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Introduction

1. By relative elliptic theory we mean elliptic theory associated with a pair (M, X),
where M is a smooth closed manifold and X a submanifold. Thus, relative elliptic theory
is elliptic theory in the category of smooth embeddings.

A trivial (and noninteresting) example of a relative elliptic operator is given by a pair
of elliptic operators on the manifolds M and X, respectively. Such an operator can be
represented in the form of a diagonal matrix operator

<DM 0>-H516](9M)—>H016éM)
O PDx) ) H (M)

with elliptic (pseudodifferential) operators D), and Dy acting, say, in Sobolev spaces on
M and X.



This trivial example, however, suggests that in the general case a relative elliptic
operator should apparently be represented by a matrix of the form

(B D) o

DXM DXX

(where the subscripts show, from the right to the left, the direction of action of the cor-
responding operators), which is not necessarily diagonal. First, we note that a posteriori
this guess proves to be true. However, it deserves a serious explanation. Indeed, the
operators Dy;x and Dy, representing the off-diagonal entries of this matrix, act from
a function space on one manifold to a function space on another manifold and hence,
unlike Dy and Dy x, are by no means pseudodifferential operators, at least if the term
is understood in the classical sense. Thus, what is the nature of these operators?

Let us try to find some candidates for these operators. First, consider the operator
Dy . This operator acts from a function space on M into a function space on the
submanifold X. The most natural operator of this kind is the restriction operator (or
boundary operator) induced by the embedding i : X < M. If one requires that the
set of operators of the form (0.1) be invariant with respect to the passage to the adjoint
operator, then the operator Dj;x must be the adjoint of Dx,s, that is, the operator of
corestriction, or, as it will be called in what follows, the coboundary operator. Thus, at
first glance, our would-be theory is the theory of operators of the form

(P ). 02)

7 DXX

where ¢* and i, are the boundary and coboundary operators and Dy;ys and Dxx are
pseudodifferential operators on the corresponding manifolds. Unfortunately, operators of
the form (0.2) do not form an algebra, which is a serious disadvantage from the viewpoint
of elliptic theory. Indeed, the proof of the Fredholm property of an elliptic operator is
carried out in the most convenient and natural form by constructing so-called regularizers,
that is, almost inverses (inverses modulo compact operators). To apply this method, one
must have the structure of an algebra on the set of operators and an effective calculus.

Why do not the operators (0.2) form an algebra?

A straightforward multiplication of two matrices of the form (0.2) shows that if we
wish the matrices in question to form an algebra, we must first of all extend the class
of (co)boundary operators. For example, instead of the (elementary) restriction opera-
tor i* occurring in (0.2), one should consider a general boundary operator of the form
B (i*BY,,,, and the elementary coboundary operator i, should be replaced by a general
operator of the form Cj,,,i.C% y.

However, the main cause is essentially that the left upper corner of the product of
two operators of this type contains an operator of entirely different structure than a
pseudodifferential operator. This is not surprising, since the factors occurring in this



operator are not pseudodifferential operators.! Thus, it seems natural to extend the class
of operators in the left upper corner so that it will include not only pseudodifferential
operators, but also operators of the form

/ - -k "

(and sums of such operators), which occur in compositions. (It is remarkable that now,
after an appropriate closure, the set of operators becomes closed with respect to compo-
sition, which in principle solves the problem of constructing a calculus.)

This important class of operators, which does not occur in the original statement, is the
class of Green operators. These operators inevitably occur as products of boundary and
coboundary operators as well as in the construction of an almost inverse operator in the
Sobolev problem. Similar operators (also known as Green operators?) arise in the theory
of boundary value problems as well as in elliptic theory on manifolds with singularities
(e.g., see [MonT71, Sch91]). In the present paper, we naturally discuss only Green operators
associated with the pair (M, X). Green operators, as well as pseudodifferential operators,
form an algebra: the product of two Green operators is itself a Green operator. In contrast
with the algebra of pseudodifferential operators, the Green algebra is an algebra without
unit: the identity operator is not a Green operator. One can attach the unit in the
standard way and consider the inversion problem for operators of the form 1+7', where T’
is a Green operator, in the extended algebra. In other words, one studies the solvability
of the equation

1+Tu=f (0.3)

for an unknown function u on M, where f is a given function on M. Equation (0.3) will
be called the Green equation of the second kind. It is of considerable interest owing to
the fact that the operator 1 4+ 7" occurs in the ellipticity conditions for general operators
associated with the pair (M, X).

The algebra of operators of the form “a pseudodifferential operators plus a Green
operator” is just one possible extension of the algebra of pseudodifferential operators on
M. Such extensions arise in the presence of some additional structures on M (in our case,
the additional structure is the embedded submanifold X'). Other examples of extensions
(not covered in this survey) can be found in [SS92a, SS92b, SS94].

However, this is not the whole story. It is desirable to describe the newly introduced
operators in known terms. Such a description would certainly be some kind of good luck,

!Note, however, that the similar entry in the lower right corner of the product is still a pseudodiffer-
ential operator.

2In fact, Green operators arise even in the simplest boundary value problems such as the Dirichlet
problem with nonzero right-hand side f for the Laplace operator in a domain. One reduces this problem
to a problem with zero right-hand side by subtracting the convolution of f with the Newtonian potential
from the solution and then expresses the solution of the new problem as the simple layer potential
corresponding to the resulting boundary conditions. The simple layer potential with density equal to the
restriction to the boundary of the convolution of the right-hand side with the Newtonian potential is just
the simplest Green operator applied to f.



since it might well happen that these operators are of absolutely new nature unknown
in the literature. Fortunately, this is not the case. These operators can be interpreted
as Fourier integral operators on special Lagrangian manifolds. In this interpretation,
each type of operators (boundary, coboundary, etc.) corresponds to its own Lagrangian
manifold. These operators admit also an adequate interpretation in quite different terms
in a neighborhood of the submanifold X. Namely, they can be represented as a special
class of pseudodifferential operators acting in sections of infinite-dimensional bundles over
X (pseudodifferential operators with operator-valued symbols).

2. Relative elliptic theory allows one to solve an important, interesting problem in the
theory of partial differential equations, known as the Sobolev problem.

To illustrate how the Sobolev problem arises, we consider simple physical examples.
Suppose that we push a soap film spanning a one-dimensional contour with a thin needle.
In the case of perfect nonwetting, the film collapses immediately unless we actually only
touch it not trying to change its shape. In the case of perfect wetting, the needle passes
through the film, whose shape remains unchanged. However, if we push a plate with the
same needle, then the plate shape changes. In other words, one cannot pose “boundary
conditions” for the thin film equation at a single point, but such conditions are possible
for the plate equations.

Mathematically, this can be described as follows.

The function z = z(x, y) describing the shape of a thin two-dimensional film spanning
a closed one-dimensional contour {z = ¢(z,y) | (z,y) € I'} in the space R® satisfies the

Dirichlet problem
Az =0,
(0.4)
z‘r =¥

in the domain D C R? bounded by the plane curve I'. Let us try to support the film
with a thin needle at a point (x, 3o, 20) € R® under the assumption of perfect nonwetting.
Then the equation in problem (0.4) must be satisfied everywhere in D except for the point
(xOJ ?JO):

Az =0 mod (zg,yo)- (0.5)
(This notation means that the distribution Aw is supported at the point (zg,y).) Next,
we must equip problem (0.4) with the additional boundary condition

d
(:CanO)

By the well-known removable singularity theorem for harmonic functions, every solution
of the equation (0.5) in D bounded at the point (x¢, yo) (the boundedness of z(x, y) follows
from (0.6)) is a harmonic function everywhere in D including the point (zg, y), so that the
value z(zp, yo) is uniquely determined by the data of problem (0.4). Hence problem (0.5)—
(0.6) is not solvable unless zj is equal to the value of the solution of problem (0.4) at that
point.



In the case of perfect wetting, the equation in problem (0.4) still holds in D\ {(zo, vo)},
but no additional conditions are imposed at the point (xg, ). By the removable singu-
larity theorem, the problem

Az =0 mod (zg, o),
2 =9

is equivalent to problem (0.4), which means that the needle passes through the film
without changing the film shape.
The situation is entirely different for the elastic plate problem

{AQZ =0,
_ oz| _
Z‘F - QO, an r - w
Here 0/0n is the outward normal derivative on I'. If we replace the equation in this

problem by the equation
A’z =0 mod (w9, ), (0.7)

then an additional condition of the form (0.6) is admissible, since Eq. (0.7) has a nontrivial
continuous solution behaving as 7% Inr near (zy, yy), where 7 is the distance to that point.

Thus, we see that for equations of sufficiently high order one can pose problems in-
volving “boundary conditions” on manifolds of codimension higher than one. Problems
with such conditions are called Sobolev problems. The general statement of the Sobolev

problem is as follows. Let X <» M be a smooth embedding and D an elliptic differential
operator on M. Consider the equation

Du=f mod X, (0.8)

which means that Du = f everywhere on the manifold M except for the submanifold
X. The problem is to equip Eq. (0.8) with well-posed boundary conditions on X. (Well-
posedness is understood in the sense that the problem must be Fredholm.) Next, we wish
to compute the index of the problem. Note that Sobolev [Sob37] was the first to consider
such a problem for the polyharmonic equation; he used variational methods to prove
the unique solvability of the problem in this case. The general statement and analysis
of this problem, as well as the term “Sobolev problem,” is due to Sternin [Ste64] (see
also [Ste66]).

Note that Sobolev problems have a number of properties distinguishing them from
ordinary elliptic boundary value problems for differential equations.

For example, the number of boundary conditions in these problems depends on the
index of the Sobolev space in which the solution is to be sought. In particular, the
Sobolev problem is essentially trivial in the space of sufficiently smooth functions, since
relation (0.8) turns into an equality everywhere and no boundary conditions on X are



needed. Next, the solution of an elliptic Sobolev problem is not an infinitely smooth
function in general even if the right-hand side of the equation is infinitely smooth. The
solution can have singularities on the submanifold X.

3. Relative elliptic theory associated with the pair (M, X) gives rise to remarkable re-
lationships between elliptic pseudodifferential operators on M and X. These relation-
ships were studied from the topological viewpoint for the first time by Novikov and
Sternin [NS66a, NS66b] and later by Sternin in the book [Ste71]. Associated with the

embedding X <%y M is the natural pullback

 K(T*M) — K(T*X)

fiop
in the topological K-functor, as well as the analytically defined metric trace
ir. : PSD(M) — PSD(X)
and pullback
i, : PSD(M) — PSD(X),

which take pseudodifferential operators on M to pseudodifferential operators on X. (The
first of the latter mappings is defined by the metric-dependent restriction of the symbol
to the conormal bundle of the submanifold X, and the second is given by the formula
it (D) = i* Di,,

where 7* and 4, are the boundary and coboundary operators.) Hence there is a nat-
ural problem of comparing the corresponding functors, i.e., establishing Riemann-Roch
type theorems. It turns out that such theorems are valid indeed. The simplest theorem
compares the metric trace and the topological pullback and states that the diagram

EI(M) —™= El(X)

! |

K(I*M) — K(T*X),

Yop

where the vertical arrows are given by the difference construction of the principal symbol,
commutes. Similar theorems comparing the analytic and topological pullbacks are valid
in the context of meromorphic families of elliptic operators or for the regularized pullback®

ireg (D) = A1, (AT D)

3Here A stands for an invertible operator whose principal symbol coincides with that of the Laplace
operator.



as Rez — oo.

However, there is an important class of operators for which the “infinite” regularization
is not needed. This is the class of first-order differential operators, which in particular
includes all main geometric operators. Nor is the infinite regularization needed in the
statement of the theorem comparing the analytic and topological pullbacks for operators
whose structure in a neighborhood of X is that of the exterior tensor product [AS63]
of an elliptic operator on X by a family of elliptic operators in the fibers of the normal
bundle. This structure is also typical of geometric operators and permits one to compute
the pullback for these operators explicitly.

4. Let us briefly outline the exposition in this survey. In the first part, we develop
the relative theory of pseudodifferential operators as a theory associated with a smooth
embedding X < M. In the framework of this theory, we introduce the notion of ellipticity
and establish the theorem on the Fredholm property. The index formula for relative elliptic
operators (elliptic morphisms) is proved. By way of example, we develop the theory of
Sobolev problems, prove the Fredholm property, and compute the index. Furthermore,
we introduce and study the algebras of Green operators associated with the embedding
X < M, prove a criterion for the Fredholm property of the Green equation, and apply the
result to the analysis of conditions for the Fredholm property of general elliptic morphisms.
The second part deals with the topological aspects of elliptic theory in the category of
smooth embeddings and establishes the facts described in item 3 above. As an example,
we consider the Euler, Dirac, Hirzebruch, and Todd (Cauchy-Riemann) operators.

5. The present paper develops ideas, methods and results contained in [Ste64, Ste66,
Ste67, Ste76, SS96, NS66a, NS66b, Ste71]. In particular, it gives a new glance on classical
elliptic Sobolev problems and relative elliptic theory from the viewpoint of modern theory
of differential equations. For example, boundary and coboundary operators, as well as
Green operators, are interpreted in terms of Fourier integral operators.

As one can see from the cited literature, the first papers on general Sobolev problems
were written about forty years ago (see [Ste64, Ste66]). Since then, quite a few remark-
able papers on relative elliptic theory have been published. The notion of a cobound-
ary operator, originally introduced in [Ste67], is nowadays widely used in general theory
of differential equations. In various situations, many authors independently developed
constructions close in their spirit to the constructions of relative elliptic theory (e.g.,
see [VE65a, VE65b, Esk73, Mon71, Sch91], etc.).

Acknowledgements. The paper was written during the authors’ stay at the Institut
for Mathematics, Potsdam University. The authors are grateful to Professor B.-W. Schulze
for his kind hospitality.



Conventions and notation. Let us make some remarks concerning conventions and
assumptions adopted throughout the text. The dimension of the submanifold X will
always be denoted by n and the codimension by v (thus, dim M = n + v). For conve-
nience, we everywhere assume that the manifolds M and X are equipped with some given
volume elements d voly; and dvoly, so that one need not distinguish between functions
and densities. Whenever we deal with Sobolev spaces of sections of a vector bundle,* we
assume that an Hermitian structure is given in the fibers, so the the L? inner product of
sections is well defined and one can identify function sections and density sections. All
these assumptions do not restrict the generality.

Many of our considerations are carried out in local coordinates on X or M in a
neighborhood of some point o € X. We always assume that these coordinates are chosen
in the following special way. A special coordinate system on X is a coordinate system
(x1,...,2,) such that

dvoly = dxy ---dx,.

A coordinate system (xy,...,%y,,t1,...,t,) on M near X is called a special coordinate
system if

1. the equations of the submanifold X have the form

2. for t =0, the system (xy,...,x,) is a special coordinate system on X;

3. one has
dVOlM = dl‘l v dCUn dtl v dtn

There always exists coordinate systems with these properties. We usually assume that
M and X are Riemannian manifolds with metrics p,; and px, respectively, the embedding
is isometric, and the volume elements correspond to the metrics. Then one can construct
a special coordinate system on M as follows. Let m : NX — X be the normal bundle
of X in M, i.e., the orthogonal complement of the tangent bundle TX C TM|,. We
introduce local coordinates (x,t) on NX, where x = (z1,...,x,) is a special coordinate
system on X in a neighborhood of zy and ¢ = (¢,...,%,) are linear coordinates in the
fiber N, X with respect to some orthonormal basis smoothly depending on x € X in a
neighborhood of xy. The exponential mapping

exp: NX — M,
§— (1),

where 7¢(7) is the geodesic on M issuing from the point 7(£) with initial velocity vector
J¢(0) = &, diffeomorphically maps some neighborhood V' of the zero section of the normal

4Such spaces are considered here only for complex vector bundles

10



bundle onto a tubular neighborhood U of X in M. (In the following, we identify U with
V.) In a neighborhood of a given point zy € X, one can take the coordinates (x,t) on M
transferred by the exponential mapping from NX. Then the submanifold X is given in
these coordinates by the equation {t = 0}, and

pu = px + Y _dts, [dvoly]|, =dvolx dt;---dt,.
7j=1

By multiplying ¢; by a nonzero smooth function equal to 1 for ¢t = 0, we ensure that the
second equation holds not only on X, but also everywhere.

The coordinates dual to x (respectively, (z,t)) in the fiber of the cotangent bundle
will be denoted by p (respectively, (p,7)), p € R*, 7 € R, and the coordinates (z,p)
(respectively, (z,t,p, 7)) will also be referred to as special coordinates on the cotangent
bundle. For example, the symplectic forms on 7*M and T X are given by the expressions

wy =dpNdx+dr Ndt = dp; Adzy+ > dry Adt;,

wX:dp/\d:UEdej/\da:j

j=1

in special coordinates.
To avoid cumbersome formulas, we also make the following simplifying assumptions,
which are not important for the validity of the main results.

e All operators considered in the first part of the paper (except for the section con-
cerning Sobolev problems) act in function spaces (the generalization to the case of
operators acting in spaces of sections of vector bundles is standard).

e The manifolds M and X are assumed to be oriented. Moreover, we use only special
coordinate systems coordinated with the orientation, so that the Riemannian volume
elements d vol,; and dvoly on M and X can be treated as ordinary differential forms
of maximal order on these manifolds.

Analytic Aspects of Relative Elliptic
Theory

Let M be a smooth compact manifold without boundary and X < M a closed smooth
submanifold. In this part, we define and study elliptic morphisms associated with the
pair (M, X). These morphisms act in pairs of Sobolev spaces on M and X. The main

11



tool in their construction is the technique of Fourier integral operators (briefly recalled
in Appendix), and our exposition follows the standard semiclassical quantization scheme:
we first introduce classical objects associated with the pair (M, X) (Lagrangian manifolds
with measure and symbol classes) and then describe the quantization procedure, which
produces the operators that are elements of the morphism algebra, and establish its main
properties, i.e., formulas for the product of operators and the adjoint operator. Next,
we use these properties to state ellipticity conditions for morphisms, prove a theorem on
the Fredholm property, and prove an index formula for elliptic morphisms. Finally, the
results are applied to the Sobolev problem.

We note that the Lagrangian manifolds used in the construction of the morphism
algebra do not satisfy the fundamental condition A.1 (see Appendix), which is assumed
in the general theory of Fourier integral operators. Namely, three of these manifolds have
a nonempty intersection with the zero section of at least one of the cotangent bundles in
the Cartesian product of which they lie. Hence the general composition and boundedness
theorems (see Subsections A.6 and A.7) are not valid for such Fourier integral operators,
and we have to introduce some modifications in the statements of definitions and theorems.
Moreover, one encounters three new phenomena.

1. The operators in question prove not to be continuous in the entire Sobolev scale.
For example, the restriction operator

" HS (M) — H*"(X)
is well defined and continuous only for s > /2 and is undefined otherwise.

2. Products of Fourier integral operators are not always well defined. For example,
the product i*Di,, where D is a pseudodifferential operator on X, is defined only
for ord D < —v (and is meaningless, say, for D = 1: the coboundary operator
1« produces the delta function concentrated on X, whose restriction to X is not
defined). Hence one has to introduce restrictions on the orders of the operators to
be considered.

3. One has to deal with symbol classes determined by estimates that are more com-
plicated than the estimates (A.3), customarily used in the general theory (see Ap-
pendix). Such symbols inevitably arise from the multiplication of operators even if
the symbols of the factors satisfy (A.3). For example, the product o = Dxi*Dyy,
where Dy and D), are pseudodifferential operators of the form

0 0o 0
DXZG,<%>, .DM:b(%,E)

on X and M, respectively, has the symbol a(p")b(p',7') on the corresponding La-
grangian manifold. The differentiation of this symbol with respect to p’ does not
change the rate of growth as |7'| — oo for bounded p'.

12



1 Classical objects. Lagrangian formalism

1.1 Lagrangian manifolds with measure

Let
1: X —>M (1.1)

be a C* embedding of a closed smooth manifold X in a closed smooth manifold M. As-
sociated with the pair (M, X)) are five remarkable R, -homogeneous Lagrangian manifolds

Ly, Ly CT*M x T*M, Ly CT*X x T*X,

1.2
Ly, CT*X xT*M, L.CT*X xT*X (1.2)

in Cartesian products of cotangent bundles. Furthermore, these manifolds are equipped
with natural measures. All these manifolds can be obtained by the same recipe: one takes
the conormal bundle of a certain submanifold in the product of bases of the correspond-
ing cotangent bundles and reverses the sign of the momentum variables in the second
factor. (Note that this change of sign automatically transforms the conormal bundle into
a Lagrangian manifold with respect to the difference of symplectic forms on the first and
second factors.) Let us describe the Lagrangian manifolds (1.2).

1.1.1 The manifolds L,;, and Ly

Invariant description. These manifolds are trivial in the sense that they are indepen-
dent of the embedding and are related to M and X separately. They can be obtained by
the above-mentioned construction from the diagonals

Ay ={(o,) e M x M| a=p}CMx M,

Ay ={(e,f) e X xX |a=p}CX xX

in M x M and X x X, respectively. Thus,
Ly =N (Ay) CT*M xT*M, Lx=N"(Ax)CT*X xT*X,

Here N*(Y') is the conormal bundle of Y and the tilde on N* stands for reversing the sign
of the cotangent variable in the second factor T*M (or T*X). One can readily see that
the manifolds Lj; and Ly themselves are diagonals in products of cotangent bundles, i.e.,
the graphs of identity canonical transformations:

LM - AT*M; LX == AT*X- (13)
The manifolds L, and Lx bear the natural measures 1y, and px given by the formulas

BT mes) ",

Har = (n+v)! n!

13



where 7; is the projection on the jth factor in the corresponding product of cotangent bun-
dles. (These formulas are the standard formulas defining measures on graphs of canonical
transformations [MSS90]. By virtue of the Lagrangian property, the result is independent
of the choice of j = 1,2.)

Coordinate description. The manifolds L), and Ly are given in special coordinate
systems on the cotangent bundles by the formulas

Ly = {(Ji,t,p,T,:r',p',t',T') ‘ € :xla = t,; p:p,; T :T,},
LX = {(xapaxlap,) ‘ T = 37,, p:p'}

(From now on, the coordinates on the second factor in the product of cotangent bundles
are indicate by primes.) The canonical coordinates (see Subsection A.2) on Ly and Ly
can be taken in the form (z,¢,p’,7') and (x,p'), respectively. Then the measures are given
by the formulas

par = dpy Adxy A+ Ndpl, Adx, ANdr{ Ndty A -2 AdT, A dt,
px =dpy Adzy A+ ANdpl, A dy,,

and the generating functions of these Lagrangian manifolds (see Subsection A.2) have the
form
Sz, t,p, ) =px+7"t, Sx(z,p)=7p.

1.1.2 The manifold L,

Invariant description. This manifold can be obtained by applying the above-men-
tioned construction to the graph of the embedding i:

Ly = N*(graph i) € T*X x T*M. (1.5)

The manifold L; (as well as all Lagrangian manifolds considered below) is not the graph
of any canonical transformation, and so we cannot apply the standard construction (1.4)
of the measure. To obtain a natural measure on L, consider the mappings

m Ly —T*X, m:L,— 1T"M (1.6)

obtained by the restriction to L, of the natural projections on the first and second factors,
respectively, in the Cartesian product 7*X x T*M. Let a € L, be an arbitrary point.
The differentials

T1x - TaLb — Tm(a)T*X, T - TaLb — TM(Q)T*M (17)

possess the following properties:

14



1. m, is an epimorphism,;

2. Tox|kerm,. 1S an isomorphism of the kernel kermy, onto the subspace in Ty )T M
parallel to the fiber N* )X of N*X at the point 7 (7 (a)) (where 7 : T"X — X

1
is the natural projection).

After natural identifications, we obtain the exact sequence of vector spaces
0 — N:(Wl(a))X — TaLb — Tﬂl(a)T*X — 0 (]_8)

There are natural volume forms on the fibers of T77*X (namely, the normalized power

1
dVOlT*X = E(u)x)/\n (19)

of the symplectic structure on X) as well as on the fibers of N*X (namely, the form
dvoly«x =dri N ...\ Ty, (1.10)

where 71, ..., 7, are the momentum variables dual to the coordinates t, ..., ¢, from some
special coordinate system (z,t); the form on the right-hand side in (1.10) is independent
of the choice of coordinates). We define a volume form p,, on T, L, by arbitrarily splitting
the sequence (1.8) and by setting

My = dVOlT*X /\dVOlN*X. (111)

(The result is independent of the splitting.)
Thus, we have defined a measure p;, on the manifold L.

Coordinate description. The manifold L, is given in special coordinate systems on
the cotangent bundles by the formulas

Ly = {(z,p, ", t',p',7') |z =2/, 1" =0, p=1p'}. (1.12)

The canonical coordinates on L, can be taken conveniently in the form (x,p’, 7). Then
the measure is given by the formula
py = dpy Adxy A -+ Ndpl, ANdxy, NdT] A - AdT]

128

and the generating functions of L; has the form

Sy(x,p', 7)) =p'x.
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1.1.3 The manifold L.
Invariant description. This manifold is defined as
L. = N*(Tgraphi) ¢ T*M x T*X

where the submanifold “graph: C M x X is obtained as the transpose of graphi. (The
factors in the Cartesian product are transposed.) Clearly, L, itself coincides with L, up

to transposition:
L.="L,CcT*M x T*X. (1.13)

More formally, consider the transposition isomorphism
w T*X xXT"M — T"M x T*X,
(a, B) — (B, @);

then
s(Ly) = L. (1.14)

We use the isomorphism (1.14) and define a measure on L. by setting
pre = (57" (1) (1.15)

Coordinate description. The manifold L. is given in special coordinate systems on
the cotangent bundles by the formula

LC:{(l',t,p,T,LE,,p,) ‘xleat:();p:p,}- (116)

The canonical coordinates on L. can be taken in the form (z,7,p’). Then the measure is
given by the formula

pe = dpy Adxy A+~ Adpl, Ndzy, Ndmy A -+ ANdTy,
and the generating function of L, has the form

Sb(l‘a T, p,) = plx'

1.1.4 The manifold L,

Invariant description. 'This Lagrangian manifold is defined as
Ly=N*(W)CT*M x T*M, (1.17)

where

W ={(a,a) € M x M| € X}. (1.18)
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Let
T2 " Lg — T*M|X cCT*M (119)

be the mappings obtained by the restriction to L, of the natural projections of T* M xT™ M
on the first and second factors. Consider the mapping

p: Ly, —T°X (1.20)
given by the composition p = 7 o 7y, where
7:T"M|x — T*X (1.21)

is the natural projection. (Note that 7 om = 7 omy.) Next, p, is an epimorphism at an
arbitrary point o € L, and the mapping

(71—1* ¥ 71—2*) |kerp*

is an isomorphism of ker p, onto the direct sum of two copies of the tangent space to a
fiber of the conormal bundle of X. Thus, we obtain the exact sequence

0 — NegpanX ® NeganX — Taly — Tpo)T"X — 0 (1.22)

for an arbitrary point a € L, (where m : T* — X is the natural projection). This
sequence permits one to define a measure p, on Ly by the formula

Hg = dVOlN*X /\dVOlN*X /\dVOlT*X7 (123)

where the factors on the right-hand side are given by formulas (1.9) and (1.10). (The two
factors d voly-x correspond to the two copies of Ny )X in the expansion (1.22).)

Coordinate description. The manifold L, is given in special coordinate systems on
the cotangent bundles by the formulas

Ly = {(z,t,p,7, 2" t',p, 7" ‘ c=at=t'=0,p=p}. (1.24)
The canonical coordinates on L, can be taken in the form (z,7,p’,7’). Then the measure

is given by the formula

tg = dpy Ndxy A Ndp, Ndz, ANdTy Ao ANdm, AdT A - N

v

and the generating functions of L, has the form

Sb(l', T, pla T,) = p,fE.

Thus, we have defined the Lagrangian manifolds (1.2), constructed some natural mea-
sures on these manifolds, and described canonical coordinates related to special coordi-
nate systems in the cotangent bundles. (In the following, these canonical coordinates
on Lagrangian manifolds will often be referred to as special canonical coordinates.) The
following assertion holds.
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Proposition 1.1. The measures jinr, fix, M, fe, and pg are quantized.

(As to the notion of quantized measures on Lagrangian manifolds, e.g., see [MSS90].)
We omit the proof.

Thus, Maslov’s canonical operator, which is used in the construction of Fourier integral
operators (see Appendix), is well defined on all above-mentioned Lagrangian manifolds
with measure.

We should possibly comment on the notation. The manifolds Ly and L,; are the
graphs of identity canonical transformations. (The corresponding Fourier integral opera-
tors are just pseudodifferential operators.) The subscripts b, ¢, and g on the manifolds Ly,
Ly, and L. have been chosen in view of the fact that the corresponding Fourier integral
operators are known as boundary operators, coboundary operators, and Green operators,
respectively.

1.2 Composition and transposition formulas

Now we shall study compositions and transpositions of the Lagrangian manifolds intro-
duced above. This proves useful, since the composition of Lagrangian manifolds corre-
sponds to the composition of the corresponding Fourier integral operators and the trans-
position corresponds to the passage to the adjoint operator. The general definition of
composition for Lagrangian manifolds is given in Appendix, Subsection A.3. We have
already noted that three of our Lagrangian manifolds, i.e., L;, L., and L, fail to satisfy
the fundamental condition A.1: each of these manifolds has a nonempty intersection with
the zero section of at least one of the cotangent bundles forming the product where this
manifold lies. Hence the composition need not be proper in general (cf. Subsection A.3),
and we have to modify the definition.

1.2.1 Definition of the composition

Definition 1.2. Let
L, C T*Ml X T*MQ, Ly C T*MQ X T*M3 (125)
be two Lagrangian manifolds. Suppose that the following conditions hold.

1. The composition L = L; o Ly given by (A.2)) is clean and connected (see Subsec-
tion A.3).

2. The projection

p: L — L, (1.26)

where

L= (Ll X LQ) N (T*Ml X AT*M2 X T*Mg),
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is a locally trivial bundle over the manifold L. (The fiber of this bundle over a point
(o, B) € L will be denoted by F{q4,); the dimension will be denoted by dim F, ) = ¢
and referred to as the ezcess of the composition, just as in the general theory.)

Then we say that the composition L = LjoLs is well defined. (Note that L is automatically
a Lagrangian manifold.)

Needless to say, if the projection (1.26) is proper, then the local triviality of the
bundle (1.26) follows from Thom’s theorem, and we return to the standard theory.

1.2.2 The composition table

Now we are in a position to state the composition theorem for Lagrangian manifolds.

Theorem 1.3. Every meaningful composition of two Lagrangian manifolds from the
list (1.2) is well defined. The composition table has the following form (the first fac-
tor corresponds to a row and the second, to a column):

Ly | Ly | Ly | Lo | L,

Lx |Lx | — | Lo | —

Lu | — | Lu | — | Le | Ly

T 1L (1.27)
L | L. | — [ L, | —

Ly | — | L, | — | Le | L,

Here dashes are placeholders for meaningless compositions.

Next, the fiber of the projection (1.26) is a singleton (e = 0) for all compositions
except for the four compositions in the intersection of the last three rows and the last
three columns. For any of these four compositions, the fiber of the projection (1.26) is
naturally isomorphic to the fiber of the normal bundle N*X over the corresponding point
of X (thus, e = v in these cases).

Proof. The proof goes by a straightforward computation. O

Remark 1.4. We see that for the four compositions mentioned in the theorem (which
will be referred to as exceptional), the fiber of the projection (1.26) is not compact. (It
is isomorphic to R”.) Since the formula for the symbol of the product of Fourier integral
operators (see Subsections 1.4 and 2.2) contains integration over the fiber, it is not at all
surprising that order restrictions guaranteeing the convergence of the integral arise for
such products.
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1.2.3 Transposition

The behavior of our Lagrangian manifolds and measures under transposition is described
by the following assertion, which can readily be verified by a straightforward computation.

Proposition 1.5. One has
Ly =Lx, "Ly=1Ly, "Ly=L., 'L.=L, 'L,=L,.

Moreover, the transposition takes the above-defined measure on any of these Lagrangian
manifolds to the corresponding measure on the transpose (neglecting the sign).

1.3 Symbols

Now we shall introduce symbol spaces on each of the Lagrangian manifolds (1.2). These
symbol spaces will be used in the quantization procedure (i.e., in the construction of the
corresponding Fourier integral operators). Just as in the standard theory of pseudod-
ifferential operators (or Fourier integral operators), there are various approaches to the
definition of symbol spaces. On the one hand, one can define a symbol as an arbitrary
function satisfying certain estimates (which guarantee the continuity of the correspond-
ing operator in appropriate Sobolev spaces). In this case, the notion of principal symbol
(which alone is meaningful in classical mechanics) becomes rather complicated and in-
convenient: one has to define the principal symbol as an element of a quotient space of
the symbol space. On the other hand, one can single out a narrower space of classical
symbols asymptotic for large values of the momentum variables to some R, -homogeneous
function of these variables. It is the latter function that plays the role of the principal
symbol. (Note that it usually does not lie in the original symbol space, since it has a
singularity at zero. Thus, one has to use cutoff functions in the quantization procedure.)
It is most convenient to combine the two approaches: one first introduces a wider symbol
class and proves boundedness and composition theorems and then observes the invariance
of the space of operators with classical symbols with respect to composition and studies
ellipticity, the Fredholm property, etc. in this narrower class.

In this section, we introduce symbol spaces using the above-mentioned approach. All
main statements are given in special coordinates and special canonical coordinates on the
Lagrangian manifolds, for we believe that coordinate statements are easier to compre-
hend than invariant statements in this case. We omit the proof of independence of our
definitions of the choice of special local coordinates. Needless to say, one can also give an
invariant description of symbol spaces. By way of example, we give such a description for
the manifolds L, and L.

Finally, we note that the traditional approach to the definition of classical symbols
requires that the symbols have asymptotic series erpansions in homogeneous functions
at infinity. The operators to be constructed here act only in a limited interval of the
Sobolev scale, and hence there is no need to require the existence of “long” expansions.
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Furthermore, we deal with qualitative issues of elliptic theory, where lower-order terms

play essentially no role. Therefore, we define classical symbols imposing only the minimal

requirement of existence of only one (leading) term of the asymptotic expansion.
Throughout the following, by x(r), r € Ry, we denote a smooth nonnegative function

such that
0, r<1/2,
— - 1.28
X(0) {1, ) (1.28)

1.3.1 Symbols on L,; and Ly

These symbols are the symbols of pseudodifferential operators. We briefly recall the
well-known spaces of such symbols so as to set the notation and clarify the scheme of the
subsequent reasoning by a well-known example. To be definite, we consider the Lagrangian
manifold Ly. The notation for L, is entirely similar.

Definition 1.6. By S™(Ly), where m € R, we denote the space of smooth functions a
on the manifold Ly such that the following estimates hold in the canonical coordinates:

‘8“+Ba(:r,p')

Dz 0p'P < Cop(l + |p/|)m7|ﬂ\7 la| + 6] =0,1,2,....

By O™(Lx) we denote the space of functions a on the manifold Lx such that a is smooth
outside the zero section (|p’| = 0) and R, -homogeneous of degree m (with respect to the
standard action of the group R, in the fibers).

By S7'(Lx) C S™(Lx) we denote the subspace of functions representable in the form

a=x(]p'|)ao +b, a€O™(Lx), be S™*(Lx) for some e > 0. (1.29)

Elements of the spaces S™(Lx), S'(Lx), and O™(Lx) are called, respectively, symbols,
classical symbols, and homogeneous (principal) symbols of order m on Lyx. The element
ap € O™(Lx) corresponding to a symbol a € S7(Lx) according to (1.29) is called the
(homogeneous) principal part of a.

One can readily see that the homogeneous principal part of a symbol is uniquely
determined.

The definitions of homogeneous principal symbols for the other Lagrangian manifolds
look somewhat more complicated, since these symbols have singularities not only on the
zero section.
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1.3.2 Symbols on L; and L,

First, we introduce symbol spaces on the manifold L;,. The symbol spaces on L. are
obtained from these via the mapping (371)*, where s is the isomorphism (1.14).
Let k£ and [ be given real numbers.

Definition 1.7. By Si"'(L;) we denote the space of smooth functions a on the manifold
Ly, such that the following estimates hold in the canonical coordinates:

aa+ﬁ+’ya(x7 pl, 7—’) b -
Sapigrr | < Cam (PP A+ W+ 7)1, (1.30)

la|+ 6]+ 7] =0,1,2,....

By O;'(Ly) we denote the space of functions a on the manifold L, with the following
properties:

1. a is defined and infinitely smooth outside the set
L= {p =0} C Ly;
2. a is Ry -homogeneous of degree k + [ in the variables (p, 7'):

a(z, \p', A7) = Netla(z,p', 7)), NER,, p #0;

3. for p’ # 0, the function a satisfies the estimates
0t a(x,pf, 7)

8$aapl,387-lfy
o] + 18] + 7] =0,1,2,....

< Capy ' [FV(I' + 7)1

By S,i’cll(Lb) C SPH(Ly) we denote the subspace of functions representable in the form

a = x(|p')ao + b,

kel Py ol—e (1.31)
ap € 0, (Ly), be S, (L) &S, “(Ly) for some £ > 0.

Elements of the spaces Sf’l(Lb), S,i’cll(Lb), and O,’f’l(Lb) are called, respectively, symbols,
classical symbols, and homogeneous (principal) symbols of type (k,l) on Ly. The element
ap € O (L) corresponding to a symbol a € S,i’cll(Lb) according to (1.31) is called the
(homogeneous) principal part of a. The number r = k + | + v/2 is called the order of a
(or ap) and is denoted by

orda =orday =k +1+v/2.

This is well defined, as shown by the following almost obvious proposition. (The proof
is by straightforward computation and is therefore omitted.)
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Proposition 1.8. Let a € O (Ly). Then x(|p'))a € S,i’cll(Lb). If x1(r) is another smooth
function with property (1.28), then

(') = xa(lp'D)a € S5~ (Ly).

It follows from the definition of the space OF'(Ly) and S,’f”cll(Lb) that the function a

in (1.31) is determined for a given a € S,’f”cll(Lb) uniquely and is independent of the choice
of the cutoff function .

Invariant description. Let us show how one can rewrite the estimates (1.30) in in-
variant form. To this end, we note that L, is a vector bundle; we define a function |a/,
a € Ly, as a norm in the fibers smoothly depending on the point of the base. In a similar
way, we introduce a norm in the fibers of 7% .X.

We consider two kinds of vector fields on Ly:

e vector fields annihilated by 7., where 7 is the projection on the first factor in the
product 1T*X x 1™ M; such fields will be referred to as normal to T*X;

e vector fields taken by 7, to well-defined vector fields on 7*X (thus, for each § €
T*X the application of 7, to the vector of the field at a point a € 7, *(3) gives a
result independent of the choice of «); such fields will be referred to as lifted from
T*X.

Now we can restate the first part of Definition 1.7 as follows.

Definition 1.9. By Sf’l(Lb), where k,I € R, we denote the space of smooth functions
a on the manifold L, such that the following condition holds: suppose that {V;,...,V;}
is an arbitrary (possibly, empty) finite set of smooth vector fields on L, such that each
of the fields is homogeneous of degree 0 or 1 and is either normal to 7% X or lifted from
T*X; then

Vi Via(a)| < O+ [af) ™ (1 + |m(a) )7, (1.32)

where j; is the number of first-degree homogeneous fields normal to 7*X and js is the
number of first-degree homogeneous fields lifted from 7*X. (The constant C' in (1.32)
depends on the choice of the fields Vi,...,V}.)

Symbols on L.. We define symbol spaces on L, as follows.
Definition 1.10. The spaces

SEH(Le) = (71 Sy ™ (Le),  OF*(Le) = (571)7 0™ (La),
Seet (Le) = (1) S50 (L),

c,cl

(1.33)



where 3¢ is the diffeomorphism (1.14), are called, respectively, the spaces of symbols,
classical symbols, and homogeneous (principal) symbols of type (m, k) on L.. The element
ag € O™ (L,.) corresponding to a symbol a € Szlc’lk(Lc) according to the formula

a=x(|p'|)ag+0b, beS" k(L) S™4(L,) for some £ > 0,

is called the (homogeneous) principal part of a. The number r = m + k 4+ v/2 is called
the order of a (or ay) and is denoted by ord a.

Remark 1.11. The “correction” v/2 in the definition of the order of symbols on L, and
L, ensures that the order of a symbol is equal to the order in the Sobolev scale of the
operator obtained by the quantization of the symbol. The correction v in the definition
of the order of symbols on L, has the same meaning.

1.3.3 Symbols on L,

Let m, k, and [ be given real numbers.

Definition 1.12. By S/"*!(L,) we denote the space of smooth functions a on the manifold
L, such that the following estimates hold in the canonical coordinates:

Ot (w p' T, T
0xp'POTYOT"

S Caﬂ’yﬁ(l + |p’|)k—|/3‘(1 —+ |p’| + |7_|)m—|7|(1 + |pl| + |7_I|)l—\6|7
la| + 8] + 7| + 6] = 0,1,2,.... (1.34)

By O7""!(L,) we denote the space of functions a on the manifold L, with the following
properties:

1. a is defined and infinitely smooth outside the set

I'={p'=0}C Ly,

2. a is Ry -homogeneous of degree m + k + [ in the variables (p/, 7, 7'):

a(z, \p', A\, A7) = Netla(z,p' 7, 7), AER,, p #0;

3. For p # 0, the function a satisfies the estimates

OBt (o' T, T

Sreaog | < Comal VW] + )Pl + )

for o + B[ + |7+ 0] = 0,1,2,.....
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By S;?c’f’l(Lg) C Syukl(L,) we denote the subspace of functions representable in the
form B / ) Omi(L
CL—X(|p|)a0—|— ,  Op € g ( 9)7

be Sy M (Ly) @ Syt (L) @ Sy (L) for some & > 0.

Elements of the spaces Sg“k’l(Lg), S;?c’f’l(Lg), and O;n’k’l(Lg) are called, respectively, sym-

bols, classical symbols, and homogeneous (principal) symbols of type (m, k,l) on L,. The
element ag € OF""!(L,) corresponding to a symbol a € S;'}C’f’l(Lg) according to (1.35) is
called the (homogeneous) principal part of the symbol a. The number r=m+k+1+v

is called the order of a (or ay) and is denoted by

(1.35)

orda =ordag=m+k+1+v.

Just as in the other cases, one can verify that the principal part of a symbol is well
defined and is unique.

Invariant description. Let us show how one can rewrite the estimates (1.34) in in-
variant form. To this end, we consider the following three kinds of vector fields on Lg:

e vector fields everywhere tangent to the first copy of N*X (see (1.22)) (they will be
referred to as normal fields of the first kind);

e vector fields everywhere tangent to the second copy of N*X (they will be referred
to as normal fields of the second kind);

e vector fields lifted from T*X.
Now we can restate the first part of Definition 1.12 as follows.

Definition 1.13. By Sg"k’l(Lg), where m, k,l € R, we denote the space of smooth func-
tions a on the manifold L, with the following property: if {Vi,...,V;} is an arbitrary
(possibly, empty) finite set of vector fields on L, such that each of the fields is homoge-
neous of degree 0 or 1 and either is normal of the first or second kind or is lifted from
T* X, then the estimate

Vi--Via(@)] < C(L+ [mi(@) )™ 9 (1 + |p(a) )H 22 (1 + [ma(e)))' (1.36)

holds, where j; is the number of first-order homogeneous normal fields of the first kind, j3
is the number of first-order homogeneous normal fields of the second kind, j» is the number
of first-order homogeneous normal fields lifted from 7% X, m; and 7y are the projections
on the first and second factors, respectively, in the Cartesian product T*M x T*M, and
p is the projection (1.20).

Thus, we have defined quite a few symbol spaces. To simplify the notation, in the
following we usually omit the manifold argument in the notation of symbol spaces, i.e.,
write, say, Sy"! instead of S7"*!(L,), etc., provided this does not lead to a confusion.
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1.4 The product of symbols (twisted multiplication)

Let Ly and Ly be two Lagrangian manifolds (1.25) such that the composition L = Ly o Ly
is well defined. Then there is an operation, called the twisted multiplication in what
follows, that takes pairs of symbols on L; and Ly to symbols on L. (See Appendix,
Subsection A.7.) This operation involves integration over the fibers of the bundle (1.26).
In our situation, the fibers need not be compact, and so the twisted product is defined
only under certain restrictions on the types of factors. First, let us write out an expression
for the twisted product specifying the general assertion in Appendix.

1.4.1 The general twisted product formula

Let the manifold L;, Ly, and L be equipped with smooth real measures p, po, and pu,
respectively. We make some choice of the half-densities /g1, \/pi2, \/i. For example,
we can adopt the convention that /i is represented in local coordinates on L by the

arithmetic square root |ﬁ|, where g is the density of p in these coordinates. Then the
twisted multiplication

¥ O (L) x C(Ls) — C(L),
(fi, f2) = fix fo (1.37)

can be described as follows. The expression

(fIM)(aaﬁ)(fZM)(ﬁ77)7
(Oé,ﬂ) € L1 C T*Ml X T*MQ, (ﬂ,’}/) € L2 C T*MQ X T*M3,

is a half-density on L whose values are densities on the fibers F{, ) of the bundle (1.26).
Hence the expression

1 1\
Gepen = —=(5) [ Gvmen@Emen o

(a,7)

is a well-defined function on L (see [H6r83b]). In local coordinates, this function is repre-
sented by an ordinary integral over the fiber variables. The normalizing factor (1/2m)¢ is
introduced so as to ensure that there is no additional factor in the formulas for products
of operators.

If the fiber F{,,) is compact, then the twisted product (1.38) is defined not only
for compactly supported, but also for arbitrary smooth functions. In the general case,
we say that the twisted product (1.38) is defined for given functions f; € C*°(Ly) and
fo € C(Ly) if the integral on the right-hand side in (1.38) converges absolutely.
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1.4.2 A twisted product theorem

In this item, we describe the twisted products (1.37) in the symbol spaces introduced
above for the cases corresponding to the compositions of Lagrangian manifolds described
in Theorem 1.3 (see Table (1.27)).

First, we consider the case of “trivial” products, where at least one of the factors is
the diagonal manifold Ly, or Lx. By Theorem 1.3, the fiber of the bundle (1.26) is a
singleton, so that the twisted products are always defined. The type of the product can
readily be expressed via the types of the factors. Leaving aside the case in which both
factors are diagonal (and hence one deals with products of pseudodifferential operators),
we state the following theorem.

Theorem 1.14. The twisted product is well defined in the following symbol spaces for
any values of the indices:

S™(Lx) * Syt € Sy,
S™(Lag) % SPF C SR S (Lag) x SR C SR,
k,l m k,l+m m' k, m ! K m
Sb xS (LM)CSb+, Sg kly g (LM)CSg kl+7
Smk s S™(Lx) € Smiktm,

1.39
1.40
1.41

(
(
(
(1.42

)
)
)
)

For any of these compositions, one has

(1.43)

ord(a; * ag) = ord a; + ord as.

The following theorem describes the twisted products (1.37) corresponding to the
compositions in the table (1.27) for the case in which neither of the factors is Lx or L.

Theorem 1.15. The twisted product of symbols corresponding to the compositions of
Lagrangian manifolds in the last three rows and columns of Table (1.27) is described by
the following table:

552712 Séﬂz,l@ S;ﬂz,kzh
Skl,ll - Sk1+ll+k2+m2+v Sk1+l1+k2+m2+u,l2
b X b
Sml,kl Sm1,k1+k2,l2 - - (144)
c q
Sml,kl,ll _ Sml,k1+ll+k2+m2+ll Sml,k1+ll+k2+m2+ll,l2
g ¢ g

The twisted product

e (Le) + 537 (Ly)

15 defined for arbitrary values of the indices, and the remaining four products in Ta-
ble (1.44) are defined under the condition

L +my < —v.

Finally, condition (1.43) holds for each of these products.
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Let us now state the assertion concerning the twisted product of homogeneous principal
symbols.

Theorem 1.16. Let ay and as be classical symbols whose twisted product a = ay * ay
15 well defined by one of the two preceding theorems. Next, let aig, as9, and ag be the
homogeneous principal symbols corresponding to ai, as, and a, respectively. Then the
twisted product aiy * agy s well defined and ao * azy = ag.

Coordinate description. Let us give the expressions for @ = a; * ay in special coordi-
nate systems for the cases shown in Table (1.44). (The cases described in Theorem 1.14
are left to the reader.) They have the following form:

LyoL,: a(z,p) = <%>V/al(:r,p',T)aQ(x,p',T) dr;
L.oLy: a(z,7,p', ") = a(x, 1, p)as(z,p', 7');

LyoLy,: a(z,r,p',7") = <%>V/a,l(l',T,p,,T”)CLQ(CL‘,T”,])’,T,) dr";
LyolL,.: a(z,7,p) = <%>V/a1(96,7,p',7')a2(96,7',p') dr';
LyoL,: a(z,p',7') = <%>V/a1(967p'7T”)a2(x77”7p1771) dr”.

2 Quantization and the algebra
of operator morphisms

Now we proceed to the second stage in the construction of our operator algebra. Namely,
we quantize the classical objects introduced in the previous section. The elements of the
algebra are 2 x 2 matrices with operator entries. First, we describe these entries, which
will be referred to as the main operators, and then deal with the matrices.

2.1 The main operators

We have constructed five Lagrangian manifolds with measure in Subsection 1.1 and the
corresponding symbol classes in Subsection 1.3. We obtain five types of operators by
quantizing these objects, i.e., by considering the corresponding Fourier integral operators.

2.1.1 Pseudodifferential operators

The quantization of symbols on L, and Ly, results in pseudodifferential operators on
M and X, respectively. This procedure is well known, and we only mention that pseu-
dodifferential operators themselves will be denoted by uppercase letters (for example,
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Dy or Dy) and their symbols (or principal symbols, depending on the context) by the
corresponding lowercase letters:

O'(DM) :dM, O'(DX) :dX.

2.1.2 Boundary operators

Definition 2.1. The boundary operator with symbol a € Sf’l(Lb) is the Fourier integral

operators EI;b[a] on the Lagrangian manifold L, with measure j;, and symbol a.
The boundary operator with principal symbol ag € OF'(Ly) is the operator A =
®,[a] with symbol a = x(|p'|)ao.

Remark 2.2. Owing to the ambiguity in the construction of the canonical operator, the
operator ®,la] is determined nonuniquely, modulo operators whose symbols are of lower
order than a. (The same remark pertains to all other operators that will be constructed
in what follows.)

Example 2.3. By taking a = 1, we obtain the elementary boundary operator
i C®(M) — C*(X), (2.1)
which takes each function f € C*°(M) to the restriction i* f € C*°(X) of f to X.
Theorem 2.4. Let a € Sy (Ly). Then the operator ®y[a) is continuous in the spaces
®yla] - H¥ (M) — H* 1(X), r =orda, (2.2)

fors>1+v/2.

Coordinate description. Let us write out the expression for ®[a] in special coordi-
nates (x,t). The operator ®,[a] is given by the formula

) ]_ n+’/ Tl ! 1yl

(Pplau)(z) = (2—> /ez[p == oz, p', 7 Yu(a', 1) dp'dr' da' df’
™

n4+v (23)

N y -
= <2L> /e”’ Ya(z,p', T a(p', " )dp'dr’,
T

where u(p', 7') is the Fourier transform of u(z', ).
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2.1.3 Coboundary operators

Definition 2.5. The coboundary operator with symbol a € S™*(L,) is the Fourier integral
operators ®.[a] on the Lagrangian manifold L, with measure p. and symbol a.

The coboundary operator with principal symbol ag € O™ (L,) is the operator ®[ao] =
®.[a] with symbol a = x(|p'|)ao-

Example 2.6. By taking a = 1, we obtain the elementary coboundary operator
iv : D'(X) — D'(M), (2.4)

which is the L? adjoint of the elementary boundary operator. It can be locally described
in the special coordinates (z,t) as follows:

[i-g](z, 1) = g(z) @ 6(2), (2.5)

where § is the Dirac delta function. In other words, i,¢ is the product of ¢ by the delta
function in the transversal directions, or the delta function on X with density g, so that
one sometimes writes 7,9 = gdx.

Theorem 2.7. Let a € S™*(L.). Then the operator ®,[a] is continuous in the spaces
d.[a] : HY(X) — H*"(M), r=orda,
for s < k.

Remark 2.8. The operator ®.[a] is actually continuous in the spaces
D.la] : HY(X) — H™"/*~¢(M)

for s > k. (Here & > 0 is arbitrary.) This follows from the embedding H*(X) C H**(X)
in conjunction with Theorem 2.7. However, we do not consider these values of s, since
the order of the operator ®.[a] is not related to the order of the symbol for these s
and composition theorems considered in the next subsection are no longer valid owing to
the fact that one cannot neglect lower-order terms in asymptotic expansions of Fourier
integrals.

Coordinate description. By analogy with the preceding, we can write out the ex-
pression for the coboundary operator in special local coordinates. It has the form

~ LN"™ [ e
(D [au)(z,t) = <2_> /ez[P (z—= )+Tt]a($7 7,9 )u(z')da'dp'dr
™

v . TL/2
1 i »
= — — i(p'z+7t) N~/ | ,
(27T> (27T> /e a(z, T, p")u(p)dp'dr.
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2.1.4 Green operators

Definition 2.9. The Green operator with symbol a € S;***(L,) is the Fourier integral
operator $g[a] on the Lagrangian manifold L, with measure p, and symbol a.
The Green operator with principal symbol ay € O;n’k’l(Lg) is the operator </13g[a0] def

&\)g[a] with symbol a = x(|p'|)ao-
The following boundedness theorem is valid for Green operators.

Theorem 2.10. Let a € SJ""!(L,) be a Green symbol. Then the operator </13g[a] is con-
tinuous in the spaces

®,[a] : H*(M) — H* (M), r=orda,
forv/2+1<s<v/24+1+k.

Remark 2.11. It follows from Theorem 2.10 that it makes sense to consider Green
symbols only for k£ > 0, since otherwise the set of values of s for which the Green operator
is continuous in the above-mentioned spaces is empty.

Coordinate description. The expression for a Green operator in special coordinates
has the form

1

n+2v )
2_) /ez[p (z— )+Tt77't]a(x,T,pl,Tl)u(xl,tl)
™

3 2 0
N T i(p'x+Tt) oINS ;g 1
(27r> <27r> /e a(z,r,p, T u(p', r")dp'dr'dr.

@y fafu) o) = (

2.1.5 An interpretation of the main operators as pseudodifferential operators
with operator-valued symbols

In conclusion, we note that, modulo operators with smooth kernel, boundary, coboundary,
and Green operators are concentrated on the submanifold X. This follows from the form
of the corresponding Lagrangian manifolds. Hence the structure of these operators in a
neighborhood of X is of main interest. It turns out that in a tubular neighborhood of X
these operators can be interpreted as pseudodifferential operators on X with operator-
valued symbols acting in function spaces on the fibers of the normal bundle of X. (Recall
that a neighborhood of the zero section of the normal bundle is identified via the geodesic
exponential map with a tubular neighborhood of X.)
By way of example, let us show this for the case of Green operators.
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Indeed, formula (2.7), specifying the operator EI\>g[a] in special coordinates, can be
rewritten in the form

. A\ /2 ,
@ lalu(z,t) = <%> /e””” [W/ema(x,p, 7,7 )u(p, ") dr'dr| dp,
or
1
~ 2 .0
Q,lalu(z,t) = H<:r, —2%>u($,t), (2.8)

where H(x,p) is the operator-valued symbol acting on functions of the variables ¢ by the
formula

o o
Actually, the operator H(xz,p) is a Green operator with parameters (x,p) acting in a

space of functions of t. The symbol of this operator is a(z,p,7,7") (where x and p are
treated as parameters). The passage

H(w, p)o(t) = ( i )Vﬂ( L ) / e a(a, p, v YO )dr dr. (2.9)

a(z,p,7,7) = H(z,p) — B,[d] (2.10)

can naturally be interpreted as a two-stage quantization procedure, first along the fibers
of the normal bundle of X (which gives an operator-valued symbol over X) and then
along X.

2.2 Composition formulas and adjoint operators

Composition. Here we state the composition theorem for the main operators, viz.
pseudodifferential operators on M and X, (co)boundary operators, and Green operators.
To unify the statement, we temporarily denote the Fourier integral operator with symbol

a on a Lagrangian manifold L from the list (1.2) by ®(L, a). (The choice of a measure on
L has been described above.)

Theorem 2.12. Let Ly and Ly be two manifolds from the list (1.2) such that the compo-
sition Ly o Ly is well defined, and let ®(Ly,a1) and ®(Lo, as) be Fourier integral operators
with symbols in some of the classes introduced above such that the composition

-~ ~

CI)(Ll, al)q)(Lg, CLQ)

15 well defined as a product of bounded operators in accordance with the boundedness
theorems. Then the twisted product ay * ao is well defined, and the composition formula

~ ~ ~

(P(Lu al)(I)(Lm 02) = (I)(Ll o Ly, ay a2)

15 valid modulo operators of order < ord a; + ord as.
The same assertion remains valid if ay and ay are the homogeneous principal symbols
of the corresponding operators.
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The adjoint operator.

Theorem 2.13. Let L be a manifold from the list (1.2), and let ®(L,a) be a Fourier
integral operator with symbol from some of the classes introduced above such that the
operator (L, a) is well defined as a bounded operator by the boundedness theorems. Then
the formally L?-adjoint operator is given by the formula

(®(L,a)" = ("L, (¢7) 1a) (2.11)

modulo operators of order < ord a;+ord as. Here the bar over the symbol on the right-hand
stde stands for complex conjugation and

o:L—=TL

15 the mapping obtained by the restriction to L of the transposition of factors in the
Cartesian product of cotangent bundles.

The same assertion is valid if by a we mean the homogeneous principal symbol of the
Fourier integral operator.

2.3 Algebras of operator morphisms

Now we are in a position to construct the operator algebras. They will consist of 2 x 2

operator matrices of the form
Dy +®, &,
D, Dx /]’

Since the formal “multiplication” of the corresponding matrices of Lagrangian manifolds

gives
Ly+L, L, Ly+Ly, L.\ (Lu+L, L
Ly Ly Ly Lx) L, Lyx)’
one can hope that the set of operator matrices of this form is indeed closed with respect

to composition.
Let us proceed to exact statements.

2.3.1 Definition of the algebras

Since the range of the Sobolev smoothness exponent s for which Green, boundary, and
coboundary operators are defined is not the entire real line, we see that operators of
positive order with such entries will not form an algebra. However, for any s and o one
can indicate such symbol spaces for all entries that the operators

Dysd, 3\ HON w0
("™ 5wt~ wn o
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will be continuous and form an algebra. We present the corresponding result for s = o = 0.
The general case was analyzed in [SS96].
Let my, kg, k¢, ky € R be given numbers satisfying the inequalities

kg >0, k. >0, ky >0,

my <Ly k> L (213
(Note that system (2.13) is consistent. For example, one can take m, = —v,k, = v,
k. =k, = 1 as a solution.)
We set
ly=—mg—ky—v, m¢=—ke—v/2, Iy = —k, —v/2. (2.14)

The following assertion is a straightforward consequence of the boundedness and com-
position theorems.

Theorem 2.14. The set A(myg, kg, k., ky) of operator 2 x 2 matrices of the form

_ [ Dar + Bylay] cal]
A= ( Bl D, ) , (2.15)

where Dy and Dy are zero-order pseudodifferential operators on M and X, respectively,
and the symbols a4, a., and ay lie in the spaces

ag € Sittole(Ly), ac € SPFe(Le),  ay € Sy (Ly),

is a linear space of continuous operators in L*(M) & L*(X).
The (nondirect) sum
A=+ A(mg, kg, kc, kb)
over all mgy, kg, ke, ky, satisfying (2.13) is an algebra.

Remark 2.15. From the practical viewpoint, it is of interest to consider operators of
nonzero order in Sobolev spaces other than L?; theoretically, it suffices to study the
algebras described in Theorem 2.14, since an operator of the form (2.15) acting from
H*' (M) ® H*(X) into H? (M) & H°?(X) can always be reduced to an operator in the
space L?(M) @ L?*(X): one simply multiplies it on the right and on the left by appropriate
diagonal matrices of pseudodifferential operators.

Remark 2.16. Let my, k, € R be given numbers satisfying the inequalities

my < —v/2 < my + ky. (2.16)
We set
ky=mg+ky+v/2 ke=-—my—rv/2. (2.17)
Then inequalities (2.13) are satisfied automatically. We write
A(mg, ky) = A(my, kg, ke, k), (2.18)

where &, and k. are given by formulas (2.17).
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A careful computation of the exponents according to Table (1.44) in the composition
theorem 1.15 shows that A(my, k,) C A is a subalgebra.

In what follows we mainly deal with subalgebras of the algebras defined above, formed
by classical operators (i.e., operators with classical symbols).

2.3.2 Involution

Theorem 2.13 implies the following assertion.

Theorem 2.17. The algebra A is an involutive algebra with involution taking each oper-
ator to its L? adjoint. Moreover,

A(mg, kg, ke, kp)* = A(mz, k;‘, k:, ky), (2.19)
where
my,=-—my —ky—v, ky=ky ki=ky, ky=rk. (2.20)

In particular, the subalgebras
A(—=(k+v)/2,k) C A (2.21)

are invariant with respect to involution.

2.3.3 Green subalgebras

There is an important subalgebra of A formed by matrices of the form

o, 0

0 0)°
This subalgebra is naturally isomorphic to the algebra of operators of the form &)g in
L?(M). (As follows from the composition theorem, such operators indeed form an alge-

bra.) More precisely, let us give the following definition. Let numbers m, k,[ € R satisfy
the relations

m+k+l+v=0,
{l+u/2<0<l+1//2+k. (2.22)
We set, O™ = Oy»*I(L,). (Note that the notation is adequate, since
k=k(ml)=-m-—1—-v (2.23)

is uniquely determined by m and [.)

35



Definition 2.18. The Green algebra Agy(m, 1) is the set of continuous linear operators in
L?(M) representable in the form

A=3,d+K, (2.24)

where a € O™! and K is a compact operator in L?*(M) (K € K). Elements of the Green
algebra are called Green operators.

Green algebras play an important role in the ellipticity conditions (see the next sec-
tion).

3 Elliptic morphisms and the index formula

In this section, we give the definition of ellipticity for morphisms, prove theorems con-
cerning the Fredholm property, and present an index formula for elliptic morphisms that
do not contain Green operators. In the ellipticity conditions for general morphisms, the
almost inversion of operators of the form 1+ 7', where T' = ®,[a] is a Green operator,
plays an important role. We start our exposition with a study of such operators.

3.1 The Green equation
3.1.1 Statement of the problem

Consider the equation R
u+ ®ylalu = f € L>(M) (3.1)

for an unknown function v € L?(M), where a € O™ is a given principal symbol. In
more detailed notation, Eq. (3.1) has the form

u(z,t) +/K(x,t,x',t')u(:r',t')da:'dt' = f(x,t), (3.2)
where the kernel K (z,t,2',t') is given by the formula
1 N / U
K(z,t,2't") = (2—)”+2” / P2t t=N () (2, p, 7, 7' )dpdrdr. (3.3)
m

Equation (3.1) (or (3.2)) will be called the Green equation of the second kind, or
simply the Green equation. As is often the case in the theory of integral equations, one
cannot solve Eq. (3.1) exactly or even write out informative conditions guaranteeing the
unique solvability (except for the trivial case in which the norm of the operator </13g la] is
less than unity). Thus, we proceed to the analysis of conditions under which Eq. (3.1)
is Fredholm. Here one can already obtain nontrivial results, namely, a criterion for the
Fredholm property of Eq. (3.1) in terms of the principal symbol a. This criterion is
described in the subsequent items.
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3.1.2 An equation for the symbol of an almost inverse

It is well known that an equation is Fredholm if and only if the operator specifying the
equation has a (two-sided) almost inverse. Let us seek a right almost inverse of 1 4+ ®[a]

in the form 1 + ®,[b], where b € OU™)_ Then we have

(14 ,a))(1 4 By[b]) = 1+ Dyla + b+ a b] (3.4)
modulo compact operators, and for the symbol b we obtain the equation
b+axb=—a (3.5)

Likewise, if we seek a left almost inverse in the form 1 + 59[0], then for ¢ we obtain
the equation
c+ckxa=—a. (3.6)

3.1.3 Ellipticity and the Fredholm property for the Green equation

Here we state necessary and sufficient conditions for the Fredholm property of Eq. (3.1).
The remaining items deal with the proof of the theorem stated in this item.

Definition 3.1. We say that the Green equation (3.1) (and the operator 1 + Z1\39 la]) is
elliptic if the equation
wtaxw=uv (3.7)

has a solution w € O™ for every right-hand side v € O™,

Remark 3.2. The solvability of Eq. (3.7) with arbitrary right-hand side is equivalent to
the solvability of Eq. (3.5) (i.e., Eq. (3.7) with special right-hand side —a). Indeed, one
of the implications is trivial; as to the other, if b is a solution of (3.5), then the solution
of (3.7) for arbitrary v is given by the formula

w=b+a+v+bx(a+v), (3.8)
which can readily be verified by a straightforward substitution into the equation.

Theorem 3.3. The Green equation (3.1) is Fredholm if and only if it is elliptic.

Corollary 3.4. The operator 1+</159[a] € Aém’l) is Fredholm if and only if it has an almost
inverse (a reqularizer) in the algebra A_S,m’l).

Indeed, the symbol of the regularizer is just given by the solution of Eq. (3.5).

Remark 3.5. Note that the ellipticity condition does not mention Eq. (3.6) or the unique
solvability of Eq. (3.5). We shall see from the proof that the solvability of Eq. (3.5) is
equivalent to the solvability of Eq. (3.6) and is equivalent to the unique solvability of
either of these equations.
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ProOOF. The proof splits into several stages described in the forthcoming items. Let
us rewrite Eq. (3.7) in coordinates:

1

w(z,p,7,7') + <2—> /a(m,p, 7, 7Yw(z,p, 7", 7)dr" = v(z,p, T, 7). (3.9)
T

RY
It is natural to treat this equation as a family of equations depending on the parameters
(x,p,7"). Let us study the properties of this equation. First, without loss of generality

we can assume that m = [. Indeed, we set m = $(m,[) and 3 = ;(m — ). The map

a(@,p,7,7') — (0" +7°) "a(z,p, 7,7 (" +77)" (3.10)

is an isomorphism of O™" onto O™™; the form of Eq. (3.9) remains unchanged if we
apply the transformation (3.10) to all functions w, a, v occurring in the equation. Thus,
from now on we assume that m = [. Then it follows from the restrictions imposed on m,
[, and k that

m < —v/2.

Since
la(z, p,7,7)| < Clpl*(Ipl + 7)™ (Ip] + |7')™,

we see that the kernel in (3.9) is square integrable with respect to the variables 7, 7", so
that for any given (z,p,7'), p # 0, this equation is a Fredholm integral equation of the
second kind in the space L*(RY). It follows from Fredholm theory that this equation is
solvable in L?(RY) for any right-hand side if and only if the homogeneous equation has no
nonzero solutions in L?(R). However, we are interested in solutions of this equation in
O™ First, consider the case in which the homogeneous equations (3.9) have no nonzero
solutions in L?(RY) for any (z,p), p # 0.

Proposition 3.6. In the absence of nonzero solutions of the homogeneous equation, the
solution in L*(RY) of Eq. (3.9) with right-hand side in O™ lies in O™™.

Proof. The desired R, -homogeneity of the solution follows from the R, -homogeneity of
the kernel and the right-hand side in conjunction with the uniqueness of the solution.
Next, the function w is obtained from v by an application of the continuous inverse in
L*(RY) to the Fredholm operator of the second kind in Eq. (3.9), so that the differen-
tiability of w (viewed as a function ranging in L?) with respect to variables (7, z,p) is
obvious. Now it is easy to prove the desired estimates for w and the derivatives of w by
induction over the order of the derivative, using the relation obtained from (3.9) by the
transposition of the integral term to the right-hand side, which completes the proof. [

Note that Eq. (3.6) is the complex conjugate of the adjoint equation of (3.5), and it
follows from Fredholm theory that both equations are solvable or unsolvable simultane-
ously.

The case in which the homogeneous Fredholm equation has a nontrivial solution is
consider in the next item.
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3.1.4 The operator 1+EI\>g[a] is not Fredholm if Eq. (3.9) is not uniquely solvable

Proposition 3.7. Suppose that the homogeneous equation

1

(1) + <%>V/a(:r,p, 7,7 p(r")dr" =0 (3.11)

Rv

has a solution ¢ € L*(R") for some values (z,p) = (x¢,po) € R* x R \ {0}. Then the
operator 1 + ®4[a] is not Fredholm.

Proof. Without loss of generality, we can assume that |py] = 1. We shall construct a
family of functions uy € L*(M), A € R, , with the following properties:

(a) luall =1 for all A;
(b) (1 + @ga])ur|| — 0 for A — oo;
(c) uy weakly converges to 0 as A — oo.

The existence of such a sequence implies that 1+ $g[a] is not Fredholm. Indeed, we argue
by contradiction: let 1 + ®4[a] be Fredholm, and let R be a regularizer, so that

R(1+®,[a) =1+K, Kek.

Then R
uy = R(1+ ®yla])uy — Kuy — 0 (3.12)

as A — oo by (b),(c), and the fact that a compact operator takes each weakly convergent
sequence to a strongly convergent sequence. But Eq. (3.12) contradicts (a).
We set
un(@, t) = exe? TP (VA (@ — 20)) B(AE), (3.13)

where ¢, is a constant normalizing u, in L? wu(x) is a smooth compactly supported
function, and @(t) is the inverse Fourier transform of ¢(7). The function (3.13) satis-
fies condition (a) by construction. Next, one can readily see that this function weakly
converges to zero as A — oo (i.e., condition (c) holds): it suffices to show that

/uA(m, t)p1(x)pa(t)dxdt — 0

as A — oo for any smooth compactly supported functions ¢, and @9, but this can readily
be proved by integration by parts with respect to x with regard to the fact that ¢, ~
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A"/2HV It remains to verify condition (b). Using the representation (2.8)-(2.9) of the
Green operator as a pseudodifferential operator with operator-valued symbol, we obtain

(1+ </I;g[a])u>\ = (1 + H<x21, —i(%))u)\
= exe TR (VA (2 — o)) (1 + H (w, Apo))$(AE) + o(1)

= xR (VA (& — ) (1 + H (2, Apo) ) (A1) + o(1).

But

(14 Ho(xo, Apo))p(At)

1 v "
= A_”f;_l)t{cp<§> + <%> /a(:ro,)\po,T, T")gp(%) dT"}
Ru
v fo(T) 4 (LY V() a2
=A f’r—)t{gp<)\> + <27T> /a(l'o,pg, ) A >§0< A d A _07
Ru

whence it follows that (b) is also satisfied. O

>3

3.1.5 Completion of the proof

Now the assertion of the theorem becomes obvious: if the symbol equation is not uniquely
solvable at least at one point (x,p), p # 0, then the operator 1 + ®4[a| is not Fredholm,
which shows that the ellipticity condition is necessary. On the other hand, if the ellip-
ticity condition is satisfied, then one can construct left and right regularizers by solving
the corresponding symbol equations, thus proving the Fredholm property. The proof is
complete. O

3.2 Ellipticity and the Fredholm property

In this subsection, we establish necessary and sufficient conditions for a given morphism

_ [ Dy +®ylg] @[]
A= ( 8,00 Dx) cA (3.14)

to have an almost inverse (an inverse modulo compact operators) A™' € A in the al-
gebra A. These conditions are called ellipticity conditions. First, we consider ellipticity
conditions for morphisms (3.14) with ®,[¢g] = 0. They are of main interest for two reasons:

e practically interesting problems (Sobolev problems) result only in morphisms that
do not contain Green operators;
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e in this case, one can obtain ellipticity conditions (and an index formula) in a finite
(algebraic) form.

Thus, we consider an operator (3.14) without the Green term, i.e., an operator of the

form R
A= Du ®ld) (3.15)
®,[b] Dy
We seek a (right) almost inverse in the form
D, (0] Dy

and, multiplying by A on the left, arrive at the system of equations

Dy O.c]\ [Du+®4l0] @d\ (1 0
(&)b[b] Px> < 6,,[?5] 5){) = <0 1); (3.17)

which must be satisfied modulo compact operators. Let us compute the operator on the
left-hand side in (3.17). Modulo compact operators, it has the form

(BM@M @@)
By 0] Dy /)’

where _

and the formulas for :cv’, E, and czc can readily be written out with the use of the compo-
sition law in the algebra A. In (3.18), dy, cth, and dy; are the principal symbols of the

pseudodifferential operators Dy, Dy, and Dy, respectively. It follows from (3.17) and
(3.18) that N

Thus, a necessary condition for the almost invertibility of the element (3.15) in the algebra
A is the ellipticity of the pseudodifferential operator Dy,;. Assuming that this condition
is satisfied, we make some transformations of A that do not affect the almost invertibility.

Namely, we subtract the first row multiplied on the left by ®,[b]D,; from the second
row. (Here D;j is an almost inverse of D,;; we freely use this type of notation, which is
unlikely to result in a confusion.) As a result, modulo compact operators we obtain the
upper-triangular operator matrix

y [ Dwm EI\)C[C]
e ( 0 Dx— </1;b[b]DM1</136[01> (3.19)
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An upper-triangular matrix is almost invertible if and only if so are its diagonal entries.
Thus, we arrive at the following definition.

Definition 3.8. An element (3.15) of the algebra A is said to be elliptic if the following
conditions are satisfied:

(i) Dy is an elliptic operator on M;

(ii) the operator
Ay = Dy — By[b] D, 13, [c] (3.20)

(the noncommutative determinant) is an elliptic operator on X.

Remark 3.9. The second condition possibly deserves an explanation. By the composition
theorem, the product ®,[b]D;,®.[c] is a pseudodifferential operator on X. Hence so is
the noncommutative determinant A4, and we can state the ellipticity condition in finite
(algebraic) form at least if the symbols occurring in A4 are classical. The symbol of A4
has the form

o0(Ay) =dx —bxdy} *c, (3.21)

where b and ¢ are the symbols of </13b and </ISC, respectively, and the twisted product x
in the general form is given by (1.37) and (1.38) and is described in specific cases in
the composition theorem 1.15 and the subsequent text. In special local coordinates, the
symbol (3.21) can be represented in the form

o(3)ep) = i) + (5] [ W r)elop )0 7)

If the symbols b(x,p,7) and c(z,p,7) (as well as d,(x,p) and dy(z,t,p, 7)) are classi-
cal, i.e., have homogeneous leading components, then so is the symbol o(A,), and the
ellipticity condition acquires a finite form.

The preceding reasoning implies the following theorem.
Theorem 3.10. Let A be an elliptic morphism of the form (3.15). Then A is Fredholm.

Let us now state the ellipticity conditions for general morphisms (3.14) containing
a nonzero Green operator in the upper left corner. We seek an almost inverse in the
form (3.16); then the first relation in (3.18) remains the same. Thus, the ellipticity of Dy,
is still necessary for the almost invertibility of A in the algebra. However, the upper left

corner of A is now R
AH = DM + q)g[g], (322)

and the almost invertibility of A;; is not necessary for the almost invertibility of A in the
algebra, so that the reduction to the upper-triangular case simply does not work.
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Remark 3.11. The special case in which the morphism (3.22) is still almost invertible
(one can study this property using the representation

A = DM(l + D;/[l‘/lsg[g]) = DM(I + Zﬁg[d;/[l * g])

and then analyzing the Green equation with the operator 1 + </13g [d, * g]) was considered
in [SS96]. In this case, the reduction to a triangular form can be carried out with Dy,
replaced by Dy + ®,[g]. In particular, the noncommutative determinant acquires the

form
Ax = Dx — B8] (Das + By[g]) " Bcle], (3.23)

and sufficient ellipticity conditions are that the operators (3.22) and (3.23) must be elliptic.
By the results of the preceding subsection concerning the Green equation, the operator
(D + &39[9])71 again has the form of a pseudodifferential operator plus a Green operator,
so that the noncommutative determinant (3.23) proves to be a pseudodifferential operator
on X by the composition theorems.

We consider the general case without the assumption that the operator (3.22) is al-
most invertible. How to state the ellipticity conditions then? To this end, note that the
almost invertibility of A in the algebra is equivalent to the simultaneous almost invert-
ibility of A*A and AA*. Now we note that the almost invertibility of A*A implies the
almost invertibility of (A*A);. (The same is also true of AA*.) This is a straightforward
consequence of the following proposition.

(1Y)

is a nonnegative self-adjoint operator matriz (C' = C* > 0) and C is almost invertible,
then a is almost invertible.

Proposition 3.12. If

Proof. The proof is based on the following auxiliary lemma:

Lemma 3.13. For a bounded operator B = B* > 0, the following assertions are equiva-
lent:

1. B is not Fredholm;
2. there exists a sequence of vectors u; such that ||u;|| =1, u; Lueakly, 0, and
(Uj, B’LLJ) — 0.

Indeed, (u;, Buj) = H‘/EUJH7 whence we see that the condition (u;, Buj) — 0 is
equivalent to Bu; — 0. Now the implication (2) = (1) is obvious, and to prove (1) = (2)
one can take an orthonormal sequence u; € R(f;(B)), where

file) = {1’ L=

0, z>1/j.
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Such a sequence always exists, since for non-Fredholm B all projections f;(B) are of
infinite rank.

Now it is easy to prove Proposition 3.12. First, it is clear that a is self-adjoint and
nonnegative. If a is not Fredholm, we find a sequence u; with the properties stated in the
lemma (for B = a), and it remains to note that the sequence

Uj = (ujv 0)
can be used to prove that C'is not Fredholm, since
(vj, Cvj) = (uy, auy).
O

Thus, the operators A*A and AA* already fall within the framework of the special case
considered in [SS96], so that we can state the ellipticity conditions for A in the following
form.

Definition 3.14. The morphism (3.14) is said to be elliptic if
1. the operator D), is elliptic;
2. the operators (A*A);; and (AA*);; are elliptic;
3. the noncommutative determinants A 4«4 and A4~ are elliptic.
The above reasoning implies the following theorem.
Theorem 3.15. If the morphism (3.14) is elliptic, then it is Fredholm.

Remark 3.16. We have stated the theorem on the Fredholm property for elements of the
algebra A, i.e., morphisms of order zero acting from the space L?*(X) @ L*(M) into itself.
Since the multiplication by pseudodifferential operators does not change the structure of
the operators in question, the ellipticity conditions and the Fredholm property theorem
for operators of nonzero order have the same form. This remark pertains to the index
theorem (see the next subsection) as well.

Remark 3.17. One can prove that the ellipticity conditions in Definition 3.14 are actually
redundant and it suffices to require the ellipticity of Dy, and the operators in (2) and (3)
for only one of the two operators A*A and AA*. The situation resembles that for Green
equations, where it suffices to require only the solvability of the equation for the symbol
of one of the regularizers, right or left.

44



3.3 The index theorem for elliptic morphisms

Here we state a theorem on the index of morphisms elliptic in the sense of Definition 3.8.

A: QM (/I;C
®, Dy

be an elliptic element of the algebra A in the sense of Definition 3.8. Then the index of
the operator A is given by the formula

Theorem 3.18. Let

ind A = ind Djy; + ind Ay, (3.24)

where A4 is the noncommutative determinant (3.20).

1 0\ 4 _ (Du o,
—®,D,f 1) L0 Ay

modulo compact operators. (This identity has actually been used in the proof of the
ellipticity conditions). Since the index of a product of operators is equal to the sum of
indices of the factors and the index of a triangular matrix is equal to the sum of indices
of its diagonal entries, we arrive at the desired formula (3.24). The proof is complete. [

Proof. One has

4 The Sobolev problem

Now we apply the results to Sobolev problems. First, we describe general Sobolev prob-
lems and clarify their relation to elliptic morphisms.

4.1 Sobolev problems and elliptic morphisms
Let X < M be an embedding of smooth compact manifolds with codimX = v,
D:H*(M,E)) — H*™(M, Es)

an elliptic pseudodifferential operators of order m acting in spaces of sections of bundles
E, and E5 over M, and
B:H*(M,E\) — H°(M, F)

a pseudodifferential operator of order b acting in spaces of sections of the bundles E; and
F over M. To these data, we assign the problem

{Duzf mod H* ™(M, X, E»), (4.1)

i*Bu=g¢€ H "X, F|yx)

45



for an unknown function v € H*(M, E). This problem will be called the Sobolev problem.
We assume that s > b+ v/2, so that the restriction i*Bu is well defined. In (4.1), by
H*™(M, X, E5) we denote the subspace of H*"™(X, Es) formed by distributions sup-
ported on X.

[t was shown in [Ste76] (see also [SS96]) that problem (4.1) is equivalent to the system

Du + v = f, (4.2)
*Bu =g '
for the unknown functions v € H*(M, E') and
ve H ™I(X THE,)). (4.3)

Here J!(E,) is the bundle of [th-order normal jets of the bundle E; on X; the ele-
ments (4.3) can be represented in an arbitrary special coordinate system (z,t) in the
form

U = {Va}jal<ts Va € He—mv/2el (X EQ‘X), a=(a,...,q,). (4.4)

Next, i, is the coboundary operator assigning to each element (4.3), (4.4) the sum

l

1 = Z Uaég?)

|a|=1
of the delta function on X and its derivatives of order < [ with the coefficients v,
- l=m-—s—v/2] if m—s—wv/2 isnotan integer,
ll=m—-s—v/2—1 if m—s—v/2 isan integer,
and s <m —v/2.

Remark 4.1. If s > m — v/2, then the space H°*~™(X, E5) contains no distributions
supported on X (a “removable singularity”), so that the equation

Du=f mod H* ™(X)

is equivalent to the equation
Du=f

on the entire manifold M for the elliptic operator D. There is no need to equip this
operator with any boundary conditions on the submanifold X, and so for s > m — v/2
the Sobolev problem is reduced to an elliptic operator on M.
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The operator in system (4.2) is given by a morphism of the special form

_ D Z.l>s<

so that one can apply the general theory of elliptic morphisms to A and find the ellipticity
conditions as well as compute the index of an elliptic Sobolev problem.

This will be done in the next subsection, and here we discuss the boundary conditions
in problem (4.2) in somewhat more detail. It is of special interest to find conditions under
which using purely differential boundary conditions is sufficient for stating a Sobolev
problem. The maximum possible order of the operator B is given by the formula

o - [s —v/2] if m—s—wv/2 isnotan integer,
T s —v/2-1 if 'm —s—v/2is an integer.

The number of boundary conditions in a well-posed Sobolev problem must coincide
with the number of the “coboundary conditions” (the dimension of the vector v in (4.2));
this follows from the very form of the ellipticity conditions for morphisms. Hence Sobolev
problems with purely differential boundary conditions are possible only for

b > L. (4.6)

The equality by,ax = [ is attained for s = m/2.
We divide the real line R 3 s into the half-open intervals

v % . .
|:§+],§+]+1>; jEZ. (47)

To each of these intervals there corresponds a certain type of Sobolev problems. If s
lies in the interval containing the point m/2, then every Sobolev problem with differen-
tial conditions is equivalent to the Sobolev—Dirichlet problem, in which the values of all
derivatives of order less than or equal to

lD = —v . m . .
5o — 1 if "> is an integer

3
<

is not an integer,

of the unknown function in transversal directions are specified on X.

As was already mentioned, for s > m — v/2 there are no nontrivial Sobolev problems
(a removable singularity).

For s lying to the left of the interval containing the point m/2, a well-posed Sobolev
problem must necessarily contain pseudodifferential boundary conditions.
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4.2 The Fredholm property

Let us write out the conditions under which the morphism (4.5) defines a continuous
mapping
.\ HO(M)  HO(M
(.f) ”*) M ) (4.8)
*B 0 H*(X) H™(X)

For our problem, we have
ag =0, a.={r"}, ay=B(z,p71). (4.9)

Here B(x,p,7') is a column consisting of symbols B; of orders b;, j =1,...,J.
In particular, sy and oy in (4.8) are columns® rather than numbers:

S9 = {Sg}mgl; O9 = {05}3:1,...,17

where J is the number of boundary conditions in problem (4.1), i.e., the height of the
column ay.

With regard to this, using the continuity theorems given earlier in this paper, we see
that the mapping (4.8) is a continuous operator provided that

v v
§+II£J§1SXJ b <s<m—l—§.

Let us now write out the ellipticity condition for the Sobolev problem (4.1) or, equiva-
lently, the morphism (4.2). The first ellipticity condition in Definition 3.8 is equivalent to
the ellipticity of the pseudodifferential operator D. Let us write out the second ellipticity
condition. One can readily verify that in this case it acquires the form of the ellipticity
of the pseudodifferential operator

AY 3] D' D.[a,] (4.10)

on the manifold X. In particular, this means that the operator (4.10) (which is a matriz
operator) must be represented by a square matriz. In other words, the number J of
boundary conditions must be equal to the number of coboundary conditions, that is, the
number of multiindices « such that |a| <.

Thus, the definition of ellipticity of an operator morphism results in the following
notion of ellipticity for the Sobolev problem (see [Ste76]).

Definition 4.2. The Sobolev problem (4.1) is said to be elliptic if
1. the operator D is an elliptic pseudodifferential operator on the manifold M,

2. the operator (4.10) is an elliptic pseudodifferential operator on the manifold X.

°In fact, one should work in the context of Douglis-Nirenberg systems [DN55].
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The following assertion is a straightforward consequence of the theorem on the ellip-
ticity conditions for morphisms.

Theorem 4.3. If the Sobolev problem (4.1) is elliptic, then it is Fredholm, i.e., has a

finite-dimensional kernel and o finite-dimensional cokernel.

4.3 The Sobolev problem and the adjoint problem

Let us now give an operator interpretation of the Sobolev problem. The problem

Du=f mod H*"™(M, X; E,),
*Bu=g
obviously defines an operator
S:H(M,E)) — (H*™(M,Ey))JH* ™M, X; Ey)) & Hs_b_"/Z(M, F), (4.11)

where b is the order of the operator B.

One can also construct the adjoint of this operator.

Indeed, if we take account of the fact that H*~™(M, X; Ey) is just the range of the
coboundary operator i;,, then the adjoint operator acts in the spaces

S* : Ker (iy,) @ H* P2 (M, F) — H™*(M, Ey),
and so the adjoint problem has the form

{Du + Bi,v=f

.
tju =0,

where 4 is the operator taking each function u to its normal jet of order [ on the boundary.
One can readily see that the almost inverse of the operator (4.11) has the form

Sl = (D*1(1 +in(—#BD Yi,) 'i*BDY), D Vi (- z’*BD*lil*)*l)- (4.12)

4.4 The index formula

Since the Sobolev problem can be reduced to an operator morphism, we obtain the fol-
lowing assertion by using the result of Theorem 3.18.

Theorem 4.4. Let
Du=f mod H* ™(M, X; E,),

*Bu=g
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be an elliptic Sobolev problem. Then the following index formula holds:
ind S =ind D + ind A,
where A is the pseudodifferential operator
A = —i*BD Yi,. (4.13)

Remark 4.5. One can readily see that in special coordinates the principal symbol of the
pseudodifferential operator (4.13) for p # 0 is represented by the matrix with entries

1 )V 7"Bj(z,0,p,7) dr

[o(A)]k; = (% D(x,0,p,7) '

Rv

k:(kla"'akV)a j:(jla JjV)7 |k|7|]|§l

Thus, we have reduced the computation of the index of the Sobolev problem to
the computation of the indices of two pseudodifferential operators on smooth compact
manifolds without boundary. The index formula for such operators is well known (e.g.,

see [AS63)).

Topological Aspects of Relative
Elliptic Theory

We have already mentioned that relative elliptic theory is an elliptic theory for pairs of
the form (M, X), where M is a smooth compact manifold and

X< M

is a closed submanifold. We have seen that relative elliptic theory involves deep relation-
ships between elliptic pseudodifferential operators on M and X. The aim of this section
is to study these relationships from the topological viewpoint. Namely, we describe a
number of functors, related to elliptic operators and their symbols, from the category
of manifolds with smooth embeddings as morphisms and establish Riemann-Roch type
theorems comparing these functors.

5 Preliminaries

Let IC be the category whose objects are smooth compact manifolds M without boundary
and each set Hom(Mj, M5) of morphisms consists of smooth embeddings M; < M. This
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category will be referred to as the category of (smooth) embeddings. If X, M € Ob(K)
and 7 : X — M is an embedding, then there is a well-defined mapping i, : TX — T'M,
which is also a proper embedding. (The preimage of any compact subset of TM under
the mapping i, is compact.) Using the isomorphisms

T°"M ~TM, T'X~TX

(depending on the choice of Riemannian metrics on M and X), we obtain a proper
embedding 7T*X — T*M, which induces a mapping in the K-functor with compact
supports, which will be denoted by

fiop : K(T*M) — K(T*X). (5.1)

The mapping (5.1) is independent of the choice of the Riemannian metrics, and we have
a contravariant functor from the category K into the category 2 of abelian groups; this
functor takes each manifold M to the K-group with compact supports K(T*M) of the
cotangent bundle 7*M and each embedding i : X — M to the morphism (5.1) of the
corresponding K -groups, which will naturally be called the topological pullback.

In the subsequent sections, we use analytic tools to construct mappings that take each
pseudodifferential operator on M to some pseudodifferential operator on the submanifold
X, find conditions under which elliptic operators are taken to elliptic operators, and
compare the corresponding functors with the K-functor.

6 The metric trace of an elliptic operator

Consider some morphism X < M in the category K. Suppose that the manifolds M and
X are equipped with Riemannian metrics py; and px such that :*py; = px. Then there

is a natural embedding
b T X — T M, (6.1)

which admits a twofold description, either as the composition of the mappings
T"°X ~TX 25 TM ~T*M

where the isomorphisms are induced by the Riemannian metric, or with the help of the

orthogonal expansion
T"M|, =N*X ®T"X,

where N*X is the conormal bundle of X in M and the orthogonality is understood in the
sense of the inner product induced in the fibers of 7*M by the Riemannian metric. One
can readily see that the embedding (6.1) is a bundle monomorphism

I T°X — T*M|
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so that its restriction to 75X can be interpreted as an embedding (denoted by the same
letter)
i 2 Tg X — Ty M

(or, passing to the quotients with respect to the action of the group R, in the fibers, as
an embedding i, : S*X — S*M of the cosphere bundles). Hence if

D:H(M,E) — H* ™(M,F)
is an mth-order pseudodifferential operator on M with principal symbol
o(D) : 1y E — 7y, F,
where 7y, : T*M — M 1is the natural projection, then
iro(D) : wx (Elx) — i (Flx) (6.2
is a well defined mth-order symbol on 7j;.X.

Definition 6.1. The pseudodifferential operator with principal symbol (6.2) is denoted
by i* (D) and is called the metric trace of the operator D.

Remark 6.2. Needless to say, the operator i’ (D) is uniquely determined only modulo
lower-order terms. The term “metric trace” is due to the fact that the embedding (6.1)
used in the definition of the restriction of the symbol depends on the metric.

Note that if D is an elliptic operator, i.e., the symbol of D is an isomorphism on 7 M,
then the same is true about the restriction of the symbol to T7X. It follows that the
metric trace of an elliptic operator s elliptic. Next, it is obvious that for an appropriate
choice of lower-order terms the metric trace commutes with direct sums of operators and
the metric trace of a continuous operator family is a continuous family. Since the set
of Riemannian metrics on a given manifold is convex (and hence arcwise connected), we
arrive at the following assertion.

Proposition 6.3. The metric trace is well defined as a homomorphism
ir. : Ell(M) — EI(X) (6.3)

of abelian groups of classes of stable homotopy equivalence of elliptic operators on M
and X. This homomorphism is independent of the choice of Riemannian metrics on M
and X and is functorial: of

i i
Y3 XS M
15 a chain of embeddings and ipyy =iy x ©txy, then

. o "
"Mym = "MXm®lXym
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Corollary 6.4. The pair Ell, = (Ell, %) is a contravariant functor from K to the
category A of abelian groups.

Now we can state the almost tautological Riemann—Roch theorem comparing the func-
tors K and Ell,,.

Theorem 6.5. Let X <i> M be an embedding of smooth compact manifolds without bound-
ary. Then the diagram

7

EI(M) —=- El(X)

Y| B (6.4)

K(I*M) — K(I"X),

Uop
where the vertical arrows are given by the difference construction of the principal symbol
of an operator, commutes.

Proof. This follows from the commutative diagram

Smbl(T*M) —— Smbl(T*X) (6.5)

where the upper square commutes by the construction of 7% and the lower square com-
mutes since the difference construction is natural (see [Pal65]). O

7 The pullback of an elliptic operator

The metric trace is not the unique way of assigning a pseudodifferential operator on a
submanifold to a pseudodifferential operator on a manifold. In this section, we describe
the pullback related to Sobolev problems.

7.1 The pullback of a pseudodifferential operator

We have seen that an important role in the ellipticity condition and the index formula for
elliptic morphisms is played by the noncommutative determinant, which is a pseudodiffer-
ential operator on X induced by the main operator D,; together with the boundary and
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coboundary conditions. The simplest version of the noncommutative determinant arises
if one considers the elliptic morphism

a- (%) (7.1

which corresponds to the Sobolev—Dirichlet problem of order 0 for the operator D. The
noncommutative determinant is equal to

A= —i, D7, (7.2)

where D~ is the almost inverse of D. Recall that the ellipticity condition for A says that
both D and the noncommutative determinant (7.2) must be elliptic. If this condition
holds, then A is Fredholm and

ind A =ind D + ind A. (7.3)

Since the boundary and coboundary conditions in the Sobolev—Dirichlet problem are
standard (i.e., depend only on the embedding ¢), it follows that the correspondence D —
A commutes with direct sums of operators. Using this correspondence as a model, we
define a homomorphism®

it : PSD._, (M) — PSD(X) (7.4)

by setting ’
i,(D)=1i"0oD oi,. (7.5)

Here PSD(X) is the abelian semigroup (with respect to direct sum) of pseudodifferential
operators on X and PSD__, C PSD(M) is the subsemigroup of operators of order < —v
(v = codim X). As follows from the results of the first part, the homomorphism (7.4)-
(7.5) is well defined, and moreover, the principal symbol of the operator (7.5) can be
obtained from the principal symbol of D by integrating over the fibers of the conormal
bundle. In special local coordinates, this formula reads

o (i(D)) (z,p) = <%>V/U(D)(x, 0,p, 7) dr. (7.6)

Rv

7.2 The regularized pullback

The pullback thus defined has two disadvantages from the viewpoint of our goals. First,
it is well defined only for operators of sufficiently large negative order (depending on the
codimension of the subspace). Second, we shall see below that the operator (7.5) need
not be elliptic if D is elliptic. It turns out that both disadvantages can be eliminated

5Which differs from the noncommutative determinant in the Sobolev-Dirichlet problem only in sign
and the absence of the exponent —! on D.
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by the following regularization. Let Ay, and Ay be the Laplace operators on M and X,
respectively, with respect to the given Riemannian metrics. We set

io(D)(k) = (1 — Ax)" % ((1 = Ay) *D). keR (7.7)

a

(If D acts in sections of vector bundles, then one should take Laplacians with coefficients
in these bundles.) The operator (7.7) is well defined for sufficiently large k, namely, for

v+ord D

5 ;
where ord D is the order of the operator D. The values of k satisfying this inequality will
be referred to as admissible.

Remark 7.1. We have included the factor (1—Ax)¥~*/2 in the definition of regularization
so as to normalize orders: with this definition, the order of the pullback of an operator
coincides with the order of the operator itself. This is not necessary in principle, but
useful, as we shall see in Remark 8.6.

k > (7.8)

Theorem 7.2. Let D be an elliptic operator. Then for all sufficiently large k the operator
it,(D)(k) defined in (7.7) is also elliptic, and moreover, its equivalence class in EI(X) is
independent of k and is uniquely determined by the equivalence class of D in Ell(M).

Proof. Without loss of generality, we can assume (including sufficiently many factors
(1+A)!in D) that D itself has a sufficiently large negative order, so that its symbol is
bounded and integrable at infinity. The formula for the principal symbol of the operator
of the operator i}, (D) (k) on the sphere [p| = 1 (where |p| is the natural norm on the fibers
of T*X) in special coordinates has the form

o (i (D)(k)) = ( ! )V/“(D)("””’O’p”) ar. (7.9)

21 (1+ 72)k

(Here 72 =7 + - -+ 72.) We set

RU

Then the sequence (cx, (1 + 72)%)~1 converges to the delta function as k — oo, and so

1/ 11"
oD 00 = (5 ) o(D)w0.0.0) 20 (7.11)
(The uniform convergence with respect to (z,p) € S*X can readily be established.) This
proves the desired assertion. O

Definition 7.3. By i, (D) € El(X) we denote the class defined in the situation of
Theorem 7.2 by the operator i, (D) (k) for sufficiently large k.

Remark 7.4. One can show that i\ (D)(z) is a meromorphic operator-valued function
of z. It is of interest to study the residues of this function, but we do not touch this topic
in the present paper.
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7.3 The Riemann—Roch theorem for the regularized pullback

Now we can establish a Riemann-Roch theorem comparing the functors K and Ell,, =
(E117 ’ ieg)‘

Theorem 7.5. Let X <i> M be an embedding of smooth compact manifolds without bound-
ary. Then the diagram

EI(M) —5 El(X)

Y| B (7.12)

K(T*M) — K(T*X),
top
where the vertical arrows are given by the difference construction of the principal symbol
of an operator, commutes.

Proof. It follows from formula (7.11) that 7, = i}. It remains to apply Theorem 6.5. [

8 A finitely regularized pullback

The definition of the regularized pullback has the following peculiarity: one does not
simply choose a k such that the integral in the definition of the pullback converges (an
admissible k); instead, one must take an arbitrary sufficiently large k. It is only under
that condition that Theorem 7.2 guarantees that a given elliptic operator D produces
an elliptic operator and Theorem 7.5 compares the two functors. The following natural
question arises: is it possible (say, for operators of given order) to use some given finite
regularization, i.e., choose an admissible k£ once and for all? Then we would have the
additional advantage that the operation i’reg would be defined for individual operators
rather than only for their equivalence classes in EIl(M).

The following example shows that the answer is “no.” Later on in this paper, we shall
indicate operator classes for which one can successfully use a finite regularization.

8.1 A counterexample

In the forthcoming argument, we analyze the behavior of symbols over a given point
x € X. One can readily obtain specific counterexamples by considering, say, operators
with constant coefficients on the tori 7" — T™.

Thus, let R™ = R" & R” be the m-dimensional space with coordinates (p,7), p € R",
7 € R”. We shall study the pullback (7.9) of a symbol a(p, ) of arbitrary given order r
for a given admissible k. Without loss of generality, we can assume that k=0 (including
the corresponding nonzero factor in a) and r < —v. For simplicity, we work with scalar
symbols, which suffices for constructing a counterexample.
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Proposition 8.1. There exists an elliptic symbol a(p,T) of order r such that i¥ (a) = 1
and the pullback i,(a) is homotopic in the class of elliptic symbols to an arbitrarily chosen
elliptic symbol b(p) on the sphere S 1 C R".

Remark 8.2. Prior to proving the proposition, note that it also implies the existence
of an elliptic symbol whose pullback under a finite regularization is not elliptic. Indeed,
take a symbol b nonhomotopic to unity and for the corresponding symbol a consider the
family (1 + p? + 7%)"%a(p, 7). For a = 0, the pullback of this symbol is homotopic to b
in the class of elliptic symbols, and as @ — oo, the pullback becomes homotopic to the
metric trace, i.e., to unity. Thus, somewhere in between the pullback is necessarily not
elliptic.

However, the existence of an elliptic symbol with nonelliptic pullback can be shown
much simpler, by using a second-order differential operator as an example. Namely, let
D be the square of the “distorted” Cauchy—Riemann operator:

where A is a nonzero real constant to be chosen later. Then o(D) = —(p + iA7)?, and on
the sphere {|p| =1}, i.e., for p = £1, we have

oo~ () [ i 2 | i [ e

—o0 —0o0 —0o0
1
= ——[ep — (cho11 — cr1)N?].
27r[ k1 — (Ch—1,1 — Cr1) ]
(The term of first order in 7 disappears after the integration, since the integrand is odd.)
For given k, we obtain a pullback with zero principal symbol by setting

Ck1

A\ =

Ck—1,1 — Ck1.
Proof of the proposition. We represent the sphere
Smfl — {p2 _+_7_2 — 1}

as the union
smt= |J D,

wesn—1
of the subsets
D, ={(p,7) € 5™ " | p=l|plw},

homeomorphic to the disc {|7| < 1}. All these subsets intersect in the common sphere

S*=t=0D, ={p=0,|7| = 1}.
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The formula for the symbol of the pullback on the sphere S"~! acquires the form

i (a)(w) = / a(p,)ulr) dr, 8.1)

D,

where p(7) is a continuous function in the disk {|7| < 1} and is strictly positive outside
the boundary of the disk. (This function, which depends on the order r of the symbol a,
is easy to compute, but the specific expression will not be needed here.)

Let £ > 0 be a small positive number. We set

DW,E:Dwﬂ{sg |7'| < 1—5},
Dj,g =D, N {71 > 0},
D,.=D,.N {m < 0}.

We define a continuous symbol a(p,7) on the sphere S™ ! by the following conditions,
which determine its behavior on each of the sets D,:

1. a is elliptic (i.e., everywhere nonzero on the sphere) and nowhere exceeds 1 in
modulus;

2. a=1ondD,;

3. arga = argb(w) in D _ for w; > —¢/2;
4. q = etarsbw) iy D:;,E for wy > 0;

5. |a| <ein DJ_ for w; < —¢/2;

6. arga = argb(w) in D _ for wy < g/2;
7. a = et iy D, . for w; < 0;

8. |a| <ein D for w; >¢/2.

The existence of a symbol satisfying these conditions is clear, since the sets w; > —¢, w; <
g, etc. are contractible. Condition (2) guarantees that i’ (a) = 1. Next, for sufficiently
small € > 0 the main contribution to the integral (8.1) is from the domains D _ for w; >
—¢ and D, for wy < e. It follows that the integral is nonzero and argi,a(w) — arg b(w)
as ¢ — 0. Hence, for sufficiently small £ > 0 the symbols i,a(w) and b(w) are homotopic
in the class of elliptic symbols, as desired. O
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8.2 The pullback for linear principal symbols

However, there are two cases in which the pullback of an elliptic operator is elliptic even
for a finite regularization (7.7) (i.e., for any admissible k). These cases are considered in
this subsection and the next subsection.

Definition 8.3. Let M be a Riemannian manifold. We say that D is a pseudodifferential
operators with linear principal symbol on M if for each point y € M the restriction of the
principal symbol o(D) to the unit sphere S;M C T;M coincides with the restriction to
the same sphere of some homogeneous linear function on 7,/ M.

Remark 8.4. This notion of an operator with linear principal symbol depends on the
choice of unit spheres, i.e., of the Riemannian metric, with the exception of the operators
whose principal symbol is linear on the entire 7,7 M (say, first-order differential operators).
The reason for introducing this class of operators is as follows: this class, in contrast with
the class of first-order differential operators, is preserved by pullbacks regardless of the
normalization. (However, see Remark 8.6 below.) Differential operators are undoubtedly
of main interest in specific examples.

Theorem 8.5. Let X < M be an embedding of Riemannian manifolds, and let D be
an elliptic pseudodifferential operator with linear principal symbol on M. Then for each
admissible k the pullback i (D) (k) is an elliptic pseudodifferential operator with linear
principal symbol on X homotopic in the class of elliptic operators to the metric trace

i* (D) (which is also an elliptic pseudodifferential operator with linear principal symbol

on X).
Proof. In special coordinates, the principal symbol (D) has the form

o(D) = (A(z,t)p + B(z,t)7) (Ip]” + 7°)%, (8.2)
where o = £ (ord D — 1),

Az, t) = (Ay (1), .., A2, 1), Bla,t) = (Bi(@, 1), ..., B,(z,1)

are some sets of matrices, Ap = ) A;p;, and similarly for Br. On the sphere {|p| = 1},
the principal symbols of the metric trace and the regularized pullback of D (for admissible
values of the regularization parameter k) have the form

o(it,(D)) = if,0(D) = A(z,0)p, (8.3)

(D)) = (57 ) bl 0 (5.4)

(Here, just as in the example in Remark 8.2, the term with B7 disappears, since the
integrand is odd.) The expressions (8.3) and (8.4) coincide up to a nonzero factor; the
fact that the metric trace is elliptic has already been discussed. The assertion of the
theorem now follows readily. O
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Remark 8.6. One can readily see that with our normalizations (see Remark 7.1) the
pullback of a first-order differential operator is (up to lower-order terms) again a first-
order differential operator.

By abuse of notation, we denote the pullback of an elliptic operator D with linear
principal symbol by i (D), omitting the regularization parameter k. This is justified,
since by the theorem the pullback defines the same element in Ell(X) for any admissible
k. The above theorem implies the following important assertion, which can be treated as
the Riemann—Roch theorem for operators with linear principal symbol.

Corollary 8.7. If D is an elliptic operator with linear principal symbol, then
[io(D)] = iipo (D) € K(I"X), (8.5)

where the square brackets stand for the difference construction of the principal symbol.

8.3 Pullbacks and exterior tensor products

Another case in which the ellipticity of the pullback is guaranteed is the case in which
the elliptic operator in question has the structure of an exterior tensor product in a
neighborhood of X. The exterior tensor product, which takes two elliptic operators A,
and A, on two manifolds to an elliptic operator A;# A, on the product of these manifolds
(or on the bundle, where one of the manifolds is the base and the other is the fiber)
plays a fundamental role in elliptic theory. We shall describe this construction in the

situation of an embedding X <%y M, which is of interest to us. We identify a tubular
neighborhood U of X with a neighborhood of the zero section in the normal bundle N.X
via the exponential mapping.
Let
D, COO(X, El) — COO(X, Fl) (86)

be an elliptic differential” operator of some order m on X. Next, let
Dy : C*°(N, X, Ey,;) — C*(N, X, Fy,) (8.7)

be an elliptic differential operator of the same order m in the fiber N, smoothly depending
on the parameter x € X and defined at least in U. Here Ey, and F;, are the restrictions
to N, of some vector bundles Ey and F, over U. We assume that all bundles in question
are Hermitian. The lifts of £; and F} to U via the natural projection of the normal bundle
on the base X will be denoted by the same letters.

"We work only with differential operators to avoid considering nonsmooth symbols. The results remain
valid for pseudodifferential operators if for operators with nonsmooth symbols one uses definitions in the
spirit of [H6r83b].
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Definition 8.8. The ezterior tensor product of the operator D, by the operator family
Dy (or, for brevity, of the operators D; and Ds) is the differential operator

Di#D, : C*(U,E, @ E;y ® Fi @ Fy) — C(U,F1 ® E» © B, ® F)) (8.8)

in U with principal symbol

o(D1) ® Lo, lpep, @ 0(Ds)* ) (8.9)

o(Di#Dy) = <1 @o(Ds) ~0(D1)" ® Lyer,

where 7 : Tf M — M is the natural projection. (In formula (8.9), the symbol (D) is
lifted from 7*X to T*(NX) with the help of the projection

T*"(NX)~T(NX) —TX ~T"X,
where the isomorphisms are induced by the Hermitian metric.)

Theorem 8.9. Let D be an mth-order elliptic operator on M coinciding on X with the
exterior tensor product (8.8):

D‘X - (Dl#DQ)‘X'
Then for any admissible k the pullback of D on X s elliptic, and

ir (D) (k) =i, (D) € Ell(X). (8.10)

Thus, the pullback is independent of the regularization parameter £ up to homotopy
equivalence, and so it will be denoted by !, (D) in what follows.

The following theorem can be viewed as a “Riemann—Roch theorem for exterior tensor
products.”

Theorem 8.10. Under the assumptions of the preceding theorem, the formula
[io(D)] = [Di]([Eax] = [Fax]) € K(T*X) (8.11)

holds, where [A] is the difference construction of the principal symbol of an operator A,
[E] is the element generated by a bundle E in the K-group, and Esx and Fyx are the
restrictions of the bundles Ey and Fy to X.

Proof of theorems 8.9 and 8.10. Let us compute the symbols of the metric trace and the
pullback of D on 5*X. We have

-+ _ (o(D1)(p) @ Laepyy 0
O’(Zm(Dl#DQ)) - < 0 —U(DT)(])) Q ].7r*F2X . (812)
On the other hand,
1 (ko (D1)(p) @ Laep,y Ly @V
O'(Za(Dl#DZ))(k) - < ]-7r*E1X ® V* _CkVO_(DT)(p) ® 17r*F2X y (813)
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where . / o(Dy)(r) dr.

(14 72)k

The symbol (8.13) is obviously elliptic (its matrix is the exterior tensor product of the
elliptic symbol ¢,0(Dy)(p) by the matrix V') and homotopic in the class of elliptic symbols
to the matrix (8.12) via the homotopy

<[(1 — D)k + 1o (D1)(p) @ Ly (1= D)1ger @ v(K) )
(1 =)l ©T(K) =1 =)y + o (DY) (P) © Lawpy )7

which proves the assertion of the first theorem. To prove the second theorem, one should
explicitly compute the element corresponding to the symbol (8.12) in the K-group with
regard to the fact that [D}] = —[D;]. The proof is complete. O

9 The pullback of geometric operators

In this section, we compute the pullback for the Hirzebruch, Euler, Todd (Cauchy—
Riemann), and Dirac operators. All these operators are linear and can be represented
as exterior tensor products in neighborhoods of submanifolds; thus, they are covered by
the assumptions of both Subsections 8.2 and 8.3. Hence their pullbacks are elliptic for
any admissible value of the regularization parameter, and the corresponding element of
the K-group can be computed according to Theorem 8.10. Geometric operators are a
special case of group operators (operators associated with the G-structure of a manifold).
We briefly recall this well-known construction mainly to introduce the notation. Details
can be found, say, in [Pal65].

9.1 Group operators

Let G' be a compact Lie group and M a compact manifold without boundary.

Definition 9.1. One says that M is equipped with a G-structure if an orientation-
preserving isomorphism

PxV~TM (9.1)
G

is given, where V' is an oriented real G-module of dimension n = dim M and P — M
is a principal G-bundle. (In other words, T'M is equipped with the structure of a vector
bundle with structure group G associated with the principal bundle P.)

Let M be a manifold with G-structure (9.1), and let E and F be finite-dimension
complex G-modules. Next, let

o:S(V*) — Hom(FE, F) (9.2)
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be a G-equivariant (c(g€) = go(£)g™") mapping such that o(£) is invertible for all £ €
S(V*). (Here S(V*) is the unit sphere in V*.) The mapping (9.2) determines an elliptic
symbol

op:m"E — 1*F (9.3)

on the cosphere bundle S*M, where
E=PxE, F=PxF,
G G

and 7 : S*M — M is the natural projection.

Definition 9.2. The operator D on M with symbol o(D) = opis called the group operator
(G-operator) on M associated with the principal bundle P and the mapping o. The
method used to construct D from these data is referred to as the universal construction.

We also consider group operators with coefficients in an arbitrary vector bundle H.
The symbol of such an operator is obtained as the tensor product of the symbol of a group
operator by the identity automorphism 1.

9.2 The Euler and Hirzebruch operators

Let V' be a real vector space of dimension dim V' = n equipped with an inner product. We
treat V' as an oriented SO(n)-module. (To this end, it suffices to choose an orthonormal
basis €1,...,&, in V.) By

A(V)=PN(V)ecC
j=0
we denote the complexified direct sum of exterior powers of V. This is also an SO(n)-

module with respect to the action defined on decomposable vectors by the natural formula

G A AF)E g(f) A Ag(fs), g€ SOm), feV.

(The action is extended to the entire A; (V') by linearity.)
We define an SO(n)-equivariant mapping

o:S(V*) — Hom(As(V), A:(V)) (9.4)

by the formula
0 (&) = &N +ig, (9.5)

where i¢ is the operator of interior multiplication by a vector &, i.e., the substitution of
¢ as the first argument into a form (e.g., see [Stb64]). (We have used the identification
V¥~ V)
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An oriented Riemannian manifold M of dimension n can always be equipped with an
SO(n)-structure. (The structure group of the tangent bundle is reduced to SO(n).) The
universal construction applied to the map (9.4)—(9.5) gives the elliptic operator

d+ 6 : D(AL(T*M)) — D(AL(T*M)), (9.6)
where .
AL(T*M) =P NT*M @: C (9.7)

is the complexified bundle of exterior forms of all degrees on M and ¢ is the adjoint of
the exterior differentiation operator with respect to the Riemannian metric. The Euler
and Hirzebruch operators are obtained from the operator (9.6) by restriction to some

subspaces (or, equivalently, by restriction of the symbol (9.4)—(9.5) to some submodules
of A¢(V)).

9.2.1 The Hirzebruch operator

Suppose that the module V' (and, accordingly, the manifold M) is even-dimensional:
n =2N. Then A; (V) has the involution

a =P DN ALV — AL(V), (9.8)

which commutes with the group action. Here x is the Hodge operator given by the formula
(e.g., see [Rhab5])

*(gﬂl ASERNA Sﬁk) = (_l)g(ﬂ)gﬂkﬂ ASERNA EBan (99)

where 8 = {f1,...,fan} is a permutation of the numbers 1,... 2N, o(f3) is the parity of
B, and i/U-D+N stands for the operator acting by multiplication by the number ¢/0-1D+¥
(here i is the imaginary unit) on the component AZ(V). Thus, we have the direct sum of
modules

Ac(V)=AL (V) A (V), (9.10)

where the AL (V') are the eigenspaces of a corresponding to the eigenvalues +1.
The homomorphism (9.4) anticommutes with « for any &:

o(§)a+aoc(§) = 0.

Hence the restriction
oy = U‘AJr(V) AL(V) — A_(V) (9.11)

is well defined. An application of the universal construction to oy gives the operator
Hy=d+0:T(A(T"M)) — T(A_(T*M)), (9.12)
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which is called the Hirzebruch operator on M. Here
AL(T*M) C AL(T*M)

are the bundles on M associated with the modules Ay (V). The principal symbol of the
Hirzebruch operator will be denoted by o(# ). The Hirzebruch operator with coefficients
in a bundle E over M will be denoted by H s ® 1g; its principal symbol is o(H) ® 1 g.

Now let X < M be an oriented Riemannian submanifold of even dimension m = 21.
On X we have a direct sum decomposition of the cotangent bundle:

TM|y =TX ® NX. (9.13)

One has (e.g., see [Pal65])
AL(TM|x) = (AL(TX)®@ AL (NX)) & (A_(TX) @ A_(NX)), (9.14)
A(TMyx) = (A(TX) @ A4 (NX)) @ (AL (TX) ® A_(NX)). (9.15)

Moreover, a straightforward computation shows that, according to (9.14)—(9.15), the
Hirzebruch operator can be represented on X as the exterior tensor product

,HM‘X = (HX#HNX)‘X (9.16)
of the Hirzebruch operator on X by the family

HNX = {HNxX}IEX

of Hirzebruch operators in the fibers of the normal bundle NX. By applying Theo-
rem 8.10, we arrive at the following assertion.

Theorem 9.3. The pullback on X of the Hirzebruch operator on M satisfies the following
relation in K(T*X):

[io(Har)] = [Hx]([A+ (NX)] = [A-(NX)]) € K(T"X). (9-17)
Remark 9.4. 1. By Theorem 8.9, the same relation naturally holds for the metric trace

of the Hirzebruch operator.
2. Let E be an arbitrary vector bundle over M. Since

(Hx#Mnx) @ 1p = Hx#(Hyx ® 15),
where the second factor in the exterior tensor product is the family given by the formula

def

Hyx @ 1p = {Hy,x ® 1E|wa}xeX;

we arrive at the following formula for the pullback of the Hirzebruch operator with coef-
ficients in E:

iL(Har © 1)) = [Hx] (A+(NX) ® B] - [A_(NX) ® E]) € K(T*X).  (9.18)
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9.2.2 The Euler operator

Now we do not assume that the module V' and the manifold M are even-dimensional
(even though the results are actually of interest only for the even-dimensional case) and
replace (9.10) by the decomposition

Ae(V) = Noaa(V) @ Aeven(V), (9.19)

where Aoqq(V) and Aeven (V) are the subspaces of complex-valued forms of odd and even
degrees, respectively.
The restriction of the symbol (9.4)—(9.5) to Aeven (V') acts in the spaces

: Aeven(v) — Aodd(v)a (920)

g =0
€ Aeven(V)

and the universal construction takes o¢ to the operator

Ent = d+ 0 : T(Aeven(T*M)) — D'(Agqa(T*M)), (9.21)

which is called the Fuler operator on M. Its principal symbol will be denoted by o ().
The Euler operator with coefficients in a vector bundle E over M will be denoted by
En ® 1g; its principal symbol is 0(Epr) @ 1r+p.

Now let X < M be an oriented Riemannian manifold of dimension m. The decom-
position (9.13) induces the decompositions

Acven(TM]x) = (Meyen(TX) @ Aeven (VX)) @ (Aoaa(TX) ® Aoaa(NX)),  (9.22)
Moad(TMy) = (Aoaa(TX) ® Aeven (VX)) & (Aeyen(TX) @ Apaa(NX)).  (9.23)

A straightforward computation shows that, in accordance with (9.22)-(9.23), the Euler
operator can be represented on X by the exterior tensor product

Eu|y = (Ex#Enx)|y (9.24)
of the Euler operator on X by the family

Enx = {En,x fuex
of Euler operators in the fibers of the normal bundle NX. Applying Theorem 8.10, we
obtain the following assertion.

Theorem 9.5. The pullback on X of the Euler operator on M satisfies the following
relation in the K-group K(T*X):
[ia(E30)] = [Ex] ([Aeven (NX)] = [Aoaa(NX)]) € K (T X). (9.25)
Remark 9.6. 1. By Theorem 8.9, the same relation holds for the metric trace of the
Euler operator.
2. Let E be an arbitrary vector bundle over M. Arguing as for the Hirzebruch

operator, we obtain the following formula for the pullback of the Euler operator with
coefficients in E:

[it,(Enr @ 15)] = [Ex]([Aeven (N X) ® E] — [Aoaa(NX) ® E]) € K(T*X). (9.26)
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9.3 The Todd and Dirac operators

Quite similar considerations give completely analogous results for the pullbacks of the
Todd and Dirac operators. Hence, we give only statements of the corresponding theorems.

9.3.1 The Todd (Cauchy—Riemann) operator

Let M be a complex-analytic manifold and X < M a complex-analytic submanifold.
Then the normal bundle NX is a complex vector bundle, and we write

Aodd(NX) = @ Aj(NX)a Aeven(NX) = @ A](NX)

j=1 mod 2 j=0 mod 2
(Complexification is not needed.)

Theorem 9.7. Let Ty and Tx be the Todd operators (e.g., see [Pal65]) on M and X,
respectively, and let E' be an arbitrary complex vector bundle over M. Then the following
relation holds in the group K(T*X):

[ia(Tar © 1)) = [Tx] ([Aeven (N X) ® E] = [Aoaa(NX) ® E]) € K(T"X). (9.27)

9.3.2 The Dirac operator

Let M be an oriented Riemannian manifold of dimension 2N with a spinor structure,
and let X be an oriented Riemannian submanifold of dimension 2n, also equipped with a
spinor structure, which is compatible with that on M.

Theorem 9.8. Let Py and Px be the Dirac operators on M and X, respectively, and
let E be an arbitrary complex vector bundle over M. Then the following relation holds in
the group K(T*X):

[ia(Pu @ 1)) = [Px]([A+(NX) ® E] - [A_(NX) ® E]) € K(I"X), (9.28)

where the AL(V') are the half-spin representations of the group Spin(2(N — n)) corre-
sponding to a Spin(2(N — n))-module V.

Appendix. Fourier Integral
Operators

Here we recall some well-known material from the theory of Fourier integral operators and
simultaneously introduce the notation used in the main body of the article. For details,
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the reader should refer himself to Hérmander’s book [Hor85] and also to [MSS90]. Our
notation is close to that used in the latter book. We do not give any precise statements
of theorems from these sources, just because the Fourier integral operators emerging in
the theory of Sobolev problems are a special case not covered by the general theorems.
Accordingly, the material given here serves only as a motivation for our reasoning. Precise
statements of theorems for our special case are given at appropriate places in the main
text.

A.1 Homogeneous Lagrangian manifolds

Let X and Y be C'*° manifolds of dimensions m = dim X and n = dimY". The cotangent
bundles T*X and T*Y bear the canonical 2-forms (symplectic forms) w% and w?, whose
expressions in canonical local coordinates (x, p) and (y, ¢) on T*X and T*Y, respectively,
are

wg(:dej/\d:rjEdp/\da:, w%:quj/\dijdq/\dy.
7=1 7j=1
The group R, of positive numbers naturally acts on 7*X (and 77*Y") by multiplication in

the fibers. Let us equip the product 7*X x T*Y = T*(X x Y') with the canonical form
equal to the difference of the canonical forms on the factors:

2 def o

A submanifold i
L—T(XxY)
is called a homogeneous Lagrangian manifold if the following conditions hold:
Lagrangian property: i*w%, = 0;
maximum dimension: dim L = m + n;
homogeneity: L is R -invariant, and
LCcT;( X xY)=T"(X xY)\ {0},
where {0} is the zero section of 7%(X x Y).

The following additional condition is often imposed on a homogeneous Lagrangian
manifold L.

Condition A.1. The manifold L is closed in 7§ (X x Y') and is contained in Ty X x T§Y.

In particular, it is used in general boundedness and composition theorems for Fourier
integral operators (see below). However, the Lagrangian manifolds corresponding to most
of the operators considered in this paper (including boundary, coboundary, and Green
operators) do not satisfy this condition. That is why they need special treatment and
display a variety of new effects.
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A.2 Local description of homogeneous Lagrangian manifolds

Let L be a homogeneous Lagrangian manifold in 7*(X X Y'). By the lemma on local
coordinates [Arn89], the manifold L can be covered by R, -invariant coordinate charts
such that the coordinates in each of the charts are of the form (xr, p;, ys, ¢7), where (x,p)
and (y, q) are canonical local coordinates on 7*X and T*Y, respectively, I C {1,...,m},
Jc{l,...,n}, I ={1,....om}\ I, J ={1,....m}\ J, x; = {x;}er, etc. These
coordinates are referred to as canonical coordinates, and the corresponding canonical
chart on L will be denoted by Ur;. Thus, we have the coordinate map

Y1y = (x1, 07, Y0, 47) : Ury — Vi C R,

In the chart Uy, the manifold L is specified by a uniquely determined generating function
(action) Sis(x1, p1, Y, q7) defined in V7 and first-order homogeneous® in (py, ¢7) such that
the equations of L read

0S1y
= = = - = . Al
pr ox;’ o opy 4 oy’ Yi g7 (A1)

The signs in these equations are due to the fact that w% and w? occur with opposite
g X Y

signs in wky-.)

A.3 Composition of homogeneous Lagrangian manifolds

Let Ly € T*My x T*Ms and Ly € T* My x T*Mj be homogeneous Lagrangian manifolds.
We can view these manifolds as relations in T* My x T* My and T* My x T M3, respectively
(that is why they are called “homogeneous canonical relations” in Hérmander’s writings),
and then we can define the composition L o Ly as the product of these relations:

Lio Ly {(u,v) € T"M, x T*My | 3w € T*My : (w,w) € Ly, (w,v) € Ly}, (A.2)

If the composition (A.2) is clean (i.e., Ly X Ly intersects T*M; X Ag«p, x T*Ms, where
Aq«py, is the diagonal in T* My x T* My, in a manifold L with tangent plane everywhere
equal to the intersection of tangent planes of intersecting manifolds), proper (i.e., the
projection L — T*(My x Ms) is proper) and connected (i.e., the set L, of points
of L projected to the same point (u,v) € Ly X Lo is connected), then the composition
L = Ly o Ly is also a homogeneous Lagrangian manifold. The dimension e = dim L, ) of
the fiber of the projection L — L is called the ezcess of the clean intersection.

8Since L is homogeneous, it follows that I or J is not empty.
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A.4 Definition of Fourier integral operators

Let L be a homogeneous Lagrangian manifold in 7*(X x Y). Suppose that L is equipped
with a quantized measure p (e.g., see [MSS90] and references therein). Then Maslov’s
canonical operator K = K, that takes asymptotically homogeneous functions on L to
distributions on X x Y is well defined (e.g., see [NOSS81] and appendix [MSS90]; for the
original (small parameter) canonical operator, see [Mas72]).

A Fourier integral operator

d: C™(Y) — D'(X)

associated with L in 7%(X x Y') can be defined as follows. One takes a smooth asymptot-
ically homogeneous amplitude function ¢ on L and takes ® to be the operator with the
(distributional) Schwartz kernel Ca. The local description can be obtained in the follow-
ing manner. Let us cover L with canonical charts. Consider some canonical chart Uy;.
Let a(zs, pr, ys, ¢7) be a smooth function supported in V7, and satisfying the estimates

OB (2, pr, Y, 47) 18]
LIS D AT < Copys(1+ Ipg] + gz ) 171,
837[8]9 ayJan (A.3)

ol + 18]+ [v[ + 6] = 0,1,2,...

for some r € R. (In practice, one mostly deals with functions a(z,py, yy, ¢7) asymp-
totically homogeneous in (p7,¢7).) The local Fourier integral operator with amplitude
a associated with the Lagrangian manifold L in the chart Uy, is defined as the integral
operator ®(L, a) with Schwartz kernel

K(z,y) = ?p,am,quayj{elsu (T1PYs97) a(rr, pr, v, qJ)}

(m—n)/2 (A.4)
// Lswoteronusap sl e, vy, 07) dpgdag,

i
—(2m)(mAn)/2

where @ = a\/pu7 and py is the density of the measure p in the coordinates of the chart
Ury. (Here F is the Fourier transform and F the inverse Fourier transform. Products like
xrpr are defined as xrpr = Zjel z;p;.) Thus, ®(L,a) acts as follows:

B(L.wv]@) = [ Ko y)oty) dy (A5)

Global Fourier integral operators can be defined as sums of local Fourier integral operators
in the charts, with usual precautions taken ensuring that all sums be locally finite etc.
(This is of course not needed if L/R; is compact and hence can be covered by finitely
many canonical charts.) The stationary phase method permits one to compare Fourier
integral operators associated with charts that have nonempty intersections, and for the
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case of asymptotically homogeneous amplitudes one can define the notion of principal
symbol of a Fourier integral operator, which is globally well-defined as a function on L. If
a is asymptotically homogeneous, then the leading part of a is called the principal symbol
of the Fourier integral operator. However, we do not dwell on these details, since in the
main text we only deal with local expressions like (A.4).

A.5 Pseudodifferential operators as Fourier integral operators

An important example of Fourier integral operators occurs if one takes the diagonal
Lx ={(z,p,x,p) ‘ (x,p) e T4 X} CTH(X x X) (A.6)

as the homogeneous Lagrangian manifold. The canonical coordinates on Ly can always
be taken in the form (z,p’) (where primes are used on the variables pertaining to the
second factor 7*X in the product 7*X x T*X), the generating function is S = p'z, and

one has L\
[B(Ly,a)y] () = (g) // " a(x, pl) dp'de.

We see that Eﬁ(Lx, a) is just the pseudodifferential operator with symbol a(x, p).

Fourier integral operators possess a variety of properties, the main of which are bound-
edness properties, composition formulas, and the passage to the L2-adjoint operator. Let
us recall these properties.

A.6 Boundedness theorems

Boundedness theorems [Hor85] claim that Fourier integral operators associated with a
Lagrangian manifold

LS T (X xY)
extend to bounded operators between Sobolev spaces H*(Y) and H'(X) provided that
L satisfies condition A.1; the lower and upper bounds on the order s — [ depend on the

order of the amplitude as well as on the corank of the lift of the canonical form w3 (or,
which is the same, w?) to L.

A.7 Composition theorems

Composition theorems for Fourier integral operators proved in [Hor85] establish that
under mild conditions the product of two Fourier integral operators is again a Fourier
integral operator. N/z\nnely, let Ly € T* My xT*Ms and Ly € T* Mo x T* M3 be Lagrangian
manifolds, and let ®, 5 be Fourier integral operators associated with L, ,, respectively.
Next, suppose that the composition L = L; o Ly (see (A.2)) is clean and that both L; and
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L, satisfy condition A.1. Then the product &)1&\)2 is a Fourier integral operator associated
with the Lagrangian manifold L. Moreover, if a; is the principal symbol of ®; (defined on
the Lagrangian manifold L;), i = 1, 2, then the principal symbol a(u, v) of P, at a point
(u,v) € L is equal to the integral of the direct product a; X as = a;(u, w)az(w, v) over the
fiber L) of the bundle L — L (see Subsection A.3). A special case of this theorem
occurs if one the manifolds L; and L, is the diagonal (or the identity relation) /. Since
IoL = L (and likewise Lo I = L) for any Lagrangian manifold for which the composition
is well defined, we see that the product of a Fourier integral operator associated with
a Lagrangian manifold L by a pseudodifferential operator is a Fourier integral operator
associated with the same manifold L. Moreover, the excess of such compositions is always
zero, and so the principal symbol of the product is just the product of the principal symbols
of the factors (taken at appropriate points).

A.8 [L?-adjoints of Fourier integral operators

Let ® be a Fourier integral operator associated with a homogeneous Lagrangian manifold
L C T*(Ml X MQ)

Then the L2-adjoint ®* of the operator ® is also a Fourier integral operator. It is associated
with the Lagrangian manifold

L={(v,u) |ueT* My, ,ve€T*M,, (u,v)€L} T (Mx M) (A7)

obtained from L by transposing the factors.

A.9 Fourier integral operators on sections of vector bundles

All preceding considerations pertain to the case of Fourier integral operators acting in
function spaces, but the generalization to the case of operators acting in spaces of sections
of vector bundles is straightforward. The (principal) symbol of a Fourier integral operators
acting between spaces of sections of vector bundles is a morphism between the lifts of these
bundles to the Lagrangian manifold.
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