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1. Introduction

It has been shown recently that supertstring theory possesses improved finiteness properties
at each order [1][2][3] and at large orders in the series expansion for scattering amplitudes [4],
suggesting that a consistent quantum theory containing general relativity in the low-energy limit
has been obtained. Phenomenonologically relevant models of elementary particle interactions also
might be included for a suitable choice of superstring vacuum [5][6]. A principle for selecting
a specific superstring vacuum would be needed as a theoretical basis for any choice of ground
state. One possibility, motivated by topology change arising in the path integral for quantum
gravity [7], would involve an integral over different background configurations, dominated by a
sum over solutions to the string equations of motion, with the geometries weighted by a string field
theory action [8][9]. Alternatively, one might wish to consider a principle directly constraining
geometries associated with a Kaluza-Klein unification of general relativity with the elementary
particle interactions.

The attempt to unify the elementary particle interactions with gravity has gradually led to
the development of theories which may be regarded as generalizations of standard gauge theories
[8][10][11][12]. As a mathematical structure, a category of fibre bundles larger than that of the
principal bundles may be considered. For example, the fibre could be taken to be any n-dimensional
complete simply connected manifold, which would be diffeomorphic to Sn if specific bounds are
imposed on the sectional curvature [13][14]. Given that the space- and time-oriented manifolds
(M, g) admitting spinor structures are parallelizable [15], the feasibility of projecting vector fields
and one-forms in a parallelizable total space to the base manifold would depend on the paralleliz-
ability of the fibre. Choosing the fibre to be an n-sphere, this condition would imply that n = 1, 3
or 7, which, together with the topological equivalence of a locally trivial fibre bundle with total
space S2n−1 and Sn−1 with the classical Hopf fibration when n = 1, 2, 4, and 8 [16], and the
differentiable equivalence when n = 1, 2 and 4, implies a link between the division algebras and a
restricted category of bundles defined by theoretical constraints necessary for the construction of
generalized gauge theories. In a previous investigation [17], a physical requirement imposed on the
transformation rule of the connection form of a general bundle led to the constraint of the fibre
admitting a global parallelism or equivalently independence of the commutation relations of the
tangent vector fields with respect to the fibre space coordinates. This is particularly relevant to
an approach to force unification utilizing a link between the internal symmetries and the different
division algebras [18]-[22], relating the number of types of elementary particles with the number of
division algebras [23]-[26].

2. Gauge Theories, the Seven-Sphere and the Division Algebras

All Kaluza-Klein theories unifying gravity with the elementary particle forces describe matter
fields which are transforming under the isometry group of the compact manifold defining the extra
dimensions so that the octonionic algebra cannot arise as a the symmetry algebra of the action.
In earlier attempts to construct an octonionic gauge theory [27][28][29], there was no invariance
under gauge transformations of the potential taking values only in the base space. The reasons for
the lack of a gauge principle can be understood by considering the fibre-coordinate dependence of
the connection form transformation rule for S7 bundles.

The potential is defined to be the coefficient of the coordinate differentials {dxμ} in the expres-
sion for the pull-back of the connection one-form on the base manifold from a section of a principal
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bundle.
Aμ = ω(σ∗ · ξμ) = (σ∗ω)(ξμ)

ξμ =
∂

∂xμ

σ∗ = Aμdx
μ

(2.1)

Similarly, the field strength defines the components of the curvature two-form Ω = dω+ω ∧ω and
Ω = Fμνdx

μ ∧ dxν .

The pure Yang-Mills action
∫
M
d4x Tr(F∧F ∗) is bounded by the functional,

∫
M
d4x Tr(F∧F ),

given by the second Chern class for a principal bundle in the expansion

c(Ω) = Det(I +
i

2π
Ω) = 1 + c1(Ω) + c2(Ω) + ...

c0 = 1

c1 =
i

2π
Tr Ω

c2 =
1

8π2
[Tr Ω ∧ Ω − Tr Ω ∧ Tr Ω]

...

(2.2)

where Ω is the curvature form. While the second Chern class may be generalized to the manifold
S7, the following theorem shows that a similar generalization of the Yang-Mills functional will
not be invariant under gauge transformations of potentials taking values in the tangent space at
a chosen origin of S7 as the structure constants of the octonion algebra fabc do not satisfy the
Jacobi identity preventing closure.

Specifically, invariance of the Lagrangian L(Akμ, ∂ A
k
μ) with respect to the infinitesimal variation

δAkμ = ∂με
k + fklmε

lAmμ [30] requires

∂L

∂(∂μAkν)
+

∂L

∂(∂νAkμ)
= 0

∂L

∂Alν
+

∂L

∂(∂νAkμ)
fklmA

m
μ = 0

∂L

∂Akμ
fklmA

k
μ +

∂L

∂(∂νAkμ)
fklm∂νA

m
μ = 0

(2.3)

While the first two conditions together imply that L = L(F kμν), using ∂L
∂Ak

μ
= 2 ∂L

∂Fk
μν
fklmA

m
ν ,

whereas the last relation is equivalent to

2
∂L

∂F lμν
fklmA

m
ν fnpkA

p
μ − 2

∂L

∂F kμν
fnmk∂νA

k
μ = 0

∂L

∂F lμν
(fklmfknp + fklpfkmn)ApμA

m
ν − ∂L

∂F kμν
fknm(∂νAkμ − ∂μA

k
ν) =

∂L

∂F kμν
fknmF

m
μν +

∂L

∂F lμν
(fklmfknp + fklpfkmn + fklnfkpm)ApμA

m
ν = 0

(2.4)
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While the quadratic term containing the gauge potential vanishes for a Lie group by the Jacobi
identity, it would equal ∂L

∂F l
μν
ϕmlnpA

p
μA

m
ν when the structure constants of the octonions are used,

where ϕmlnp represents the non-associativity of the algebra, [eα, eβ , eγ ] = (eαeβ)eγ − eα(eβeγ) ≡
2ϕαβγδeδ. While an additional term of the form ϕklmnA

l
μA

νm∂νε
n or ϕklmn∂νAlμA

νmεn could be
included in the transformation rule for Akμ, and the definition of the field strength could be altered
so that it contains ϕklmn, it is not feasible to cancel ∂L

∂F l
μν
φmlnpA

p
μA

m
ν based on the tensor structure

of the equations of motion.

An octonionic gauge theory has been proposed using a bimodule representation of the octonion
algebra [31]. Recalling that the octonion algebra is defined by the multiplication relations

e20 = e0 e0ei = eie0 = ei

eiej = −δije0 + εijkek

εijk = 1 for (ijk) = (123), (145), (167), (264), (257), (347), (356)
(2.5)

using the conventions of [31], which can be summarized as eμeν = Cσμνeσ, μ, ν, σ = 0, 1, ..., 7. The
left representation is (Lμ)σν = (Cμ)σν ≡ Cσμν and the right representation is (Rμ)σν = (C̃μ)σν ≡ Cσνμ
with L0 = R0 = Id. Then λi = iLi

4 and ρj = i
Rj

4 satisfy the commutation relations

[λi, λj ] =
i

2
εijk λk + 2[ρj , λi]

[ρi, ρj ] = − i

2
εijk ρk + 2[λj , ρi]

(2.6)

and the trace relations
Tr(λiλj) = Tr(ρiρj) =

1
2
δij (2.7)

Suppose a gauge potential is defined to be Aμ(x) = Aiμ(x)λi, leading to the covariant derivative
Dμ = ∂μ + ig Aμ. Under a gauge transformation corresponding to the element Ω(x) = eiα

i(x)λi ,
Dμψ(x) → eiα

iλi Dμψ(x) for any fermion field ψ(x), and [Dμ,Dν ] also transforms covariantly,
allowing one to immediately formulate an invariant − 1

2Tr(FμνF
μν).

However, the gauge tranformation which leaves this action invariant

Aμ(x) → A′
μ(x) = Ω(x)Aμ(x)Ω−1(x) +

i

g
(∂μΩ(x))Ω−1(x)

= eiα·λAμe−iα·λ − 1
g
∂μα

iλi

= Aμ + [iα · λ,Aμ] − 1
2
[α · λ, [α · λ,Aμ]] + ...− 1

g
∂μα

iλi

(2.8)

contains not only the generators λi associated with the left representation of the octonion algebra
but also generators arising from multiple commutators of λi and ρj . To linear order in α,

A′
μ = A′i

μλi + 2iαj Akμ [ρk, λj ]

Ai′μ = Aiμ − 1
2
εijkα

jAkμ − 1
g
∂μα

i
(2.9)
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and
F ′
μν = F ′i

μν λi − 2gαk(A′i
μA

′j
ν − A′i

νA
′j
μ )[λi, [ρk, λj ]]

+ 2i[∂μ(αjA′k
ν ) − ∂ν(αjA′k

ν )][ρk, λj ]

F ′i
μν = ∂μA

′i
ν − ∂νA

′i
μ − 1

2
gεijkA

′j
μA

′k
ν

(2.10)

The trace relations

Tr(τi[ρj , λk]) =
i

8
εijk

Tr([λi, ρj ][λk, ρl]) =
−1
32

[εijkl + 2(δikδjl − δil δjk)]
(2.11)

can be used to express the Lagrangian in component form

L = −1
4
(∂μAiν − ∂νA

i
μ)(∂

μAνi − ∂νAμi) − 1
16
g2AjμA

k
ν(A

jμAkν − AkμAjν) (2.12)

but the action is not invariant under the substitution Aiμ → A′i
μ as (2.11) becomes

− 1
4
(∂μAiν − ∂νA

i
μ)(∂

μAνi − ∂νAμi) − 1
16
g2AjμA

k
ν(A

jμAkν − AkμAjν)

+
1
2
[∂μ(εijkαjAkν +

1
g
∂να

i) − ∂ν(εijkαjAkμ +
1
g
∂μα

i)] · ∂μAνi

+
1
8
g2(AjμA

k
ν − AjνA

k
μ)(

1
2
εjpqα

pAqμ +
1
g
∂μαj) ·Aνk

(2.13)

and the extra terms in (2.13) are not total derivatives. Consequently, the transformation of the
potential Aμ → A′

μ is required and this involves generators other than those corresponding to the
left representation of the octonion algebra.

Writing A′
μ = A′AB

μ JAB , a transformation A′
μ → Aμ = Ω−1AμΩ − i

gΩ
−1(∂μΩ), Ω ∈ G2 can

be found such that Aμ has only non-zero components Aiμ multiplying the generators λi. From
(2.10), Fμν = FABμν JAB has non-zero components corresponding to the generators of G2 and the
Lagrangian − 1

2Tr(FμνF
μν) actually should be invariant under the entire group of G2 transforma-

tions. This symmetry is broken only when one specializes to a particular choice for the vanishing
components of the gauge potential.

This result may also be understood from the context of non-associative deformations of gauge
theories [32]. These generalizations are based on an algebraic structure consisting of M set of
generators {Tpi}, p = 1, ...,M . Together, the entire set of generators form an associative Lie
algebra structure. Restriction to one set of generators, T pi , p fixed, leads to a problem with closure
of the algebra.

[T pi , T
p
j ] = fpijk T

p
k +

M∑
n=1

σpn [Tnj , T
p
i ] (2.14)

The deviation from associativity can be measured by the associator

J(T pi , T
p
j , T

p
k ) = εijk(T pi , T

p
j , T

p
k ) = εijk [ (T pi T

p
j ) T pk − T pi (T pj T

p
k ) ]

= σpn([T
p
i , [T

n
k , T

n
j ]] + [T pj , [T

n
i , T

p
k ]] + [T pk , [T

n
j , T

p
i ]])

(2.15)
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The lack of closure of the algebra associated with a single set of generators, or equivalently, the
coupling of the gauge potentials corresponding to distinct sets of generators, leads to a Lagrangian,
based on only the field strengths F pμν , which contains extra nonlinear terms. Therefore, when the
algebra T pi , p fixed represents the octonions, the entire algebra is given by the matrices associated
with left and right multiplication introduced earlier. The theory obtained is therefore a special case
of this general procedure of deforming gauge theories, where the Lagrangian is part of an action
with the larger G2 symmetry generated by the combined set of fourteen generators.

A general procedure has been developed for constructing a non-associative gauge theory, where
the potential takes values in a non-associative algebra A [33]. The gauge symmetry of the ac-
tion, however, is the automorphism group of A, GA, so that given a symmetric, bi-linear non-
degenerate form 〈 u | v 〉, u, v ∈ A, satisfying the invariance condition 〈 gu | gv 〉, a Lagrangian
L0 = 1

4 〈 Fμν | Fμν 〉 may be constructed. If Λp is the set of A-valued p-forms, then it is necessary
to assume that g ∈ gl(Λ1), ξ ∈ Λ1 and

(i) g(ωω) = (gω)(gω)
(ii) dξ + ξ ξ = 0
(iii) d(gω) = g(dω) − ξ(gω) − (gω)ξ

(2.16)

Although it is not known if there is a solution for g and ξ for any given non-associative algebra,
it can be assumed that one exists when A is the octonion algebra and the symmetry group GA is
then G2.

A common property of all of these theories is that the action possesses a Lie group symmetry
even though it has been constructed so that it seems to include only components in the non-
associative octonion algebra. This provides further support for the assertion proven in [17] and
Appendix A, which implies that a pure gauge theory with a symmetry defined only by the non-
associative algebra does not exist. In addition, it may be noted that although (g−1Aμ)g = g−1(Aμg)
for alternative algebras by Artin’s theorem,

{g−1(Aμg)}{(g−1Aν)g} �= g−1 (Aμ Aν) g (2.17)

in general for non-associative algebras, so that the validity of invariance under finite gauge trans-
formations as a consequence of invariance under infinitesimal transformations cannot be proven for
non-associative algebras [33]. Since an extensive investigation of the possibility of constructing a
pure gauge theory based only on the non-associative algebra has revealed that Lie group structure
is essential, this property will be assumed in the following sections, although the seven-sphere shall
continue to be used in this geometrical approach to the internal symmetry spaces.

A connection between the gauge groups in the standard model and the division algebras has been
established using Clifford algebras, since a tensor product of division algebras defines the spinor
space T = C ⊗ H ⊗ O [34], and there is an algebraic procedure for obtaining gauge symmetries
from the left action algebra for this spinor space. The adjoint algebra is TL ∼ R0,9, where Rp,q is
the Clifford algebra of the pseudo-Euclidean space Rp,q, and TL(2) ∼ C(32), the complexification
of R1,9, the equivalent of the Dirac algebra in ten-dimensional Minkowksi space-time.

The subspace of 2-vectors of Rp,q closes under commutation and it is isomorphic to the Lie
algebra so(p, q). Thus, the two-vector basis {eLpq, p, q = 1, ..., 6, p �= q} of OL ∼ R0,6 as 15-
dimensional and isomorphic to so(6) ∼ su(4). The intersection of su(4) with LG2 = {eLab − eLcd :
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eaeb = eced} is su(3) = {eLpq − eLrs : epeq = eres, p, q, r, s �= 7}. The SU(3) gauge symmetry of
the strong interactions arises as part of the SO(1,9) Lorentz transformations and not as an internal
symmetry in ten dimensions. This is consistent with the use of string theory to describe the strong
interactions and gravity.

Beginning with a ten-dimensional Lagrangian

L1,9 = Lgauge + Lφ + Lferm1,9

Lferm1,9 = 〈Ψ|�∂1,9Ψ〉
(2.18)

and Lgauge is a ten-dimensional action for the spin-one gauge field. After using the projector
distinguishing between matter and anti-matter multiplets, R1,9 is projected to R1,3 ⊗ SO(6), the
bosonic part of the action is based on the covariant derivative appropriate for R1,3 ⊗ SU(4).
The SU(4) symmetry must then be broken to SU(3) to reproduce the QCD action, while the
SU(2) × U(1) symmetry, arising from R1,3 is present in the Weinberg-Salam model. While the
scalar Lagrangian Lφ can be used to generate spontaneous symmetry breaking, it is not necessary
for the reduction of the gauge group from SU(4) to SU(3). The fermion Lagrangian may be reduced
to the standard lepton-quark Lagrangian in four dimensions. Using the projector ρ± = (1±ieL7)

2 ,
one may re-express the fermion term as

〈ρ+Ψ|�∂1,3(ρ+Ψ)〉 + 〈ρ−Ψ|�∂1,3(ρ−Ψ)〉
〈ρ+Ψ|�∂0,6(ρ−Ψ)〉 + 〈ρ−Ψ|�∂0,6(ρ+Ψ)〉 (2.19)

The last two terms represent matter/anti-matter transitions that are not observed, and they vanishg
upon imposing the conditions

�∂0,6(ρ±Ψ) = 0 (2.20)

The solutions to these constraints have a dependency on the coordinates in the extra six dimensions
which gives rise to the SU(2) and SU(3) symmetries of the standard model. Thus, the fermionic
part of the theory may be derived by using a decomposition of modules of the Clifford algebra
R1,9 based on idempotents. This decomposition is unique by the Krull-Schmidt theorem [35], since
they are direct sums of irreducible modules.

As the spinor space T is 64-dimensional, it is just large enough to describe a family consisting
of a lepton doublet and a quark doublet with three distinct colours and the corresponding anti-
family. Three generations of leptons can be obtained by choosing a preferred octonionic unit and
three quarternionic subalgebras of O [36], although a theoretical basis for the three generations of
quarks or the values of the isospin and hypercharge for fermions within each generation has yet to
be found using this technique. Alternatively, the spinor space ⊕3

i=1 Ci ⊗ Hi ⊗ Oi can be used to
include the three generations of fermions.

3. Constraints on Gauge Transformations acting on Bundles with S7 Fibres
and Their Sub-bundles

Gauge transformations may be viewed as active transformations on the standard fibre. Let
σ(x) = y ∈ G, σ′(x) = σ(x) · g(x) = y · g ∈ G. If ξ ∈ Tx(M),

σ′
∗ · ξ = Rg∗σ∗ · ξ + Ly∗g∗ · ξ

= Rg∗σ∗ · ξ + L(y·g)∗Lg−1∗(g∗ · ξ)
(3.1)
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Given a connection form

ω(σ′
∗ · ξ) = L−1

(y·g)∗V(σ′
∗ · ξ) = L−1

(y·g)∗[V(Rg∗σ∗ · ξ) + V(L(y·g)∗Lg−1∗g∗ · ξ)]
= L−1

(y·g)∗Rg∗V(σ∗ · ξ) + Lg−1∗g∗ · ξ
(3.2)

where V represents the projection onto the vertical subspace V(x,σ(x))(E) ∼ Vσ(x)(E). Since
ω(σ∗ · ξ) = L−1

y∗ V(σ∗ · ξ)

ω(σ′
∗ · ξ) = L−1

(y·g)∗Rg∗Ly∗ω(σ∗ · ξ) + Lg−1∗g∗ · ξ
= ad(g−1)ω(σ∗ · ξ) + Lg−1∗g∗ · ξ

(3.3)

Setting ξ equal to ∂μ, one recovers the standard gauge transformation law

A′
μ = ad(g−1)Aμ + g−1∂μg (3.4)

The dependence on y in equation (3.2) has disappeared, which is necessary if the theory is to be
formulated in the four-dimensional space-time M.

If the fibre is S7, it admits a parallelism associated with the existence of octonions as an
8-dimensional division algebra over the real numbers. Consider the action of SO(8) by right multi-
plication on a trivial S7 bundle. Suppose Lg−1∗g∗ ·ξμ is an arbitrary element of the 28-dimensional
Lie algebra of SO(8). Let ιL an embedding of octonions in SO(8), so that left multiplication
by y is represented by right multiplication by the matrix ιL(y). Then, independence with re-
spect to the fibre coordinate of the inhomogeneous term in the gauge transformation implies that
λy∗ · Lg−1∗ · (g∗ · ξ) · (ιL(y−1)T )∗, or equivalently that the row vector y · (dABJAB) · (ιL(y−1)T ),
where JAB are generators of SO(8), is independent of y. Since

ιL(y−1)T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0 −y1 −y2 −y3 −y4 −y5 −y6 −y7
y1 y0 −y3 y2 −y5 y4 −y7 y6
y2 y3 y0 −y1 −y6 y7 y4 −y5
y3 −y2 y1 y0 y7 y6 −y5 −y4
y4 y5 y6 −y7 y0 −y1 −y2 y3
y5 −y4 −y7 −y6 y1 y0 y3 y2
y6 y7 −y4 y5 y2 −y3 y0 −y1
y7 −y6 y5 y4 −y3 −y2 y1 y0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.5)

the vector y · (dABJAB) · ιL(y−1)T = (0 c1 c2 c3 c4 c5 c6 c7) Altogether, independence of the ci
with respect to y leads to 21 independent constraints

d01 = −d23 = −d45 = −d67

d02 = d13 = −d46 = d57

d03 = −d12 = d47 = d56

d04 = d15 = d26 = −d37

d05 = −d14 = −d27 = −d36

d06 = d17 = −d24 = d35

d07 = −d16 = d25 = d34

(3.6)

and Lg−1∗g∗ · ξ is required to be in the
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seven-dimensional subspace spanned by the SO(8) generators {Xi| i = 1, ..., 7}. This result can
be traced to the fact that although ιR(g̃) and ιL(y−1)T do not commute as elements of SO(8),

y · ιR(g̃) · ιL(y−1)T = y · ιL(y−1)T · ιR(g̃) (3.7)

because any two elements of the octonions form an associative algebra:
y−1(y · g̃) = (y−1y) · g̃ for y, g̃ ∈ O.

Let vμ = σ∗ · ξμ ∈ Tσ(x)(E). Then ω(vμ) = L−1
y∗ · Vvμ and

ω(Rg∗vμ) = L−1
(y·g)∗V(Rg∗vμ) (3.8)

If vμ lies in the vertical subspace of Tσ(x)(E), V(Rg∗vμ) = Rg∗Ly∗ω(vμ). Representing left mul-
tiplication by a unit octonion Ly as right multiplication by an SO(8) transformation, denoted by
Ray

, one finds that

ω(Rg∗vμ) = Ra−1
(y·g)∗

Rg∗Ray∗ω(vμ) = R(ayga
−1
y·g)∗ω(vμ) (3.9)

Defining ayga
−1
y·g to be h(y, g) ∈ H, the stability subgroup of SO(8) for the origin o in S7, the

connection form satisfies ω(Rg∗vμ) = Rh(y,g)∗ω(vμ). Independence of the homogeneous part of the
gauge transformation with respect to the fibre coordinate requires that h(y, g) does not depend on
y. If g ↔ RTg = (cij), i, j = 0, 1, ..., 7, y-independence of the homogeneous term is confirmed by a
calculation of ιL(y)TRTg [ιL(y · g)−1]T . However,

g̃′ιL(y)T [ιL(y · g̃)−1] = g̃′T ιL(y)T g̃ιL(y−1)T ιL(g̃−1)T

↔ g−1 y−1 [(y · g̃′) · g̃]
�= g−1(y−1(y · g̃′) · g̃))
= g−1 (g̃′ · g̃)

(3.10)

Thus, a y-dependent matrix is obtained when RTg is given by etiXi and a y-independent gauge
transformation rule from the SO(8) action on an S7 fibre therefore cannot be constructed.

The same procedure can also be applied to a bundle with S7 fibre and an SU(4) structure group,
allowing for the possibility of obtaining an action with the appropriate SU(3) gauge symmetry. The
action of SU(4) on the seven-sphere follows from the invariance of the bilinear form z̄′0z0 + z̄′1z1 +
z̄′2z2 + z̄′3z3, where z = (z0 z1 z2 z3) ∈ C

4. To define the equivalent of the inhomogeneous term in
the transformation rule of the connection form, one needs the embedding of S7 into SU(4). Left
multiplication by a unit octonion maps any point y′ ∈ S7 to a point y′′ = yy′, and since a transitive
group action on the sphere would take any pair of points into each other, left multiplication by the
octonion y can be represented as ιL(y) ∈ SU(4), where ιL : S7 → SU(4).

The embedding of ιL : S7 → SU(4) will be defined so that

ιL(y)

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ =

⎛
⎜⎝

y0 + iy1
y2 + iy3
y4 + iy5
y6 + iy7

⎞
⎟⎠

(1 0 0 0) ιL(y)T = (y0 + iy1 y2 + iy3 y4 + iy5 y6 + iy7)

(3.11)
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For simplicity, one may choose g to be ιL(y)T so that

y0 + iy1 = g00 = cos θ2 cos θ1 cos φ1 e
iδ1

y2 + iy3 = g01 = −sin θ2 ei(δ1−σ3)

y4 + iy5 = g02 = −cos θ2 sin θ1 ei(δ1−σ2)

y6 + iy7 = g03 = −cos θ2 cos θ1 sin φ1 e
i(δ1−σ1)

(3.12)

which clearly satisfies ȳy = 1. The proposition concerning the existence of SU(4) matrices
mapping o to y, or y′ to y′′ = yy′ is circumvented because the other entries of g = ιL(y)T are
related nonlinearly to g00, g01, g02 and g03. Any SU(4) matrix with the first row given by (B8) will
map o to y. To simplify the calculations involving the entire matrix, the other eight parameters,
δ2, δ3, φ2, φ3, θ3, σ4, σ5, σ6 shall be set to zero. As ιL(y−1)T = g†,

y · (dAJA)(ιL(y−1)T ) ≡ (c0 c1 c2 c3)

= (cos θ2 cos θ1 cos φ1 e
iδ1 − sin θ2 e

i(δ1−σ3) − cos θ2 sin θ1 e
i(δ1−σ2)

− cos θ2 cos θ1 sin φ1 e
i(δ1−σ1))⎛

⎜⎝
id7 d1 + id4 d2 + id5 d3 + id6

−d1 + id4 −id7 + id14 d8 + id9 d10 + id11

−d2 + id5 −d8 + id9 −id14 + id15 d12 + id13

−d3 + id6 −d10 + id11 −d12 + id13 −id15

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos θ2 cos θ1 cos φ1 e
−iδ1 sin θ2 cos θ1 cos φ1 e

−iσ3

− sin θ2 e
−i(δ1−σ3) cos θ2

− cos θ2 sin θ1 e
−i(δ1−σ2) −sin θ2 sin θ1 ei(σ2−σ3)

− cos θ2 cos θ1 sin φ1 e
−i(δ1−σ1) −sin θ2 cos θ1 sin φ1 e

i(σ1−σ3)

sin θ1 cos φ1 e
−iσ2 sin φ1 e

i(δ1−σ1)

0 0
cos θ1 0

−sin θ1sin φ1 e
i(σ1−σ2) cos φ1 e

iδ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.13)

so that

c0 = (cos2θ2 cos2θ1 cos2φ1)(id7) + sin2θ2(−id7 + id14)

+ (cos2θ2 sin2θ1)(−id14 + id15) + (cos2θ2 cos2θ1 sin2φ1)(−id15)
+ 2i(−sin θ2 cos θ2 cos θ1 cos φ1) [d1 sin σ3 + d4 cos σ3]

+ 2i(−cos2θ2 sin θ1 cos θ1 cos φ1) [d2 sin σ2 + d5 cos σ2]

+ 2i(−cos2θ2 cos2θ1 sin φ1 sin φ1) [d3 sin σ1 + d6 cos σ1]
+ 2i(sin θ2 cos θ2 cos θ1 sin φ1) [d8 sin (σ2 − σ3) + d9 cos (σ2 − σ3)]
+ 2i(sin θ2 cos θ2 cos θ1 sin φ1) [d10 sin (σ1 − σ3) + d11 cos (σ1 − σ3)]

+ 2i(cos2θ2 sin θ1 cos θ1 sin φ1) [d12 sin (σ1 − σ2) + d13 cos (σ1 − σ2)]

(3.14)

Independence of c0 with respect to the angular coordinates requires

id7 = −id7 + id14 = −id14 + id15 = −id15

σ1 = σ2 = σ3 = 0
d5 = d6 = d9 = d11 = d13 = 0

(3.15)
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The remaining coefficients are d1, d2, d3, d8, d10 and d12 and the fibre is restricted to a four-
dimensional submanifold of S7, SU(2) × U(1). Similarly,

c1 = d1 cos θ1 cos φ1 e
iδ1 + d8 sin θ1 e

iδ1 + d10 cos θ1 sin φ1 e
iδ1 (3.16)

which implies the vanishing of d1, d8 and d10, and

c2 = d2 cos θ2 cos φ1 e
iδ1 + d12 cos θ2 sin φ1 e

iδ1 (3.17)

which is independent of the angles if d2 = d12 = 0. Finally,

c3 = d3 cos θ2 cos θ1 e
iδ1 (3.18)

so that independence with respect to the fibre coordinates can be achieved either by setting d3 = 0
or θ1 = θ2 = δ1 = 0. The latter choice is obviously preferable as it still leaves a non-trivial action
on the submanifold of the fibre parametrized by φ1, namely the action of U(1) on S1.

Independence of the homogeneous part of the gauge transformation with respect to the fibre
coordinates follows from the relation

LTy RTg LT(y·g)−1 = ιL(y)T exp(d3 J3) [ιL(y · g)−1)]T = Id4 (3.19)

The remaining gauge symmetry is therefore associated with a U(1) gauge potential transforming
as

Aμ → Aμ + (∂μg)g−1

A3
μ → A3

μ + ∂μ d3

(3.20)

Constraints on the connection form transformation rule can also be obtained for bundles with
fibres that are submanifolds of S7. The structure group initially can be chosen to be any subgroup
of SO(8) which preserves the submanifold. However, there also should be less conditions on the
allowed transformations, because there are fewer fibre coordinates to be eliminated. Therefore, this
leaves open the possibility of a residual gauge symmetry associated with the action of a subgroup
of the original structure group on a submanifold of the standard fibre.

For the S7 bundle, one choice for the submanifold is S3 = {y ∈ S7 | y2
0 + y2

1 + y2
2 + y2

3 =
1, y4 = y5 = y6 = y7 = 0}. Independence of the inhomogeneous term, or equivalently c1, ..., c7,
with respect to y1, ..., y3 leads to the 15 conditions

d01 = −d23 d02 = d13 d03 = −d12

d04 = d15 = d26 = −d37

d05 = −d14 = −d27 = −d36

d06 = d17 = −d24 = d35

d07 = −d16 = d25 = d34

(3.21)

and the generators of the remaining 13 transformations are J01−J23, J02+J13, J03−J12, J04+J15+
J26−J37, J05−J14−J27−J36, J06+J17−J24+J35, J07−J16+J25+J34, J45, J46, J47, J56, J57 and
J67. Independence of the homogeneous terms can be checked for these generators by establishing
the y-independence of LTyR

T
g L

T
(y·g)−1 , with LTy given by (3.5) after replacing yi by −yi when i =
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1, 2, 3 and setting yj = 0, j ≥ 4, and RTg equal to the exponential of the generator. This property
can be verified for the first seven generators and holds trivially for the last six generators.

It is now necessary to note that the transformations generated by J04 + J15 + J26 − J37, J05 −
J14 − J25 − J36, J06 + J17 − J24 + J35 and J07 − J16 + J25 + J34 do not leave S3 invariant and
instead map it into four-dimensional submanifolds of S7, consisting of a one-parameter family of
three-spheres. The coordinates of these four-dimensional submanifolds are, respectively,

(y0 cos d04, y1 cos d04, y2 cos d04, y3 cos d04, y0 sin d04, y1 sin d04

y2 sin d04, − y3 sin d04)
(y0 cos d05, y1 cos d05, y2 cos d05, y3 cos d05, − y1 sin d05, y0 sin d05,

− y3 sin d05, − y2 sin d05)
(y0 cos d06, y1 cos d06, y2 cos d06, y3 cos d06,−y2 sin d06, y3 sin d06,

y0 sin d06, y1 sin d06)
(y0 cos d07, y1 cos d07, y2 cos d07, y3 cos d07, y3 sin d07, y2 sin d07,

− y1 sin d07, y0 sin d07)

(3.22)

and since there is a bijective, continuous map to the coordinates {((y0, y1, y2, y3), θ) | y2
0 +y2

1 +y2
2 +

y2
3 = 1}, each of these submanifolds is topologically S3 × S1. Moreover, since the maps between

the coordinates are also diffeomorphisms, one might consider constructing an S3 × S1 bundle.

However, the enlargement of the fibre from S3 to S3 ×S1 with non-zero entries in the last four
components of the row vectors (3.22) implies that the quantities ci in (B1)-(B7) will not necessarily
be independent of y. Three extra conditions

d01 + d45 = d23 − d67

d02 + d46 = −d13 + d57

d03 − d47 = d12 + d56

(3.23)

must be satisfied before c4, ..., c7 are independent of the coordinates (3.22). There would then be
10 remaining generators J01 − J23 + αJ45 − (α+ 2)J67, J02 + J13 + βJ46

+ (β + 2)J57, J03 − J12 + γJ47 + (2 − γ)J56, J04 + J15 + J26 − J37, J05 − J14 − J25 − J36, J05 −
J14 − J25 − J36, J06 + J17 − J24 + J35, J07 − J16 + J25 + J34, J45 − J67, J46 + J57 and J47 − J56.

The computation of LTyRTg LT(y·g)−1 must now be repeated for these 10 generators with the new
coordinates (3.22) to determine whether the dependence on yi and θ can be eliminated in the
homogeneous term in the transformation rule of the connection form. Denoting the coordinates of
S3 × S1 by yθ = y · g0l(θ), l = 4, 5, 6, 7 so that

g04(θ) = (cos θ, 0, 0, 0, sin θ, 0, 0, 0)
g05(θ) = (cos θ, 0, 0, 0, 0, sin θ, 0, 0)
g06(θ) = (cos θ, 0, 0, 0, 0, 0, sin θ, 0)
g07(θ) = (cos θ, 0, 0, 0, 0, 0, 0, sin θ)

(3.24)

the following identity for alternative algebras [31]

Ly·y′ = LyLy′ + [Ly, Ry′ ] (3.25)
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implies that
LTy·g0l(θ)

= (LyLg0l(θ) + LyRg0l(θ) − Rg0l(θ)Ly)
T

= LTg0l(θ)
LTy + RTg0l(θ)

LTy − LTyR
T
g0l(θ)

(3.26)

Since

L((y·g0l(θ))·RT
g )−1y′ = ((y · g0l(θ)) ·RTg )−1y′ = (RTg )−1(y · g0l(θ))−1y′

= (RTg )−1(g0l(θ)−1 · y−1) · y′ = (RTg )−1Lg0l(θ)−1·y−1 · y′
(3.27)

and
Lg0l(θ)−1·y−1 = Lg0l(θ)−1Ly−1 + Lg0l(θ)−1Ry−1 − Ry−1Lg0l(θ)−1 (3.28)

it can be shown that

LTyθ
RTg LT(yθ·g)−1 = LTy·g0l(θ)

RTg LT((y·g0l(θ))·g)−1

= (LTg0l(θ)
LTy + RTg0l(θ)

LTy − LTyR
T
g0l(θ)

)RTg
(LTy−1LTg0l(θ)−1 + RTy−1LTg0l(θ)−1 − LTg0l(θ)−1RTy−1)R−1

g

(3.29)

The next step in determining whether the fibre-coordinate dependence can be eliminated from this
expression would involve moving all of the θ-dependent matrices to the center. Although it can be
verified that Lg0l(θ)Ly = LyLg0l(θ), the commutators [Ly, Rg0l(θ)] and [Ry, Lg0l(θ)] do not similarly
vanish. Thus, the product (3.29) will be dependent on y and θ for the general group element
obtained by exponentiating the 10 generators listed above.

Consequently, to find any residual gauge symmetry, the coordinates must be restricted to the S3

submanifold considered initially. From the above considerations, it follows that only 9 generators
J01 − J23, J02 + J13, J03 − J12, J45, J46, J47, J56, J57, J67 leave this submanifold invariant, and
the last 6 generators act trivially on this three-sphere. As the remaining generators form an so(3)
Lie algebra, there remains an SO(3) group of symmetry transformations acting on an S3 fibre,
which represents the gauge invariance of an SO(3) Yang-Mills theory corresponding to the SO(3)
principal bundle.

When the submanifold is S4 = {y ∈ S7| y2
0 + y2

1 + y2
2 + y2

3 + y2
4 = 1, y5 = y6 = y7 = 0},

independence of the inhomogenous term with respect to y leads to 18 conditions

d01 = −d23 = −d45

d02 = d13 = −d46

d03 = −d12 = d47

d04 = d15 = d26 = −d37

d05 = −d14 = −d27 = −d36

d06 = d17 = −d24 = d35

d07 = −d16 = d25 = d34

(3.30)

and the generators of the remaining ten generators are J01−J23−J45, J02+J13−J46, J03−J12+J47,
J04 +J15 +J26−J37, J05−J14−J27−J36, J06 +J17−J24 +J35, J07−J16 +J25 +J34, J56, J57, J67.
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The exponentials of the generators J01 − J23 − J45, J02 + J13 − J46 and J03 − J12 + J47 map S4

into a five-dimensional submanifold diffeomorphic to S4 × S1, with coordinates

(y0 cos d01 + y1 sin d01, − y0 sin d01 + y1 cos d01, y2 cos d01 − y3 sin d01,

y2 sin d01 + y3 cos d01, y4 cos d01, y4 sin d01, 0, 0)
(y0 cos d02 + y2 sin d02, y1 cos d02 + y3 sin d02,−y0 sin d02 + y3 cos d02,

− y1 sin d02 + y3 cos d02, y4 cos d02, 0, y4 sin d02, 0)
(y0 cos d03 + y3 sin d03, y1 cos d03 − y2 sin d03, y1 sin d03 + y3 cos d03,

− y0 sin d03 + y3 cos d03, y4 cos d03, 0, 0, −y4 sin d03)

(3.31)

The transformations obtained by exponentiating the four generators J04 +J15 +J26−J37, J05−
J14−J27−J36, J06+J17−J24+J35, J07−J16+J25+J34 map S4 into a five-dimensional submanifold
diffeomorphic to S4 × S1, with coordinates

(y0 cos d04 − y4 sin d04, y1 cos d04, y2 cos d04, y3 cos d04,

y0 sin d04 + y4 cos d04, y1 sin d04, y2 sin d04, −y3 sin d04)
(y0 cos d05, y1 cos d05 − y4 sin d05, y2 cos d05, y3 cos d05,

y1 sin d05 + y4 cos d05, y0 sin d05, −y3 sin d05, −y2 sin d05)
(y0 cos d06, y1 cos d06, y2 cos d06 − y4 sin d06, y3 cos d06,

y2 sin d06 + y4 cos d06, −y3 sin d06, −y0 sin d06, −y1 sin d06)
(y0 cos d07, y1 cos d07, y2 cos d07, y3 cos d07 + y4 sin d07,

−y3 sin d07 + y4 cos d07, −y2 sin d07, y1 sin d07, −y0 sin d07)

(3.32)

It can be confirmed that LTy RTg LT(y·g)−1 depends on y for each set of coordinates. Consequently,
there is no immediate residual symmetry group in the sense of equation (3.2) when the submanifold
is chosen to be S4.

A U(1) symmetry can be deduced by embedding S4 in SU(3), and restricting the coordinatiza-
tion of the SU(4) transformation in §3 to this subgroup. The derivation of this symmetry group for
S4 and S5 are similar. The condition of independence of the connection form with respect to the
fibre coordinate implies that the dimension of the symmetry group associated with the transfor-
mation rule (3.2) must remain constant or decrease as the dimension of the submanifold defining
the fibre increases.

When the submanifold is S5, independence of the inhomogeneous term with respect to the
fibre coordinate gives rise to 20 conditions leaving 8 generators. The action of these generators on
(y0, y1, y2, y3, y4, y5, 0, 0, 0) produces a new set of coordinates and the homogeneous term depends
on y for each of these coordinates. This follows from the results for S4, as the restriction of the
homogeneous term to y5 = 0 already reveals a dependence on y.

The embedding of S5 into SU(3) can be deduced from the earlier embedding of S7 into SU(4)
by setting δ1 + δ2 + δ3 = φ3 = σ6 = φ2 = σ1 = φ1 = σ1 = 0. The remaining parameters
are θ1, θ2, θ3, σ2, σ3, σ5, δ1, δ2 and the entries of the general SU(3) matrix in Euler angles,
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D(δ1, δ2 − δ1 − δ2) U23(θ3, σ5)U12(θ2, σ3) U13(θ1, σ2) is

g00 = cos θ2 cos θ1 e
iδ1

g01 = −sin θ2 ei(δ1−δ3)
g02 = −cos θ2 sin θ1 ei(δ1−σ2)

g10 = cos θ3 cos θ2 sin θ2 cos θ1 e
i(δ2+σ3) − sin θ3 sin θ1 e

i(σ2+δ2−σ3)

g11 = cos θ2 cos θ3 e
iδ2

g12 = −cos θ3 sin θ2 sin θ1 ei(δ2+σ3−σ2) − sin θ3 cos θ1 e
i(δ2−σ5)

g20 = sin θ3 sin θ2 cos θ1 e
i(−δ1−δ2+σ3+σ5) + cos θ3 sin θ1 e

i(σ2 − δ1 − δ2)

g21 = sin θ3 cos θ2 e
i(σ5−δ1−δ2)

g22 = −sin θ3 sin θ2 sin θ1 ei(−δ1−δ2+σ3+σ5−σ2)

(3.33)

Restriction to S5 is obtained by setting θ3 = σ5 = δ2 = 0 and using the map ιL : S5 → SU(3)

ιL(y) =

⎛
⎝ 1

0
0

⎞
⎠ =

⎛
⎝ y0 + iy1
y2 + iy3
y4 + iy5

⎞
⎠

=

⎛
⎝ cos θ2 cos θ1 e

iδ1

−sin θ2 ei(δ1−σ3)

−cos θ2 sin θ1 ei(δ1−σ2)

⎞
⎠

(3.34)

If (c0, c1, c2) ≡ y · (dAJA)(ιL(y−1)T ), independence of c0 with respect to the fibre coordinates
implies that d5 = d7 = d9 = d14 = 0 and σ2 = σ3 = 0. The remaining coefficients are d1, d2, d8.
Since c1 = d1 cos θ1e

iδ1 +d8 sin θ1e
iδ1 , independence with respect to the fibre coordinate y implies

that d1 = d8 = 0 and c2 = d2 cos θ2e
iδ1 . If θ2 = δ1 = 0, there is still a non-trivial U(1) action

parametrized by θ1. This is consistent with the existence of a U(1) affinor structure on S5 [37].

Similarly, independence of the inhomogenous term for an S6 submanifold implies 21 conditions
and leaves 7 remaining generators. Dependence of the homogeneous term for the coordinates
generated by the action of these generators on (y0, y1, y2, y3, y4, y5, y6, 0) again can be verified.

When G/H is a reductive homogeneous space, the G-invariant affine connections are in one-
to-one correspondence with the set of algebra multiplications on (m, ∗) with (g,h) a reductive
pair, g = m ⊕ h and AdH ⊆ Aut(m, ∗) where g, h are Lie algebras of G and H, where G/H is
a reductive homogeneous space [38], and this property has been used to characterize G2-invariant
affine connections on S6 = G2/SU(3) [39] and Spin(7)-invariant connections on S7 = Spin(7)/G2

[40]. The affine connection may take values in the vector space representing the vertical tangent
space, but the torsion and curvature forms are acting on vectors in this vector space. A connection
form may be introduced for the total bundle by extending evaluation of the form to the horizontal
lifts of vectors in the base space and the projection of tangent vectors to the sections of the total
space onto the the vertical subspace. While the transformation of these connection forms would be
of the standard type, the connections defined in this manner would generally depend on the fibre
coordinates. Invariants for the groups G2 and Spin(7) also have been defined [41][42], but they
consist of trace polynomials rather than the gauge potentials and the transformation rule does not
contain the inhomogeneous terms required for connections.

14



Beginning with an SO(8) structure group, it appeared possible that an allowed symmetry group
larger than the fibre could be obtained if the fibre was chosen to be an appropriate submanifold
of S7. The computation of the fibre coordinate dependence of the connection form transformation
rule for the S3 submanifold demonstrates that the constraints reduce the structure group to SO(3),
producing the standard principal bundle structure. This property is verified for general bundles in
Appendix A.

4. Gauge Potentials and Projections of the Tangent Vector Fields to the S7 Fibre
onto Submanifolds

Given a diffeomorphism between an SU(2) bundle over M4 × S4 and an S7 bundle over M4,
it follows that a change of section in the S7 bundle would mix fibre coordinates in the SU(2)
bundle over eight-dimensional base space. For a fibre admitting a global parallelism, projec-
tion of the connection transformation rule to the base manifold could give rise to a generalized
transformation law in eight dimensions. The action of octonion multiplication can be projected
onto a parallelism on SU(2), and it may be anticipated that this parallelism on the SU(2) fi-
bre can be used to express the terms in the transformed connection, Tψyβα(ξx), as φy′W (x),
and Tψxβα · Γα(ξx, y), as φy′ · A(x) · Γα(ξx). The local diffeomorphism between S7 and S4 × S3,
ψU : S7|U → (S4×S3)|ψ(U) induces a map between the vector fields ψ∗ : TS7|U → T (S4×S3)|ψ(U)

defined by ψ∗(e1(y), ..., e7(y)) = ((e′1(ψ(y)), ..., e′4(ψ(y)), ..., (e′′1(ψ(y)), ..., e′′3(ψ(y))). While there
are seven independent smooth vector fields on the fibre, the image of the tangent mapping is a set
of vector fields, which can be projected locally to linear combinations of three vector fields on an
S3 submanifold.

The action of octonion multiplication on the vector (1 0 0 0 0 0 0 0) is given by the vector
field (1 0 0 0 0 0 0) · (dABJAB) · (ιL(y)T )∗ on S7 , where dABJAB is that particular combination
of generators in the Lie algebra of SO(8) belonging to the seven-dimensional subspace spanned
by {Xi, i = 1, ..., 7}. The product y · (dABJAB) · (ιL(y−1)T )∗ has been shown to be independent
of y in §3, and the same property holds for y−1 · (dABJAB) · (ιL(y)T )∗. For a given value of y,
only three independent non-zero vectors (0 0 0 0 y5 − y4 y7 − y6), (0 0 0 0 y6 − y7 − y4 y5)
and (0 0 0 0 − y7 − y6 y5 y4) are obtained when y0, y1, y2, y3 are set equal to zero. However,
it has been established that the four generators in SO(8) representing Xi, i = 4, ..., 7 do not
leave this S3 submanifold invariant, and the projection of these four vectors onto S3 can only be
computed when the coordinates yi, i = 0, 1, 2, 3 are allowed to be non-zero. The group elements
exp (d0iXi) , i = 4, ..., 7 map (0 0 0 0 y4 y5 y6 y7) to the points

(y4 sin d04, y5 sin d04, y6 sin d04, −y7 sin d04, y4 cos d04, y5 cos d04,

y6 cos d04, y7 cos d04),
(y5 sin d05, − y4 sin d05, −y7 sin d05, −y6 sin d05, y4 cos d05, y5 cos d05,

y6 cos d05, y7 cos d05)
(y6 sin d06, y7 sin d06, −y4 sin d06, y5 sin d06, y4 cos d06, y5 cos d06,

y6 cos d06, y7 cos d06)
(y7 sin d07, − y6 sin d07, y5 sin d07, y4 sin d07, y4 cos d07, y5 cos d07,

y6 cos d07, y7 cos d07)

(4.1)
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The seven tangent vectors (1 0 0 0 0 0 0) ·Xi · (ιL(y′)T )∗ are given by

(−y′1 y′0 y′3 − y′2 y
′
5 − y′4 y

′
7 − y′6)

(−y′2 − y′3 y
′
0 y

′
1 y

′
6 − y′7 − y′4 y

′
5)

(−y′3 y′2 − y′1 y
′
0 − y′7 − y′6 y

′
5 y

′
4)

(−y′4 − y′5 − y′6 y
′
7 y

′
0 y

′
1 y

′
2 − y′3)

(−y′5 y′4 y′7 y′6 − y′1 y
′
0 − y′3 − y′2)

(−y′6 − y′7 y
′
4 − y′5 − y′2 y

′
3 y

′
0 y

′
1)

(−y′7 y′6 − y′5 − y′4 y
′
3 y

′
2 − y′1 y

′
0)

(4.2)

and they can be evaluated at each of the four points (4.1). Consider, in particular, the four vectors
(1 0 0 0 0 0 0) ·Xi, i = 4, ..., 7 transported along the integral curves of Xi.

(−y4 cos d04, − y5 cos d04, −y6 cos d04, y7 cos d04, y4 sin d04, y5 sin d04,

y6 sin d04, y7 sin d04)
(−y5 cos d05, y4 cos d05, y7 cos d05, y6 cos d05, y4 sin d05, y5 sin d05,

y6 sin d05, y7 sin d05)
(−y6 cos d06, − y7 cos d06, y4 cos d06, −y5 cos d06, y4 sin d06, y5 sin d06,

y6 sin d06, y7 sin d06)
(−y7 cos d07, y6 cos d07, −y5 cos d07, −y4 cos d07, y4 sin d07, y5 sin d07,

y6 sin d07, y7 sin d07)

(4.3)

The projections onto the last four components of these eight-component vectors are identical
and represent the normal vector to the three sphere spanned by coordinates (0, 0, 0, 0, y4, y5, y6, y7),
thus vanishing in the tangent plane. Given a normal vector �n to the tangent plane in the eight-
dimensional embedding space which defines a perpendicular from the vector �v to the tangent plane,
and a decomposition k1�t+k2�n = �v, the projection onto this tangent vector would be (
v·
t)
t

|
t|2 . The tan-
gent plane to the three sphere at the point (y4 sin d04, y5 sin d04, y6 sin d04,−y7 sin d04, y4 cos d04

y5 cos d04, y6 cos d04, y7 cos d04) is spanned by the three vectors

�t
(4)
4 = (y7sin d04, 0, 0, y4sin d04, y7 cos d04, 0, 0,−y4 cos d04)

�t
(4)
5 = (0, y7sin d04, 0, y5sin d04, 0, y7 cos d04, 0,−y5cos d04)

�t
(4)
6 = (0, 0, y7sin d04, y6sin d04, 0, 0, y7cos d04,−y6cos d04)

(4.4)

The normal vectors to the submanifolds (4.3) within the tangent space to the seven-sphere can be
deduced from four orthogonality conditions. In the first instance, these normal vectors are

�n
(4)
0 = (cos d04, 0, 0, 0,−sin d04, 0, 0, 0)

�n
(4)
1 = (0, cos d04, 0, 0, 0,−sin d04, 0, 0)

�n
(4)
2 = (0, 0, cos d04, 0, 0, 0,−sin d04, 0)

�n
(4)
3 = (0, 0, 0, cos d04, 0, 0, 0, sin d04)

(4.5)
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The equivalence of c0�n
(4)
0 + c1�n

(4)
1 + c2�n

(4)
2 + c3�n

(4)
3 + λ4�t

(4)
4 + λ5�t

(4)
5 + λ6�t

(4)
6 with the initial vector

in the set (4.2) requires c0 = −y4, c1 = −y5, c2 = −y6, c3 = y7. The projection along the normal
vector −y4�n(4)

0 − y5�n
(4)
1 − y6�n

(4)
2 + y7�n

(4)
3 vanishes.

Based on the coordinates for the second submanifold, the tangent vectors are

�t
(5)
4 = (0,−y7 sin d05, y4 sin d05, 0, y7 cos d05, 0, 0,−y4 cos d05)

�t
(5)
5 = (y7 sin d05, 0, y5 sin d05, 0, 0, y7 cos d05, 0,−y5 cos d05)

�t
(5]
6 = (0, 0, y6 sin d05,−y7 sin d05, 0, 0, y7 cos d05,−y6 cos d05)

(4.6)

From the orthogonality relations, the normal vectors

(0, cos d05, 0, 0, sin d05, 0, 0, 0)
(cos d05, 0, 0, 0, 0,−sin d05, 0, 0)
(0, 0, 0, cos d05, 0, 0, sin d05, 0)
(0, cos d05, 0, 0, 0, 0, 0, sin d05)

(4.7)

The second vector in the set (4.2) can be obtained from the linear combination c(5)0 �n
(5)
0 + c

(5)
1 �n

(5)
1 +

c
(5)
2 �n

(5)
2 + c

(5)
3 �n

(5)
3 + λ

(5)
4
�t
(5)
4 + λ

(5)
5
�t
(5)
5 + λ

(5)
6
�t
(5)
6 ,

c
(5)
1 cos d05 + λ

(5)
5 y7 sin d05 = −y5 cos d05

c
(5)
0 cos d05 − λ

(5)
4 y7 sin d05 = y4 cos d05

c
(5)
2 cos d05 + (λ(5)

4 y4 + λ
(5)
5 y5 + λ

(5)
6 y6) sin d05 = y7 cos d05

c
(5)
3 cos d05 − λ

(5)
6 y7 sin d05 = y6 cos d05

c
(5)
0 sin d05 + λ

(5)
4 y7 cos d05 = y4 sin d05

−c(5)1 sin d05 + λ
(5)
5 y7 cos d05 = y5 sin d05

c
(5)
2 sin d05 + λ

(5)
6 cos d05 = y6 cos d05

c
(5)
3 sin d05 − (λ(5)

4 y4 + λ
(5)
5 y5 + λ

(5)
6 y6) cos d05 = y7 sin d05

(4.8)

which has the solution c(5)0 = y4, c
(5)
1 = −y5, c(5)2 = y6, c

(5)
3 = y7,λ

(5)
4 = λ

(5)
5 = λ

(5)
6 = 0.

At the point (y6 sin d06, y7 sin d06, −y4 sin d06, y5 sin d06, y4 cos d06, y5 cos d06,
y6 cos d06, y7 cos d06), the tangent vectors are

�t
(6)
4 = (0,−y4sin d06,−y7sin d06, 0, y7 cos d06, 0,−y4 cos d06)

�t
(6)
5 = (0,−y5 sin d06, 0, y7 sin d06, 0, y7 cos d06, 0,−y5 cos d06)

�t
(6)
6 = (y7 sin d06,−y6 sin d06, 0, 0, 0, 0, y7 cos d06,−y6 cos d06)

(4.9)

The normal vectors are
(0, 0, cos d06, 0, sin d06, 0, 0, 0)
(0, 0, 0, cos d06, 0,−sin d06, 0, 0)
(cos d06, 0, 0, 0, 0, 0,−sin d06, 0)
(0, cos d06, 0, 0, 0, 0, 0 − sin d06)

(4.10)
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The third vector in the set (4.2) can be obtained from a linear combination of the four normal vec-
tors and three tangent vectors by imposing the conditions by setting c(6)0 = y4, c

(6)
1 = −y5, c(6)2 =

−y6, c(6)3 = −y7, λ(6)
4 = λ

(6)
5 = λ

(6)
6 = 0.

The tangent vectors at the point (y7 sin d07, −y6 sin d07, −y5 sin d07, y4 sin d07,
y4 cos d07 y5 cos d07, y6 cos d07, y7 cos d07), are

t
(7)
4 = (−y4 sin d07, 0, 0, 0, y7 sin d07, y7 cos d07, 0, 0, −y4 cos d07)

t
(7)
5 = (−y5 sin d07, 0, y7 sin d07, 0, 0, y7 cos d07, 0, −y5 cos d07)

t
(7)
6 = (−y6 sin d07, −y7 sin d07, 0, 0, 0, 0, y7 cos d07, −y6 cos d07)

(4.11)

and the normal vectors are

(0, 0, 0, cos d07, −sin d07, 0, 0, 0)
(0, 0, cos d07, 0, 0,−sin d07, 0, 0)
(0, cos d07, 0, 0, 0, 0, sin d07, 0)
(cos d07, 0, 0, 0, 0, 0, 0,−sin d07)

(4.12)

and equality between c(7)0 �n
(7)
0 + c

(7)
1 �n

(7)
1 + c

(7)
2 �n

(7)
2 + c

(7)
3 �n

(7)
3 + λ

(7)
4
�t
(7)
4 + λ

(7)
5
�t
(7)
5 + λ

(7)
6
�t
(7)
6 and the

vector (−y7 cos d07, y6 cos d07, −y5 cos d07, −y4 cos d07, y4 sin d07, y5 cos d07, y6 cos d07,

y7 cos d07) is obtained if c(7)0 = −y4, c(7)1 = −y5, c(7)2 = y6, c
(7)
3 = −y7, λ(7)

4 = λ
(7)
5 = λ

(7)
6 = 0.

Since the orthogonality of the vectors Xi will be preserved by the S7 parallelism, the transport
of other vectors Xk, k �= i, k = 4, ..., 7 again will have the property of vanishing projection along
the normal vectors to the S3 submanifold.

That leaves the original three tangent vectors to (0 0 0 0 y5 −y4 y7 −y6), (0 0 0 0 y6 −y7 −y4 y5)
and (0 0 0 0 − y7 − y6 y5 y4) so that an SO(3) gauge theory initially would be obtained upon
projection to the S3 submanifold.

However, upon setting y0, y1, y2, y3 equal to zero, the seven tangent vectors at y take the
form
(0, 0, 0, 0, y5,−y4, y7,−y6), (0, 0, 0, 0, y6,−y7,−y4, y5), (0, 0, 0, 0,−y7,−y6, y5, y4),
(0, 0, 0, 0,−y7,−y6, y5, y4), (−y4,−y5,−y6, y7, 0, 0, 0, 0), (−y5,−y4, y7, y6, 0, 0, 0, 0),
(−y6,−y7, y4,−y5, 0, 0, 0, 0), (−y7, y6,−y5,−y4, 0, 0, 0, 0).

While the last four vectors are normal to the three-sphere defined by the coordinates
{(0, 0, 0, 0, y4, y5, y6, y7)|y2

4 + y2
5 + y2

6 + y2
7 = 1}, they can be viewed as tangent vectors to a distinct

submanifold with coordinates (y0, y1, y2, y3, 0, 0, 0, 0). As the vectors are transported on the three-
sphere, the last three vectors trace a second three-sphere as tangents. Based on the isomorphism
between {(y0, y1, y2, y3, 0, 0, 0, 0)|y2

0+y2
1+y2

2+y2
3 = 1} and {(0, 0, 0, 0, y4, y5, y6, y7)|y2

4+y2
5+y2

6+y2
7 =
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1}, a relabelling of the coordinates in the last four vectors gives

− y0
∂

∂y0
− y1

∂

∂y1
− y2

∂

∂y2
+ y3

∂

∂y3

− y1
∂

∂y0
− y0

∂

∂y1
+ y3

∂

∂y2
+ y2

∂

∂y3

− y2
∂

∂y0
− y3

∂

∂y1
+ y0

∂

∂y2
− y1

∂

∂y3

− y3
∂

∂y0
+ y2

∂

∂y1
− y1

∂

∂y2
− y0

∂

∂y3

(4.13)

At the point (y0 y1 y2 y3), the decomposition of vectors into tangent and normal components is
given by c�n + λ0�t1 + λ1�t1 + λ2�t2 where �n = (y0 y1 y2 y3), �t0 = (y3 0 0 − y0), �t1 = (0 y3 0 − y1),
�t2 = (0 0 y3 − y2), and for the first vector, the coefficients are c = 2y2

3 − 1, λ0 = −2y0y3, λ1 =
−2y0y1, λ2 = −2y0y2.

Six of the vector fields generate an su(2) ⊗ su(2) algebra. which is isomorphic to the antisym-
metrized version of the colour algebra [43] over R. The seventh vector field transforms nonlinearly
under the action of one of the SU(2) groups.

The triality of the octonion algebra provides a theoretical basis for the mesons and baryons
transforming as singlets under SU(3), lepton-hadron superselection rule with observables Ω being
decomposible as a direct sum Ω = LΩL+HΩH, LH = HL = 0, L+H = Id [43]. Together with
unity 1, the seven-dimensional colour algebra can be obtained from the octonion algebra through
the direct sum O = Fa⊕W , where F is the base field and F1+Fa forms a subalgebra [39]. While
the quark and anti-quark fields {uα, ūα} can be regarded as triplets and anti-triplets of SU(3), the
stability group for the seven-sphere SU(4)/SU(3), their products uαuβ = εαβγ ūγ , ūαūβ = εαβγuγ
deine the colour algebra, together with the element H representing the hadron field [43].

The dependence of the coupling of a non-abelian gauge theory on the energy scale is given
by the second Casimir invariant of the Lie group, which is determined by the structure constants
C2δlm = flnn′fmnn′ ,

g2

g2
0

= 1 + (11C2 − 2n)
g2
0

48π2
ln(ΛL)2 + O(g4

0) (4.14)

where g0 is the unrenormalized coupling, Λ is the ultraviolet momentum cut-off and L3 is the
volume size. For an SU(3) gauge theory, with structure constants defined by [12λi,

1
2λj ] = ifijkλk,

where λi are the Gell-Mann matrices with normalization tr( 1
2λi

1
2λj) = 1

2δij so that f123 = 1, f147 =
1
2 , f246 = 1

2 , f257 = 1
2 , f345 = 1

2 , f516 = 1
2 , f637 = 1

2 , f458 =
√

3
2 , f678 =

√
3

2 and C2 = 3. For
the octonions, setting the normalization of the vector fields to be the same as that of the Gell-
Mann matrices, with 〈 1√

2
ei,

1√
2
ej〉 = 1

2δij and [ 1√
2
ei,

1√
2
ej ] = 1√

2
fijk

1√
2
ek ≡ f ′ijk

1√
2
ek, the identity

f ′kmpf ′lnp = 1
2f

kmpf lnp = 1
2 (δklδmn − δknδml +ϕkmln) implies that the equivalent quantity to C2

also equals 3 and
g2

g2
0

= 1 + (11 − 2
3
n)

g2
0

8π2
ln(ΛL) + O(g4

0) (4.15)

consistent with the energy-dependence of the strong-interaction coupling [44] This result suggests
that all of the projected vector fields would be necessary for a description of strong interactions.
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The projections of the seven vector fields onto the tangent plane of the submanifold S3 × S3 =
{(y0, y1, y2, y3, y4, y5, y6, y7)|y2

0 +y2
1 +y2

2 +y2
3 = λ, y2

4 +y2
5 +y2

6 +y2
7 = 1−λ} also can be computed.

Given the six tangent vectors are

�t0 =
(

1, 0, 0,−y0
y3
, 0, 0, 0, 0

)

�t1 =
(

0, 1, 0,−y1
y3
, 0, 0, 0, 0

)

�t2 =
(

0, 0, , 1,−y2
y3
, 0, 0, 0, 0

)

�t4 =
(

0, 0, 0, 0, 1, 0, 0,−y4
y7

)

�t5 =
(

0, 0, 0, 0, 0, 1, 0,−y5
y7

)

�t6 =
(

0, 0, 0, 0, 0, 0, 1,−y6
y7

)

(4.16)

and the normal vector

�n =
(

1,
y1
y0
,
y2
y0
,
y3
y0
,−y4

y0

λ

1 − λ
,−y5

y0

λ

1 − λ
,−y6

y0

λ

1 − λ
,−y7

y0

λ

1 − λ

)
(4.17)

the equality between c�n+ν0�t0+ν1�t1+ν2�t2+ν4�t4+ν5�t5+ν6�t6 and each of the seven tangent vectors
at y can be used to determine the projection onto the tangent plane to the S3 × S3 submanifold.
For the vector (−y1, y0, y3,−y2, y5,−y4, y7,−y6), c = 0, so that it lies in the tangent plane to the
submanifold. The coefficient c also vanishes for (−y2,−y3, y0, y1, y6,−y7,−y4, y5). However, for
(−y3, y2,−y1, y0,−y7,−y6, y5, y4), the solution to the vector equality is

c = (λ− 1)y3
ν0 = −λy3
ν1 = y2 + (1 − λ)

y1y3
y0

ν2 = −y1 + (λ− 1)
y2y3
y0

ν4 = y5 − λ
y3y4
y0

ν5 = −y4 − λ
y3y5
y0

ν6 = y7 − λ
y3y6
y0

(4.18)

However, the condition − λ
1−λc

y7
y0
− (ν4y4+ν5y5+ν6y6)

y7
= −y6 implies −λ(1−λ) y3

y0y7
= 0, so that either

λ = 0, 1 or y3 = 0. Eliminating one of the three-spheres then reduces to the earlier choice of the
three-sphere submanifold. If 0 < λ < 1, the projected vector is (0, y2,−y1, λy0, y5,−y4, y7,−y6).

20



Given the vector (−y4,−y5,−y6, y7, y0, y1, y2,−y3), the equality implies that

c = −ν0 − y4 = − 1
λ

[
y1y5
y0

+
y2y3
y0

− y4
(λ− y2

0)
y0y3

− y7

]
− y4

ν0 =
1
λ

[
y1y5
y0

+
y2y3
y0

− y4
(λ− y2

0)
y0y3

− y7

]

ν1 =
1
λ

y1
y0

[
y1y5
y0

+
y2y3
y0

− y4
(λ− y2

0)
y0y3

− y7

]
+

(y1y4 + y0y5)
y0

ν2 =
1
λ

y2
y0

[
y1y5
y0

+
y2y3
y0

− y4
(λ− y2

0)
y0y3

− y7

]
+

(y2y4 + y0y3)
y0

ν4 = y0 − y4
y0

1
1 − λ

(
y1y5
y0

+
y2y3
y0

− y7 − y4(λ− y2
0)

y0y3
+ λy4

)

ν5 = y1 − y5
y0

1
1 − λ

(
y1y5
y0

+
y2y3
y0

− y7 − y4(λ− y2
0)

y0y3
+ λy4

)

ν6 = − 1
1 − λ

y7
y6

(
y1y5
y0

+
y2y3
y0

− y7 − y4(λ− y2
0)

y0y3

)
+
y4y

2
7

y0y6

+
y2
4

y6y0

(
y0 − 1

1 − λ

(
y1y5
y0

+
y2y3
y0

− y7
y4(λ− y2

0)
y0y3

)
+ λy4

)

+
y2
5

y6y0

(
y1 − 1

1 − λ

(
y1y5
y0

+
y2y3
y0

− y7
y4(λ− y2

0)
y0y3

)
+ λy4

)

(4.19)

indicating the nonlinear nature of the components of the last four projected vectors.

5. Dimensional Reduction over Coset Manifolds and Residual Gauge
Symmetry

The action of generalized gauge transformations on bundles with an S7 fibre, and the residual
gauge symmetries, have been studied in §3. These results can be compared with the dimensional
reduction of 11-dimensional supergravity overM4×S7 [45] and dimensional reduction of superstring
theory from ten to four dimensions [46].

Given a coset manifold S/R, dimensional reduction of the theory can be achieved automatically
when all of the fields are required to be invariant under the group S. For a tensor field, this implies
that

Tμ1..μn(g(x, y)) =
∂g(x, y)μ1

∂Xρ1
...
∂g(x, y)μn

∂Xρn
T ρ1...ρn(x, y) Xμ = (x, y) (5.1)

It has been shown that S-invariance of a field on M4 × S/R follows from R-invariance of the field
at a designated base point [45] of the homogeneous coset manifold.

In contrast to fields which transform covariantly with respect to space-time symmetry trans-
formations, symmetric gauge fields do not have to be strictly invariant but only satisfy the weaker
condition that the transformed field is gauge-equivalent.

When the coset manifold is S7, and S is the group SU(4), then SU(4) invariance of a vector
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field V α(x, y),

V α(x, g(y)) =
∂(g(y))α

∂yγ
V γ(x, y) (5.2)

is equivalent to SU(3) invariance at the base point

V α(x, o) =
∂(h(y))α

∂yγ
|y=oV γ(x, o) (5.3)

where h ∈ R, the stabilizing group of the origin o. Consequently, the only unconstrained fields
over the base space M4 are the SU(3) singlets.

In this case, the decomposition of the adjoint representation of S into irreducible representations
of R provides the gauge groups of the dimensionally reduced field theory. When S = SO(8),
28 → 21 + 7 and when S = SU(4), 15 → 8 + 3 + 3̄ + 1. The number of unconstrained gauge
potentials is given by the number of R-singlets in the isotropy representation IR, or equivalently,
the dimension of C(R), the centralizer of R in S. Consequently, dimensional reduction of an S-
invariant gauge theory in M4 × S/R should give a theory with unconstrained gauge potentials
on M4 transforming under the symmetry group C(R). When S = SO(8), this residual symmetry
group only consists of the identity element, whereas, when S = SU(4), the symmetry group is U(1)
[43]. These results are consistent with those obtained through the calculation of the transformation
of the connection form in §3.

In a modification of this technique, S-invariance can be extended to symmetric gauge fields
which satisfy a generalized gauge invariance law [47]

g(s, x) Aρ g−1(s, x) + ∂ρg(s, x)g−1(s, x) = Aμ(s(x)) Jμρ (s, x)

s ∈ S, g(s, x) ∈ G
(5.4)

indicating that the potential is invariant up to a gauge transformation. If the initial gauge group
is G, and K(R) is the homomorphic image of R in G, then after dimensional reduction, the gauge
group is the centralizer in G of K(R) [45]. For different choices of G, the use of symmetric gauge
fields leads to a wider variety of dimensional reduction schemes [47][48] and therefore might be
used to obtain larger residual gauge groups beginning with an invariance under S = SU(4). In
particular, the residual symmetry group perhaps can be enlarged to the stability group H for
the coset space G/H, thus obtaining the full set of linear gauge transformations [49] when G is
nonlinearly realized.

Solutions to the d = 11 supergravity equations of motion with SU(4) symmetry, include, for
example, an S7 metric obtained by stretching U(1) fibres over CP

3 [50][51] The higher-dimensional
action may consist of terms containing fields transforming under different irreducible representa-
tions of SU(3), and integration over the fibre coordinates can be performed, giving rise to an action
on M4. Specifically, when S = SU(4) and R = SU(3), amongst the non-trivial representations in
the decomposition of ad SU(4) are those corresponding to the SU(3) gauge field, which could also
be included in the dimensionally reduced action. This would therefore providing a method for ob-
taining the QCD gauge theory for strong interactions in four dimensions from a higher-dimensional
theory through the geometrical procedure of reduction over a coset space.

In addition to this method for obtaining an SU(3) gauge theory, results of a systematic study of
Lagrangians containing fields transforming linearly under a group R but nonlinearly under a larger

22



group S [52][53] could be used in this case. Since it is known that a theory with fields transforming
linearly under R can be shown to be equivalent to a theory with fields transforming nonlinearly
under S, pure gauge fields on S/R may be added to gauge fields on R to obtain a Lagrangian with
local gauge invariance under S [54]. Given an element of the coset space φ0(x) ∈ S/R, and gauge
fields in the Lie algebra of R, Aμ ∈ R, the pure gauge fields [54] are defined to be

Bμ = φ0(x)(∂μ + Aμ)φ−1
0 (x) (5.5)

and the set {Aμ, Bμ} forms a nonlinear representation of S and the field content of an S-invariant
Lagrangian. It may be noted that the extra fields are derived from scalar quantities and therefore
resemble the coordinate fields of a higher-dimensional theory. Within the context of the nonlinear
realization approach, the physical equivalence of the R-invariant and S-invariant theories follows
from the elimination of the pure gauge fields by gauge transformations, whereas the dimensional
reduction of a higher-dimensional theory produces a closely related but nevertheless distinct theory.
The usefulness of pure gauge fields on coset spaces depends on whether the spin-one gauge field in
the ten-dimensional action possesses SU(4) symmetry or an SU(3) symmetry that is being viewed
as SU(4) through the method of induced representations.

Although reduction over S7 = SU(4)/SU(3) has been considered exclusively thus far in this
section, it may be noted that compactification of ten-dimensional superstring theories on six-
dimensional compact spaces is also known to lead to a breaking of an SU(4) symmetry through
an SU(3) subgroup. For example, one may consider the reduction of ten-dimensional supergravity
to four dimensions when all of the fields are independent of the extra six coordinates yα. The
resulting N=4 supersymmetry is generated by 4 spinors QA transforming under the fundamental
representation of SU(4). As they also transform as 1 ⊕ 3 under an SU(3) subgroup of SU(4), this
invariance under this subgroup breaks the N = 4 supersymmetry to N = 1, with the surviving
supersymmetry being an SU(3) singlet [46]. Similar considerations apply to the breaking of E8 to
E6 or grand unification, in the compactification of ten-dimensional E8 × E8 supergravity theories
on Calabi-Yau manifolds with SU(3) holonomy.

The free Green-Schwarz superstring can be formulated in three, four and six dimensions and a
Lorentz covariant and unitary interacting Green-Schwarz superstring exists in ten dimensions [55].
These dimensions are necessary for local supersymmetry, which depends on Γ-matrix identities
derived from the division algebras R, C, H and O [56] corresponding to the transverse directions.
Classical solutions of the equations of motion of the Green-Schwarz Lagrangian inD = 10 have been
found by expressing ten-dimensional vectors as 2 × 2 octonionic matrices and 32-real-component
Majorana spinors as spinors with four octonionic components [57]. These equivalences follow from
the isomorphism S̃O(1, 9) � SL(2, O) [58][59] which is the last in a sequence of isomorphisms
involving space-time and division algebras, S̃O(1, ν + 1) � SL(2; Kν), ν = 1, 2, 4, 8 [60].

These isomorphisms can be used in the representation of space-time vectors as 2× 2 hermitian
matrices and null vectors as fermion bilinears [60]. The null vector Pμ is equivalent to

P = λλ† =
(
ξξ† ξη†
ηξ† ηη†

)
(5.6)

where λ =
(
ξ
η

)
. Since the determinant of this matrix, which equals PμPμ, vanishes, Pμ must lie

on the forward light cone. Lorentz transformations on the space-time vector Pμ can be regarded
as SL(2,Kν) transformations on λλ† derived from the multiplication of SL(2,Kν) matrices and
the spinor λ [34].
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The space of light-like lines at a point in ten dimensions is S8 and the above equivalence implies
that it can be represented as the set of spinors λ modulo transformations which leave λλ† invariant.
These transformations form the algebra S7 and the action on the space of light-like lines is given
by the Hopf fibration S15 → S8 [60]. This construction has also been extended to the action of S7

on the physical twistor space N ⊂ OP 3 [61] and the S7 Kac-Moody algebra Ŝ7 [62] which arises as
a symmetry algebra of the twistor-string theory [63] and the light-cone superstring [64]. Finally,
supersymmetrical light-like lines have been used in ten-dimensional super-Yang-Mills theories to
integrate the constraint equations [65] and an S7 symmetry on the space of light-like lines exists.

A solution to the problem of the fibre coordinate dependence of the transformation rule of the
connection form for a general bundle implies that a Lie group structure is necessary for a pure gauge
theory. While the projection of vector fields on the seven-sphere to a group submanifold appears
to provide an exception as it can be used to introduce a potential with seven non-zero components,
an underlying SU(2) × SU(2) group structure is necessary to define gauge transformations of six
of the these components.

The problem of force unification can be refined by the classification of matter multiplets, since
the components of the spinors must take values in the division algebras. Basing the fermionic part
of the standard model on the spinor space T = C ⊗ H ⊗ O, it may be noted that the amplitudes
for elementary particle interactions typically involve the product of two fermions ψ1, ψ2 and a
vector boson Aμ at the vertices of the perturbative diagrams. If the fermions did take values in a
composition algebra with zero divisors, this vertex factor could vanish because there then would
exist ψ1, ψ2 �= 0 such that ψ1 · ψ − 2 �= 0.

The sequence of division algebras can be extended to higher-dimensional Cayley-Dickson alge-
bras containing zero divisors ul, um, such that their product vanishes [66]. It follows that since
(ukul)um = uk(ulum) + {uk, ul, um} this expression vanishes if the associator {uk, ul, um} is
zero. For Cayley-Dickson algebras of dimension 2n, n ≥ 4, there are triples of basis elements for
which {ek, el, em} = 0. Since ul is a linear combination of the basis elements

∑
i ciei, a rotation

of the basis elements, given by e′i = 1∑
j
c2

j

∑
i ciei, is sufficient to generate a zero divisor. In fact,

the dimension of the kernel of the operator La, representing left multiplication by a zero divisor
a, satisfies the condition 2n − 4 ≥ dim ker La ≡ 0 (mod 4) [66]. The same elements of a
Cayley- Dickson algebra will represent ker Ra. Since it can be verified that the zero-divisors in the
Cayley-Dickson algebras are combinations of the basis elements, one may apply a transformation
to the standard basis {e0, e1, e2, ..., e2n−1} such that the new basis include the zero divisors.
The multiplication table will then have block form so that the fermion terms in the Lagrangian
and the corresponding vertex factors will vanish. Since the blocks will be 4× 4, it should possible
to express the particle content again in terms of sums of tensor products of spinor spaces which are
isomorphic to C, H and O. The overall symmetry of the action would also be reduced according
to the requirement that block form be maintained.

In addition to the finite-dimensional Clifford algebra, CL×HL×OL = R0,9, infinite-dimensional
Clifford algebras, in principle, might be used to describe elementary particle interactions. Consider
a set of unitary operators Ui : Rn → Rn such that U2

i = −I and UiUj = −UjUi. Let n =
(2a(n) + 1)2b(n), b(n) = c(n) + 4d(n), 0 ≤ c(n) ≤ 3. The maximal number of unitary operators
on Rn satisfying the Clifford algebra relations, is equal to ρ(n)− 1, where ρ(n) = 2c(n) + 8d(n) by
the Hurwitz-Radon-Eckmann theorem [67][68][69]. When n is finite, it is known that ρ(n) ≤ n and
that ρ(n) = n only for n = 1, 2, 4, 8. Moreover, ρ(∞) = ∞, so that the infinite-dimensional Clifford
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algebra necessarily acts on an infinite-dimensional vector space. It may be noted that ρ(n) − 1
also represents the maximal number of linearly independent vector fields on Sn−1, replacing the
products of basis operators Ui by Lie brackets of unit vector fields on the sphere, Xi. As an
infinite-dimensional division algebra can be viewed as a module for the Clifford algebra, no finite-
dimensional representation can be used for a spinor space. Since there are only a finite number of
fermion degrees of freedom in a realistic unified field theory, infinite-dimensional division algebras
would not be relevant in the formulation of this theory.

The vector boson, the carrier of the force, is initially massless when the gauge symmetry is
unbroken and the expression of its momentum vector as a spinor bilinear in ten dimensions is
consistent with the diagram representing the interaction between the gauge field and the fermions.
Since the potential belongs to the adjoint representation of the gauge group, the symmetry groups
of the theories describing the elementary particle interactions then would be determined by the
fermions. The restriction of the fermions to the division algebras should then provide a theoretical
principle for explaining the types of gauge groups that appear in the standard model. The groups
which act most naturally on T = C⊗H⊗O are those which are subgroups of the adjoint left algebra
TL(2) ∼ C(32) or the Clifford algebra R1,9, specifically those groups generated by the subspace of
two-vectors of R1,9, so(1,9), OL, so(6) ∼ su(4), and CL ⊗ HL, su(2).

Values of the charges of fermions transforming under U(1), the isospin group SU(2) and the
global flavour group SU(Nf ) are integers or multiples of an elementary fraction in the standard
model, and the integral elements of the complex numbers, quaternions and octonions, constructed
from ±1, the real integers and the half integers ± 1

2 [70] may be used in the root lattices arising
in chiral fermionic strings [71]. However, the vertex wave functions that arise in the perturbative
diagrams of the S-matrix expansion should be based on a field of complex numbers, consistent
with the fundamental axioms of quantum mechanics. Non-trivial interactions between fermions
belonging to selected sets of multiplets may require the spinor space to be restricted to the form
C
nC ⊗ H

nH ⊗ O
nO . The vanishing of the product (z1, 0) · (0, z2) in C

2 implies the existence of zero
divisors when nC ≥ 2, and it has been proven that the tensor product of two rational generalized
quaternion division algebras is not a division algebra [72], so that zero divisors in the spinor space
arise when nH ≥ 2. This theorem can be extended immediately to the tensor product of octonion
algebras.

The spinor space T defined by nC = nH = nO = 1 encompasses only one generation of fermions.
The choice of nC = nH = nO = 3 would imply that there are interactions between the three
different generations of fermions in the standard model. However, this does not occur without the
mediation of a vector boson, which splits the interaction diagram into two parts, each representing
a different sector of the spinor space. At each vertex, the interaction between the fermions of each
generation and the vector boson are represented by a non-trivial amplitude factor, as the vector
boson can be allowed to interact universally, but there is no direct interaction between the fermions
of different generations at a single vertex. It is preferable therefore to regard the spinor space for
the standard model as the direct sum of three copies of the C⊗H⊗O rather than tensor product
C

3 ⊗ H
3 ⊗ O

3. Furthermore, the latter spinor space contains zero divisors, so that the condition
of the non-existence of zero divisors could not be directly used to restrict the sets of fermions and
consequently the gauge groups in the standard model. While ⊕3

i=1 Ci ⊗ Hi ⊗ Oi is a subspace of
C

3 ⊗ H
3 ⊗ O

3, the algebraic composition is applied only to the spinor space Ci ⊗ Hi ⊗ BbbOi for
each i. Consequently, use of the direct sum of the three copies is consistent with the restriction on
the fermion space defined by the principle of non-existence of zero divisors.
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It has been established through the Hurwitz theorem that division algebras over the real num-
bers only have dimension 1, 2, 4, 8, and a classification of four-dimensional real quadratic algebras
[73] has been obtained, together with a new eight-dimensional quadratic division algebra. A pref-
erence for the modules C, H and O is based on the equivalence of the conventional space-time
symmetry groups and gauge groups with the groups of linear transformations acting on these
spaces and their proper subgroups. Specifically, the existence of a norm these division algebras
induces the symmetry groups required for the construction of the gauge theories. The number of
generations of fermions, and therefore the number of copies of C ⊗ H ⊗ O, is known to be con-
strained by the cancellation of anomalies [74], suggesting an essentially unique spinor space for the
standard model.

6. Conclusion

It has been shown that elimination of the fibre coordinate in the transformation rule of the
connection form in bundles with a structure group larger than the standard fibre, and in particular
for bundles with the structure group given the isometry group of the standard fibre, leads to re-
strictions on the bundle. For the S3 bundle, the allowed group of gauge transformations is reduced
from the isometry group SO(4) to SU(2). For the S7 bundle, not all of the conditions deriving from
fibre-coordinate independence can be satisfied, so that the transformation rules retain a depen-
dence on the fibre coordinate. The requirement of independence with respect to the coordinates of
the entire S7 fibre leaves no residual gauge symmetry beginning with an SO(8) structure group and
only a U(1) symmetry starting with an SU(4) structure group. Similar conditions can be placed
on the structure group and gauge transformations in quantum principal bundles. It is established
that a Lie group structure is required for the pure gauge theory and that any application of the
division algebras to force unification must be restricted initially to the organization of the fermion
multiplets in the standard model. Nevertheless, this suggests a theoretical principle which distin-
guishes the specific gauge groups that do arise in theories of elementary particle interactions. It
has been noted that the fermion part of the standard model can be based on the spinor space
T = C ⊗ H ⊗ O, and the necessity of the division algebras in the organization of the fermion mu-
tiplets is explained. Amplitudes for elementary particle interactions typically involve the product
of two fermions ψ1, ψ2 and a vector boson Aμ at the vertices of perturbative diagrams, and their
non-vanishing follows follow directly from the fermions taking values in the division algebras. Since
the unified theory is initially formulated in ten dimensions, the masslessness of the vector boson,
when the gauge symmetry is unbroken, implies that the momentum vector can be expressed as a
spinor bilinear. Relating the gauge potential itself to a spinor bilinear, the symmetry groups of the
theories describing elementary particle interactions then would be determined by the restriction of
the fermions to the division algebras. As the exchange of intermediate string states describes the
exchange of vector bosons in the field theory limit, this approach points toward a connection be-
tween the geometry of the internal symmetry spaces arising in the standard model and superstring
theory.
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Appendix

A. Independence of the Transformation of the Connection Form with respect
to the Fibre Coordinate

For a general fibre bundle with atlas {Uα, ψα}, the trivializations ψα, ψβ determine two local
sections σα(x) = ψ−1

α (x, y0), σβ(x) = ψ−1
β (x, y0) which may be mapped by a diffeomorphism to

(x, y(x)) and (x, y′(x)). If ψβα : U×F → F , where U ⊂ Uα∩Uβ , is defined by ψβα(x, y) = y′, then
the tangent spaces to the two sections are given by (ξx, V α) and (ξx, Tψβα(ξx, V α)). A connection
provides a splitting of the tangent bundle into vertical and horizontal sub-bundles, and the image
of the horizontal subspaces associated with the two sections in TU × TF are spanned by vectors
of the form (ξx, Cα(y)) and (ξx, Cβ(y′)). Defining the connection forms Γα by V α −Cα, one finds
that they transform under a change of section as

Γβ(ξx, y′) = Tψyβα(ξx) + Tψxβα · Γα(ξx, y) (A1)

where ψxβα(y) ≡ ψyβα(x) = y′.

The tangent mapping Tψxβα : TF → TF is an isomorphism if the tangent bundle of the fibre is
trivializable. Defining φy to be a mapping from a vector space V to the tangent space Ty(F ), so
that Γα(ξx, y) = φyΓα(ξx), Γα(ξx) ∈ V , equation (A1) becomes

φy′Γβ(ξx) = Tψyβα(ξx) + Tψxβα · φyΓα(ξx) (A2)

To interpret the relation between Γα(ξx) and Γβ(ξx) as a gauge transformation of potentials taking
values on the base space, it is necessary to eliminate the fibre coordinate dependence. This can
be achieved if the right-hand side of the equation can be expressed as φy′X, X ∈ V and φy is
an injective mapping. Moreover, V can be extended to have the same dimension as F, so that
Γα(ξx, y) ranges over all of Ty(F ) and φy is a surjective mapping. Thus φy should be a bijection
be a bijection. Writing Tψyβα(ξx) as φy′X1, X1 ∈ V and Tψxβα · φyΓα(ξx) as φy′X2, X2 ∈ V , a
fibre coordinate-independent gauge transformation rule may be obtained if

φy′(X1) + φy′(X2) = φy′(X1 + X2) (A3)

expressing linearity of φy. It may be noted that a bijective mapping between the vector spaces
that is nonlinear, analogous to the mapping x → x3 on (R,+), could also have been considered.
As Γα(ξx, ·) is a Cr, r > 1 vector field on F, the mapping φ : V × F → TF, φ(·, y) = φy
must be a differentiable function of the fibre coordinate. Moreover, φy should also be a vector
space isomorphism, since one takes Γα(ξx, y) + Γα(ηx, y) to be Γα(ξx + ηx, y) as a result of the
trivializations {ψα}, ψα : π−1(Uα) → Uα × F being diffeomorphisms. The requirement that φy
be a vector space isomorphism would exclude nonlinear mappings and ensure that equation (A2)
can be used in reducing the transformation rule of the connection form to a gauge transformation
involving a dependence on the base space coordinates only.

The definitions of several types of fibre parallelisms are given [75]:

Definition A1. Fibre parallelism
There exists a map C : E ×M E → ∪

(y,y′)∈E×ME Isom(TyE, Ty′E) such that C(y, y′) = ωy′ ◦ ω−1
y :

TyE → Ty′E where y, y′ ∈ Ex and ωy : (TredE)x → TyE. The last map gives rise to an isomor-
phism Ω : TredE ×M E → TE.
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Definition A2. Vertical fibre parallelism
There exists a map C̃ : E ×M E → ∪

(y,y′)∈E×ME Isom(TyEx, Ty′Ex) such that C̃(y, y′) : TyEx =

VyE → Ty′Ex = Vy′E. This parallelism is given by the isomorphism Ω̃ : V TredE ×M E → V TE.

Definition A3. Integrable fibre parallelism
A fibre parallelism is integrable if, for any (y, y′) ∈ E ×M E, there exists a translation τy′y : E →
E, τy′y(y) = y′ such that Tτy′y ∈ C(E ×M E). For a vertical fibre parallelism, there exists a
translation τverty′y : Ex → Ex such that Tτverty′y ∈ C̃(E ×M E). It may be noted that a surmersion
(E,M, π) that admits a vertical fibre parallelism and a connection is a projectable fibre parallelism.
[If (E,M, π) is a fibration, then a vertical fibre parallelism implies the existence of a connection.] A
projectable fibre parallelism with an integrable parallelism on each fibre, or equivalently such that
the commutator of invariant vertical vector fields is invariant, can also be regarded as an integrable
vertical fibre parallelism.

Definition A4. Globally integrable fibre parallelism
It can be shown that a fibration which admits a globally integrable fibre parallelism is a principal
bundle. The translation τy′y : E → E can be extended to a global diffeomorphism on E.

For a principal bundle,

V TP = Te(G) × P = V TP/G×M P = V TredE ×M P

V TP/G = {right− invariant vector fields tangent to the fibres of E}
V TredE ∼ Te(G) ×M

(A4)

V TP/G is clearly a trivial bundle, because (V TP/G)x ∼ Te(G) ∀ x ∈ M , and the transition
functions are elements of G, leaving invariant any vector field in V TP/G.

The parallelism in a principal bundle can be taken to be the one induced by left multiplication
and the diffeomoerphism ψxβα to be right multiplication by a group element. Since

Rg∗Ly∗ = L(y·g)∗Ad(g−1)

Tψyβα(ξx) = Ly∗(g∗ · ξx) = Ly·g∗[L−1
g∗ (g∗ · ξx)] = φy′ [L−1

g∗ (g ∗ ·ξx)]
(A5)

the standard gauge transformation

Γβ(ξx) = Ad(g−1)Γα(ξx) + L−1
g∗ (g∗ · ξx)

is a consequence of equation (A2).

The problem of determining which bundles allow the dependence on the fibre coordinate to be
eliminated has been considered previously [76][17]. A complete proof of the restriction to bundles
with fibre G/D, where G is a Lie group and D a discrete subgroup, is given in the following
theorem.

A necessary condition is

TψxβαφyΓ
α(ξx) = φy′A(x)Γα(ξx) (A7)
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or equivalently, that there exists a global diffeomorphism which is a solution to the differential
system

Tψxβα = φy′ ·A · φ−1
y (A8)

By Frobenius’ theorem, the integrability conditions for the differential system require that the
commutator of vector fields on the fibre are invariant with respect to the map φy′ ·A · φ−1

y . Thus,

[φy′ ·A · φ−1
y X,φy′ ·A · φ−1

y Y ]y′0 = φy′ ·Aφ−1
y [X,Y ]y0 (A9)

for any vector fields X,Y ∈ TF , implying

cijk(y0)Amk = cklm(y′0)AkiAlj (A10)

with the coefficients cijk(y) given by [ξi(y), ξj(y)] = cijk(y)ξk(y), with
ξi(y) = φy · ei, ei ∈ V representing an orthonormal basis for Ty(F ).

The most general gauge matrix A that can be allowed is A = A1(y′)A2(x)A1(y)−1 as this
gives

Tψxβα = φy′ ·A1(y′)A2(x)A1(y)−1 · φ−1
y = φ′y′ ·A2(x) · φ′−1

y (A11)

if the new parallelism φ′y is given by φy · A1(y). The integrability condition for the differential
system given by equation (A8) is

[φy′ ·A1(y′)A2(x)A1(y)−1 · φ−1
y ·X, φy′ ·A1(y′)A2(x)A1(y)−1 · φ−1

y · Y ]y′0
= φy′0 ·A1(y′)A2(x)A1(y)−1 · φ−1

y0 · [X,Y ]y0
(A12)

Letting X = ξi(y) = φy · ei, one finds that

cijk[A1(y′0)·A2(x)·A1(y0)−1]mk = cklm[A1(y′0)A2(x)A1(y0)−1]ki[A1(y′0)A2(x)·A1(y0)−1]lj (A13)

Defining the basis ξ′i(y) using the new parallelism φ′y · ei = φy · A1(y)ei, and the structure
coefficients c′ijk(y) by the commutation relations [ξ′i, ξ

′
j ]y = c′ijk(y)ξ

′
k(y), it follows that

c′ijk(y)(A1(y))nk = clmn(A1(y))li(A1(y))mj (A14)

Using this relation and multiplying equation (A11) by (A1(y0))ir(A1(y0))js(A−1(y′0))pm gives

c′rsn(y0)A2pn = c′lmp(y
′
0)A2lrA2ms (A15)

which is equivalent to the previous condition (A8).

It may be noted that the proof of the existence of a globally integrable parallelism on the
standard fibre depends on the following lemma, with a proof that provides further details of the
demonstration given in reference [17]:

Lemma. The set Cy1 = {y ∈ F |cijk(y) = cijk(y1)} either contains all of F or is a set of dimen-
sionality less than one in F.

Proof. An identity satisfied by the vector fields {ξi} induced by the parallelism φy [77] implies
that

cijl(y′)cklm(y′) − ξk(cijm)(y′) = cijl(y)cklm(y) − ξk(cijm)(y) (A16)
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where ξk(cijm) is defined by the action of the vector field on a function on F [17]. Assuming initially
that Cy1 is a continuous curve through y1 with tangent vector Xy1 = Xkξk(y1) and contracting
equation (A16) by Xk,

cijl(y)cklm(y)Xk − Xkξk(cijm)(y) = cijl(y1)cklm(y1)Xk − Xkξk(cijm)(y1) (A17)

which implies, on Cy1 , that Xkξk(cijm)(y) = Xkξk(cijm)(y1) = 0 when Xk is constant. Similarly,
the vanishing of the derivative of cijl(y)cklm(y) − ξk(cijm)(y) by equation (A16) gives

(Xnξn(cijl)(y1))Xkcklm(y1) + Xkcijl(y1)(Xnξn(cklm)(y1)) − XnξnXkξk(cijm)(y1)
= − XnξnXkξk(cijm)(y1) = 0

(A18)

and repeated differentiation leads toXn1ξn1 ...Xnr
ξnr

(cijm)(y1) = 0. Consequently, cijm is constant
along the integral curve of X, and using the assumption that the set Cy1 is at least one-dimensional,
one may conclude that it contains the integral curve of a parallel vector field X passing through
y1.

A two-dimensional surface SY is spanned by the integral curves of another parallel vector field
Y intersecting Cy1 and an n-dimensional neighbourhood of y1 is covered by the surfaces S∑

i
aiYi

corresponding to arbitrary linear combinations of the independent vector fields Y1, ..., Yn−1. The
surfaces SY and SY ′ will initially coincide at Cy1 if Y ′ = aX+bY . However, translation of the vector
field X a distance t along the integral curve of Y using the one-parameter family of diffeomorphisms
{χt} gives a vector field

χt∗X = X − t[X,Y ] +
t2

2
[[X,Y ], Y ] − ... (A19)

Parallel transport of the vector field X along the integral curve of Y ′ using the one-parameter
family of diffeomorphisms {χ′

v∗} gives the vector field

χ′
v∗X = X − bv[X,Y ] + b2

v2

2
[[X,Y ], Y ] − ... + ab

v2

2
[[X,Y ], X] − ... (A20)

Even after setting t equal to
∑
j bj v

j , with b1 = b, higher-order terms such as that containing ab v
2

2
will vitiate the possibility of equating χt∗X with χ′

v∗X. Thus, the tangent spaces to SY and SY ′ ,
spanned by the bases {χt∗X,Y } and {χ′

v∗X,Y
′} {χ′

v∗X, aX + bY } respectively, are equivalent at
Cy1 but differ when t, v �= 0. Since SY ′ does not always coincide with SY , it must intersect with
a surface SY ′′ , where Y ′′ is another linear combination of the vector fields Y1, ..., Yn−1,

∑
i a

′′
i Yi.

Translation of Cy1 a distance v along integral curves of Y ′ results in a curve of constant cijk,
Cχ′

v(y1), because

(Y ′
nξncijl(y))Y

′
kcklm(y) + (Y ′

kcijl(y))(Y
′
nξncklm(y)) − Y ′

nξnY
′
kξk(cijm)(y) = 0 (A21)

together with equation (A19) implies that

Y ′
nξnY

′
kξk(cijm)(y) = Y ′

nξnY
′
kξk(cijm)(χ′

v(y1)) (A22)

and repeated differentiation gives

Y ′
n1
ξn1 ...Y

′
nr
ξnr

(cijm)(y) = Y ′
n1
ξn1 ...Y

′
nr
ξnr

(cijm)(χ′
v(y1)) ∀y ∈ Cy1 (A23)
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Similarly, translation of Cy1 a distance w along the integral curves of Y ′′ produces another curve
of constant cijk, Cχ′′

w(y1).

If a point y3 lies in the intersection of SY ′ and SY ′′ , then it must be located on an a curve Cχ′
v(y1)

for some v and Cχ′′
w(y1) for some w. Parallel transport of one of these curves along the other will

sweep out a two-dimensional surface of constant cijk. When this surface is translated back to y1,
one obtains a two-dimensional neighbourhood of constant cijk about the point y1. This procedure
can be repeated until an n-dimensional neighbourhood of y1 of constant cijk is constructed. If F
is compact, it may be covered by a finite number of these neighbourhoods and Cy1 contains all of
F. Otherwise, it has dimensionality less than one.

This lemma has been used previously [17] to demonstrate that the standard fibre is G/D, where
G is a Lie group and D is a discrete subgroup. When the standard fibre is a group, and the gauge
matrix A represents the adjoint action of g−1, then if g = exp(tjXj),

exp(−tjXj)Xiexp(tjXj) = Xm(δim − tjcijm +
1
2
tjtkciklcljm + ...)

Ami = δmi − tjcijm +
1
2
tjtkciklcljm + ...

(A24)

Substituting the formula for Ami into equation (A8) and equating the coefficients at each order in
t gives

O(t0) : cijm = cijm

O(t) : cijkcklm = cilkckjm + cikmckjl

O(t2) : cijkcklpclnm = ckjmciptctnk + cilmcjptctnl − 2cklmcinkcjpl
...

(A25)

The relations for O(tr), r ≥ 1 all follow from the Jacobi identity for the Lie algebra structure
constants.

One may wish to consider a more general linear transformation A of the form

Ami = δmi − tjd1ijm +
1
2
tjtkd2ikld3ljm + ... (A26)

leading to the relations

cijkd1klm = d1ilkckjm + cikmd1kjl (A27)
cijkd2klpd3lnm = ckjmd2iptd3tnk + cilmd2jptd3tnl − 2cklmd1inkd1jpl (A28)

...

Equation (A27) comprises of n2 relations for the n3 components of the tensor d1ijk, so that it does
not fully determine d1. Similarly, equation (A28) consists of n5 relations for the 3n3 components
of d1ijk, d2ijk and d3ijk. Higher orders of t give rise to equations which will include a larger
number of conditions on the coefficients dMijk. Even if some of the constraints are redundant, the
arbitrariness in the choice of dMijk can be eliminated, leaving coefficients that are equal to the
structure constants cijk. A similar conclusion about the effect of the independence of Lagrangian
with respect to the fibre coordinates on the category or bundles has been obtained in a different
proof [76].

32



B. Gauge Transformation Constraints for SO(8) and SU(4) Actions on an
S7 Bundle

The vector (0 c1 c2 c3 c4 c5 c6 c7) defined by the action of SO(8) on the fibre has components

c1 = d01(y2
0 + y2

1) + (d02 − d13)(y1y2 + y0y3) + (d03 + d12)(y1y3 − y0y2)
+ (d04 − d15)(y1y4 + y0y5) + (d05 + d14)(y1y5 − y0y4) + (d06 − d17)(y1y6 + y0y7)
+ (d07 + d16)(y1y7 − y0y6) − d23(y2

2 + y2
3) + (−d24 − d35)(y3y4 − y2y5)

+ (−d25 + d34)(y3y5 + y2y4) + (−d26 − d37)(y3y6 − y2y7) + (−d27 + d36)(y3y7 + y2y6)
− d45(y2

4 + y2
5) + (−d46 − d57)(y5y6 − y4y7) + (−d47 + d56)(y5y7 + y4y6)

− d67(y2
6 + y2

7) (B1)
c2 = (d01 + d23)(y1y2 − y0y3) + d02(y2

0 + y2
2) + (d03 + d12)(y2y3 + y0y1)

+ (d04 − d26)(y2y4 + y0y6) + (d05 + d27)(y2y5 − y0y7) + (d06 + d24)(y2y6 − y0y4)
+ (d07 − d25)(y2y7 + y0y5) + d13(y2

1 + y2
3) + (d14 − d36)(y3y4 + y1y6)

+ (d15 + d37)(y3y5 − y1y7) + (d16 + d34)(y3y6 − y1y4) + (d17 − d35)(y3y7 + y1y5)
+ (d45 − d67)(−y4y7 − y5y6) − d46(y2

4 + y2
6) + (d47 − d56)(−y6y7 + y4y5)

+ d57(y2
5 + y2

7) (B2)
c3 = (d01 + d23)(y1y3 + y0y2) + (d02 − d13)(y2y3 − y0y1) + d03(y2

0 + y2
3)

+ (d04 + d37)(y3y4 − y0y7) + (d05 + d36)(y3y5 − y0y6) + (d06 − d35)(y3y6 + y0y5)
+ (d07 − d34)(y3y7 + y0y4) − d12(y2

1 + y2
2) + (d14 − d27)(−y2y4 − y1y7)

+ (d15 − d26)(−y2y5 − y1y6) + (d16 + d25)(−y2y6 + y1y5) + (d17 + d24)(−y2y7 + y1y4)
+ (d45 − d67)(y5y7 − y4y6) + (d46 + d57)(y6y7 + y4y5) + d47(y2

4 + y2
7)

+ d56(y2
5 + y2

6) (B3)
c4 = (d01 + d45)(y1y4 − y0y5) + (d02 + d46)(y2y4 − y0y6) + (d03 − d47)(y3y4 + y0y7)

+ d04(y2
0 + y2

4) + (d05 + d14)(y4y5 + y0y1) + (d06 + d24)(y4y6 + y0y2)
+ (d07 − d34)(y4y7 − y0y3) + (d12 + d56)(y2y5 − y1y6) + (d13 − d57)(y3y5 + y1y7)
+ d15(y2

1 + y2
5) + (d16 + d25)(y5y6 + y1y2) + (d17 − d35)(d5d7 − y1y3)

+ (d23 − d67)(y3y6 + y2y7) + d26(y2
2 + y2

6) + (d27 − d36)(y6y7 − y2y3)
− d37(y2

3 + y2
7) (B4)

c5 = (d01 + d45)(y1y5 + y0y4) + (d02 − d57)(y2y5 + y0y7) + (d03 − d56)(y3y5 + y0y6)
+ (d04 − d15)(y4y5 − y0y1) + d05(y2

0 + y2
5) + (d06 − d35)(y5y6 − y0y3)

+ (d07 − d25)(y5y7 − y0y2) + (d12 + d47)(−y2y4 + y1y7) + (d13 + d46)(−y3y4 + y1y6)
− d14(y2

1 + y2
4) + (d16 + d34)(−y4y6 − y1y3) + (d17 + d24)(−y4y7 − y1y2)

+ (d23 − d67)(−y3y7 + y2y6) + (d26 + d37)(−y6y7 − y2y3) − d27(y2
2 + y2

7)
− d36(y2

3 + y2
6) (B5)

c6 = (d01 + d67)(y1y6 − y0y7) + (d02 + d46)(y2y6 + y0y4) + (d03 − d56)(y3y6 − y0y5)
+ (d04 − d26)(y4y6 − y0y2) + (d05 + d36)(y5y6 + y0y3) + d06(y2

0 + y2
6)

+ (d07 + d16)(y6y7 + y0y1) + (d12 + d47)(y2y7 + y1y4) + (d13 − d57)(y3y7 − y1y5)
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+ (d14 − d27)(y4y7 − y1y2) + (d15 + d37)(y5y7 + y1y3) + d17(y2
1 + y2

7)
+ (d23 − d45)(−y3y4 − y2y5) − d24(y2

2 + y2
4) + (d25 − d34)(−y4y5 + y2y3)

+ d35(y2
3 + y2

5) (B6)
c7 = (d01 + d67)(y1y7 + y0y6) + (d02 − d57)(y2y7 − y0y5) + (d03 − d47)(y3y7 − y0y4)

+ (d04 + d37)(y4y7 + y0y3) + (d05 + d27)(y5y7 + y0y2) + (d06 − d17)(y6y7 − y0y1)
+ d07(y2

0 + y2
7) + (d12 + d56)(−y2y6 − y1y5) + (d13 + d46)(−y3y6 − y1y4)

+ (d14 − d36)(−y4y6 + y1y3) + (d15 − d26)(−y5y6 + y1y2) − d16(y2
1 + y2

6)
+ (d23 − d45)(−y2y4 + y3y5) + (d24 + d35)(y4y5 + y2y3) + d25(y2

2 + y2
5)

+ d34(y2
3 + y2

4) (B7)

The general SU(4) matrix is given by g = D(δ1, δ2, δ3,−δ1 − δ2 − δ3) · U23(φ3, σ6)
U12(θ3, σ5)U13(φ2, σ4) · U01(θ2, σ3)U02(θ1, σ2)U03(φ1, σ1), where
D(δ1, δ2, δ3,−δ1 − δ2 − δ3) is the diagonal matrix with elements eiδ1 , eiδ2 , eiδ3 , e−iδ1−δ2−δ3 and
Upq(φ, σ), which has all diagonal elements equal to 1, except for upp and uqq, which should be
cos φ, and non-zero off-diagonal entries upq = −sin φ e−iσ, uqp = sin φ eiσ,
represents a unitary transformation in the (p,q)-plane. Consequently, the elements of g are

g00 = cos θ2 cos θ1 cos φ1 e
iδ1

g01 = −sin θ2 ei(δ1−σ3)

g02 = −cos θ2 sin θ1 e(δ1−σ2)

g03 = −cos θ2 cos θ1 sin φ1 e
i(δ1−σ1)

g10 = cos θ3 sin θ2 cos θ1 cos φ1e
i(δ2+σ3)

− sin θ3 sin θ1 cos φ1e
i(σ2+δ2−σ5) − cos θ3 sin φ2 sin φ1e

i(σ1+δ2−σ4)

g11 = cos θ2 cos θ3 cos φ2 e
iδ2

g12 = −cos θ3 cos φ2 sin θ2 sin θ1 e
i(δ2+σ3−σ2) − sin θ3 cos θ1 e

i(δ2−σ5)

g13 = −cos θ3 cos φ2 sin θ2 sin φ1 cos θ1e
i(δ2+σ3−σ1)

+ sin θ3 sin θ1 sin φ1 e
i(δ2+σ2−σ1−σ5)

− cos θ3 sin φ2 cos φ1 e
i(δ2−σ4)
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g20 = cos φ3 sin θ3 cos φ2 sin θ2 cos θ1 cos φ1 e
i(δ3+σ3+σ5)

+ cos θ3 cos φ3 sin θ1 cos φ1 e
i(δ3+σ2)

− cos φ3 sin θ3 sin φ2 sin φ1 e
i(σ1+δ3+σ5−σ4)

g21 = cos φ3 sin θ3 cos φ2 cos θ2 e
i(δ3+σ5)

g22 = −cos φ3 sin θ3 cos φ2 sin θ2 sin θ1 e
i(δ3+σ3+σ5−σ2)

+ cos φ3 cos θ3 cos θ1 e
iδ3

g23 = −cos φ3 sin θ3 cos φ2 sin θ2 cos θ1 sin φ1 e
i(δ3+σ3−σ1)

− cos φ3 cos θ3 sin θ1 sin φ1 e
i(δ3+σ2−σ1)

− cos φ3 sin θ3 sin φ2 cos φ1 e
i(δ3+σ5−σ4)

g30 = sin φ3 sin θ3 cos φ2 sin θ2 cos θ1 cos φ1 e
i(σ3+σ5+σ6−δ1−δ2−δ3)

+ cos φ3 sin φ2 sin θ2 cos θ1 cos φ1 e
i(σ3+σ4−δ1−δ2−δ3)

+ sin φ3 cos θ3 sin θ1 cos φ1 e
i(σ2+σ6−δ1−δ2−δ3)

+ cos φ3 cos φ2 sin φ1 e
i(σ1−δ1−δ2−δ3)

− sin φ3 sin θ3 sin θ2 sin φ1 e
i(σ1+σ5+σ6−σ4−δ1−δ2−δ3)

g31 = sin φ3 sin θ3 cos φ2 cos θ2e
i(σ5+σ6−δ1−δ2−δ3)

+ cos φ3 sin φ2 cos θ2 e
i(σ4−δ1−δ2−δ3)

g32 = −sin φ3 sin θ3 cos φ2 sin θ2 sin θ1e
i(σ3+σ5−σ2−σ6−δ1−δ2−δ3)

− cos φ3 sin θ2 sin φ2 e
i(σ3+σ4−σ2−δ1−δ2−δ3)

− sin φ3 cos θ3 cos θ1 e
i(σ6−δ1−δ2−δ3)

g33 = −sin φ3 cos θ3 sin θ1 sin φ1 e
i(σ2+σ6−σ1−δ1−δ2−δ3)

− sin φ3 sin θ3 cos φ2 sin θ2 cos θ1 sin φ1e
(σ3+σ5+σ6−σ1−δ1−δ2−δ3)

− cos φ3 sin φ2 sin θ2 cos θ1 cos φ1 e
i(σ3+σ4−σ1−δ1−δ2−δ3)

− sin φ3 sin θ3 sin φ2 cos φ1 e
i(σ5+σ6−σ4−δ1−δ2−δ3)

+ cos φ3 cos φ2 cos φ1 e
−i(δ1+δ2+δ3)

(B8)

C. An Application to Quantum Principal Bundles

The concepts of principal bundles and gauge transformations can be generalized using quantum
groups. The bundle P = P (B,A) is a quantum principal bundle [78] with quantum structure
group A and base B if

(i) A is a Hopf algebra with co-product Δ : A → A ⊗ A, co-unit ε : A → k, and antipode
map S : A→ A.
(ii) (P,ΔR : P → P ⊗A) is a right A-co-module algebra
(iii) B = PA = {u ∈ P : ΔRu = u⊗ 1}
(iv) (· ⊗ id)(id⊗ ΔR) : P ⊗ P → P ⊗A is a surjection
(v) ker∼ = Γhor where Γhor = Pj(ΓB)P ⊂ ΓP , with j : ΩB ↪→ ΩP being an inclusion and ΓB
being the space of one-forms on B, and ∼ = (· ⊗ id) ◦ (id⊗ ΔR)|P 2 : ΓP → P ⊗A.
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Although the Hopf algebra acts on the co-module algebra P in the principal quantum bundle,
the map (· ⊗ id) ◦ (id⊗ΔR) : P ⊗ P → P ⊗A descends to an isomorphism P ⊗B P → P ⊗A. By
analogy with classical bundles, the action of A on P in a quantum principal bundle is determined
locally by the action of the quantum group on itself or the space of polynomial functions on this
group, which is essentially its dual [79].

The polynomial function space for a group such as SU(N) is generated by the set of coordinate
functions uij : g → gij , where gij is the (i,j)th matrix element of g in the fundamental representation.
Similarly, for a quantum group U , its dual A is generated by the non-commutative coordinate
functions uij : U → C and the co-product is defined to be Δuij = uik ⊗ ukj . This suggests that one
can choose the operation of left multiplication to be a map from A to A

Lg : uij → uik 〈ukj , g〉
Lg = (id⊗ |g〉) ◦ Δ

(C1)

and the operation of right multiplication is a map from A to A defined by

Rg : uij → 〈uik, g〉 ukj
Rg = (|g〉 ⊗ id) ◦ Δ

(C2)

where 〈 , 〉 represents the inner product between elements of the quantum group U and its dually
paired Hopf algebra A, so that 〈uij , g〉 = gij ∈ C. Thus, Lguij = gkj u

i
k implying the following rule

for left multiplication
LgLg̃ u

i
j = gkl g̃

l
ju
i
k = Lgg̃u

i
j (C3)

Similarly, for right multiplication, RgRg̃ = Rg̃g. Thus, the noncommutative function spaces,
A = C〈uij〉/(R12u1u2 − u2u1R12) are dually paired to the quantum groups

U =
C〈l+i

j
,l−i

j
〉

{ (R12l
±
2

l
±
1

−l
±
1

l
±
2

R12)

(R12l
+
2

l
−
1

−l
−
1

l
+
2

R12)
}
, where the l±ij are the generators of the universal enveloping algebra of

the quantum group in the Chevalley basis [80]. The inner products satisfy

〈uij , l+kl 〉 = Rikjl 〈uij , l−kl 〉 = R−1ki
lj

〈ab, c〉 = 〈a⊗ b, c(1) ⊗ c(2)〉
〈a, cd〉 = 〈a(1) ⊗ a(2), c⊗ d〉

(C4)

The adjoint action on a Hopf algebra is taken to be a map AdR : A→ A⊗A,
AdR(a) =

∑
a(2) ⊗ (Sa(1))a(3), a ∈ A. An adjoint action can also be defined as a map from A

to A

AdS(g)a = 〈a(1), g(1)〉 a(2) 〈a(3), S(g(2))〉 = Rg(a(1)〈a(1), S(g(1))〉) = RgLg−1

g ∈ U , a ∈ A
(C5)

Given multiplication in the quantum group U , it follows that if one considers a left translation
from y to y′ = g · y,

Ry∗Rg∗ = Ry′∗ = Ly′∗ AdS(y′) (C6)

for tangent mappings [81][82] induced by transformations from the Hopf algebra A to A, whereas
a right translation from y to y′ = y · g implies Ly∗Lg∗ = Ly′∗. It follows that, for a specific
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choice of parallelism, such as that defined by left multiplication, on the standard fibre in the
quantum principal bundle, transformations in the structure group should only be defined using right
translations rather than left translations on the Hopf algebra. Moreover, if the connection forms
are required to take values on the base space subalgebra B, then the group of gauge transformations
is an automorphism group acting on the total space P , which preserves the base space B. Previous
considerations of the fibre coordinate dependence of the connection form transformations imply
that it is this group which must necessarily be used in the definition of gauge transformations in
the quantum principal bundle [78]. In the classical limit, for principal bundles, the automorphism
group, the structure group and the standard fibre all coincide.

Specifically, if β : A→ ΓB is a linear map such that β(1) = 0,

ω(a) =
∑

Φ−1(a(1))j(β(a(2)))Φ(a(3)) +
∑

Φ−1(a(1)dΦ(a(2))) (C7)

is a connection one-form in the principal bundle P (B,A,Φ) having a trivialization Φ : A → P
[78]. Given two linear maps f1 and f2 on the quantum group U from A to B, the convolution is
g = f1 ∗ f2, where g(a) =

∑
f1(a(1))f2(a(2)). If γ : A→ B is a convolution invertible map such

that γ(1) = 1, then the connection form (C7) transforms as

ωγ = (Φγ)−1 ∗ j(β) ∗ Φγ + (Φγ)−1 ∗ dΦγ (C8)

under a change of trivialization Φ → Φγ [78].

The presence of an ordinary classical group in a quantum principal bundle is consistent with a
reconstruction theorem for these bundles [83]. Although the base space and total space are quantum
spaces, and the structure group can selected initially to be a quantum group, the quantum bundle
admits then admits sections only if it is trivial. The classification of these bundles is then reduced
to the category of bundles with a standard Lie group as the structure group.
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