Edge Problems on Configurations with
Model Cones of Different Dimensions
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Abstract

Elliptic equations on configurations W = W1 U ... U Wy with edge Y
and components W; of different dimension can be treated in the frame
of pseudo-differential analysis on manifolds with geometric singularities,
here, edges. Starting from edge-degenerate operatorson Wj, j =1,..., N,
we construct an algebra with extra “transmission” conditions on Y that
satisfy an analogue of the Shapiro-Lopatinskij condition. Ellipticity refers
to a two-component symbolic hierarchy with an interior and an edge part;
the latter one is operator-valued, operating on the union of different di-
mensional model cones. We construct parametrices within our calculus,
where exchange of information between the various components is encoded
in Green and Mellin operators that are smoothing on W\Y. Moreover, we
obtain regularity of solutions in weighted edge spaces with asymptotics.
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Introduction

This paper is aimed at studying elliptic operators on a configuration with edges,
locally described by wedges with model cones of different dimensions. To be
more precise, if X is a (say, compact) topological space and X2 := (R; x
X)/({0} x X) the cone with base X (where {0} x X in the quotient space
corresponds to the tip v of the cone), the Cartesian product X x  with a C>
manifold € is a wedge with model cone X* and edge 2. In our case we assume
X = X U...UXy to be a disjoint union of compact and closed C*° manifolds X
of dimensions n; = dim X;. Then X2 is a cone of the form UvXjA = UX]-A/ ~,
where U, is the disjoint union combined with the quotient map that identifies
the tips of the cones X jA with a single point v. Examples of edge configurations
can easily be constructed in terms of transversal intersections of embedded C*°
manifolds of different dimensions; the intersections are then the edges.

Configurations of that kind occur in a number of applications, for instance,
in mechanics, heat diffusion and other models of applied sciences. Ellipticity in
operator algebras with discrete asymptotics in the simpler case of cones U, X ]-A
with different-dimensional X; has been investigated in [15]. Models with trans-
mission effects in network-like situations have been studied by Ali Mehmeti for
hyperbolic equations, see [1] and the references there. It is also interesting to
consider operators on spaces with “higher” edges and corners, i.e., spaces com-
posed of subspaces of different dimensions and (say, piecewise smooth) singular
geometry, though such a calculus is not yet established; it would be of a similar
complexity as a corresponding theory for manifolds with higher singularities in
the sense of [17], [18].

In the present paper we concentrate on algebras of edge-degenerate operators
on a stretched configuration with edges, parametrix constructions for elliptic
edge problems and asymptotics of solutions. To formulate our calculus, we first
deal with the transmission algebra C*(X",g;v) on cones (see Section 1 below
for notation): the edge-degenerate operators of our algebra will be defined by
means of operator-valued symbols taking values in C*(X", g;v), parametrised
by (y,n) € T*Y, where Y is the edge. Parameter-dependent versions of the
present calculi are also possible, and they would be necessary in analogous
problems when the base spaces X; themselves are configurations with edges
and corners of different dimensions, see [18] for a special situation of that kind.



Anyway, we will not give here a detailed description of the parameter-dependent
case.

Differential and pseudo-differential operators on manifolds with geometric
singularities such as conical points or edges have a long history and are studied
under different aspects by many authors before, cf. Kondratyev [7], Melrose,
Mendoza [9], Mazzeo [8]. Concerning further references, cf. [5] or [14]. Here
we focus on an approach for edge-degenerate operators, first established in [12]
for “standard” manifolds with edges, that combines ideas from the analysis of
boundary value problems in the sense of Boutet de Monvel [3] or Rempel and
Schulze [11] with special Mellin quantisations in model cone direction, see [13],
and quantisation in edge direction, see [14], [16], based on twisted homogene-
ity of operator-valued symbols, connected with strongly continuous groups of
isomorphisms on weighted spaces on the model cones. What we obtain is an
algebra of (2 x 2)-block matrix operators with trace and potential conditions
along edges. The latter ones satisfy an analogue of the Shapiro-Lopatinskij con-
dition in the elliptic case. Similarly to boundary value problems, cf. Atiyah
and Bott [2], there is a topological obstruction for the existence of such condi-
tions. For the edge case with different model cones it may happen (as for, say,
the Cauchy-Riemann operator and transmission problems on a manifold with
respect to an interface of codimension 1) that for operators from one side the
obstruction may be non-vanishing though from both sides it vanishes. Trans-
mission problems in general (for pseudo-differential operators with or without
transmission property at the interface) are, in fact, special cases of our calculus.
In that case the normal half lines in the two opposite directions are just the
model cones of corresponding local wedges.

Ellipticity in our algebra is determined by a bijectivity condition for a sym-
bolic hierarchy, consisting of interior and edge components, and we construct
parametrices within the algebra. Regularity of solutions is controlled in weighted
spaces and subspaces with discrete or continuous asymptotics.

A large variety of explicit examples of elliptic operators with “usual” edges
may be found in [10], including operators where the above-mentioned topologi-
cal obstruction does not vanish. Other examples may be constructed in terms of
parameter-dependent ellipticity such that corresponding operators induce iso-
morphisms between the respective weighted Sobolev spaces, cf. also Dorschfeldt
[4]. The approach can also be extended to the present algebra with different
dimensional components.

1 Transmission algebras on cones

1.1 Mellin operators and cone Sobolev spaces

Let us first fix some notation around the Mellin transform and associated
pseudo-differential operators. The Mellin transform M is given by the formula

Mu(z) = /0Oo r*~tu(r)dr, (1.1.1)



in the simplest case for u € C§° (R} ); then the covariable z varies in C, and we
have Mu(z) € A(C) (here, A(U) for any open U C C denotes the space of all
holomorphic functions in U). (1.1.1) will be then extended to various function
and distribution spaces, also vector-valued ones; then z will vary on subsets of
C, for instance, lines

I3:={z€C : Rez =0} (1.1.2)

for some real 8. Define the weighted Mellin transform with weight v € R by
Myu(z) == M(r~7u)(z + 7). Then M u = ./\/lu|F for u € Cg°(Ry) is

interpreted as a map M : C§°(Ry) — A(C). Recall that M., extends to an

isomorphism M., : r7L*(Ry) — LZ(F;_V) and the inverse is

M;lg(r) = L/F r~*g(z)dz.
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Here and in the sequel, function and distribution spaces, originally given on
R, will also be employed for I's 3 z, where Im z plays the role of the real
variable. In particular, we have symbol spaces S#(Ry x Ry x I'g) in the sense
of the Hérmander classes, where we write a(r,r’,z) with 7 := Im z being the
covariable. With symbols a(r,r’,z) € S#(Ry xRy XF%JV) we associate weighted
Mellin pseudo-differential operators on the half-axis

op}(@u(r) = VHT{Mwam 2)u(r)} (11.3)

// dmrkin) a(r,r’, z)u(r )d—rdr

1
where z = 37 + 7. Note that we can also write

opyy(a) =r7opp (T Ta)r "

where (T'=7a)(r,r',z) = a(r,r',z —7) and opy,(.) = opy,;(.). Below we use such
a notation also in the vector- and operator-valued case, where, for instance,
a(r,r',z) € C°(Ry x Ry, L#(X;T1_,)), and X is a closed compact C°° man-
ifold. Here L*(X;R) denotes the space of all pseudo-differential operators of
order p € R on X that depend on a parameter 7 € R. Recall that such opera-
tors are locally described by amplitude functions a(z,z’, &, 7) in the covariables
(¢,7) € R*™ n = dim X, while L™°(X;R) = S(R,L~>°(X)) with the space
L=°°(X) of smoothing operators on X. In a similar sense there are parameter-
dependent spaces L*(X;R') for an [-dimensional parameter A. All these spaces
are equipped with natural Fréchet topologies.

To define weighted Sobolev spaces on a stretched cone X" := Ry x X
with base X, we employ the fact that for every p € R there exists an element
RE(X) € L*(X;R') that is parameter-dependent elliptic of order p and induces
isomorphisms R*(\) : H*(X) — H* #(X) for all A\ € Rl,s € R. Here, H*(X)
are the standard Sobolev spaces of smoothness s € R on X. We now choose such



a family R¥(7) with parameter 7 € R and define H*7(X"\) as the completion
of C§°(X") with respect to the norm

2

1
/F+1 1R (T 2) Mu(2) |22 d2 5 (1.1.4)

2mi

for n = dim X. The space L?(X) is equipped with a scalar product, defined in
terms of a fixed Riemannian metric on X. Recall that when we choose another
family R“(T) with analogous properties, we get an equivalent norm.

The spaces H*7(X") have the meaning of Sobolev spaces based on the Fuchs
type derivative in € Ry and (local) usual derivatives on X. More precisely,
for s € N we have

HE(XN) = {u(r,z) € r 2HLA(R, x X) -
(r0,)*Du(r,z) € r 2 TL*(Ry x X) for all k + ordD < s}(1.1.5)

Here D stands for arbitrary differential operators on X. It can be easily proved
that (1.1.5) is an equivalent definition of H®7(X") for s € N, and the full
scale could be defined by duality and interpolation. Notice that H*9(X") =
r~% L*(Ry x X) (with L? being taken with measure drdzr).

By a cut-off function on the half-axis we understand in this paper any real-
valued w(r) € C§°(R4) that equals 1 in a neighbourhood of r = 0.

In the considerations below we will also employ a modified scale of weighted
Sobolev spaces, namely K*7(X"), defined by

KEY( XN i={wu+ (1 —w)v : u€H(X),ve HE (XM}

cone

for any cut-off w. Here, HZ . (X") for X = S™ (the unit sphere in R**!) is the
subspace of all v € Hf (X”) such that (1 —w)v € H¥(R**') where (r,z) are
interpreted as polar coordinates in R**1 \ {0} = (S™)". For general X we first
choose a chart x; : G — C on X for an open set C C S", and set C" := {Z €
R\ {0} : %/|Z| € C}, HE,o(CM)o = {u € H*(R"™) : suppu C C"}.
Then, extending x; to a diffeomorphism x : G — C” by homogeneity (i.e.,
x(s,z) = sx1(z)), we set HE (G")o := {x*u : wu € HE (C")o}. We
then define HZ,,.(X") to be the space of all ) p;v; where v; € HZ,,o(G})o
for an open covering {G1,...,Gn} of X by coordinate neighbourhoods and
{¢1,...,¢n} asubordinate partition of unity.

We will be interested in spaces on two (or finitely many) cones X 1A Uy XzA for
bases X1, X, of different dimensions, where U, means disjoint union combined
with an identification of vertices. These will be the model cones of configurations
with edges. In our transmission algebras on (say, local and stretched) wedges
(XM U XP) x Q for an open set © C R?Y we consider operators that share
information between X{* x Q and X' x Q, encoded below by a kind of smoothing
Mellin and Green operators. For the non-smoothing part, because of “pseudo-
locality”, we can ignore for a while the interaction of operators and discuss



edge-degenerate symbols for a single wedge X" x 2 with a smooth compact
cone base X.

Let U C R* be an open set and let S#(Ry x U x Q x R*"+4) denote the
space of all symbols p(r, z,y, p,£,n) that have the form

p(r,z,y,p,§m) = p(r,z,y,rp,§, 1),
where

plryz,y, p, &) € SH(Ry xUxQxRIT0) .= SH(R, xeQxR1+”+q)|ﬁ+xUXQ
(here, we use common notation, i.e., Hormander’s symbol spaces S*(V x RY),
V C R™ open).

Given an atlas x; : G; = U;, j = 1,...,N on X and a system of local
symbols p; € S*(Ry x U; x Q x R147H9) we can pass to (r,y, p,n)-dependent
families of pseudo-differential operators on X by setting

N
p(r7y7p7 77) = ij{(xj_l)*opw(p])(rayapa 77)}1/11 (116)
j=1

In formula (1.1.6), {¢;}=1,... ~ is a partition of unity subordinate to the cover-
ing {G;}j=1,...~,and {¢;};=1, .~ are functions in C§°(G;) such that ¢;1; = ¢;
for all j, and (Xj_l)* is the operator push-forward under x7 .

Let us now introduce parameter-dependent families on X that are holomor-
phic in z € C.

Definition 1.1 Let M{;(X;R?), n € R, denote the space of all operator families
h(z,n) € A(C,, L*(X;R})) such that

Bz, 1)y, o € LM(X: T x RY)

for every B € R, uniformly in compact B-intervals. For q = 0 we simply write

The space M, L‘;(X ; R?) is Fréchet in a canonical way, and we then have spaces
of the kind C*° (R4 xQ, M%(X;R?)). We now recall a Mellin quantisation result
that will be essential in our operator algebra below.

6) there is an h(r,y,z,1) €

Theorem 1.2 For every p(r,y, p,n) of the form (1.1
= h(r,y, z,rn) satisfies the fol-

C>®(Ry x Q, ME(X;R?)) such that h(r,y,z,n) :
lowing relation:

op,(p) (y, 1) — opiy (h)(y,m) € C™°(Q, L™°(X"; R?)) (1.1.7)

for every B € R (where operators are interpreted in the sense Ce (X)) —
C>(X")), and h is unique mod C*°(Ry x Q, M, (X;R?)).



Remark 1.3 If we define po(r,y,p,n) in terms of symbols p;o(r,y,p,n) =
Dj(0,y,rp,rn) and set ho(r,y, z,n) := h(0,y, z,rn), relation (1.1.7) implies

op, (Do) (y,m) — opy; (ho)(y, 1) € C(Q, L™ (X RY)).

The local edge-degenerate symbols p;(r, x,y, 0, &, ) give rise to homogeneous

principal symbols in (o, £, 1) #0 of order u, denoted by oy (op,.(p))(r, 2, y, 0,&,n).
As usual, these are invariantly defined functions on 7*(Ry x X x Q) \ 0.

1.2 Asymptotics and Green operators

Our next objective is to study particular operator-valued symbols, acting in
weighted Sobolev spaces on X{* U X2 and mapping to spaces with asymptotics.
Since symbols depend on variables and covariables (y,n), asymptotics also will
be variable; in fact they will depend on y (not on 7). For this reason we need a
sufficiently flexible concept of asymptotics, not only discrete but also so-called
continuous ones. To introduce basic notions, we first look at a single cone X",
Let us define subspaces K37 (X") of K£*7(X") with asymptotics of type P,
associated with weight data g = (v,0) where © = (4,0], —c0o < ¥ < 0, is a
weight interval. By a discrete asymptotic type P we understand a sequence

P ={(pj,mj, Lj)}j=o,..,~n (1.2.1)

for an N = N(P) that is finite for finite ©, where

n+1 n+1

n = dim X, and (for the case N(P) = o0) Rep; — —oo as j — oo, further
mj € N, while L; C C*°(X) is a subspace of finite dimension. Set

K& (XM) =1lim 27777 (X ")
e>0

endowed with the Fréchet topology of the projective limit. If © is finite, we de-
note by Ep(X") the vector space spanned by all functions w(r)c;jg (x)r s log" r
for all pj € mcP, 0 < k < my, ¢cjy € Lj, j = 0,...,N, where w is a
fixed cut-off function. Observe that then Ep(X") C K°7(X"), and we have
Ep(XM)NKG(X") = {0}. We then define K37 (X") := KT (X") + Ep(XN)
in the Fréchet topology of the direct sum. To define K37 (X") for ¢ = —oc0
we choose an arbitrary sequence {U}ren, such that dpy; < ¢ < 0 and

lim ¥ = —oo0, set
k—o0

1 1
Pk:{(p,m,L)eP : %—7—%%<Rep<%—7}

and define
KB/ (X7) = K] (X7") + Ep, (X7) (1.2.2)



where O := (U4,0]. This is a direct sum for every k, and the correspond-
ing Fréchet topology in (1.2.2) is independent of the choice of w. We have
K., (X7) = Kp(X") for all k, and we then set
57 (X°) = lim K37 (X)
keN

in the (Fréchet) topology of the projective limit. The elements of Ep, (X") are
called singular functions of the discrete asymptotics for the cone.

To pass to continuous asymptotics we first reinterpret the discrete ones in
the following form. Let us first assume that © is finite; then K := #ncP is a

. . . on+1
finite set. Choose a (say, smooth) curve C in the strip nT —7+9 <Rez<
n+1

— 7 surrounding the set K counter-clockwise. Fix a cut-off function, and
set f(2) := My_x(wu)(2) for u € K37 (X"), which is a meromorphic (C>(X)-
valued) function with poles at p; of multiplicities m;+1 and Laurent coefficients
kl(=1)*cjr(z) at (z — p;j) =Y, where ¢jp, € Lj, 0 <k <mj, j =0,...,N(P).
Then we have

u(r) — 3 / fz)r—2dz € KF'(XM). (1.2.3)

This relation has the following more general background. Let f(z) be an ar-
bitrary meromorphic C°°(X)-valued function with the indicated poles, multi-
plicities and Laurent coefficients. Then with f we can associate an analytic
functional (y in C carried by K, namely

(¢ h) 2m/f dz, he AC). (1.2.4)

In the present notation we just have

k
(Cr 1) ZZ k(@ %h(z) : (1.2.5)

Jj k=0 Z=pj

In other words, if we denote for a moment by F(K) the set of all meromorphic
functions f associated with P in the described way, we have

Ep(X") = {(Gr,r 7)Y w(r) « f € FK)}

Thus, we can produce all singular functions in terms of a certain set of C*°(X)-
valued analytic functionals carried by K = w¢ P. The idea of continuous asymp-
totics is now to replace K by an arbitrary compact set in C and to admit
arbitrary ¢ € A'(K,C*>(X)). Here, A'(K) denotes the space of all (scalar) an-
alytic functionals carried by K in its (nuclear) Fréchet topology, and A'(K, E)
(= A'(K)®,E) for any Fréchet space E is the corresponding vector-valued vari-
ant.

To define carrier sets of continuous asymptotics we define V to be the system
of all closed subsets V' C C such that VN {z € C : ¢ <Rez < '} is compact



for every ¢ < ¢ and zg,z1 € V, Rezp = Rez; implies (1 — A)zg + Az € V for
1
al0 < A< 1. GivenaVGVWithVC{zEC : Rez<%—7} and a

finite weight interval ©® = (¢#,0], we consider the compact set K := V N {z €

C : Rez > nTH -7+ R} for any R < . Observe that we then have

uc(r,z) == ((,r *)w(r) € £>7(X") for every ¢ € A'(K,C>(X)). Moreover,
1

K C {z €C : Rez < % —7—|—19} implies uc(r,z) € K§"7(X"). Let us

form the space
Ex(XM) = {(C,rﬂ)w s (e A(K,C®(X))} C K®7(XM),

and write u ~ v for u,v € Ex(X") if and only if u —v € KZ"7(X"). The
quotient space Ex(X")/ ~ is called a continuous asymptotic type, associated
with the weight data g = (7, ©) (clearly, this does not depend on the choice of
R). Let As (X, g) denote the set of all such continuous asymptotic types P. We
then define
KE(X7) = K (XM) + Ex (X,

endowed with the Fréchet topology of the non-direct sum.

Let us now extend the definition to the infinite weight strip ©® = (—o0, 0]

1
and arbitrary V € V, V C {z €C : Rez< % —7}. In this case we choose
a sequence {VUy, }ren, where 9541 < Oy, for all k, 9, — —oo for k — o0, and form
1

corresponding sets Ky := V' N {z €C : Rez > % -7+ Rk} for arbitrary

Ry, < ¥j. For the associated continuous asymptotic types P, € As(X,g;),
gy, = (7,0y), we then have continuous embeddings Kz (X") — KB/(X")
for all k, and we set

K3 (X = lim K37 (X7) (1.2.6)
keN

in the (Fréchet) topology of the projective limit. This defines the symbol P,
called a continuous asymptotic type associated with g = (v, ©) in the infinite
case, and the set of all such P is again denoted As (X, g).

If P is an asymptotic type connected with weight data (v, ©) (discrete or
continuous), we set

SHXM) ={wu+ (1—wpv : ue KT(XN),ve SE,C®(X)}  (1.27)

for any cut-off function w. Clearly, the space (1.2.7) is independent of the
specific w. It is a Fréchet space in a natural way.

Remark 1.4 The spaces K*7(X") are equipped with a strongly continuous
group of isomorphisms {kY}xcr, defined by (kYu)(r,z) = )\"THU()\T, x) where
n =dim X. In addition, the spaces K3 (X") as well as SH(X") (both for dis-
crete and continuous asymptotic types P) can be written as projective limits of
Hilbert spaces {H;}jen with continuous embeddings Hj 1 — H; for all j and



Hy = K*7(X"), where {kY}rer, restricts to a strongly continuous group of
isomorphisms on every H;.

Definition 1.5 Let X and Y be closed compact C*° manifolds, n = dim X,
m = dimY, and choose reals 7,0 € R and a weight interval © = (9,0], —oo <
¥ < 0. Then Cq(XN, YN (v,0,0)) is defined to be the space of all continuous
maps

G : KHEtE (XN —» Koot (YN,

s € R, that induce continuous operators
G KFEITE(XN) 5 S (v

and .
G* o KRR (YN 5 87T (XN

for all s € R, with asymptotic types P € As (Y, (5+%, @)) and Q) € As (X, (—

v+ g,@)). Here, G* is the formal adjoint of G in the sense

(Au,v)Ko,%(Y,\) = (U,A*U),Co.%(XA)
for all uw € C*(XM), v € C(Y") via the scalar products of K%% (X") and
K%% (Y"), respectively. The elements of Ca(X™, Y™, (v,6,0)) are called Green

operators of the transmission cone algebra with continuous asymptotics.

Remark 1.6 An analogous definition makes sense for discrete asymptotic types
P,Q. Moreover, there is a straightforward extension of Definition 1.5 to opera-

tors
KHETE (XN E) —» K0T (YA, F)

acting between distributional sections of vector bundles E on X" and F on
Y, endowed with suitable Hermitian metrics (with an obvious generalisation of
asymptotic types), cf. Section 2.1 below.

1.3 Mellin operators with asymptotics

We now turn to a specific class of pseudo-differential operators on X" = R x
X 3 (r,z) for a compact, closed C'* manifold X, based on the Mellin transform
in r € Ry, with operator-valued symbols that reflect asymptotics. A sequence

R:={(pj,m;,Lj)}jez (13.1)

is called a discrete asymptotic type for Mellin symbols, if for 7c R := {p;};jez C
C the set ic RN{z : ¢ < Rez < ('} is finite for every ¢ < ¢/, moreover, m; € N,
and L; C L~°°(X) are finite-dimensional subspaces of operators of finite rank.
We also admit finite sequences (1.3.1), where a triple (p, m, L) may be ignored
as soon as L = {0}.

10



Mg (X) for R given as (1.3.1) is defined to be the set of all f € A(C\
mcR,L™°°(X)) such that f is meromorphic with poles at p; of multiplicity
m; + 1 and Laurent coefficients at (z — p;) = +1) in L; for 0 < k < m;, where

x(2) f(2)lr, € S(Tg, L>(X))

for every real 8, uniformly in compact [-intervals; here x denotes any mc R-
excision function, that is x € C°°(C) and x(z) = 0 in a neighbourhood of 7¢ R
and x(z) = 1 for dist(z, 7¢c R) > ¢ for some € > 0.

Let us now pass to an analogue of continuous asymptotics. First, fix ¢ <
¢, and let M5>(X)(,c) defined to be the set of all h € A({c < Rez <
c'}, L7°°(X)) such that h|p, € L™°°(X;I'g) for every real 3, uniformly in com-
pact B-intervals of (c,c'). Now, let V€ V and set V(. ) := VN{c < Rez < '},
which is a compact set. There is then a map

A Vie,ery, LT (X)) = A(C\ Vie,ery, L™ (X)),

¢~ f¢, by setting
fe(z) == M%T—)Z(@Waw(r)riu}))

with the weighted Mellin transform M, for any v < % — . The space
Fv,..., of all functions f¢ that belong to A(C\ V(. ¢y, L7°°(X)) is isomorphic to
A (Vie,ery, L=°(X)), and therefore has a canonical Fréchet topology. We then
define My,*° (X)) as the space of all elements h(z) + f¢(2)|{c<rez-<c} for
h € Mg (X)), ¢ € A (Vie,ery, L~°(X)), endowed with the topology of the
non-direct sum of My™ (X)) + Fv, ., taken in the space A({c < Rez <
'\ Vieery, L=°(X)) (clearly, the space Fv,,.., depends on the choice of w
but the non-direct sum is independent of the specific cut-off function). Notice
that for any ¢ < ¢, ¢’ < & we have a continuous embedding M > (X) @z <
My, % (X)(c,cry- We then define the space

My, *(X) = lim M, >*(X)n,N)
NeN

as a projective limit. The elements of M, °°(X) are interpreted as smoothing
Mellin symbols with continuous asymptotics of type V. Setting again n =
dim X, if w(r) and &(r) are cut-off functions, with every f € M, °°(X) we can
associate a continuous operator

woply (f)@ : K37 (XM) = K7+E (XM, (1.3.2)

provided V' N F%, = . More precisely, (1.3.2) induces continuous operators

~y

wopl(f)@ : K TE(XN) = Ky E (X

for every P € As (X, (7+ %, @)) and some resulting () € As (X, (7+ %, @)),

that depends on P and f, not on s € R. A similar result is true for discrete
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asymptotic types R for Mellin symbols instead of V and discrete asymptotic
types P,Q in place of P,Q, cf. the notation in Section 1.2. Recall that some
Riemannian metric on X is kept fixed. There is then an identification between
L~°°(X) and the space of integral operators on X with kernels in C*>°(X x X).
Let us now generalise the construction of spaces of smoothing Mellin symbols
to the case Y x X. To simplify notation, we identify the space of all operators
Nser L(H?(X), H*(Y)) with the space C®°(Y x X) via integral kernels. Let
As® (X,Y) denote the set of all sequences (1.3.1) with (p;,m;) € C x N as
before, whileL; is a finite-dimensional subspace of C*°(Y x X).

Let M, (X,Y) for R € As®(X,Y) denote the set of all f(z) € A(C\
mcR,C®(Y x X)) such that f(z) is meromorphic with poles at the points p; of
multiplicities m; + 1 and Laurent coefficients at (z —p;)**1, 0 < k < m;, in L;,
where x(2)f(z) € STg,C®(Y x X)) for every 8 € R, uniformly in compact
B-intervals, for every m¢ R-excision function x.

In a similar manner, for every V€V we can define a Fréchet space M;,*°(X,Y)
by replacing L=°°(X) in the above construction by C*° (Y x X). The extension
of this definition that allows us to introduce the space M, *°(X,Y; E, F) with
closed compact manifolds X,Y and vector bundles E € Vect (X), F € Vect (Y),
is immediate, cf. Remark 1.6.

Definition 1.7 Let XY be smooth closed, compact manifolds and E € Vect(X),
F € Vect (Y) vector bundles, further (v,9,0), 7,0 € R, © = (—(k + 1),0],
k € N weight data. Then, the space Cprra(X",Y";(7,8,0); E, F) is defined
to be the set of all the operators A = M + G where G is a Green operator
in Ca(XN,Y", (v7,0,0); E, F) (as introduced in Definition 1.5 and Remark 1.6)
while

k ~
M =r""w Y el {opl (F)+opa ()} @« K7TE(XN E) = K8 (YA, F)
=0
) (1.3.3
with fj € My =(X,Y;E,F), f; € M‘%/C_’o(X,Y;E,F) and reals 8 = ((5),8 =

~—

B(j) such that W; NTy_g =0, WinT, 5=0,j+5 >y>6,j+6>7>4,
j=0,...,k. The space Cp1c(X",Y";(~,0,0); E,F) for the infinite weight
interval © = (—00,0] is defined by taking intersections over the corresponding
spaces for ©y = (—k,0], k € N.

Note that the terms involving fj, j=1,...,k in (1.3.3) can be suppressed
in the case of discrete asymptotics. Moreover, in the case © = (—(k + 1),0], a
term like those in the sum (1.3.3) with j > k + 1 is in fact a Green operator.
Let us set

om(M)(2) := fo(2) + fo(2) (1.3.4)

regarded as a z-dependent family of continuous operators

om(M) : H*(X,E) - H*(Y, F),

12



s € R, called the principal conormal symbol of the operator M. More generally,
similarly to the standard cone theory, we can introduce lower order conormal
symbols

oD (M)(2) == fi(2) + fi(2),  G=0,....k,
(0)

oy =: oum. It can easily be verified that the functions f;, f; are well-defined
by the action on special argument functions of the form r~%w(r), cf. [14],

Section 1.3.1. Then 01(\,][)(M) = 01(\/]1)(M)a j=0,...,k for two elements M, M €
Crrc (XN, YN, (7,6,0); E, F) entails M =M mod Cg(X",Y",(v,6,0); E, F).

Observe that M is compact as an operator K72 (X") — K02 (Y1) if
and only if oy (M) vanishes.

Remark 1.8 The choice of the weights (3, ﬁN (under the mentioned conditions)as
well as of cut-off functions w, @ is arbitrary. If M is an expression of analogous
structure as M in (1.3.3) with the same Mellin symbols but other weights or
cut-off functions, then we have M — M € Cq(X", Y™, (7,0, (—o0,0)); E, F). In
view of this, except for j = 0 (where necessarily 3(0) = G(0) = 7), we can
choose them in a “normalised way”, setting B(j) = v — %, B(]) =y - é for
j=1,... k.

Proposition 1.9 Let w,@ be cut-off functions, and let f(z) € M,*(X,Y),

VeV, whereVNIi_, = 0 for some v € R. Then
2

wopl (fl@ + KFTE(XN) — KT (Yh) (1.3.5)
is a continuous operator for all s € R, and (1.3.5) induces continuous operators

wopl (@ KT E (XN » Ky E

for every P € As (X, (’y+ %,@)) with some @ € As (Y, (7+ %,@)), s €
R. In addition, the formal adjoint of (1.3.5) in the sense (Au,v)

(u, A*v) ) for all w € CP(XM), v € C§°(Y™) has the form

KO%(yny =
K% % (xn
@opy (f*)w

where f(*)(2) := f*(1—Z) with subscript * denoting the pointwise formal adjoint
in the sense (f o, ¥)r2(v) = (¢, ") L2(x) for all p € C*(X), p € C(Y).

Proof. The continuity follows adapting the proof of the analogous result
for the standard cone algebra to the present situation. To prove the formula for
the adjoint, note that

(wopy (@) = (wrlopy (T f)r™7@)" =ar™"(opy (T77f))r" w
= wr Topy (T f))r7w=wr Topy ((f(z =7)")r" w.

Now, taking into account that, setting for a moment g(z) := f(z — 7),

9@ =g 1-2) = 1-2-7)=f1-(+7)=T"1(),
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we can conclude
(wopi,(f)@)* =@ Topp(T7 f)r7 w = Dopy/ (F*)w

as claimed. O

1.4 Transmission algebras

Let us now introduce algebras of block matrix operators on X{* U X', that
we call transmission algebras. Let us fix weights v,d € R, a weight interval
© = (=(k+1),0], k € N, vector bundles Ej, Fj € Vect (X/), j = 1,2. Set v :=
(E1, F1; Es, Fy) and g = (7y,0; ©). We will also use the following abbreviations:
X" = (XD, X)), n = (n1,n2), E := (Ey, Ey), F := (Fy, F). Similar notation
will be used for pairs of asymptotic types, P := (P, P»), Q := (Q1,Q2), and
for direct sums of spaces,

CROX{ B HE3 (XD, )
CF(XME)= @ HVHXNE)= &
0o (XD, Ey) H** % (X3, By)
st 3 3 (X By) n Sz’:r%l(XlA’El)
KT (XN, B) = @ Sp H(X" B)= &
s+ 22 o2 =
Ko+ 30 (X)), By) Spy T (XD, By)

as well as for ICS+2’V+2 (X", E). We will use the subscript “(P)” when a
formula or result holds in the cases with and without asymptotics.

Finally, we fix arbitrary cut-off functions w, @, & (their specific choice is
unimportant, but, for convenience, we assume w® = w, wWw = o:J)

Definition 1.10 The space C*(X",g;v) is defined to be the set of all operators
of the form

(A0
A_< 0 A2)+M+G, (1.4.1)

where the ingredients are as follows:

(i) A; = r'Twopl(h) @ + (1 —w)Ajy (1 @), for arbitrary hj(r,z) €
O (R, ME(X;; B, Fy)) and Ajy e Lo (XD B, Fy), § =1,2;

(i) M + G = (M;; + Gij)ij=1,2 is a block matriz of operators belonging to
CM+G(XJA7X@'A7 (7767@)5E]7Fl)

We write Cpr16(X, g;v) or Ca(X,g;v) for the subspaces of operators (1.4.1)
where A; and A, vanish or, respectively, A;, A and M vanish. Setting for
a moment g, := (7,6, (—(k + 1),0]), we can pass to a space C*(X",g;v) for
g= (7757 (_0070]) by

CH(X",g;v) = [) C*(X", 943 ).
kEN
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All essential elements of our calculus for a finite weight interval (—(k + 1),0]
remain true also for ® = (—o0,0]; for this reason we mainly discuss the finite
case.

Theorem 1.11 An operator A € C*(X",g;v) induces continuous operators

A KPR (XN E) » K THTTE (XN F)
for every s € R and every pair of asymptotic types P with some resulting Q,
dependent on P and on A.

The components of asymptotic types P := (P, Py) and Q = (Q1,Q2) are
assumed to be associated to weight data corresponding to the weights in the
spaces and the chosen weight interval © = (—(k + 1), 0], and we admit discrete
as well as continuous asymptotic types.

Proof. The only terms that have to be explicitly considered are those from
M, in particular the mixed terms Ms; and Mz, that have been treated in
Proposition 1.9. The other ingredients of A belong to the standard cone algebras
on X]/.\, j = 1,2, except for G2; and G2, where the mapping properties follow
from Definition 1.5. ]

We now pass to the symbolic structure of operators A € C* (X", g;v). First,
for the operators A; in (1.4.1) we have homogeneous principal symbols of order
u that are (up to weight factors) Fuchs-degenerate near r = 0, namely

0’¢(Aj) : W;Ej — W;Fj, (142)

where 7; : T*XjA \0 — Xj/.\ denotes the canonical projections. Locally, near
r = (0 we can write

Oy (A])(T', Tj, 0, f]) = réi’y&dl (A])(T', Ty, é: 6]')|§:7’Q (143)

for bundle homomorphisms &, (A4;) that are smooth in 7 up to r = 0. To
illustrate this structure in more detail, let us look at the scalar case, i.e., trivial
bundles of fiber dimension 1. Then, as is known from Mellin pseudo-differential
operators of the prescribed form, in local coordinates z; € R™ on X; the
operators A; have amplitude functions

Dj (T', Ij,0, f]) = T(S_Fyﬁj(ra Zj, é; fj)|§=rg

where p;(r,z;,8,&;) € SH(Ry x ¥ x ]R{gfgl), ¥ C R% open. In other words,
locally A; equals op, , (pj) mod L™*°(Ry x ¥). Then, G4 (A4;) just corresponds
to the homogeneous principal part of p; of order p.

As operators on cones X j/\ with exit to infinity there are exit symbols of A;
locally on Ry x X, ¥ C R% open, that are invariantly defined modulo Schwartz
functions in variables and covariables. The finite system of such local exit
symbols (corresponding to a finite covering of X; by coordinate neighbourhoods)
will be denoted by oe(A;), and the pair ge(A) = (0e(A1), 0e(A2)) is called the
exit symbol of the operator A.

15



Finally, the principal conormal symbol o) (A) is defined to be the family of
maps

i (A)(2) = < UM(I‘(l;)(Z) UM(AOZ)('Z) ) + om(M)(z) (1.4.4)

where, according to the common cone calculus,
om(4;) =hi(0,2), j=1,2,
cf. Definition 1.10(i), and
om(M)(z) = (om(Mjk)(2)) k=12,

cf. formula (1.4.4). Note that oy (A) gives rise to a z-dependent family of maps
om(4) ¢ H¥(X,E) - H°"(X,F), where we have used the same letters for
the restrictions of the bundles to the cone bases X, X,. Let us set

o (A) = (0y(A4), om(A4), 0 (4)), (1.4.5)

called the symbol of A.
Let us now pass to the composition of operators

AeCHX" g;v),BeC’ (X" h;w)

for g = (7,0,0), v = (F1,G1; F>,G2) and h = (3,7,0), w = (Ey, Fi; B>, F3).
Set goh = (3,6,0), vow = (Ey,G1; E», G2).

Theorem 1.12 We have AB € C**" (X", goh;vow) and 0(AB) = 0(A) o(B)
with componentwise composition, where

oy(AB) = oy(A)oy(B),
0e(AB) = 0¢(A)F#0.(B),
om(AB)(2) = (T°om(4)(2)) om(B)(2),

and # denotes the Leibniz product of local representatives. If A or B belongs to
the class with subscript M + G or G, then the same is true of the composition.

Proof. Let us write

_ Al 0 _ Bl 0 ! 4
A_< 0 A2)+M+GandB_< 0 B2)+M+G,

where the various terms are described in Definition 1.10. The product is of the

type
AlBl 0
< 0 AB, ) +0,

and, due to the algebra property in the case of a single cone, we only have
to show that C € Cprrq(X",g o h;v ow). Most of the terms appearing in
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the diagonal components of C' turn out to be of the correct type, since they
come from compositions of operators belonging to the cone algebras on X{* and
X 2. Moreover, all the compositions with Green operators coming from G and
G' are Green operators, as one can easily verify by their mapping properties,
cf. Definition 1.5 and Theorem 1.11. In addition to this, the terms of the
block (21) are of the same nature of those of the block (12), by exchanging the
role of X{* and X2'. So the only terms that we have to examine explicitly are
Q1 = MMy, Qo2 = Moy My, Q1y = A1 My, Q35 = M12Bs, Q35 = My Mj,
and Q}, = M2 M},. For simplicity, we consider, from now on, trivial bundles.

Let us start by focusing on @1;. Of course, it is enough to take into ac-
count only one of the terms arising from this composition. Adapting Lemmas
2.3.69, 2.3.70 and 2.3.72 of [16] to the present situation, we can, modulo Green
remainders, modify the expressions of M and M’ by commuting r powers with
Mellin operators having meromorphic smoothing symbol, changing the cut-off
functions and shifting the weight lines, provided the carriers of the asymptotics
do not meet the weight lines themselves, cf. Remark 1.8.

Similarly, cf. Lemma 2.3.73 of [16], we have

Wlopﬁij(f)(]- - w)opL(fl)w2 € CG(Xl/\7 Xl/\a (7777 (_007 O]))

for arbitrary cut-off functions w,w;, w2 and smoothing meromorphic symbols
fle My (Xq,Xs), f € Mj;*(Xs,X1), when the carriers V and V' do not
intersect the weight line I’ 1oy Then, modulo Green remainders, it suffices to
consider terms of the kind

Y writ op,, (T*”f)wr*”“d+"I+”’*’30pM(T*”’f’)r*"lw

with j+ &k >y >k, j'+ k' > 3 > k', and we can follow the same argument of
the last part of the proof of Theorem 2.3.84 of [16], obtaining smoothing Mellin
operators on X; of the type

0Bt opf (TP~ f) Y w (1.4.6)

with j+j +%& > 8 > k.

The required property for 3, follows in the same way, since the involved
terms are essentially of the same kind of those in @11 (the only difference being
the fact that M, takes values in operators with kernel in C*°(X; x X) instead
of COO(Xl X Xz))

Now, note that Q1, = r®~7wop}, (h1)dM|, + (1 — w)A;4(1 — &) M{,. The
first term can again be treated as above, if A does not depend on r: indeed, hy
is holomorphic and its pointwise composition with the symbols f;, f] appearing
in M7, gives an operator with kernel in C*°(X; x X;). In the general case, the
result is obtained via a Taylor expansion argument, since remainders with high
enough r power are Green operators, cf. the proof of Proposition 2.3.69 and
Theorem 2.4.15 in [16]. Choosing a suitable cut-off function w’, the second term
can be written as H = (1 —w) A, (1 — ©)w' Mj,. Since (1 —0)w' € CP(Ry), it
turns out, by the mapping properties of the involved factors, that H is again a
Green operator.
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Finally, Q22, @3, and Qf, can be treated as Q11, Q1, and Q3,, respectively.

The symbolic rules for the 1)- and e-components of o(AB) are immediate,
both following from the usual composition rules for the diagonal non-smoothing
terms of A and B. The formula for o) (AB) is a consequence of the similar one
for the standard cone algebra and of (1.4.6) with j = j' = 0. [

For A € C*(X",g;v), g = (7,6, (—(k+1),0]), v = (E1, F1; B2, F») we can
define the formal adjoint by

(Au,v),0.3 = (u, A"0) 0.3

(XN, F) (XN E)

for u € C° (X", E), v € C°(X", F), cf. Definition 1.5. We omit the proof
of the next theorem, which follows by Definition 1.5, Proposition 1.9 and the
similar result for the standard cone algebra.

Theorem 1.13 A € CH*(X", g;v) implies A* € CH(X", g*;v*) for g* =
(=0, =, (= (k+1),0]), v* = (F1, Ey; F», E2) and we have 0(A*) = o(A)*, where
* refers to each component in the symbolic triple. More precisely, oy(A)* is
the adjoint symbol from the standard pseudo-differential calculus, oy (A*)(z) =
T 90y (A)*, while o(A)* is again the standard rule from the exit calculus of
pseudo-differential operators.

Definition 1.14 An operator A € C*(X",g;v) (in the notation of Definition
1.10) is said to be elliptic, if it is elliptic with respect to the three components
of 0(A), that is

(i) the interior symbols (1.4.2) are bundle isomorphisms, j = 1,2, where also
Gy (A;j) from (1.4.3) are isomorphisms up to r = 0;

(ii) the conormal symbol
om(A)(z) : H 3 (X,E) - H* "3 (X, F)
is a family of isomorphisms for all z € F%—w'
(iii) the exit symbol o.(A) is elliptic.

Given an operator A € C*(X",g;v), a P € C~*(X", g ;v for g~ =
(8,7,0), vt = (Fy, Ey; Fy, E») is called a parametrix of A if

C,:=1-PAand C, =1 — AP (1.4.7)
belong to C (X", g,;v;) and Cg(X",g,;v,), respectively, where

g = (77776)7 v = (E17E1;E27E2)7
g, =(0,0,0), v, = (F1, F1; F», F>).

Theorem 1.15 Let A € CH(X", g;v) be elliptic. Then, A admits a parametriz
PeCHX" g vt
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Proof. We only sketch the proof (cf., e.g., [16], Section 2.4.3). From conditions
(i) and (iii) of Definition 1.14, it is possible to build two pseudo-differential
operators P; € L*‘“O(X]A, F;, E;), j = 1,2, which are parametrices, respectively,
of A; on X]/.\, j = 1,2, in the sense of the calculus on manifolds with exits.
Moreover, owing to the hypothesis on G, (A;), “close to the tip” the P; are of the
form P; = rtop(p;) with p;(r,0) = p;(r,re) and p; € C=(Ry, L7*(X;,R,)).
Through the so-called Mellin quantisation of p;, cf. Theorem 1.2, Remark 1.3
and [6], it is possible to find two holomorphic symbols h; € My* (R x X;) such
that

Pl = wr = opl (b)) + (1~ w) Py (1 — &)

differs from P; by an element in L™°~°(intX /). Setting P’ = diag(P}, P),
by Theorem 1.12 and the definition of the P} we get

1-P'AeCX", g,,v)NL > >®(intX").

This means that the matrix 1 — P'A belongs to Caya(X,g;,v1). To get a
parametrix modulo Green operators we use now hypothesis (ii) of Definition
1.14 and define

fo= 1771 —om(P'A)om(A)7),
P" = P'+wr’opy(f)@ e CTHX", g;,w).

By the formula for the Mellin symbol of the composition, we get oy (1—P""A) =

0, which implies that (1 — P" A)**! is a Green operator (recall the observations
k

before Remark 1.8). Then, P, = Z(l —P"AYP" € CTH(X",g,,v0) is a left
j=0
parametrix of A modulo Green operators. A right parametrix P, can be built
in a similar way and P, — P, is clearly a Green operator, so that either P, or P,
can be chosen as the parametrix P. []
The following three theorems are consequence of Theorem 1.15, by argu-
ments similar to those valid for the standard cone algebra.

Theorem 1.16 For an operator A € C*(X",g;v) the following conditions are
equivalent:

(i) A is elliptic;
(ii) the operator
A KTE(XMNE) — KRS (XN F) (1.4.8)
is Fredholm for certain s € R.

Theorem 1.17 Let A € C*(X",g;v) be an element that induces a Fredholm
operator (1.4.8) for certain fized s € R. Then A is a Fredholm operator (1.4.8)
for arbitrary s € R. The parametriz P of A can be chosen in such a way that C)
is a projection to V := ker A and C,. a projection to a complement W of im A

19



for every fized s € R. Moreover, there are asymptotic types P and Q such that
V C Sjy%(X/\,E) and the space W can be chosen to be a finite dimensional
subspace of SZ;‘H% (X", F) such that im A + W = K5~#7=#+3 (XN F) and
imANW = {0} for all s € R.

Theorem 1.18 Let A € C*(X",g;v) be an operator such that
A K¥(XM, g, E) = K "X F) (1.4.9)

is an isomorphism for a s = so € R. Then (1.4.9) is invertible for all s € R
and A=t € C~H( X", g 0.

2 The edge symbolic calculus

2.1 Spaces with edges and model cones of different dimen-
sions

Spaces with edges we are talking about can locally be formulated in terms
of wedges X2 x Q for a (in simplest cases) closed compact C°>° manifold X
and an open set 2 C R?. Constructions will always be given in a splitting
of variables on (X2 \ {v}) x @ = X" x Q > (r,z,y), and we then have to
observe invariance under an admitted cocycle of transition maps. A system
of diffeomorphisms x : (X2 \ {v}) x @ — X" x Q is said to be a wedge
structure on X2 x Q if for every two elements x; and y» of that system the
transition map yax; © : X" xQ — X" x(is the restriction of a diffeomorphism
RxXxQ—=RxXxQtoR, xX xQ. In other words, we also get a cocycle of
transitions Ry x X x Q — Ry x X x Q (that are smooth up to r = 0). Looking
at the components of these maps (r,z,y) — (7F(r,z,y),&(r,z,y),§(r,z,y)) we
then have 7(0,z,y) = 0 and §(0, z,y) only depends on y, i.e., y — § induces a
diffeomorphism Q — .

A manifold W with edge Y is defined as a topological space, such that W\Y
and Y are C'*° manifolds, and that points y € Y have neighbourhoods modeled
by X2 x ; then Y itself has local coordinates in Q. Together with the cocycle
of transition maps X" x @ — X" x Q for W \ 'Y near ¥ we also have the maps
Ry x X x Q — Ry x X x Q that allow us to interpret W \ Y as int W for a
C*° manifold W with boundary OW that is a X bundle over Y. The transition
maps for OW are just given by (z,y) — (&,§)|r—0- For convenience, in the
following we content ourselves with the case that OW is a trivial X bundle, i.e.,
OW = X x Y, and that the splittings of variables (r,z,y) near OW are chosen
in such a way that we have (r,z,y) — (7,%,9) = (r,z,§) for 0 < r < ¢ for some
e>0.

Global operators on W will be connected with vector bundles E € Vect (W)
and J € Vect (Y), and we want to fix some notation. By definition, OW has
a neighbourhood of the form [0,1) x X x Y in the corresponding splitting of
variables (r,z,y), and with E we get an associated bundle

Eljo,1)xxxY (2.1.1)
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that can be regarded as a pull-back of E|fyxxxy to[0,1) x X x Y under the
canonical projection [0,1) x X xY — {0} x X x Y, (r,z,y) — (0,z,y). A
similar projection Ry x X x Y — {0} x X x Y gives rise to a pull-back of
Elfoyxxxy to R, x X x Y. For convenience, we employ for these bundles the
same letter E; it will be clear from the context where E is given. Moreover, in
every E € Vect (W) we fix a Hermitian metric in such a way that the induced
metric in (2.1.1) does not depend on r € [0,1), and we then take a similar
r-independent Hermitian metric on the pull-back to R, x X x Y. In this way,
the space K»2% (X", E,), for n = dim X and B, := E|xnx{y}, is equipped with
a scalar product that will be taken below in the definition of adjoints, similarly
to adjoints in the cone calculus, cf. Section 1.2 above. In local considerations
with respect to coordinate neighbourhoods U on Y, we also have restrictions of
bundles £ on X" x Y to X x U, and then, analogously to trivialisations of
bundles in the usual sense, it will be admitted to regard E|xn xy as a pull-back
of E|xnx{y} to X" x U under the projection X" x U — X”*. Again, we will use
the same letter F for the local version of the bundle. It will then make sense to
talk about spaces like

C®(U x R, LKV (XM, E), K3 (XN, F))) (2.1.2)

for bundles E, F' € Vect (W), etc., where in (2.1.2) we mean the local versions of
the bundles we just described. Our calculus below will have the right invariance
properties that justify these conventions.

Let us now pass to configurations with edges where the model cones are of
different dimension. The simplest examples are Cartesian products W = X Ax
Y, where X2 is as in the introduction a cone with base manifolds X7, ..., Xy
of different dimension. In general we assume that W is a topological space with
a subspace Y such that W\ Y is the disjoint union of spaces of the form intWj,
for manifolds Wj, j =1,..., N, with the same edge Y as described before, and
W has, locally near Y, the structure X x Q for some open subset  C R¢
(which corresponds to a chart on Y). We then define the stretched space W
associated with W as the quotient space of the disjoint union W; U... U Wy
that identifies the different copies of Y. In particular, the stretched space of
W =X xY equals W = {UfZIKJr x X;} x Y. For convenience, we also write
W = (Wp,...,Wx) keeping in mind the mentioned identification map. In the
following we assume W to be compact.

As before, for simplicity, from now on we consider the case N = 2, and
we use shortened notation analogous to those used in Section 1, in partic-

ular also for diagonal matrix block operators ()2 := diag((m%, (n)%),
kY = diag(k, K)?), AETRY = diag(/\%/s;“,/\%zﬁ;lz). Moreover intW :=
(int W, int W ), while, for any Jy € Vect (Y'), we set v:=(Ey, F1; B2, Fy; J_, J4)
for the bundle data. The abbreviation w := (Ey, Fy; Es, Fa;j—, j+) for local
bundle data will be used for the description of the symbolic structures below,
where, making use of the mentioned abuse of notation, the local bundles are
obtained from Ej;, F; € Vect (W;), j = 1,2, as explained before.

Typical differential operators on int W are (because of locality) pairs of in-
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dependently given differential operators A; on intW;, j = 1,2. They will be
assumed to be edge-degenerate, i.e., differential operators with smooth coeffi-
cients that, in the splitting of variables (r,z,y) € Ry x X; x Q2 close to the edge,
are of the form

A= Y aralny) (—83) (rD,)"

k+lal<p

with coefficients ag, € C® (R, x Q,Diff”*(“l“‘)(Xj)), j = 1,2. Examples are
Laplace-Beltrami operators belonging to “wedge”-metrics

dr® +r® gx, (r,y) + dy

with Riemannian metrics gx; on Xj;, smoothly dependent on (r,y) € Ry x Q,
j = 1,2. For the analysis it will be adequate to take the same axial variable r
on both sides close to the edge; in fact, r is nothing else than the “distance”
variable of a point in W to the edge, regardless of the side.

The program of this section is a calculus of edge-degenerate pseudo-differen-
tial operators on W. Because of pseudo-locality, information between both
sides is exchanged only on the level of a specific kind of smoothing operators. A
main concept in the discussion below is the following notion of operator-valued
symbol. For details, the reader can refer, e.g., to [16].

Definition 2.1 Consider an open set Q) C R?, u € R, and Hilbert spaces H H
endowed with strongly continuous groups of isomorphisms kx, kx, A € Ry. Then
SE(Q x RY; H,H) denotes the space of all a € C*°(Q x RY, L(H, H)) satisfying

& MDEDEaly,m sl oo iy < caprc ()"
foralla,p €N, neR!, ye K CCQ and suitable constants copr > 0.

An element a € C®(Q x (R? \ {0}), L(H, H)) is called (positively twisted-)
homogeneous of order p if

a(y, \p) = NRraly,n)ky " (2.1.3)

for all A € Ry, (y,n) € 2 x (R? \ {0}). Note that, for every excision function x
and any a satisfying (2.1.3), x(n)a(y,n) € S*(Q2 x R?; H, H). It is then natural
to introduce the following notion of classical operator-valued symbols.

Definition 2.2 With the same notation of Definition 2.1, we denote by S (Q x
R?; H, ﬁ) the subset of classical operator-valued symbols of order p, which con-
sists of all a € S*(Q x RY; H,H) that admit an asymptotic ezpansion a ~
2 Xa(u—j) with a(,—j) homogeneous of order y— j in the sense of (2.1.3).

22



2.2 Edge Sobolev spaces

Definition 2.3 Let H be a Hilbert space equipped with a strongly continuous
group of isomorphisms {kx}xer, . The abstract wedge Sobolev space W* (R, H)
of smoothness s € R is the completion of S(R?, H) with respect to the norm

1
3
2 —
lallye o,y = { J ORI <Fy%u><n>||zdn} L2
where Fy_,, is the Fourier transform in R?.

The construction of W?#(R?, H) will be used also for Fréchet spaces H that
are written as projective limits of Hilbert spaces {H/ }jen, with continuous
embeddings H/t! < HJ < ... < H° and a strongly continuous group
{ka}rer, of isomorphisms on H 0 that restricts to strongly continuous groups
of isomorphisms on H’ for every j. Then we have continuous embeddings
WE(RY, HIFL) — WH(R?, HY) for all j, and W#(R?, H) is the projective limit
of W#(R¢, H), j € N.

We apply this construction to weighted Sobolev spaces K*t27+%5 (X" E)
and Fréchet subspaces IC;+%’V+% (X", E) with asymptotics of type P; here we
apply Remark 1.4 and the action k) defined there. We then obtain the spaces

WEETTE (XN xR, B) = W R (RIS (XN, B)) (2.2.2)

and then, globally, on a corresponding (compact, stretched) manifold W with
edge Y we get the spaces VV(S ;)E’VJFE (W, E). In this construction we use several

useful properties of the W?#-spaces. In particular, that the spaces (2.2.2) are

contained in HZ 2 (X" x RY) for every s,7; we then have WS (W)
loc v (P)

Hlsot%(intVV). This is the construction for a single manifold with edges. For
the case W = (W;, W,) we simply take the direct sums of the corresponding
spaces.

As for the standard Sobolev spaces there are “comp” and “loc” versions of
W4-spaces on open sets {2 C R?, first for the context of Definition 2.3, and then
also for the specific spaces on configurations W = (W;, W, ) with edges when
we drop the assumption of compactness.

Definition 2.4 The space of smoothing operators Y~°(W,g;v) in the trans-
mission algebra on W is defined to be the set of all continuous operators
CS(int W, E) C>(int W, F')
C : @ — @
Cgo (Y, J*) Che (Y, J+)
that extend the continuous operators
WHEE (W) W (w, )
C : @ - @
H*=3(Y,J_) H (Y, Jy)
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where the formal adjoint C* extends to continuous operators

WStE =it s (W, F) WSO’*V+%(W7 E)
cr: S — @
He2(Y,Jy) H>(Y,J_)

for all s € R, with certain asymptotic types P and Q depending on C. Here,
the formal adjoint C* is defined by

(Cu,v) u,C*0) 03

WO B (W) OLA(Y,I4) = ( W,E)®L2(Y,J_)’

for allu € C°(int W, E) @ C° (Y, J_), v e Cg°(int W, F') & C§°(Y, J4+).

2.3 Green symbols

We now turn to a first important element of the edge symbolic structure, the
so-called Green symbols. They play an analogous role for our calculus as the
“singular Green” symbols in standard boundary value problems in the context
of Boutet de Monvel [3]. A specific point in the present situation is that Green
symbols (and associated Green operators below) transmit information between
the different-dimensional parts of our configuration across the edge.

Let g :== (v,vy—11,0), 0 = (—(k+1),0, v e R, p—v € N and w :=
(Ev, P15 B2, Foyj -, j4 )

Definition 2.5 R{.(Q x R?,g;w) for open Q@ C R? is defined to be the set of
all families of continuous maps

g(y,m) € C°(Q x R, L(K*TE (XN E) @ U-), K7+ (XN F) @ O+))

such that for

(ST

go(y,m) = diag((m)® , () "2) gly, n) diag(()® , () *)~" (2.3.3)

we have

go(y,m) € S4(Q x R K743 (XN E)e O, Sp " 3(X", F) o O)
and

96(y,m) € SH(Q x RS K" THH5 (XN F) o O+, 857 (X", E) o U-)

for all s € R. The elements of RY.(Q2 x R?, g;w) are called Green symbols (of
our transmission calculus).

By definition, the entries of Green symbols g(y,n) = (9i;(y,n))s,j=1,2,3 are clas-
sical operator-valued symbols, acting between the respective components of the
involved spaces. Anyway, note that multiplication by powers of (n) does not
preserve the symbol classes RY,, (2 x R?, g;w) and R” (2 x R?, g; w) that we
introduce below. A similar phenomenon already occurs in the usual situation,
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where one has L¥(R® x Q,) - L¥(Q,) ¢ L*T(R? x €1,). The reason for intro-
ducing this operation in the definitions concerns the administration of the order
in a “unified” way, in the spirit of Douglis and Nirenberg. In fact, we have
DN-homogeneity in the following sense. First, go(y,n) is classical of order v,
i.e., there is a homogeneous principal part go,(,)(y,n), such that

9o,(v) (ya /\77) =\ diag(’i;\la ld) Jo,(v) (ya 77) diag(’i;\la id)_l (234)

for all (y,n) € Qx (R7\{0}), A € Ry. For g(y,n) itself the entries have different
orders, that are immediate from (2.3.3). We get the matrix of orders

v v+ n2§n1 v — n12+1
vi=| v— g v v — atl (2.3.5)
v+l oy g onetd v

Let gy (1) = (9ij,v:;)(Y>M))ij=1,2,3 denote the matrix of homogeneous prin-
cipal components of g(y,7n). Then, DN-homogeneity of g(,(y,n) itself means

9w) (ya /\77) =\ diag(/\%li;\b7 Ai%ld) 9wv) (ya 77) dia‘g(/\%’i;": Ai%id)il (236)

for all (y,n) € @ x (R?\ {0}), A € Ry.

2.4 Mellin transmission symbols

Another specific part of the symbolic structure of transmission operators (with
information being exchanged between the X{* and X4'-sides of the configura-
tion) are symbols with values in the Cy 4 algebra, cf. Definition 1.7. In the
following, with [.] we will denote a positive smooth function such that [n] = ||
for |n| > ¢ and some fixed constant ¢ > 0.

Definition 2.6 Let Ry, (2 x R?, g;w) for g := (7,7 —p,0) as in the begin-
ning of Section 2.3 and w := (E1, F1; E2, Fy;j_, j+) defined to be the set of all
operator families

K#7+2 (XN E) Koo —rt5 (XN F)
(m+g)(y,n) : b - @ :
- ¢+

s € R, where g(y,n) € R¢(Q x R, g, w), cf. Definition 2.5, while m(y,n) :=
(mij(y,n))ij=1,23 fori,j = 1,2 is given by

k .
mij(y,n) = r~"w(rn]) Zrl Z {oplis (fiais) + 0Dy (fiais) }n® @(rln))

=0 Ja|<i+(u—v)
D KSR (XN E) = K0T (XN F) (2.4.1)
UN)z'th arbitrary Mellin symbols f1q.:;(y,z) € C*(U, Mv},i’:’ij(Xj,Xi;Ej,Fi)),
fra,ij(y,2)€C>(U, MVZVOO (X;,Xs; B, Fy)), cut-off functions w, @, and weights
la

,ij
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8= 5(), B=B(), such that Wia,i; Ny 5 = Wia,; \Ts_g =0 for alll,a,i,j.

Concerning the weights 3 and  we can (and will) choose them in the same
normalised way as in Remark 1.8. Finally, m;;(y,n) :=0 for i =3 or j =3.

Without loss of generality we set foo,ij = (; then, the principal conormal symbol
of (m + g)(y,n) of (conormal) order v is defined as

O'M(m-l'g)(yazan) = Z (an,ij(yaz) +f0a,ij(yaz))na ) (242)
la|<p—v i,j=1,2
which, in the case yu = v, reduces to

om(m +9)(y,2,m) = (foo,ij (Y, 2))ij=1,2- (2.4.3)

Remark 2.7 Similarly to Remark 1.8, the choice of weights or cut-off functions
only affects m(y,n) modulo a Green symbol in the sense of Definition 2.5. The
same is true if we change the function nw— [n]. Observe that terms appearing in
the sum (2.4.1) become automatically Green symbols for | > k, c¢f. the analogous
remark for the cone after Definition 1.7.

Proposition 2.8 Every operator in Ry, (2 x RY, g;w) with g and w as in
Definition 2.6 above is a classical operator-valued symbol. We have, for all
a €N, B e N, DIDIRY, (2 x R, giw) C Ry A2 x R, giw), and
v <y —6—k implies Ry, o(Q xR, g;w) CRE(L x R, g;w).

In fact, setting a(y,n) := (m + ¢)(y,n) and

=

ao(y,n) = diag((n) ¥ , () %) aly, ) diag((n) ¥, () #) ", (2.4.4)

we have the relation

ao(y,m) € SHQAXRG KD (XN, B)ya -, Kig) ™% (X", F)aU+) (245)
for all s € R (the interpretation with asymptotics is that for every pair of
asymptotic types P there is a pair of asymptotic type Q@ depending on a(y,n) as
well as on P, and that the corresponding relation holds). To see (2.4.5), because
of Definition 2.5 it suffices to consider the finite sum of Mellin expressions (2.4.1)
that are smooth in (y,n) as operator functions and homogeneous for large |n|:
the latter property just implies that the Mellin part of ag(y,n) is also a classical
operator-valued symbol. If u(y,n) denotes a summand of (2.4.1) containing r'n®
we have

uly, Xn) = A0 diag(AE £3, A7id) u(y, ) diag(AE £3, A%id) !

for all A > 1, || > ¢ with some sufficiently large ¢ > 0. Analogously to
(2.3.4), we have a homogeneous principal symbol ag, () (y,n) of ao(y,n) of order
v (clearly, with actions in the spaces involved in (2.4.5)). Moreover, returning
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from ag(y,n) to the original symbol a(y,7) via relation (2.4.4) we get, according
to the scheme (2.3.5) of DN-orders, a matrix a(,)(y,7) = (@ij,w,;)(Y>1))ij=123
of homogeneous principal components of a(y,n). Then, DN-homogeneity of
QA(v) (y7 77) means

ay(y, M) = N diag(\E &7, A 2id) a(,,) (y, ) diag(AF &7, A" 2id) ! (2.4.6)

for all (y,7) € 2 x (RZ\ {0}), A € R, .

2.5 Edge amplitude functions

We describe here a specific space of operators-valued amplitude functions that
will produce below our transmission operators modulo smoothing operators in
the transmission operator algebra.

We first return to the reformulation of pseudo-differential actions on cones
in terms of the Mellin transform in axial direction, cf. Theorem 1.2. We start
from operator functions p;(r,y, 0,n) of analogous structure as (1.1.6) where here
(because of the full symbolic calculus) we take them of order v in place of u.
We then consider elements hy(r,y, z,n) € C®(Ry x Q, M%4(X;;R?)) such that
hi(r,y, z,m) := hy(r,y, z,r1) satisfies relation

op, (p1)(y,m) = oply; (A1) (y,n) mod C*(Q, L~>°(X};RY)) (2.5.1)

for every 3. Similarly, we have a corresponding version of Remark 1.3. Let us
set g := (7,7 — p,0) for © = (—=(k + 1),0], and w := (Ev, F1; Ea, Fo; 5, j+).

Definition 2.9 The space R” (2 x R?, g;w) for p—v € N is defined to be the
set of all operator functions of the form

01(%77) 0 0
a(y,n) == 0 az(y,m) 0 | +(m+g)(y,n) (2.5.2)
0 0 0

where

(i) the elements of the diagonal in the first term are of the form a;(y,n) :=
O(r){r="w(rm)opy, (he) (v, M@(r[n]) + r=(1 — wlrn))op, (p)(y, m(1 -
S(r[n])}0(r) for operator functions p; and hy linked to each other in the
sense of relations (2.5.1), | = 1,2, where 0,0, w, 0,0 are arbitrary cut-off
functions satisfying w = w, W = W;

(i) (m+9)(y,n) € Riy1c(Q x R, g;w).

Remark 2.10 As it was proved in [6], the edge-amplitudes a; can equivalently
be written in the form

ai(y,n) = 0(r)r~"opy (ha)(y, m)O(r) + gi(y,n)

where g; is a suitable Green symbol of order v in the edge algebra on Wy, 1 = 1,2.
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The following proposition completes Proposition 2.8 by a corresponding prop-
erty of the diagonal elements a;(y, n) in (2.5.2), which are operator-valued sym-
bols in the edge calculus on W;, cf. [16].

Proposition 2.11 Elements a(y,n) € R"(Q x R?,g;w) are operator-valued
symbols in the sense that

w3
.
wf3
=

ao(y,n) := diag((n)* , () ?)a(y,n)diag((n)> , (n) *) "

belong to the spaces

5"(Q x RKEE (XN B) o O K F " TN X), F) o OF)

for all s € R (with interpretation analogous to the one given after (2.4.5)).

Let us now introduce DN-homogeneous principal edge symbols for elements
a(y,n) € R (2 xR?, g;w). The smoothing Mellin plus Green part (m+ g)(y,n)
has been discussed in Sections 2.3, 2.4. Concerning the target spaces we take
those which are suitable for the remaining entries a;(y,n), ¢ = 1,2, in represen-
tation (2.5.2). We set
ar,o) () = 1 w(r|nl) opay(huo) (y,m) ©(r|nl)
+ (L= w(rnl) op,(pro)(y,m) (1 — @(r|nl))

where subscripts 0 at h; and p; have the same meaning as in Remark 1.3.
We then finally define

QA(v) (y; 77) = dia‘g(al,(u) (ya 77)7 az (v) (ya 77)7 0) + (m + g)(u) (ya 77);
which is regarded as a family of operators

KstE+3 (XN E) Ks—vte7—v+3 (XN F)
Q(v) (Z—/, T’) : @ - @ ’
- i+

(y,m) € T*Q\ 0, DN-homogeneous in the sense of relation (2.4.6). According to
the notation in Section 1.1 after Remark 1.3, we have homogeneous principal

symbols oy (op,.(m))(r, =, 9, 0,§,1), (0,€,m) # 0, and we set
oy (a)(r;z,y,0,&m) = 0(r)r= "oy (p)(r,z,y,0,€m),
l = 1,2. For purposes below we also introduce the compressed variants
Gy (ar)(r,z,y, 0,&,m) = 0(r) oy (p) (r,2,y,77" 0,77 ") (2.5.3)

that are smooth up to r = 0. For a(y,n) € R"(Q x R?,g;w), then we have
altogether

oy(a) = diag(oy(a1), oy (a2))
and 6y (a) := diag(dy (a1 ), 5y (asz)).
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Remark 2.12 The construction of the symbol classes could be repeated with no
changes in the case where Q) C RY with q > q. This allows us to consider also
the so-called “double symbols” a(y,y',n), taking values in the same spaces as
those described above. In particular, one can introduce, in this case, left and
right symbols of operators initially formed via double symbols. Note that, owing
to Proposition 2.8, the asymptotic summations involved in such constructions for
smoothing Mellin operators would produce, after a finite number of derivatives,
Green operators.

3 [Edge problems

3.1 Edge transmission operators

Let us fix a cut-off function §(r) € C§° (R ) and a partition of unity {¢;};=1, .~
belonging to a finite atlas on the edge Y. Moreover, let {¢;};=1 .~ be C*
functions with compact support in the charts such that ¢; = 1 on supp ¢; for
all j. For convenience, operators of multiplication by 3 x 3-diagonal matrices
containing @ or ¢;, 1; in the diagonal will be denoted by the same symbols 6,
etc. Let g = (7,7 —11,0), v € R, u—v €N, v=(E, F;E>Fy;J_,J;) and
w = (B, F1;Es, Fo;j_,j+), where the local bundles in w are related to the
global ones in v as explained in Section 2.1 (and denoted by the same letters).

Definition 3.1 The space Y*(W,g;v) of edge transmission operators of order
v on W associated with weight data g is defined to be the set of all operators

CS(int W, E) C>*(int W, F')

A ® — ®
CSO(Y, J*) COO(Y7 J+)
of the form
N ~ <
A=0>pjAnh | 0+ (1—0)An(1-0)+C (3.1.1)
j=1
where

(i) A; = Op(aj) for some a;(y,n) € RV xR:, g;w), j=1,...,N;

(ii) Aine = diag(A1 int, A2,int, 0) for operators Ay ine € LY (int Wy ; By, Fy), k =
1,2;

(ili) C € Y (W, g;v).

Let Vi q(W,g;v) or Y4 (W, g;v) denote the subsets where Aj i, vanishes,
j=1,2and a;(y,n) € Ry qor R forallj=1,...,N.

For the case that the fiber dimensions of J4 are zero we use the same notation
VY, Yirie and V¢ for the respective classes; clearly, the Ji-components in v
then disappear.
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Theorem 3.2 Every A € YV (W, g;v) extends to continuous operators

WeHEIHE(W,E)  WSUHETUTE (W, F)
A ® - ® (3.1.2)
H=5(Y, J.) Hs=57v(Y, Jy)

for all s € R. Moreover, for every pair P of asymptotic types there is a pair Q
such that (3.1.2) restricts to continuous operators

we B R woE) w7 (wE)
A - @ - ® (3.1.3)
H* 3(Y,J.) Hs=2=v(Y, J)
for all s € R.

Proof. It is enough to prove the assertion for the local situation near the
edge. The result then follows by Proposition 2.11 and by the continuity of
pseudo-differential operators defined by operator-valued symbols in abstract
wedge Sobolev spaces. In fact, Op(a) : W9(RY,E) — WS #(R?, E) for a €
SH(Q x RY; E, E), and, in particular, Op((n)°) : W*(R?, E) = W*9(R?, E),
are continuous maps for arbitrary p, s, € R, see [16], Proposition 1.3.24. [

By definition, the elements A € Y¥(W, g;v) can be viewed as operator block
matrices A = (Aij)i,j:1,2,3-

By the conditions A;; = 0 when i # k or j # k, k = 1,2, we get subspaces
of Y¥(W,g;v), called Y"(Wy,g;vi) for vy, = (Eg,Fr). These are nothing
else than the edge operator spaces on a (stretched) manifold W, with edge YV
in the sense of [16] (with some abuse of notation in the definition of weight
data). Conversely, every A € Y (Wy,g;vi) can be embedded as an element
A? € Y(W, g;v) by filling up it by zeros to a corresponding 3 x 3-block matrix.
Then every A € Y¥(W, g;v) has the form

A=A + A+ M+, (3.1.4)
where Ay € V"' (W, g;vi)), k=1,2, and M+ G € Vi, (W, g;v).

Remark 3.3 A € V"(W,g;v) and A}|inew, € L™ °°(int Wy;vy,) for k = 1,2
implies A € Yy, (W, g;v).

Let us now introduce the principal symbolic structure (in fact, symbolic
hierarchy) of elements in our transmission operator spaces. For every A €
Y¥(W, g;v) we define

o (A) := (o4 (A), 04 (A)),

where o, (A) is the pair of homogeneous principal interior symbols in the edge
algebras on Wy,

op(Ar)  Toow, Bx = Toow, Fr,  E=1,2, (3.1.5)
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Tinew, : 2*(int W)\ 0 — int Wy, for the operators A belonging to A9
in formula (3.1.4). It remains to specify oa(A). First, from the calculus for
A € YV (W, g;vi), we have associated homogeneous principal edge symbols

JCo R (X B) oSS (X F)
oa(Ag) 1 Ty e -7y ey ,
J_ Iy
(3.1.6)

k=12 71y : T*Y \0 — Y, recall (2.1.2) and the description of the local
bundles in Section 2.1. The principal edge symbols o, (Ag) give rise to corre-
sponding families o5 (A}) by filling up block matrices by zero entries. Moreover,
we have the local homogeneous principal edge symbols of M + G that are the
principal parts of classical operator-valued symbols, and we then get o (M +G)
globally on T*Y" \ 0. Then

oa(A) == op(AY) + oA (AY) + oA (M +G)

is a family of maps

Kot 3HE (XN, E) o BTt (X F)
oa(A) 7y ® — Ty D
J_ J4
(3.1.7)

By virtue of the DN-homogeneity of the ingredients of o5 (A), formulated above,
we have

oa(A)(y, ) = \diag(A® £}, A~ 2id) on (A) (y, ) diag(AZ KT, A~ 2id) !
(3.1.8)
for all (y,n) €e T*Y' \ 0, A € Ry.

Remark 3.4 Because of the edge-degenerate behaviour of the upper left corner
of an operator A, cf. Definition 2.9, locally near the edge in the splitting of
variables into (r,x(),y) with covariables (0,&),n), the symbols (3.1.6) have
the form

Oy (Ak)(ra L(k)> Y0, f(k) ) 77) = r—u&¢ (Ak)(ra T(k), Y, 0, f(k) ) ﬁ)éZTQ,ﬁZTna
where Gy (Ag) is smooth up to r =0, c¢f (2.5.3) and the end of Section 2.5.

Remark 3.5 Note that, together with the map o : A o(A) = (04 (A), o4 (A))
defined above, we could define a map op : p = (py,pa) — op(p) = P such that
a(P) = p-

3.2 Composition and adjoint

We now discuss the algebra property for the edge operators introduced in Defi-
nition 3.1. As in Section 1, we concentrate on the composition, and only state
the next theorem about adjoints.
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Theorem 3.6 Let A € Y'(W,g;v) withg = (7,7 — 11,0), u—v €N, O =
(—(k+1),0], v = (F1,G1; F5,Ga; J_, J4). Then, the formal adjoint A*, formed
in the same sense of Definition 2.4, satisfies A* € Y (W, g*;v*), where g* =
(=v+p, —v,0) and v* = (F1, E1; Fy, Es; Jy, J_), while v* refers to the fact that
the matriz of orders for the entries of A* is the transpose of (2.3.5). Moreover,
o(A*) = o(A)*, with an obvious meaning of * on the right.

Theorem 3.7 A€ V"(W,g;v) and B € Y*(W,h;w), forg= (8 — [, —p—
ﬂ,@), h = (6,6 —ﬂ,@), 0 = (—(k-i— ].),O], v = (Fl,Gl;FQ,GQ;J,J+) and
w = (B, Fy; B, Fy; J_,J) implies AB € Y77 (W, g o h;v o w) with go h =
B,6—p—i1,0), vow = (E1,G1; Ey,Go; J—, J+) (cf- the notation of Theorem
1.12), and we have

o(AB) = o(A) a(B) (3.2.1)

with componentwise composition. If one factor belongs to the subclass with sub-
sceript M + G or G, then the same is true of the composition.

Proof. We assume, for simplicity, that the bundles in v and w are trivial,
and omit them from the notation from now on.

Let us write A = Ayg + Ay + C, B = By + By + D, where the decomposition
refers to (3.1.1), with finite sums of operators Ay, By referring to edge-amplitude
functions, interior operators A;, 131 localised far from the edge, and smoothing
operators C, D, respectively. The nature of compositions containing C or D
as factors is clear from Definition 2.4 and Theorems 3.2, 3.6. Moreover, the
composition A; B; of interior operators entirely refers to the standard pseudo-
differential calculus and yields again an operator of the required structure. From
the products AgB; and A;By we also get interior operators plus smoothing
operators in the calculus because of pseudo-locality, that gives us smoothing
operators whenever an operator in our class is composed from both sides by C*
functions of disjoint support. Thus, there remains to consider AyBy. Without
loss of generality we assume that our open covering on Y is chosen in such
a way that whenever open sets have a non-empty intersection, their union is
contained in a coordinate neighbourhood. Then, using again pseudo-locality of
summands in Ag or By, the essential contributions are of the form op(a) op(b)
for local amplitude functions a(y,y’,n) and b(y,y’,n) in an open set Q@ C R?,
cf. Remark 2.12. In this construction, because of involved factors of compact
supports in y or y’, the amplitude functions may be regarded as elements of
RY(R? xR? xR?,g) and R¥(R? x R? x R?, h) with variables/covariables (y,y’,n)
and compact support in (y,y’). This meets the standard scenario of pseudo-
differential calculus globally on R? with uniform symbol estimates, in the variant
of operator-valued symbols. The general calculus allows us to pass from double
symbols a(y,y’,n) to left or right symbols a(y,n) or ar(y’,n) on the level of
operators, modulo operators of order —oo. In other words, we have

op(a) ~ op(az) and op(b) ~ op(b), (3.2:2)

where ~ indicates equality modulo operators of order —oo. A technical point is
to verify that these remainders are even smoothing in our calculus. Looking at
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the structure of our amplitude functions, there are non-smoothing summands
only referring to Wy or Wy. The corresponding considerations for those sum-
mands are known from the usual edge calculus, see also the scheme of Theorem
1.12 for the pointwise behaviour of operator functions on the respective model
cones. Therefore, to characterise remainders in (3.2.2) we have to deal only with
the case of amplitude functions belonging to R, o and R, , respectively. In
the finite weight interval case we are considering, those are finite sums of Mellin
terms plus Green terms. By Definition 2.5, the Green symbols are completely
covered by the abstract scheme of operator-valued symbols. So there remain
amplitude functions consisting of finitely many summands of expressions of the
form

rlw(rln]) opy (h) (g, y')n* &(rln)), (3.2.3)

|a| < j, for smoothing Mellin symbols h(y,y’, z) and certain weights 3. Owing
to the structure of the amplitude functions (3.2.3), we can pass to left or right
symbol representations directly, by a finite Taylor expansion in ¢ at the diagonal
of Q x 2, modulo Green remainders as treated before, cf. Proposition 2.8 and
[16], Theorems 1.1.30 and 1.1.54. In other words, we arrive at the composition
op(ar)op(br) = op(arbr) after ignoring terms with smoothing factors that
yield smoothing operators in our calculus.

Concerning (arbr)(y,y’,n), we have to verify apbg € RY(R? xR xR?, goh).
There are again some summands known from the theory of standard manifolds
with edges. The main contribution of the latter category comes from the non-
smoothing terms with holomorphic Mellin symbols. They are treated thoroughly
in the paper [6]. Concerning compositions where one factor is of Green type
we get again Green symbols, similarly to the corresponding calculations for the
standard edge algebra. Thus there remain terms in the composition of the 2 x 2-
upper left corner of ay, and br. After the observations before, all of them are
treated, except when one factor is of the form (3.2.3). If both factors are of
this type, we get an operator of type Ry, (again, see the analogous result
for the pointwise composition in the proof of Theorem 1.12). So the last kind
of terms is the one involving one factor like (3.2.3) and one non-smoothing.
When composing with symbols localised in the interior, the presence of factors
of the type ¢(t) = &(t)(1 — w)(t), compactly supported in (0, 1), immediately
gives Green operators (note also that cut-off functions evaluated in r[n] turn
out to be classical operator-valued symbols). The other type of composition of
Mellin operators gives expressions similar to those appearing in the standard
edge calculus, namely

w(rfn)) r= opa (F)(y) S(r[n) =" opa (W) (y',m) S(r[)- (3.2.4)

They are formally treated as the similar terms examined in the composition
of operators on the cones, and give symbols of Mellin plus Green type. This
completes the proof of arbr € RY(R? x R? x R?,g o h). The last step is now
to pass again to a left symbol (arbr)r modulo a smoothing remainder on the
level of operators, which is possible, by the considerations above.
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The symbolic rule for the ¢¥)— component of o(AB) is clear. That also
the principal edge symbols are multiplied is again a consequence of the anal-
ogous rule for the standard edge algebra and of the following observation:
since the Mellin symbols appearing in the products (3.2.4) can be written as
iz(r,y,z,rn) = B(O,y,z,rn) + rﬁ(l)(r,y,z,rn) with a smooth remainder }Nl(l),
only the product of the principal edge symbols of A and B can contribute to
oa(AB), due to the presence of at least one r factor in the other three terms.

O

3.3 Ellipticity

Definition 3.8 An element A € Y*(W,g;v) for g = (7,7 — 1,0) and v =
(E1, Fi; Es, F; J_, Jy), is said to be elliptic if

(i) both bundle homomorphisms (3.1.5) are isomorphisms, where also the
“compressed variants” (locally near the edge) o4(Ar), k = 1,2, are iso-
morphisms up to r = 0;

(ii) the family of maps (3.1.7) is a bundle isomorphism for an s = so € R.

Remark 3.9 Similarly to the “usual” edge calculus, condition (ii) implies that
(3.1.7) is an isomorphism for all s € R.

Remark 3.10 Condition (ii) is an analogue of the classical Shapiro-Lopatinskij
condition for boundary value problems: here they have the shape of transmission
conditions.

Note that the values of o (A)(y,n) for (y,n) € T*Y \ 0 are uniquely determined
by the restriction to S*Y", the unit cosphere bundle induced by T*Y (recall that
we have fixed a Riemannian metric on Y'). In particular, the relation

s Lo 2 g y—l. o n
or () = ol diaglal % ol F g A a () ()

: 21l n 22 n —1.
diag(|n| = &2}, In| = k{3, A" 21d) (3.3.1)

defines the extension of o4 (A)(y,n)|sy by homogeneity to T*Y \ 0. Clearly,
oa(A)(y,n)|s+y is a family of isomorphisms if and only if so is o5 (A)(y,n) for
all (y,m) € T*Y'\ 0.

Let us now draw some further conclusions from the ellipticity condition
on op(A). Write oa(A)(y,n)|s=y =: aly,n) = (ai;(y,n)ij=1,23, bly,n) =
(aij(y,m))i,j=1,2. Then, if a(y,n) is invertible,

bly,n) : KST3TE3 (XN E) - K5HH30-013 (XA F) (3.3.2)

is a family of Fredholm operators, belonging to the cone transmission algebra of
Section 1. As such, there is the symbolic structure of cone operators from that
calculus. In particular, we have the principal conormal symbol

om()(y,2) : H2(X,E) - H* "3 (X, F) (3.3.3)
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which has the form
om(0)(y, 2) = (om(bi) (W, m); j1 2 >

UM(le)(ya Z) = dia‘g(hl,o (07 Y,z, 0)7 h2,0(07 Y, =z, 0)) + (fOO,ij (y7 Z))i7j:1727

cf. the notation in Definition 2.9 (i), Remark 1.3, and formula (2.4.3) (for
i = v). From the cone calculus on X" we know that the Fredholm property of
(3.3.2) at a point (y,n) € S*Y implies that (3.3.2) is a family of bijections, for

aly eV, zEF%Jr.

Remark 3.11 The ellipticity of the operator A with respect to the interior sym-
bol oy (A), cf. Definition 3.8 (i), implies that (3.3.2) is elliptic in the sense of
the oy- and o.- components of principal symbols from the cone theory, for ev-
ery (y,m) € S*Y, in particular, b;;(y,n) is oe-elliptic (i.e., ewxit elliptic for
r — 400), j = 1,2. The ellipticity with respect to op(A) is not automatic. If
we require that (3.3.3) is a family of isomorphisms for ally € Y, z € Fé—’v (for
any fived s, which implies the same for all s € R), then (if (Aij)ij=1,2 denotes
the 2 x 2-upper left corner of A) the operators

by, n):=0a((Aij)ijmr2)(y,m)  KFTETHE (XD, B) = K807 (XA F)

form a family of Fredholm operators, parametrised by (y,n) € S*Y, ¢f. Theorem
1.16.

From the regularity properties of solutions to elliptic transmission equations
on the infinite stretched cone X we know that kerb(y,n) and cokerb(y,n)
of the Fredholm operators (3.3.2) are independent of s. Let us assume for
simplicity that S*Y is connected. Then, ind b(y,n) is constant, i.e., independent
of (y,n) € S*Y.

From standard construction of K-theory in connection with families of Fred-
holm operators parametrised by a compact topological space we have an index
element

ind S*yb € K(S*Y),
where K (.) denotes the K-group of the space in brackets. The canonical pro-
jection m : S*Y — Y gives rise to a pull-back 77 K(Y) — K(S*Y). In the
present case, from the fact that (3.1.7) is an isomorphism, we can read off the
index element of b explicitly, namely,

ind g«yb = [r] 4] — [77J_],

which belongs to 77 K(Y). In this connection we have the following theorem,
that extends a topological criterion of Atiyah and Bott [2] about the existence
of Shapiro-Lopatinskij elliptic conditions to an elliptic operator on a manifold
with boundary.

Theorem 3.12 Let A = (Ajij)ij=1,2 € Y*(W,g;w) for g = (7,7 — p, ©) and
w = (Ei,Fi;Ey, F>) be an operator that is oy-elliptic in the sense of Defi-
nition 3.8 (i) and such that (3.3.2) is a family of Fredholm operators. Then,
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there exists an elliptic operator A = (Aij)ij=1,23 € Y*(W,g;v) for v :=
(Ev,Fi;Es, Fo; J_, Jy) and suitable Jo € Vect (Y) with A = (Aij)ij=1,2 if
and only if ind s«yb € 7 K(Y').

Proof. Let us first assume that A € Y*(W, g; v) is an elliptic operator. Then, in
particular, o4 (A) is a family of isomorphisms (3.1.7). Since the entries o5 (A;;)
for i = 3 or j = 3 are of finite rank, it follows that

b= oa(Aij)ig=re : MKTETE (X" E) - mp TR (X F)
(3.3.4)
is a family of Fredholm operators parametrised by (y,n) € S*Y. Moreover,
(3.1.7) implies
ind g+yb = [r]J4] — [71J-] € K(S*Y), (3.3.5)

where here [.] denotes the equivalence class of the bundle in brackets in the
K-group on S*Y. Since [n7Ji] — [nfJ_] = 75 ([J+] — [J-]), the index element
(3.3.5) is the pull-back of [J+] — [J_] € K(Y) under m; : S*Y — Y, ie, it
follows that (3.3.5) belongs to 7y K(Y').

On the other hand, assuming that (3.3.4) is a family of isomorphisms such
that ind g«yb € 77K (Y) holds, we can find an N_ € N and a map k €
C>®(S*Y, L(CN-,C5° (X", F))) such that

Kst27+5 (XM E)
(bly,m) Kk(y,m)) : ® — TSRS (XN F) (3.3.6)
(CN,

is surjective for every (y,n) € S*Y and every s € R. The existence of k is
an easy consequence of the elliptic regularity in the calculus on the cone X"
and of the fact that C§°(X ", F) is dense in the space K*7#t27—1#+% (XN F)
for every s,y € R. From general properties of families of Fredholm opera-
tors parametrised by a compact C*° manifold, here S*Y, we know that G :=
ker(b(y,n) k(y,n)) is isomorphic to a C* vector bundle G on S*Y. Thus, we
can fill up the family (3.3.6) to a C*° family of isomorphisms

Ks+37+5 (XN E) Csmrt 27—t 3 (XN F)
b k ) )
< (y,m) (y,n; ) : o . o
- Gy,n)

(3.3.7)
(where G, ) denotes the fiber of G over the point (y,n)). The second row
of (3.3.7) can be obtained by composing any isomorphism G — G from the
left by a projection K*t27+t% (X" E) o CV- — G(y,n- Because of elliptic
regularity in the cone calculus, G is independent of s (it is, in fact, a subbundle
of ST (X" E) & CN- for 72 (X, E) = n{r) VKN (XN E). Now,
ind g«yb = [G] — [CV-] is just the definition of the index element of a family
of Fredholm operators b that employs a family of isomorphisms (3.3.7), though,
as it is known, ind g+y b is independent of the choice of (3.3.7). Moreover, we
have G = 7y Jy for some J; € Vect (V) as soon as N_ is chosen sufficiently
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large. The entries k(y,n), t(y,n) and p(y,n) can be extended to T*Y \ 0 by
homogeneity with respect to the group actions, so that the extension of (3.3.7) to
T*Y '\ 0 satisfies (3.1.8) with p in place of v. Note that then, locally, x(n)k(y, n),
x(mt(y,n) and x(n)p(y,n) are classical operator-valued symbols. Setting w =
(By, Fy; By, Fy; CN- CN+), where N, is the fiber dimension of J,, we have

= 0 x(m)k(y,n) " .
°T ( x(mt(y,n)  x(mply,n) > € Ra( xR, g;w), (3.3.8)

with 0 denoting a 2 x 2 vanishing matrix. For operators defined globally on W
we write v = (Ey, Fy; Eo, Fy; J_, J;) for J_ = CN-. By hypotheses,

D <61 8)ey“(W,g;v) and o (D) = <8 8)

We get the claimed result setting A := C' + D, where C is the Green operator
defined by the local amplitude function c. 7]

3.4 Parametrices and regularity with asymptotics

Definition 3.13 Let A € Y*(W,g;v) be an operator in the notation of Defi-
nition 3.8. Then an operator P € Y *(W,g Y07 t) forg! == (v — u,7,0),
v 1= (F,E; Fy,Ey; Jy,J ) is said to be a parametriz of A if

AP—-Z €Y *°W,g,;v,) and PA—Z €Y >*(W,g,;v;)

for g, = (v =,y —1,0), v, = (F1,F1; Fy, Fy; Jy, Jy) and g, = (7,7, 0),
v = (B, E; By, Eoy J_, J_).

Theorem 3.14 Let A € Y*(W, g;v) be elliptic in the sense of Definition 3.8.
Then, A has a parametriz P € Y~ (W, g ;v 1).

Proof. For convenience, we consider the case where E}y and Fj, k = 1,2, are
trivial bundles of fiber dimension 1 and omit the bundle data from the notation.
Moreover, for every 3 x 3 matrix B we will write B for its 2 x 2 upper left corner
(Bij)i,j=1,2-

As in relation (3.1.4), the operator A can be written in the form diag(A;,.A2,0)
+M + G, for A, € Y*(Wi,g) and M + G € Y*(W,g). By virtue of Def-
inition 3.8 (i), applied to A for & = 1,2, from the elliptic theory in the
edge algebra on Wy we find operators By, € Y~ #(W,g 1) such that By A, =
Z mod YV, (Wi, (7,7,0)), cf. Remark 3.3. Setting Py := diag(B1, B2,0) we
then obtain

PoA =1 mod Vi, (W, g)).

On the level of principal conormal symbols this yields the identity
om(Po)(y,z + p) om(A)(y,2) = 1+ f(y, 2)
for a function f € C*°(Y, Mz>) where Mz is the space of 2 x 2 matrices of

smoothing operator-valued Mellin symbols f;; € M ECJ’O (X3, X;) with asymptotic
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types Rij, j = 1,2 (recall that, by Definition 2.6, only A contributes to the

Mellin principal symbol). Since (14 f(y, z))~! = 1+ f(y, z) for another element
f(y,z) € C(Y, Mg*°) and some matrix S of asymptotic types, we get

o (A)(y,2) = 1+ f(y,2)) om(Po)(y, z + 1) = os(Po) (y, 2 + ) + 1y, 2 + 1)

for some I(y,z) € C*°(Y, Mp™) with a resulting asymptotic type P, where the
carrier of P does not intersect I' I (y—p)- The next step in the construction of the
parametrix is to pass to Py := Py +.My, where Mo = riw(rn])op), (1) (y)@(rin])
is an operator such that

on(P1)(y, 2 + 1) = on (A) 7 (3, 2). (3.4.1)
We thus obtain P1.A = 7 — M, where, because of (3.4.1), the highest conormal

k
symbol of M; vanishes. Thus, setting Py = ZM{, we get Py A =T -G for
i=0
a 2 X 2 matrix G of Green operators of order 0.
The op-ellipticity of the operator A shows that

oA(A)(m) : KTETTRXY) 5 KRR (342)
is a family of Fredholm operators, parametrised by (y,n) € S*Y, where
ind g-y o (A) =[x} J4] — [x7J_].

(3.4.2) is a family of elliptic operators in the sense of the cone algebra on X"
(cf. Section 1), and o (P2)(y,7n) is a family of parametrices in that algebra,
which implies _

ind g«yop(Pe) = [w1J_] — [7] J4]-

Now, similarly to the considerations in the proof of Theorem 3.12, we find a
family of isomorphisms

~ s+ +5 (XN s—ut g y—ptg (XA
_(oa(P) oa(E),, N AT KX
A A (J+ ®CY), (J+ ®CY),

(3.4.3)
for some (sufficiently large) N. The entries oy (K), o4(T), oa(Q) may be ex-
tended by homogeneity —p (with respect to the group actions, cf. relation
(3.3.1)) to a family that has the structure of a homogeneous Green symbol of
order —pu in our edge symbolic algebra. In order to invert o (A)(y,n), we com-
pose (from the right) a = diag(oa (A)|s+vy,ide~ ) with (3.4.3) and get a family of
operators that has the form b(y,n) = (b;;(y,n))s: j=1,2 where b1; takes values in
CY+c(X",g) and (by construction) satisfies oy (b11) = 1 for all (y,n) € S*Y,
while the other entries b;;(y,n) are of finite rank. Since the involved factors in
the composition are invertible, b(y,n) is a family of invertible operators as well.
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We now obtain
b(y,n) aly,n) =1+ g(y,n) (3.4.4)

for an element g(y,n) € oa(RE(Q x R?,g))|s+y. The invertibility of a(y,n)
and b(y,n) implies that also (3.4.4) is invertible. Using the fact that there is
an element h € o5 (R (2 x R?, g))|s-y such that 1+ h(y,n) = (1 + g(y,n))~"
we can pass to (1 + h(y,n))b(y,n) = a=(y,n). Since a(y,n) is a block matrix
with ideny in the right lower corner, the same is true of a1(y,n), i.e., the latter
expression gives us oa(A) ! (y,n)|s-y itself. Since the above multiplications
preserve the nature of operator families on S*Y that belong to oy (R°(€ x
R?,g))|s-y, we get this same property for oa(A)~!(y,n)|s-y. Thus, by an
extension by homogeneity —u, we can produce

oa(A)7 (y,n) € oa(RTH(Q x Y, g)).

Using Remark 3.5, we get an operator P3 € Y #(W,g ') such that o(P3) =
o(A)~t. This gives P3A =Z +C for C € Y 1(W,g!). Since in the spaces
of our specific operator-valued symbols it is possible to perform asymptotic
summations, a formal Neumann series argument gives the desired result. [

Theorem 3.15 If A € Y*(W, g;v) is elliptic, the conditions
() 4u=feWg T HTITEW F) o HE (YL,

(ii) u € W=t (W, E) & H-°(Y, J_)
imply u € W;;)%’7+%(W,E) @ HS’%(Y, J4) for every s € R. Here Q is any
asymptotic type and P depends on Q and A (not on s).

Theorem 3.16 Let A € Y*(W,g;v) be elliptic. Then the operator (3.1.2) is
Fredholm for every s € R. Moreover, ker A is a finite-dimensional subspace
V C W;o’v—i_%(W,E) @ H®(Y,J_) for some asymptotic type P, and there is
a finite-dimensional subspace W C WV ~Ht3 (W, F) @ H®(Y, Jy) such that
imANW = {0} and im A + W = Ws—rt37—1+3 (W F) @ H =37 (Y, J, ).
This is valid for all s € R with s-independent V' and W . Finally, there is a
parametriz P € Y *(W,g 1;v 1) such that T—PA and T— AP are projections
toV and W respectively.

Theorem 3.15 above expresses elliptic regularity of solutions in weighted edge
Sobolev spaces and subspaces with asymptotics. The proof is based on Theorem
3.14 and employs P as a left parametrix, together with Theorems 3.2 and 3.7.
The scheme of the argument is standard.

The proof of Theorem 3.16 employs Theorem 3.15 together with P as a right
parametrix. Generalities of Fredholm operators acting in scales of spaces in the
present situation then tell us that A admits a parametrix in the asserted special
form.
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