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Abstract

As is known from Kondratyev’s work, boundary value problems for el-
liptic operators on a manifold with conical singularities and boundary are
controlled by a principal symbolic hierachy, where the conormal symbols
belong to the typical new components, compared with the smooth case,
with interior and boundary symbols. A similar picture may be expected
on manifolds with corners when the base of the cone itself is a manifold
with conical or edge singularities. This is a natural situation in a num-
ber of applications, though with essential new difficulties. We investigate
here corresponding conormal symbols in terms of a calculus of holomorphic
parameter-dependent edge boundary value problems on the base. We show
that a certain kernel cut-off procedure generates all such holomorphic fami-
lies, modulo smoothing elements, and we establish conormal symbols as an
algebra as is necessary for parametrix constructions in the elliptic case.

AMS classification: 35515, 35J70, 58J32.
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Introduction

Boundary value problems on (pseudo-)manifolds with singularities (in particular,
with edges and corners) can be studied in an iterative way, parallel to a successive
procedure of geometrically generating cones and wedges, starting from a cone with
a particularly simple base manifold X. In our case X is a compact C'*° manifold
with boundary. Some aspects of this program are still a great challenge, even
for the analogous but simpler case of closed compact X. Given a class of typical
differential operators (or differential boundary value problems) with a principal
symbolic structure that determines ellipticity a basic question is to organize an
algebra of pseudo-differential operators that contains the given operators together
with the parametrices of elliptic elements. As is well-known, e.g., for the case
of closed compact X, the answer very much depends on the specific context,
in particular, on the nature of our manifold with singularities (e.g., whether
we consider conical, edge, or “higher” singularities) and on assumptions about
“regular” or “cuspidal” geometries.

In the present paper we study regular cases, where the strata of the configuration
have transversal intersections; more precise conditions will be given below.

To illustrate some elements of the iterative approach we first consider the case
of a closed compact manifold X. Let L’C‘l(X :R!) denote the space of classical
parameter-dependent pseudo-differential operators of order p on X, where the
parameters A € R! play the role of additional covariables in symbols a(z, &, \) of
local representations, and L~°(X;R') := S(R', L=°°(X)) (with an identification
L™°°(X) = C°°(X x X)). More generally, we may consider spaces L!(X;U x
R') := C®°(U, LY (X;RY)). A slight modification of such a definition allows us also
to talk about the case U = (R.)¥ x U’ for k € N, U’ C R" open. Occasionally,



when [ = 1, it will be convenient to identify A with &z for a complex variable z
varying on I's := {z € C : Rz = (8} for some 8 € R. We then write L (X;U x
I's) in such cases, or, more generally, L/ (X;U x I'g x ]Rl,) when z € I'g is the
first component of parameters (z,\'), X' € R'. In finitely many iteration steps
we start from LY (X;U x R!), with U = Uy x ... x Uy, for open sets U; C RPi
and Rl = R x ... x Rm, where we write y = (y1,..-,Ym), A = (AL,..., Am)-
Freezing of variables y; = y?, Aj = )\2 for y = 2....,m gives rise to a map

LA(X;U x RY) — LA(X;U; x RY)

for every choice of (y°,\%) := (¢9,...,4%,A3,...,2%). Then, (y1, A1) € U; x R1
will be regarded as variables and covariables in operator-valued (i.e., L (X)-
valued) amplitude functions in the first iteration step, while (y°, A\°) are treated
as “sleeping” variables and covariables, activated in forthcoming iteration steps.
As the first step we take the “conification” of the algebra of classical pseudo-
differential operators on X, i.e., a construction of an operator algebra on an
associated cone X2 := (R, x X)/({0} x X) with base X. Here, close to the tip v
(that corresponds to {0} x X, collapsed to a point) we employ a splitting of vari-
ables (r,z) € X" := R, x X. There is then a “cone algebra” of pseudo-differential

operators on X", consisting of a suitable sub-algebra of U L!;(X"), defined in
I

terms of pseudo-differential operators on R; 3 r, based on the Mellin transform
M,_,, on R, , with amplitude functions a(r, z) € Lé‘l(X; Ry x I‘nTHJY) of a spe-
cific behaviour in r near zero (and with a suitable weight v € R; n = dim X).
There is no canonical choice for the cone algebra; different variants are motivated,
e.g., by the index theory or by applications to asymptotic phenomena, cf. [12],
[30], [17], [6]. “Higher” operator algebras as they follow by our iteration depend
very much on the specific choice on the lowest singular level. Thus, in contrast
to cone algebras in the beginning, where different authors essentially deal with
“the same class” of Fuchs type operators, as far as it concerns the non-smoothing
elements, the structures on manifols with higher geometric singularities, starting
from edges, may be completely different; see, for instance, [19], [18], [21], [27],
[15].

Manifolds W with edges are locally described by wedges X2 x  for a model cone
X% and an open set 2 C R?. The open stretched wedge X" x § gives rise to a
splitting of variables (r,z,y). Then an “edgification” of the cone algebra (to get
a pseudo-differential algebra on W) starts from pseudo-differential operators on
R, x © with amplitude functions a(r,y,z,n) := a(r,y, z,7)|5=ry (ie., with “edge
degeneracy” in n), with a(r,y,z,7) € Li(X;Ry x Q x FnT-H_,Y X R%) of some
specific structure, cf. [29], [31], [25], [10]. Also here, we may (and, in fact, will)
have in mind sleeping parameters to be activated in the next conification step.
The procedure leads to operators on a manifold with corners, locally modelled
by W2, where the corner base W itself is a manifold with edges. Also the case



of boundary value problems can be studied under the aspect of an iterative ap-
proach. Conifications and edgifications then start from boundary value problems
on a compact C* manifold X with boundary, based on the space B*%(X) of clas-
sical pseudo-differential boundary value problems of order y € Z and type d € N,
cf. [2], [20], or, more generally, on a parameter-dependent variant B*?(X; U x R!)
with parameters (y,\) € U x R of similar meaning as above. A cone algebra
of boundary value problems in that sense (also for non-classical operators) has
been studied in [22], [23]. Basics of the symbolic structure for the edge algebra
are given in [24], [26], [25]; the edge algebra itself may be found in [10], see also
[5] or [4].

Corner and higher edge cases are interesting as well. For instance, it is a natural
problem to study parabolicity of boundary value problems on configurations with
edges. Then, even for differential operators, we need a parameter-dependent el-
liptic edge theory, see [1] for an analogous situation when the boundary is smooth.
It has been observed in [13] that the space-time cylinder for ¢ — oo (with ¢ being
the time variable) behaves like a conical singularity (e.g., when the coefficients
in a parabolic operator are constant for ¢ > T for some 7', or when they are
“smooth” up to co). It is then adequate to study a corresponding (anisotropic
analogue of the) cone operator algebra for the tip at oco. This yields invertibility
of operators “up to co” and long-time asymptotics of solutions. Long-time (iter-
ated) asymptotics for the case of spatial configurations with conical singularities
(and without boundary) have been characterised in [14]

Parabolic boundary value problems with edge singularities require parameter-
dependent operators on the corresponding spatial configuration.

Elements of such a calculus in the isotropic case belong to the program of the
present paper. At the same time we establish necessary symbolic structures for
parametrices of elliptic boundary value problems on manifolds with higher cor-
ners. This corresponds to configurations when the edge itself is not smooth but
has, e.g., conical singuarities. In other words, we fulfill a specific part of the
iterative approach for singular boundary value problems, see also [16] or [32] for
an analogous situation in the boundaryless case, or [9] for the aspect of relative
index formulas in certain cases with corners.

We start the iteration from parameter-dependent boundary value problems for
the smooth case. Boundary value problems will be written themselves as ele-
ments of an “edgified” boundary symbolic calculus. Boundary symbols operate
on a cone that is the inner normal, while the boundary plays the role of an edge.
We then construct holomorphic families of order reducing elements by a kernel
cut-off procedure, analogously to [28] for the case without boundary.
Parameter-dependent boundary value problems on a compact C* manifold X
with boundary will play the role of operator-valued amplitude functions for the
edge calculus. Here, a kernel cut-off construction (in the covariable on the axial
direction of the model cone) gives us a class of holomorphic amplitude functions.



We then establish a calculus of 2 x 2-block matrices of edge boundary value prob-
lems. Moreover, we add further entries that describe conditions of trace and
potential type along the edge.

All this admits again parameters that we now activate to a final algebra of holo-
morphic edge-operator-valued functions, obtained by another kernel cut-off. Fur-
ther we introduce a concept of parameter-dependent ellipticity with an extension
to the complex plane. This gives rise to a space of meromorphic operator func-
tions with a precise control of (operator-valued) Laurent coefficients.

The boundary of our manifold with edges is again a manifold with edges though
without boundary (in the sense that the base X of the local model cone is closed).
The case without boundary has been treated in [16] in a framework with con-
tinuous edge asymptotics. In our paper we concentrate on the effects from the
boundary and do not touch the relatively complex behaviour in a larger calculus
with asymptotics. The asymptotic part is also of interest (it is, in fact, auto-
matically generated in parametrix constructions), though it can be regarded as
a structure that is complementary to ours. This will be the main content of the

paper [3].

1 Boundary value problems

1.1 Manifolds with edges and interior symbols

Let X be a compact C'*° manifold with boundary, and let 2X := X denote the
double of X (that is a closed C* manifold obtained by gluing together two copies
X+ of X along their boundaries in a canonical way); we then identify X with X .
Let X2 := (Ry x X)/({0} x X) be the cone with base X and form analogously
X2; the tips v of the respective cones are represented by {0} x X ({0} x X),
identified with a point. X" =X A \ {v} is a C°° manifold with boundary,
embedded in the C*° manifold X” := X\ {v}. For the analysis on cones it will
be convenient to fix splittings of variables (r, ), say, on Ry x X and to impose
what we call a cone structure. Two splittings of variables (r,z) and (7,%) are
said to define the same cone structure on R, x X, if (r,x) — (7, Z) is induced by
a diffeomorphism Ry x X — R x X. Up to this point, X may be an arbitrary
closed C*° manifold. For the case X = 2X with a compact C'*° manifold X with
boundary we also consider (r,z), (7, %) on Ry x X, and say that two such splittings
define the same cone structure there, if (r,z) — (r ) defines a homeomorphism
x : X" — X’ induced by a diffeomorphism ¥ : R; x 2X — R, x 2X, ie.
X=X |xn.

Given an open set 2 C R? and a closed C'*° manifold X we now pass to (stretched)
wedges X2 x Q. Two splittings of variables (r,2z,y) and (7,Z,9) on X" x Q are
said to define the same wedge structure on X x Q if (r,z,y) — (7,%,4) is
induced by a diffeomorphism R x XxQ— Ry x X x Q, and, in addition, if we



write
(7, Z,9) = (F(r,z,y), 2(r, 2,y), §(r, z,9)), (L.1)

we have 7(0, z,y) = 0; furthermore, x — Z(0, z,y) for fixed y defines a diffeomor-
phism X — X, and 7(0,z,y) is independent of x, where y — ¢ at r = 0 induces
a diffeomorphism 2 — . Moreover, for the case X = 2X with a compact C*
manifold X with boundary we also consider (r, z,y), (7, Z,7) on Ry x X x Q, and
say that two such splittings define the same wedge structures if (r, z,y) — (7, Z, 9)
defines a homeomorphism x : X" x Q@ — X" x €, induced by a diffeomorphism
X R+><X><Q—>R+xXxQoftheabovekmd ie. x =X |xrxa-

A topological space 1% (locally compact and paracompact) is said to be a mani-
fold with edge Y C W (and without boundary), if W\Y and Y are C® manifolds
of dimension 1 +n + ¢ and g, respectively, and every y € Y has a neighbourhood
Vi in W that is homeomorphic to a wedge X XA x ) with a fixed wedge structure
on X" x Q, where X is a certain closed C* manifold, n=dimX.

For the case with boundary we apply the definition of W to the case of X = 2X ,
where X is a compact C* manifold with boundary.

A topological space W _is said to be a manifold with edge Y C W and boundary,
if there is a manifold W := 2W with edge Y and without boundary (W will be
as the double of W), such that the former neighbourhoods V' can be regarded
as doubles 2V of neighbourhoods V' of points y € Y in W, where the wedge
structures of V \ Y in the sense of representations as (2X)" x Q induce wedge
structures on X" x € in the above-mentioned sense.

Notice that the definition of Wallows us to form a C'°*° manifold W with boundary
OW where a neighbourhood of 8W is modelled by the sets R x X x Q, where oW
locally corresponds to {0} x X x Q. By virtue of the nature of transition maps
(i.e., other admitted splittings of variables in the wedge structures on XN x Q)
the deﬁnltlon of W is invariant, and OW is an X bundle on Y. We call W the
stretched manifold with edges associated with W For purposes below we also
set Wsmg = 8W Wreg = W\ OW. Moreover, if W = 2W where W is a manifold
with edge and boundary, we can also form the associated stretched manifold W,
locally being of the form R, x X x , where W = 2W is the double of W. Simi-
larly to the definition of doubles of smooth manifolds with boundary we represent
2W as the union of two copies Wy of W glued together in a natural way. If we
identify W with W, , we then set Wjyg := Wying N Wy and Wieg := Wyeg NW, .
Note that W,e, is a (in general, non-compact) C'°° manifold with boundary.

Example 1.1. Let X be a compact C™ manifold with boundary 0X and let
XA be the cone with base X, where X is endowed with a cone strucure. Then
W = X2 x Q for an open set Q@ C RY is a manifold with edge @ and boundary.
We then have

W=R, x X xQ,



Wiing = {0} x X x Q, Wyee =Ry x X x Q.

Moreover, W = 2W = (2X)2 x Q is a closed manifold with edge Q, where
W =R, x (2X) x Q.

For notational convenience we impose some assumptions on the nature of our
manifolds 1% and W with edge Y. We assume that Y has a neighbourhood V in
W such that V \ Y is homeomorphic to X" xY with a global wedge structure
where the transition diffeomorphisms X'x Q=X "xQina neighbourhood of
r = 0 only depend on y (not on r or z). For W with boundary we impose a
similar condition. These assumptions are not really essential for our results, but
we intend to concentrate on analytic effects that become more transparent under
such precautions. On W, ¥ and X we fix Riemannian metrics such that the met-
ric on W corresponds to the product metric on R x X xYina neighbourhood
of r =0, and on W and X we take the metrics induced by the ones on W and
X , respectively. Finally, for our manifold X with boundary we assume that the
Riemannian metric is the product metric in a collar neigbourhood = 90X x [0, 1)
of the boundary. Transition diffeomorphisms to charts near the boundary will be
assumed to be independent of the normal variable x,, for small x,,.

By Vect (-) we denote the set of all smooth complex vector bundles on the man-
ifold in the brackets, i.e., we have the sets Vect (W) Vect( X), etc., ~and we set
Vect (W) := {E|yw : B e Vet (W)}, Vect (X) == {G|x : G € Vect( X)}. In the
bundles in consideration we fix Hermitian metrics. Moreover, for E € Vect (W)
the restriction of E to W = X x Y can be lifted to a bundle on R, x X XY
that we call E/\, where the Hermitian metric is also assumed to be the lifting
of the metric on E|3W. Similar notation is used in connection with bundles
E € Vect (W) and E” € Vect (R x X xY).
To motivate the choice of interior (pseudo-differential) symbols in local coordi-
nates (r,z,y) € Ry x X x 2, where ¥ C R" is an open set (belonging to a chart on
X) we first describe the form of typical differential operators on an open stretched
wedge X" x 2. Operators are assumed to be edge-degenerate, i.e., they have the
form N

A=r"# | Z aja(r, y)(—rg) (rDy)® (1.2)

Jtlal<p

where ajq(r,y) € C®(Ry x Q,Diff+~U+lel(X)). Here, Diff”(X) denotes the
space of all differential operators on X with smooth coefficients up to the bound-
ary, endowed with a natural Fréchet topology. Operators like (1.2) appears (for
p = 2) as Laplace-Beltrami operators for wedge metrics on X x Q and they
are also induced by substituing polar coordinates & — (r,z) in operators with
smooth coefficients in R2*! x Q,. Observe that operators (1.2) behave invariant
under the above-mentioned transition maps.



In our theory we will be interested in fact in parameter-dependent operators with
extra covariables A € R! that formally play the same role as y € R?, the covariable
to y € Q. Pseudo-differential symbols of order y € R with parameters A\ are then
assumed to be of the form

rFp(r,z,y, 0,651, M)

where .
p(T, xa ya pa 57 777 )‘) = ﬁ(ra .’I), ya :57 f? ﬁv )‘) |ﬁ:rp,ﬁ:7‘7], 5\:7-)\ (13)

for a symbol p(r, z,y, p, &, 17, 5\) in the standard Hormander symbol class Sé‘ )(@+ X

cl

¥ x Qx R;Z":;q; '). Here, subscript “(cl)” means that we are talking about

classical or non-classical symbols in (p, £, 7, 5\) Below we mainly look at classical
symbols, indicated by “cl”. Since we are interested in boundary value problems
we do not only consider open sets ¥ C R” but sets of the form ¥ := ¥/ xR, where
¥/ C R*! corresponds to a chart on the boundary 0X while R, corresponds to
the inner normal to X (with respect to a choosen Riemannian metric on X that
is supposed to be the product metric of 0X X [0,1) on a collar neighbourhood
of the boundary). Near the boundary we write z = (z',z,) with covariables

§= (5,7 fn)

Definition 1.2. A symbol p(r, z, y, p, &, n, \) written in the form (1.3) for
pr,z,y, p, 6,7, A) € SE(Ry x (X' x Ry) x Q x RUnFa+hy 1y e 7 is said to have
the transmission property with respect to x, = 0 if the homogeneous components
D(u—j) of p of order p — j in (ﬁ,f,ﬁ,j\) #0, j € N, satisfy the condition

Dy, DS o s APy (18" 20, Y5 r € En 11, A)

- (_1)“7]'13(“7‘7.) (’l", xla Tn,Y, =P, _5,7 _gna -1, _5‘)} =0

on the set{(r, xlamnayvﬁv flafnaﬁaj‘) : (7", xlay) € Eﬁ-XE,XQa Zn =0, (ﬁa 51777/75‘) =
0, &, € R\ {0}} for all k € N, o € N*FTaHL,

Symbols relying on variables in a set like R, x ¥/ x Ry x € are interpreted
as restrictions of symbols in R x ¥/ x R x Q 3 (r,2',z,,y) to Ry x X' x R, x Q.
In particular, we can also define the transmission property for symbols defined
in RxY xRxQ (oralso Ry x X' x R x Q) by requiring an analogue of the
conditions of Definition 1.2 for (r,z’,z,,y) in the respective larger sets. Let
SH(Ry x (' x Ry) x Q x RUHaH), - denote the subspace of all symbols with
the transmission property. Similarly, we write the subscript “tr” for spaces of
symbols with the transmission property when the spatial variables run over R
instead of R with respect to r or z,.



1.2 Boundary symbols associated with interior symbols

Given a symbol p(r,z,y, p,&,n, A) with the transmission property at x,, = 0 in
the sense of Definition 1.2 we now pass to an associated boundary symbol that is
operator-valued, acting on the z,-half-axis. The formalities will not depend on
the specific dimensions of variables and covariables. Therefore, we shall ignore
the covariable A for a while (it is, in fact, a “sleeping” covariable, to make it
active in a higher floor of our calculus). In other words, for convenience we now
speak about symbols r~#p(r, z,y, p,£,n) where

p(r,z,y,p,&,n) = plr,z,y,rp, &)

with a symbol p that is smooth up to » = 0 and has the transmission property
(in the notation with covariables (p,&,7), & = (¢',&,)). Also the dimension of y-
and n-variables may now be independent; we simply assume both dimension to
be q. Let S(Ry) := {ulg, : ve S(R)} and set

4 | u(zy) for z, >0
(e u)(wn) = { 0 for z, <0

In addition, let r* : D'(R) — D'(R.) denote the operator of restriction of
distributions from R to R;. In particular, if H*(R) is the standard Sobolev
space of smoothness s € R on R, we set H°(R;) = {ulg, : v € H°(R)}
and use e’ in the sense et : H*(R;) — S'(R) for s > —1. Given a sym-
bol p(r,z,y,p,&,m) (of order p € 7Z) with the transmission property we set
oy (p)(r, 2.y, p,€,m) = Py (1, 7,9, p,§,n) and define its boundary symbol as

Ua(P) (lra xla Y, ps fla 77) = r+0p(p(u) |.’13n=0)e+ (lrv xla Y, P, 5,7 77)

for (p,&',n) # 0, regarded as a family of continuous operators H*(R;) —
H* #(Ry) for s > —1, or, alternatively, S(Ry) — S(Ry). Here, op(a)u(z,) :=
[ [elen—mdéng(a,, ol & )u(!) da!l, @, for a symbol a(z,,x),&,) in variables
(zn,x},) and covariable &,.

Notice that when we set k5(u)(zy) = (ﬁu(&n), d € Ry we have a strongly (in
d € Ry) continuous group of isomorphisms k5 : H°(Ry) — H*(Ry) for all s,
and

06(10)(7”7 ‘TIJy? 5/07 65,7 677) = 6NH§0-3(p)(T7 x,7y7p7 5,777)H(;1

for all r, o, y, (p,&'sm) #0, 5 € R
For purposes below we also note the fact that, provided the symbol p(r, z,y, p, £, n)

is independent of z,, for |z, | > ¢ for a constant ¢ > 0, the operator functions

op(p)(r,2",y,p,¢',m) « H'(R) — H*7H(R) (1.4)



and
op™(p)(r, 2’ y,p, € i) + H(Ry) — H™H(Ry) (1.5)

for op™ () :=rTop(-)e™ and s > —1 are operator-valued symbols in the following
sense.

To reduce technicalities we now employ for a moment variables and covariables
(y,m) € U x R? independently of the specific meaning before, where U C RP
is an open set and p, ¢ € N are arbitrary. Let E be a Hilbert space endowed
with a strongly continuous group {rs}scr, of isomorphisms k5 : £ — E, where
ksky = kge for all 6,0' € Ry (in such a case we simply talk about a group
action on E). Moreover, let E be another Hilbert space with such a group
action {Fs}ser,. Then SH(U x RY; K, E) is defined to be the subspace of all

a(y,n) € C®°(U x RY, L(E, E)) such that
17y {0y DR aly, m) Yl g s,y < clm) ™7 (1.6)

for all multi-indices « € NP, § € N¢, and all y € K, n € R?, for arbltrary
K CC U, with constants ¢ = ¢(a, 8, K) > 0. Here, as usual, (n) = (1 + |n|? )
Equivalently, we may replace the function () by another strictly positive C*°
function [] in R? such that [n] = |n| for |n| > c for some ¢ > 0. The last constant
in the symbol estimates (1.6) turn S¥(U x R?; E, E) to a Fréchet space. It is
also necessary to generalize this definition to the case of Fréchet spaces, e.g., if
= hm kEN E¥ is a Fréchet space, written as a projective limit of Hilbert spaces

E Wlth continuous embeddings E*1 —y EF for all k, where E is endowed with
a group action {&s}secr, that restricts to group actions on EF for every k. Then,
we have the spaces S#(U x R?; F, Ek) for all k£ that are continuously embedded
into corresponding spaces referring to E', for all | < k, and we then set

SMU x RY; B, E) = lim g S*(U x RY; E, E*)

in the Fréchet topology of the projective limit. We also may admit E to be a
Fréchet space with similar assumptions. We then get S#(U xR?; E, E) also in such
cases; explicit definitions may be found in [31], Section 1.3.1. We also employ
corresponding subspaces of classical symbols, indicated by subscript “cl”, that
are based on components with “twisted” homogeneity in the sense of identities
of the kind

fly,om) = 0" Tksf(y,mks ', 0 € Ry,
when f(y,n) € C*(U x (R? \ {0}),£(E,E)), j € N. Then, e.g., when F is
Hilbert, £ a Fréchet space, S%(U x R?; E, E) is Fréchet in a natural way (where

the topology is stronger than that induced by S*(U x RY; E,E)), while for the
case that both £/ and E are Fréchet we have corresponding inductive limit topolo-
gies both in S#(U x RY; E, E) as well as in S4(U x R%; E, E), cf. [31], Section
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1.3.1. Incidentally, U is to be replaced by (R,)* x U’ for k eEN,U'C RP" open;
then there is a straightforward extension of symbol spaces to (R )¥ xU "in place
of U (e.g., by restrictions of symbol spaces from larger open sets to Rk x U").

The choice of the actions {ks}scr, and {Ks}ser, on E and E, respectively, is
assumed to be known and fixed. In the case £ = H*(Ry) or H%(R) we always
take Ky 1 u(zy) — 6%u(5$n), § € R,. For E = CN we usually set 5 = idg,
0 eRy.

Clearly, our symbol spaces depend on the choice of the group actions x :=
{ks}ser, and & := {Ks}ser, on the spaces E and E, respectively. Incidentally,
it will be necessary to indicate that explicitly; in this case we write Séf: 1)(U X

R?; E, E), ; in place of Sty (U x RG B, E).

Observe that S~°°(U x RY; E, E) (the intersection of all S#(U x R?; E, E) over
€ R) does not depend on the choice of &, & (i.e., we may take for  and & the
identities), and we have S™°(U x R?; E, E) = C*(U,S(RY, L(E, E))).

Remark 1.3. The operator family (1.4) belongs to SH(U xR"T4; H*(R), H* #(R))
for all s € R while (1.5) is an element of SH(U x R" 9 H*(Ry), H*7H(R}.)) for
all s > —%; here, U = Ry x X' x Q. For the case that p is independent of x, we get
classical symbols. In addition, (1.4) and (1.5) belong to S*(U x R"*4; S(R), S(R))
and SH(U x R"T9; S(R,),S(R,)), respectively (and they are again classical for
Zp-independent p).

In the latter description we employ the representation

S(Ry) = lim ey (@n) "H(Ry).

For purposes below we want to add some more information on operator-valued
symbols and associated operators. Let {2 C R? be an open set and consider the
space Sé‘cl (Qx QxR EE) 5 aly,y',n,\) of operator-valued symbols and
associated parameter-dependent pseudo-differential operators

| B, B3R := {0p (a)(N) = aly,y',m, M) € Sl (@x QxRS B, B} (1.7)

Then, similarly to scalar pseudo-differential, we have a decomposition

L!(Lcl

Liy (% B, E;RY) = Lfy (% B, BsR ) + L™ (% B, B R, (1.8)

) (cl)
where L™°(Q; E, E; R') = Mper LM (4 E, E; R!) is the space of all smoothing op-
erator families (that equals S(R!, L=°(; E, E))), and K C Q x Q is any proper
compact set that contains diag (2 x €2) in its interior, and LE‘CI)(Q;E,E;Rl) K
denotes the space of all elements in (1.7) the (operator-valued) distributional ker-
nel of which is supported by K. Then, forming o(A4)(y,n, A) f := e W1 A(N)e" f,
f € E, for A(\) € Lébd)(Q; E,E;R) g gives us an element o (A)(y,n, \) € Sfbd)(Qx

11



Re+: B E) where A(A) = Op (o (A))(A). The space of such o(A)(y,n,A) is a

closed subspace SELC (€2 % R B E)g of SEL (€2 % R¢H: B, E) and has as such a

Fréchet topology (the induced one from the larger space). The bijection

Op : Sfp)) (2 x R E E) g — Lé‘d)(Q;E,E;Rl)K
then gives us a Fréchet topology also in L‘(‘CI)(Q;E, E; R g, and (1.8) yields a
Fréchet topology in the space (1.7) itself, via the corresponding non-direct sum
(concerning non-direct sums, cf. notation in Section 2.2 below). A similar con-
struction holds for the case of Fréchet space E with group action.

1.3 Green, trace and potential symbols

Boundary symbols of boundary value problems with the transmission property
also contain Green, trace and potential entries. They may be obtained by speci-
fying the above abstract operator-valued symbols for the case

ARy SEY)
E = & ) E= & (1.9)
- I+

for certain j_, j+ € N. We then have symbols of the kind
g(a', &) € SH(U x R B, E),

U C R open, with diag ({~s}scr, ,id) acting on E and E (where “id” means the
identity in the respective finite-dimensional spaces that will be always clear by
the context).

Set r(¢') := diag (1, (f’)éid).
Definition 1.4. An operator family g(z',¢') € C®°(U x RY, L(E, E)) is said to be
a Green symbol of order p and type 0 if b(x',&') = 7”_1(5 Vg2, &N (&) satisfies
the following relations:

ba',€') € SGU x R L (Ry) © O, S(Ry) © TF),

b*(a',€") € SH(U x R LP(Ry) @ T+, S(Ry) @ T,
where b*(-,-) denotes the pointwise adjoint in the sense (bU,U)LQ(R+)®Cj+
(u, b*v)L2(R+)®Cj_ for allu € CP(Ry) @ U, v e CP(Ry) @ T+,

Moreover, an operator family g(z', &) : H* (R )@ CU- — S(Ry)@ T+, s > d— %
for some d € N is called a Green symbol of order p and type d if it has the form

g(z',¢) = )+ Zg] ¢') diag( BJ ,0)
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for Green symbols g;(«',&') of order p—j and type 0 (here, z,, denotes the variable
on the half-axis). Let R‘é’d(U x R%;5_,74) denote the space of all Green symbols
of order p and type d.

Let us now introduce the homogeneous principal symbol of g(z',&') of DN-
homogeneity p. First, the symbol b(z', ¢’) is classical of order p and has a homo-
geneous principal symbol in the operator-valued sense, based on the group action
{rs,id}secr, . For g(«', &) itself that means

g(z', &) € SHU xR H*(Ry) @ C-,SRy) & (Cj+)n,n

for {ks}ser, = diag {rs, 6%}5€R+, s>d— % Then, the homogeneous principal
symbol in that sense will also be called the principal boundary symbol of g(z’,¢'),
written og(g)(z',¢’). Homogeneity then means

oa(g) (@', 8¢') = 0"diag {rs,0% }oa(g) (<, ') diag {rs,67 )" (1.10)
for all (z/,¢&") € U x (R?\ {0}), 0 € Ry.

1.4 Local amplitude functions for boundary value problems

We now return to the space S%(U x Ry x RI*1),, of classical symbols with the
transmission property where U C RP is an arbitrary open set of variables z/,
z, € Ry, and covariables (¢',¢,) € RI*L of arbitrary dimension, where ¢’ € R4
(as noted in the beginning U may also be replaced by a set of the form Ry x U’
or R, 3 z, replaced by R, etc.; such generalizations will be tacitly used). In
particular, we have the space S% (U x Rx R?™1);. where elements p(z', 2, €', &) €
SE(U x R, x RIT!), are defined by restrictions of corresponding symbols over
U xR xRt

As noted in Section 1.2 for every p(2/,zn, &', &) € SH(U x Ry x RIT ), that is
independent of z,, for large x,, we have an operator-valued symbol

op’(p)(',¢') € S"(U x R H*(Ry.), H*"(Ry.)) (1.11)

for s > —1 (here, in op™(p) = rfop(p)e™ we tacitly use any extension of p
as a symbol on U x R x RI*! though op™(p) does not depend on the specific
extension).

Definition 1.5. The space R (U x R; 5, 4.), (u,d) € Z x N, is defined to be
the set of all operator families

a(x’7é4) = ( 0p+(p2)($,,£,) 8 ) —|—g(m’7§/)

for arbitrary p(z',z,,¢,&,) € SH(U x Ry x RITY)y, (that is independent of z,,
for large x,,) and arbitrary g(x',&') € R’é’d(U X R 5, 54).
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Remark 1.6. As a consequence of (1.11) and Definition 1.4 we see that for
ala, &) € RMU x RYj,j,) and b(a',€) = r=L(€)ala!,&)r(¢"), we have
b(a',¢') € SHUXR?; H (Ry)oCI-, HS H(Ry )@C/+) for every s > d—3. In addi-
tion, it can easily be verified that b(x',£") € SH(UxR?; S(Ry )T, S(Ry)aCT+).

Definition 1.5 has a straightforward extension to the case of [ x k-block matrix val-
ued upper left corners, in other words, where p is replaced by (pij)izly,,,,l;jzl,m,k,
and g(z',¢') is operator-valued symbol between spaces H*(R,,CF) ® C- and
S(R,,C") @ T+. We then get R U x R%;w), w := (k,l;j_,54), as the corre-
sponding generalisation of the former space.
The numbers k, [ and j_, j1 will play the role of fibre dimensions of corresponding
complex vector bundles in the global calculus below. Then, for 2 C R? instead of
U we have invariance of the corresponding spaces R*?(U x R?; w) under substi-
tuting the transition maps (2 xR, ) xCF — (QxR)xCF, ..., QxC* — Qx U=+
of the respective bundles.
For the set U we either take 2 x € if we want to talk about “double symbols”
or {2 for “left symbols”. For simplicity, we look at the latter case. Every element
a(z', &) € RM4(Q x RY;5_,44) has a homogeneous principal interior symbol,
namely

Uﬁ;(a)(xvf) :p(u)(xvf)v (1.12)

(z,€) € T*(2 x Ry) \ 0 and a homogeneous principal boundary symbol, defined
as

waa)e¢)i= (PO D) v )

(z',&") € T*Q '\ 0. While (1.12) is a scalar function as usual, (1.13) is operator-
valued and defines a family of continuous maps
H*(Ry) H7H(Ry)
@)@, ® - e (1.14)
- I+

for every real s > d — % For 09(a) we have an analogous homogeneity as (1.10).
In the discussion of ellipticity it will be sufficient to consider oy(a) as a family of
operators

S(R+) S(R+)
oola)(@,&): & - @ . (1.15)
- O+

Proposition 1.7. a € R*%(Q x RY; (jo,54+)), b € RV(Q x RY; (5_,50)) implies
ab € RFTVM(Q x RY; (5, 44)) for h = max(v +d,e), and we have

op(ab) = oy(@oy(b),  aa(ab) = oa(a)oa(b):
Moreover, if a or b is a Green symbol, the same is true for ab.

Proofs of this result may be found in [20], Chapter 2, or [31], Chapter 4.
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1.5 Global calculus and ellipticity

We now pass to parameter-dependent boundary value problems on a (not nec-
essarly compact) C° manifold X with boundary 0X. All manifolds in consid-
eration are assumed to be locally compact and paracompact. Consider on X a
collar neighbourhood V' of 90X diffeomorphic to 9X x [0,1) and fix Riemannian
metrics on X and 90X such that the metric on X corresponds to the product
metric of 0X x [0,1) on V with dz,, on the z,-interval [0,1). Concerning charts
on X for convenience we always assume transition maps near the boundary to be
independent of x,, for small x,,.

Let Vect(-) denote the set of all complex smooth vector bundles on the manifold
in the brackets. All occurring complex bundles are assumed to be equipped with
a Hermitian metric. Together with the Riemannian metrics on the respective
base manifolds we then have local L2-scalar products. E.g., for E € Vect(X)
there is a sesquilinear pairing

(u,v) := /X(u(x),v(:v))Ez dx

between u,v € C*°(X, E) where either u or v have compact support; here (-,-) g,
means the pairing between vectors in the fibres with respect to the Hermitian
metric in the fibre. Similarly, we have local scalar products on 90X between
sections of bundles J € Vect(0X). Corresponding local L2-spaces are denoted by
Li, (X, E) and L§, (0X, J), respectively.

If X =2X is the double of X we also have a natural way to double up elements
E € Vect(X) to bundles E' € Vect(X) such that £ = F|x (where X is identified
with Xy) (i.e., X = X_ Uy, X, where X1 are two copies of X and Uy means
glueing along 0X). To introduce (local) Sobolev spaces of distributional sections
on X in E we first consider the situation with X and E. Then the notions
HE (X,FE) and H{ (X,FE) for s € R are standard, where, in particular, for

comp loc
s = 0 we also write L2, (X,F) and L{ (X,E) with the above sesquilinear
pairing (-,-) : Lgomp()z,ﬁ) X LIQOC()N(,E) — C. Of course, such a construction

makes sense on 0X, i.e., we have the spaces Hg,,, (0X,J), H} (0X,J) and, in

loc
particular, the comp/loc-version of L? spaces. Concerning X = X we set

Hlsoc(XJ E) = {U|X+ ‘U € Hlsoc(XJE)}

and, similarly, for “comp”, and we then have the comp/loc-versions of L? spaces
on X. Our next objective is to introduce global smoothing operators

O3 (X, B) C=(X, F)
G: @ — @ (1.16)
C(())O(aXa J—) Coo(aX, J—l—)
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for E,F € Vect(X), J_,J+ € Vect(0X). It will be advantageous to abbreviate
the bundles by v = (E, F;J_, J;).

Let B~°Y(X; v) denote the space of all operators (1.16) that extend to continuous
operators

Hiomp(X, E) C®(X, F)
g: @ — @
_1
Heonky(0X, J_) C®(8X, J,)

for all real s > —%, where the formal adjoint G*, defined by

0x,05) = (WG 0) 12 (x myar? (9x,)

loc loc
for all u € C{°(X, E) @ C§°(0X,J_), v € C°(X,F) & C{°(0X, J1), induces a

continuous operator

(Gu, U)L‘foC(X,F)@L2

loc

Hgomp(XaF) COO(XaE)
Gg*: @ — S
_1
Hsorr%p(aXa J—I—) Coo(aX’ J—)

for all real s > —%.

Let T be a first order differential operator on X (with smooth coefficients up to
0X) that acts as C®°(X,E) - C*(X, E) where Tu|y = %uh/ with ¢ being the
global normal direction in the collar neighbourhood V' = 90X x [0,1). Writing
G = (Gij)ij=1,2, the upper left corner Gy is also called a smoothing Green
operator of type 0, G'21 a smoothing trace operator of type 0, and G152 a smoothing
potential operator. Gag is simply an element of L~ *°(9X; J_, J;) (i.e., smoothing
on 0X and acting between sections in J_ and Jy). Now B~°¢(X;v) for any
d € N is defined to be the space of all operators of the form

d
G=Go+ Y G;diag(17,0) (1.17)

j=1

with arbitrary G; € B~°%(X;v), j = 0,...,d. Note that the operators G; in
(1.17) are not unique for d > 0. We may pass to a unique representation of the

form i
_ ~( K’ 0
G=Go+ z% ( Bd 0 ) (1.18)
J:

where y/u 1= Tju|aX and K are smoothing potential operators, B; smoothing
operators on the boundary 0.X.

Notice that B~°(X;v) is a Fréchet space in a natural way. Then, using the rep-
resentation (1.18) for elements in B~°%(X;v), also that space becomes Fréchet.
Now, if R' 5 \ is a space of parameters, we set

BN X;viR') = S(R, B~(X;v)),
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that is again Fréchet, or, more generally,
B X;viU x R = C(U, B~ 4(X;v; RY))

for any open set U C RP.
Let us now pass to the definition of global pseudo-differential operators of the
class B#4(X;v;U x R'). For simplicity, we first omit U; the generalization of
dependence on variables in U will be trivial.
First, we have the space Lffl(int X;E,F;R") of classical parameter-dependent
pseudo-differential operators on int X, acting between distributional sections of
the respective bundles E and F'.
Moreover, let us fix a locally finite open covering of V' by coordinate neighbour-
hoods Vj, j € N, V; = V] x [0,1), such that V}, j € N form a corresponding
covering of 0X, and consider charts x; : V; — €; x [0,1) that induce charts
X; + Vj = $; on the boundary. Let w,& € C*°(X) be functions supported in V
that are equal to 1 in a neighbourhood of 0X. Moreover, fix systems of functions
{¢;}jen and {0;}en, where supp ¢, suppf; C Vj, > ¢; = 1 in a neighbourhood
JEN
of 90X, and ¢;0; = ¢; for all j. Then, {¢}}jen for ¢; := ¢jlox is a partition of
unity on 0X subordinated to {V}}jen and € := 0;|ox satisfies ¢.0; = ¢/, for all
j. Given any ¢ € C°(X) we set ¢ = ¢|sx and denote by M., the operator of
multiplication by diag (¢ idg, ¢’ ids) acting in the space C®°(X, E) ® C*® (90X, J).
For simplicity we will often omit idg and id; when the meaning is clear or cor-
responding identity maps refer to different bundles that are clear in the context.

Definition 1.8. The space B»4(X;v;R!), v = (E,F;J_,J.), of parameter-
dependent pseudo-differential boundary value problems of order p € Z and type
d € N is defined to be the set of all operator families
A()\) — MwZMcbjAj()\)MﬂjMu? + ( (1 w)Amg()\)(l w) 8 > +g(>\)
JEN
(1.19)
such that

(i) A;(X) is the operator push-forward under xj_l 0 Q; x [0,1) — V; (that
includes the chosen trivializations of the bundles in v = (E,F;J_,J;) on
the respective coordinate neighbourhoods) of an operator Op(a;)(A) for any
a;j(z', &, N) € RPQ; x R w), where w = (m, k;j_, ji) is the tuple
of fibres dimensions of the bundles in v;

(i) Ains(N) € LA (int X; B, F; RY;
(iii) G(A) € B~>4(X;v;RY).
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For references below we formulate the following standard continuity result for
operators in B*?(X;v;R!), see Boutet de Monvel [2], or the monographs [20],
Chapter 2, [31], Chapter 4.

Theorem 1.9. Every A € B*4(X;v;R') induces a family of continuous opera-
tors

Hgomp(Xa E) Hlso;#(XaF)
A(N) - @ — &
S*l S— _ 1
Heondp(0X,J-) H, 20X, 7)

1
for every s > d — 3.

The local principal interior and boundary symbols of the amplitude functions
aj(z’,¢&',\) in Definition 1.8 (i) as well as the principal symbols of Aj,(A) (where
the parameter A is treated as a part of the covariables (£,\) and (¢, \), respec-
tively) have an invariant meaning and give rise to corresponding global parameter-
dependent principal symbols. We have the principal interior and boundary sym-
bols oy (A)(z,&,A), o0a(A)(2', €&, A), which are bundle morphisms

op(A) : mxE — oy F (1.20)
for my : (T*X x R')\ 0 — X, and
E'® H°(R;) F'@ H7M(Ry)
oa(A) : mhHy ) — ThHyx ® (1.21)
J T

for mox : (T*0X x R)\ 0 — 0X. Similarly to (1.10) we have DN-homogeneity
of 05(A), namely

00(A) (&, €', 6X) = 8% diag {15,067 }op(A) (o', &', N)diag {rs, 07}~
for all (z',¢&',\) € (T*0X x R\ 0.

Remark 1.10. The spaces B*4(X;v;R') are Fréchet in a natural way, cf. [31],
Section 4.3.2.

An operator family A(\) € B44(X;v;R') for v = (E, F; J_, Jy) is called param-
eter-dependent elliptic (with parameters A € R'), if both (1.20) and (1.21) are
isomorphisms.

As is well-known, if A(\) € B#4(X;v;R!) is parameter-dependent elliptic, there
is a paramenter-dependent parametrix P(\) € B~#@=m"(X;v=1; R of A(X)
(with proper support of kernels that make the following compositions possible)
such that

I —PN)AR) € Boomaxnd) (., Rl)
Z—ANP) € B~=m" (X, v, R,
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with notation in the following meaning: ot = max(«,0), v'! = (F, E; J,, J_),
Ve = (E7E7 J77J7)7 Vr = (F,F;J+,J+).

2 The parameter-dependent edge algebra

2.1 Holomorphic families of boundary value problems

In this section we assume X to be a compact C'°° manifold with boundary 0X. In
Section 1.5 we have introduced the spaces B*4(X;v;R') of parameter-dependent
boundary value problems of order € Z and type d € N, where R 3> X are
parameters, and v = (E,F;J_,J;) is a tuple of vector bundles. The space
B*4(X;v; RY) will be considered in its natural Fréchet topology. In the sequel we
replace R by I's x R, Here, [g:= {2z € C: Rz = 8} for any B € R, and Sz for
z € I'g plays the role of parameter.

Definition 2.1. M‘é’d(X;v; R') is defined to be the subspace of all the elements
h(z) € A(C, B (X;v;RY)) such that h(z)lr, € BRYX;viDs x RY) for every
B € R, uniformly in ¢ < B < ¢ for arbitrary ¢ < .

Notice that also M‘é’d(X ;v;R') is a Fréchet space in a canonical way. If [ = 0
we simply write M’é’d(X ;v) for the corresponding space.

Operators on a cone with base X and axial variable » € Ry will be written as
pseudo-differential operators with respect to the Mellin transform in r» and with
symbols taking values in M‘é’d(X; v; R,

We employ the Mellin transform in its classical form Mu(z) = [;°r* tu(r) dr.
This is well-defined for v € C§°(R; ); then z varies over C. Later on, M will be
extended to several more general distribution spaces, also vector-valued ones. In
this case we often restrict z to weight lines I's = {z € C: Rz = p} for some
real 8. The Mellin transform will also be used in its weighted form with weight
v € R, and we write M,u(z) = M(r~"u)(z + ). Pseudo-differential operators
with respect to M., are written as

r\ (3 —7+ip) 1 , dr'
opas(h)u(r) = //<;> ? h(r,r', 5 VT ip)u(r’) g dp (2.1)

for symbols h(r, 1, z) € C®(Ry xRy, M‘é’d(X; v)), where z is restricted to F%Jy.
Let us now define Sobolev spaces on a stretched cone Ry x N := N’ first for
a closed compact C*° manifold N. We use the fact that the space L (N;R')
of parameter-dependent pseudo-differential operators of order x4 on N contains
elements RM(\) that induce isomorphisms R*(\) : H¥(N) — H® H(N) for all
s € Rand A € R'. Let us apply this for [ = 1. Then H*?(N") for s,y € R is
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defined as the completion of C§°(N") with respect to the norm

1

= L EEIGI az} ",

2mi

for n = dim N. Note that another choice of R*(\) with the mentioned properties
gives rise to an equivalent norm. The definition can be extended to the case of
a compact C'° manifold N with boundary, see similar constructions below in a
slightly modified situation.

Theorem 2.2. Let p(r, p,\) € CF (R, B“’d(X;\QRﬁ x RY)) and set p(r,p, \) :=
p(r,rp, N). Then there exists an h(r,z,\) € C°°(R+,M%’d(X;v;Rl)) such that

o, ()(A) — o, (h)(A) € B~4(X";v; RY) (2.2)

for every B € R, where h(r,z,\) is uniquely determined mod C*®(R ., Maoo’d(X;
v;RY)).

A proof of this result may be found in [10], Section 4.6.7, see also the article [11].

Remark 2.3. Operators in relation (2.2) are interpreted as mappings on the
space C° (X", E) @ C§°((0X)",J-) (B € R is then arbitrary because of the holo-
morphy of h in z and the Cauchy theorem). Below we pass to extensions to
weighted spaces and then specify the choice of .

2.2 Parameter-dependent operators on the model cone

We now turn to a calculus of families of boundary value problems on the infinite
(stretched) cone X" = R, x X with boundary (0X)" = R, x dX. There are
specific smoothing operator families that we call Green symbols.

We will need another kind of weighted Sobolev spaces on infinite stretched cones.
Let us give the definition first for the case N = R, x N when N is a closed
compact C'*° manifold. Consider an arbitrary coordinate neighbourhood U C N,
and let x : UN — T be a diffeomorphism to a conical set I' C RZ \ {0} such
that x(Ar,z) = Ax(r,z) for all A € Ry, (r,z) € U". Then H ,(N") denotes the
subspace of all u(r,z) € Hf (R x N)|r,xn such that for every x : U" — T as
described before we have (x™1)*(1 — w)¢pu € H*(R**!) for arbitrary ¢ € C§°(U)
and any cut-off function w(r). The space HZ, .(N") can be endowed with a scalar

product such that we get a Banach space with the corresponding norm. We now
form the space

KEY(ND) ={wu+ (1 —w)v :u € HHV(N), v € HS (N™)}.
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In order to fix a norm in this space, connected with a scalar product, we define
non-direct sums, for purposes below, for Fréchet spaces Ej, E; that are embedded
in a Hausdorff topological vector space H. The space

Ey+ Ey = {60 +e1:e9 € By, e € El} (23)

is isomorphic to Ey @ E1 /A for A := {(e, —e¢) : e € Eg (1 E1}; the latter space is
closed in Fy @ E;, and we endow (2.3) with the corresponding quotient topology.
Then (2.3) is again a Fréchet space, called the non-direct sum of Fy and E;. If
Ey and FE, are Hilbert spaces, also Fy + E; becomes a Hilbert space with the
scalar product from Ey @ E1, restricted to the orthogonal complement of A.
If a Fréchet space E is a module over an algebra A, by [a]E we denote the
completion of {ae : e € E'} in the space E. Then, in particular, we can write
KV (ND) = [w]HS (N + [1 — w]HE

cone

(N

as a non-direct sum.

Let X be a compact C'°° manifold with boundary, and let 2X be the double,
consisting of two copies X; = X and X_, glued together along 0X. We then
have the space K*7((2X)"), and we set

K7 (X5) :={u € K*((2X)") : suppu C X}

and
K¥(XN) = {u i x)n :w € K27((2X)M)}

From the isomorphism K57 (X") = K57((2X)") /K7 (X2) we then get a Hilbert
space structure on the space K£*7(X") for every s,y € R. In particular, we have
KOO(XN) = r 2 L%(Ry x X) for n = dim X, where L? refers to the measure
dr dz, with dx being related to a Riemannian metric on X.

Similarly we can define spaces K*7(X”, E) of distributional sections in vector
bundles E on X”. Every E can be regarded as the pull-back of a corresponding
bundle on X with respect to the canonical projection Ry x X — X, (r,z) — z,
and we assume every E € Vect (X") to be endowed with a Hermitian metric
that is independent of r. In particular, this gives rise to a scalar product (-,-)
in K9°(X" E), and (-,-) : C*(X",E) x C°(X",E) — C gives rise to non-
degenerate sesquilinear pairings (-,-) : K¥7(X", E) x Ky *7 (X", E) — C for all
s,y € R Analogous constructions hold for the case of a closed compact mani-
fold as base (then, of course, without any zero in the corresponding sesquilinear
pairings).

Remark 2.4. On the spaces K7(X", E) and K7 ((0X)",J) we define the
group actions {F&E\n)},\eR+ and {HE\R_I)},\eR+, respectively, where n = dim X, and
ﬁg\k)f(r,:r) = )\%f()\r,x) for A e Ry.
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It will also be convenient to employ Sobolev spaces on X 3 (r,z) with arbitrary
weights for r — 0 and r — oco. Let us set K37 (XN E) := (r)y K7 (XN, E),
E € Vect (X), and, similarly, K>V8((0X)N, J) == (r) P ((0X)N,T), T €
Vect ((0X)"), for s,8,7 € R. Then {Hg\n)},\eR+ and {/@g\"*l)},\ek+ are strongly
continuous groups of isomorphism on the respective spaces on X" and (0X)",
respectively, for all s,8,v € R. Let us set

So(X",E) :=lm K (X", B), So(X",J) :=lm K" ((0X)", )

where the projective limits are taken over all s,v,3 € R. (Clearly, it suffices to
take projective limits over all integers, and we then get countable semi-norms
systems in the respective Fréchet spaces). In the following definition we set
v = (BE,F;J_,J;) for E,F € Vect (X"), J_,J. € Vect ((0X)"). It will be
convenient to set

K578 (X N m) i= K50 (XN E) @ K521 28 ((0X)N, J_)
for m := (£, J_) and, similarly, for n := (F, J), with the group action given by
diag({/@g\n)}, {HE\R_I)}),\eR+. Then, on spaces of the kind ICS’"“ﬁ(X/\; m) ® C' for
some | € N we take the group action diag({/@g\n)}, {Hg\nq)}’ id) \er, , where id is
the identity on C'.
Let r(n) := diag(id, (n)éid, (n)L;l) where id means identity maps on spaces of
distributional sections of vector bundles on X and (0X)", respectively, while
(77)%rl in the third component is composed with the identity in C' for the corre-
sponding dimension /. We shall use the same notation r(n) for different bundles
and dimensions that will be clear by the context.
Let T denote any first order differential operator on X with smooth coefficients

d

that equals 7; in a collar neighbourhood of the boundary (with respect to the

chosen splitting of variables x = (z',t)).

Definition 2.5. The space REO(U x Rl w)p for w = (v;l_,l1) is defined
to be the set of all operator families g(y,n) € MNC®(U x RY, LK (XN m),
K578 (X)), U C RP open, where the intersection is taken over all indices
5,7, 8,8, 7,8 € R, such that b(y,n) = r~1(n)g(y,n)r(n) are operator-valued
symbols in the following sense:

b(y,n) € NSYU x R K>TF (X" m) @ C'-, So(X";n) & C+), (2.4)
b*(y,m) € NS4(U x R L7 (XM n) @ C+, So(XN;m)®C-)  (2.5)

where the intersections are taken over all s,s' > —% and v,3,7',8 € R. More

generally, Rgd(U x R%;w)p for d € N is defined to be the set of all

d
9(y,n) = go(y,m) + Y _ g;(y, n) diag(17,0,0) (2.6)
=1
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for arbitrary g;(y,n) € Ré_j’O(U x R?;w)p. The elements of ngd(U x R?; w)o
are called flat Green symbols (of the edge calculus) of order v and type d.

Remark 2.6. Notice that, similarly to formula (1.18), there is a unique repre-
sentation of Green symbols g(y,n) of order v and type d as

(2.7)

o O O

d—1 0
g(y,m) = go(y,m) + > | bilymr? 0
i=0 0

where kj(y,n) and bj(y,n) are Green symbols of order v — j and type 0 of the
form of 12- and 22-entries in a 3 X 3-block matriz belonging to Réﬁj’o. The space
So(X",n) ® C+ is a countable projective limit of Hilbert spaces and condition
(2.4) reduces to a corresponding expression for each space in that limit. In ad-
dition, it suffices to require the conditions for countably many s and 5. Thus,
from (2.4) we get a countable semi-norm system in the space REO(U x R%; w)p.
Together with an analogous semi-norm system from the condition (2.5) the space
REO(U x R?;w)o becomes Fréchet. Moreover, the unique decomposition (2.7) al-
lows us to represent ngd(U xR w)p as a subspace of a finite Cartesian product
of spaces of the type RVG*J"O(U xR w)o, 0 < j <d-—1. This gives us a Fréchet
topology also in ngd(U x R%; w)p for every d € N.

Remark 2.7. Given g € Rgd(U x RY;w)o, the corresponding operator-valued
symbol b(y,n), cf. Definition 2.5, is classical, and so we can consider its homo-
geneous principal symbol b, (y,m), which satisfies

by (y, on) = 8" diag (k5" , k5" 1 id)by,) (y, m) diag (5", £ id) L,

for all 6 € Ry, (y,n) € U x (R?\ {0}), where K,((Sk) are as in Remark 2.4. Then
we have the corresponding DN-homogeneous principal symbol g(,)(y,n) of g(y,n),

9y (s n) = r(n)bu,) (y,n)r~"(n), satisfying

(n-1) gut (M) 5%,

V1. n 1 . n— ntl,
g(u)(yﬁn) =0 dlag(”v((s )75255 ,0 2 )g(l,)(y,n)dlag(f-g(S (n=1) 523 ) L

) ’

for all 6 € Ry, (y,nm) € U x (R?\ {0}); the notation “DN” stands for Douglis
Nirenberg.

Remark 2.8. Let So(Ry xR x X x X) := {u(r,r',z,2') € S(RxR, C® (X x X)) :
suppu C Ry x Ry x X x X} endowed with its canonical Fréchet topology. Then,
if SH(U x R?) is the space of standard classical scalar symbols in (y,n) € U x RY
of order v, we can form the space

So(Ry xRy x X x X, 84 (UxR?)) := Sp(Ry xRy x X x X)®7 84 (U xRY). (2.8)
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If n — [n] is any strictly positive function in C*°(R?) such that [n] = |n| for
In| > ¢ for some ¢ > 0, for any g(r,r',z,2';y,n) from the space (2.8) we can
form gﬂ(rv T,7$7$,;y7n) = g(r[n]vrl[n]vxaxl;yan)' Then

o0
u(r, ) — / / gn(rsr' 2,2y, mu(r, ') di' d!
X JO

forv=pu+ ”TH represents an element in the upper left corner of R‘é’o(U x R?)p
(here, for trivial bundles of fibre dimension 1). It can be shown that this is even
an equivalent characterisation. A similar observation is true for the other entries

with the spaces C*°(X x (0X)), C®((0X) x X) or C*((0X) x (0X)) in place
of C®°(X x X) in the above-mentioned description.

Proposition 2.9. Let g;(y,n) € Ré_j’d(U x RI;w)o, 7 € N, be an arbitrary

sequence. Then there is a g(y,n) € Rgd(U x RT; w)o such that g — Z;-V:O gj €

Rlé_(NH)’d(U x RY;w)o, and g(y,n) is uniquely determined mod Rc_;oo’d(U X
R, w)e.

The proof follows from a corresponding general result on asymptotic summation
of operator-valued symbols, here specified to the case of Definition 2.5

We now pass to edge symbols for boundary value problems that contain the
typical non-smoothing contributions from the interior of our configuration with
edges. Starting point are edge-degenerate families of boundary value problems

p(rayapa 77) = ﬁ(rayaﬁaﬁ)b:mﬁ:m (29)
where p(r,y,p,7) € C°[R; x U, B"Y(X;v;R; x R%)) We apply an analogue

of Theorem 2.2 for the case of y-dependent operator families, i.e., there is an
h(r,y,z,7) € C®(Ry x U, Mlé’d(X;v;R%)) such that for

h(r,y,z,n) = h(r,y, 2,7)|i=rm (2.10)
we have
op, (p)(y, 1) = opfy (W) (y,n) mod C(U, B~4(X"; v;RY)) (2.11)
for every g € R

Remark 2.10. To control principal edge symbols below we set po(r,y, p,m) =
p(0,y,7p,n), ho(r,y,z,n) := h(0,y,z,7n). Then (2.11) implies

o, (o) (4, m) = oply; (ho) (y,m) mod C=(U, B4 X"; v;RY))

for all .
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In the following we fix arbitrary cut-off functions o(r), o(r) and w(r), w(r),
set x(r) := 1 — w(r), and choose any x(r) € C*°(Ry) that vanishes near r = 0
and equals 1 on supp .

Proposition 2.11. Let p(r,y,p,n) and h(r,y,z,n) be operator families as before
and set
an(y,m) = r~w(r[n))op,y  (h)(y, )@ (r[n)),
ay(y,n) :=r~"x(r[n])op,(p)(y, M)x(r[n)),
v € R Then we have

an(y,m) +ay(y,n) = r~"op,(p)(y,n) mod C*(U,B~(X";v;RY)). (2.12)
Moreover, setting b(y,n) := diag(id, (n)féid)a(y, n)diag(id, (n)éid) for

a(y,n) := o(r){ar(y,n) + ay(y,n)}o(r) (2.13)
we have
b(y,n) € SH(U x RY; K*Y(X";m),K* 7" (X", n)) (2.14)
for every s > d — %
Relation (2.12) easily follows from Theorem 2.2. A proof of (2.14) is given in

[10], Chapter 4.
The operator function

UM(G)(yaz) = iL(O,y,Z,O), (215)
y € U, z € C, takes values in B*%(X;v); as such it represents a family of
continuous operators

H*(X, E) H* H(X, F)
om(a)(y,z) : ® — ® (2.16)
H5"3(0X,J.) HS 13 (90X, J,)

for s > d — %, cf. Theorem 1.9.

Remark 2.12. We shall employ below operator families a(y,n, ) that have an
analogous structure as (2.13) where n € RY is replaced by (n,\) € RITL. Then
a(y,n, Ao) for any fized \g € R' is an operator-valued symbol in the sense of
Proposition 2.11. Setting U = 2 for open Q C R} and applying Op,(-) to al(y,n, A)
gives us a A-dependent family of continuous operators

_1
OD(@)(A) : W (7 (X7, E)) @ Weondo (2, K527 72 ((9X)", J_))

L
S WISV (XN F)) @ W T QKT TR TR ((0X)), Jy)
(2.17)

forall5>d—%.
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There is a useful alternative representation of operator families (2.13) (modulo
flat Green symbols) that we will employ below.

Theorem 2.13. Given a(y,n) in the form (2.13) there exists a Green symbol
g(y,n) € R¥(U x R%;v)o for v = (E,F;J_,J.) such that

aly,n) = oo(r)oply ® (h)(y,m)&0(r) + g(y, )

for every choice of cut-off functions oy, 6o such that o9 =1 on suppo, 69 = 1
on suppo.

Such a result for closed compact X has been proved in Gil, Seiler and Schulze
[7]. The case of boundary value problems as we need it here was treated in [11].

2.3 The edge algebra

We now introduce a parameter-dependent algebra of edge-boundary value prob-
lems on a (stretched) manifold W with edge Y, cf. the notation in Section 1.1.
For convenience we make some additional assumptions on the nature of transition
maps (1.1) between local wedges. From now on we will assume that there is an
€ > 0 such that (7,2,9) do not depend on r for 0 <r <e. This will be assumed
for W itself as well as for the double W. In addition we assume that W has
the form X x Y (i.e., is a trivial X-bundle on Y) and choose a neighbourhood
M of OW in W of the form M = [0,€) x X x Y with a global splitting of vari-
ables (r,z,y). Clearly, in local descriptions the choice of € is unessential, and, in
fact, we often talk about Ry x X x Y (that is diffeomorphic to [0,€) x X x Y).
Similarly, we proceed for W and then write M = MNW which corresponds to
[0,6) x X x Y (or Ry x X xY).

For convenience we study our edge algebra for the case that W (and then also Y
and W) are compact; the non-compact case can be considered as well, but this
does not concern our main application.

On W we fix a Riemannian metric that induces the product metric on M =
[0,€) x X x Y for some Riemannian metrics on X and Y, respectively. We then
have corresponding metrics on W. Note that W has corners; smooth objects on W
are defined as restrictions of corresponding smooth ones on the double W. In par-
ticular, if we talk about Vect(W), the set of smooth complex vector bundles on W,
we mean {E|w : E € Vect(W)}. In a similar sense we define Hermitian metrics
in bundles F € Vect(W) as restrictions of Hermitian metrics in E. From now on
we assume that W is compact. Fix elements E, F € Vect(W), J_, J; € Vect(V)
and L_, Ly € Vect(Y), and set v=(E,F;J_,J}), w=(E,F;J_,J;L_,L,).
Definition 2.14. Define Y~%(W; w;R!) o to be the space of all operator fami-
lies

CA) e N S, LE,F))
g
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such that
(N e N SE,LF™,E))

S>*§
vER
for
£ = WS (W, E) @ W*(V,J )@ H*(Y, L),
F = WOO’OO(Wv F) @ WOO’OO(Vu J+) @ HOO(Y7 L+)7
and

Fo0 = W(W,F) @ W(V, 1) & H*(Y, L),
£ := WO (W, E) @ WV, J_ )& H®(Y, L),

where “¥” denotes the pointwise formal adjoint with respect to the WO (W,-) @
WOV, .) @ HO(Y,-)-scalar product. Moreover we define Y~ °4(W; w;R!)o, for
d € N, as the space of all

d
C(N) =Co(A) + D C;(A) diag(D’,0,0)
j=1

for arbitrary C;(\) € Y0 (W;w;R!)o where DI are differential operators of
order j that differentiate transversally to the boundary of V.

Remark 2.15. The space YW, w;R)) o is Fréchet in a natural way. An
adequate semi-norm system immediately follows from the definition.

We now fix a chart x : V. — Q on Y, where 2 C R? is open and consider
a goy,n,\) € Rgd(ﬁ X jo;l;wQ)o where wq is a tuple of bundles as required
in Definition 2.5, obtained from the bundles (F, F; JJ_, J; L_, L) of Definition
2.14. We express the involved bundles in local form and write Eq, Fq for the
bundles on X" x Q induced by E, F near r = 0, further J_ o, J4 o for the bundles
on (0X)" x Q induced by J_, Jy, and Q@ x C—, Q x C+ for the corresponding
trivial bundles on 2 induced by L_, L, (as is customary we also write /4 in place
of the trivial bundles Q x C+). Without of loss of generality we assume that Eq,
Fqo (Jiq) are pull-backs of corresponding bundles on X” ((0X)") under the
canonical projection X" x Q — X" ((0X)" x 2 — (0X)"), and we denote those
bundles on X" and (0X)" by Eq, Fo and Jy g, respectively. In that sense we
set wq := (Eq, Fqo; J_ o, Iyl l4).
fx:V— Q is another chart there is a transition diffeomorphism 2 — Q and
associated transition isomorphisms Eq — Eg, Fo — Fg, Jio — Ji,ﬁ? as well

as @ x C' — O x C* and it is a simple lemma, left to the reader, that this
induces a symbol push-forward go(y,n,\) = g5(y,n, A) that is canonical modulo
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Green symbols of order —oo and type d. Now if we fix our chart xy : V — Q and
choose arbitrary functions ¢,6 € C§°(V') we can lift

$oOp, (90) (M0 :
WISO(:(QJCSJY(XA?EQ)) Wg(;rr’;p(QaKooyoo(X/\aFQ))
D @
1 oy 1
Wine? (2,657 2772 ((0X)N, J_0))  — Weomp * (2, K%®((0X), J4.0)),
D ®
s l ) l
Hloc ? (97(:7) Hcomp(Quc+)

(2.18)

s>d— % (where ¢g, 0y € C5°(2) are defined by ¢ = x*¢g, 6 = x*6p) from Q to
V by operator push-forward under y~! which also takes into account the bundle
transition isomorphisms. We employ the notation (x '), for the pull-back that
includes the bundle structure in this sense. In other words we get an operator
family from (2.18) that we denote by

d(x 1)+0p(ga)0. (2.19)

Because of the nature of mappings it is natural to localize the operators to a
neighbourhood of r = 0 by forming

diag(w, w, 1)p(x ")+ Op(gn)0 diag(@, @, 1)

for some cut-off functions w(r), @(r), with obvious meaning of notation.

Let us now fix a system of charts x; : V; — Q;, 5 =1,..., N, where {V;};—1, ~
is an open covering of Y, and choose a subordinate partition of unity {¢j } j=1,..,N
and another system {6;};—1 . n of functions 6; € C5°(V;) such that ¢;0; = ¢;
for all j. Given a system of Green symbols

i (y,mA) € REA(Qy x R wo Yo, j=1,...,N (2.20)
we then form an operator family
N
G(\) = diag(w,w,1) D ¢;(x;")Op(g;) (\)0; diag(@, @, 1). (2.21)
j=1

Notice that the specific choice of the cut-off functions w, @ only affects G(\)
by an element in Y~ (W; w;R!)p. Let y(V;’d(W;w;Rl)o denote the space of
all G(A) + C(\) for arbitrary operator families of the form (2.21) and C(\) €
Vol (W, w; R .
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Operators of the kind (2.17) can easily be lifted to W by an analogous procedure
as before in the case of Green operators. In other words, we start from “symbols”

Dby (7”, Y,p,1, )‘) = ﬁj (Ta Y, :57 777 >‘) |ﬁ=7‘p,ﬁ=7‘7],5\=r}\’

where p;(r,y, p,7,A) € C®(Ry x Q;, B4(X;vq;R; x R%‘E\l)), form associated
Mellin symbols ) ) ’
hj (7”, Y,z,1, >‘) = h] (7”, Y, 2, ﬁa >‘) |ﬁ:r7],5\:r)\

and pass to operator-valued symbols

a;j(y,n,A) = o(r){aja(y,n,A) + ajy(y,m,A) o (r)

by the same scheme as in Proposition 2.11. We form local operators Op,(a;)(})
and corresponding global operators

Z¢J XJ Opy a’])()‘)ej (2.22)

Definition 2.16. Y"¢{(W;w;R)o for v € Z,d € N and w = (E,F;J_,J;
L_,L,) denotes the space of all operator families

AN = M(A) + P\ + G0 (2.23)

for arbitrary G(\) € yé’d(W; w; R o, further

PN = < =P =) o ) (2.24)

for arbitrary P(X\) € B”’d(Wrgg;viRl), v:=(E,F;J_,J}), where o(r), 6(r) are
cut-off functions satisfying o6 = &, and finally

M) = ( M(A) 0 ) (2.25)

where M(X) has the form (2.22) where the involved cut-off functions o, o are
assumed to satisfy oo = o.

Let us set

Varv s (Wswi Ro _UQZde(W w;R')o.

In Definition 2.16 the dimension [ € N is arbitrary. For the case [ = 0 we simply
omit R' in the notation, i.e., we get the operator spaces Y"%(W; w)o.
For abbreviation we set m := (£, J_) for vector bundles £ € Vect(W), J_ €
Vect(V), and W (W; m) := W (W, E) @ WS 27 2(V,J_), s € R
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Theorem 2.17. Every A(\) € Y4(W;w;R)o, w= (E,F;J_,J;L_,Ly) for
W compact induces a family of continuous operators

WS (W; m) WS+ (W; n)
AN : P — P (2.26)
H* "7 (Y,L) H* "5 (Y, Ly)

for every s > d — % and v € R, where m := (E,J_), n:= (F,Jy).

Remark 2.18. A similar result holds for non-compact W; in that case we have
continuity in spaces with subscript “comp” for the domain and “loc” for the image
of operators. The proof is easy as well.

Remark 2.19. The spaces Y"4(W; w;R)) o can be endowed with natural Fréchet
topologies for every I. Then it is possible to differentiate A(X) € Y»4(W;w;R)o
with respect to X or to consider holomorphy of families A(\,w) in w € C with
values in YW, w;RY) o, cf. Section 3 below. However, for convenience, we
characterize C* (or holomorphy) of a function A(\, w) directly by requiring the
amplitude functions involved in (2.23) as well as the smoothing operators to be
smooth (holomorphic) in A (w). For the smoothing families, cf. Remark 2.15;
concerning amplitude functions, it is evident how to proceed, see, for instance,
Definition 2.5.

Remark 2.20. We have
DY W wi R o € Y7 1obd (W wi R o
for every a € N,

Let us now introduce the (parameter-dependent) principal symbolic structure
of operator families A(\) € Y"4(W; w;R!)o. First, A := A()\) can be viewed as
a 3 x 3-block matrix A = (A4;;()))ij=1,2,3- Then the 2 x 2-block matrix upper left
corner (A;j(A))ij=1,2 belongs to Boutet de Monvel’s calculus (with parameters)
on the smooth (non-compact) manifold Wy, with boundary. As such there are
the parameter-dependent principal symbol of order v

op(A) = oy (A1 (N)) : T, B — o, F (2.27)

TWeeg * 1T Wreg X RO — Wreg, and the parameter-dependent principal (in the
sense of DN-homogeneity, cf. Section 1.5) boundary symbol

oa(A) = 0a((Ai(N))ij=12),

E'® H*(Ry) F'@ H7"(Ry)
oo(A) 1 Ty, ® = MY g ® , (2.28)
J T
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TWeg ¢ 1T Vieg X RO — Vieg, where E' := Ely, F' := F|y. Because of the
assumed edge-degenerate nature of our operator family, near r = 0 we can write
oy(A) = oy (A)(r, 2, y,0,€,m,A)
=y (A) 2, Y, 5, &1 A 5y pie e
where &, (A)(r, z,y, p, &, 1, 5\), (p, &, 7, 5\) # 0, is smooth up to r = 0. Moreover,

oo(A) = oo(A)(r, 2, y,p,&,n, A)
= 7”7”56(“4) (7”, xla y7 ﬁa 5,7 ﬁ? >‘) |ﬁ=7“p,ﬁ=7“77,5\=7“)\7
where 55(A)(r, 'y, p, €1, N), (5, €7, ) # 0, is smooth up to 7 = 0. Finally, we

have the parameter-dependent principal (in the sense of DN-homogeneity) edge
symbol

on(A) = on((4ij(N)ij=123),

’Cs,'y(X/\;m/\) ’CS*I/,’)’*I/(X/\;n/\)
on(A) : Ty ® — Ty ) , (2.29)
L_ Ly

Ty : T*Y x RN\ 0 — Y, where m" := (E",J"), n" := (F/,J)}) and moreover
K57 (XA mh) = K5 (XM, BN @ K5~ 2772 ((0X)", JA). The definition of o (A)
is as follows: because of an easy coordinate invariance it suffices to define o (A)
in a neighbourhood of a point on the edge in local coordinates y € 2, 2 C
R? open, with the covariable n (and the parameter A that is also treated as a
component of the full covariables). By linearity we may consider the summands
in (2.23) separately; the only non-vanishing contributions come from M(\) and
G(A). The operators G(A) are locally pseudo-differential operators with symbols
in ngd(Q x RI*!: wq)o. Those symbols are classical and DN-homogeneous and
have a principal term, namely o (G()A)). Concerning M () it suffices to look at
the upper left corner M (A), cf. (2.25) and (2.22). First we have

N
oA (M(N) =3 oa(di(x1)+0p(ay) (V).
j=1

In local term we may omit the operator push-forward. Since ¢; and 60; are only
y-dependent factors, it suffices to define o5 (Op(a;)), where we now omit j. For

a(y,n, A) = o(r){an(y,n,A) +ay(y,n,\)}6(r)

we set (in the notation of Remark 2.10, Proposition 2.11, and with (n, A) in place
of )

o (Op(@)) (g7, A) = " {w(rln, Aop); * (ho) (g1, M) (rln))
+ x(r[n, Alop, (po) (y; n; M) x (rln, Al)}-
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The homogeneity of o5(A) and ox(A) in DN-order is connected with shifts of
smoothness and weights by % in the spaces on the boundary. We have, when

ks : H¥(Ry) — H*(Ry) means (ksu)(z,) = 6%u(5acn), I eRy,
Ua(A)(Tuxlayudpa 65176n76>‘)

_ s ( w0 >aa(A)(r,x',y,p,f',n,A>(

] kg 0 )1 (2.30)
0 o2

0 o3

for all 6 € R;. The homogeneity of o, (.A) in DN-orders is based on group actions
H((;n) DSV (XN EN) = KX, EN), /i((;n)u(r,:v) = 5nTHu(5r,x), n = dim X, and
RTD T ((0X)N, ) = K23 ((0X)0, ), 68 Do at) = 55 0(6r, o)
and then

on(A)(y,0n,6)) =
~1

K0 0 K0 0
— (5’/ 0 (5%I€((5n71) 0 OA (A) (ya m, )\) 0 6%I€((5n71) 0
0 0 &% 0 0 &%
(2.31)
for all 6 € Ry. The triple
o(A) := (0y(A),08(A), 07 (A)) (2.32)

is called the principal symbol of the operator family A € Y*¢(W;w;R!)p. For
convenience, the order v of A is not explicitly indicated in (2.32); clearly, the
homogeneity of o (A) in the standard meaning as well as the twisted homogeneity
in relations (2.30) and (2.31) are always assumed to be connected with the order
of A in the described way.

The 2 x 2-upper left corners of o5 (A)(y,n, A) are families of operators in the cone
algebra of boundary value problems on X”. As such they have a principal (and
also lower order) conormal symbolic structure. Let us set

N
omon(A)(y,2) = D $;h;(0,y,2,0,0)0;,
7=1

cf. also formula (2.15). This is just the principal conormal symbol of the respec-
tive cone operator o (A)(y,n, A) which is independent of 7, . It is regarded as
a subordinate symbolic level because it is uniquely determined by o (A). Since
on(A) is completely determined by A itself, we may also write

oy (A)(y, z) == opyron(A)(y, z), (2.33)

interpreted as a family of elements of B*¢(X,v), see also formula (2.16).
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Remark 2.21. A € Y"4(W; w;R!)p, o(A) = 0 imply A € Y H4(W; w; R o;
in that case the operators (2.26) are compact for every s > d — %

Theorem 2.22. If A € Y"4{W;w;R)o and B € Y"¢(W;v;R o, for w =
(Eo, F; Jo,Jy; Lo, Ly) and v = (E, Ey; J_, Jo; L_, Ly), then AB € Y* 0" (W; wo
v;iR)o for wov = (E,F;J ,Jy;L L), h = max(u + d,e), and we have
o(AB) = o(A)o(B) in the sense of componentwise composition.

Proof. The proof is close to a corresponding result in a larger operator algebra
of boundary value problems without parameters A € R', cf. [10], Chapter 4. The
new element here is that we control dependence on parameters that are involved
as additional covariables in edge-degenerate form and that the corresponding sub-
algebra with holomorphic Mellin symbols and flat Green operators is preserved
under composition. What concerns parameters there is no essential extra diffi-
culty, because, modulo smoothing operator families that are Schwartz functions
in A € R with values in smoothing edge-boundary value problems, the com-
position may be discussed for localised operators. Then, similarly to standard
pseudo-differential operators, the composition is reduced to Leibniz-multiplied
amplitude functions, that are here operator-valued, cf. relation (2.14). In this
consideration the parameter is simply to be treated as an extra covariable. What
concerns holomorphy (in z € C) of Mellin symbols and flatness (in cone axis direc-
tion) of Green amplitude functions, we can pass to the alternative description of
amplitude functions as in Theorem 2.13. The composition then preserves, indeed,
the holomorphy and flatness, as it may be found in [7] for the case of a closed
cone base and in analogously in [10] for the case of boundary value problems. [

2.4 Ellipticity

Definition 2.23. An operator A € Y*4(W;w;R!)o is said to be (parameter-
dependent) elliptic of order p and with respect to a weight v € R, if o(A) =
(op(A),09(A), 00 (A)) is elliptic in the following sense:
(i)
oy(A) : Ty, B — my,, F
is an isomorphism, and also G4(A) s bijective for (ﬁ,f,ﬁ,i) # 0 up to
r=0;

(if)

E'® H*(R,) F'@ H*H(Ry)
oo(A) : 7, ® TV g ®
J_ J.

1

is an isomorphism for an s = s > max(p,d)—3,

for (5,11, X) #0 up to r =0;

and also 65(A) is bijective
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(iii)

’Cs,'y(X/\; rn/\) ]CS*I%’Y*H(X/\; n/\)
on(A) @ my ) — Ty ®
L_ Ly

is an isomorphism for an s = s > max(u,d) — %

Note that the bijectivities in (ii) and (iii) for an arbitrary s = sy imply the

same for all s > max(u,d) — 3.

Theorem 2.24. Let A € Y»4W; w;R!) o be elliptic. Then

Wsa7 (%}\V7 m) WS_IJ’{Y_#(W; n)
AN - ® — ® (2.34)
H="5(Y,L.)  H*P5(Y,Ly)

is a family of Fredholm operators for all s > max(u,d) — % Forl > 1

we
have ind A(A) = 0 for every A\ € R and there is a C > 0 such that (2.34) are
isomorphisms for all |\ > C.

Proof. The ellipticity of A here is a special case of a generalisation of ellipticity
for the “standard” edge algebra of boundary value problems from [10], Chapter
4. In fact, the standard edge algebra admits a parameter-dependent version,
as explained in the proof of Theorem 2.22, and then Y*¢(W; w;R!)o is simply
a subalgebra. Ellipticity then entails the existence of a parametrix within the
larger edge algebra (of course, not, in the subclass y*u:(d*W(W; w;R)) o), and
we now use such a result in the analogous case with parameters which gives us a
corresponding parameter-dependent parametrix P(A) of A(A). In this framework
we then obtain that P()\)A(\) — Z is a Schwartz function of A € R in the space
of smoothing operators in the larger algebra; the same is true of A(X\)P(X\) — Z.
This yields that A(X) becomes invertible for sufficiently large |A|. At the same
time we see that A(\) is a family of Fredholm operators, since the remainders
are compact for every . O

3 Kernel cut-off and meromorphic symbols

3.1 Kernel cut-off for Green operators

In the following we will take R/T! as the space of parameters (A, 7) for A € R, 7 €
R. We want to define a class of operator families Y*¢(W; w;R! x C)p 3 A(\, w)
with holomorphic dependence on w € C and A(X, 7+i83) € YP4(W; w; Rl xR, )o
for each 8 € R, with some uniformity condition with respect to 5.

In this section we consider families G(\, 7) € yG’d(W; w; RI*1)» with parameters
(A, 7) € R and construct maps Y44 (W; w; R o — Y& (W; w; R x C)o by
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a so-called kernel cut-off procedure. Let us illustrate the idea first for the simpler
situation of operator-valued symbols.
Let E and E be Hilbert spaces, endowed with strongly continuous group of
isomorphisms {x)}rer, and {Fx}rer,, respectively. We then have the sym-
bol spaces S4 (U x RZ?:’I;E,E), U C RP open, cf. Section 1.1. Let S%(U x R™ x
G E,EN) denote the subspace of all h(z,&,w) € A(C,,SH(U x Rm;E,E)) such
that B

h(z, &, 7+iB) € SH{U xR™ xR E,E)

for every f € R, uniformly in compact S-intervals. The space Sfl(U x R™ x
G E,E) is Fréchet in a canonical way. An adequate semi-norm system is as
follows. Let first (p;)jen and (gx)ren be countable semi-norm systems in the
spaces S/ (U x Rm;E,E) and SH(U x R™ x R; E,E~), respectively. Then, for
h(z, &, w) € SH(U x R™ x (C;E',EN) we form

;i (h) = sup p;(h(z,§, w)) (3.1)
weK
for every K CC C and
5k,[c,c’} (h) ‘= Sup qk(h(xa £ T+ 7‘/6)) (32)
c<B<c

for every compact interval [c, ¢/]. Here, p; is the semi-norm linked to the variables
(x,&) while ¢ is linked to (z,&,7). Then, if we take, for instance a countable
system of K CC C and compact intervals [c, ¢'] exausting C and R, respectively,
(3.1), (3.2) form altogether a countable system for our Fréchet topology. Given
an element a(z,&,7) € SL(U x Rg?;fl;E,E) we set

Ka)(w.£9) = [ €% a(a, &, 7)dr, (3.3)
This integral defines an element in S'(R, % (R™; E, E)) for every fixed z € U,

and it can easily be verified that for every ¢(J) € C§°(R) such that ¢(J) =1 in
a neighbourhood of ¥ = 0 (such elements will be called cut-off functions) we have

(1 = p(9))k(a)(z,€,9) € S(R, S5 (R™; B, E)) (3.4)
for every . Let () € C§°(R) and form

H(p)a(z, &, w) = /e_wwgo(ﬁ)k(a)(:r,f,ﬁ) dv (3.5)

which is convergent for every w € C. In particular, we can define H(p)a(z, &, 7)
by inserting Sw = 0 in (3.5).
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Theorem 3.1. For every a(z,€,7) € SH(U x Rt B E) the map o(9) —
H(p)a(z,&,7) induces a coutinuous operator

C&(R) — SH(U x R™ B E).
Moreover, for fized ¢ € C{°(R) the map a(z,&,7) — H(p)a(z,&, w) defines a
coutinuous operator
H(p) : S4(U x R B E) — S4(U x R™ x G, B, E).

A proof of this result in a slightly different form may be found in Dorschfeldt
[4], Section 1.5.2.
The operator

H(y): SHU x R B E) — S4(U x R™ x G E, E)
for a cut-off function ¢(9) € C§°(R) (i.e., when 9(¢) = 1 near ¢ = 0) will be
called a kernel cut-off operator. For any such operator we then have
a(z,&,7) — H(¢)a(z,&,7) € S™°U x R" B, E), (3.6)
cf. relation (3.4).

Proposition 3.2. Let us set ¢, (9) = (rd) for a cut-off function . Then we
have

H(r)a(z,&,7) = al@,€,7)
as v — 0 in the topology of S (U x R BE).
Proof. Observe first that

H(Yr)a(x,€,7) — a(@,8,7) = Foor[(¢r(0) — Dk(a) (2,6, 9)],  (3.7)
and consider f,(z,§,9) = (¢ (9) — 1)k(a)(z,, ). Since ¢, (¥) —1 = 0 in a neigh-
bourhood of (¢,9) = (0,0), we have that f.(z,&,9) € C°(U,S(R™, L(E, E))).
We want to prove that

fr(z, £,0) — 0 in C®°(U,S(R™, L(E, E))) as r — 0. (3.8)
Let us write £(-) := ||/%<219>{-}n(§,19>||£(E7§) and fix N € Ny; observe that there
exists a constant ry > 0 such that, for every r < 1o, (9 (1,(9) — 1)) (1 — 9 (¥9)) =
O (1 (9) — 1) for all h > 0. Then, putting 1 —(d) := ¢(9), for m+ || +k < N
and r < rg we have:

sup  £(9g 0 fr(w, &, 9)) (€, 9)™
(6:0)eRm+!

C (165 (4, (9) — D]p(9)8k2 [ 7 02a(z, €, 7) dr ) (£,9)™
SISO CAtD No)287 [ e ogate, €. 7) ) (€,0)

<C  sup Z|%%M—MWM%/WWWmﬂM@W%

(EER™ T L o=k
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because of the excision function ¢, we have that 90(19)81’;2 feMT@g‘a(a;,f,T) dr €
C®(U,S(R™ L(E, E))), and so the following estimate holds:

((et0)fr [ ogatae,myar) < ciga)

moreover,

iy o <C fordeR
|0g" (4 () 1)|IS{:0 for § < 2

Then for r < rg we obtain

sup  L(OO5 fr(2,&,0)) (&)™ < C sup  (&,0)7' < C'r—0.
(gyﬂ)eRnwl (6,19)€Rm+1 r—0
192%

So (3.8) holds; by (3.7) and the fact that the Fourier transform is an isomor-
phism in the Schwartz classes, we have that H(¢)a(z,§,7) — a(z,§,7) in
C>(U, S(Rm"‘1 L(E,E))) as  — 0; we then get the convergence in SH(U x
R™+L: B, E) by the inclusion C®(U, S(R™t!, L(E, E))) — SH(U x R B E).

U

Corollary 3.3. H(¢,)a(z,&,7) € C®°(Ry, SH(U x R™; B, E)).

Proposition 3.4. Let ¢ € C°(Ry), let € R. Then for every a(z,§,7) €
SH(U x R B E) we have an asymptotic expansion

H(p)a(z,&,7+if) ~ Y _ crle,B)DFa(z, &, 7)
k=0

in the space SH(U x RmH;E,E), with constants ci(p,B) that are independent
of the symbol a. In particular, for any cut-off function 1 (¥9) in place of p(¥) we

have cy(, B) = 1.

Corollary 3.5. Let a(z,{,7) € SH(U x Rm+1;E,E) and let P(9) be a cut-off
function. Then for every «, 8 € R we have

H($)a(w, &7 +ia) — H()a(z, &, 7 +iB) € ST (U x R"H B, E).
More precisely, we have the following result.

Proposition 3.6. For every h(z,&,w) € SH(U x R™ x C;E,E) we have the
following properties:
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(i) N
h(w, &7 +i) — h(z,&, 7 +ia) € SHTHU x R B, E) (3.9)

for every a, B € R, and there is an asymptotic expansion
oo
h(z,&,7+iB) ~ Y crlo, B)DER(z, &, T + ic) (3.10)
k=0

in SH(U x Rm“;E,E), with constants ci(a, ), depending on «, B,k (not
on h);

(ii) h(z, &1 +ia) € Sflfl(U X mjl;E,E) for any fixred o € R implies that
h(z,& w) € Sétl_l(U x R™ x G F, E~), in particular, if h(xz,&, 7 + i) €
S=°(U x R™"1 B E) then h(z,&,w) € S~ (U x R™ x C; E, E).

(i) {h(z,& 7+iB) € SH(UXR™L; B, E) : h(z, &, w) € SH(UXR™ xC; B, E)}+
S™°U x R"TL B E) = SH(U x R" B E).

Proof. (i) By the Taylor formula we get

=

= Do, 7 +ia) +

(6 — )

N
h(w,&,7 +if) = N1 D7 b, 6,7 +ip)

ol
Il
o

(3.11)
for a suitable p between « and 5. Now, since p belongs to a compact interval

and h(z,&,w) € SH(U x R™ x C;E,E), we have %Dﬁh(w@m +ip) €
Sé‘l_N(U X R’gn;"l;E,E); then (3.11) gives us the asymptotic expansion (3.10)

with constants ci(«, 5) = (’8;—,0& In particular, for N = 1 we have (3.9).

(ii) By (3.9) we have that
h(z,&,7+1i8) = h(z,§, 7 + ia) mod S(’fl*l(U X Rm"'l;E,E),

and so h(z,&,7+10) € S(’fl*l(U X ]Rm“;E,E) for every (8. Moreover, the Taylor
formula gives us, for a fixed 7,

h(z,&, 7 +iB) = h(z,&, 7 +iy) + (B — v) D h(z,§, 7 +ip) (3.12)

for p between § and y. Now h(z,&, 7+i7y) € Sé‘l_l(Ux]Rm“;E, E), and moreover
(8 =) D-h(z,€,w) € S (U x R™ x C; E, E), since h € S%(U x R™ x G, E, E).
Note in particular that (8 —v)D,h(x,&, T + ip) satisfies uniform S# 1 estimates
for p in compact intervals; then by (3.12) in which we keep ~ fixed, we get the
uniform S*~! estimates of h(z,¢, 7 +i8) for B in compact intervals.
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(iii) Let us consider a(z,¢,7) € SH(U x "?j'l;E,E), and form H(p)a(x, &, w) €
SH(U xR™ x G E, E) for a cut-off function p(¥); we have to prove that

a(w,&,7) — H(p)a(z,&,7) € S~°(U x K", B E).

By (3.5) we have

a(z,&,7) — H(p)a(x,&,7) = /6”}7(1 = ¢(9))k(a)(z, &, ) dv;

since 1 — ¢(¥) = 0 in a neighbourhood of (¢,9) = (0,0), we have that (1 —
0(9))k(a)(z, &, 9) € C°(U,S(R™!, L(E, E))), and so by the isomorphism of the
Fourier transform in the Schwartz classes we get a(z,§,7) — H(p)a(z,&,7) €
C®(U,S(R™HL L(E, E))) = §°°(U x R™L; B E). O

The above scheme of constructing kernel cut-offs for operator-valued symbols
can be specialised to Green symbols in the sense of Definition 2.5, here applied
for covariables (¢,7) € R™*! instead of 1.

Applying Remark 2.6 the procedure can be completely reduced to the situation
before of operator-valued symbols between Hilbert spaces F, E. The slight mod-
ification with DN-orders does not change anything, because we could consider
separately the spaces of symbols consisting of the entries of different orders. So
we can directly formulate the corresponding results.

First we have the spaces R‘é’d(U x R™ x C;w)o of Green symbols ¢(y, &, w)

belonging to A(C, Ré’d(U x R™; w)p) such that
9(y: 6,7 +ip) € REG(U x R™ i w)o

for every # € R, uniformly in compact -intervals.

Remark 3.7. By replacing S% (U x Rm“;E,E), SH(U xR™ x G E, E) etc. by
R’C‘;d(U x R w)o, R’C‘;’d(U x R™ x C;w)o, etc., the results of Theorem 3.1,
Proposition 3.2, 3.4 and Corollary 3.5 remain true in analogous form.

We now pass to the kernel cut-off for families of Green operators G(\,7) €
yG’d(W; w; R!*1)» themselves. For convenience, we assume W to be compact,
though the constructions can also be performed for non-compact W. To this
end we first introduce a natural Fréchet space structure in yG’d(W; w; R 6.
The space of smoothing operator families ) ~°%¢(W; w; R!*1) is Fréchet in an
obvious way. Moreover, we have a representation as a non-direct sum

N
VE W wi R ) o =3 95+ Y704 (W, wi R o (3.13)
j=1
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where )); denotes the subspace of all elements of yG’d(W;w; R* 1) that are of
the form
diag (w,w, 1)¢;G(A, 7)0; diag (w, @, 1),

for arbitrary G(A\,7) € yG’d(W;w; R41) o, cf. formula (2.21). Let us choose
functions 6; € C5°(V;) that equal 1 on supp 0;; then we have ¢;0; = ¢;, 0;0; = 0;
for all j. The space Y; is contained in the space ); of all elements of

diag (w,w, 1) yG’d(W; w; R o diag(w, @, 1)

the (operator-valued) distributional kernel of which is supported in V; x V.
Let us pass to local representations of operators of J7j in Q; xQ; 3 (y,9)
via push-forward under x : V; — ;. Then, similarly to the general pseudo-
differential calculus with operator-valued symbols, cf. the remarks at the end
of Section 1.2, every element G(\, 1) € )NJj, can be written as a sum G(\, 7) =
Go(A, 7) + G1(A, 7), where Gy(\, 7) is properly supported in the (y,y’)-variables,
and Gi(\, 7) is smoothing in the sense that when we multiply G (A, 7) from both
sides with éj we get (by extension by zero outside our neighbourhood) an ele-
ment in Y74 W; w; RH1)p. Without loss of generality we may assume that
the kernel of Gy(A,7) is supported for all (A,7) in a fixed proper compact set
K C Q; x Q; (that contains diag2; x €}; in its interior). Denote by ); i the
subspace of all elements in J7j with support K in that sense. There is then a
one-to-one map

o yij — Ré’d(Qj X RQ+l; WQ]-)O’K (3.14)
to a closed subspace of RE&(Q; x R7; wg;)o such that G(A, 7) = Op,(9)(A,T)
for g = 0(G), cf. the constructions at the end of Section 1.2. From the bijection

3.14) we get a Fréchet topology in the space ), i for every j. Because of the
g pology b Js yJ
properties concerning supports of distributional kernels we also have

N
VE W wi R o =Y Yk + Y 04 Wwi R o (3.15)
j=1

instead of (3.13). We then finally endow the space yG’d(W; w; RH1) o with the
Fréchet topology of the non-direct sum.

Let yG’d(W; w; R! x C)o denote the space of all G(), z) € A(C, yg’d (W; w; RY ) o)
such that G(\,7 +1if) € yG’d(W;w; Rl)\ X R;)o for every f € R, uniformly in
compact [-intervals. From the definition we immediately get a Fréchet space
structure in the space yG’d(W; w; R x O)p.

Every G(\,7) € yg’d(W;w; RY x R;)o has the form

N
g(>‘7 T) = diag (wa w, ]-) Z d)j (X;l)*op (g])(Aa T)oj diag ((:J, w, ]-) + C(Aa 7—)7
j=1
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cf. formulas (2.21), (3.13), where g;(y,n, A, 7) are local Green symbols, cf. (2.20),
and C(\,7) € yg“’d(w;w; Rl x R;)o. Similarly as before for amplitude func-
tions we can apply kernel cut-off to operator families. In particular, setting
E(G)(\,9) = [ePTG(\, 7)dr, G\, T) € yg’d(W;w;Rl)jTl)o, we can pass to

H(@)G(\ w) = / e 0 (9)K(G) (N, D) d),

p € C°(R), w € C. A consequence of the above general results is the following
theorem.

Theorem 3.8. The map H(p), ¢ € C°(R), induces a continuous operator
H(p): yG’d(W;w;Rl)jTl)o — yG’d(W;w; Ry x Cy)o (3.16)

for every u € Z, d € N. In particular, if ¥ is a cut-off function, it follows that

G\ T) = H)G(A,7) € Yo (W wi Ry D)o

Moreover, given any H(\,w) € yG’d(W; w;R! x C), the (parameter-dependent)

homogeneous principal edge symbol on(Hp)(y,n, A\, 7) of H(A, ) := H(\, T +
ip) € yG’d(W; w; R s independent of B € R.

Proof. Let us set
N

(H(9)G) (A, w) = diag (w,w, 1) Y ¢;(x;")-0p (H(p)(g;)) (A, w)0; diag (@, &, 1),
j=1

with (H(¢)g;)(y,n, A\, w) begin interpreted as in Remark 3.7. The conclusions
then follow from the preceding results on Green symbols, or, more generally,
operator-valued symbols, cf. in particular Theorem 3.1 and (3.6). O

Remark 3.9. Propositions 3.2, 3.4 and Corollary 3.5 have immediate analogoues
for the case of families of Green operators.

3.2 Kernel cut-off for the edge calculus

The next step in the program to construct holomorphic functions of w € C with
values in Y*4(W; w; R!)o is to focus on the summand in the middle of the right
of (2.23), again with (A, 7) instead of A. Concerning bundle data we use an
analogous notation as in Definition 2.16. Because of (2.24) it suffices to consider
P(\,7) € BY%(Wieg; viRITL). Let

B~ (Wyeg; v Rl x C) (3.17)
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denote the space of all elements G(A\,w) € A(C, B4 (Wyeq; v;R!)) such that
G\, T +iB) € BT Wyeq; v Rl):;l) for every f € R, uniformly in compact f-
intervals. Moreover, B“’d(Wreg;v; R' x C) is defined as the set of all operator
families

PN, w) = Ag(Aw) + A1( A\, w) + G\, w)

such that G(A,w) € B4 (W,e; v Rl x C), while Ag(\, w) and A; (X, w) are
of the following structure: using similar notation as in Definition 1.8, here with
Wreg instead of X, we set:

A1\, w) = ( (1 _w)(H(¢)Aglt)(A,w)(1 - @) 8 )

for a cut-off function ¢ and an operator Ajni (A, 7) € LY} (Weg; E, F; Rl)\":Tl) As in
the constructions of the preceding section the kernel cut-off operator is applied to
the covariable 7 in local parameter-dependent amplitude functions of Ajy (A, 7).
Moreover, we define

AOO‘? w) = Mw Z Mti)j (H(f‘/})AJ)(Av w)Mﬂj MJH

JEN

again in analogy to a corresponding expression in Definition 1.8, where now
the kernel cut-off operator is applied to corresponding local amplitude func-
tions a; (#,€' N\ 1) of Aj; with respect to 7, where aj(i’,é’,)\,T) € RMA(U; 5 x
n—1+q+(I+1)
[
ing covariables 5’ ; m and k are the fibre dimensions of £ and F', respectively.
Note that the definition of (3.17) is correct in the sense that a change of the cut-off
function 1 only affects the result by an operator family in B _°°7d(Wreg ;v; R x C);
also the choice of local charts, partition of unity, etc., are not essential. Using
the general structures on kernel cut-off from the beginning of Section 3.1 we get
the following result:

i (m, k; 7, 7+)) with local coordinates &’ for 9(W,e. ) and correspond-
g

Theorem 3.10. For every Py(\,7) € BPY(Wyeg; v; Rl)\tl) there exists a P(\,w) €
B4 (Wyeg; vi R x C) such that

Py(\,7) — P(A\, 1) € B7(Wyeq; v; RTL).
Moreover, for every P(A\,w) € B*%(Wiyee; v; Rl x C) we have
PO\, 7 +iB) — P\, 7 +ia) € B b (Wyee; v; R

for arbitrary o, B € R. In particular, it follows that (parameter-dependent) prin-
cipal interior and boundary symbols of P(A\,w) (with parameters (\,Rw)) are
independent of Sw.
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We consider now the parameter-dependent edge algebra Y*¢(W; w; R
on a compact (stretched) manifold W, with parameters (\,7) € RIT!, cf. Def-
inition 2.16. We want to apply the kernel cut-off procedure to the parameter
7. According to the representation (2.23) there remains the summand M(A, 7),
since Green elements have been studied in the preceding section and P(\, 7) has
been treated before. From (2.25) and relation (2.22) we see that the kernel cut-off
can be reduced to a corresponding operation on amplitude functions a;(y, 7, A, 7)
with respect to 7. Let us omit subscript “j”7 for fixed j. By virtue of Theorem
2.13, and since Green elements are already treated, we may look at

aly, n, A7) = a(r)opyy * (h)(y,m, A, 7)5(r)

for an operator-valued Mellin symbol h(r,y,z,n,A,7). The variable y € Q is
completely unessential for the following computation; therefore, for simplicity,
we assume that h is independent of y. Because of (2.10) we have h(r,z,n, A\, 7) =

h(r,z,rn, A, r7) for some h(r,z,7,\,7) € COO(E+,ML(L9’d(X;v;R?;‘;1)).

Let ¢(¢) be a cut-off function as in the preceding section. We then have

n

H(p)a(n, A, w) = o(r)op,, * (H()h)(n, A, w)é (r);
so we calculate H(9)h. Let us set
k-(h)(r,z,m, A\, 9) = /eiTﬂfNL(r,z,rn,r)\,rT) dr

and

k7 (R) (7, 2,77, A, 9) = / ¢Th(r, 2,11, A, 7) dF.
We then obtain
kb2, 0, 0) =7~ [ e

Then, it follows that
H)h(r, 2,m, A w) = / Ok, () (2, A, D) 9

_ .1 —dw (F 2
=7 /e 1/1(19)k7(h)(7“, 2,71, T A, r) di (3.18)
= /eiérww(rﬁ)k;(ﬁ)(r,2,7”77,7”)\,15) dd

= (H(¢r)h)(r, z,rn,mA, Tw),

where 1,(0) := ¢(rd), and w € C. Now we write Méoo’d(X;v; Rg;\l x Cyp)
for the set of all m € A(QU,M(_QOO’d(X;v; Rgt\l)) such that m(z,n,\,7 + i) €

Méoo,d( X;V;jo;ljl), uniformly in compact g intervals.
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Remark 3.11. Let ), ¥ be two excision functions. Then H(y)h(r,z,n, A\, w) —
H(y)h(r,z,n,\,w) has the form f(r,z,n,\,w) = f(r,z,rn,rA,rw) for an ele-
ment f(r,z,7,\, W) in the space C°(Ry, M5 X v R‘HT x Cy)).

Recall that if we have a chart x : V —  for a coordlnate neighbourhood V'
on Y we denote by (x !). the pull-back of operators from Q to V which takes

into account chosen trivialisations of vector bundles on Y restricted to V. Then
a typical ingredient of our edge calculus are operators of the form

My(\,7) == ¢(x ")« Op,(a)(A, )0 (3.19)

for ¢,0 € C§°(V) and an amplitude function a(y,n, A, 7) as in (2.22) (here, with
(A, 7) in place of ). According to Theorem 2.13 we may take

a(ya A, T) = U(T) OPEE (h) (yv A, 7‘)5(7“)
modulo flat Green symbols (the latter ones are treated in the preceding section),
h(r, y,z 77,)\ T) = h(r Y, 2,70, r7) for an element h(r Yy, 2,77, A, 7) € C®(Ry x
M”’ (X ]R‘H_H' )). Applying the kernel cut-off operator H (7)) to (3.19) with
respect to the Varlable T we get

M (A, w) := (H () Mo) (A, w) = ¢p(x )« Op, (H()a) (A, w)8 (3.20)
for .
(H()a)(y,m, A, w) = o (r)opyy 2 (H()h) (y,n, A, w)& (r).
Here, according to (3.18), (H(¢)h)(r,y, z,n, A\, w) = (H(q/Jr)lNL)(r,y,z,rn,r)\,rw).

Definition 3.12. Let p € Z,d € N and w = (E,F;J_,Jy;L_,Ly). We write
YW, w; R x C)o for the space of all operator families

M w) + P\ w) + G\, w) + N (A, w),

o= (#4))

with M (X, w) = Z] 1 (G b, Op, (H (¥)aj) (A, w)8;, cf. the description on op-
erators (3.20) before,

waﬁz(u—wm%wu—é>g)j

where

where P\, w) € BH(Wyee; vi R xC); G(A, w) € yg’d(W;W,Rl xC)o, and finally

N = (NG 0,

where N (\,w) has the form N\ w) = Z] 195 (x5 b, Op, (m;) (A, w)0;, m; €
COO(R+,M(BOO’(1(X;V; R;I:)\l x Cy)).
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Observe that, by virtue of Remark 3.11, Definition 3.12 is correct, i.e., indepen-
dent of the specific choice of the cut-off function 1.

Theorem 3.13. For every Ag(\, 7) € YPUW; w; R o there exists A(\, w) €
V(W wi R x C)o such that

Ao(A\, 1) — A\, 7) € y—w:d(w; w; RZH)O. (3.21)

Moreover, for every A\ w) € YPHW;w;R! x C)o we have A\, T + i) —
A\ T +ia) € YFLUWwi R4 Yo for arbitrary o, 8 € R, In particular, it
follows that for Ag(\,7) := A\ 7 +iB), B € R, the (parameter-dependent)
homogeneous principal interior, boundary and edge symbols oy,(Ag), o0a(Ag) and
on(Ap) are independent of 8. The same is true for subordinate conormal symbols

om(Ap)(y, 2)-

Proof. The proof consists of applying kernel cut-off constructions with a cut-off
function v to the summands in formula (2.23) separately, here, of course in the
version Mo(\, 7), Po(A, 7) and Go(A, 7), cf. Theorem 3.8 for Gy(A, 7), Theorem
3.10 for Py(A, 7), and formula (3.20) for Mo(A, 7). O

Clearly, we also have (in the notation of Theorem 3.13)

for w = 7 4+ 48 with arbitrary 5 € R.

Theorem 3.14. A € YV (W;w;R! xC)p, B € Y»¢(W;v;R! xC)p for w and v
as in Theorem 2.22 implies AB € YV (W; wov; R xC)p for h = max(u+d, e),
and we have o(AB) = o(A)o(B) in the sense of componentwise composition.

Proof. Let us write A(X\,w) = A(X\, 7 + i) and B(A\,w) = B(A, 7 + i3). Then,
for fixed 8 we get A\, 7 +iB)B(\, T +iB) € YHHR(W;w o V;Rl)\"'Tl)o which is a
consequence of Theorem 2.22. An inspection of the proof of Theorem 2.22 shows
also the holomorphy of the composition in the parameter w € C. O

3.3 Ellipticity of holomorphic families

We now turn to ellipticity of families of edge boundary value problems on W.

Definition 3.15. An element A\, w) € Y»U(W; w; R! x C)o is called elliptic, if
there is a f € R such that A\, 7 +13) is elliptic in the sense of Definition 2.23.

Because of Theorem 3.13 the definition is correct, i.e., independent of the choice
of 3. Moreover, if A(A, 7 + i) is elliptic, so is A(A, 7 + i) for every a € R.
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Theorem 3.16. Let A\, w) € Y»U(W;w;R! x C)o be elliptic. Then

WS;'Y (W, m) WS_IJ’{Y_# (%}\V7 n)
A\, w) : ® — @ (3.22)
H*="5 (Y, L) H*=1="5(Y, L)

(with the same notation as in Theorem 2.24) is a family of Fredholm operators for
every s > max(p,d) — %, and for every ¢, € R, ¢ < ¢, there exists a C > 0 such
that the operators (3.22) are isomorphisms for all (A, w) € R x C, ¢ < Sw <

and |Rw| > C.

Proof. Let us write A(\,w) = A(X\, 7 +143). Then, for every fixed 5 € R we have
an elliptic element in Y*4(W; w; Rl)\+T1)o, and hence we can apply Theorem 2.24.
This gives us the Fredholm property of (3.22) and isomorphisms for |\, 7| > C
for some C' > 0. It is then sufficient to require |7| = |Rw| > C. The dependence
of our operators on 3 is C*° with respect to the operator norm. Therefore, we
find a continuous choice of the constant C' = C(f). This allows us to find a C
for all # varying in a compact interval [c, ¢'] which completes the proof. O

Holomorphic operator families (3.22) for the case [ = 0 play the role of conor-
mal symbols of a next higher calculus of corner boundary value problems and
for the evaluation of iterated edge/corner asymptotics. In this connection the
following observation is essential:

Proposition 3.17. Let A(w) € Y*4(W;w;C)e be elliptic. Then there exists a
countable set D C C with finite intersection D({w : ¢ < Sw < '} for every
¢ < d, such that A(w) is bijective for all w € C\ D (and all s > max(u,d) — 1).

This is a consequence of a corresponding general result on holomorphic Fred-
holm families between Hilbert spaces; it employs the fact that there is at least one
w € C where A(w) is an isomorphism, cf., e.g., [31], Section 1.2.4. Theorem 3.16
tells us that the latter condition holds in our case, namely for |Rw| sufficiently
large. The non-bijectivity points w € D of A(w) give rise to poles of A~!(w).
Its meromorphic structure fits to a general functional analytic framework as is
studied in [8]. In the present case the inverse A !(w) has interesting specific
properties, since, similarly to the boundaryless case, cf. [16], the poles contribute
to iterated edge/corner asymptotics of solutions to corresponding elliptic corner
boundary value problems. In a forthcoming joint paper with T. Krainer we in-
vestigate these phenomena in more detail, using an extension of our holomorphic
operator spaces by smoothing meromorphic elements from the article [3].
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