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Abstract. We study pseudodifferential operators on a cylinder R x B with cross
section B that has conical singularities. Configurations of that kind are the local
model of corner singularities with base spaces B. Operators A in our calculus are
assumed to have symbols a which are meromorphic in the complex covariable with
values in the space of all cone operators on B. In case a is independent of the axial
variable t € R, we show an explicit formula for solutions of the homogeneous equation.
Each non-bijectivity point of the symbol in the complex plane corresponds to a finite-
dimensional space of solutions. Moreover, we give a relative index formula.
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Introduction

Ellipticity and asymptotics of solutions for (pseudo-)differential operators
on a manifold with corner singularities are in spirit related to Euler’s theory
of ordinary differential equations, cf. the article [16] for the case of conical
singularities with smooth cross section X. A neighbourhood of the singular-
ity is then transformed to an infinite cylinder, and the relation to ordinary
differential equations refers to the axial variable.

As is well known, cf. Kondratyev [7], the analysis of differential operators
A of Fuchs type on a (stretched) manifold B with conical singularities (cf.
Section 1.1 below) is connected with a two-component symbolic hierarchy
0(A) = (oy(A),on(A)). Here 0 (A) is the standard homogeneous principal
symbol and op7(A) the so-called conormal symbol of A. Operators in an
infinite cylinder with smooth cross section have been studied also by Sternin
[18] and later on by other authors under different assumptions at infinity.

Conormal symbols generate an algebra of meromorphic operator func-
tions m(z),z € C, operating on X = 0B as (classical parameter-dependent
pseudo-) differential operators, cf. [12] or, for the case of boundary value
problems, Schrohe and Schulze [11]. General functional analytic background
may be found in Gohberg and Sigal [6]. In the elliptic case there is a (gener-
alised) spectrum, consisting of non-bijectivity points (“zeros” z € C) of cor-
responding operator families m(z) : H*(X) — H* #(X) in Sobolev spaces
on X (u =ordm). For m(z) = oy (A) the zeros are responsible for asymp-
totics of solutions of the equation Au = f near the conical singularities.
At the same time, the zeros of conormal symbols (and poles in the pseudo-
differential case) determine the relative index of Fredholm operators A in
weighted Sobolev spaces under changing weights. A sufficiently developed
analysis for conical singularities is crucial for understanding operators on
manifolds with edges that are locally described by wedges (Cartesian prod-
ucts of cones with open sets in R?), cf. [12], or Egorov and Schulze [2].

Geometric singularities (e.g., conical and edge singularities) are of inter-
est in a variety of models in mathematical physics and mechanics, and, at
least some further steps in the hierarchy of stratified spaces, e.g., corners
or “higher” edges, appear in problems of quite practical relevance, e.g., in
describing heat asymptotics in lense-shaped or cubic bodies, to name just
some concrete examples. In such cases the time plays the role of an ex-
tra (anisotropic) edge-variable, cf. Krainer and Schulze [8] for the case of
spatial configurations with conical cross section. In the simplest corner situ-
ation (corresponding to a cone with a base which has itself conical singular-
ities) the problem is again to study holomorphic and meromorphic operator
functions on a space with conical points; the configuration now has edges,
starting from the corner points. Spaces of that kind can be modelled by
Riemannian metrics with corresponding singularities, and associated Lapla-
cians (as well as other geometric operators in this context) are degenerate



in a typical way, see also [15]. Such operators belong to a rich algebra of
parameter-dependent operators analogously to the one in the smooth case,
mentioned at the beginning.

The purpose of this paper is to analyse asymptotics of solutions to elliptic
equations in an infinite cylinder with conical cross section and to express
the relative index with respect to changing corner weights (i.e., weights at
the cylindrical ends at £00).

In Section 1 we prepare the necessary tools on parameter-dependent
operators on a manifold with conical singularities. The ideas go back to the
paper [13]. Here we specify the operator families for the case of constant
discrete asymptotics.

Section 2 studies holomorphic families of cone operators. The main
points are an explicit construction of such families (Theorem 2.6) and fac-
torisations in the sense of Gohberg and Sigal [6], here in the frame of our
algebra of holomorphic cone operator-valued functions (Theorem 2.17).

In Section 3 we investigate equations on an infinite cylinder with conical
cross section which is a space with edges tending to +co. Operators are con-
sidered in edge Sobolev spaces with exponential weights at the cylindrical
ends. As a consequence of the evaluation of kernels and cokernels (Theorem
3.14) we show the explicit form of solutions of the homogeneous equation,
associated with the characteristic values of the given cone operator-valued
symbol a(w). The new difficulty, compared with the smooth case, treated in
[16], is that ellipticity requires additional conditions of trace and potential
type on the edges with principal edge symbols acting as operator families in
weighted Sobolev spaces on infinite cones. Another essential point in this
context is that the ellipticity of subordinate conormal symbols is preserved
under kernel cut-offs (cf. relation (29)). Finally, we give a relative index
formula in terms of the logarithmic residues of a(w) (Theorem 3.16). This
result can be regarded as a complementary information to [3], where the in-
dex of an elliptic operator itself is expressed, though with another machinery
and without referring to the meromorphic structure of conormal symbols,
cf. also the article of Schulze and Tarkhanov [17] for more general corner
manifolds, locally modelled on cylinders with singular cross sections.

The authors thank Prof. N. Tarkhanov, University of Potsdam, for valu-
able remarks on the manuscript.

1 Parameter-dependent cone calculus

1.1 Cone Sobolev spaces and Green operators

Let B be a compact manifold with conical singularities, i.e., there is a finite
subset S C B of conical points and B is modelled near any v € S by a cone

X% = (B x X)/({0} x X),



where X = X(v) is a compact C° manifold. In this paper we assume X
to be closed. Let B denote the stretched manifold associated with B, which
is a compact C* manifold with boundary 0B = [J,.g X (v), invariantly
defined by attaching the manifolds X (v) to B\ {v} for every v € S. Let
us fix a Riemannian metric on B which restricts to the product metric of
[0,1) x OB in a collar neighbourhood of 0B, for some Riemannian metric on
0B. Let (r,z) € [0,1) x OB denote the corresponding splitting of variables.
For convenience, we consider the case that S only consists of one point, i.e.,
X := 0B for a closed compact manifold X of dimension n. The general case
is similar; details will be omitted.

Let L (X;R?) denote the space of classical parameter-dependent pseudo-
differential operators A(A) of order p on the manifold X, with the parameter
A € R? being involved in the local amplitude functions a(z, &, \) as a com-
ponent of the covariables (£,\) € R" n = dim X, while L™>°(X;R?) :=
S(R?, L~>°(X)). Recall that L!;(X;R?) is a Fréchet space in a natural way,
cf. [14, Section 1.2.2].

An element A(X) € L) (X;RY) is said to be parameter-dependent elliptic
(of order ), if the homogeneous principal part a(,)(z,€,A) is non-zero for
all (z,&,\) € T*X x R?7\ 0. We use the well known fact that for every
p € R there is a parameter-dependent elliptic element R*(\) which induces
isomorphisms H*(X) — H* #(X) between the standard Sobolev spaces on
X forall e R?, s e R

Let H5Y(X"), 8,7 € R, for X" := Ry x X 5 (r,z) denote the completion
of the space C§°(X") with respect to the norm
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Here M is the Mellin transform on functions u(r) € C§°(Ry, C* (X)), Mu(z)
Jo° 7* tu(r)dr (holomorphic in z), R*(7) € L (X;R;) is an order reducing
family of order s in the abovementioned sense, and I'g := {# € C: Rez =
B}, n =dimX.

In this paper, a cut-off function on the half-axis is any real-valued ele-
ment w(r) € C§°(Ry) which is equal to 1 in a neighbourhood of r = 0. We
define a modified scale of spaces K*7(X") on the infinite stretched cone X"

by setting
KX = {wu+ (1 — w)v:u € HOV(XN),v € HE o (XM,

Sne(XM),s € R s
defined as follows: Choose an open covering {U,...,Uxn} of X by coordinate
neighbourhoods and a subordinate partition of unity {¢1,...,¢n}. Let x; :
U; — Vj be diffeomorphisms to open subsets V; C S" = {& € R
|z| = 1},5 = 1,...,N. Moreover, set k;(t,z) = tx;(z) for z € U;,t € Ry,

where w is some cut-off function. Here the space H?



which defines a diffeomorphism «; : U} — V/* = {& € R""" : &/]i| €
Vit,j=1,...,N. Then, if w(t) is any fixed cut-off function, HS, . (X"),s €
R, denotes the completion of C§°(X") with respect to the norm

1

N
lull s, (xry = {||wu||%{S(R+><X) + Z ||(’f;)_1(1 - w)(pju||%—15(Rn+l)}2a

=1

with &} being the pull back of functions with respect to xj, and H SRy x
X) := H*(R x X)|r, xx. This definition is correct, i.e., independent of the
system of charts, of the partition of unity and of w.

There are continuous embeddings %7 (X)) < K57 (X") for s' > s, >
v which are compact for s’ > 5,7 > 7.

For future references we recall a terminology on pasting of Fréchet spaces
FEy and E; which are embedded in a Hausdorff topological space H. First,
let By + Ey :={ep+e1: ey € Ey,e; € E1} and endow this space with the
Fréchet topology induced by the isomorphism Ey + E1 = Ey® E1 /{(e, —e) :
e € EyNE;} (called the non-direct sum of Fréchet spaces). In particular, if
Ey, E, are Hilbert spaces, we also get a Hilbert space structure in Fy + E;
by taking the orthogonal complement of Ey N E; in Ey @ E;. Moreover, if a
Fréchet space E is a left module over an algebra A, i.e., the elements ¢ € A
induce (by multiplication e — ae) linear operators a : E — E, we define
[a]E to be the completion of {ae : e € E'} in the space E. In this sense we
can set

KEV(XM) = [wlHS (X)) +[1 — w]HE

cone

(xX").

If B is a manifold with conical singularities, we identify a collar neigh-
bourhood of 9B = X with [0,1) x X and set

H*V(B) :={u € H{ (int B) : wu € H*V(X")}

for some cut-off function w supported in [0, 1).

It will be interesting also to consider subspaces of our weighted Sobolev
spaces with discrete asymptotics. For brevity we consider asymptotics in a
finite weight interval © = (¢,0],9 > —oo, relative to a weight v € R (our
results have a straightforward extension to the case 9 = —oo that follows
by a simple projective limit procedure, cf. [14, Section 2.3.1]). First we
consider

KS’Y(X/\) .— ylnlcs,'yfﬂfs(X/\)
e>0
in the Fréchet topology of the projective limit.
A sequence

P = {(p]7 my, Lj)}j:[],...,N7

N = N(P) € N, will be called a discrete asymptotic type with respect to the
weight data (v,0) if p; € C, m; € N, and L; C C°°(X) are subspaces of



finite dimension, and 7cP := {po,...,pn} satisfies

n+1 +1
mcP C{zeC: — 7+19<Rez<nT—7}.
The set of all such sequences will be denoted by As(X; (v, ©)).
Moreover, P will denote the complex conjugate of P, i.e., P = 1B, my, Lj)}j=1,.N

when P = {(pj,m;j, Lj) }j=1,..n
Remark 1.1 The (finite-dimensional) space

N mj

Ep(X7): {ZZ rPlogtr : cjg € Lj,0 <k <mj,j =0, .. N}
7=0 k=0

for P € As(X;(y,0)) (with a fized cut-off function w(r)) is contained in
Ko7 (XM, and we have

EL(XM) NK(X") = {0}
for all s € R

We set
KE1(XN) = {u € K*V(X") : u = ustu, for certain us € ELH(X"),ur € K57 (X")}

and
Hfﬁ(B) ={u e H"'(B) : wu € IC;’"’(X/\)}

for a cut-off function w supported in [0, 1).
The spaces K37(X") and H3"(B) are Fréchet in a natural way. For
purposes below we also form the spaces

SHXM) = lim(r) RO (X (1)
keN

Parameter-dependent Green operators on B will be defined in terms of
operator-valued symbols in a neighbourhood of the conical singularities and
parameter-dependent smoothing operators elsewhere.

Operator-valued symbols will also play an important role for parameter-
dependent cone operators in general.

If £ is a Hilbert space and {kx}xcr, a strongly continuous group of
isomorphisms ) : £ — E (i.e., {kaefrer, € C(Ry, E) for every e € E, and
kxka = kv for all A, N € Ry), we say that F is endowed with a group
action. More generally, if £ = lim E¥ is a projective limit of Hilbert spaces
E* with continuous embeddings E*t! < E¥ for all k, and if {Fx}rery is a
group action on E° which restricts to a group action on E¥ for every k, we
say that E is endowed with a group action.



Example 1.2 (i) The space E := (r)=PK57(X") is endowed with the
group action
(kau)(r,x) = )\TLTHU()\T,.’E)

for every p,s,v € R, where n = dim X.

(ii) The Fréchet space S}(X") in the representation (1) is endowed with
a group action.

Definition 1.3 Let (E, {rkx}rer,) and (E,{R,\},\eR+) be Hilbert spaces
with group actions. Then the space S*(U x RY; E, E) for U C RP open,
p € R is defined to be the set of all a(y,n) € C®(U x RY, L(E,E)) such
that

||~—1{Dan3 (y n)}ﬁ ||£ EE) < <n>ﬂf\ﬁ|

for all multi-indices o € NP, 3 € NI and all (y,n) € K x RY for every
K CC U, with constants ¢ = c(a, B, K) > 0; here (n) := (1 + |n|2)%

The elements of S*(U xR?; E, E) are called operator-valued symbols of order
L.

Let SW(U x (R?\ {0}); E, E) denote the set of all a)(y,n) € C(U x
(R?\ {0}), L(E, E)) such that

agu (Y, M) = MExag (y,n)ky " (2)

for all (y,n) € U x (R?\ {0}), A e Ry.
A symbol a(y,n) € SH(U x RY; E,F) is called classical, if there are
elements a(,_ ;) (y,n) € Sw=1)(U x (Rq \ {0}); E, E) such that

N
(MY agj(y,m) € S NDU x RI; B, E)
7=0

for all N € N; here x(n) is any ezcision functionin R? (i.e., x € C*®(R?), x(n)
0 for |n| < ¢, x(n) =1 for |n| > ¢; for certain 0 < ¢y < ¢1).

a(u—j)(y, ) is called the homogeneous component of a(y,n) of order yu—j.

If a notation or relation is valid both for classical and general symbols
we write “(cl)” as subscript. Let Séf: ) (RY; E, E) denote the corresponding
subspaces of y-independent elements.

Similarly to the spaces of scalar symbols which are included as special
cases for £ = E = C with trivial group action (i.e., identities for all A € R,),
the spaces SéL )(U xR E E’) are Fréchet spaces in a natural way.

We also employ the generalisation of symbol spaces for the case of Fréchet

spaces E or E. The definition for the case of a Fréchet space E = @Ek
keN



(for Hilbert spaces E¥) and a Hilbert space E, both endowed with group
actions, is

S#

(ey(U x R E, E) := Lim Sfg,) (U x RY; E, E¥).

Finally, if both £ and E are Fréchet, with group actions {s) }rer . and
{Fx}aer, » respectively, we fix a functionr : N — N, form the space Sé‘cl)(U X

RY; E, E), := lim Sfe)) (U x RY; Er9) EJ), and set

n
S(ay

(U xR E,E) =S4 (U x RS B, E),.
r

Green symbols in the parameter-dependent cone calculus are motivated
by the symbolic structure of Green’s function in boundary value problems
(which corresponds to the case when the cone is the inner normal to the
boundary, interpreted as the edge of a corresponding wedge). In our case
the (stretched) wedge is X" x R? with the open stretched cone X" = R, x X
and edge R?7. We will employ this mainly in the case ¢ = 1.

To introduce Green symbols it suffices to specify the spaces E and E in
the general definition above. We employ non-degenerate sesquilinear pair-
ings

() (K XMy x (K57 ( XM oY) = C

induced by
(u@u,v®v') = (u,0)00xn) + (u',0") ey

for all u,v € C§°(X"),u/,v" € CN, with the scalar product
(u,v)0.0(xn) = //u(r,:v)v(r,x)r"drd;v

of the space K*0(X") = r~2L%(X") (with the measure drdz). We now fix
dimensions j_, 74 € N, choose weight data (-, d, ©) for reals 7,6 € R and a
weight interval ©® = (9,0], —oco < 6 < 0, and consider the spaces

E: =K (XMNeU-, E:=S8)X") U+
for P € As(X, (4,0)), and
F=K"7(XNeU+, Fi=8,"(X")eC"
for a Q € As(X,(—7,0)), where the group action in spaces of the type
(r)™PK*7(X") & U are given as diag({s}rer, ,idg ).
RE(R?; (7,0,0), 5,4+ )P, is defined to be the space of all

g(n) € S4(RY; E, E) (3)



such that the n- wise formal adjoint ¢*(n) with respect to the above sesquilin-
ear pairings defines an element

g*(n) € SHRY F, F), (4)

where P € As(X, (,0)) and Q € As(X, (—,©)) are fixed asymptotic types
which depend on g, and relations (3) and (4) are required for all s € R.
For j_ = j; = 0 we simply write R{;(R%; (7,0,0))p,0-
We set by RE(RY; (7,6, 0), 7, j+) the union of all spaces RY4(R%; (v,0,0), j—, j+)p,q
over all P, Q.
In this paper [] € C*°(R}) will be denoted any strictly positive function
such that [n] = |n| for |n| > ¢ for a constant ¢ > 0.

Example 1.4 Let k € (S)(X]),) @Cj+)®w(‘%7(XrA,@,) ®C/-), for P €
As(X,(0,0)),Q € As(X,(—v,0)), be an arbitrary element regarded as a
2 X 2- block matriz of functions (kij)ij—1,.2, and let

9(n) = (9i5(n))i=1,2;

where

() o= 0 [ [ sl ) o 0 )

n+l
HY2 kg (rln), @) ug,

gr2(n)uz(r, z) := ]
e = P75 [ @l a2
ga2(n)ug == [n]*kaauz

foru = (u1,uz) € K'(X™N)®C/~. Then g(n) defines an element in RE,(R?; (v,6,0), 5, j+)po-

We now consider 2B, the double of the stretched manifold B, obtained
by gluing together two copies B_ and B, of B along their common boundary
0B, where we identify B with B, . Then 2B is a closed compact C* manifold
of dimension n + 1. On 2B we have the scale H°(2B),s € R, of standard
Sobolev spaces, and we consider the space

L™®@2B;j_,jy) == (| L(H (2B) & C~,C*(2B) & C)
seR

which is Fréchet in a natural way. Then we form the space
SR, L™>(2B; j—, j+))

of Schwartz functions with values in that space. Functions in C§°(intB)
will also be interpreted as a functions on 2B by extension by zero on the
opposite side. In particular, if w € C*°(B) is a cut-off function on B, i.e., w

10



is supported in a collar neighbourhood = [0,1) x 0B of 0B and is equal to
1 close to OB, we also identify 1 — w with a function on 2B.

Let usfix P € As(X;(6,0)),Q € As(X;(—7,0)), and let C(B; (7,9,0),5-,7+)P0
denote the space of all operators ¢ such that

HOUB)  HEPO(B)
c: @ — @
- i+
and the formal adjoints

H*(B) Hy T (B)
c 2 — 2
QI+ -

are continuous for all s € R. The space Cq(B; (v,6,0),j—,j+)p,q is Fréchet
in a canonical way, and we set

Cioo(l& (77 67 9)7j77j+; Rq)P,Q = S(RqJCG(B7 (77 67 9)7j77j+)P,Q)' (5)

Moreover, let C™*°(B; (y,6,0),7_,j+; R?) denote the union of all spaces (5)
over P, Q.

Definition 1.5 We define

Cga& (77676)7]773+)Rq) (6)

to be the space of all operator families of the form

g(n) := diag(w, 1)go (n)diag(wy, 1)+diag((1-w), 1)g1 (n)diag((1—w2), 1)+c(n)

for arbitrary go € Ré(Rq§(77 67®)7j77j+)7 g1 € S(RQ7L_OO(2B;j77j+))7
andc € C°(B; (v,6,0),7—,j+;R?), where w, w1, ws are cut-off functions on
B such that ww) = w, wwy = we. The elements of (6) are called parameter-
dependent Green operators on the (stretched) manifold B with conical singu-
larities.

Remark 1.6 Definition 1.5 is correct in the sense that it is independent
of the specific choice of the cut-off functions w,w,ws.

1.2 Mellin operator families with asymptotics

We now turn to another typical part of the parameter-dependent cone cal-
culus, so-called Mellin operators with discrete asymptotics. Similarly to the
case of Green operators the essential contribution comes from a neighbour-
hood of OB. Thus we first consider the open stretched cone X,

A sequence

R = {(pj,mj,Nj)}jez

11



will be called a discrete asymptotic type of Mellin symbols, if p; € C,m; € N,
and Nj C L™°°(X) are finite-dimensional spaces of operators of finite rank,
and ncR := {pj}jez has the property that rcRN{z:c < Rez < '} is a
finite set for every ¢ < ¢’. Let As(X) denote the set of all such sequences.

A function x € C*°(C) is called an mc R - excision function, if x(z) = 0 for
dist (z, mcR) < eo, x(z) =1 for dist (z, 7c R) > €1 for certain 0 < g < ;.

The space M (X) for R € As(X) is defined to be the set of all functions
[ € A(C\ mcR, L_OO(X)) such that

(i) for any mcR - excision function x we have
x(2)f(2)Ir; € S(T's, L™ (X))
for every 8 € R, uniformly in ¢ < 8 < ¢ for every ¢ < ¢/,

(ii) close to every p; € mcR the function f has a representation

Zc]k z—p;)”*HD 4 p(z)
with coefficients ¢j;, € N;j,0 < k < mj, where h(z) is holomorphic near
p;j with values in L™°°(X).
Given an element
F(rr',2) € C%(Ry x Ry, AT )

we form the associated Mellin pseudo-differential operator

—(3—0+i7) 1 dr'
opM / / f(r,r', 3~ 0+ ’L.T)U(’)”I)T—ICJT

first on u(r) € C§°(Ry,C*°(X)) and then we extend it to weighted Sobolev
spaces.

In this section we assume f to be independent of r, 7', and f € M;*°(X)
for some R € As(X). Then op),(f) can be defined for every ¢ € R such that
mcRN F%_J = 0.

Remark 1.7 Let f € M;*(X), R € As(X), and choose a v € R such
that mcR N FLHJY = (). Moreover, fiz cut-off functions w,w, and let v € R
2
and o € N.. Then the n - dependent family of operators

m(n) := 1~ w(rln))op,,

represents operator-valued symbols

m(n) € ST (RY; K37 (X1, KooV (X))

12



as well as
m(n) € Sy (RE K37 (X1, K577 (X))

for every P € As(X, (v,0)) with some resulting Q € As(X, (y — v, 0)), for
every s € R

Remark 1.8 Let m(n) be given as in Remark 1.7 for v = pu — j,j €
N, la| <4, and form

mi(n) == r " w (rf])oply 2 (F)na (r[n)

with the same f € My (X) but another choice of cut-off functions wy, @y
and of the weight 1 such that m1c RN Fn_+1_71 = (. Then we have
2

m(n) —mi(n) € R’ (R (7,5 — p + 5, 0)).
for ¥ = min (y,71).
In the sequel, for abbreviation, we write g := (v, — i, ©).

The space R‘](/HG(R‘I;Q) for y,u € R and © := (—(k + 1),0],k € N, is
defined to be the set of all families of operators

m(n) + g(n) (7)

for arbitrary g(n) € Ri5(R?;g) and

k
m(n) =r Fw(rlp]) D rI Y opyr 2 (mja)n*@(r[n)), (8)
7=0 Ja|<j
where mj, € ngoo(X), R, € As(X) and vjo € R, mcRjo N Tugr _
« 2
m7 7_] S’Yja S’Y for allj,a.
More generally, R’y (R?;g,j_,j;) denotes the set of all

ot = ("5 ) oo

Vi =

for arbitrary m(n) of the form (8), and g(n) € RE:(RY;g,5—,7+)-

Note, as a consequence of Remark 1.7, that R, +q(RI;g) is a sub-
space of SH(R?Z; K57 (X7"), K7~ #(X")), and that every element a(n) €
Ri.q(R7;g) belongs to a space Sp(RY; Ky (X7), K77 7H(XM)) for every
P € As(X, (v,0)) with some a - dependent ) € As(X, (y — p,©)); all this
is true for every s € R (clearly, P and () are independent of s).
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Definition 1.9 We define CK/H_G(B; g,j—,J+;R?) to be the set of all 2x2
- block matriz families of operators

f(n) := diag(w, 1) fo(n)diag(w1, 1) +diag((1-w), 1) f1 (n)diag((1—w2), 1)+k(n)

(9)
for cut-off functions w,wi,ws on B such that ww; = w, wwe = wo and el-
ements fO(n) € R7M+G(Rq;97jf7j+)7 f1(77) € S(RqJL_OO(mB?]*uj‘F)) as in
Definition 1.5 and k(n) € C-°(B; g, j_,j+; R?).

Let us introduce the principal symbolic structure of elements in C, ~oBig, i, 5+ R).
Given f(n) as in Definition 1.9 we set
n

AN =kt = () 4okt
I

where o\ (g)(n) is the homogeneous component of g(n) of order u of the
corresponding classical operator-valued symbol, cf. (3), while

k
oh(m)(n) =~ w(rln) Y ! Y opy T (mja)n®a(rlnl).  (10)
Jj=0 |a\:j
o (f)(n) is interpreted as a family of operators

’CS”Y(X/\) ]CS*I%’Y*H(X/\)
onfim: & - ® (11)
- O+

for any fixed s € R, parametrised by n € R? \ {0}. Clearly, o\ (f)(n) defines
mappings to X°7~#(X")@C/+, but for the ellipticity below it is reasonable
to choose larger spaces than in (11). Recall that homogeneity means

o (f)(An) = Mdiag(ka, Doh(f) (n)diag(k} ", 1) (12)

for all A € Ry, € R?\ {0}.

Proposition 1.10 Composition of operators induces a map
ChrraB (v —v,y —v —11,0),1, 53R x Cpy (B (v, 7 —1,0),5-,;RY)

= Cha(B (v, y — v — 1,0),5, 545 RY),
and we have
oh ™ (fg) = aR(f)oK(9)-

If f or g belongs to the corresponding subclass of Green elements, so does

the composition fg.

Proof. The proof can easily be reduced to a corresponding composition be-
haviour of operator-valued symbols of the form (7). This is then a combina-
tion of a known 7- wise behaviour of corresponding smoothing Mellin+Green
operators on the stretched cone X" with an evaluation of summands as clas-
sical operator-valued symbols. Details on this technique may be found, e.g.,
in [14, Section 3.4.2]. O

14



1.3 The cone algebra with parameters

Parameter-dependent operators on a (stretched) manifold B with conical
singularities are mainly characterised by the interior symbolic structure in
a neighbourhood of 0B = X. First we give a description in terms of lo-
cal coordinates on X, with = varying in an open set 2 C R". A symbol
b(r,z,p,&,n) € SH(Ry x Q% R1+n+q) is called edge-degenerate, if it has the
form

b(rawapafan) = B(Ir z ﬁ?f ﬁ)|ﬁ:rpaﬁ:r77
for a symbol b(r, z, 5, &,7) € SHRL x Q x R{-En:qu)_ Setting
o0 B)r, . iule) i= [ [ b (r, e
for u € C§°(§2), we get a family
Op:c(b)(r pa ) € COO(R-I-aLgl(QaR;;q))

This gives rise to a family of operators

0P, (0)(r, p, 1) := 0P (B) (7, B, ) | pmrpirn € CF(Ry, LA (4 REE)).

Let us now fix a system of charts x; : U; — @ on X,5 = 1,..., N,
for an open covering {Ui,...,Un} of X. Let {¢1,...,9on} be a subor-
dinate partition of unity, and let {¢1,...,9n} be a system of functions
¢; € C3°(U;) such that ¢; = 1 on supp; for all j. Then, given a sys-
tem of edge-degenerate symbols b;(r,z,p,§,n) = l;j(r, z, 0,&, 1) | j=rp,ij—ry ON
Ry x Q4,7 =1,...,N, we form the operator push-forwards of op,(b;) (or
opw(b-)) with respect to X] : Q; — Uj. We then pass to a global family of
operators on X by

N
lr, 5, 71) == D pi{ (x5 ) 0pg (b)) (1, 5, 1) 45 (13)
j=1
and set
p(r,p,n) = ﬁ(r7ﬁ7ﬁ)|ﬁ:7¥7,ﬁ:7‘ﬂ'
We then obtain p(r, p, 7]) € COO(RJF,LZ(X;RE%Q)), and p(r, p,n) € C(Ry, LY (X; Roh!)).
Definition 1.11 Let M5(X;R?) be the set of all functions
hzm) € A(C, LA (X))

such that
h(ZJl)lrg xRa € Lgl(X;Fg x R?)

for every B € R, uniformly in ¢ < 8 < for arbitrary ¢ < . For ¢ =0 we
simply write M5 (X). Moreover, for arbitrary R € As(X) we set

MA(X) = M(X) + M (X)
in the Fréchet topology of the non-direct sum.
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Theorem 1.12 For every family (13) there exists an element fNL(r, z,1) €
C°°(R+,M5(X;R%)) such that

op, (p)(7]) = op}; (A)(7) mod L~*(X";RY)
for every v € R.

Proof. This theorem is a parameter-dependent analogue of [14, Theorem
2.2.25].

Corollary 1.13 For h(r,z,7)|j=r; =: h(r,z,n) € C®(Ry, M5(X;RY))
we have

op,(p)(n) = opj,(h)(n) mod L™*(X";R). (14)
Moreover, setting
po(r, p,n) = D0, p, M) p=rp,ii=rn
and
ho(r, 2,m) = B0, 2,77) =
we get

op, (po)(n) = opj,(ho)(n) mod L *(X";RY)

for every v € R.

Definition 1.14 The space C*(B;g,j—,j+;RY),g = (7,7 — i, ©), of all
parameter-dependent cone operators on B of order u, is defined as the set of

all
a(n) :==c(n) + f(n) (15)

) o c 0
for arbitrary f(n) € Cyp (B g,5,74;R), c(n) := ( 110(71) 0 ) for

e11(n) = w(r)r *opyy * () (mws (r) + (1= w(r)b(n) (L = wa(r),  (16)

where h(r, z,n) is an arbitrary holomorphic parameter-dependent Mellin sym-
bol as in Corollary 1.13, moreover, b(n) € L (2B;R?), and w,w;,ws are
cut-off functions as in Definition 1.9.

The definition is correct in the sense that the class is independent of the
specific choice of cut-off functions.

For convenience, in expressions of the form (16) we identify a collar
neighbourhood of 0B = X with [0,1) x X and tacitly assume that cut-off
functions w, wy, etc. are supported in [0,1).
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Remark 1.15 There is another equivalent definition of ¢11(n) which for-
mally appears to be more complicated than (16) but gives a useful relation
to edge-degenerate symbols. A result of [4] says that

w(r)rtopyy * (h)(n)wi(r) (17)

18 equal to

w(r){@(rn)r"opy, * (h)(n)@: (r[n])

+ (L =a(r[n)r~*op,(p)(n) (L — w2(r(n])) twr(r) (18)
mod R‘éo( ; (7,7 — e, (—00,0])) (the subspace of all, so-called flat, ele-
ments of R“( i (7,7 — i, (—00,0])) with trivial asymptotic types P and @Q,
i.e., mcP = mc@Q = 0); here @,@1,09 are any cut-off functions such that
(IJ&)l = W, Wy = Wo.

In the expression (18) we assume that p and h are linked to each other
via relation (14). The correspondence h — p is one-to-one modulo smooth-
ing elements. This allows us to equivalently express the interior symbolic
structure of operators (17) in terms of p.

From the representation (13) we immediately get an invariantly defined
parameter-dependent homogeneous principal symbol

Py (1,2, 0,€,77) € OF(T* (R4 x X) x KL\ 0)

with p being the covariable of  in this notation, and 0 indicating the “covec-
tor” (p,&,1) = 0. Let (x, €) denote points in the cotangent bundle of 2B. We
then define the principal interior symbol af/ﬁ(a)(ac,&n) € C®(T*(int B) x
R?\ 0) of a € CH(B;g,j—,j+;R?) as the parameter-dependent homoge-
neous principal symbol of ¢1(n), regarded as an element of L (int B; RY).
Then, in a collar neighbourhood of OB = X in the splitting of variables
(x,€) = (r,z,p,€),0 <r <1, we have

oy (a)(ryz,p, & n) =1 w(r)py (r,z,rp, §,rn) + (1= w(r))b (r, 2, p,€,m),

where b, (z,&,n) € C°(T™(2B) x R?\ 0) denotes the parameter-dependent
homogeneous principal symbol of b(n) in Definition 1.14. Moreover, the
operator c11(n) has a principal edge symbol of order y, namely

ot (c11)(n) = rPophy ? (ho) ()

which is the same as

w(rlnl)roph, * (o) (mwr (rlnl) + (1 — w(rll)r ™ op, (po) (1) (1 — wa(rln]))

modulo the principal edge symbol of some flat Green element; concerning
notation, cf. Corollary 1.13. We then define

@ = ( DT 1

n # 0, called the principal edge symbol of a of order p.
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Remark 1.16 Similarly to (11) we interpret ol(a)(n) as a family of
operators K7(X") @ C- — K5 BV HXN) @ T+,s € R, and we have
homogeneity of ok (a)(n) analogously to relation (12).

Note that for ai1(n) := u.l.c.a(n) (upper left corner of a(n)) the principal

edge symbol
oh(a1n)(n) : K (X7) = £7HT7H(X7)

is a family of operators in the cone algebra on the infinite cone, for every
n # 0, cf. [12] or [14]. As such there is a subordinate principal conormal
symbol

UMUK(GH)(Z) ZHS(X) —)Hsfu(X) (19)

with z varying on T’ ntl . Recall that (19) in this case has the form
2

onmoh(a1)(z) = ho(0,2,0) + moo(2) (20)

with hg being given by Corollary 1.13 and mgo(z) by expression (8). Formula
(20) also makes sense for ¢ = 0 where we may simply write o/(a) instead
of (20).
Let us set
o*(a) = (o} (a), o0 (a)),
called the principal symbol of a of order . Here we tacitly assume ¢ > 0.
Otherwise, for ¢ = 0 we set

Let
CH 1 (Big.j_,js;RY) :={a € C'B;g,j_,j+;RY) : 0”(a) =0}.  (21)

Then, similarly to the above, elements of (21) have a pair of principal sym-
bols o#~!(a) of order ;1 — 1. Inductively, we get decreasing chain of subspaces
ChI(B;g,j_,j.;RI) C C*(B;g,j_,jr;R?) for all j € N with corresponding
pairs o#~J(a) of principal symbols. Observe that

C™®(B;g,j ,j+;RY) = [ C*/(B;g,j,j+; RI).
JEN
Theorem 1.17 Composition of operators induces a map
CHB;(y —v,y —v —1,0), L, i RY) - x CY(B; (v, 7 —v,0),5-,;R?)
— CHY(B (v, —v = 11,0), 5, j+; RY),
and we have

oy (ab) = o (@)ay(b), R (ab) = o} (a)af (b).

For the subordinate conormal symbols the composition rule is

ohy (ab)(2) = ol (a) (= + )ol; (b) (2).
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Proof. The result is a modification of the known composition behaviour
of operator-valued edge symbols, cf. Gil, Schulze and Seiler [4]. The new
element here is that our operator families are edge symbols only in a collar
neighbourhood of 0B = X. However, far from 0B our families are (up to
entries of finite-rank) parameter-dependent pseudo-differential operators in
int B which behave well under compositions. O

Definition 1.18 An element a € C*(B;g,j_,j+;RY) for g = (v,y —
@, 0) and q € N\ {0} is said to be elliptic if

(i) af/f(a) is elliptic in the following sense: af/ﬁ(a)(w,{,n) # 0 for all
(x,&,m) € T*(intB) x R? \ 0 and (in the splitting of variables (r,z) €
R, X X near 0B) pu)(r.,p&.1) # 0 for all (2, ,6,7) € T"(R.. x
X) x RENO.

(i) oh(a) defines an isomorphism
K57 (XN 5T R (X M)
or@(m: ® = ® (22)
- i+
for all n # 0 and some s =39 € R

Note that when (22) is an isomorphism for s = s¢ then so is for all s € R.
Moreover, (22) implies that

op(an)(n) : KHV(X") — Km0 (X")
is a family of Fredholm operators which has the consequence that
UMUK(GH)(Z) :HS(X) —)Hsfu(X) (23)

is an isomorphism for all z € T’ ntl_, and all s € R
2

For ¢ = 0 an element a € C*(B;g,j_,j4) is called elliptic, if (i) holds,
and if (23) is an isomorphism for all 2 € i1, s €R.
2

Theorem 1.19 Let a € C*(B;g,j—,j+;RY) be elliptic. Then there is a
parametriz b € CTH(B; (v — p,7y,0), 4+, J—; R?) in the following sense:

1 —b(n)a(n) € C°(B;(v,7,0),j—,j—; R),
1 —a(n)b(n) € C(B; (v — p,y — 11,0), 54,7+ RY).

Proof. The proof of this result is analogous to the corresponding theorem
on invertibility of elliptic edge symbols, cf. [14, Section 3.5.2]. O
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Remark 1.20 Let a € CH(B;g,j—,j+;R?) be elliptic. Then there is a
constant ¢ > 0 such that
5 (B) HS—HI—R(B)
a(n): @& = ®
- i+

are isomorphisms for all n € RY,|n| > ¢, and all s € R.
Moreover, a11(n) defines a family of Fredholm operators

a1 (n) : H¥T(B) — H*HTH(B)
for all n € RY.
In the sequel we are mainly interested in the case ¢ = 1.

Remark 1.21 If ay1(n) € C*(B;g,0,0; R) is an operator which satisfies
condition (i) of Definition 1.18, then

op(a11)(n) : K5T(X7) = K7H771H(X")
is a family of Fredholm operators if and only if
onoh(arr)(z) : H¥(X) = H* *(X)

15 a family of isomorphisms for all z € Fn+1 . The condition that a11(n) can

be regarded as the upper left corner of an ellzptzc element a € C*(B; g;j—,7+; R)
requires that
ind o (a11)(1) = ind ok (a11)(—1)

is fulfilled. This is an analogue of the Atiyah-Bott obstruction from the
theory of elliptic operators on manifolds with boundary for the existence of
Shapiro-Lopatinskij elliptic conditions, cf. Atiyah and Bott [1] (or Schulze
[12] for the present case of edges that also includes the case of a q- dimen-
sional parameter ).

Example 1.22 Let a(n) = Z?:o a;n’ be a polynomial with coefficients
€ CHI(B;(y,y —pu+4,0),5_,54). Then in a neighbourhood of OB the
upper left corners of aj,j =0,...,u, are Fuchs type operators

./J‘_j 8
r Y () (<
k=0

with bjx(r) € C®°(Ry, Diff* 7 %(X)),5 =0,...,4,k =0,...,u—j. We then
obtain



and we have
koo ) o
of(a) (&) =7 Y ()T Y b (0) (=)
Jj=0 k=0

(because of k- homogeneity of oh(a11)(n) it suffices to consider |n| = 1).

2 Meromorphic families of cone operators

2.1 Holomorphic families

We now consider families of operators in the cone algebra on B parametrised
by n € R and pass to holomorphic families by applying a kernel cut-off
construction with respect to 7. Let us first illustrate the idea for the case of
families b(n) with values in L) (2B;R) as they occur in Definition 1.14.

Set

K(B)(r) = / & b(17) iy,

and let ¢(7) € Cg°(R). Then

H(g)b(y +i¢) = / e~ o (1) (B) () dr

is well-defined for all w = + ¢ € C and is an element in A(C, L, (2B)). It
has the property
H{(p)b(n + i¢) € Ly (2B; Ry)

for every ¢ € R, uniformly in ¢ < ¢ < ¢ for arbitrary ¢ < /. The operator
function H(p)b(w) belongs to an analogue M (2B) of the space M5(2B),
cf. Definition 1.11 for the case ¢ = 0; the only difference to the present
notation is that we have interchanged the role of real and imaginary axis (to
avoid confusion, holomorphy in w with Rew as parameter will be indicated
by O). Another important observation is the following remark.

Remark 2.1 If ¢ € C§°(R) is a cut-off function with respect to T = 0,
i.e., P =1 in a neighbourhood of the origin, we have

H(4)b(n) = b(n) mod L~>(2B;R).

In a similar manner we apply the kernel cut-off operator H (1) to a(n) in
Definition 1.14 with respect to the parameter n. We then have to consider

H(y)aln +1i¢) = H(y)c(n +iC) + H(4) f (n +1iC),

cf. formula (15).
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First we want to analyse H(9)c(n + i¢). By virtue of Remark 2.1 it
remains to consider

H(){w(r)rrop) 2 (W) (+i)wn ()} = wlr)rop]y ¥ HOMOE)o )
24
cf. formula (16). By assumption on the structure of h we have h(r,z,n) =
h(r,z,rn) for an operator function h(r,z,7) € C®(Ry, M5(X;R;)). The
dependence of l~1(r, z,7) on r with smoothness up to r = 0 does not cause
additional difficulties.
Setting

by () (2, 7) = / STy 2y ), ka(R)(r 2, 7) = / & (r, 2, ) dil

yields
kn(h)(T, 2, T) = T_l / 6i$ﬁil(7”,z,ﬁ)dﬁ = T_lkﬁ(il)(ru 2, ;)

Then, if 9(7) is any cut-off function, we get
Hbr 2 +i0) = [ e 70Oty (b)(r.z,7)ds

= 7! / e*”(w%)w(f)kﬁ(ﬁ)(r,z,;)dT = / e Ty (1) kg (B) (7, 2, 7)dF
= (H(@)h)(r,z,r(n +i()) (25)
for 1, (7) := 4 (r7) which is an r- dependent cut-off function.

Definition 2.2 Let Mg(X;K+ x Cy) denote the space of all operator
functions f(r,z,w) = f(r,z,rw) for f(r,z,%) € A(Cg,C®(Ry, M{(X))
such that

fr,z,rw) € A(Cy, C™(Ry, M5 (X)) (26)

and

f(r.z,0 +ir() € C%(Ry, MG (X5 Ry)) (27)
for every ¢ € R, uniformly in ¢ < ¢ < ¢ for every ¢ < .

As above we set )
h(r,z,m) = h(r,z,mn) (28)

for an h(r, z,7) € C®(Ry, M5 (X;R;)) and set
oy (h)(2) == h(0,2,0).

In particular, for any f(r,z,w) € M§(X; R4 xCy,) we can form op(f)(2) =

f(0, z,0), using property (27).
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Proposition 2.3 Lett € C§°(R) be a cut-off function. Then, if h(r,z,n)
is defined by (28) we have (H(¢))h(r, z,w) € M5H(X; Ry x Cy), and

ol (h)(=) = oy (H ()R (2). (29)

Proof. The property (26) for f(r, z,w) := H(3)h(r, z,w) is an immediate
consequence of kernel cut-off operators which produce holomorphic functions
in w € C, see [14, Section 2.2.2]. For (27) we first consider

(H(fl/}h)h)(rvzvﬁ + Z'TQC)J (30)
where 1 in the first argument indicates dependence on the half-axis variable
coming from 1, , while r, comes from the r- factor at (. To verify the
smoothness of (27) in 7 up to r = 0 it suffices to show that (30) is C* in
(r1,m9) € Ry x Ry. The smoothness in ro € R, is evident for every ¢ € R,
uniformly in finite intervals. The crucial point is the smoothness in 1 which
is a parameter in the family of cut-off functions ¢(r;7) that tends to 1 for
r1 — 0. Here we can apply [14, Section 1.1.3, Remark 1.1.51] which shows
the desired smooth dependence in the parameter up to 0 in the topology of
symbols. At the same time we get relation (29). O

We now introduce a notion of holomorphic dependence of families of op-
erators a(w),w = n + i, with values in C*(B;g,j_,j+) (the latter space
is included in Definition 1.14 for ¢ = 0). We separately consider the
ingredients of Definition 1.14. First, as a variant of Definition 1.11 we
have the space M§(2B) of all functions b(w) € A(Cy, L5 (2B)) such that
b(n +i¢) € L (2B;R,) for every ¢ € R, uniformly in ¢ < ¢ < ¢ for every
c<c.

Analogously to (16) we now form

en(w) i= w(r)r Fopy, * (f)(w)wi(r) + (1= wi(r))b(w) (1 —ws(r)), (31)
for any f(r,z,w) € M}5H(X;Ry x C) and b(w) € M} (2B); (without loss of
generality, we may set f = H(1)h as in Proposition 2.3).

For every fixed ¢ € R the operator family

n
2

w(r)rHopy, 2 (h)(n +iQwi (r) : K¥7(X1) = K77 H(X ")

has the structure of an edge symbol with covariable 1 (and constant coeffi-
cients) in the representation from [4]. This is particularly convenient under
the aspect of holomorphy in w. The operators (31) are a holomorphic family

c11(w) : HEV(B) — HE (B

for every s € R.

We now perform an analogous construction for the second term f(n) in
formula (15). In this case in the representation (9) we set fi = 0 (because
holomorphic smoothing families acting outside a neighbourhood of 0B are
already contained in b(w)), and it suffices to look at fo(n).
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Definition 2.4 Let E = @Ej,ﬁ = @Ek be Fréchet spaces, written
as projective limits of Hilbert spaces, with group action, cf. the notation in
Section 1.1, and set L(E, E), == Njen L(E™), E7) for some map r: N — N,
Then S4(C; E, E), denotes the space of all f(w) € A(C,L(E,E),) such that
f(n+1¢) € Njen Sﬁ(Rﬂ;Er(j),Ej) for every ¢ € R, uniformly in ¢ < (<
for every ¢ < . Set S(C; E,E) =, SH(C; E,E),.

Setting k(a)(7) := [e™a(n)dn for an a(n) € S4(R; E,E) for every 1 €
C5°(R) we have a kernel cut-off map H (¢)a(n+i¢) := [ e "1+ (1) k(a)(1)dT,

H(¢) : SH(R;E, E) — SH(CG E,E) (32)

which is continuous between the relevant subspaces with supscript r. We
shall apply this, in particular, to cut-off functions i and obtain, similarly
to Remark 2.1,

H($)a(n) = a(n) mod S °(R%;E,E).

The kernel cut-off (32) can be applied to symbols a(n) € Ry, (R%;9,5-,74),
g = (7,7 — 1, 0), as operator-valued symbols in S4(R?; E, E) for spaces
E=K"XMN@U-,E =K®"*X")®T+ for arbitrary s € R, as well as
for (Fréchet) subspaces with asymptotics. In particular, Definition 2.4 can
be specified for R{;(R;g,j—,j+)p,o. This gives us a space of holomorphic
Green symbols Rl (C; g,j—,j+)p,o and a corresponding kernel cut-off map

H(llzb) : Ré(R;gvj—aj-i-)P,Q — Rg‘((c;gaj—aj-i-)P,Q
for any cut-off function 1. Set
RE(Cigs-rir) = | RE(Ci g, 41 ) pa-
P,Q

Next, starting from an operator family mg(n) of the form (8) we construct
m(w) := H(¢)mo(w), (33)

where ¢ is any cut-off function. Then it can easily be checked that the
function m(n +i¢) of n belongs to R‘Jf/l_i_G(R; g,j—,j+) for every fixed ( € R,
with a uniformity condition in intervals ¢ < ¢ < ¢ for arbitrary ¢ < /. We
now define

Rh16(Cig,d-,d4) = {m(w) + g(w)}, (34)

where m is of the form (33) for any mg and g € RE(C; g, j—, ).
Finally, by M5>(B;g,j,j+) we denote the union over P € As(X; (y—
©,0)),Q € As(X; (—v,0)) of all spaces

A(Cy,Ca(B;g,j—,j+)prq) 2 k(w)

24



such that
k(n+1i¢) € C(B; g, -, j+: Ry)rq
for every ¢ € R, uniformly in finite intervals ¢ < ¢ < ¢ for arbitrary ¢ < (.
Definition 2.5 Let My (B;g,j—,j+) for © := (—(k+1),0],k € N, de-

note the space of all operator families a(w),w = n + i¢ € C, with values in
CH(B;g,j—,j+) such that in the representation

alw) = w) + flw) + ko), elw) = (70,

c11(w) is as in (31), further f(w) = diag(w, 1) fo(w)diag(wy, 1) for an ele-
ment fo(w) € Ry, ¢(Cig,j-.j+), and k(w) € Mg™ (Big,j—, j+)-

From the constructions of this section we obtain altogether the following
result:

Theorem 2.6 For everya(n) € CH(B;g,j—,j+;R) there exists an h(w) €
M%(B;gaj—aj-l-)aw =n + ZC € (C, such that

(i) h(n) —a(n) €C>(Big,j-.j+;R),
(i) h(n+i¢) € C*B;g,j—,j+;Ry) for all € R, uniformly in ¢ < { < ¢

for every ¢ < (.

Remark 2.7 If a(n) is elliptic, cf. Definition 1.18, then h(w),w =n +
i(, associated with a(n) via Theorem 2.6 is elliptic for every ¢ € R. Then we
say that h(w) is elliptic.

2.2 The algebra of meromorphic families

Next let R denote a sequence
R = {(pj7 my, Nj)}jEZ

withp; € C,m; € Nand N; C C~*°(B; g,j-, j+) which are finite-dimensional
spaces of operators of finite rank, such that mcR := {p;}cz has the prop-

erty that rcR N {w : ¢ < Imw < ¢} is a finite set for every ¢ < (.

Let As(B;g,j ,j+) denote the set of all such sequences. Moreover, 'R

will denote the transposed of R, ie., "R = {(p;,m;," N;)}jcz when R =

{(pj,mj, Nj)}jez.

Definition 2.8 Define Mg*(B;g,j ,j+) for R € As(B;g,j ,jy) to
be the space of all operator families a(w) € A(C\ ncR,C *(B;g,j—,j+))
such that

(i) for any mcR - excision function x we have (xa)(n+i¢) € S(R,,C~°(B;g,j—,j+))
for every ¢ € R, uniformly in c < ( < for every ¢ < ¢,
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(ii) close to every p; € mcR the function a has a representation

a(w) =" ajp(w —p;)~F Y + h(w) (35)
k=0

with coefficients ajr, € N;,0 < k < mj, where h(w) is holomorphic
near p; with values in C~°(B;g,j_,74).

Remark 2.9 The spaces M (B;g,j—,j+) and Mg>(B;g,j_,j4) are
Fréchet (corresponding systems of semi-norms are immediate from the defi-
nition), and for every R € As(B;g,j_,j+) we define

M‘;{(B7gaj77j+) = Mg(l&gaj*L?‘F)

in the sense of a non-direct sum.

It follows that close to every pj € mcR an element a € Mg (B;g,j—,7+)
can be written in the form (35) with coefficients aj, € N;,0 <k < mj, and
h(w) holomorphic near p; with values in CH(B;g,j—, j+).

Note that differentiation with respect to w induces continuous maps

d . 1 .

2o P MRBig,jr) = M (B (7,7 =1 +1,0), 5, 5+)

for every R € As(B;g,j_,j+) with a resulting asymptotic type R €
As(B; (v, y —p+1,0),5_,7+). Below we simply set o' (w) := %a(w).

Theorem 2.10 If a(w) € MEB;(y — v,y —v — p,0),1,j4) for R €
AS(IB; (ry -y -V - U7®)7l7j+) and b(w) € MVQ(Bv (777 - v, 9)7]’*7[)
for Q € As(B;(v,y —v,0),5_,1), then a(w)b(w) € M’;f”(B; (v, 7y — p —
v,0),75_,j+), with a resulting asymptotic type P € As(B; (y,y—p—v,0),75-,7+)
determined by a and b.

Proof. The composition for every fixed w € C is stated in Theorem 1.17.
Locally, in finite regions of C, we have compositions of meromorphic operator
functions, and we easily see that the Laurent coefficients of the product
are generated by the factors in a similar way as for scalar meromorphic
functions; in the present case we employ that the coefficient spaces IN; in
the asymptotic types are of finite rank and smoothing; those are an ideal in
the cone algebra on B, which yields analogous Laurent coefficient spaces for
the resulting asymptotic type P. O
Let a(w) € M'R(B;g,j—,j+). Then (36) gives us a decomposition

a(w) = ao(w) + a1(w), (37)

where ao(w) € M%(B;gaj—aj-l-) and al(w) € M}_{oo(B;gvj—vj-i-)-
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Definition 2.11 An element a(w) € Mg (B;g,j—,j4) is said to be el-
liptic if so is ao(w) for any decomposition of a(w) of the form (37).

This definition is correct, i.e., independent of the particular choice of the
splitting (37) of a.

Theorem 2.12 Let a(w) € Mx(B;g,j—,j+), R € As(B;g,j_,j4), be
elliptic. Then there is a countable subset D C C, with finite intersection
Dn{w:c<Imw <} for every ¢ <, such that

H5 (B) HI—HT—H(B)
a(w) : ® - ©®
- CJ+

is invertible for all w € C\ D. Moreover, there is an inverse a~'(w) (
the sense of the composition of Theorem 2.10) belonging to MQ (B; (y

Y, 0), j4,5-) for a resulting Q € As(B; (v — p,7,0),54,7-)-

Proof. Write a(w) in the form (37). Because of Remark 1.20 we can ap-
ply results from [14, Section 1.2.4] and obtain an h(w) € Mg"(B; (v —
Wy, 0),j4,7-—) for some S € As(B; (y—u,7y,0),j+,7-) such that ap(w)h(w)
h(w)ae(w) =1 for all w € C.

Proposition 2.10 gives us h(w)ay(w) € Mp@(B;(v,7,0),j-,7-) for
some P € As(B;(y,v,0),j—,j—). There is now an analogue of Lemma
4.3.13 of [11] that can be applied in our case, i.e., there is an element
g(w) € Mg*(B;(7,7,0),j-,j-) for a Q € As(B;(v,7,0),j-,j-) such
that (1 + h(w)ay(w))~t = 1 + g(w), cf. Theorem 2.10. Now it is easy to
see that (1 + g(w))h(w) is a left inverse of a(w). Analogously, starting from
a1 (w)h(w), we get a right inverse for a(w). O

The operator family a~!(w) can be interpreted as the resolvent of a(w).

2.3 Characteristic values and a factorisation of meromorphic
families

Let a(w) € Mg(B;g,j—,j+) be elliptic. For a fixed w € C away from
the set of poles, a(w) defines an operator H*7(B) & C/- — H5~H7~H(B) @
C/+. The particular choice of s is not important, because the kernel and
cokernel of a(w) consist of functions in H (B)®C/~ and H>®~#(B) @ C/+,
respectively.

A point wy € C is called a characteristic value of a(w), if there exists a
vector-valued function u(w) with values in H*7(B) @ C/-, holomorphic in a
neighbourhood of wy with u(wg) # 0, such that the vector-valued function
a(w)u(w) is holomorphic at wy and vanishes at this point. We call u(w)
a root function of a(w) at wy. Suppose that wy is a characteristic value of
a(w) und u(w) a corresponding root function. The order of wy as a zero of
a(w)u(w) is called the multiplicity of u(w), and the vector uy = u(wpy) an
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eigenvector of a(w) at wy. The eigenvectors of a(w) at wy (together with
the zero function) form a vector space. This space is called the kernel of
a(w) at wp, and is denoted by ker a(wp). By the rank of an eigenvector wug
we mean the supremum of the multiplicities of all root functions u(w) such
that u(wg) = uy.

The elements a(w) € M'R(B;g,j_,j+) represent meromorphic operator
functions in C with values in L(H*7(B) & CT-,H* *7 H(B) & T+),s € R,
taking values in C#(B; g, 7, j+) for every w € C\mc R. Meromorphy or holo-
morphy of operator functions with such properties also makes sense when
w varies in an arbitrary open subset of C. This will be the interpretation of
locally given operator functions in the following consideration.

Proposition 2.13 Let wy be a characteristic value of a(w). Then
(i) the space ker a(wyp) is a finite-dimensional subspace of H*"(B) ®C/-,
(ii) the rank of each eigenfunction of a(w) at wy is finite.

Proof. (i) We have

-1

a(w) = Y aj(w —w)’ + h(w) (38)

j=—m

in some neighbourhood U of wy, where a; € C™>°(B;g,j_,j+) are of finite
rank for j = —m, ..., —1, and h(w) is a holomorphic function near wy with
values in C*(B; 9,5, j+)-
Relations (38) and (37) imply that h(wy) € CH(B; g,j—,j+) is elliptic.
Now the vector-valued function u(w) is a root function of a(w) at wy if
and only if

m 1 m+V1
h(wo)u(wy) = — Z Ea_ku(k) (wp), Z Eal,_ku(k)(wo) =0 (39)
k=1 k=0
for all v = —m, ..., —1. The first equation of (39) yields that A(wg)u(wp)

belongs to a finite-dimensional subspace of H*?~#(B) @ CJ+. Hence the
ellipticity of h(wp) shows that u(wp) lies in a finite-dimensional subspace of
H® @ C-.

(ii) Let u(w) be a root function of a(w) at wy. Then g(w) := a(w)u(w)
is holomorphic near wy and g(wp) = 0. Choose a neighbourhood U of wy so
that a(w) is invertible for all w € U \ {wp} (cf. Theorem 2.12). We have

u(w) = a (w)g(w) for we U\ {wy}.

Because of u(wp) # 0 the order of wy as a zero of g(w) does not exceed the
order of wy as a pole of a~*(w). O
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By a canonical system of eigenvectors of a(w) at wy we understand a

(1) (V)

system of eigenvectors uy”,...,u; ', N = dimker a(wy), with the following

(1)

property: rank u;’ is the maximum of the ranks of all eigenvectors of a(w)
at wp; rank ugz),i = 2,..., N, is the maximum of the ranks of all eigenvec-
tors in a direct complement in ker a(wg) of the linear span of the vectors
u(()l),...,u(()l_l). Let r; = rankugz), 1 = 1,...,N. The rank of any eigen-
vector of a(w) at wq is always equal to one of the r;. Hence the numbers
r; are uniquely determined by the function a(w). Note that, in general, a
canonical system of eigenvectors is not uniquely determined. The numbers
r; are called the partial null-multiplicities, and n(a(wp)) = r + ... + 7y
the null-multiplicity of the characteristic value wy of a(w). If a(w) has no
root function at wy, we set n(a(wg)) = 0. We call both the characteristic
values of a(w) and a~!(w) the singular values of a(w). Suppose that wy is a
characteristic value of a=!(w). Let P = dimkera™!(wy), and p1,...,pp are
partial null multiplicities of characteristic value wq of a~!(w). Then we call
P1,---,pp the partial polar-multiplicities of the singular value wy of a(w),
and p(a(wg)) = p1 + ... pp the polar-multiplicity of the singular value wg of
a(w). We then call m(a(wg)) = n(a(wy)) — p(a(wy)) the multiplicity of a
singular value wg of a(w). If a(w) is holomorphic at a point wy € C and the
operator a(wp) is invertible, then wy is said to be a regular point of a(w).

Remark 2.14 According to Theorem 2.12 for every a € Mg(B; 9,5, j+),
R € As(B;g,j—,j+), the singular values of a form a countable set D C C
with finite intersections D N{w : ¢ < Imw < '} for every ¢ < .

Remark 2.15 Let 7j,5 = 1,...,n be a system of mutually orthogonal
projections with 2?21 mj = 1 and aj(w) holomorphic in some punctured
neighbourhood of wy € C acting in mj(H*?(B) ® C-). Then if

a(w) =Y aj(w)m;,
j=1

and if wy s a characteristic value of a(w), a vector-valued function u(w)
is a root function of a(w) at wy if and only if for each 5 = 1,...,n the
vector-valued function mju(w) is either a root function of aj(w) at wy or is
identically zero, and not all of the mju(w) are identically zero. The mul-
tiplicity of u(w) 1is equal to the minimum of the multiplicities of the root
functions mju(w) of the operator-valued functions aj(w). On the other hand,
each root function of aj(w) at wo is a root function of a(w) at wy, and the
corresponding multiplicities are equal.

The nature of projections m; will be specified below in Theorem 2.17 to-
gether with Remark 2.16.

29



Clearly, in the scalar case the multiplicity of a singular value wy of a(w)
is equal to the order of the pole, if wy is a pole of a(w), and the multiplicity
of the zero, if wy is a zero of a(w).

Remark 2.16 Let wg be a characteristic value of a(w) € M'g(B;g,7—,7+)-
If by (w), ba(w) are invertible holomorphic functions near wy with values in
cr (IB7 (70777 9)7]’07]’*) and CH? (IB, (ry - 11, 6)7j+7j1)7 Tespemfively; then
wo is a characteristic value of c(w) := ba(w)a(w)by (w) and the partial null
and polar multiplicities of wy for a(w) and c¢(w) coincide.

Theorem 2.17 Let a(w) € Mig(B;g,j—,j+) be elliptic and wy € C a
singular value of a(w). Then, in a neighbourhood of wy there are invertible
holomorphic functions by(w) and by (w) with values in C°(B; (v,v,©),7_,7-)
and CH(B; g;j—,7+), repectively, satisfying the representation

n
a(w) = by(w){m + Z mj(w — w)™ tby (w), (40)
j=1
where mj, 7 = 0,...,n, are mutually orthogonal projections such that 7; €

C—°(B; (v,7,0),7—,7-), =1,...,n, are of rank 1 with o + 2?21 =1,
and m; < mg < ... < my are integers.

Proof. This theorem is an analogue of [16, Proposition 3.1]. O

Corollary 2.18 Let a(w),bi(w),bs(w) and wy be as in Theorem 2.17.
Using (40) we get

o (w) = b7 (w){mo + Y mj(w —wp) ™ }b5 ! (w) (41)
j=1

in a punctured neighbourhood U \ {wp} of wy.

Suppose the numbers mj,j = 1,...,n, from (40) satisfy the conditions
my < ...<mp <0,mpp1 =...=myip =0and 0 < mpyp1 < ..o <y,
Then, using Remark 2.15 and (40), (41), we obtain that the partial null mul-
tiplicities of the singular value wo of a(w) are equal to My ypi1,...,Mmy; the
partial polar multiplicities are equal to my, ..., m,. In particular, it follows
that m(a(wo)) = 27 m;.

For a(w) € M%(B;g,j—,j+) let 'a(w) denote the transposed pseudod-
ifferential operator of a(w) for any w € C. It is easy to see that ‘a(w) €
M (B (= + 1, =), j+, j—) and is elliptic if so is a(w).

Corollary 2.19 Let a(w) be elliptic. Then a(w) and *a(w) have the
same singular values with the same partial null and polar multiplicities. In
particular, m(*a(wy)) = m(a(wy)) for any singular value wy.
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Let a(w) € Mg(B;g,j—,j+) be elliptic, and let wy be a singular value of
a(w). Then in a punctured neighbourhood of wy the principal part (p.p.)
of the Laurent expansion (38) of a(w) is an operator in C~°°(B; (y,y —
1, ©),5_,j4) of finite rank. Hence the trace (tr) of p.p.a’(z)a ! (z) is well-
defined.

Lemma 2.20 Let a(w) and wy be as above. Then we have

m(a(wy))

trp.p.a' (w)a™ (w) = p—

(42)
Proof. Cf. [16, Corollary 3.2]. O

Let a(w) € M5 (B;g,j—,j+) be elliptic. Suppose wy is a characteristic
value of a(w) and u(w) a root function of a(w) at wy. Denote by r the

multiplicity of u(w).
The vector-valued functions

are said to be associated vectors for the eigenvector uy = u(wp).

Remark 2.21 For each characteristic value wy of a(w) the associated
vectors of a(w) at wy lie in a finite dimensional subspace of H*7(B) @ C/-.

Let u(()l), - ,u(()N) be a canonical system of eigenvectors of a(w) at wp, and
as above, let r; denotes the rank of u(()z). Moreover, let ugl),...,ugzi)fl be

associated vectors for the eigenvector u[(]i). Then the system

( (@) , (@) (4)

Uy Uy "y - 7uri_1)i=1,...,N

is called a canonical system of eigenvectors and associated vectors of a(w)
at wy.

Example 2.22 Leta(w) = 2?20 ajwl, aj € CF I (B;g,j—,4+),d =0,..., 1,
and let wy be a characteristic value of a(w). For convenience we assume

that dimkera(wy) = 1. Furthermore, let uy be an eigenvector of rank r,
and uy,...,ur—1 be associated vectors for ug. Then we have the following
relations

fork=0,1,...,r—1.
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Proposition 2.23 For each characteristic value wy of a(w), there are
canonical systems

(u(()i),ugi), - ,ug)q)z':l,...,N and (U[()i)avgi)v e 7“2)71)1':1:---’N

of eigenvectors and associated vectors of a(w) and *(a(w)) at wy, respec-
tively, such that

N -1 ri+J
VN ) () Y
pp.a (w) = Z Z<Uk ’ >uri+j—k (w —wo)

in a neighbourhood of wy.

Proof. The meromorphic operator functions in our context may be regarded
as a special case of the ones in the paper [6] of Gohberg and Sigal. In other
words, we can directly apply [6, Theorem 7.1] in the present situation. [

3 Operators in the infinite cylinder

3.1 Weighted edge spaces

On the infinite cylinder with conical cross section we consider specific so-
called edge Sobolev spaces. First, on the cylinder R x 2B we have the spaces
H(Rx2B),s,6 € R, defined as the completion of C§°(Rx 2B) with respect

to the norm .

{ ) 172 (Re w)(Fu) () 2 gy }

Here Is := {w € C: Imw = 0} and F is the Fourier transform on R; with
covariable 7, extended to complex arguments w = 1+ i( (for functions with
compact support). Moreover, R*(n) € L (2B; R, ) is a parameter-dependent
elliptic family of classical pseudo-differential operators on 2B which induce
isomorphisms R*(n) : H"(2B) — H" *(2B) for all ,s e R,np € R.

Note that for H*(R x 2B) := H%°(R x 2B) we have

H* (R x 2B) = ¢ %" H*(R x 2B).

Let E be a Hilbert space with group action {«) } xer , and let W*(R, E), s
R, denote the completion of S(R, E') with respect to the norm

%
ulbwe e 2y = ( / <n>25||n<,,§Fu<n>||%dn)

Let ¢ € C§°(R+) be any element supported in (0,1) 3 r. As is known
from [13], we have

oW (R, K57 (X)) = H*(R x 2B). (43)
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For s,0 € R we define
WHO(R, K57 (X)) = e PWH (R, K57 (X)).
Definition 3.1 For arbitrary s,0,7 € R we set
WS (R x B) = [w]W* (R, K*7 (X)) + [1 — w]H*°(R x 2B)

as a non-direct sum of Hilbert spaces, where w is any cut-off function, sup-
ported in [0,1).

Because of (43) this is a correct definition, i.e., independent of the specific
choice of w.
The norm on W*%7(R x B) is defined by

1
||u||WSs5;’Y(R><B) = (||wu||12/vs,6(R,;cs,7(xA)) +[1(1 - w)u||%15,5(R><2]B))2'
Remark 3.2 The space C°(R x int B) is dense in W7 (R x B).

Indeed, this follows from the fact that C§°(Rx X”) and CP(Rx X) are
dense in the spaces W9 (R, £*7 (X)) and H*°(R x X), respectively.
Let § = (J_,d4) be a pair of real numbers. For s,y € R, set

WS (R x B) = [o]W*%=7(R x B) + [1 — o)W+ (R x B)
and
H*(R,C7) = [0]H** (R, C7) 4 [1 — o] H>*+ (R, CY)

in the sense of non-direct sums of Hilbert spaces, where o(t) is a fixed cut-off
function for the point ¢ = —oo on the real axis, i.e., o is a C*° function on
R equal to 1 near ¢ = —oo and vanishing near ¢t = +oo.

A norm on the space W*%7(R x B) is defined by

1
by = (1l gy + 10 = Dl ) (40)

In an analogous manner we define a norm on the space H*%(R, C/+).

Let us set
By = W (B X B) ® BB, )

for any s,d,7 € R and
By, = W(R x B) @ H* (R, C/*)

for any s,v € R and any pair of real numbers § = (0_,d;).
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3.2 Inhomogeneous equation

Let a(w) € M'R(B;g,j_,7+) be elliptic, and assume that a has no poles on
Is. Counsider the operator

1

"o

Ault) / €1 () Fru(w) duw (45)
Is

first for u € C°(R x intB) @& C§°(R,C/-). We then have F(Au)(w) =
a(w)Fu(w) for all w € I;.

Proposition 3.3 The operator A, defined as in (45), induces continuous
map

.

A E S—p,0;7—p

5_,5;7 (46)

for each s,y € R.
Proof. We prove the continuity of the upper left corner operator
AW (R x B) — W97 H(R x B)

(for simplicity, we denote the new operator and its symbol also by A and
a, respectively); the continuity of the full block matrix operator A can be
proved in an analogous way.

Since the space C§°(R x intB) is dense in W*%7(R x B), it suffices to
prove the assertion for u € C§°(R x int B). We have

||w Aul |?/vsfu,5(R,]csfu,vfu(X/\))
= [Pl + DF @) 1+ i6) Ry ey
= [ Tatn + ) P@u I axnydn

supyer {(m) ™ [la(n + 0|7 ocen (xxr) s —mr—n (e HIwtl e i

IA

and
101 = @) At B gy = /I 1B ma(w)F (1~ w)u)(w)l[72 o dw
)

< supyer{|| R (ma(n +i0)R™° ()72 2my) HIL = )3 @ com) -

Since a(w) is an operator-valued symbol of order p with respect to 1, and
because of Theorem 2.12 concerning continuity of a(w) in the respective
spaces, these estimates yield the assertion. [l

Proposition 3.4 Let a(w) have no singular values on Is. Then (46)
extends to an isomorphism.

Proof. This is a consequence of Propositions 2.12 and 3.3. O
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3.2.1 The case §_ < dy

Lemma 3.5 Let § = (0_,04) satisfy 6— < 64. Then, a function u be-
longs to E'Si(M if and only if u € E;té"y for each § € [6_,04]. More precisely,
u € E;t(h_y and u € E:E(L,v entails u € E;E(M.

Proof. We give the proof for the spaces W*%7(R x B) and W*%7 (R x B).
The case of spaces E;t(M and E;'E(s_7 is analogous and will be omitted. For
d € [0_,04] we have

lulZyeio sy < 2000l s + 1L = ol )

S c||u||?/vs,5w(R><]B)7
since
||UU||12/Vs,5w(R><B) = ||WUU||12/Vs,5(R,;csw(XA)) +1(1 - w)o-uH?{Sﬁ(RxQB)
2 2
< CI(HWUUHW&L (R,C5:7 (X)) + (1 = w)UuHHs,L(RXQ]B))
= CQHUuH?/VS’Sf;'V(RxB)'

In this way we obtain
102 = 0Vl By sy < esll(L = 0l Py
Conversely, for u € W% (R x B),§ € [0_,d.], relation (44) gives us
il By < 1t By gy ey (47

The latter estimate shows that when u belongs both to W*9-i7(R x B)
and W9+ (R x B) it follows that u € W% (R x B). O

Remark 3.6 For any u € E;6,7 the Fourier transform Fu of u is holo-
morphic in the strip 60— < Imw < 4.

Indeed, this is an immediate consequence of the representation of u, i.e., u

has the factor e~ in a neighbourhood of —oco and e+ in a neighbourhood
of +oo0.

Let us write
op® (h)u(t) = / O by 4 i6) Fu(n + i6)dr.
R

Proposition 3.7 Let a(w) have no poles on the lines I5_ and Is_, where

0_ < dy. Then, for each u € E;J-w we have

op®~ (a)u(t) — op® (a)u(t) = 2mi Z res,e' ™ a(w) Fu(w).
Imp€(67,6+)
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Proof. According to Remark 2.9 the operator function a(w) has a repre-
sentation a(w) = ae(w) + a1(w) for certain ao(w) € Mp(B;g,j—,j+) and
ay(w) € Mg (B;g,j-,j4+). It suffices to show that

op’~(ar)u(t) —op’*(ar)u(t) =2mi Y resye™ay(w)Fu(w) (48)
Impe(d-,04)

(a1(w) on the right hand side of (48) may be replaced by a(w)) and
op’~ (ao)u(t) = op’* (ao)u(t). (49)

The relation (48) is an easy consequence of Cauchy’s integral formula
and the Residue Theorem.

Concerning (49) we use the fact that for u € C§°(Rx int B) ® C§° (R, C/-)
the desired relation holds by Cauchy’s theorem. On the other hand, since
CS°(R x int B) @ C§°(R, C7-) is dense in B ;. for every 6 € R, cf. Remark
3.2, using Proposition 3.3, we also have

op‘s(ao)u(t) = lim op‘s(ao)uk(t)

k—o00
. + _ . . j— . . . .
in Esfuﬁ;vfu whenever u = kl;rgo uy in the space ES#M. This implies relation
(49) for allu € E_ ;.. O

Fix s,v € R and weight data § = (d_, d,) satisfying 0_ < 0. Set
domA ={u€ E_; respe™ a(w) Fu(w) =0 for Imp € (5_,0,)}.

Proposition 3.7 shows that Awu is independent of the particular choice of
d € (6_,04) (if a(w) has no poles on the line Iy) for any u € dom A.

Lemma 3.8 Let a(w) be elliptic. Then dom A is a closed subspace of

E of finite codimension

5,05y

codimdom A = Z p(a(p)).
ImpE(J, ,6+)

Proof. Let p be a pole of a(w) in the strip _ < Imw < ¢4, then p is a
characteristic value of the inverse a~!(w). Because of Proposition 2.23, there
are canonical systems

(f(gZ)a fl(Z)J R ,52)71)z':1,...,P and (g(()l)7g§l)7 tee 79{(;?71)1;:1,...,13
of eigenvectors and associated vectors of a~!(w) and *(a~!(w)) at p, respec-
tively, such that

P -1 pitJ

pp-a(w) =pp. () Hw) =3 S {3 o W e - p)

i=1 j=—p; k=0
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in a neighbourhood of p. We have

respeitwa(w)Fu( ) = res, (p.p. a(w))e™ Fu(w)
—1 pitJ

BD S5 o) spa (8)“{6% ST

= 1]——pzk 0
-1 pitJ

(2)

— eitp Z Z Z { 0 / e—it’p(it _ Z-t/)fj71<gl(ci)’u(t/)>dt/}fp(j)+j_k

1=1 j=—p; k=0
P pi—1 pi—«

- S {E o o e i) gt a1,

i=1 a=0

where o« := p; + j — k, 5 := —j. Hence, we see that v € dom A if and only
if u satisfies a system of Zf: 1 Pi = pla(p)) linearly independent conditions.
U

Proposition 3.9 Let a(w) be elliptic, and let a(w) have no poles on the

lines I5_ and Is,. Then we have Au € E's i and the operator

A: domA—>Es+u, Siv—pi

18 continuous.

Proof. Because of Proposition 3.7 for u € dom A we have

1 1

Au(t) = —/I e a(w) Fu(w)dw = o/, ™ a(w) Fu(w)dw.

2

Hence, using Proposition 3.3 and Lemma 3.5 we get Au € Es i and
Au satisfies the following estimates || Aul| Bt < cql|ul| Bl where
O3y —H 457

the constants c4 are independent of u. This completes the proof O
The following proposition describes the set of all elements f € Es Y
for which the inhomogeneous equation Au = f has solution in dom A.

Proposition 3.10 Let a(w) have no singular values on the lines Is_
and Is,. Then, for f € E's S there exists a solution uw € dom A of the
equation Au = f if and only if

respe™a "t (w)F f(w) =0 for Tmp € (§_,0,).

(By im A we denote the set of all such functions f € Ej B ).

Proof Let f = Au for some u € E ;. . Then Ff(w) = a(w)Fu(w) or
“Nw)F f(w) = Fu(w). As Fu(w) is holomorphic in the strip § = < Imw <
5+, we get that f € im A.
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Conversely, let f € im A. Then, because of Proposition 3.7 the integral

7 [ e )P Sy

is independent of § € [§_,d,], if a~!(w) has no poles on I;. In particular,
taking § = 61+ we conclude from Lemma 3.5 that u € E_ 5 . As Ff(w) is
holomorphic in the strip - < Imw < é,, the relation a(w )Fu( ) = Ff(w)
implies that u € dom A. Finally, a simple calculation shows that Au = f. [J

u(t) =

Corollary 3.11 The operator A : dom A — ET is injective, im A

s—p1,057—p
is a closed subspace of Es Y of finite codimension
codimim A = Z n(a(p)).
Imp€(67,(5+)

In fact, this is a consequence of Proposition 3.10 and Lemma, 3.8.

3.2.2 The case §_ > 0

In the case §_ > §; we cannot define the operator A in the form (45), since
E s, — Egs. forad € Rimplies 0_ < d;. Moreover, the Fourier transform
FuofuekFE_ 5.0y is not holomorphic in the strip §; < Imw < d_. Only in
the case that a( ) is a polynomial in w, i.e., A is a differential operator, we
have no additional problems.

To investigate the case d_ > 6, we need the transposed operator *A of
the operator A.

Proposition 3.12 Let a(w) have no pole on a line Is. Then the trans-

posed operator 'A : ET T otptimmin = B 5y of the operator (46) is given
by
1 .
PAu(t) = —/ e ta(—w)Fu(w)dw, t € R, (50)
2T I_s
for any v € BT byt

Proof. 1t suffices to verify relation (50) for elements v € C§°(R x intB) @
CP(R,C+). For u € C°(R x int B) @ C§°(R, C7- ) we have

(v, Au) = / (0(t), 5~ [ et Fuw)dua

_ /%/15 e b (w) Fo(—w)duw, u(t'))dt!
_ /ZW/” 10 g () Fo(w)dw, w(t'))dt' = (* Av, u).
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We see that the formulas (45) and (50) coincide with a(w) and ¢ re-
placed by ‘a(—w) and -0, respectively. For d_ > &, the weight data
—0 = (—0_,—04) satisfy the condition of the previous section. Hence, we
may study the operator 'A in a similar manner as the operator A in Section
3.2.1. It follows that

dom'A = {v¢ EjHu CSiyip respe™ ‘a(—w)Fu(w) =0

for Imp € (—=0_,—04)}

+

D NI of finite codimension

is a closed subspace of F

codimdom®A4 = Z p(ta(—p)) = Z p(a(p)).

Impe(—d_,—d4) Impe(d4,0-)

The latter equality is a consequence of Corollary 2.19. Moreover, Corollary
3.11 shows that if a(w) has no singular values on the lines I;_ and Iy, the
operator

'A:dom'A — E- Gy

is injective, and im*A4 is a closed subspace in £~ 55
)

)

—y of finite codimension
codimim®A4 = > n(‘a(-p))= > n(a(p)).
Impe(—d—,—d+) Impe(d+,0-)

The latter equality is again a consequence of Corollary 2.19.
We now define the operator A : E;J;v — Estu Syt for the case d_ > d4.
To this end we need the following result.

Lemma 3.13 For each u € E;ﬁ;v there is o unique f € E;uﬁ;vfu such
that
(v, f) = (*Av,u) for all v € dom"'A, (51)
(v, fy =0 for all v € Ejs+u,76;fv+u odom'A.
Proof. Let w be the projection operator of Efs+“,_5;_7+ﬂ to dom*A. Then

for u € E;J;v we define

(v, f) = (*Amv, u)

+

for v € E—s+u,—6;—7+u'
E"_Fs_i_#,_&_w_“ (therefore, it can be identified with an element of E:—uﬁw—u)
and satisfies (51). Furthermore, if f1, f» € ET satisfy the relations

S—,03y—p
(51), we have

<U7f1 _f2> = <7TU7f1 _f2>+<(1 —7T)’l),f1 _f2> =0

for all v € E+s+u,75;77+u’ Le., f1 = fa O

Obviously, f is a continuous linear functional on
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For u € E;5.7 we set
Au:= f (52)

for f associated with u via Lemma 3.13. Then A is a linear continuous

operator Es_(i"y — E;u Sy

Theorem 3.14 Let a(w) have no singular values on the lines Is_ and
Is,. The operator A : E_;. — Et defined as in (51) is a Fredholm

) S—,03y—p
operator. More precisely, we have
dimkerA= > n(a(p))
Imp€(5+,6_)
and
dim coker A = Z p(a(p)).

Impe(6+a6*)

Proof. The relation (51) shows that u € ker A is equivalent to (*Av,u) = 0
for all v € Ejs+u,—6;—7+w and Au = f has a solution for f € Ej—u,ﬁw—u
if and only if (v, f) = 0 for all v € Ej‘s+u 6 © dom'A. Hence, the
dimension of ker A is equal to the codimension of im* A, and the codimension

of im A is equal to the codimension of dom *A. O

Example 3.15 Let a(w) be as in Example 2.22, and let p be a charac-
teristic value of a(w) with Imp € (d4,0_). Then from Theorem 3.14 there
correspond n(a(p)) linearly independent solutions of the differential operator
Au = 0. We show that the solutions are

ri—k .
2 . t s—1 )
Zewt&uﬂm, i=1,...,N, k=0,1...,r; —1,
— (s-Dt
where (u,(ci)),i =1,...,N,k=0,1,...,r,—1, is a canonical system of eigen-

vectors and associated vectors of a(w) at p.
In fact, by Leibniz formula we see that

T‘i—k . —1 )
it (18)°° 1 O N kLt
2 m%“k =) @y

k. .
where %(%) ul (p) = ul(;),k =0,1,...,7 — 1. Now a direct calculation
gives us

”_ki it)s—1 ; 1 O \ri—k—1 iw i
O e T R e il ) M I

s=1

which is equal to zero since for a(w)u® (w) the point p is a zero of order
ri—1 foralli=1,...,N.
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3.2.3 Index formula

Let a(w) € Mz(B;g,j—,7+) be elliptic, and fix weight data 6§ = (6_, 45 ).
If 6_ < 64 (Section 3.2.1) we define the operator A : E 5 — El St
on a subset dom A of E s To define A on the space F_. ” itself we compose

A with the projection = of E 5., onto dom A. For notational convenience
we denote the resulting operator again by A. Then A is a linear continuous
operator with null-space £ 5 ©dom A. If a(w) has no singular values on the
lines I;_ and Is,, Lemma 3.8 and Corollary 3.11 give that A is a Fredholm
operator of index

indd = Y pla@)- Y. nlp)

Impe(d-,04) Impe(d-,0+)

- - Y map).

Imp€(§7 76+)

If 0 > 04 (Section 3.2.2) we define the operator A : E 5 — El Gy 38
in (52) which is a linear continuous operator. If a(w) has no singular values
on the lines I5_ and Is, , using Theorem 3.14, it follows that A is a Fredholm
operator of index

ind4 = Y. nG@)- Y pla®)
Imp€(6+,(57) Imp€(6+,6,)
= Y, map).
Imp€(6+,(57)

The following theorem gives us an explicit formula for the index.

Theorem 3.16 Let a(w) have no singular values on the lines Is_ and
Is, . Then

i = tr L a Hw)d (w w—L a Hw)d (w)dw
ind A =t (27fi/15+ (w)a (w)d J, o ) (53)

21

Proof. Let 6 < §_ and Qr be a rectangle with vertices =7 + 44, which
contains all singular values of a(w) in the strip Imw € (6_,04). Using
Lemma 2.20 and the residue formula, we get

b (2% /Q T a—l(w)a'(w)dw> = Y mfa@) = —indA. (54)

Impe(d-,0+)

Now, for T — oo on the left of (54), we get the assertion. Analogously, we
argue for the case 04 < d_. O
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