in z, z̄, so the action (7.15) is well-defined. Because
of the normal ordering this action is trivial on the vacuum vector, i.e. S∗p = p.
Thus, for a vector u = a(z, z̄) ∗ p ∈ F we have

Su = S ∗ a ∗ p
= S ∗ a ∗ S−1 ∗ p.

Thus, we need to know the adjoint action of S on W , and because it is an
automorphism of W , it is sufficient to know the action on generators zi, z̄i. It
may be calculated using a well-known formula

exp(A)B exp(−A) = exp([A, ·])B.
Since RF is quadratic in generators, we have[RF

2πı
, zi

]
=

[z∗RN ∗ z
2h 2πı

, zi
]

= −
(RNz

2πı

)i

and similarly [RF

2πı
, z̄i

]
=

[z∗RN ∗ z
2h 2πı

, z̄i
]

=
(z∗RN

2πı

)i

.

If z denotes a column and z∗ a row, then it results in

S ∗ z ∗ S−1 = exp
(
− RN

2πı

)
z = s−1z,

S ∗ z∗ ∗ S−1 = z∗ exp
(RN

2πı

)
= z∗s

where s denotes the matrix exp(RN/2πı). Now, by the definition of the trace
Trg, we get

Trg S = Tr ĝS

=
∑

α

(ĝSeα, eα)

=

∫
Cn

∑
α

p ∗ zα ∗ (z∗g−1s)α ∗ p
α! (2h)|α|

exp
( ω

2πh

)
.

The series (which in fact is a finite sum) under the integral sign may be sim-
plified as follows. First, the last factor p may be written in the first place,
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because the integral is a trace for the Weyl algebra on Cn, and then may be
omitted since p is a projector with respect to ∗ -product on W . Further, for a
polynomial f(z) the following formula is true

p ∗ f =
∑

α

(−h)|α|
α!

∂αp

∂z̄α
f (α)(z) = p

∑
α

zα

α!
f (α)(z) = p f(2z).

Finally, using the trace property of the integral, we may omit the last remaining
∗ -product, obtaining ∫

Cn

a ∗ b dzdz̄ =

∫
Cn

ab dzdz̄,

so that the trace formula reduces to

Trg S =

∫
Cn

p

∞∑
k=0

(z∗g−1sz)k

k! hk
exp

( ω

2πh

)

=

∫
Cn

2n exp
(
− 1

h
z∗(1− g−1s)z

)
exp

( ω

2πh

)
.

Calculating this Gaussian integral, we come to (8.2).
�

Thus, our conjecture takes the form

Trorb 1 =
∑

k

1

m(Fk)

∫
Fk

exp
(ωFk

2πh

) chg E

det(1− g−1 exp(RN/2πı))
Â(Fk). (8.3)

9 Examples

The purpose of this section is to interpret an index theorem for deformation
quantization as an eigenvalue problem. In a particular case we come to our
index theorem for symplectic orbifolds.

Consider the symplectic space M = C2 with a standard symplectic form

ω =
1

2ı
(dz̄1 ∧ dz1 + dz̄2 ∧ dz2), (9.1)

and the Hamiltonian action of the group G = R with the Hamiltonian

H =
1

2
(|z1|2 + c |z2|2) (9.2)

where c > 0 is a fixed number. The orbits are as follows

z1 
→ e−ıtz1,
z2 
→ e−ıctz2,

(9.3)

for t ∈ R, and we can distinguish three different cases:
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1) c = 1;

2) c is a rational number, c �= 1 (we take further c = 3);

3) c is an irrational number.

Take a number λ which is a non-critical value of the Hamiltonian, that is
λ > 0, and consider symplectic reduction at the level λ in each of the three
cases.

For c = 1 the level set H = λ is a sphere M0 = S3 in C2 and all the
orbits are periodic, so, taking t ∈ R mod2π, we have a free action (9.3) of the
group G = U(1) = S1. The orbits are big circles, and we thus obtain the Hopf
fibration

B = M0/G = S3/S1 = CP
1 (9.4)

whose base is a smooth manifold.
If c = 3 (this is our main example), the level set M0 is an ellipsoid

|z1|2 + c |z2|2 =
√

2λ. (9.5)

Taking t ∈ R mod2π as in the previous case, we again obtain an action (9.3)
of the group G = U(1) on the level manifold. This time, however, the action is
only locally free. Indeed, each point of the type (0, z2) with |z2| =

√
2λ/3 is a

fixed point of the action (9.3) with t = 0,±2π/3. The orbit space B = M0/G
is an orbifold, as we shall soon see.

Finally, in the third case we again obtain the ellipsoid M0 (9.5) as a level
set but this time each orbit (9.3) is dense in the two-dimensional torus, so the
orbit space M0/G is not a Hausdorff space at all and the classical reduction
makes no sense.

Let us try now to give a quantum interpretation to the reduction proce-
dure. To this end, suppose first that our quantum observables are operators
depending on a positive parameter h and acting in some Hilbert space E. Al-
gebraically, the reduction procedure goes in two steps. First we extract the
subalgebra A of invariant observables, in quantum case the invariance means
that a commutes with H − λ

[H − λ, a] = 0. (9.6)

This implies that each eigenspace of H − λ is invariant with respect to any
operator a ∈ A. At the second step we consider the restriction a0 of the
operator a ∈ A to the zero eigenspace E0 of H − λ. If the eigenspace is non-
trivial, the restriction gives an operator a0 in E0. We obtain thus an algebra
A0 = A/(H − λ) of operators in the eigenspace E0 which may be viewed
as the reduced algebra of quantum observables. The multiplicity of the zero
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eigenvalue (which is a positive integer number) is given by the trace of the
identity operator 1 ∈ A0

dimE0 = Tr 1. (9.7)

So, the eigenvalue problem may be reformulated in an equivalent way: for a
fixed λ find admissible values of h ∈ Λ ⊂ (0, 1] for which the multiplicity Tr 1
is non-zero and thus belongs to N.

In the deformation quantization framework we can not pose an eigenvalue
problem literally, since our algebra of quantum observables WD(M) is not an
operator algebra. Nevertheless we have good substitutes for the corresponding
notions allowing us to reformulate the eigenvalue problem, so that it makes
sense for deformation quantization. Namely, we replace the algebra A0 by the
algebra of flat sections WD(B) on the base manifold (or orbifold) B and the
multiplicity Tr 1 by the index of WD(B). This concerns, of course, the cases
1) and 2), the case 3) must be treated separately. It is essential that the index
is a polynomial P (1/h) in 1/h, thus numerical values of h may be substituted.
We propose the following version of the eigenvalue problem in deformation
quantization terms:

For a given λ ∈ R find h ∈ (0, 1] for which the index P (1/h) takes positive
integer values.

Let us start with the simplest case c = 1. We compare two versions of
the eigenvalue problem, namely the traditional eigenvalue problem for the
quantum harmonic oscillator with the Weyl symbol

H =
1

2
(z̄1z1 + z̄2z2)− λ

=
1

2
(z̄1 ∗ z1 + z̄2 ∗ z2) + h− λ

(9.8)

and the above-mentioned deformation quantization version. In the sequel they
will be referred to as the traditional and deformation versions. Note, that in
the former version we consider h as a number while in the latter one h is a
formal parameter.

The traditional spectrum may be found explicitly using the Fock space
representation. In fact, the complete set of eigenfunctions are obtained by
acting on the vacuum by creation operators

un1,n2 = z̄n1
1 z̄n2

2 ∗ p, (9.9)

with the corresponding eigenvalues equal to

h (n1 + n2 + 1)− λ,
where n1 ≥ 0, n2 ≥ 0 are integer numbers, cf. Fig. 1. It follows that the
Hamiltonian (9.8) has zero eigenvalue if and only if the ratio m = λ/h is a



38 B. Fedosov, B.-W. Schulze, and N. Tarkhanov

�
n2

�
�n1� � � �

����

� � � �

����

m=4m=1

Fig. 1: c=1

positive integer number, this number gives precisely the multiplicity of the
eigenvalue.

The deformation version of the eigenvalue problem has the following form.
First calculate the index of the reduced algebra WD(CP

1) which gives us an a
priori multiplicity of the zero eigenvalue of the Hamiltonian (9.8). This begins
with the calculation of the reduced symplectic form ωB. Recall that the latter
is uniquely defined from the equality

i∗ωM = p∗ωB

on the level manifold M0, where i and p are inclusion and projection

M
i←M0

p→ B.

Here M0 is the sphere |z1|2 + |z2|2 = 2λ, and B is the orbit space of the group
action

z1 
→ e−ıtz1,
z2 
→ e−ıtz2,

that is the projective space CP
1. The orbits may be parametrized by the ratio

ζ = z1/z2 if z2 �= 0, and by the inverse ratio if z2 �= 0. Thus, the symplectic
form ωB should be α dζ̄ ∧ dζ/2ı. In polar coordinates

ζ =
r1
r2
eı(ϕ1−ϕ2),

so that

ωB =
α

2
d
(r2

1

r2
2

)
∧ d(ϕ1 − ϕ2).

Replacing r2
2 = 2λ− r2

1 on the sphere M0, we find

ωB =
αλ

(2λ− r2
1)

2
dr2

1 ∧ d(ϕ1 − ϕ2).
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On the other hand, using polar coordinates, we get

ωM =
1

2
(dr2

1 ∧ dϕ1 + dr2
2 ∧ dϕ2)

or, eliminating r2
2,

1

2
dr2

1 ∧ d(ϕ1 − ϕ2).

Equating these two expressions gives

α =
(2λ− r2

1)
2

2λ

=
2λ

(1 + |ζ |2)2
.

Thus, the reduced form is

ωB =
λ

ı

dζ̄ ∧ dζ
(1 + |ζ |2)2

.

Integrating this form over B = CP
1, we obtain

Tr 1 =

∫
B

ωB

2πh
=
λ

h
.

According to our deformation version of the eigenvalue problem, the spectrum
is obtained by equating this ratio to positive integer numbers, the ratio itself
being a multiplicity. We see that in this case both spectra, traditional and
deformation, coincide.

Consider now the second case c = 3. The Hamiltonian in this case is

H =
1

2
(z̄1 ∗ z1 + 3z̄2 ∗ z2 + 4h)− λ. (9.10)

Similarly to the case 1) the traditional spectrum may be calculated explicitly.
The eigenfunctions are the same, namely

un1,n2 = z̄n1
1 z̄n2

2 ∗ p
with the eigenvalues

h (n1 + 3n2 + 2)− λ,
where n1 ≥ 0 and n2 ≥ 0 are integer numbers. Thus, the Hamiltonian (9.10)
has zero eigenvalue if the ratio λ/h is equal to N + 2, for N = 0, 1, 2, . . ., and
the multiplicity of this eigenvalue is equal to the number of lattice points on
the line n1 + 3n2 = N , cf. Fig. 2. It is convenient to consider three series:
N = 3k, N = 3k + 1 and N = 3k + 2 where k = 0, 1, . . .. The multiplicity of
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the zero eigenvalue is equal to k+1 for each of these series. Let us express the
multiplicity as the function of the ratio λ/h for each series. If N = 3k then
λ/h− 2 = 3k, and for the multiplicity m = k + 1 we obtain

m =
λ

3h
+

1

3
. (9.11)

Similarly for series N = 3k + 1 and N = 3k + 2, we find

m =
λ

3h
(9.12)

and

m =
λ

3h
− 1

3
. (9.13)

Thus, we have the following description of the traditional spectrum: h belongs
to the spectrum if one of the expressions λ/3h− 1/3, λ/3h, λ/3h+ 1/3 takes
positive integer value.

Now, let us calculate the spectrum in deformation version. The zero level
set M0 is an ellipsoid

|z1|2 + 3 |z2|2 = 2λ,

and the action of the group U(1) is

z1 
→ e−ıtz1,
z2 
→ e−3ıtz2.

(9.14)

The orbifold charts for the orbit space are defined by two slices

S1 =
(
z1,

√
2λ− |z1|2

3

)
, |z1| <

√
2λ,

and

S2 =
(√

2λ− 3|z2|2, z2
)
, |z2| <

√
2λ

3
.
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The group (9.14) maps S1 into itself for t = 0, ±2π/3, and the only element
which maps S2 into itself is identity. Thus, for the orbifold charts one can take
two discs

Õ1 = {|z1| <
√

2λ}, G1 = Z3,

with the standard action of Z3 by multiplication, and

Õ2 = {|z2| <
√

2λ/3}, G2 = 1.

The Picard group corresponds to the three different characters of the group
G1, namely,

χ0(g) = 1, χ±1(g) = g±1.

The fixed point orbifolds Fk consist of the orbifold B = M0/U(1) itself cor-
responding to g = 1 in each chart, and a zero-dimensional component F0

corresponding to non-trivial elements of the group G1 = Z3 in the orbifold
chart Õ1, that is z1 = 0.

For a trivial bundle E the term chE disappears, the term Â(F ) also dis-
appears since dimF ≤ 2. Thus, for each of the three characters our index
formula takes the form

indχ =

∫
B

ωB

2πh
+

1

3

∑
g �=1

χ(g)

1− g .

The integral term in the orbifold chart Õ1 reduces to

1

3

∫
|z1|<

√
2λ

ωB

2πh 2ı
=

λ

3h
.

Now, for χ0 = 1 the additional term in the index formula is equal to

1

3

( 1

1− e2πı/3
+

1

1− e−2πı/3

)
=

1

3
.

Similarly, for χ−1 = g−1

1

3

( e−2πı/3

1− e2πı/3
+

e2πı/3

1− e−2πı/3

)
= 0,

and for χ1 = g
1

3

( e2πı/3

1− e2πı/3
+

e−2πı/3

1− e−2πı/3

)
= −1

3
.

Thus, we see again that the deformation spectrum coincides with the tradi-
tional one.
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We finish by some concluding remarks concerning case 3). The traditional
spectrum may be calculated in this case similarly to the previous cases. The
result is

h (n1 + c n2 + (c+ 1)/2)− λ. (9.15)

Since c is irrational, the individual multiplicity of the zero eigenvalue is equal
to 1, if not to zero. Thus, we have no linear function in λ/h for the multiplicity
as in the previous cases. The situation may be improved if we consider a kind
of an averaged multiplicity. For example, let us consider the spectrum in the
interval (−hε, hε), where ε is a positive number. The number of eigenvalues
(9.15) within this interval is approximately equal to

2ε
(λ
h

+
c+ 1

2

)
,

and we may consider the expression in parentheses as a kind of an averaged
multiplicity. It is not clear what will play the role of the index in this situation.
Hopefully, it will be a kind of a random index [10], we leave this question for
further investigations.
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Laboratoire de Mathématiques de l’École Normale Supérieure, Paris,
October 1994, 24 pp.

E-mail addresses :

fedosov@math.uni-potsdam.de

schulze@math.uni-potsdam.de

tarkhanov@math.uni-potsdam.de


	1 Introduction
	2 Symplectic orbifolds
	3 Orbifold vector bundles
	4 The Picard group
	5 Symplectic reduction
	6 Deformation quantization
	7 Orbifold trace
	8 An index formula
	9 Examples
	References

