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Chapter 1

Localization (Surgery)
in Elliptic Theory

1.1. The Index Locality Principle

1.1.1. What is locality?

The index of an elliptic operator � on a smooth compact manifold � without boundary does not
change if lower-order terms are added to the operator (since the index of a Fredholm operator is stable
under compact perturbations) and hence depends only on the principal symbol ���� of the operator�. In
topological terms, the index is expressed via the principal symbol by the Atiyah–Singer formula (Atiyah
and Singer 1963)

���� � ���������

where ������ is the element of the �-group with compact supports of the cotangent bundle of � de-
termined via the principal symbol by the difference construction and �� is the direct image in �-theory
induced by the mapping � 	 � �� �
�� of � into a operator. How can one describe, however, the
analytic structure of the dependence of the index on the principal symbol? Apparently, the most detailed
answer is given by the so-called “local index formula” (e.g., see (Gilkey 1995)): the index of an elliptic
operator � on a closed manifold� is expressed by the formula

���� �

�
�

����� (1.1)

where the “local density” ���� at a point � � � depends only on the principal symbol ���� and its
derivatives in the fiber 	 ��� of the cotangent bundle over �, and moreover, one can write out explicit
formulas for this density.

It is rather difficult to extend such a locality property of the index to more general situations (say, to
the case of the index of elliptic operators on manifolds with singularities): in these situations, there are
far more complicated (noncommutative) principal symbol structures, for which formulas like (1.1) are
no longer valid. Hence the following coarser locality property (which directly follows from (1.1) in the
case of elliptic operators on a smooth compact manifold without boundary) will be of interest to us.

If one changes the operator � (within the class of elliptic operators) on some open
subset 
 � � , then the index changes by a number that depends only on the
structure of the original and new operators on 
 and is independent of the structure
of � outside 
 .

6



1.1. THE INDEX LOCALITY PRINCIPLE 7

� Indeed, by (1.1) the variation of the index is equal to�
�

���� �

�
�

������

where ����� is the density corresponding to the new operator, for the integrals over� �
 cancel out. �

This argument shows that the variation of the operator can be interpreted rather widely: for example,
we can change not only the operator itself but also the bundles in whose sections it acts and even the
manifold� itself. (More precisely, we can replace 
 by some other set 
 �, leaving� � 
 unchanged.)

In the next subsection we show this locality property in the simplest case directly, without resorting
to the local index formula (1.1). The idea in this example will help us later on to state the general index
locality principle as well.

1.1.2. A pilot example

Let
���� 	 ������� �� ����� � (1.2)

be two elliptic pseudodifferential operators (PDO) acting on the same smooth compact manifold �
without boundary in sections of the same bundles and coinciding everywhere outside a compact subset

 �� . In this situation, the index locality property can readily be proved by elementary means.

� For example, one can argue as follows. The difference of indices of � and �� is equal to

���� � ����� � ����������� (1.3)

where ������ is an almost inverse1 of ��. In turn, the index of the elliptic PDO������� is completely
determined by its principal symbol � � �����������, which is equal to unity over � � 
 and hence
actually depends only on the values of the principal symbols ���� and ����� over 
 . �

What is the essence of the argument given in this example? Obviously, the key point is that, for
elliptic PDO, taking the product and passing to an almost inverse are local operations (modulo com-
pact operators, which do not affect the index anyway). This follows from the (pseudo)locality property
of (pseudo)differential operators. It is the locality2 of these operations that implies that the operator
������� is unit outside 
 and is determined in 
 only by the operators � and �� also in 
 . Moreover,
we actually use only the locality with respect to the pair of sets 
 and� �
 : were the operators nonlocal
in 
 and in� � 
 separately, our conclusions would remain in force.

Thus, the pilot example essentially shows that we deal with the implication

locality of elliptic PDO �� locality of the index

The abstract index locality principle given in forthcoming subsections is just a generalization of this
implication. To speak of local operators in the abstract case, we need the following:

1An inverse modulo compact operators.
2We omit the prefix “pseudo” in what follows.
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	 there should be an analog of the notion of support for elements of spaces where the operators will
act;

	 for such spaces, we should define an analog of the notion of an operator whose integral kernel is
localized near the diagonal.

Such spaces, which will be called collar spaces, are introduced in the following subsection, and then
we define an appropriate class of operators, referred to as proper operators, in such spaces.

1.1.3. Collar spaces

The support of a smooth section � � ������� of a vector bundle � over a manifold� is defined
as the closure of the set of points � � � such that ���� 
� �. It is important in this definition that �
is a mapping defined on � . However, there is an equivalent definition that does not rely on this fact
explicitly. Namely, since ������� is a module over the algebra ����� of smooth functions on� ,
one can define the support �

� as the intersection of the zero sets of all functions � � ����� that
annihilate �. The latter definition is valid for an arbitrary �����-module regardless of its nature (i.e.,
of whether elements of this module are defined on� ).

Collar spaces are just defined as modules over a function algebra, and so their supports are described
by the above-mentioned construction. To state the index locality principle, we need not consider any
general function algebras; it suffices to consider functions on the closed interval ���� ��. (Accordingly,
the supports of elements of collar spaces will be subsets of this interval.)

Consider the unital topological algebra ������� ��� of smooth functions ����, � � ���� ��, on the
interval ���� ��.

DEFINITION 1.1. A collar space is a separable Hilbert space � equipped with the structure of a module
over ������� ��� such that the action of ������� ��� is continuous in the uniform operator topology
and the unit function ��� � ������� ��� acts as the identity operator in � .

Let us give one of the main examples of collar spaces.

EXAMPLE 1.2. Let � be a compact �� manifold without boundary, and let � 	 � �� ���� �� be a
smooth mapping. Then each Sobolev space ����� can be made a collar space if we define a natural
action of ������� ��� on ����� by the formula

������� � ������������ � ���

for any � � ������� ��� and � � �����. In this and similar more general cases, the subset

� � ������� �� ���

of the manifold � , where the bar stands for the closure, will be referred to as the collar. We represent
this graphically in Fig. 1.1, where the collar � is dashed and the function � takes the values � � �� to
the left of the collar (i.e., in��) and � � �� to the right of the collar (i.e., in��).

For any element � � � of a collar space � , there is a naturally defined notion of support.
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Figure 1.1. A manifold with a collar.

DEFINITION 1.3. The support of an element � � � is the subset �

� of the interval ���� �� given by
the formula

�

� �
�
�������

where the intersection is taken over all functions � � ������� ��� such that �� � �.

The supports of elements of a collar space have all the natural properties. Just to list a few, �

�
is closed, �

� is empty if and only if � � �, �

��� � ��� � �

�� � �

��, etc. Note that in
the situation of Example 1.2 the set �

� is just the closure of the image of the ordinary support of �
under the mapping �. For example, if � � ����� is supported in��, then �

� � ����.

One can single out subspaces of a collar space� by imposing conditions on the supports of elements.
Let  � ���� �� be a given subset. Then the set

Æ
�� �

�
� � �

�� �

� � �
is a linear manifold (lineal) in � , which is closed provided that so is  . In the general case, we define a

subspace �� � � as the closure of
Æ
�� . Not that it is not true in general that �� � � �� .

Just as in the case of ordinary supports, functions with disjoint supports are linearly independent.
More precisely, if �� � � � � � � ���� �� are subsets such that �� � �� � � for � 
� �, then

���������� � ���  � � � ��� �

where the sum is direct but not necessarily orthogonal.

1.1.4. Elliptic operators

Here we introduce the notion of an elliptic operator in a collar space. This notion inherits two
characteristic properties of elliptic PDO, namely, pseudolocality and the Fredholm property. First, let us
give an adequate statement of pseudolocality in the context of collar spaces.

DEFINITION 1.4. Let� 	 �� �� �� be a continuous linear operator in collar spaces and� � ���� ���
���� �� a closed subset. We say that the support of � is contained in � if

�

�� � ���

�� (1.4)
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for every � � � , where � is treated as a multimapping of the interval ���� �� into itself:

��
���
�
�
� � ���� ��

�� ��� �� � ���
The support �

� of the operator � is the intersection of all closed sets � with property (1.4).

It readily follows from the definition that if � and � are operators in collar spaces, then one has
�

���� � �

� Æ �

�, where the right-hand side is understood as the composition of mul-
timappings.

In the theory of PDO, pseudolocality is understood as the fact that the integral kernel of a PDO is
supported modulo smooth functions in an arbitrarily small neighborhood of the diagonal. Hence, using
smooth cutoff functions concentrated near the diagonal, one can include an elliptic PDO in a continuous
family of elliptic operators with the same symbol and with kernels supported in a shrinking neighborhood
of the diagonal as the parameter of the family tends to zero. Let us transfer this property to the case of
collar spaces. Let

� � ���� ���� � ���� ��� � ���� ��� ���� ��

be the diagonal and
�	 �

�
��� �� � ���� �� � ���� ��

�� ��� �� � �� (1.5)

its �-neighborhood.

DEFINITION 1.5. A proper operator in collar spaces�� and�� is a family of continuous linear operators

�Æ 	 �� �� ��

with parameter Æ � � such that
(i)�Æ continuously depends on Æ in the uniform operator topology;
(ii) for each � � � there is a Æ	 � � such that

�

�Æ � �	 for Æ � Æ	� (1.6)

In the situation of Example 1.2, PDO in Sobolev spaces can naturally be viewed as proper operators
(more precisely, included in appropriate families).

� Indeed, as was indicated above, a PDO can be included in a continuous family of PDO with the same
symbol and with supports of the integral kernels shrinking to the diagonal (in � �� ). It remains to
note that the preimage of the �-neighborhood of the diagonal in � �� under the mapping � � � is
contained in �	. �

Now we can give the definition of elliptic operators in collar spaces.

DEFINITION 1.6. An elliptic operator in collar spaces � and � is a proper operator

�Æ 	 � �� �

such that �Æ is Fredholm for each Æ and has an almost inverse ���
Æ such that the family ���

Æ is also a
proper operator.

Here, as usual, the almost inverse of a bounded operator � is defined as an operator ��� such that the
products ���� and ���� differ from the identity operators by compact operators in the corresponding
spaces.
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Remark 1.7. The class of elliptic operators in collar spaces considered here is wider than Atiyah’s class
of abstract elliptic operators (Atiyah 1969), consisting of Fredholm operators � 	 � �� � acting in
Hilbert �� �-modules � and � (where �� � is the ��-algebra of continuous functions on a compact
set  ) and commuting with the action of �� � modulo compact operators: the operator

����� 	 � �� �

is compact for every � � �� �.

More precisely, every ������ ���-module is a collar space by virtue of the continuous embedding of
algebras ������� ��� � ������ ���, and any abstract elliptic operator � on  can be embedded in a
family that is an elliptic operator in collar spaces.

EXERCISE 1.8. Prove this.

However, the opposite is not true.

� Indeed, we define the structure of a collar space on !���� via the mapping

� 	 � �� ���� ��� ���� �
�

"
����� ��

The operator

�Æ 	 !���� �� !����

���� ��� ���� Æ�

is an elliptic operator in collar spaces but is not an abstract elliptic operator for any Æ � �. �

1.1.5. Surgery and the relative index theorem

The relative index theorem stated in this subsection expresses the index locality principle at the
abstract level of collar spaces. The relative index of two Fredholm operators �� and � is the difference

��������� � ����� � �����

In the locality property considered above for the case of a smooth compact manifold without boundary,
the operator �� was obtained from an elliptic operator � on a manifold� by some change on a subset

 � � . (Moreover, 
 itself could change, as far as � � 
 remained intact.) At the abstract level,
we should first make it clear what changes of operators are to be considered. Admissible changes will
be referred to as surgeries; they include surgeries of collar spaces themselves (which corresponds to the
replacement of 
 by 
 �) and associated surgeries of operators.

Let�� and �� be collar spaces.

DEFINITION 1.9. If for some  � ���� �� there is a given isomorphism (not necessarily isometric)

� 	 ��� � �� ��� ��

then we say that �� and �� coincide on  (or are obtained from each other by surgery on ���� ��� ).
In this case, we write

��
�
� �� or��


��
����
����� ���
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We point out that the specific form of the isomorphism is important here (rather than the existence of
some isomorphism, which is always the case if��� � and ��� � have the same dimension).

Let us now extend the notion of surgery to operators. Since proper (and, in particular, elliptic)
operators in collar spaces do not change the supports of elements “too much,” one can reasonably speak
of coincidence of such operators on a subset of ���� �� provided that the spaces themselves where the
operators act coincide on the subset.

DEFINITION 1.10. Let  � ���� �� be a subset open in ���� ��, and let��
�
� �� and��

�
� �� be collar

spaces. We say that proper operators

�� 	 �� � ���

�� 	 �� � ��

coincide on  if for each compact subset � �  the following condition is satisfied: there is a number
Æ	 � Æ	��� � � such that

��Æ� � ��Æ� (1.7)

whenever Æ � Æ	 and �

� � � . Under this condition, we also say that �� is obtained from �� by
surgery on ���� ��� and write

��
�
� �� or ��


��
����
�� ���

We note that (1.7) is well defined, since � � ����� �� ����� and for small Æ one has ��Æ�,
��Æ� � ��� � �� ��� �; the latter inclusion follows from the fact that  is open.

In the following, we deal with surgery diagrams rather than individual surgeries, more precisely, with
squares of the form

��
�
�� ��

� � � 

��
�
�� ��

where the�� are collar spaces and �, �, � ,� � ���� ��. This square is said to commute if the diagram

��� � � ��� �
�� ��

��� � � �� ��

 � ���� ����� �� � � ���

of isomorphisms commutes, where the arrows are the restrictions to the relevant subspaces of the corre-
sponding isomorphisms occurring in Definition 1.9. A similar square of modifications for operators is
said to commute if the underlying squares of modifications of collar spaces commute.

Let us now state the main theorem of this section.

THEOREM 1.11. Let the surgery diagram

�
��
�� ��

� � � �

��
��
�� ��

(1.8)
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of elliptic operators in collar spaces commute. Then the relative indices of the operator occurring in the
diagram satisfy the relation

��������� � ������� ����

The proof can be found in (Nazaikinskii and Sternin 2001).

The following two sections provide examples illustrating the index locality principle for elliptic oper-
ators on smooth manifolds and elliptic boundary value problems. Applications of this principle to elliptic
problems on manifolds with singularities will be given in Part III.

1.2. Surgery in Index Theory on Smooth Manifolds

In this section we consider two examples, one of which pertains to compact manifolds and the other,
to noncompact ones.

1.2.1. The Booß–Wojciechowski theorem

In this subsection, we study how the index of an elliptic PDO on a manifold changes under surgery
on the manifold where the operator is defined and some associated surgery on the bundles in whose
sections it acts. The index increment formula can naturally be treated as a relative index formula, for the
symbol before and after the surgery is essentially the same but is realized differently depending on how
the manifold (and the bundles) have been glued from pieces.

Let� be an orientable manifold (possibly, with boundary and/or singularities), and let # �� be an
embedded smooth compact two-sided submanifold of codimension � contained in the smooth “interior”
part of � . Next, let � be a collar neighborhood of # contained in the smooth part of � . We choose
and fix some trivialization � � ���� �� � # of this neighborhood and use there the coordinates ��� $�,
� � ��� ��, $ � #. Let

% 	 # � #

be a given diffeomorphism. We perform the following operation: we cut � along # and glue together
again, identifying each point ���� $� on the left coast of the cut with the corresponding point ���� %�$��
on the right coast. The resulting smooth manifold (the smooth structure is well defined, since we have
chosen and fixed the trivialization) will be denoted by�� and called the surgery of� via %.

Let � be a vector bundle over� . Suppose that we are given an isomorphism of vector bundles

& 	 ��� � %� ����� �

Then over�� there is a naturally defined vector bundle ��
� (by clutching along # with the help of &),
which will be called the surgery of � via the pair �%� &�.

Now let � and  be two vector bundles over� , and let

' 	 "�� � "��

where " 	 	 �	� � 	 �	� is the natural projection, be an elliptic symbol of some order (. By choosing
the representation

��� � �"�� ����� �  �� � �"�� � ��� �
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of the bundles �� over � � ��� �� � #, where �" 	 ��� �� � # � # is the natural projection, and by
passing to a homotopic symbol if necessary, we can assume that ' is independent of the coordinate � in
a sufficiently small neighborhood of # (that is, ' � '	 in that neighborhood). Consider the mapping
(denoted by the same letter)

'	
���
� '

��
����

	 "������� �� "� ����� � (1.9)

With regard to the trivialization chosen, this mapping can be rewritten in the form

'	��� $� )� 	 �� �� �� �� � �)�� 
� �� $ � #�

where � is the dual variable of � and ) is a point in the fiber of 	 �# over $.
Suppose that a surgery % of� and associated surgeries &� and &� of the bundles � and  are given.

If the diagram

��
'	��� $� )�

�� �

� &��$� � &� �$�

�����

'	��� %�$��
�%��$�

��)�
�� ���� �

(1.10)

where �%��$� is the transposed Jacobi matrix of the mapping % at the point $, commutes, then the surgery
takes the original symbol ' to a new (smooth) symbol �' on the cotangent bundle 	 �	�� . (The smoothness
of the newly obtained symbol is guaranteed by the independence of ' on the coordinate � in a neighbor-
hood of #.) Our task is to establish how the surgery affects the index of the corresponding PDO. By the
locality principle, this index increment (the relative index) depends only on the surgery on #, and so we
use the relative index theorem to pass to a simpler model.

Thus, let � and �� be operators with principal symbols ' and �' on the manifolds � and ��, re-
spectively, obtained from each other by the above-mentioned surgery. The problem is to find the relative
index ��� ��� ����.

It follows from Theorem 1.11 that the relative index is independent of the structure of the manifolds
and operators in question outside a small neighborhood of #. Hence we can use the simplest model
for the computations. Namely, consider the manifold � � # � #� and the elliptic pseudodifferential
operator

�	 	 �
������� ������� �

of order( with principal symbol '	 independent of � � #�. (The bundles � and  are lifted to� with
the help of the natural projection� � # � #� � #.) Next, let�� be the surgery of� with the help of
%, let ��
�� and ��
�� be the associated surgeries of the bundles � and  , and let��	 	 �

����� ��
�� �� �������� ��
�� �

be the new elliptic pseudodifferential operator with principal symbol �'	 coinciding with �	 outside a
neighborhood of the set #, where the surgery is done.

The operators �	 and ��	 are elliptic operators on compact manifolds, and their index can be calcu-
lated by the Atiyah–Singer theorem. Moreover, the index of �	 is zero, since its symbol is independent
of � � #�. Hence in this model only one term in the expression for the relative index is nontrivial:

��� ��� ���� � ��� ��	�

This is the assertion of the Booß–Wojciechowski theorem.
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1.2.2. The Gromov–Lawson theorem

The locality principle in index theory on noncompact manifolds was apparently obtained for the first
time (for the special case of Dirac operators on noncompact Riemannian manifolds) by Gromov and
Lawson (Gromov and Lawson 1983), who obtained the corresponding relative index theorem. (Later
Anghel (Anghel 1993) generalized their result to arbitrary self-adjoint elliptic first-order operators on a
complete Riemannian manifold.) In this subsection, we briefly describe the result due to Gromov and
Lawson and its relationship to the general index locality principle.

Let 	 and � be complete even-dimensional Riemannian manifolds, and let�	 and�� be general-
ized Dirac operators on 	 and �, respectively, acting on sections of vector bundles #� and #�. We say
that �	 and �� coincide at infinity if there exist compact subsets �	 �  	 and �� �  �, an isometry

 	 � 	��	�
	
� � ������

and an isometry � 	 #	
��
�����

� #�
��
�����

of vector bundles such that
�� � � Æ�	 Æ ��� on  �����

To simplify the notation, we identify  	��	 with  ���� and write

�	 � �� on � �  	��	
��  �����

In this situation we can define the topological relative index ind���
�
� � �

�
	 � of the operators

��
� 	 ��#�

� �� ��#�� � and ��
	 	 ��#�

	 �� ��#�	 �

as follows. If  	 and  � are compact, then we simply set

ind���
�
� ��

�
	 � � index���

� �� index���
	 ��

If 	 (and hence �) is noncompact, then we use the following procedure. We cut the manifolds 	 and
 � along some compact hypersurface � � � and compactify them by attaching some compact manifold
with boundary � . The operators ��

	 and ��
� can be extended to elliptic operators ���

	 and ���
� on the

compact manifolds thus obtained. Now we set

������
�
� ��

�
	 � � ���� ���

� �� ���� ���
	 �� (1.11)

It follows from the Relative Index Theorem 1.11 that the right-hand side of (1.11) is independent of the
arbitrariness in the above construction.

Next, let the operators ��
	 and ��

� be positive at infinity (the precise definition is given in (Gromov
and Lawson 1983); roughly speaking, this condition means that the free terms in the operators ���

	 �
��	

and ���
� �

��� expressed via covariant derivatives are positive). Then the operators ��
	 and ��

� are
Fredholm, and one can define the analytical relative index

������
�
� ��

�
	 � � ������

�
� �� ������

�
	 �� (1.12)
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The Gromov–Lawson relative index theorem states that the topological and analytical relative indices
coincide:

������
�
� � �

�
	 � � ������

�
� � �

�
	 �� (1.13)

In (Gromov and Lawson 1983) one can also find a more general theorem pertaining to the case
in which the operators �	 and �� coincide only on some of the “ends” of  	 and  � at infinity. In
this case, one again has a formula like (1.13), where the right-hand side is no longer the “topological
relative index,” but it is rather the analytical index of some elliptic Fredholm operator on a (generally
speaking, noncompact) manifold obtained from  	 and  � by cutting away the “common” ends along
some hypersurface followed by gluing along that hypersurface. The proof uses the same technique.

We can conclude (as is easily seen from the second theorem) that the topological index actually has
nothing to do with the Gromov–Lawson relative index theorem: this theorem states the equality of the
analytical relative indices for two pairs of operators obtained from each other by simultaneous surgery on
a part of the manifold where they coincide; the topological index occurs in the answer only if the newly
obtained operators fall within the scope of the Atiyah–Singer theorem. (On the other hand, naturally,
the applications of theorems of that type are just related to transforming the original operators to new
operators such that the Atiyah–Singer theorem or any other theorem expressing the index in topological
terms can be used.) As to the equality of analytic relative indices, it directly falls within the scope of
Theorem 1.11.

1.3. Surgery for Boundary Value Problems

In this section, we describe some applications of the locality principle for the relative index to the
theory of boundary value problems for elliptic differential operators.

1.3.1. Notation

Let be a smooth compact *-dimensional manifold with boundary + � , that is a smooth closed
manifold of dimension *� �. We choose and fix a representation of some collar neighborhood � of the
boundary in the form of a direct product

� � , � ��� ��� (1.14)

where , is taken to , � ��� by the identity mapping. The coordinate on ��� �� will be denoted by �, an
the local coordinates on the boundary by � � ���� � � � � �����, so that local coordinates on  in � have
the form

� � ���� � � � � ��� � ��� ���

If � is a vector bundle over  , then the restriction ��� is isomorphic to the lift to � of the restriction
��� of the same bundle to the boundary:

�� � "����� � (1.15)

where "� 	 � � , is the projection naturally associated with the representation (1.14)
Now let �� 	 ��� ����� ��� ���� (1.16)
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be an elliptic differential operator of order( on acting in sections of finite-dimensional vector bundles
�� and ��. Then, using the trivialization (1.14) and the associated representations (1.15) of �� and ��

over � as the lifts of ���� and ���� , we can represent the operator (1.16) in � in the form

�� �
��

��	

������

	
�-
+

+�


�

� (1.17)

where ������ 	 ���,����� �� ���,����� �

is a differential operator of order ( � � in sections of bundles over , , depending on the parameter �.
Next, the coefficient ������ is a differential operator of order �, i.e., a bundle homomorphism, and since�� is elliptic, this coefficient is a bundle isomorphism. Dividing the operator �� in � by this coefficient
on the left, we can assume without loss of generality that the bundles ���� and ���� coincide and the
coefficient itself is the identity operator.

The operator family

���� �

��
��	

�������
� 	 ���, �� �����, � (1.18)

acting in Sobolev spaces3 on , and obtained from the representation (1.17) by freezing the coefficients at
the boundary � � � and by replacing the operator �-+.+� with the variable � will be called the conormal
symbol of the operator ��.

If � � ��� � is an element of a Sobolev space on  , then for $ � ( � �.� by trace theorems we
have a well-defined jet of order (� � of � on , . With regard to the identifications (1.14) and (1.15), it
can be rewritten in the form

����
� � �

�
�
���
��	
�
+�

+�

���
��	
� � � � �

+����

+����

���
���

�
� �������, � � � � ���������, �� (1.19)

Boundary value problems for �� are stated in terms of the boundary jet (1.19) of �, to which one applies
some differential or pseudodifferential operators. Since for ( � � the space on the right-hand side
in (1.19), which for brevity will be denoted by

������
� �, � �

���
��	

���������, �� (1.20)

is a direct sum of Sobolev spaces of distinct orders, the orders of�DO in such spaces must be understood
in the sense of Douglis–Nirenberg.

Recall that, for example, under this definition the operator

�� � ������
���
����� � ��

��� ���
���
� �� � (1.21)

given by a matrix���� of PDO is of order � � if the orders (in the usual sense) of its entries satisfy the conditions

������� � �� � � ��

3In what follows, we usually omit the bundles in the notation of Sobolev spaces.
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The principal symbol of the operator (1.21) of order � in the sense of Douglis–Nirenberg is given by the matrix

�� ��� � ��������������
���
����� (1.22)

of principal symbols of the corresponding orders of the entries of the operator matrix (1.21).

1.3.2. General boundary value problems

Let �� be an elliptic differential operator (1.16) on a manifold . A general boundary value problem
for �� is a problem of the form � ��� � � � ����� ��������

� � � % � ��
(1.23)

where $ � ( � �.�, � � ��� �, � is a Hilbert space, and �� is a continuous linear operator in the
spaces �� 	 ������

� �, �� �� (1.24)

Ordinary boundary value problems are the special case in which � is a Sobolev space of sections of
some vector bundle over the boundary and� is a (pseudo)differential operator. If �� is the Dirac operator
on an even-dimensional manifold  , � is the positive spectral subspace of the tangential operator, and
� is the orthogonal projection on �, then we arrive at the Atiyah–Patodi–Singer problem (Atiyah, Patodi
and Singer 1975), more precisely, a more general problem in which the nonlocal boundary data may be
nonzero.

As shown by these examples, of main interest is the case in which � is not an abstract Hilbert space
but rather a subspace of some Sobolev space on the boundary4 and � is a PDO. More precisely, we shall
consider only subspaces that are ranges of pseudodifferential projections. If �/ is a pseudodifferential
projection on some subspace �! of a Sobolev space of sections of some vector bundle  over , , then the
principal symbol / � �� �/ � is a projection on a subbundle ! � "� over 	 �	 , , where " 	 	 �	 , � ,

is the natural projection. The subbundle ! is called the principal symbol of �!.(This is well defined, that
is, independent of the choice of a pseudodifferential projection on �!.) The pseudodifferential version of
the general boundary value problem (1.23) for an unknown function � � ��� ���� has the form� ��� � � � ����� �����������

� � � % � �/��,�  ��
(1.25)

where ��,�  � is a Sobolev space of sections of a bundle  over the boundary (we intentionally omit
the index on this space, since it can be a usual Sobolev space or a space of the form ��

��, �) and�� 	 �
�����
� � ��,�  � is a PDO such that 0� ��� � 0� �/ �. (The last inclusion necessarily implies that

0��� � 0�/ � � !.)
Of general boundary value problems (1.23), we single out problems that are a straightforward (non-

homogeneous) analog of the Atiyah–Patodi–Singer problem. Namely, let an operator �� of order ( be
given. On the basis of the conormal symbol (1.18) of ��, we shall construct a pseudodifferential projec-
tion �/� 	 ��

��, �� ��
��, � (1.26)

in the Cauchy data space (1.20).
4In particular, the entire Sobolev space.
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� This projection can be constructed as follows (see details in (Nazaikinskii, Schulze, Sternin and
Shatalov 1998)). If the order ( of the operator �� is equal to �, then in the neighborhood � it is repre-
sented (up to multiplication by a bundle isomorphism) in the form

�� � �-
+

+�
������

and as �/� we take the spectral projection of the tangential operator ���� corresponding to the part of the
spectrum lying in the right half-plane. If the order( is greater than one, then a standard trick reduces ��
to a matrix operator ��� of the first order with respect to �- �

�� , and as �/� we take the spectral projection

of the tangential operator for ���. �

In the following, we also set �/� ���
� �� �/�� (1.27)

Needless to say, if �� is the Dirac operator, then the projection �/� thus introduced coincides with the
Atiyah–Patodi–Singer spectral projection. The spectral boundary value problem is problem (1.23) of the
special form � ��� � � � ����� ��/�����

� � � % � �/�������
� �, ��

(1.28)

Problem (1.28), which will be denoted by � ��� �/�� for brevity, is always Fredholm. The index of a
general Fredholm boundary value problem (1.23), which will be denoted by � ��� ���, is expressed by the
formula

���� ��� �/ � � ���� ��� �/�� � ���� �� 	 �/�������
� �, �� ��� (1.29)

Problem (1.25) is Fredholm if and only if the principal symbol � of the operator �� is an isomorphism
between the principal symbol !� of the subspace �!� � �/�������

� �, � and !. In this case, the above
general index formula (1.29) is also valid.

1.3.3. A model boundary value problem on a cylinder

In this subsection, the simplest model problem that will later be used as a technical tool in the
application of the locality principle to boundary value problems.

Let , be a closed �� manifold. On the cylinder

� � , � ���� �� (1.30)

with boundary
+� � �, � ����� � �, � �����

consisting of two separate components (faces) , �����, we consider an elliptic differential operator �
of order ( with coefficients independent of the coordinate � � ���� ��:

�� �

	
�-
+

+�


�

�

����
��	

���

	
�-
+

+�


�

� (1.31)
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Here ��� is a differential operator of order ( � � on , ; in accordance with the preceding, we assume
that ��� (the coefficient of ��-+.+���) is the identity operator.

The conormal symbol of �� on each of the faces has the form

������ � �
� �

����
��	

����
� on , � ����� (1.32)

����� � ������� � ����� �

����
��	

�������
� on , � ���� (1.33)

We denote ������ simply by ���� and the corresponding positive spectral projection in ��
��, � by�/�. Then the positive spectral projection corresponding to ����� differs from �/� � � � �/� by a

finite-dimensional operator (and coincides with �/� if ���� is invertible for all � � �).

Model problem 1 (a spectral problem)�����
��� � � � �������/�����

� 
����� � % � �/�������
� �, ���/�����

� 
���� � � � �/�������
� �, ��

(1.34)

In this problem, the boundary conditions are determined by complementary projections � �/� � �/� � ��
on the faces of the cylinder.

THEOREM 1.12. The index of the model problem (1.34) is zero.

� One can prove this, for example, as follows. For simplicity, assume that the operator �� is of the first
order. The index of problem (1.34) does not change if we replace �� by ����, where � is a small positive
number. Hence without loss of generality we can assume that the conormal symbol ���� is invertible
for all � � �, and then problem (1.34) is uniquely solvable for any right-hand sides and boundary
conditions. �

1.3.4. The Agranovich–Dynin theorem

This theorem, as well as the “dual” Agranovich theorem considered in the next subsection, is one of
the expressions of the locality principle as applied to boundary value problems.

THEOREM 1.13. Let �� be an elliptic differential operator on a compact �� manifold  with boundary
+ � , , and let ��� and ��� be two operators each of which specifies elliptic (in the sense of Shapiro–
Lopatinskii (Agranovich 1997)) boundary conditions for the operator ��. Then the relative index of the
elliptic boundary value problems � ��� ���� and � ��� ���� is equal to

���� ��� ����� ���� ��� ���� � ��� ���� Æ �
��
� � (1.35)

where ���� Æ�
��
� � is an elliptic PDO on , with principal symbol ��� Æ �

��
� �; here �� and �� are

treated as the restrictions of the principal symbols of the operators ��� and ��� to the subbundle !�,
which is the principal symbol of the subspace �!�.
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Proof. We shall derive this theorem from the locality principle for the relative index. We equip
Sobolev spaces on  with the structure of collar spaces using a function � 	  � ���� �� equal to ��
in a neighborhood of , , equal to � outside the collar neighborhood � of , , and increasing from �� to �
in � . In various function spaces on , , we also introduce the structure of collar spaces by setting

�%
���
� �����% (1.36)

for any elements % of such spaces and any � � ������� ���. Then elliptic boundary value problems
generate elliptic operators in collar spaces (this follows from the structure of parametrices of boundary
value problems; e.g., see (Hörmander 1985)). Without loss of generality, we can assume that the coeffi-
cients of �� are independent of the collar variable � in � . Consider the surgery diagram shown in Fig. 1.2.
Here ��	 in the right column of the diagram is the operator on the cylinder naturally obtained from �� by

Figure 1.2. Surgery for boundary value problems.

freezing the coefficients on the boundary.
By the locality principle for the relative index, we have

���� ��� ����� ���� ��� ���� � ���� ��	� ���� �/��� ���� ��	� ���� �/��� (1.37)

The indices on the right-hand side can be computed by formula (1.29) with regard to the fact that the
index of the problem � ��	� �/�� �/�� is zero. We have

���� ��	� ���� �/�� � ���� ��� 	 �!� � ����

���� ��	� ���� �/�� � ���� ��� 	 �!� � ����

where �� and �� are the Sobolev spaces on , in which the operators ��� and ��� act. Then

���� ��	� ���� �/��� ���� ��	� ���� �/�� � ���� ���
��
���
� 	 �� � ��� � ��������

��
� �� (1.38)

as desired. (As usual, by ��
���
� we denote the almost inverse of ���.)
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1.3.5. The Agranovich theorem

The Agranovich theorem deals in a sense with the opposite case.

THEOREM 1.14. Let ��� and ��� be two elliptic dimensional operators on a compact �� manifold  
with boundary + � , coinciding in a collar neighborhood of the boundary, and let �� be a boundary
operator satisfying the Shapiro–Lopatinskii conditions with respect to ��� (and hence with respect to���). Then the relative index of the problems � ���� ��� and � ���� ��� is equal to

���� ���� ���� ���� ���� ��� � ���� ����
��
� �� (1.39)

where ����
��
� is a PDO on with principal symbol ���

��
� acting as the identity operator of functions

supported in a sufficiently small neighborhood of the boundary.

Remark 1.15. Since the operator ���
��
� acts as the operator of multiplication by the (unit) function in

a neighborhood of the boundary, it obviously requires no boundary conditions.

Proof. The operators ��� and ��� can be extended to the double � �  �
�
 as elliptic operators

(see (Seeley 1969)).
Since ��� and ��� coincide near the boundary, we can assume that the extensions coincide on the

second copy of  . Let us denote these extensions by �� and ��. Now consider the surgery diagram
shown in Fig. 1.3.

Figure 1.3. Extension to the double.

By the locality principle for the relative index, we obtain

���� ���� ���� ���� ���� ��� � ��������� �������� � ���� ����
��
� ��
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But it is obvious that

���� ����
��
� � � ���� ����

��
� ��

since the symbol ���
��
� of the operator ����

��
� is equal to unity on the second copy of  and in a

neighborhood of , , so that this operator can be homotopied to an operator acting as the identity operator
on functions supported on the second copy of  or in a neighborhood of , .

1.3.6. Bojarski’s theorem and its generalizations

In the middle 1970s, Bojarski put forward the following cutting conjecture in the framework of a
surgery proof of the Atiyah–Singer index theorem, which he was developing at the time. Consider a
Dirac operator �� on a closed connected manifold� . We cut� by a two-sided hypersurface # into two
parts �� and ��, +�� � +�� � #, and equip the resulting Dirac operators on �� and �� with
the Atiyah–Patodi–Singer conditions �/��� � �� �/��� � �. Then the index of the Dirac operator on
� is equal to the relative index of the Fredholm pair of subspaces

��!� � �� �/�� �!� � �� �/���
Recall that the relative index of the pair ����� ���� is defined as the index of the Fredholm operator

��� � ��
�

�� ����

Later this conjecture was proved (Bojarski’s theorem); see the book (Booß-Bavnbek and Wojciechowski
1993) for details. Here we shall prove a theorem on cutting an arbitrary elliptic operator into boundary
value problems.

Let � be a closed �� manifold, �� an elliptic differential operator on � , and # � � a smooth
two-sided hypersurface. We cut � along # into two manifolds �� and �� with boundary +�� �
+�� � # and consider general elliptic boundary value problems on�� and��:� ���� � ��� on �������

���
� �� � %� � ���

(1.40)

� ���� � ��� on ����������
� �� � %� � ���

(1.41)

where ��� 	 ��
��#�� �� (1.42)��� 	 ��
��#�� ��� (1.43)

are some operators of boundary conditions such that problems (1.40) and (1.41) are Fredholm and ��

and �� are some Hilbert spaces. The restrictions of ��� to �!� and ��� to �!�, where �!� � �� �/� and
the projections �/� correspond to the conormal symbol of the operator ��, will be denoted by the same
letters.
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THEOREM 1.16.

��� �� � ���� ���� ���� � ���� ���� ����� ���

� ���
�!�

 	 ��� �!� ��
��


��

�
(1.44)

Figure 1.4. Cutting into boundary value problems.

Proof. Consider the surgery diagram shown in Fig. 1.4. In the left column, the main elliptic operator
is the operator �� on � and its restrictions to �� and ��. In the right column, the main operator is
given by the extension to the finite cylinder � of the operator �� with coefficients freezed on #. Needless
to say, just as before, we assume that the coefficients of �� are independent of the collar variable �. By
the relative index theorem, we have

��� �� � ���� ���� ����� ���� ���� ���� � ��� ���  ���
(the remaining two terms on the right-hand side are zero). The proof is complete.

1.4. (Micro)localization in Lefschetz theory

Lefschetz theory also enjoys a localization principle, which essentially states that the Lefschetz num-
ber of a geometric endomorphism is equal to the sum of contributions of fixed points of the corresponding
mapping. This principle also has a microlocal version pertaining to the case in which the endomorphism
is associated with a mapping of the phase space, i.e., is a Fourier integral operator. In this section we
explain the corresponding results for the case of smooth manifolds.
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1.4.1. The Lefschetz number

Let
� ����� �	

������� ��
������� � � �

����
����� �� ����� � (1.45)

be a complex of vector spaces over � with finite-dimensional cohomology, and let

	 � �	� 	 �� � ���
��
��	
   
�

(1.46)

be an endomorphism of the complex (1.45), that is, a collection of linear mappings such that the diagram

� ����� �	
������� ��

������� � � �
����
����� �� ����� ����!�

���!�

���!�

� ����� �	
������� ��

������� � � �
����
����� �� ����� �

(1.47)

commutes. It follows from the commutativity of this diagram that

	�������� � ����� � 	��������� � ������� � � �� � � � �(�

where ���� and ��� are the kernel and range of the operator �, respectively, and by definition ���

and �� are zero maps. Hence the endomorphism (1.46) induces well-defined operators

�	� 	 ����� � ������ � � �� � � � �( (1.48)

on the cohomology spaces����� � �����. ������ of the complex (1.45), and the Lefschetz number
of the endomorphism (1.46) is defined as the alternating sum

� � ����	 � �
��

��	

����� ����� �	� (1.49)

of traces of the finite-dimensional operators (1.48).

1.4.2. Localization and the contributions of singular points

Suppose that (1.45) is an elliptic complex of differential operators on a smooth compact manifold
� without boundary and (1.46) is a geometric endomorphism associated with a smooth mapping � 	
� � � :

�� � �
������� where � is a vector bundle over��

	����� � �������%����� where ����� 	 �"��� � �� is a homomorphism. (1.50)

Here �� is the fiber of � over a point �. In the following, we assume for simplicity that( � � (i.e., the
complex has length �) and omit the index � on the operator �. To distinguish this case from the general
case of abstract operators, we equip the operators � and 	� with hats.

In this subsection, we show that the Lefschetz number �� ��� �	 � can be expressed as the sum of
contributions corresponding to connected components of the set � �!� of fixed points of %. Although
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these contributions are defined here as integrals over some neighborhoods of these components and
there is an ambiguity in the definition of the corresponding integrands, the values of these integrals are
independent of the cited ambiguity as well as on the structure of the operators ��� �	�, and �	� outside an
arbitrarily small neighborhood of the set � �%�.

Our starting point is the following trace formula for the Lefschetz number (e.g., see (Fedosov 1993)):

! � ����� �	���� �0 ���� ����� �	���� �� �0�� (1.51)

Here �0 is an arbitrary almost inverse of �� modulo trace class operators. (That is, the operators �� �0 ��
and �� �� �0 are trace class.)

� Recall how this formula can be established. Let � be the orthogonal complement of the kernel of �� and �
the orthogonal complement of the range�� ���. (Thus, � is naturally isomorphic to the cokernel of ��). Consider
the operator �� that vanishes on � and is equal to the inverse of ���� � � �� �� ��� on the range �� ���.
Then � � �� �� is the projection on the kernel of ��, and � � �� �� is the projection on the cokernel of ��, so that
formula (1.51) for this case is reduced to the definition of the Lefschetz number. Now if ��� is another almost
inverse of �� modulo trace class operators, then after replacing �� by ��� the right-hand side changes by

����	 �	�� ��� ���� �� �����	 �	� ��� ��� �����

Using the cyclic invariance of the trace and the relation �� �	� 
 �	� ��, we find that this difference of traces is zero,
so that formula (1.51) is valid for an arbitrary almost inverse modulo trace class operators. �

It turns out that for a special choice of regularizers the right-hand side of (1.51) splits into a sum
of integrals over arbitrarily small neighborhoods of components of the fixed point set. For the sake of
our argument, it is convenient to equip� with a Riemannian metric 12� and a smooth measure 1&���.
Using this measure, we can treat integral kernels of PDO as (generalized) functions (or sections of the
corresponding bundles) on� �� .

Let � �%� be the fixed point set of %, and let

� �%� � �� � � � � ����

where �� � � � �� � � � � �, are disjoint compact sets.
Next, let 
�� � � � � 
� be sufficiently small neighborhoods of these sets. On the compact set� �

�

��

� � � � 
�

�
, the function 2��� %���� does not vanish and is continuous and hence has a nonzero minimum

�. Since �� is an elliptic differential operator on� , it follows that for an arbitrary � � � there exists an
almost inverse �0 of �� modulo trace class operators such that its integral kernel 0��� �� has the property

0��� �� � � for 2��� �� � �.�� (1.52)

(An operator �0 with this property is said to be �-narrow.) Then the kernels ����� �� and����� �� of the
operators �� �0 �� and �� �� �0 have the same property, since the differential operator �� does not enlarge
supports. In terms of these kernels, formula (1.51) becomes

! �

�
�
��������������%���� �� ��������������%���� ��� 1&���� (1.53)
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where ����� in the integrand stands for the matrix trace. With regard to property (1.52), this expression
can be rewritten in the form

! �
��

���

�
��

��������������%���� �� � �������������%���� ��� 1&���� (1.54)

since the integrand vanishes identically outside the union of 
� .
It turns out that not only the whole sum but also each individual term is independent of the choice of

a �-narrow almost inverse (at least provided that the 
� are sufficiently small).

� This assertion follows from the local nature of the construction of an almost inverse operator: for two
�-narrow almost inverses, there always exists a third �-narrow almost inverse coinciding with the first
operator in some neighborhood 
�� and with the second operator in all 
� for � 
� �	. �

Thus, the following definition is meaningful.

DEFINITION 1.17. The number

!� �

�
��

	
������������

�
%���� �

�
� �������

�
%���� �

�

1&��� (1.55)

is called the contribution of the component �� of the fixed point set to the Lefschetz number. (In partic-
ular, if�� is a singleton, this is the contribution of the corresponding fixed point.)

1.4.3. The semiclassical method and microlocalization

The class of geometric endomorphisms is not a natural framework for the problem on the Lefschetz
number if one does not restrict oneself to complexes of differential operators but has in mind also pseu-
dodifferential operators. As differential operators form a subclass of the more general class of pseu-
dodifferential operators, so geometric endomorphisms form a subclass of the class of Fourier integral
operators, and hence one can naturally try to obtain a Lefschetz type formula for the case in which (1.45)
is an elliptic complex of pseudodifferential operators and the endomorphism (1.46) is given by a set of
Fourier integral operators. It turns out that once we pass to endomorphisms associated with mappings of
the phase space, it is more convenient to deal with asymptotic theory. To obtain meaningful formulas,
one should introduce a small parameter � � ��� �� and consider semiclassical pseudodifferential opera-
tors (or �.�-pseudodifferential operators; e.g., see (Maslov 1972, Maslov 1973, Mishchenko, Shatalov
and Sternin 1990)) and Fourier–Maslov integral operators associated with a canonical transformation

% 	 	 �� � 	 ���

Thus, it is symplectic rather than contact geometry that underlies the Lefschetz formula.) Then the
Lefschetz number depends on �, and under appropriate assumptions about the fixed points of % one ob-
tains an expression for the asymptotics of the Lefschetz number as � � � by applying the stationary
phase method to the trace integrals representing this number. Namely, the Lefschetz number of the en-
domorphism (1.46) (with ( � � for simplicity) is given by the formula (1.51). Now if � and 0 are
pseudodifferential operators and 		 and 	� are Fourier–Maslov integral operators, then 		���0�� and
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	�����0� are also Fourier–Maslov integral operators associated with the same canonical transforma-
tion as 		 and 	�. Hence, the problem is reduced to the evaluation of traces of Fourier–Maslov integral
operators. This is carried out with the help of the stationary phase method; only fixed points of % give
a nonzero contribution to the asymptotics of these traces as � � �. As usual in the stationary phase
method, the contribution of each isolated component of the set of fixed points can be treated separately;
in other words, the microlocalization principle holds in this case for the Lefschetz number.

We see that the semiclassical method provides a straightforward computation of the Lefschetz num-
ber. Let us now state one of the main results for semiclassical endomorphisms of elliptic complexes on
smooth manifolds.

Let� be a smooth closed manifold of dimension *. We suppose that� is oriented and is equipped
with a positive volume form 1�. For a canonical transformation

% 	 	 �� � 	 �� (1.56)

and a smooth function � on 	 �� satisfying appropriate conditions at infinity in the fibers, by 	 �%� �� we
denote the semiclassical Fourier–Maslov integral operator (i.e., a Fourier–Maslov integral operator with
small parameter � � ��� ��) with amplitude � associated with the graph !��
" % of the transformation %.
We assume that the graph of % is a quantized Lagrangian submanifold in 	 �� � 	 �� . (A detailed def-
inition of Fourier–Maslov integral operators can be found in (Mishchenko, Shatalov and Sternin 1990),
and precise conditions ensuring that 	 �%� �� is well defined are given in (Sternin and Shatalov 1998).)

Consider the commutative diagram

� ����� �������
��

����� ������� ����� �����!�

��� �!�

� ����� �������
��

����� ������� ����� ��

(1.57)

where � and � are vector bundles over � , �	� � 	 �%� ���, � � �� �, are Fourier–Maslov integral
operators associated with some canonical transformation (1.56), and �� is an elliptic5

THEOREM 1.18. Let the transformation % have only isolated nondegenerate fixed points ��� � � � � �# .
(The nondegeneracy condition means that ����� � %������ 
� �� � � �� � � � � 3 , where %����� is the
derivative mapping of % at the point ��.) Then the Lefschetz number of the diagram (1.57) has the
asymptotics

� �

#�
���

� 


	
-

�
#�



������������ ������������

���
�
�� %�����

� �4���� (1.58)

where �� and �� are the amplitudes of �	� and �	�, #� is the value of the generating function of % �the
choice of which is fixed in the definition of the Fourier–Maslov integral operators �	� and �	�� at the point
��, and the branch of the square root is chosen according to the stationary phase method.6

5By definition, this means that there exists a 		
-pseudodifferential operator �� on� such that the symbols of the operators

	� � �� and 	� �� �

belong to the Hörmander class ����� ��� uniformly with respect to 
 � �
� 	�.
6See the explicit formulas in (Sternin and Shatalov 1998).
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1.4.4. The classical Atiyah–Bott–Lefschetz theorem

This theorem (Atiyah and Bott 1967) deals with the case in which (1.45) is an elliptic complex of
differential operators on a smooth compact manifold � without boundary and (1.46) is a geometric
endomorphism associated with a smooth mapping � 	 � �� � (see (1.50)). Suppose that the fixed
points of � are nondegenerate in the sense that

���

	
��

+�

+�
���




� �� � � � ���� (1.59)

(Here � ��� is the set of fixed points of � .) Then they are isolated, and the Atiyah–Bott–Lefschetz
theorem states that the Lefschetz number � can be expressed by the formula

� �
�

����"�

��
��	����

� ����������

����
�
�� � ����

�
�

� (1.60)

Thus, the Lefschetz number of the endomorphism (1.46) is expressed in classical terms. Note also that
the operators �� themselves do not occur in (1.60); only the existence of a complex (1.45) that makes
the diagram (1.47) commute is relevant to the theorem.

The Lefschetz fixed point theorem is the special case of (1.60) in which (1.45) is the de Rham complex
on a smooth compact oriented (-dimensional manifold � and 	 is the endomorphism induced on
differential forms by a smooth mapping � 	 � �� . In other words,

�� � #����

is the space of differential �-forms on� ,

�� � 1 	 #����� #������

is the exterior differential, and
	� � �� 	 #����� #����

is the induced mapping of differential forms.
The Lefschetz number � � ���� is given in this case by the formula

���� �
�

����"�

!� ���

	
+�

+�
���� �




under the assumption that all fixed points are nondegenerate.

Now let us show how the classical result by Atiyah–Bott (Atiyah and Bott 1967) follows from Theo-
rem 1.18. In doing so, we suppose that the map � 	 � � � determining the corresponding geometric
endomorphism is a local diffeomorphism and has only nondegenerate fixed points. We again assume
for simplicity that ( � �. Let operators �	� and �	� determine a geometric endomorphism of the elliptic
differential complex

� ����� ��������
��

����� �������� ����� �� (1.61)
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corresponding to the mapping � .
Multiplying the operator �� by ��, where ( is the order of this operator, we can view it as a semi-

classical differential operator. It is also easy to see that the principal symbol of the operator �� �� treated
as a �.�-PDO coincides with the principal symbol of the differential operator ��. In particular, the op-
erator �� �� is elliptic. Furthermore, after multiplying by �� the spaces ��� �� and $%&�� �� remain
unchanged, and so the Lefschetz number �����'� �	�� �	�� does not depend on �.

The operators �	� and �	� can be rewritten in the form

�	����� �

	
�

�"�


� �
� 


�
-

�
5������ ��

�
��������� 15 1�� � � �� �� (1.62)

and can be viewed as semiclassical Fourier integral operators associated with the graph ! of the sym-
plectic transformation corresponding to the mapping � .

More precisely, the form (1.62) corresponds to a nonsingular chart, and the generating function of
the symplectic transformation % determined by the map � has the form

$��� 5� � 5�����

Accordingly, the equations of the canonical transformation read

� � 5
+�

+�
���� � � �����

or

� � ������� � � 5
+�

+�
���������

Let � � ���� be a nondegenerate fixed point of � . Then ��� �� is a fixed point of the map %, which is
unique in the fiber of the bundle 	 �� over the point �. At this point, we have

������ %�� � ���

	
�� ��"

�� �
�� �

� �� �"
��



� ����� ���

	
+�

+�


��

���

	
��

+�

+�


�


� ��

so that it is nondegenerate. Computations by the stationary phase method give

� �
�

��"���

����������� ����������

����
�
�� �"

�$

�
�

�

which coincides with the classical result due to Atiyah–Bott (Atiyah and Bott 1967).
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