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Abstract. The genus-dependence of multi-loop superstring amplitudes is estimated at large
orders in perturbation theory using the super-Schottky group parameterization of supermod-
uli space. Restriction of the integration region to a subset of supermoduli space and a single
fundamental domain of the super-modular group suggests an exponential dependence on the
genus. Upper bounds for these estimates are obtained for arbitrary N-point superstring scat-
tering amplitudes and are shown to be consistent with exact results obtained for special type 11
string amplitudes for orbifold or Calabi-Yau compactifications. The genus-dependence is then
obtained by considering the effect of the remaining contribution to the superstring amplitudes
after the coefficients of the formally divergent parts of the integrals vanish as a result of a sum
over spin structures. The introduction of supersymmetry therefore leads to the elimination
of large-order divergences in string perturbation theory, a result which is based only on the
supersymmetric generalization of the Polyakov measure and not the gauge group of the string
model.
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1. Introduction

Calculations of scattering amplitudes in type II superstring theory reveal that the S-matrix
is free from the infrared and ultraviolet divergences arising in the quantum amplitudes derived
from the linearized Ricci action. A third type of divergence, occurring in both field theories and
bosonic string theories, is produced by the growth of terms at large orders in the perturbation
series. It will be shown that large-order divergences are absent from superstring perturbation
expansion, providing confirmation of the consistency of the theory at the quantum level.

The elimination of the third type of infinity can be traced to the introduction of supersym-
metry and simultaneous occurrence of infrared and large-order divergences in the infinite-genus
limit. A connection has been established between the genus-dependence of the limits for the
Schottky group parameters and the large-order behaviour of the bosonic string amplitudes.
L2 The superstring measure is different, but the configurations of handles, the limits for the
bosonic variables, multipliers and fixed points of the Schottky group, and the conditions for
the fundamental domain of the symplectic modular group remain unchanged, so that this con-
nection is still valid in superstring theory. Finiteness of superstring amplitudes at each order
in the loop expansion has already been demonstrated, and since the large-order behaviour of
superstring amplitudes is determined in part by the sum of the amplitudes with different de-
generation limits, occurring either separately or simultaneously, it will be shown that N-point
g-loop amplitudes do not grow at a factorial rate but give rise to a summable series which
converges for sufficiently small values of the coupling constant. The absence of large-order
divergences shall be demonstrated for the sum over finite-genus Riemann surfaces. While the
possibility of including infinite-genus surfaces is briefly discussed in §3, the conclusions re-
garding the large-order divergences will not be extended to this category, but rather a result
pertaining to the string coupling constant is obtained.

Another indication of the higher degree of finiteness of string amplitudes at large orders
is the growth of the regularized closed bosonic string partition function. Restriction of the
integration range in the Schottky parameterization to a single copy of the fundamental re-
gion of the modular group reduces the regularized path integral by a genus-dependent factor.
1 Although the regularized integral increases rapidly with respect to the genus, as a typical

configuration of handles contributes ﬁ, this is significantly less than the ¢! growth of

scattering amplitudes in bosonic field theories. 2

Moreover, large-order divergences in the
bosonic string perturbation series, arising from regularization of tachyon infinities occurring
at each order, are an artifact of the S-matrix expansion for this theory. Divergences of this
type, for example, occur in theories containing renormalons, which often arise when there are
infrared instabilities. The growth of the regularized closed bosonic string partition function,
therefore, is not necessarily linked to observable instanton effects, suggesting that the introduc-
tion of supersymmetry may lead to the elimination of the large-order divergences in bosonic
string theory. This result is supported by recent work on the appearance of an N-fold super-
symmetry which appears in theories where the Borel singularity of the perturbation expansion

vanishes for the first N excited states > and the bounding of correlation functions in fermionic



field theories. 4

Whereas in field theories, instantons are reflected in the perturbation series through a
factorial increase in the terms, as the Borel transform has a singularity in the coupling constant
plane, it has been shown that non-perturbative effects in string theories are described by a
separate sum over surfaces with Dirichlet boundaries inserted, > so that the inclusion of these
boundaries and higher-dimensional soliton configurations in the sum over histories would be
sufficient to obtain a complete formulation of the quantum theory. The geometry of these non-
perturbative configurations also is suggestive of the connection between different superstring
theories through duality. Estimates of finite-genus amplitudes and conclusions regarding the
viability of superstring perturbation theory then would remain valid within this framework.

2. The Superstring Measure and the Fundamental Domain

Superstring scattering amplitudes are given by the supermoduli space integrals ©
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where dpgsw p is the super Weil-Petersson measure, ¥, € Kery, (()) represents the evaluation
of the path integral over the scalar position superfields X*#, and the integral is restricted to
a (3g — 3|29 — 2) complex-dimensional slice of super-Teichmuller space parametrized by the
supergeometries {E’ﬁ} In terms of superghosts,
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where B and C are anti-ghost and ghost superfields of U(1) weight % and —1 respectively,
pr, K = (k,b), are super Beltrami differentials, and I = I,,, + Isg is the sum of the matter
and superghost actions. ¢ A similar formula for the scattering amplitude of N external massless
states appears in the twistor-string formalism. *

The Schottky uniformization of super-Riemann surfaces shall be used to study the super-
string measure. The super-Schottky group is generated by g transformations 7,,, n =1, ..., g,
acting on the super-complex plane with coordinate Z = (z, 0)

To(Z) — Z1n, Z —Zin

Il2) =2 g 2700 p g 9.3
To(Z) = Zom 77, [Enl < (2.3)

where Z1, = (10, 010) and Za, = (&on, 02,) are attractive and repulsive super-fixed points
respectively.
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It has been found that the measure on supermoduli space for the Neveu-Schwarz sector of
superstring theory, corresponding to the propagation of bosonic states in the loops, is simpler
than that of the Ramond sector. 871°  The holomorphic part multiplied by the period-matrix
factor is

2
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where the infinitesimal super-projective invariant volume element is
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and the super-period matrix is
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Selecting B, to be 0 or 1, depending on the boundary conditions around the g B-cycles,
produces 29 spin structures associated with the exchange of bosonic states in the g loops.
11-13 The number NP equals >-?_, B,N!, where N” is the number of times that the
generator T, or its inverse appear in the product V,. Since the choice of spin structure is

defined by the sign of the square root K;? in equation (2.4), a modular transformation maps

1
the expression with a given choice of signs for the square roots K,; for all n into a measure
with different signs for the square roots, corresponding to another spin structure, altering the
integral by factors determined by the genus-dependence of primitive-element products.

The overall OSp(2|1) invariance can be used to fix two of the super-fixed points and the
even coordinate of a third superfixed point, leaving 3¢-3 even moduli and 2¢-2 odd moduli

amongst the super-Schottky group parameters. 8

The integration region is defined to be the
fundamental domain of the super-mapping class group in super-Teichmuller space. Equiva-
lently, one may use the intersection of the fundamental region of the super-modular group in
the space of positive-definite, symmetric super-period matrices with the set of 7,,, associated
with a super-Riemann surface, which will be contained in the set of 7,,, such that the ordinary
period matrix 7,,,, the complex number-valued part of 7,,,, lies in a fundamental domain of
the modular group and corresponds to a Riemann surface. These constraints on 7,,, lead to
an infinite number of conditions on the multipliers K,, and fixed points &1, &2n, 2, which

can be reduced to a finite number at large genus.



In the analysis of the closed bosonic string, these inequalities may be satisfied by certain
categories of isometric circles, I, = {z € C||ypz+0n| =1}, Tpz = %7:[5", which would then
represent a subset of moduli space. In particular, the following configurations of isometric

circles
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describe a subset of Teichmuller space consistent with a cut-off on the radii of the isometric

circles, or equivalently the size of the handles in the intrinsic metric on the surface, T%T =
a2 2 5

~ g

(#i1) e0 < |Kn| <€

While the parameters g and ¢’ are initially chosen to be continuous, to avoid overcounting
in the path integra}, a discrete set of values must be chosen. Non-overlapping of the ranges
0 < |K,| < <=2 requires that the following values of ¢’ be selected
q q q

PET
In (i) I
/ €0 ng
qv = N—*= N = 0,1,.., p 2.7
N 21Iln g In (Z_g) (2.7)
The discrete value of ¢ follows from the bound
_ |Kn| 2 €0 (50 1 1
a2 = in —Enl®> > 47 s 2 O = (2.8)
1= Knl? glm g2 ‘1 N 9

While the cut-off on the length of the closed geodesics is not modular invariant, it is the
genus-independence of the cut-off which is necessary for an estimate of regularized bosonic
string partition function. An SL(2,C)-invariant regulator exists for the superstring, !> but
the finiteness of the superstring amplitudes implies that any upper bound can be chosen
independently of the cut-off, which may be removed to obtain the total amplitude.

The measure for the other Neveu-Schwarz-Ramond sectors shall given in an abbreviated
form in §3. The total amplitude in the super-Schottky parametrization, obtained by summing
over all spin structures, is invariant under super-modular transformations. 6

Earlier studies of primitive-element products show that they can be bounded by exponential
functions of the genus. ' Bounds similar to the those obtained for bosonic strings can be
set, for the primitive-element products in the measure for the Neveu-Schwarz sector.
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Upper bounds for each of the factors in the products can be readily be given

. H/ ﬁ |1_Kg_%|16
o p=1
[T+ Kal™*

&%

g g g
I 1-K. < J] Q4K < exp (Z |Kn|>
n=1 n=1 n=1

!/

]
3
g

|
e

A
—
—
-+
=
I
Jum

Since

H/pl—ll 1—|K ) <e:13p<1_6,

H' <e:13p( 1
1—|K|) :

(0%

Combining equations (2.13)-(2.15) gives

< (1— K E\®P 1 € 1Ko
! 8] / 2 0 ! &
11 H( e ) IT a+xs) <e:13p(16 P TR
o' p=1 o'
1
20 — 16€)?
eop( IS I
€p2 o

—
—
|
AN
S
=
R
M o
>
o

3
I
—

3

3
||
I\

I
—

K., |
16 ’7| @
2 Tk

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)



6

s

€

2 ’ 1 7
In categories (i) and (ii), g_—g < |Knl2 < g_f+ and €og?t? < S |K,|7 < efg3td.
Similarly, for isometric circles in the third category, eng < > 7_, |Kn|% < €49, so that
1
vo1 1= Ki|=* < exp(—deog).

The sum ) ' |K,| has been shown to increase linearly with the genus, and the same

property is valid for )__ ' % ! Similar bounds cannot be placed on the sum "’ Ko7

Consider, for instance, isometric circles in category (i), with ¢’ = 0, so that %0 < |Kp| < %0
and (50 S |§1n — §2n| S 56 Then,

V| < — (2.17)

and

—1 —1 /% 6/
Z |Pynl| ; + Z |’7m| ~ < 60 - _0 . 2\/§ (218)
ny ‘flm + ﬂ‘ =L
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Similarly, when V5 =T, T, ,
-1 -1 -1 5"11 Xy, - 66 5[/)2 5"11 Xy, -
Val™ = v |7 e, T | S 5 | (2.19)
niy Yni, (1_5_0) g 1Vny Yni,
g

Assuming that the average value in a dense packing of isometric circles about the circle

+1

ITn—ll B is proportional to /g, ! it can be shown that the r factors of 6 [lT”lr — 1] produces

L

a factor of order O(g"~") in 3. |Ka|? while the product R I o N (i%), S0
r g

that the entire sum over elements consisting of r generators grows as O(g>~1).

This result can also be shown by considering the contribution of a particular region in

1 1
parameter space, { Kz | arg K7 € [0,v]}, to the primitive-element products and super-moduli
space integral will be estimated. The following proposition may be used:

Proposition. Counsider two elements S and T of the Schottky group. If |{15 + fr_i| =
O(5), lr + 5E| = O(h), and | = JZ + 22| = O(;%r), then Ks7 = KsKr and
arg(Kst) =~ arg Ks + argKp when r” > mazx(r,r’) or v/ < min(r,r"). If " does
equal either r or 7/, then the argument arg Kgr can take values in a much wider range.



Proof. The multiplier is

-2 op — or)2 — 4
Kr = T'(&ir) = e _ arTor Vier +or) (2.20)
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S 75’ 7
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§ st |2
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Since f%ST) and T(fiST)) is located near &5 and &7 respectively,
ST !/ (ST) 5 2 5 2
St = oo [(65+52) (e +32)
(2.22)

55\ 2 57\ 2
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s Yr

Consider the two pairs of isometric circles {Ig, Ig-1} and {Ip, Ip-1}. Let arg (515 + %) =
—Qg, arg (§1T + %) =ar, arg (§1T + %) = —fOrs,

arg (flg + %) = f0g7. Then xy1 =g — ar, x2 = 0rs — ag and

arg Ksp —arg Ks —arg Kt ~ —2as + 2ar — 20st + 2015 = 2(x2 — x1) (2.23)
When ({15 + % IS % < ‘—% + % , X1, X2 = %, and similarly, if |§15+ % 1§+
‘;—z > ‘—fy—; + % , X1, X2 =~ 0. For both configurations, the cross-ratio in the ratio of

Kgsr to KgKrp has approximately unit magnitude and x2 — x1 =~ 0, so that arg(Kgsr) ~
argKs +argKr.

1
Given an even distribution of the arguments of K;? in the interval [0,v], the argument

1
of multiplier K5 of the Schottky group element V, = T3, ...T;,,, would equal approximately

1
Z;Zl arg Ky, a property which can be used in obtaining a bound for the product
o0

T h+xz| = TIT] 1+ &2 (2.24)

(67 =1 Q)
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Suppose that the angles arg Ké, n =1,..., g take the values %, ..., U in any particular order.
Following the convention that the element 7, ! has reversed fixed points &5, €1, and the same
multiplier K,, it follows that the each argument for the set {T !, n = 1,..., ¢} occurs twice
in the sequence %,...,v. Adding these arguments [ times produces a distribution of angles
{arg K.} determined by the composition function, ¢(~,1, M), which represents the number
of ordered partitions of the integer M into [ parts with each addend less than or equal to n,
multiplied by an overall factor of 2! because of the two different elements having multipliers

with the same arguments. 17

The number of compositions of M into [ parts is

c(l, M) = (M—l) (-1

-1 (I—-1DY(M —=1)!
[as0] (2.25)

e(N, I, M) = kizo (—1)* (2) (l—ll+_Ml_kN)

where the maximum value of M is [N and the mean value is M; = [l(N;l)], where the peak

of the distribution ¢(n,1, M) for 1 < M < Mp,4,. Occurs, since
(N, I, M) =c(N,l,l(N+1) — M).

The following asymptotic formula for the number of compositions is valid when

M = (l-kK)n+1), 0 < k' < KIP with 0 < 8 < 1 and some constant K. '

1/ 6 \*n
i = 7 (1)

m=1 12
hio+ hi,1k'™ >0 hm—1(N)E"™ 1+ k'2m
{14- e B 1 + O ——
P 34 P C3(v+1)
-0 2082 —1) M 2(v — 1)
Lo -1 +13 9+ 1)
20 1120(n2 — 1)2 217 8(n—1)?
9(n +1)2
hop = 5
8(v—1)
(2.26)

The peak value is reached at the mean M when k' = 0



VT A\NZ—1) |3 l Nz
) (2.27)
1 6 z ! 1 3 13 hen N > 1
— —1-=-——= — ... when
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When &' = KI°, g < 1,
c(N, I, M) —¢(n,1, M) 3 K? 998
e(n, 1, M) 2012 (2:28)
which is a small fraction when [ is large. When v = g,
_ 3K2/ 6 \? 4
C(N,I,M)—C(N,Z,Mk) = 5%(92—1) l%—23 (229)

The contribution of the elements {V,|V,, = TEL.. T} in the region 8 =~ O to |Ku|?

4
increases with respect to the genus at least as fast as wfflw g%_l implying that a linear bound

for the sum cannot be used.

1
The primitive-element products [’ |1+ KZ| can nevertheless be bounded by refining the
1
estimates of the complex product [[,’ (1+ Kg3).

When r = r’ = r”, the distances decrease with g at the same rate, y1, x2 can take a wider
range of values, and the arguments arg Kgr will be randomly distributed throughout the
interval [0, 27]. The fraction of circles for a given value of r can be computed. If the distances
between isometric circles belonging to neighbouring levels in a hexagonal configuration range

M0 Mo ds dr

from N and Nk and the distances between the points &5, &17, — 22, — 5 are greater than
€0

!
Ty and less than gli—ozq,, then the level number differences, corresponding to configurations

of two pairs of isometric circles satisfying these constraints on the distances, will obey the

inequalities
/
Dgi=d < Al < Dgi-a (2.30)
o o

With 6(Al—1) circles in each level and the range of levels given in equation (2.30), the fraction
of circles for which the argument can be arbitrary is

2 2 ’ e 1 ’
3 & — o 1-2¢ _ 3( L0 _ & 5—4q
ny 0y 9 mo  ny )9

29 (2.31)

C (%) - (- o)
2\n5 0y 2\no )




10

for each value of ¢’. Summing over all values of ¢/,

Nomag o In g

Z g T = P 1 Nooz = |:l e :|

M=o [(‘3) - 1] (%) (2.32)
Nomaz € _ 1

Z g—zq’ _ 69 g

so that the ratio of generators T,,, such that the multiplier with product of two generators
has an arbitrary argument, is

1
/ 9)? _ L
3 (¢ 6 a| B[« {() ﬁ]
5(6_0 e_o) 0 _5(6_0_6_0)9—% (2.33)

ooy | - U [(—0)—1]
€0

For this fraction of circles, the arguments of the multipliers K, will be distributed evenly

1
througout the interval [0, 2], and the terms |1 + KZ| can be paired

1 ifg
‘1+|Ka|§eT

‘1"’ |Ka|%€

i(Oa+m) ‘
2

= |1 - K| (2.34)

thus obtaining a bound

IT 11-kKa < e:z:p(Z’ |Ka|) (2.35)

(a7aC) aaac

where K, and K,_ represent complementary multipliers with phases of opposite sign and
Iv,, Iy, are isometric circles belonging to the restricted category labelled by the power r.

It will be assumed henceforth that the set of isometric circles associated with a product
of generators does not belong to this category, so that the argument of the multiplier of a
product of generators approximately equals the sum of the arguments of the multipliers of
each generator. Between the values 1 and [47“], the factor in the primitive-element product
corresponding to the mean value M is
0

My

1
, lul2
1—1—|Ko£(l)|%eZ P v

= {1 + Koy | +2[Kaq)? cos 7 (2.36)

When | < 27”,01"67” <1 S%”,cosl—v>0

1 1
|1+K0t2(1)| > [1""|](o¢(l)|]2 (2'37)
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whereas when 27” << b

v ?

1+ K, | < [+ K, I (2.38)

so that an upper bound for the product over elements in the second and third quadrants is
obtained.

The angular distribution at each level [ can be plotted. The angles are restricted to the
range [0, 27], by identifying 6 with 6 4+ 2. For any distribution with mean angle greater than
7, the upper limit of the distribution exceeds 27, and the periodicity property is relevant.

. .y O, . . .
Since the number of elements with —* in the fourth quadrant is considerably larger than

. Onr, .
the number of elements with arguments % in the second quadrant, there are not enough

terms |1 + K o with m < M‘f < 3% which can be paired off with terms in the product to

obtain a bound 1nvolv1ng a product over terms of the form |1 — Ko, |.

Suppose, for example, that the mean of the distribution occurs at 6;, = nm, while the upper
limit is 2nm. Then, the graph in the interval [(2n — 2)7,2n7] is the reflection of the graph
in the interval [0,27]. When the distribution functions in the two intervals are superimposed,
there will be dip in the intermediate range if ¢ (v, 3 [Z(~v +1)]) < 3¢ (v, 1, 5 [32 (v + 1)]).

v

When M is less than the minimum value allowed in the estimate (2.26), the general formula
(2.25) is preferable when considering larger deviations from the mean. Specifically, if M = AM

and k=T, 0<n<A<1,then
L\ (11— 1+252%N+ 2
2 -1

2 l
>(51) gm0
m N (2-mt==)

v, M) = 3 (-)F (

(2.39)

12

The term with the maximum value in this sum is determined by the value of 7 satisfying the
transcendental equation

1—n = tanh (ﬁ) (2.40)

and the leading dependence on A is A'~'. The inequality ¢ (N, l é [4” (N + 1)])

< —c (N,l, é [85 (N + 1)]) will be satisfied for [ > 2 since A = 2. More generally, the distri-
but1on function in the interval [(2n — 2m — 2)7,(2n — 2m)] is a reflection of the graph in

the interval [2mm, (2m + 2)7], and their superposition will produce a dip in the intermediate

region only if ¢ (N,l, 3 [M(N + 1)]) —c (N,l, 5 [%(N + 1)])
<3 [ (N, L1 [M(N + 1)]) (N, L1 [(STZ)”(N + 1)])] Continuing the process of su-

perimposing the distribution function in the other intervals onto the interval [0, 27], it follows
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that the final graph is symmetric when the peak of the distribution is located at nm and essen-
tially symmetric when the peak is located at another value in the interval ((n — 1)7, (n + 1)7)
with any deviation from symmetry confined to an angular interval with a maximal size ap-

proximately equal to % times the extent of the original distribution. Initially, there will

1
be more elements V, with multipliers such that arg K& belong to the first and fourth
quadrants rather than the second and third quadrants. The deficit is typically given by
(?n%z)l_l + (2Tm)l_1 -2 (%)l_1 and summing the deficit over the index range [1, [%]]
gives

S[Cm) ) ) A () L

1
with n' = {l_f{” ]

%]
Two separate sums based on the formula (2.22) for the composition function ¢(N,l, M)
must be added to the overall deficit (2.41). If the interval H(l_[sz:]_l)] , [(l_f%:]“)] r] is

mapped onto [0, 27], then after summing over k”, the surplus is

M

2
1 6 N3 N+1

()

[N

_ 2 ( 6 ) N+ 13N
oy \N2 -1 N—19]3
and therefore it is suppressed relative to the magnitude of ¢(N,I, M) in this interval by a
factor of I'~#, and the same result is obtained if H(l[_é”k]”)] T, [(l_%:]”)] r] is superimposed
on [0, 27].

(KIP —2) (2.42)

When the peak of the distribution is located at the angular value nm for n even, the
interval [(n — 2)m, nm] is mapped on [0, 27|, then the surplus can be computed by extending
the sum to k" = 1. If the peak is located at the angular value nx, for n odd, then the surplus is
essentially given by the difference between the peak and the value at (n—1)7, which would equal

1
\/LE (ﬁ) ’ %zl—l\g This magnitude is suppressed by a factor of % with respect the average

value of ¢(N,l, M) in the interval. As [ increases, the weight given to each element of the

1
Schottky group at level [ decreases more quickly than (ge—o) * and combining this weighting

1—2q’

with equation (2.42) gives a genus-dependence of eglg%—lﬂ’l. However, as | increases, the



13

peak of the distribution also moves from the midpoint of the interval [(n — 1), (n + 1)7] and
over the index range [ = n [4”] v (n+1) [477’], the argument will be shifted sufficiently to
cause a cancellation in the phases of K, (), implying an approximately uniform distribution
function throughout the entire interval [0, 27].

1 -1
An upper bound for ]’ ‘l—i—Kof

M. |1+ K2

range {7} <1< [37“], the elements V), oa% €[5, 377’] can be paired with the elements V,,

is equivalent to a lower bound for the product

i

!/

in the

, and although an infimum has not been obtained for [],

1
such that arg K35 belongs to the first or fourth quadrant, giving products of the form

IT ' - Kol > exp|— > 'K, (2.43)

(,c) (,c)

1
so that an exponential lower bound for the product [], |1+ K| exists.

An exponential bound is immediately obtained in the limit |K,| — 0 since all of the
primitive-element products tend to 1. The fixed-point distance limit |£1, — &2,] — 0 could
only have an effect on [det(Im T)]75, and as Z1,, — Zan, gim_g Z;Z ZZ:_“; oZm 1 s0 that
each of the sums and products over conjugacy classes receive a contr1but10n "which can be

bounded by an exponential function of the genus.

3. Estimates of Moduli Space Integrals corresponding to Closed Surfaces

Combining the holomorphic part of the measure with its complex conjugate gives a multi-
plier integral with a dominant part

[ricoy - il

in the limit |K,| — 0. With the limits in categories (i) and (ii), the integral gives a factor

/

(1 = 2q')in g) 51n( )+0(<(1—2q'>ln 9™ (3.2)

€0

For the third category of isometric circles, a factor of

o))

is obtained.



14

Instead of integrating over the super-fixed points, it is useful to use another set of coor-
dinates on supermoduli space {K,, By, Hp, 014,02;} for which the holomorphic part of the
integral over the super-fixed points ? is replaced by

g g—1 g—1 g
dB,, dH,,
I —= II = I @ [] dv- (3.4)
m=2 DBp m=2 Hpn =2 i=1
where

¢ ﬁ B, 0 ! 9 0 1 )
2n — j 2n — — =—VU2n 2g — — —V2g

i=2 o V2 (3.5)
é. _ §2n 0 _ V Hn§2n'ﬂln + 0277,
T U= Hy — VHoyOinb2n 1-H,

The relation involving H, can be inverted to give

gln - §2n (gln - §2n)%

H, = - T V1nV2n
61" fln2
— gln 1 61%
|Hn| l = 1+ - = 1 ﬁln'ﬂ?n
gln - §2n 2 (gln — §2n)§

(3.6)

SRR ST
(gln - g?n)2

1 |‘Sln| 9 9
+ - ———————— 12 P1nton
4 |§1n - §2n| ! 2 ! ?

DO | =

The last component of this expression absorbs all except four of the integrals over the Grass-
mann variables. Examples of graviton scattering show that the 921, 024, a1, 529 integrals are
non-zero because the Green function on the super-Riemann surface depends on all of the ele-
ments of the super-Schottky group. 1913  The first term in the integral over |H,| produces
a dependence on the fixed-point distance of |1, — £2,| ™!, whereas the dominant contribution
to the integral with Grassmann variables is given by |¢1, — €2,|72. The contribution of a
configuration of isometric circles with Ny circles belonging to either of the first two categories
and g — Ny circles in the third category to the multiplier integral is

No e Ny
[Lin (L) g

ln()n2) " (o)
1
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In this formula, ¢’ represents a weighted average of the values ¢/, associated with the Ny
isometric circles in the first two categories. There are

No+ 9 g

()

(3.8)

2
different partitions of the Ny circles into the % subcategories labelled by the indices
o(=(3))
q and ¢', and each partition {n;} is weighted by a factor — 1n 7, with ny + ... +n, = Np, since
one set of inequalities defining the fundamental domaln of the modular group, (I'm 7)ss >
(Im 7)r, 8> r, must be satisfied for each subcategory, leading to restrictions on the ranges
of the multipliers. 2

For the parameters associated with the ¢ — Ny remaining isometric circles in the third
category, the constraints (I'm 7)ss > (Im 7)., s > r, lead to a reduction of the integral by
a factor of (¢ — Np)!. After summing over the possible values of Ny, the combination of the
integrals over the multipliers K,, and H,, with the weighting factors, is bounded above by

g 1 ) 66 No —5Np 22 qin;
>y W(l—Qq) tn — (In g)>70g™ 2i
No=0  {n;} Leee T 0
Z"z:NO
1, (el I A 1 1\? 1\2\]P ™
“[=In ‘o In — In — In —+1In — In—| +{Iln — (3.9)
4 €0 €0 €6 €0 €6 €0 €6
No
(1—2¢)" = [ (1-2q;,)
m=1

Z

The combinatorial factor £ T (g N )? obtaines a maximum value when r = 1 and Ny = %
lni
If all of the Ny isometric circles belong to the subcategory defined by the value ¢; = % — lneog
9
then the factor is approximately equal to (25—,50) .
0
Re-expressing the part of the measure containing the multipliers {B,,} as
S dBn 1y dBp e |Bp|d|By,|d6B
1T 11 = 1] m (3.10)

| Bm?
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1
where 62 is the angular coordinate of this variable, it follows if the range for |B;| is {E, 5;9]

In &)

. ] if 8 > 1, the integral is bounded by

or equivalently [6, 1+

The division by (¢ — Np)! rather than LJNO)! leads to an upper bound depending expo-
nentially on the genus for all Ny, as the combinatorial factor is less than

l 2
gN0 when Ny < (n7g?2
2 (ln E—°)
€0
in dn g)
In i
gl 1-2 - ;0
e when (in 9)2 g

Q(M (_2)2> < In g (3.12)
O R e
|

IN

F

N
LS

Each of these upper bounds must be multiplied by the number of partitions (3.8) for each



17

value of Ny, and since this is less than (In g)2o, the sum (3.7) is bounded above by

g

) DT e ()

€0

. (ln é-l—ln %)_1 ((ln %)2 + (l" %>2>_1 (n g)_3]_1 (3.13)

As 1> § > 0, the second term in the bound (3.13) is a rapidly decreasing function of the
genus for large g, while the exponential dependence of the first term on the genus is determined

by €;,. This parameter is constrained by modular invariance. One of the conditions defining the

fundamental region of the modular group is |det(CT + D)| > 1 for <é ?) ) € Sp(2¢;Z).

Since
|det(CT + D)| = |det(Im 7)| |det(C —iC(Re 7)(Im 7)~* —iD(Im 7)~ ! (3.14)

the determinant will be greater than one for all C, D when |det(Im 7)] > b > 1 for some
number b, so that |det(C — iC(Re 7)(Im 7)~! —iD(Im 7)~1)| will be bounded below when
det C # 0 and equal to |detD||det(Im 7)1 > |det(Im 7)|=! when C' = 0. Moreover, the

- tr(Im ) -
minimum value of — s

1 1 <
In — — =

Snn 18 a least upper bound for Z (mn) 1,

«

(3.15)
gln - Va§2n §2n - Vagln

gln - Vaﬁln §2n - Va§2n

implying that the restriction to a fundamental domain requires

g9
> som (3.16)
n=1

)

Y%
S
Q=

+

A
o
Q|

—4 —4
Thus, [(ln El,) - (ln l) ] < 1 and the first term in the bound (3.13) decreases expo-

0 €0

nentially. From this result, it follows that the sum over genus of the moduli space integrals
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defined by the class of Riemann surfaces associated with the first three categories of isometric
circles is finite. Finiteness of these integrals at large orders in perturbation theory contrasts

with the rapid divergence of the regularized vacuum amplitude in closed bosonic string theory.
2

Suppose that the bounds for the multiplier integrals in the degeneration limits are Bx, By
and Bp respectively, whereas the integrals of non-degenerate moduli over the interior of moduli
space would have a different set of bounds B}, By and B. Including all degeneration limits
of the A-cycles, B-cycles and C-cycles, an upper bound of

39—3
Z Z (9)(9—2)( l 1>Bg ZKB}(IKBg2lHB}Ig2lHBg1lBBllB
B

=0 Part{lg.lg.lpg} lk lH
Ig+lg+ig=L

_gg-2 -1 (39— 3)
B (39 — 3 §: 2. Ix!(g— )l (g —2—1g)ip!(g—1—1Ip)!

=0 Part.{lg.lg, lB}
lg+lg+ip=

_ 1 —2_ I —1—
v B% lKB}{ KBIQ—[ lHB}_I HB% lBBBlB

m@—2W9—D!(

B B, + B B., + B B)3973
(39_3)| K+ K+ H+ H+ B+ B)

<

(3.17)

is valid for superstring amplitudes.

The bounds obtained above depended essentially on the restriction of the integral over
super-Schottky group parameter space to a single fundamental domain of the super-modular
group. In this connection, one may note that the super-mapping class group does not involve
any discrete transformations in the odd directions. 2° The relevant constraints are those listed
for the multipliers and ordinary fixed points. Moreover, conditions such as —z < (Re T)mn < %
and (Im 7)1, > 0 reduce the integrals by an exponential function of the genus. 2L Other
exponential factors arise from the angular integrations of the arguments of K,, and &1, — &2p,
the integrations over £s,, and the primitive-element products. Although the exponents in the
primitive-element products in this measure differ from those in the bosonic string measure,
the angular integrals again will be bounded by an exponential function of the genus.

Even though the Euler character of moduli space grows asymptotically as
(—1)9%, 22 the genus-dependence of the volume is affected to a greater extent by the
choice of measure. In contrast to the rapid growth of the volume following integration of

1

the bosonic string measure over a subset of moduli space, the genus-dependence of the

corresponding integral is changed significantly by use of the superstring measure (3.4).

The integral over all of moduli space in superstring scattering amplitudes would differ in
the large-genus limit from the estimates based on these subdomains by a contribution from
the divisor. This, in turn, has been related to tadpoles of massless physical states at lower
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genera 23,  Tadpole diagrams vanish in stable vacua and more generally, if an exponential

dependence on the genus of the scattering amplitudes is assumed up to genus g-1, the contri-
bution from the boundary of moduli space should also be bounded by a function of the same
order, and it follows that this dependence would continue to hold at genus g. By induction,
the exponential dependence should then be valid for arbitrarily large genus. Finally, there
exist other formalisms which avoid the multi-loop ambiguity although they are not directly
related to the approach based on a super-Schottky parametrization of supermoduli space. In
the light-cone supersheet formalism, the boundary in supermoduli space is determined by
the requirement that the bosonic moduli are pure complex numbers without nilpotent parts,

eliminating the ambiguity arising from integration over Grassmann variables 24

Finite, un-
ambiguous scattering amplitudes can also be defined in the twistor-string formalism, which
makes use of space-time supersymmetry generators that are independent of the bosonized
super-reparametrization ghost fields having poles given by total derivatives in moduli space,
25 and it has been suggested previously that the exponential dependence on the genus could

be derived after considering the various degeneration limits of these amplitudes.

4. Sum over Spin Structures and the Genus-Dependence of Superstring
Scattering Amplitudes

The genus-dependence of the superstring path integral with the measure for an even spin
structure will now be obtained, including the contribution of surfaces near the degeneration

locus. The use of this measure initially reduces the divergence from [ % for bosonic

strings to [ % for the Neveu-Schwarz string as |K| — 0, reflecting the existence of

a tachyon in both cases and a shift in the value of the square of its momentum. 2¢ It has
been noted, however, that an extra factor of K % in the holomorphic part of the measure arises
for Ramond fermions circulating in the loops, and also when the GSO projection is applied to
the Neveu-Schwarz sector. A sum over spin structures, weighted with a phase factor (—1)5»,

1
introduces the factors K;;, n =1, ..., g, since
| 1 e
— - — = IZ, > (4.1)
-k [1+E;  [1— K

signalling the absence of a tachyon singularity.

At genus 1, where the sum over all four spin structures is required for the vanishing of the

one-loop partition function 27
1 1
Zi(r) = () (101 (017) + (4 —)83(0|7) + n—y05(0|7) + (401 (0]7)] (4.2)

infinities in the limit 7 — 700 cancel amongst the Neveu-Schwarz spin structures (—+) and
(==)
=0 (4.3)

o [eA0l) ekl
R e T )
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The problem of estimating the full superstring amplitude becomes one of summing over all
229 spin structures, beginning with the set of 29 spin structures associated with the Neveu-
Schwarz sector of the string. Since the sets of odd and even spin structures each form a
representation of the modular group, and modular transformations of the Neveu-Schwarz sector
can span only the set of even spin structures, it will be necessary to enlarge the original set, of
29 spin structures to include another sector with odd spin structures.

If 7@y denotes the phase associated with the spin structure (i) and o, is the modular
transformation, the superstring amplitude Ay, = [ 1INy, where Fy is the fundamental
g
region of the modular group, is invariant so that

229 229
/ Z 77(%’)[1(\;?9 B / Z No, (i) Igf,él) (4.4)
o (iy=1 or(Fg) (iy=1

This sum can be arranged into sets, each consisting of 29 spin structures, so that the sum
1

over spin structures within any individual set introduces a factor of K7, in the same manner
as the sum over spin structures (4.1) in the Neveu-Schwarz sector, implying removal of the
tachyon singularity. Denoting the sets as S,, r = 1,2,3, ..., where S; represents the Neveu-
Schwarz sector, it can be shown that there exist sets S,, r = 2, ..., g, containing 297! even and
2971 o0dd spin structures. In particular, if the signs associated with the A-cycles are chosen to
be other than all negative, then an arbitrary choice of signs for the B-cycles produces 297! even
and 2971 odd spin structures. An examination of the signs reveals that these sets of 297! even
and 297! odd spin structures are required for cancellation of the tachyon divergence, rather
than sets consisting only of 29 even or 29 odd structures.

The sector S5 may be chosen to be the Ramond sector, consisting of genus-1 components
with either an odd spin structure (++) or an even spin structure (+—). Modular transfor-
mations might then be used to generate the remaining 29-1(29 — 2) odd spin structures, and
simultaneously, 29-1(29 — 2) spin structures. Labelling of the sectors {S,} is provided in the
appendix for genus 1, 2 and 3, although the property of an equal number of even and odd spin
structures in S, r > 2 holds for arbitrary genus.

The existence of a modular transformation mapping the set Ss into S, r = 3,4, ..., g should
follow from the absence of the tachyon singularity for each of the sets. The tachyon divergences
in the limit |K,| — 0 cancel only when the correct choice of spin structures, consistent with
modular transformations of the integrand corresponding to S5, is used. This result should
also follow because the symplectic modular group can be generated by the following set of

transformations 28
(Z) An <~ An/ B, < B,
(i) B, — B, + A, (4.5)
(ii) By — Bn 4+ An By — Bp + A, '
(w) B, — A, A, — —B,
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The last transformation switching A-cycles and B-cycles can be used to move the required spin
structures from a set which is certainly a modular transformation of S5 to one of the sets S,
with which it may overlap. It should be possible to transfer all of the spin structures to these
sets by repeating this process.

However, instead of explicitly determining the modular transformation mapping Ss into S,
it is first simpler to consider transformation {p,}, which are products of genus-one modular
transformations acting on the different handles. These modular transformations and the sectors
that they generate at genus 2 and 3 have been listed in the appendix. Defining S; = S| =
NS, So=S,=Rand S, =p.(R), r = 3, ..., 39 — 29 + 1 the following lemma holds:

Lemma. Consider the Ramond sector R and the modular transformations p, such that
pr(R) = S., r = 3,.,39—29 + 1, with {S].} not including any Neveu-Schwarz spin
structures. The tachyon divergences cancel in each of the sets 5.

Proof. The proof follows by induction. The Ramond sector R at genus 3 is

+ o+ + + 4+ -
+ o+ + - 4+ -
+ -+ + 4+ -
+ -+ - 4+ -
+ o+ + + 4+ o+
+ o+ + -+ o+
+ -+ + 4+ +
+ -+ - 4+ +

A genus-1 modular transformation could, for example, map the spin structures for the third
handle (++4) — (++) and (+—) — (—+) or (——). When this spin structure is not (++), it
can be denoted as 4p,. Application of the modular transformation to the Ramond sector gives
the following sector

+  ip

— -
+ 4+t

A+t
++

(++)
(++)
- + + (++)
-+ = ()
This sector therefore can be divided into two sets corresponding to the spin structures for the
third handle being i, and (++). The genus-2 components are identical and represent the

genus-2 Ramond sector. As the spin structures match and the tachyon divergences cancel for
the genus-2 Ramond sector, the same property will hold for the genus-3 sector above.

At genus g, a combination of genus-1 modular transformations applied to the Ramond
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sector R(g) produces

+ o+ o+ 4+ e+ o+ dp, e+ i, .+
+ o+ o+ et i, A+ e A+ dn, o+ o -
+ -+ = 4+ =y o+ = e = dny, = e+ -

as part of the genus-g sector. Again, the matching of spin structures for the genus-(g — n)
Ramond sector implies the cancellation of tachyon divergences in this set. When any of the
spin structures iy, are replaced by (++), the result remains valid.

Since the modular transformations leave invariant (4+4), all the spin structures but one
will contain a (++) component. This must be matched by a (+—) component, because the
tachyon divergence is cancelled by summing over both signs for the B-cycle. Consequently, it
is forbidden to use a modular transformation mapping + — + — ... + — to 4, %p,...in, Where
in, 7 (+—) for all n = 1,...,g. Since this restriction applies not only to + — 4+ — ... + — but
also to the other spin structures in the Ramond sector, 29 of the modular transformations
constructed using the genus-1 transformations cannot be used. The remaining 39 — 29 — 1
modular transformations p, generate the sectors S, correct combinations of spin structures
consistent with cancellation of the tachyon divergence.

By the modular transformation of type (iv) in equation (4.5), the spin structure (+—) is
interchanged with (—+). While the modular transformations transforming (+—+—+—...4+—)
t0 (in,ihyihs---in, ), in, 7 (+—) are excluded from the set {p,}, a transformation from (+—)
to (—+) for a single handle produces a set of spin structures which still has the property of
tachyon divergence cancellation. For example, in the appendix, applying this transformation
to the Ramond sector gives the sectors Sz and S, at genus 2 and the sectors S3, S}, and S}, at
genus 3, at arbitrary genus, it would define the sectors S3, S,
of these genus-one transformation to different handles will generate another 29 — g — 1 sectors.

, . .
e Sng. Successive applications

Consider the following sum over spin structures

3992941 29 o) 991 o
S [ S et = Y et [ weil
r=1 Fo (a)es; (ans)=1 Fo (a,)=1
99—1 39_9941 99—1
+ Z n(ae)]’](\?:e) + Z / Z npr(ao) IKTT,A((JQO) (46)
o (a)=1 r=3  Fo (a,)=1
39_29+1 29—1
S [ e
r=3 Fy (ac)=1

where S5 = {(a,)} U{(a.)} and S|. = {p,r(ao)} U{pr(ac)}, with {(a,)} and {(a.)} representing
the odd and even spin structures in the Ramond sector. Each of the integrals, labelled by r, is
free of the infrared divergence in the |K,| — 0 limit, since the sum over the 29 spin structures
in S]. removes the tachyon singularity.
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The absence of divergences in the this limit can be used to prove finiteness of the amplitudes
in the other degeneration limits. Another divergence associated with the coincidence of fixed
points &1, and &s, still arises in the Neveu-Schwarz sector, even after summing over the
spin structures, and this infinity can be eliminated only after the Neveu-Schwarz sector is
combined with the other sectors. The elimination of divergences arising in the degeneration
limit |£1, — €2,| — 0 has been demonstrated formally in the proof of finiteness of superstring
amplitudes using a manifestly supersymmetric formalism equivalent to the sum over spin
structures.

The effect of modular transformations on the Neveu-Schwarz and Ramond sectors is neces-
sary for an estimate of the genus-dependence of the scattering amplitude, as the fermion part
of the g-loop superstring handle operator 2? is given by

<o‘szg;loop _ (det ¢a-1oor)- < ‘ f[ [ ]( /C 0 %Bqﬁi(z)-goy(z,zo))

xp{%g / = /O e 2106, )[lnEg—lm(x,w—ln(x,yn}

where det C971°? =T[_'TI>2, (1-K?), ¢, i = 1,..., % are bosonized fermions, ¢(z, o) is the
abelian integral of first kind, and E(z,y) is the prime form. The presence of the genus-g theta
function can be traced to the modular invariance of the string scattering amplitude, since the
set of generalized theta functions of rank r 41 — g define a basis for complex analytic functions
satisfying the transformation rule f;(¢t,Tz) = p(T){(T, 2)" fi(t,2), T € Sp(2g9;7Z),z € Z,t €
CI/L, L € (1,7)Z* with factor of automorphy (. 3°

The fixed-point distance |£1, — &2 occurs in the period matrix 7,,, and the removal of
the divergence in the limit |£1, — €2,] — 0 may be anticipated from the effect of modular

transformations on the theta characteristics [‘;"]

It is also known that the g-loop measure can be expressed as |F(y,a)|?[sdet{¢|p)] >
F(y,a) ~ i 31 where y is a coordinate near each boundary of supermoduli space, and {¢;}
are the super-holomorphic half-differentials. The interchangeability of the coordinates in the
dependence of F(y,a) near the boundary of supermoduli can viewed to be a consequence of
modular invariance. However, the effect of the superdeterminant factor differs for A-cycles
and dividing cycles.

Consider the fixed-point limit {1, — &2,| — 0 in the sector S|.. Application of the modular
transformation p,, interchanges the A,-cycle with the By,-cycle and the integral becomes

3 / oIy = / @Iy (4.8)
(a)€s;. a)€pr, (S” Pry,

The superstring measure at two and three loops has the property that factors of det(C'T + D)
in the transformation of the product of theta functions in the integrand are cancelled by the
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transformation of the differential element [, ;j drij AdTi;. At higher genus, transformation
of the theta function 32,
[ Dn1 — C’nz

Do o+ yer+ oy

M

= (, - det(Ct + D)

-exp( mitng - 'BD - nq + 2mitn ! BCny — mitns AC’ng) ) {nl] (0,7)

n2

(4.9)
differential element, together with a shift in the spin structure. Cancellation of the fixed-point
divergence arises because application of modular transformation produces a divergent |K,|
integral with a different spin structure, which can then be cancelled by the divergent part of
a multiplier integral of a corresponding spin structure in the same sector. This cancellation
may take place in a different integration domain, leaving a finite part with an upper bound
which is less than product of the bound in the original fundamental domain and an exponential
function of the genus.

The removal of this divergence in N-point superstring amplitudes can be verified in the
super-Schottky parameterization. The contribution to an N-point g-loop scattering amplitude
from this region of supermoduli space is proportional to

/ d?zq..d%2y \/g (21). \/g (zn)
b))

/ d(Re fln)d(Re an)d(Im fln)d(Im §2n)d91nd92nd§1nd§2n (410)
|£1n - £2n - 01n92n|2

ANl +1,n—1AN2+1,g—nA2,1

where An, 41,,—1 is the (n — 1)-loop Ny + 1-point amplitude and Ap,41,9—n is N2 + 1-point

genus-(¢g — n) amplitude, Ny + Ny = N, and B n_£2n1_91n02n|2ﬁ(a) = |£1n_£2n1_01n92n|

A(a) is the two-point one-loop amplitude. In the super-Schottky parameterization, the cancel-
lat1on of the divergences in the limit |Z1, — Z2,| — 0 can be deduced after summing over 229
genus-g spin structures. Splitting the spin structures into a genus-(n — 1) component genus-

(g —n) component and a handle with a degenerating B-cycle, it follows that the vanishing of
n—1

the sum Z A§$3+1n 1 A§$3+1,g n Ag"% Z(a —1)=1 A§$:+i)n 1

g—n n 4 . .
Z?ag,n)ﬂ AS\?Z"_H’)Q_H > (an)=1 A§v3+2 1 as [&1n — &2n| — 0 removes the divergence in the

integral (4.15) arising from this limit.

In the limit Z1,, — Z3, — 0, the integrand has the form

277.1 29— n

Z A]\l;l—i-i n—1 Z A132g+1,g—n . lZmZIn_>Z2n |:|§1n — §2n — 01n92n| Z A2l’111
(a1)=1

(an 1 a n
9g—

d i (a1) ]
+ A7+
Z gln §2n - 91n02n| 21

(a1)=1
(4.11)
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The choice of the expression Ag‘ff follows from the the one-loop closed superstring amplitude
before the summation of spin structures, which contains a %' singularity 3° near the boundary
of moduli space |y| = 0 that can be be obtained through the degeneration of the either
homology cycle. The degeneration of the A-cycle given by |K| — 0 can be transformed to
the degeneration of the B-cycle |K| — 1 under a modular transformation, and this further is
equivalent to the coalescence of the fixed points since |1 — K| = |v||K|2[&1 — &|. Tt also can
be deduced from the N-point one-loop open superstring amplitude 33

1 N—1

1
open d j
AP = C/ H O(vr41 — vr)dyy / “ H Pry)Fiks (4.12)

I<J

so that the N-point closed superstring amplitude includes the integral [ dgndg. Fixing the ra-

dius of the isometric circles in the Schottky uniformization of the surface, so that || is constant,
the derivative of the one-loop closed superstring integral With respect to the distance between
the fixed points equals is —3|v| ™' K |72 (1+|K|) gk Azt = 77K 73 (14 |K|) gz A

d ImT

T1

With the genus-two period matrix Q = ( . ’ ) and the genus-one spin structures [p;] =

1

(00, [u3] = [0 3], [us] = [3 0], [ua] = [00], [ua] = [0 3], 6] = [5 0], [w] = [5 3], the
asymptotic behavour of the chiral superstring measure 3* is given by

5 i dridrodT + O(TO)

[ ] @) = sl uzh)

e () ()t )
1o 372 4
dp {VO] Q) = WdTldedT + O(7%)

for separating degenerations and
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O [p)(5, )t 4 i wl(5, )
21276 - qn(71) 1891 [m0] (5, 71)2
01 [p1)(0, 71)* 01 (3] (0, 71) * 01 (5] (0, 1) *dridradT+

1 4 3
21276 (1) B (1) (5, 1) {4<191[u3](0,7) Orlus)(0,m)

-1 [s) (7, 1) + D1 [pa) (0, 71) D1 [15] (0, 7) 04[] (7, 7'1)4>
01 ()

+4 (—191[#3]((), 71)291[15] (0, 71) *O1 [a] (7, 1) + D1 [p3] (0, 7)*
las) 0,700 sl ) ) ] (5.m) )

+16 1lwo] (3om) a0l 0,1 91l (5
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(4.14)
for non-separating divergences, with the paramter ¢ determining the size of the degenerating
cycle. Summing over the spin structures for a genus-one component of the Riemann surface
eliminates the 1 tachyon divergence. The finite part of the integrand of order ¢° defines the
genus—lndependent contribution to the superstring amplitude, which can be bounded by Bp.
The dominant contribution in the fixed-point distance limit is obtained from the simultaneous
degeneration of By,-cycles, m = 2,...,¢9 — 1, which would be bounded by B%_2. The use of
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a genus-2 component facilitates the analysis of the fixed-point distance limit, with the result
that the genus-independence of the finite part of the superstring amplitude in the limit of a
vanishing B-cycle in any single handle can be verified.

The string amplitude at g loops contains a genus-g theta function that would tend to an ex-
pression containing a product of genus-2 theta functions in the degeneration limit with genus-2
components. Each of the three moduli parameters for a genus-2 component define the different
degeneration limits, and the sum over all such boundaries in the genus-g moduli space can be
obtained by overlapping these three limits. Dividing a genus-g surface into genus-2 components
and considering the degeneration limits of these components in the even-spin structure sector,
the genus-dependence of a contribution to the superstring amplitude can be estimated by deter-
mining the next-order term in the expansion of the the superstring measure, summed over the
different, spin structures. To obtain the contribution of overlapping components, the factoriza-
tion of a genus-3 amplitude Az in the degeneration limit 2A4; As+A; A1 A1+3B2+2C2+3D1+ D]
can be used, where A; defines the amplitude of the genus-i component obtained by factorizing
along a dividing cycle, while By, C5 denote the amplitudes defined by the punctured genus-2
surfaces, and Dy, D} are amplitudes for punctured genus-1 surfaces. The divergences will be
cancelled in the summation over the spin structures for the genus-1 and genus-2 components
separately, and the product of the next-order terms for each component will define the leading
contribution to this amplitude. At genus g, there are three additional modular parameters
and g1g2 extra period matrix elements arising from the factorization of a genus-g amplitude
into a genus-g; and genus-gs component. The genus-dependence of the superstring amplitude
also could be determined by the leading order contribution to the genus-g theta function after
elimination of the sums with non-derivative terms.

While the limit |B,,| — 0 implies that |€2,;] — 0, j = m, ..., g, factors of |{a,,| are cancelled
in the integrand. Using the expression for H,, it follows that

dHn A dﬂn -~ |§2n|2d2§1n - glng2nd§2n A dgln - g?nglndgln A dé?n + |§1n|2d2§2n

_l’_
| Hpl? €1nl[§1n — &onl?
3 Eln ° 9 9 H
+ - |—————| VP20 2d|H,|d0, + ..
4 Eln - £2n
(4.15)
whereas . - . B
d€am N d&om _ dBj A dBj
= =1 5 (19
m=2 m j=2 J
The remaining factor of |B;| gives rise to an integral of the form [ %jéd which is not

divergent. The extra factor of |£1,] is also cancelled by d2£;, so that the only fixed-point
divergence is obtained in the limit |§1, — &€2,] — 0. Fixing the location of &1, to be 0, the
expression |€a4] is obtained in the denominator, with the identical power as the fixed point
distance |£1, — &2n|. As the vanishing of |B;|, j = 2,...¢g implies that |{24] — 0, the expansion
in powers of |€2,| again leads to a remainder term containing the derivative d%g'ﬁg,l which
is independent of the genus.
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After summation over spin structures, the product of the integrals over H,,, m =2,...,g—1
and B,,, m =2, ..., g would increase at most exponentially with respect to the genus.

The measure associated with even spin structures in the Neveu-Schwarz-Ramond sector
has been obtained by solving Ward identities and using vacuum correlation functions for the
different spin structures. %3637 The spin structures can be labelled as L = > (l1n,l2n),
lin = (0, %), so that they are even or odd if 437 _, li,la, is even or odd respectively. 4

The coordinates of a super-Riemann surface change under 27-twists around A, -cycles and
traversals of B,,-cycles as

PQ(n) = {2220 - (-1)%06}
0 (=1)22n g (4.17)
P(BT)L(l2n) = {Z — Tnz, 9 — m

16

when the odd modular parameters are zero. Thus, the sign of the fermionic coordinate is

1.
27

1 .
5 corresponds to a negative

unchanged by a circuit around an A,-cycle if [;,, = 0 and is multiplied by —1 when ly,, =
similarly, l5, = 0 is associated with a plus sign, while l5, =
sign.

Considering the map from the parallelogram to the annulus, the target space coordinate in
X = e2™Z = g 4 @1 is unchanged by Z — Z + 1, but the fermionic coordinates change sign
6 — ™6 and ¢ — ™). Since the annulus can be mapped to the Schottky plane with two
disks removed without changing the sign of the fermions the sign of the fermionic coordinate,
the following nomenclature can be established for genus-one surfaces:

(

(0’1) < (+,=)sen. & (= +)par. (4.18)

(070) A (+7+)SCh. <~ (_a_)par.
1

0) — (—,+)Sch. Ad (+7_)par.

[\

(%,%) < (= =)seh. ¢ (+,+)par.

With this labelling of the spin structures, the integrand in the superstring partition function
for spin structures in the Neveu-Schwarz-Ramond sectors is given by

29, = K29 [det(T({Kn, Zin, Zon}, I') — T({Kn, Zin, Zon}, L)

(9) ~(9) (4.19)
ZLg ({Kn7Z1n7Z2n})ZL€ ({KTL;ZI'H,aZ?n})

where T({Kn, Z1n, Zan}) is the super-period matrix Z\9 ({K,, Zin, Zon}) is a holomorphic
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function of the super-Schottky parameters.

ZL({KnaZImZM}) = ZO(m)({Knaflna&n}aL)ZO gh)({Knaflna&n} L)
YD (K, Zan, Zon}, L)Y ({ Ky Zin, Zon}, L)
H({Kn7Z1n7Z2n})

H({Kn, Zln; Zgn}) = (Ul — Ug)(’Ul - U2) |:]_ -

g
H (Zln - Z2n)_1
n=1

W12 _ Vip2 (4-20)
2(u1 — UQ) 2(’01 — UQ)

where Zg () and Zy(4p) represent string superfield and ghost contributions evaluated at zero

odd Schottky parameters, In T%)({Kn, Zins Zon '}, L) and In T;%)({Kn,Zln,Zzn},L) contain
terms proportional to odd Schottky parameters, and wi, vy, us, u1,v1, po are fixed for every

genus-g super-Riemann surface and therefore are not moduli. 3

Integrating over the su-
permoduli and summing over the spin structures (L, L’) gives the total partition function.
Supermodular invariance of this partition function has been verified formally using Ward iden-
tities and established explicitly for specific transformations between spin structures of genus-2

components of arbitrary-genus Riemann surfaces. 37

Expressions for Zy(,) and Zy(4) bear a resemblance to the formulae for the Neveu-Schwarz
sector. 16

(ee]

1, 15](0]w ™) , _KL®
Zogm)({ K, €1ny €2n, L) = @5[{%} l{] f]|(0|w H pl:Il 11_1;;;0 : (4.21)

_sz lljllﬂ'
\/detM ({on et M({—an}) =

H/ ﬁ (1 _ Kg_'_l)z
p+3 p+3
o p=1 1= A{Kn} {on})Ka *|[1 - A({Kn} {—0n})Ka °]
(4.22)
where 7;, is the value of the super-period matrix 7, at zero odd parameter, M({c,}), is a

matrix relating conformal %—tensors to %—tensors arising in the transformation rule of spin-
QVB(KQ)({Un}),

ZO(gh)({Kna §in, £2n}; L) =

g
H ZN n;lln;l2n)

structure dependent Green functions, 3% A(K,, {0,}) = ¢
Qv k(o) = =X, 205, (Va) + 2, (2lar — 1), (Va) where n, is equal to the
number of times that T}. appears in V,, minus the number T,-! appears and

(_1)2l1n+212n_1

Zo(Knilin, lon) = (4.23)

3
2

420 K2 [1 4 (—1)2n /K, Kk )220

have also been calculated. 36
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An alternative expression for the holomorphic part of the measure is

Z UK, Zin, Zan}) = Z89({Kn, €y DY D (K, Z1n, Zan}, L)
H({Kn; Zlna Z2n})

2l (2l1n_1) 8
1)2hn+2ln 116200 22 <1+(—1) mKPK, > )]

g
1;[ KW H (1 _ Kg)s

n p=

(4.24)
where Zég)({Kn, €1n, &an}) is evaluated at zero odd Schottky parameter. 37 From this formu-
lation, and noting the designation of spin structures in equation (4.22), it is clear that when
l1n = 1 and the spin structure for the n'» handle is (+04, ), 2\ — K; ' as K,, — 0, while if

_3
l1, = 0, so that an even spin structure (—op,, ) marks the n'® handle, Z,gg) — K, ? as K, =0,
consistent with the result for the degeneration limit of the measure for the Neveu-Schwarz
sector.

Given the latter choice of {l1,,}, the sum over the 29 spin structures associated with the
different assignments of either 0 or % for {l2,, } softens the divergence of the holomorphic part of
the integrand to K, !, and the combinination of this term with the [In|K,|]~5 factor that arises

from the super-period matrix produces a finite integral in the degeneration limit |K,| — 0.

It is known that the strength of the divergence in a degeneration limit is determined by
the conformal weight of state propagating along the tube. With the moduli space near the
compactification divisor D parametrized by (mp,q) = (m,z1,z2,q), where 21 and x5 are the
punctures on the surface m resulting from the removal of a node and ¢ is a complex variable
defining the opening of the node, and with p(mp) denoting the density matrix of states on the
two boundary circles at the end of the tube, 38, the factorization of the partition function is
given by

7 = ¥ dd #lptmo)le)
) (4.25)

= Z(m,m) Z qhq)qh@(q)(xl)q)(]@»m

where hg is the conformal weight of the field ®. An additional contribution arises from the
ghost fields so that the measure contains factors of the type qhq’_ﬁghq’ﬁé_ggh.

In the Neveu-Schwarz sector of the superstring, €,;, = % and the conformal weight of the
tachyon vertex operator is hgy = %k2 = —%, 39 as the squared mass of the Neveu-Schwarz
tachyon is half of the squared mass of the tachyon in the bosonic string spectrum, so that the
amplitude is proportional to

d’K 1
KK (log |[K|7)®

(4.26)

where the factor (log |K|™')~% has been included upon the pinching of the A-cycles.
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The dilaton vertex operator belongs to the set of massless vertex operators for the fermionic
string 4°

Vinasstess(ky€) = / d’z d*0 e DX* DXVelFX kle, = kew = 0 (4.27)

with conformal weight hg > —%, so that the resulting integral

/ dq " g (4.28)
is finite when hg > —% and, when ¢ is the multiplier K, for hg = —%.
In the Ramond sector, the energy eg, = 0, *° so that the finiteness of the integral is

improved in the degeneration limits of both A— and B-cycles.

Finiteness of superstring amplitudes at arbitrary genus has been demonstrated in the light-
cone gauge ', and using the twistor-string formalism, where the amplitude contains picture-
changing operators, F* = [Q,£¢*], with Q being a BRST operator derived from the energy-
momentum tensor and ghosts and ¢* are spin-0 fermions required in the expression for the
bosonized ghosts. ” Constructing an N-punctured, genus-g Riemann surface by sewing three-
punctured spheres, labelling the radii R;, j =1,...,39g — 3+ N of the sewed punctures as K,
H,,, By, and L; (for external legs), and considering the limits {|R;| — 0}, the locations of the
picture-changing operators may be chosen to be arbitrary points on the 2g — 2 + N spheres. 7

Since a change in the location of F* implies that [Q,¢] — [Q, €]+ ¢ dz [Q, 8.£], the contour
of @ initially surrounds the curve joining the initial and final positions of the picture-changing
operators. 4! In the degeneration limit H; — 0, where the Riemann surface splits into two
components of genus g — 2 and 1, the contour of ) can be pulled off the picture-changing
operator to surround the three punctures of S, 444 n.

Around each of the sewed punctures is a closed loop C; of radius R; and the contribution
from each of the Beltrami differentials is

3g—34+N 2

b(yi
i=1 o R

1

(4.29)

Around the first puncture is the contour integral involving the Beltrami differential for K,
while the operator at the third puncture is represented by the factor

|c exp(=¢™ — ¢7)eap(hT + A7)y Ty |? (4.30)

where ¢ is a right-moving boson of spin—%, ¢* are two scalar bosons of screening charge 2
defining the bosonized ghosts, h* are a pair of right-moving spin-0 fermions. 7 Anticommuting
Q with the Beltrami differential for K, produces a derivative with respect to K,,. This total
derivative does not represent a divergence because the amplitude already has been shown to be
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finite at the boundary K, = 0. Anticommutation of Q with the operator at the third puncture
produces no terms with zero-modes of the spin-0 fermions ¥, and therefore the amplitude
is independent of the locations of the picture-changing operators. Since all of the picture-
changing operators may be moved to the third puncture, the zero-modes of 9™ and ¢~ cancel,
implying that this amplitude associated with the genus 1 component of the Riemann surface
7 This leaves the contribution from the boundary of the K, region and, in this
sense, it represents a transfer from an integral involving H,,_» to a finite integral involving K.

vanishes.

Consequently, divergences are absent in the (Type IIB Green-Schwarz) superstring amplitudes
in the degeneration limit H,, — 0. A similar argument may be used to demonstrate that the
amplitudes are also finite in the B,,, — 0 limit, which defines the degeneration of the C',-cycle.
Since the C),-cycles are linear combinations of the A,-cycle and B, -cycles, the divergence in
the |B,,| — 0 limit disappear once the superstring amplitudes are demonstrated to be finite
in the limits |K,| — 0 and |1, — &2n] — 0.

An estimate of the amplitudes based on the measure for the Neveu-Schwarz sector and the
Ramond sector can be obtained by applying modular transformations to the spin structures
in these two sectors. In terms of the sums over spin structures,

291 291
foX = 5 w0+ [ e
Fo (a)es; Fo (ae)=1 Fo (a0)=1
o - (4.31)
o S et S e 1
pr (Fg) (ac)=1 pr (Fg) (a0)=1

The integral involving the spin structures {p,(a.)}U{pr(ao)} has been converted to an integral
involving the spin structures {(a.)} U {(ao)} = S5, with a different integration region in the
Schottky parameter space.

The effect of a modular transformation p;! on the fundamental region F is that of a
mapping to another domain in the Siegel upper half plane. Since the condition |det(CT+D)| >
1 is not necessarily satisfied by the transformed period matrix, the upper limit for |K,| is not
constrained by the inequality

L1
e < exp (—bE +=> lnn> (4.32)
g n=1

where b is a lower bound for det (Im 7) and s, is the supremum of the lower bounds for

S I, | Sn=Yalon fn=Yabin | While the domain p; (F,) is defined by different limits for

the Schottky group parameters, the shift of the integration from F, to p, *(F,) will change the
bound on the absolute values of the integrals by an exponential factor x(g)7.

29+ 9 924

(a) _ (4) (b)
> /F Y iy = /F > o Iny + Y /F Y nwly,  (4.33)
r=1 g (a)ESL g (’L)Zl s g (b)ES'g’
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where the set {S”} consists of 297! spin structures.

5. Bounds for the Generic N-Point Superstring Scattering Amplitudes

The vanishing of N-point amplitudes for N < 4 provides the first indication that the
superstring amplitudes do not necessarily grow at a factorial rate with respect to the genus.
Similarly, vanishing of superstring amplitudes has been established when g + N < 8. 42 The
only result that has been established thus far the superstring scattering amplitudes at high
genus is a consequence of a technical argument relating N=2 string theories with topological
field theories. This connection implies that there is a relation between special type II string
amplitudes in orbifold and Calabi-Yau backgrounds and topological string amplitudes at any

given genus. 4344

It is therefore of interest to be able to estimate the generic superstring
scattering amplitude with an arbitrary number of vertex operators, receiving contributions
from all genus. This follows from the bounds in this paper because the N-point g-loop scattering

amplitude is typically given by

AN, :/ dug/ d?z..d%zy dby..dOnd0;...dON/g(21, %1) ../ 9(2n, ZN)
sMgy s¥g (51)

(Vl(zl,01,21,51)...VN(zN,9N,2N,§N)>

which may be bounded by

CN

/ dpg ‘ ‘ / dz1dzy...dzndzZy \/g(zl,Zl) \/g(zN,ZN)
sMg—N(sDy) P

g

<V1(Zl,21)...VN(ZN,5N)> (52)

+ CN‘/N’ dpvg / d?zq...d% 2y \/g(zl,zl)...\/g(zN,ZN)(Vl(zl,Zl)...VN(zN,ZN)>
(SDg)

g

where N (sDy) is a neighbourhood of the compactification divisor in supermoduli space and
cn 18 a coefficient which increases exponentially as a function of N. For the R = —1 slice of

Teichmuller space,
1

— d? =2 -2 :
3w Jy, CEVIE g (5.3)

45 in the correlation

and since a subtraction procedure can be used to remove divergences
function associated with the coincidence of vertex operators to bound its magnitude

|(Vi(z1,21)...VN(2n, 2n))| < VI, it follows that the upper bound (5.2) is less than

maz 9'(9 —2)!(g — 1)!

(4n(g — 1))V -en - VE EE] (Bk + By + By + By + Bp + BR)*973 (5.4)

Lower bounds of this type may also be derived provided there is a suitable lower bound that
can be used for expressions containing the supermoduli space integral. Since this particular
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integral, after the sum over spin structures, actually vanishes, the lower bound that should
not be determined strictly by the magnitude of this integral; rather, it should allow for the
weighting of the spin structures to be altered in the integration of the correlation function over
supermoduli space, leading to a non-vanishing amplitude.

The genus-dependence of the special scattering amplitudes can be obtained from the general
estimate (5.4). Specifically, the genus-g type II string amplitude As, 4 in an orbifold or Calabi-
Yau background, with 2g vertex operators including 2g-2 graviphotons and 2 gravitons, is equal
to

Asgg = (917 Fy (5.5)

where Fj is the partition function of a topological string theory. The partition function for a
topological field theory defined over a particular manifold M typically is given by the product
of the partition function over the submanifolds M;, such that M is the topological sum U; M;, so
that the partition function for a genus-g surface Z, would be ¢?Z{. For a topological gravity
theory, the genus-g partition function will also involve a contribution from a supermoduli
space integral associated with modular deformations along the collars joining the tori. Since
the magnitude of this supermoduli integral has already been estimated, the genus-dependence
of the partition function Fj should still be exponential, and indeed, this has been established
42,4647 Consequently, the type II string amplitude is As,, = cic3(g!)?,
consistent with the bound (5.4) upon setting N equal to 2g.

in several papers.

These results provide further confirmation of the higher degree of finiteness in superstring
theory in the large-genus limit. The exponential function (5.4) implies a similar bound for the
for higher-point superstring amplitudes, and the perturbation series can be made to converge
for an appropriate choice of the string coupling constant or dilaton expectation value.

6. Estimates of Moduli Space Integrals for the Category of Effectively
Closed Infinite-Genus Surfaces and the String Coupling Constant

Study of the large-genus limit in bosonic string theory shows that the requirement of
a finite-size interaction region restricts the surfaces to be either closed or effectively closed

21 Both types of surfaces always can be constructed by placing

infinite-genus surfaces.
handles on spheres, which decrease in size to zero when there are an infinite number, thereby
breaking the bound on the minimum length of closed geodesics. The genus-independent cut-off
on this length excludes spheres with a sufficiently large number of handles, and therefore, it

represents a large-genus cut-off as well.

The absence of divergences in N-point superstring amplitudes at any given finite order in
perturbation theory implies that the restriction on the minimum length of closed geodesics
should be removed. Effectively closed infinite-genus surfaces, besides completing the domain
of string perturbation theory, may have an essential role in the superstring path integral.
Configurations of isometric circles arising in the super-Schottky uniformization of these surfaces

shall then be included in the supermoduli space integral. The ranges nEqO,, <K, < nET"),,, n =
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1,...,9, ¢ > 1, and % < |éin — &on] < %, n =19 ¢" > %, therefore will be
considered also. While the parameters ¢, ¢’, ¢"” and ¢"”’ are initially chosen to be continuous
parameters, to avoid overcounting in the path integral, it is necessary to select a discrete set

of values. Specifically, it is sufficient to sum over the values

ln (i) ln
; g
g < ¢y = N—>"2L N =0,1,.., |—2—
N 21ln g In (Z_g)
In (—g) ) (6.1)
q}V=1+N7Z N =1,2,..
nn
In (g—{’)
a5 = N'——= : N'=0,1,2,...
nn

Non-overlapping of the ranges 0> < |K,| < nﬁqo” requires that the set {q,} be selected so
that

/
60 o 60
/I - /I
nqz\'l+1 nqz\'l
. (6.2)
In (6—0)
q’£ — q’£ — __\%J
N+1 N Inn

and the last equality is satisfied by the sequence {¢} in equation (6.1). Similarly, the values

Of qlll

% are consistent with non-overlap of the intervals for |1, — 25|, given the limits for |Ky,|.

The super-fixed-point integral contains a factor |1, — &2,| 72, so that it will grow as n2?
" > 1. However, it is also essential to eliminate
the overcounting of surfaces, which would arise upon including every value of q%,, N’ integer.
In particular, surfaces corresponding to the limits ﬁ < éin—E&anl| < % can be obtained
from surfaces corresponding to % < Néin —&an] < % by pinching all handles other than
2 in the sequential labelling, removing the nodes and deforming the

surface by flattening the remaining portion of the handle on the sphere. Pinching one handle

which would give rise to a divergence when ¢

those with the index n

produces a surface at the boundary of moduli space, or equivalently, at the boundary of a
string vertex, denoted by M, ¢ and 9V, respectively at genus g. *® Removing the two new
punctures in the manner using an analytic map 37 transforms the string vertex from V,_1 5 to
V4—1,0, which lies in the compactified moduli space Mg—l,O- At infinite genus, this procedure
still produces a surface with an infinite number of handles lying in M, [the number of ends
of an infinite-genus surface is not required here|. Thus the initial integration over the domain
in M, associated with the configurations of isometric circles with the range for |€1n — E2n

s o
%, %] up to pinching of

q nd

. s . . .
given by [%, %], includes integration over the range [ —a

handles. The process of pinching the handles is described, however, by the degeneration limits
| K| = 0, m #n% n € Z, which will be shown not to lead to any new divergences in the
moduli space integral. Pinching a handle representing a degeneration limit |K,,| — 0, m # n?
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gives a finite addition to the moduli space integral. Similarly, creating a handle gives rise
to a finite addition to the moduli space integral, which becomes progressively smaller as the
handles decrease in size. If the sum of these contributions is also finite, then the difference
between the integral over the range {&1, — &on| ~ W} and the integral over the range

|€1n — €2n| ~ —2 is finite, which is necessary to consistently define the integral over effective

nqlll
closed infinite-genus surfaces. This result can be verified using handle operators 4°.

Since this argument can be repeated an arbitrary number of times, overcounting will be
eliminated by restricting the fixed-point integral to the range {|1, —&an| ~ ﬁ}, x>q" >0,
with x being a small positive number. It is therefore necessary to choose

In(ln n) Inn
In (g—é) In (%)

An upper bound for the integrals over the fixed points would then grow as n

< N/ < z

maxr

(6.3)

2z

Another class of surfaces that might be included in the superstring path integral are spheres
with an infinite number of handles decreasing in size and accumulating to a point. These
surfaces may be constructed using infinitely generated groups of Schottky type, joining together
isometric circles by projective transformations in the extended complex plane. 2! Labelling
the handles by the index n, the decrease in the square of the radii of the isometric circles,
|Yn| 2 ~ n;,, characterizes the surfaces to be included in the path integral. From the leading
behaviour of the multiplier integral, the contribution of a configuration of isometric circles

with ¢ given in equation (6.1) may be estimated.

1

5
1
nq;\_’j |Kn| (l’ll |Kn|)

d| K 1 1
/|Kn|~ | K| - Z[q;{, Inn — Ine))™* — Z[q%] Inn — Ine)™*

= (¢% Inn)~>In (i) (6.4)

€0

While the measure for a Neveu-Schwarz-Ramond sector includes the product over n of the
integrals (6.4), it is more useful to first sum over the index N as this will allow for the inclusion
of all possible combinations of limits for the multipliers and fixed points.

The constraints defining the fundamental region of the modular group,
(Im 7)ss > (Im 7)pr, s > r reduce the integration range of the Schottky group variables.

. E’ E’ .
However, they are only relevant when the intervals [ b, —or| and |5, =% | overlap, im-
n n n ny

a a
plying

s s

N e\
25 <[ 20 6.5
L () (6.5)
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y—1 N
Assuming temporarily that the genus is finite and an integer between (60) " and (

6_0) q"

€0 €0 ’

for some integer y, the restrictions on each group of multipliers K, with n lying between the
1 N 2

numbers 1, (Z—g) o (Z—g) ", ... leads to a combinatorial factor

Defining the variable

1
7

1
!/ o / ~ el
€y \ U5 € n S0 Bl
tN — <_0) N ~ (_0) " €0 = NN (67)
€o €o

one finds that the combinatorial factor (6.6) is less than W.

The sum of the fixed-point integrals over all values of N’ grows as

N,
]_ ]_ ULl 2" ]_ 9
(5—3—@) > N g

~ = (6.8)
N’'=0

Multiplying this sum by the estimate (6.6) and dividing by the combinatorial factor arising
from the action of the modular group gives

1 N T !
tor  —1 (ln 6_0> <29 H n2z C 57 n? -1
(g!) Vmaz €0 do In %o

n=1

€0

(6.9)

N 12[ 1
(403)9 . (In n)*

in the limit ¢ — oo when n¥maz — 1 = 2z. Since it is assumed that z < 1, the upper limit in
1
equation (6.3) implies that this bound will be adequate if z < \% (ln (%)) * . As the product
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in equation (6.9) tends to zero as g — oo, the integrals corresponding to the range |€1, —&ap| ~
1
1 " 1 85 2 . . .
T Iy, > 7 (ln (ﬁ)) would be the limit of an exponential function of the genus for each

value of N’. Thus, the magnitude of that part of the moduli space integral including spheres
having g handles, with a decreasing cross-sectional area in the intrinsic metric, near a single
accumulation point, is therefore a countable sum of contributions depending exponentially on
the genus as g — 0.

Based on the limits chosen for |K,,| and |£1, — €25, and the interchangeability of the cycles
on the Riemann surface under the action of the modular group, it follows that the inclusion
of effectively closed surfaces in the path integral requires a lower bound for |£s,,| of the form
%2 Given that the limit €, for |€5,,| then would be defined by the relation e”~1 = 9572@ the
upper bound (3.11) becomes

1 g9 1

oo T L = o 01 ()7 = et ()75

m=3 " m=2 (6.10)

g2d ¥(g)+C
— (97)9~1 [ 2
en (20)

where C is Euler’s constant, and thus the contribution of (27)9~1e2d(i 9)” is subdominant in

comparison with an exponential function of the genus.

A sphere with an infinite number of handles may have more than one accumulation point,
and generically, an infinite-genus Riemann surface will have a Cantor set of ends, and, the
effect of including these surfaces in the superstring path integral now shall be described .

Finiteness of superstring amplitudes at any given order of perturbation theory implies that a
cut-off does not need to be introduced in moduli space and and that ambiguities associated with
surface terms arising from total derivatives resulting from changes in the locations of picture-
changing operators are eliminated. °%5! In particular, vanishing of the vacuum amplitude
at each order in perturbation theory follows from its representation as the integral of a total
derivative on the compactified moduli space M,. Similarly, the full vacuum amplitude, given
by a sum of multi-loop amplitudes, may be regarded as the integral of a total derivative on
the universal moduli space R = H;’(’:O (U%O=0 Symk(./\;tg)), 52 and thus, it will be determined
by its behaviour at the boundary of this space, and particularly in the infinite-genus limit.
Unitarity of the S-matrix in field theory, T exp [z [ d*z Eint(:[;)}, requires that the vacuum
amplitude (0;5,05ut) = (0;5]S]0in) be non-vanishing, even though the probability can be less
than one, since it would be impossible otherwise to build an ‘out’ Fock space from an ‘in’ Fock
space. It is therefore of interest to find the non-zero contributions to any vacuum amplitude,
particularly from sums over surfaces with Dirichlet boundaries and infinite-genus surfaces.

The domain of string perturbation theory can be restricted to closed surfaces and effective
closed Og surfaces, with the the infinite-genus surfaces being distinguished by the set of ac-
cumulation points of the handles. Based on the cardinality of a Cantor-like set E or any of
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its subsets, the connection with Og surfaces may be deduced, since the ideal boundary must
have zero linear measure and Hausdorff dimension less than one.

The contribution of infinite-genus surfaces to the N-point scattering amplitude will then
be

card E ne

Z Z lzmg_,ooka 9= 2/ Z Ao, (i), (L, L) H dtydt, Ve (te, tr) 0,10 (6.11)

o0, (4) L,L'

where (L, L") denotes the spin structure and (¢,,%,) represents the local coordinate
(2, 0y, %, 0,) of the vertex operator on the super-Riemann surface.

It is conceivable that the structure of Mo, is sufficiently different from M,, g finite, that
the finiteness condition may select a specific value of the string coupling constant, which could
then be compared with phenomenological values arising in unification models. 53 For a small
value of the coupling constant, the amplitude decreases exponentially to zero. It might receive
a non-zero contribution at infinite genus because card E can be regarded as the limit of an
exponential function of the genus. The dependence on the genus takes the form ¢(x)9 at finite
g and (card E)limg_,oc(k)? at g = co. While the standard perturbative result for ¢(x) < 1
would be 0 at g = oo, this is now modified by the separate labelling of the endpoints and will
be finite and non-zero if card £ = limg_moﬁ.

7. Non-Perturbative Effects and Additional Contributions to the Sum
over Surfaces

Whereas exponential non-perturbative effects of order exp (_?12) typically arise in quantum
field theories as a results of non-Borel summability of the perturbation series, ®* non-
perturbative effects in string theory have been intepreted as a seperate contribution to the sum
over string histories associated with the insertion of Dirichlet boundaries to the worldsheets

with amplitudes of the form

Ay = exp((l)p, + ...) A{P"™ (7.1)

where (1)p, is the disk amplitude with no vertex operators having weight —ﬁ. 5 String

divergences which could arise when vertex operators approacha the Dirichlet boundaries, are
eliminated by a Fischler-Susskind mechanism, in which amplitudes with different numbers of
boundaries cancel. 3°

A formula for the S-matrix including the combinatorics of boundaries on the string world-
sheets has been given. 956
logarithm of the first term in the series expansion of the generating functional

1 - )
Z — (/H dDyf) R TR ] (7.2)
n ’ =1

The scattering amplitudes defined in this article arise as the

InzZ = SO 1 In
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where S is the path integral over connected worldsheets with no boundaries, S is the
functional integral over worldsheets with boundaries fixed at n points y; and S™ is S
without the zero-boundary term.

The existence of string solitons representing a transition from one solution of the string
equations to another background geometry, ®”  and a connection with boundary States1 of
a specific type attached to the worldsheet indicate that a small amplitude, of order e =str |
58,59 arising from a non-perturbative instability, would be consistent with finiteness of the sum
over string histories. By analogy with supersymmetric ground states of supergravity theories,

the positive-energy theorems can begin with the formal relation
By = (O0[HI0) = (0] (@, QL1}0) (7.3)

where ¢ denotes the number supersymmetries of the background geometry, H is an appropri-
ately defined string Hamiltonian and |0) is a vacuum state, encoding information, about the
metric of target space. The formal identity can be used to prove results about the energy
associated with different background geometries, when the appropriate limit of the operator
equation is taken. The boundary states that have recently been shown to described string soli-

tons could provide a way of circumventing the positive-energy theorems. 60:61

It is known,
for example, that there is a soliton in Type II superstring theory which defines a local anti-de
Sitter geometry. Since spatial infinity is not included in this region, a one-parameter family
of vacua can be defined for the scalar and higher-spin components of the string field. With
respect to these new vacua, a transition from the original supersymmetric background to a new
local target-space geometry might be allowed, without contradicting either the convergence of
the perturbative expansion for the S-matrix or the positive-energy theorem for space-times ad-
mitting Killing spinors which are solutions to the classical field equations of a supersymmetric

theory.

8. Consistency with Low-Energy Field Theories, Duality and the
Transformation to the Weak-Coupling Regime

The exponential bounds for the amplitudes, based only on the sum over closed surfaces,
are therefore not inconsistent, in this scheme, with the non-perturbative effects that have
been expected to be present in string theory. Further support for the estimates of superstring
amplitudes in this article can be gleaned from the convergent perturbation expansion for QED
with fermions and finite ultraviolet and infrared cut-offs. 452  From the work on bosonic string
theory, it follows that the ultraviolet cut-off in this theory is equivalent to the Gross-Periwal
cut-off, while the infrared cut-off removes the divergences in the infrared limit, analogous to
the effect of supersymmetry on string amplitudes. This version of the QED model also may
arise in the low-energy limit of superstring theory, providing an explanation for the dependence
of the amplitudes on the loop order.

It has been shown that the strong-coupling regime in supersymmetric gauge theories defined
by electric variables is related by duality to the weakly-coupled regime based on magnetic
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monopoles. 63,64

perturbative formulation of QED, free of divergences of the charge-charge coupling at small
length scales. % A step towards such a theory has been made by showing that the coupling of
an electric charge to lines of magnetic flux increases less rapidly, as the length scale decreases,
than the coupling of two electric charges, thus reminiscent of the phase of supersymmetric gauge

This approach also might be relevant in developing a complete, non-

theories corresponding to a weakly-interacting system of magnetic monopoles and abelian
photons. 66

Since the gauge groups of the superstring or heterotic string theory only lead to the inclusion
of Chan-Paton factors in the amplitudes, finiteness properties at arbitrary genus and the
elimination of large-order divergences continue to hold. While multi-loop modular invariance
of type II superstring theory has been formally demonstrated, 67 consistency of the model
requires the vanishing of global gravitational anomalies which could cause the breakdown of
modular invariance. A study of the chiral anomaly shows that it depends on the evaluation
of a hexagon diagram, which is known to vanish at one loop. % At higher genus, if the
chiral anomaly is calculated using a specific choice of basis for the super-Beltrami differentials,
the gauge transformation produces total derivative terms with respect to coordinates of the
punctures, %9 so that only the corner of punctured supermoduli space sM, ¢ defined by [sDj 2 X
§Dg4] U [sDg3 X sDy3] U [sDga X sDg2] U [sDo5 X sDy1] U [sDge x sDgy,0| contributes
to the amplitude. However, if this choice of basis is not valid on a global slice of moduli space
of punctured super-Riemann surfaces, the integral over the entire supermoduli space would

contain an additional set of total derivative terms, 77

including contributions from the other
components of the compactification divisor Uf;ll [sDj2x8Dg_ia| U [sD;3xsDg_i 3] U[sD;axX

SDg_i,z] U [S'Di,5 X SDg—i,l] U [S'Di’g X SDg—i,O]-

Further evidence for the absence of a global holomorphic slice of supermoduli space is the
mixture of NSNS and RR states when curvature is introduced into the background geometry.
The supercharges generating the supersymmetry transformations in the soliton geometry sat-
isfy the equation @) - Vp = 0, where Vg is the vertex operator representing the curvature of the
background. The solution Q¢ = ?‘0) + Q‘("l) + ..., where Q(5) = ¢ is the flat space-time super-
charge, contains an anti-holomorphic contribution in Q(1). ™2 This suggests that if the target
space-time is temporarily curved during the scattering process, the superstring amplitude may
involve a mixing of holomorphic and anti-holomorphic parameters.

It is clear that elementary particle masses are best approximated by the massless funda-
mental modes of the superstring, since they are much smaller than the Planck scale associated
with excited higher-energy states. Certain soliton states of both type II superstring theory and
heterotic string theory can be organized into supermultiplets and representations of SL(2;7Z),
and they can be described by extreme black hole geometries with quantum numbers appro-
priate to the supermultiplets. "™ It has been suggested that they might represent stable
elementary particles, ™  since Bogomol’nyi bounds required for stability are satisfied, but
this would be valid only for BPS solitons which become massless for special geometries cor-
responding to particular points in an appropriate space of solutions for the string equations,
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such as the space of Calabi-Yau solutions. 7>76:77

Scattering of extreme black holes along
the lines of classical theory does appear to resemble elementary particle scattering, with an
unstable intermediate state having horizon area greater than the sum of the horizon areas of

the extreme black holes. 8.

A preferable approach to the elementary particle spectrum involves the properties of su-
perstring amplitudes with massless external states. The feasibility of the truncation to the
massless sector has been made plausible by the connection recently established between type
ITA string theory and eleven-dimensional supergravity, where consistent, truncation to the N=8
massless supermultiplet has been demonstrated. 78 From S-matrix theory, the total self-
energy graph summed over all orders alters the momentum-space propagator so that there is
a non-perturbative shift to the poles in momentum space corresponding to a non-perturbative
shift to the mass associated with the field. Similarly, by analyzing the poles of total scattering
amplitudes, summed over genus, with massless external superstring states, it may be possible
to determine whether there are non-perturbative shifts to small non-zero masses, which then
could be interpreted as particle resonances. The locations of these poles in momentum space
will depend on the constants appearing in precise exponential estimates of the amplitudes. To
determine these constants, bounds on the contributions of the 29 sectors of spin structures
given earlier must be replaced by exact integrals in the super-Schottky group parameter space.
Bounds on the products over conjugacy classes of primitive elements of Schottky groups must
then be replaced by the values of these products as functions on the parameter space and the
entire fundamental domain of the super-modular group, rather than proper subsets, should be
used as the integration region.

9. Conclusion

Using the super-Schottky group parameters as coordinates on supermoduli space and re-
stricting the integration region to a single fundamental domain of the super-modular group, it
has been demonstrated that the leading-order dependence of the supermoduli space integrals
is exponential with respect to the genus. The physical explanation for the removal of the
factorial dependence on the genus in superstring amplitudes is based on a connection between
infrared and large-order divergences, following from the genus-dependence of the limits for the
Schottky group parameters and leading to their simultaneous elimination as a consequence of
supersymmetry. The inclusion of effectively closed infinite-genus surfaces in the string path
integral leads to a theoretical prediction for the value of the string coupling which closely
approximates the value of the gauge coupling constant at grand unified theory scales. Fur-
thermore, finiteness of the scattering amplitudes is independent of the gauge groups of the
superstring and heterotic string theory, so that it would be feasible to combine this property
these with a unified theory based on lower-dimensional gauge groups. While summability of the
loop expansion for superstring interactions implies that the vacuum is perturbatively stable,
non-perturbative effects can be included by inserting boundary states representing transitions
from one classical background to another local string geometry.
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Appendix

Labelling of even and odd spin structures by their sectors for genus 1, 2 and 3.

Genus 1

Genus 2

NS

NS
NS
NS
NS

S

S4

Even
(—+)
(=)
(+-)

=
<
3
=

[
|+
[
+ 4

|
+

|

|

+
_|_

T T
S
T

AN N AN AN N N N N N

Odd

Odd

T T

+ ++ 1+
T
Tl

N N N N N /N
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Genus 3

Odd

AN N AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN N AN AN N

e T T e T e I e e I S I R R R R
++++ 0 A A+
e I S B e e B R S B B B e i
+++ 4+ A
+ 0+ 1 4+ + | | Fr+ 4+ + I 4+ | fFr+4+ 1+ 1 1 4+ 4+ 1 |
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T T EF T R T R T T T R R R TR T TR R O TR R TR T YT E T
fr T +++4+ 000 ++++ ++++ 1111 o+ 4+ 4+ +
+4+ ! T +<+r!n +r T+ ++r+r++r+ ++1T0 4+ 0+ + 1+ 1
rr T ++++ ++++ 00100 ++++ 1100 ++4+4+ 1 1 1 |
++++ 1 0 1 1 + 1+ 1 4+ + 1 1 Fr+ 4+ + I 4+ | 4+ 0+ 4+ 4+
il sttt bt L EE L L
Z e oS o 3 o & o
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It is well known that modular transformations on the torus transform the even spin structures
(+-), (—+) and (——) into each other while leaving invariant the odd spin structure (++).
At higher genus, there is a class of modular transformations that are products of genus-1
transformations, each acting on different handles. Denoting the modular transformations by
pr, they map the Ramond structure R, or Ss in the terminology of §3, to the sectors S, which
consist of 29 spin structures. Using only those modular transformations which do not map a
Ramond spin structure into a Neveu-Schwarz spin structure, the NS, R and S| are given for
genus 2 and 3.

Genus 2
NS R Sh
(—+—+) (+++-) (++—+)
(- = =) (+=+-) (+ = —+)
(-——-) (+ = ++) (+ = ++)
(—+-—-) (++++) (++++)
A St S6
(+++-) (++-—-) (+++-)
(—++-) (+—-—-) (= —=+-)
(—+++) (+—++) (——++)
(++++) (++++) (++++)
Genus 3
NS R Si
(—+—+—4) +++++-) ++++—4+)
(—+—+-—-) +++—-4+-) +++—-—4)
(—+———4) +—-—+++-) (+—-—++—-4)
(—+—-———-) +—-—+—-—4+-) (+—-—+—-——4)
(———+—4) (++++++) (++++++)
(———+-—) (+++—++) (+++—++)
(————— +) (+—++++) (+—++++)
(————— ) (+—-—+—+4+) (+—-—+—+4+)
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S5
(+++++-
(++—++-
(+—+++-
(+——++-
(+——++-
(++++++
(++—+++
(+——+++
St
(+++++-
(+++—+-
(——+++-
(——+—+-
(++++++
(+++—++
(——++++
(——+—++

St

G+++ —+
(++--—+
(+-—++-+
(+--—-—+
(++++++
(++——++
(+—++++

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)
)
)
)
)
)
)
)
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S1ie 17 18
(++++—-) (++ 4+ +-) (++ 4+ +-)
(+4++——) (4 —++-) (+4——+-)
(——++-—) (—++++-) (—++++-)
(~ =+ —) (4 + - ) (4 -~ +-)
(+ 4+ + ++) (+ 4+ + ++) (+ 4+ + ++)
(+ 4+ —++) (+4 — +++) (+4 - —++)
(— = ++++) (—+++++) (—+++++)
(— =+ —++) (—+ = +++) (— 4 — —++)
19 S50

(+++++-) (+++++-)

(++ — ++-) (++— —+-)

(——+++-) (——+++-)

(= +) (- +)

(+ 4+ + ++) (+ 4+ + ++)

(+4 — +++) (+4 - —++)

(— = ++++) (— = ++++)

(— = —+++) (————++)

It can be verified that the spin structures match so that the tachyon divergence associated
with the |K,| — 0 limit is cancelled for each of the sectors S, at genus 2 and 3. In §4, this
property is shown to hold for all genus.
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