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Abstract. The Goldbach partitions of an even number greater than 2, given by the sums
of two prime addends, form the non-empty set for all integers 2n with 2 ≤ n ≤ 2 × 1014.
It will be shown how to determine by the method of induction the existence of a non-zero
lower bound for the number of Goldbach partitions of all even integers greater than or
equal to 4. The proof depends on contour arguments for complex functions in the unit
disk.



The order estimates of the number of partitions of an even number into a sum of primes
typically have an error term. However, when the partitions are restricted to the set of sums
of two primes, the form of the error term implies that the estimate does not exclude the
possibility of zero being obtained. If the constant c in the error term is specified, then the
integer typically should be greater than some exponential function of c for the bound to
be non-zero.

For example, an estimate of the number of partitions into the sum of two primes has
been obtained by using an integral representation of the density of prime powers in a
certain interval [1].

G(2s) =
∫ 2s−2

2

dy

log y · log(2s− y)
+ O

(
2s

log22s

)
+ O

(
2s

logq2s

)

A non-zero lower bound for G(2s) exists if

2s− 4
log32s

> c · 2s
log32s

1(
1 + log 2

log s

)3

s >
1
8
ec−4

This problem does not arise in the order estimates in the lower bound for the number of
partitions of odd integers into the sum of three primes, because the error term is typi-
cally less than the leading estimate by a factor of 1

(log N)A , where A can be chosen to be
arbitrarily large [2].

It is conventional to obtain an estimate of the number of partitions of an integer into
a sum of primes by considering the following exponential sum [3]

R(α) =
∑
p

e2πipα

S(α) =
∑
p

(log p) e2πipα

and the functions
g(α) = R(α)2e−2πinα

h(α) = S(α)2e−2πinα

with the integrals

G(n) =
∫ 1

0

R(α)2e−2πinα =
∑
p1,p2

∫ 1

0

e2πi(p1+p2−n)αdα

H(n) =
∫ 1

0

S(α)2e−2πinα =
∑
p1,p2

(log p1)(log p2)
∫ 1

0

e2πi(p1+p2−n)αdα
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Since the integral vanishes when p1 + p2 �= n, G(n) equals the number of Goldbach parti-
tions of n with the order of summands relevant and the two functions G(n) and H(n) are
simultaneuously greater than zero.

The method of induction shall be used to determine the existence of a non-zero lower
bound for the number of Goldbach partitions of an even integer.

Suppose that the even integer n− 2 can be written as the sum of two prime numbers.
Then

H(n− 2) =
1
2π

∫ 2π

0

S(θ)2e−i(n−2)θdθ > 0 θ = 2πα

This integral can be viewed as a contour integral over the unit circle

1
2π

∮
�v · �d�

where
�v(n−2) = (v(n−2)

r , v
(n−2)
θ ) �d� = (0, dθ)

and
v
(n−2)
θ (r = 1) = S(θ)2e−i(n−2)θ

Let �v(n)(r = 1) = e−2iθ�v(n−2)(r = 1). The extrapolation of the function into the disk
is either z−2�v(n−2)(r, θ) or z̄2�v(n−2)(r, θ). By Stokes’ theorem, the non-vanishing of the
line integral implies that �v(n−2)(r, θ) �= �∇χ where χ is a nonsingular function of r, θ.

Consider z−2 �∇χ = r−2e−2iθ �∇χ(r, θ) and suppose that there is a singularity in χ at
θ = θs. If �∇ψ1(r, θ) = z−2 �∇χ,

ψ1(r, θs) = e−2iθs

∫
drr−2 ∂χ(r, θ)

∂r

∣∣∣∣
θs

so that if χ(r, θs) is a singular function of the function r, ψ1(r, θs) shall also be a singular
function of r, giving rise to a non-zero surface integral

∫
�∇× �v(n)(r, θ) · �dS

and

H(n) =
1
2π

∫ 2π

0

S(θ)2e−inθdθ =
1
2π

∫
�v(n) · �d� �= 0

Next consider the function defined by �∇ψ2(r, θ) = z̄2�∇χ. Then

ψ2(r, θ0) = e−2iθ0

∫
drr2

∂χ(r, θ)
∂r

∣∣∣∣
θ=θ0
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and when θ0 coincides with θs, the singularity in χ(r, θ) may be removed the integral.
However, by Stokes’s theorem,∮

f(z, z̄)dz =
∫ ∫

D

∂f(z, z̄)
∂z

dz̄ ∧ dz

If f(z, z̄) = − i
r
∂ψ2(z,z̄)

∂θ
. the surface integral receives a contribution from the integral

− i

π

∫ ∫
D

z̄
e−iθ

r

∂χ(r, θ)
∂θ

dz̄ ∧ dz

Combining the two integrals gives

− i

π

∫ ∫
D

z̄
e−iθ

r

∂χ(r, θ)
∂θ

dz̄ ∧ dz − i

2π

∫ ∫
D

z̄2 ∂

∂z̄

(
e−iθ

r

∂χ(r, θ)
∂θ

)
dz̄ ∧ dz

and using
∂

∂z̄
=

1
2
eiθ

∂

∂r
+
i

2
eiθ

r

∂

∂θ
giving rise to the following expression

2
π

∫ ∫
D

r−2iθ ∂χ(r, θ)
∂θ

drdθ +
1
2π

∫ ∫
D

r2e−2iθ ∂
2χ(r, θ)
∂θ∂r

drdθ

+
i

2π

∫ ∫
D

re−2iθ ∂
2χ(r, θ)
∂θ2

drdθ

Recalling that

v
(n−2)
θ (r = 1) = S(θ)2e−i(n−2)θ =

∑
p1,p2

(log p1)(log p2)ei(p1+p2−n)θ

1
r

∂χ

∂θ

∣∣∣∣
r=1

=
d

dθ
χ(r = 1, θ)

it follows that

χ(r = 1, θ) =
∑
p1,p2

p1+p2 �=n=2

(log p1)(log p2)
i(p1 + p2 − (n− 2))

ei(p1+p2−(n−2))θ

+
∑

p1+p2=n−2

(log p1)(log p2)θ

If this function on the unit circle is extended to the entire disk using the variables z, z̄, it
is

χ(z, z̄) = i
∑

p1+p2<n−2

(log p1)(log p2)
(n− 2 − (p1 + p2)

z̄(n−2)−(p1+p2)

− i

2

∑
p1+p2

(log p1)(log p2)ln
(z
z̄

)

− i
∑

p1+p2>n−2

(log p1)(log p2)
p1 + p2 − (n− 2)

zp1+p2−(n−2)
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This function is nonsingular, and except for the second term, it is well-defined every-
where throughout the disk besides the origin. Its value at the origin is undefined, as it
depends on the direction in which the limit r → 0 is taken. However, the gradient would
be well-defined, and furthermore, it is nonsingular.* Setting �v(n−2) equal to a nonsingular
gradient term is not consistent with a nonvanishing contour integral

∮
�v(n−2) · �d�.

However, if this form is chosen for χ(z, z̄), the expression for
∮
�v(n) · �d�, based on the

function ψ2(r, θ) can be computed. In terms of r, θ,

χ(r, θ) = i
∑
p1,p2

p1+p2<n−2

(log p1)(log p2)
n− 2 − (p1 + p− 2)

rn−2−(p1+p2)e−i(n−2−(p1+p2))θ

+
∑

p1+p2=n−2

(log p1)(log p2)θ

− i
∑
p1,p2

p1+p2>n−2

(log p1)(log p2)
p1 + p2 − (n− 2)

rp1+p2−(n−2)ei(p1+p2−(n−2))θ

and

4
∂χ(r, θ)
∂θ

+ r2
∂2χ(r, θ)
∂r∂θ

+ i
∂2χ

∂θ2

= 4
∑

p1+p2 �=n−2

(log p1)(log p2)r|p1+p2−(n−2)|ei(p1+p2−(n−2))θ

+ 4
∑

p1+p2=n−2

(log p1)(log p2)

and since
∫ 2π

0
ei(p1+p2−(n−2))θdθ = 0 when p1 + p2 �= n, the integral becomes

2
π

∑
p1+p2=n

(log p1)(log p2)
∫ 1

0

r3dr ·
∫ 2π

0

dθ =
∑

p1+p2=n

(log p1)(log p2) = H(n)

If instead, the sum R(θ) is used, the result is
∑
p1+p2=n

1 = G(n).

The integral expression in (z, z̄), coordinate is

− i

π

∫ ∫
D

[ ∑
p1+p2=n−2

(log p1)(log p2)
z

+
∑

p1+p2>n−2

(log p1)(log p2)zp1+p2−(n−1)z̄

+
1
z

∑
p1+p2<n−2

(log p1)(log p2)z̄(n−2)−(p1+p2)

]
dz̄ ∧ dz

+
1
2π

∫ ∫
D

1
z

∑
p1+p2<n−2

(log p1)(log p2)((n− 2) − (p1 + p2))z̄(n−1)−(p1+p2)dz̄ ∧ dz
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Using the complex Green formula, it follows that each of the integrals except

− i

π

∫ ∫
D

∑
p1+p2>n−2

zp1+p2−(n−1)z̄dz̄ ∧ dz

vanishes. Using the Cauchy formula for nonanalytic f(z, z̄) [4]

f(z0) =
1

2πi

∫
C

f(z)
z − z0

+
1

2πi

∫ ∫
D

∂f
∂z

z − z0
dz ∧ dz̄

and the vanishing of z̄zp1+p2−(n−1), for p1 + p2 > n− 2, at the origin, it follows that

− i

π

∫ ∫
D

z̄zp1+p2−(n−2)dz̄ ∧ dz =
i

π

∫ ∫
D

z̄
zp1+p−2−(n−2)

z
dz ∧ dz̄

= − i

π

∫
D

z̄2

2
zp1+p2−(n−2)

z
dz

= − i

2π

∫ 2π

0

ei(p1+p−2−(n−1))θe−2iθ · ieiθdθ

= − i

2π

∫ 2π

0

iei(p1+p2−n)θdθ = δp1+p2,n

so that the sum above is∑
p1+p2>n−2

(log p1)(log p2)δp1+p2,n =
∑

p1+p2>n−2

(log p1)(log p2)δp1+p2,n

=
∑

p1+p2=n

(log p1)(log p2) = H(n)

This result confirms the equivalence of χ(z) based on the use of the singular function

χ(z, z̄) = i
∑

p1+p2<n−2

(log p1)(log p2)
(n− 2) − (p1 + p2)

z−(n−2)−(p1+p2)

− i

2

∑
p1+p2=n−2

(log p1)(log p2)ln
(z
z̄

)

− i
∑

p1+p2>n−2

(log p1)(log p2)
p1 + p2 − (n− 2)

zp1+p2−(n−2)

In terms of r, θ, this expression is

χ(r, θ) = i
∑

p1+p2<n−2

(log p1)(log p2)
(n− 2) − (p1 + p2)

r−((n−2)−(p1+p2))e−i((n−2)−(p1+p2))θ

+
∑

p1+p2=n−2

(log p1)(log p2)θ

− i
∑

p1+p2>n−2

(log p1)(log p2)
p1 + p2 − (n− 2)

rp1+p2−(n−2)ei(p1+p2−(n−2))θ
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and

4
∂χ

∂θ
+ r

∂2χ

∂θ∂r
+ i

∂2χ

∂θ2

= 4
∑

p1+p2<n−2

(log p1)(log p2)r−((n−2)−(p1+p2))e−i((n−2)−(p1+p2))θ

+ 4
∑

p1+p2=n−2

(log p1)(log p2)

+ 4
∑

p1+p2>n−2

(log p1)(log p2)rp1+p2−(n−2)ei(p1+p2−(n−2))θ

+
∑

p1+p2<n−2

(log p1)(log p2)(p1 + p2 − (n− 2))r−((n−2)−(p1+p2))e−i((n−2)−(p1+p2))θ

+
∑

p1+p2>n−2

(log p1)(log p2)(p1 + p2 − (n− 2))rp1+p2−(n−2)ei(p1+p2−(n−2))θ

+
∑

p1+p2<n−2

(log p1)(log p2)(n− 2 − (p1 + p2))r−((n−2)−(p1+p2))e−i((n−2)−(p1+p2))θ

+
∑

p1+p2>n−2

(log p1)(log p2)(n− 2 − (p1 + p2))rp−1+p2−(n−2)ei(p1+p2−(n−2))θ

The integral
1
2π

∫ ∫
e−2iθ

(
∂χ

∂θ
+ r

∂2χ

∂θ∂r
+ i

∂2χ

∂θ2

)
rdrdθ

equals

2
π

∑
p1+p2>n−2

(log p1)(log p2)
∫

0

2πei(p1+p2−n)θdθ

∫ 1

0

rp1+p2−(n−3)dr

+
1
2π

∑
p1+p−2>n−2

(log p1)(log p2) · (p1 + p2 − (n− 2)) ·
∫ 2π

0

ei(p1+p2−(n−2))θe−2iθdθ·
∫ 1

0

rp1+p2−(n−3)dr

− 1
2π

∑
p1+p−2>n−2

(log p1)(log p2) · (p1 + p2 − (n− 2)) ·
∫ 2π

0

ei(p1+p2−(n−2))θe−2iθdθ·
∫ 1

0

rp1+p2−(n−3)dr

When p1 + p2 = n, this sum equals
2
π

∑
p1+p2=n

(log p1)(log p2) · 1
4
· 2π +

1
2π

· 2 · 2π ·
∑

p1+p2=n

(log p1)(log p2)

− 1
2π

· 2 · 2π · 1
4

∑
p1+p2=n

(log p1)(log p2)

= H(n)
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Now consider the integral in terms of the coordinates z, z̄. Since

∂χ

∂z̄
=
i

2

∑
p1+p2=n−2

(log p1)(log p2)
z̄

∂χ

∂z
= −i

∑
p1+p2<n−2

(log p1)(log p2)z−((n−1)−(p1+p2)) − i

2

∑
p1+p2=n−2

(log p1)(log p2)
z

− i
∑

p1+p2>n−2

(log p1)(log p2)zp1+p2−(n−1)

the following identities are obtained

e−2iθ ∂χ

∂θ
= iz̄

∂χ

∂z
− i

z̄2

z

∂χ

∂z̄
=

∑
p1+p2<n−2

(log p1)(log p2)z̄z−((n−1)−(p1+p−2))

+
∑

p1+p2=n−2

(log p1)(log p2)
z̄

z

+
∑

p1+p2>n−2

(log p1)(log p2)z̄zp1+p2−(n−1)

e−iθ

r

∂χ

∂θ
=

∑
p1+p2=n−2

(log p1)((log p2)z−((n−1)−(p1+p−2))

+
∑

p1+p−2=n−2

(log p1)(log p2)
z

+
∑

p1+p2>n−2

(log p1)(log p2)zp1+p2−(n−1)

and z̄2 ∂
∂z̄

(
e−iθ

r
∂χ
∂θ

)
= 0 so that the integral in (z, z̄) coordinates is

− i

π

∫ ∫
D

[ ∑
p1+p2<n−2

(log p1)(log p2)z̄z−((n−1)−(p1+p−2)) +
∑

p1+p2=n−2

(log p1)(log p2)
z̄

z

+
∑

p1+p2>n−2

(log p1)(log p2)z̄zp1+p−2−(n−1)

]
dz̄ ∧ dz

This first term in this expression is the integral of a singular function. Using the
identity **

∫ ∫
D

∂f
∂z̄

(z − z0)k
dz̄ ∧ dz =

∫
C

f(z, z̄)
(z − z0)k

dz − 1
(k − 1)!

· 2πi∂
(k−1)f

∂z(k−1)
(z0)

it follows that this term vanishes.
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However, this result suggests that there would be a non-zero contribution from the
singular terms once an additional positive-definite function is included in the integral. An
example of such a function is eδ(1−zz̄) = eδ(1−r

2). Multiplication by this factor in the
integral over r and θ gives

2
π

∫ 1

0

r3eδ(1−r
2)dr · 2π

∑
p1+p2=n

(log p1)(log p2) = 4I3(δ)
∑

p1+p2=n

(log p1)(log p2)

= 4I3(δ)H(n)

With a support function in the integral over z, z̄ and use of the identity for higher
powers of (z−z0)k in the denominator, linear combinations of H(m), m ≤ n, are obtained.
As δ is varied, or different support functions are chosen, these linear combinations will
change and given the non-vanishing of H(m) for m ≤ n − 2, equivalence of the integrals
in the r, θ coordinates implies a nontrivial result for the magnitude of H(n). The same
conclusions hold for G(n).

Furthermore, by considering the different extrapolations of χ(z, z̄) to the interior of
the disk, it can be seen that the use of the nonsingular expression for χ(z, z̄) does not
yield any constraints on H(n) and therefore it would be acceptable to set this value to
zero. Conversely, the feasibility of setting H(n) equal to zero implies that χ(z, z̄) must be
nonsingular, which would, in turn, imply that H(n− 2) vanishes, contrary to the original
assumption that it is non-zero. Thus, the contour integral argument provides a method
for deducing a non-zero value for H(n), given that H(m) �= 0 for 4 ≤ m ≤ n− 2.

By induction, it would then would follow that H(n) is non-zero for all values of n.
The non-vanishing of H(n) is sufficient for a proof of a lower bound for the number of
Goldbach partitions of any even number, since the induction argument also holds for
G(n) =

∑
p1+p2=n

1.

The special role of the primes in the integrals of the summed expressions of exponential
functions of θ can be made clear by noting that any exponential with exponent given by
2πi multiplied by a rational number, e2πi

m
n α, α = 1, can be obtained as a power

e2πi
m
n =

(
e2πi

p1
n

)k1
=

(
e2πi

p2
n

)k2
, m <

n

2
, n even

so that for every even number 2m,

e2πi
2m
n = e2πi

p1k1+p2k2
n

for some p1, p2. Since the number of Goldbach partitions is assumed to be positive 2m ≤
n−2, there is a pair of prime such that 2m = p1 +p2. Consequently, the above exponential
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can be equated with e2πi
p1+p2

n , revealing the effect of identification of the exponential of a
sum of prime fractions with a sum of appropriate powers.

The property can be extended to n+ 2 by noting that

e2πi
2m′
n+2 = e2πi

(p′
1k′

1+p′
2k′

2)
n+2

for any pair of primes p′1, p
′
2.

It has been shown that for any two primes p1, p2, there exists integers k1, k2 such that
p1(k1 − 1) + p2(k2 − 1) ≡ 0 (mod n). This property can be extended to a congruence
relation modulo n+ 2.

Since the number of incongruent solutions to the equations

a1x1 + ...+ a	x	 + b ≡ 0 (mod n)

where (a1, ..., a	, n)|b is n	−1(a1, ..., a	, n) [5], the number of solutions to the congruence
p1k1 + p2k2 ≡ 2m (mod n) for fixed k1, k2 is equal to n(k1, k2, n), and, by assumption, the
intersection of this set with the solutions to a1(k1 − 1) + a2(k2 − 1) ≡ 0 (mod n) includes
the prime pair (p1, p2). For fixed k′1, k

′
2, properties of the intersection of solutions sets of

a′1k
′
1 + a′2k

′
2 ≡ 2m′ (mod n + 2) and a′1(k

′
1 − 1) + a′2(k

′
2 − 1) ≡ 0 (mod n + 2) will be

determined by the linearity of the congruence relations. Extending the solution set Dn

to Dn+2, the existence of a prime pair (p′1, p
′
2) in the set Dn+2 can be deduced from the

density of prime pairs in the planar domain represented by the congruence relation modulo
n+ 2.

It follows that the use of the exponentials with exponents containing fractions with
prime numerators can be used as an appropriate basis for all exponentials of type e2πi

m
n .

This basis can extrapolated to describe e2πiα by means of the functional analytic technique
of extending the domain of functions from the set of rational numbers forming a dense
subset of the continuous interval [0, 1] to the entire interval.
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