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Abstract

The classical Lefschetz fixed point formula expresses the number of
fixed points of a continuous map f: M — M in terms of the trans-
formation induced by f on the cohomology of M. In 1966 Atiyah and
Bott extended this formula to elliptic complexes over a compact closed
manifold. In particular, they presented a holomorphic Lefschetz for-
mula for compact complex manifolds without boundary, a result, in the
framework of algebraic geometry due to Eichler (1957) for holomorphic
curves. On compact complex manifolds with boundary the Dolbeault
complex is not elliptic, hence the Atiyah-Bott theory is no longer appli-
cable. To get rid of the difficulties related to the boundary behaviour
of the Dolbeault cohomology, Donelli and Fefferman (1986) derived a
fixed point formula for the Bergman metric. The purpose of this paper
is to present a holomorphic Lefschetz formula on a compact complex
manifold with boundary.

Introduction

If M is a closed manifold and f: M — M is a continuous map, then the
Lefschetz number of f is defined by

L(f) = (=1)'tr (Hf)s,

i
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where (H f); denotes the induced endomorphism in the cohomology with real
coefficients H'(M,R) and tr the trace. In 1926 Lefschetz published his famous
fixed point formula, cf. [Lef26], expressing this global characteristic of f in
case all fixed points of f are isolated as the sum of local indices v(p) at fixed
points. These indices are map degrees of 1 — f considered as a map between
small spheres centered at the fixed points.

His argument is based on the intersection theory applied to the cycles A and
I'; representing the diagonal and the graph of f in M x M, respectively. Their
homological intersection number corresponds via the Kiinneth formula and the
Poincaré duality to the Lefschetz number, and a straightforward calculation
yields the equality of the geometric intersection number and the sum of the
local indices.

A few years later, considering simplicial maps of finite simplicial complexes,
Hopt proved an alternating sum formula which by simplicial approximation
lead to an alternative proof of the Lefschetz formula, cf. [Hop29].

There is a well-established relationship between cohomological traces of
maps and their fixed point sets. This relationship comes from two results:
first, the relation between the fixed points of a function and its trace as a
composition operator on a space of functions; and second, the relation between
traces on spaces in a complex and associated traces on the cohomology of the
complex.

The classical fixed point theorem of Lefschetz [Lef26] is easily formulated
in terms of the de Rham complex. Indeed, let M be a closed compact smooth
manifold of dimension n and let A" = C®g A'T*M be the bundle of complex-
valued exterior forms of degree ¢ over M. The exterior derivative d, if restricted
to differential forms of degree i, provides a map d;: E(A') — E(N\') satistying
di11d; = 0. The de Rham complex

0— &N 2 (A 2 . B3 ENY) — 0

is known to be Fredholm, its cohomology H*(E(/\')) is isomorphic to the i-
dimensional cohomology of the manifold M with coefficients in C, cf. de
Rham [dR55]. Each smooth map f: M — M has a natural lift to the complex
E(/\) given by the “pull-back” operator f* on differential forms. In other
words, f* restricts to a family of maps f': £(A') = E(A\') commuting with
the differential of £(\), i.e., difin = ffﬂdi. Hence it follows that f* induces
an endomorphism (H f*); of the de Rham cohomology H!(£(A\’)), for each
1=20,1,...,n. By the above, the Lefschetz number of f is the alternating sum
of the traces of (H f*);, i = 0,1,...,n. In particular, if f is the identity map of
M then L(f) coincides with the Euler characteristic of the manifold M. The
Lefschetz theorem deals with a situation which is, in a sense, at the opposite
extreme from the case of the identity map.
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In [AB67], Atiyah and Bott established an analogue of the Lefschetz fixed
point formula for geometric endomorphisms of elliptic complexes over a smooth
compact closed manifold M. The original proof of the formula in [AB67] can
be considered as a generalisation of Hopf’s argument. Its central point is again
an alternating trace formula for endomorphisms of elliptic complexes given by
pseudodifferential operators. To prove it, Atiyah and Bott made essential use
of the structure of pseudodifferential operators introduced in [KN65]. To state
their result, let

0— EVO) 2 (vl 4 D ey 0 (0.1)

be such a complex, where V* are complex vector bundles over M and d; classical
pseudodifferential operators of type V¢ — V! satisfying d;,1d; = 0. The
ellipticity of £(V") means that the corresponding sequence of principal symbols

N R ) (0.2)
is exact in the complement of the zero section of T*M. Here, 7*V* — T*M
is the pull-back of V¢ under the canonical map 7: T*M — M. Just as in
the case of the de Rham complex, the cohomology H*(E(V")) = kerd;/imd;
of an elliptic complex is finite dimensional at each step i. Suppose F is an
endomorphism of the complex £(V"), i.e., a sequence E;: E(V?) — £(V?) of
linear maps such that d;E; = E;,1d;. Then E preserves the spaces of cocycles
and coboundaries of £(V"), hence after passing to quotient spaces it induces an
endomorphism (HE); of H*(£(V")) for all i. As these are finite dimensional,
the traces tr (HE); are well defined which yields the Lefschetz number of E by
L(E) =N (=1)tr (HE);. If E = 1d is the identity endomorphism of &(V")

then
N

L(Id) =) (-1)"dim H'(E(V"))
=0
is just the Euler characteristic x(£(V")) of the complex £(V"). In particular,
if N = 1, this becomes the index of the elliptic operator dy. The question of
how to compute L(FE) is therefore a generalisation of the index problem for
elliptic operators.

Atiyah and Bott [AB67] evaluated the Lefschetz number L(E) in the case
when F is a geometric endomorphism of £(V"). The latter is constructed via
a smooth map f of the underlying manifold M and a family of smooth bundle
homomorphisms hy:i: f*V¢ — V. An endomorphism F is said to be geometric
if all E; are of the form E; = hy: o f*. Then, the Lefschetz formula of [AB67]

reads
N

> (=1)'tr hy:(p)

HE = D o= aro) 09
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provided that f is of general position.

Note that the bundle homomorphism hy: : f*V? — V* is just a family
of linear maps hy:(p) : ij(p) — V. Hence, at a fixed point p of f we have
V;(p) =V}, and so hy:i(p) is an endomorphism of the vector space V}\. Thus,
tr hy(p) is defined.

In the case of the de Rham complex we have hy:i(p) = A'df(p)', the ith
exterior power of the transpose to df (p).

Thus, the Atiyah-Bott formula expresses the Lefschetz number of a ge-
ometric endomorphism of an elliptic complex on a closed compact manifold
via infinitesimal invariants v(p) of f and hy. at the fixed points of the map
f. It is worth pointing out that formula (0.3) does not explicitly involve the
pseudodifferential operators d;. Thus it is much simpler than the Atiyah-
Singer index formula. Of course the d; are implicitly involved by the condition
diE; = Ejy1d;.

In general the local index is a complex number and not an integer. The
classical Lefschetz formula, where the local index is 41, is highly special in
this direction. On the other hand the Lefschetz number L(E) is a linear
combination of traces and so, if E is of finite order, L(F) will be an algebraic
integer. In these cases [AB67] leads to “integrability theorems” analogous to
the integrability theorems obtained from the index theorem.

In [AB67] two more ways are sketched to prove the fixed point formula for
elliptic complexes. The first approach relies on the results of Seeley [See67] on
complex powers of pseudodifferential operators and the (-function. A closely
related approach was chosen by Kotake in [Kot69]. It consists of the study of
the fundamental solution for the heat equation defined by the Laplacians of
the complex after having transformed the Lefschetz number by means of the
Hodge theory.

Taking up the second suggestion of Atiyah and Bott is what the paper of
Nestke [Nes81] aims at. It runs along the lines of the original proof of Lefschetz
for the classical formula.

It is natural to ask whether the local index v(p) can be explained as a spe-
cial case of a cohomological formula which always makes sense for isolated fixed
points, as in the classical theorem where sign det(1 — df (p)) = deg(1 — f,p).
Toledo [Tol73] gave an exposition of the fixed point theory on a closed compact
manifold which applied to isolated fixed points gives both the Atiyah-Bott for-
mula and cohomological formulas. This method is based on a classical formula
of de Rham [dR55, §33] which expresses intersection numbers in Riemannian
manifolds in terms of the Green kernel.

A fixed point formula for higher-dimensional sets of fixed points was found
by Gilkey in [Gil79] by means of heat equation methods.

In the ’80s the interest in the Atiyah-Bott formula increased enormously.
This is first of all explained by the connection discovered between the index
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theorem and sypersymmetric quantum theories, cf. Alvarez-Gaumé [AG83)|
and Witten [Wit82]. There appeared new proofs of the Atiyah-Bott formula,
cf. Atiyah and Segal [AS68], Bismut [Bis84, Bis85]. In the paper of Efremov
[Efr88] the Atiyah-Bott fixed point formula is extended to universal coverings
of a closed manifold. In the L?-cohomology setting there are various fur-
ther extensions of the Atiyah-Bott formula to non-compact manifolds, e.g., by
Shubin [Shu92| and by Shubin and Seifarth [SS90]. A new idea suggested by
Fedosov in [Fed93] is to consider endomorphisms of elliptic complexes which
are induced by symplectic canonical transformations of 7% M rather than by a
map [ of the underlying manifold. A modern development of this idea actu-

ally leads to a Lefschetz fixed point theorem in deformation quantisation, cf.
[Fed00].

Brenner and Shubin [BS81] proved an analogue of the Lefschetz fixed point
formula for elliptic complexes on a compact smooth manifold with bound-
ary M, whose differentials are operators in Boutet de Monvel’s algebra, cf.
[BAMT71]. The ellipticity of (0.1) on a manifold with boundary requires not
only the exactness of (0.2) but also that of the corresponding sequence of
boundary symbols

oa(dp) 4

0 — 73 Hy@VOls % 15 H, @V ) 7ol

e Hy@VN|g — 0,

(0.4)
where S is the boundary of M, H, the subspace of S'(R) consisting of the
Fourier transforms of all functions in x[9,.)S(R), and 7g: T*S — S the canon-
ical projection. Any elliptic complex in this generalised sense is Fredholm,
and so every its endomorphism E has a well-defined Lefschetz number L(E).
Suppose that E; = hyi o f* is a geometric endomorphism of (0.1) associated
with a smooth map f of the underlying manifold M. We need a specification
of simple fixed points of f on the boundary. Let p be such a point, i.e., p € S
and f(p) = p. Then df(p) induces a map dgf(p): 1,5 — 1,5 and hence a
map

(df/dsf) (p) = NpS — NpS (0.5)

of the quotient space N,S = T,M/T,S. The latter can be identified with the
normal space to the boundary at the point p. As N,S is one-dimensional,
(0.5) reduces to multiplication by a number ¢(p) € R. It is clear that ¢(p) > 0,
for M is invariant under f. Moreover, if p is a simple fixed point of f, then
q(p) # 1. A simple fixed point p € S is said to be attracting, if ¢(p) < 1, and
repulsing, if ¢(p) > 1. Denote by Fix(f, M \ S) the set of all interior fixed
points of f and by Fix(“)(f, S) the set of all attracting boundary fixed points
of f. The main result of [BS81] states that if f is a smooth map of M with



6 A. Kytmanov, S. Myslivets, and N. Tarkhanov

only simple fixed points then

(-1t by )
M= T d ] (00

pEFix(f,M\S)UFix(®)(f,S

Note that if M is a closed compact manifold, then the second term in the right
side of (0.6) is absent and this equality becomes the Atiyah-Bott formula (cf.
(0.3)).

The theorem of [BS81] applies to the de Rham complex on any smooth
compact manifold with boundary, the local index being sign det(1 —df (p)). In
this case formula (0.6) can be deduced from the general Lefschetz fixed point
theorem for CW- complexes, cf. Proposition 6.6 in [Dol72, Ch. 7]. However,
this theorem gives no explicit description of the contribution of a non-interior
fixed point while permitting f with arbitrary fixed sets. We also mention
the infinitesimal version of the classical Lefschetz formula for manifolds with
boundary by Arnold [Arn79].

A particular case of (0.3) is the Lefschetz fixed point formula for the Dol-
beault complex which is referred to as the holomorphic Lefschetz formula. For
holomorphic curves M this formula had already been established by Eichler in
[Eich7]. For direct constructions along more classical lines we refer the reader
to Patodi [Pat73], Toledo and Tong [TT75], Inoue [Ino82|, et al. Donnelly and
Fefferman [DF86] found an analogue of the holomorphic Lefschetz formula for
strictly pseudoconvex domains in C" provided with the Bergman metric. This
corresponds to the case of a non-compact manifold.

At the very beginning of the ’80s M. Shubin called our attention to a fixed
point theory on a compact complex manifold with boundary. Note that the
results of [BS81] are not applicable to the Dolbeault complex on a complex
manifold with boundary, for this complex is not elliptic. Although the coho-
mology of the Dolbeault complex is finite dimensional at steps ¢« > 0 for strictly
pseudoconvex manifolds, the cohomology at step 0 is not. As but one difficulty
caused by this we mention that of defining the Lefschetz number for complex
manifolds with boundary. In the ’80s the problem was intensively treated by
A. Brenner who also studied the fixed point theory for the tangential Cauchy-
Riemann complex. However, his leaving for Israel and switching to computer
science in the '90s didn’t allow him to bring the investigations to a happy end,
cf. [Bre8s].

The purpose of this paper is to show a Lefschetz fixed point theorem for the
Dolbeault complex on a strictly pseudoconvex compact manifold with bound-
ary. The approach we take up is quite different from that of [BS81] and [Bre88|
who followed in the large the scheme suggested in [AB67]. This would require
a sophisticated technique of pseudodifferential operators on the Heisenberg
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group. Instead we make use of the explicit integral formulas for the Lefschetz
number developed in [Tar95].

In order to formulate our result we let M be a compact complex manifold of
dimension n > 1. The complex cotangent bundle then splits into a direct sum
of complex subbundles C @ T*M = TYOM & T%' M where T*°M is spanned
by the dz; and T%'M by the dZ. of a local holomorphic coordinate system.
Denote by A" the bundle of exterior forms of bidegree (0,7) over M. The
exterior derivative d decomposes correspondingly into a direct sum d = 0 + 0
where 3, : E(A™) = EN") satisfies the integrability condition §? = 0.
The operator 0 acting on all of 5(/\0’1) is an elliptic operator. The complex
E(A\”) is called the Dolbeault complex of the manifold M. It is elliptic in the
interior of M, i.e., the sequence (0.2) is exact away from the zero section of
T*M.

More generally if V' is any holomorphic vector bundle over M the operator
1® 0 is well defined on £(V ® A\*') and so determines a complex

0 EVaA®) 2R ey oA\ %1 ey AOY) 0

which is elliptic in the interior of M. This complex is referred to as the
Dolbeault complex with coefficients in V. A typical example is V = A" ’0, the
bundle of exterior forms of bidegree (p, 0) over M. Consider now a holomorphic
map f: M — M. The natural lifting of f to A" is then compatible with 9 and
therefore induces an endomorphism f%* in the complex E(A*). If h: f*V — V
is an arbitrary holomorphic bundle homomorphism then the tensor product
h® N'(f)* serves to define the ith lifting of f to the complex £(V @ A”).
We write E = h® f% for the induced endomorphism of £(V ® A”'). Suppose
M is strictly pseudoconvex. Then the cohomology H(E(V @ A™)) is known to
be finite dimensional at all steps 7 but « = 0. The cohomology at step i = 0 just
amounts to the space of all C* sections of V' over M which are holomorphic
in the interior of M. We define the trace of (HE), on H'(E(V & A”)) by a
special regularisation. Then the Lefschetz number of E is introduced in the
same way as above. We show that if f is a smooth map of M with only simple
fixed points then

tr h(p)
L®) = 2 dete(1— 07 () 07)

pEFix(f,M\S)UFix(®)(f,S)

Note that the right-hand side of (0.7) coincides with that of (0.6). In other
words, the result of [BS81] still applies to the Dolbeault complex on a strictly
pseudoconvex compact manifold, as if this complex were elliptic with respect
to both sequences (0.2) and (0.4).

From now on we restrict our attention to the case V= M x C. Clearly,
this is the basic concept. The same proof still goes for general V.
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1 Augmented Dolbeault complex

Throughout the paper, we take M = D where D is a strictly linearly convex
domain in C*, n > 1, with C*° boundary. We write D = {z € C"* : p(z) < 0}
where p is a C™ real-valued function on C" whose gradient does vanish on 0D.
The strict linear convexity of D just amounts to saying that (V¢p,z — () # 0
for all ¢ € @D and z € D with z # (. In other words, the complex tangent
hyperplane of 9D at each point ( € 0D meets the closure of D at the only
point z = (.
Consider the Dolbeault complex

0— D) -2 YD) -2 ... 2 eMD) — 0 (1.1)

where £9(D) is the space of all differential forms of bidegree (0,q) with C*°
coefficients in D. It is well known that the cohomology H?(E (D)) of (1.1) is
zero at every step ¢ > 0, cf. [Khe85, T. 8.12] and elsewhere. The cohomology
H(& (D)) at step 0 is still infinite dimensional. It coincides with the space
E(D) N O(D) of all C* functions in D which are holomorphic in the interior
of D.

In the sequel we need also the augmented Dolbeault complex
0— ED)NOMD) - D) -2 e1D) 25 ... L enD) — 0 (1.2)

where 2 is the embedding operator. The cohomology of (1.2) at each step
g > 11is equal to the corresponding cohomology of (1.1). On the other hand,
the cohomology of (1.2) at steps —1 and 0 vanishes. Therefore, the complex
(1.2) is Fredholm, cf. for instance [Hor85, §19.1], in contrast to the complex
(1.1).

Consider a holomorphic map f: D — D which extends to a C™ map of D.
If in particular f is proper then it automatically extends to a C> map of D,
cf. Theorem 11 of [Pin86, Ch. 2]. In what follows we assume that f has only
isolated fixed points f(z) = z in D. Then the number of such points in D is
finite.

The map f induces the endomorphism E = {E,} of (1.2) given by E, = fg,
where

fi €YD) — £9(D)

is the “pull-back” operator on differential forms of bidegree (0,¢) under the
map f. Since f is holomorphic, fi preserves also the space £(D) N O(D). De-
note by H f* = {(H f*),} the corresponding endomorphism of the cohomology
of (1.2).
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Definition 1.1 By the Lefschetz number of the augmented complex (1.2)

18 meant
n

Lp(fﬁ) = Z (=1)%tr (Hfu)q-

g=-1

Here tr (H f*), is the trace of the endomorphism (H f*), on the cohomology
of (1.2) at step ¢, which is well defined. By the above, tr (H f*), vanishes for
q = —1 and ¢ = 0. Hence L,(f*) can be referred to as a partial Lefschetz
number of the endomorphism f* of (1.1). However, there is no canonical way
to introduce a total Lefschetz number Li(f*) for this endomorphism of (1.1)
because the cohomology H°(£'(D)) is infinite dimensional. Hence, the trace of
(H f*)o on H°(E (D)) requires a suitable regularisation. The aim of this paper
is to properly define a total Lefschetz number for the endomorphism f* of the
Dolbeault complex and evaluate it in terms of infinitesimal invariants of fixed
points of f.

2 A parametrix of the Dolbeault complex

Our calculations are based on an explicit fundamental solution of the O-
problem in strictly linearly convex domains of C*, cf. Theorem 8.9 in [Khe85]
It allows one to construct an explicit fundamental solution of the augmented
complex (1.2).

To describe this construction, set

P() = Veo
0 0
_ (a—é,...,a—é)

and

The function ®(¢, 2) is different from zero for all ( € 9D and 2z € D with
¢ # z, for D is strictly linearly convex.

Given any smooth function n = n(¢, 2z, A) of ({,z,A) € C* x C* x R with
values in C”, define a Leray form

n

W'(n) =Y (=1)  nydnly)

j=1
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where dn[j] is the wedge product of the differentials dn,...,dn, one after
another excepting dn;. Set also dn = dn; A ... A dn,. Then we can certainly
write

(w'(n)) ANdCAdz = (iwé(n)) AdC A dz, (2.1)

with wy(n) a differential form of degree n —¢—1in d(i, . ..,d¢, and d\ and of
degree q in dZzy,...,dZ,.
After [Khe85, §8] we introduce integral operators

(t)(e) = (-1 [uie n = (E25) e
A BTSSR T
for u € £1(D), where
= P s _
((1 pY E_‘jg + Aqu(lc(,gz))"”’ (1— A)fg__jg + Aqf("c(i)))
for 0 < A< 1.

The operators T, and L, are known to map £4(D N U) to £4~4D N U).

Denote
P,=T,+L, if 1<qg<n,

P,=0 if g=0orqgq=n+1. (2:3)

For an arbitrary differential form u € £9(D), we define also a Cauchy-
Fantappie integral

(Fyu)(z) = (—1)7 /ap u(C) A (7(12;2)171)! wfl(q)}(jg(?)z)) NdC, z€D. (2.4)

These operators are connected with each other by the well-known integral
formulas of Leray-Koppelman.

Lemma 2.1 Any differential form v € £4(D), q¢ > 0, can be represented
in D by B B
u = Fyu+ Py (0u) + 0(Pyu). (2.5)
Proof. By the formula of Koppelman, we get

u = Myu+ Tyy1(0u) + 0(Tyu)
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in D, where

(n—-1)! ,7/ (-2

M, =(—1)? A Ad

( qu) (Z) ( ) /87) U(C) (271_@)” wq<|< . Z|2> CJ
cf. [AD83]. On the other hand, the identity (9; + dx)w)(n) + d.w)_,(n) =0
implies that ) )

Myu — Fyu = Ly, (0u) + 0(Lyu) (2.6)

in the domain D. Combining these two equalities, we arrive at the desired
formula (2.5).

O
The integral Fyu actually vanishes for ¢ > 0 since

is holomorphic in the variable z.

Since the kernel of F{ is holomorphic in the exterior variable z, the operator
Fy maps £(D) to £(D) N O(D). Hence the following lemma says that the
operators {Fy, Py, ..., P,} constitute a fundamental solution of the augmented
Dolbeault complex (1.2).

Lemma 2.2 As defined above, the operators {P,} and Fy satisfy

Foww = u—S_ju foral ue&(D)NO(D), q=-1;
D)

Piou+1Fou = u—Sou forall ue&(D), q = 0; (2.7)
Py10u+0Pu = u—Su  forall ue YD), q >0,
where S_1 = 0.

Proof. Since Py = 0, all the equalities (2.7) follow from Lemma 2.1 even
with S, = 0 for all ¢.
0

3 Lefschetz number

Note that all the operators S, in (2.7) are smoothing, i.e., they map (€"~%(D))’
to £9(D).

Lemma 3.1 The composition f'oS is an endomorphism of the augmented
Dolbeault complex, and

Ly(ff) = Ly(f* 0 5).
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Proof. Applying the endomorphism f¥ to both sides of equalities (2.7) we
readily obtain

(ffioFp)e = fi—ff 08,
(f§°P1)5+7J(fE1OF0) = f§—f§oSo,
(fioPp1)0+0(fii Py = fl—floS,

for all ¢ > 0. Since f*, o Fy maps £°(D) to £(D) N O(D) and f§—1 o P, maps
E1(D) to E17Y(D) for ¢ > 0, we deduce that f* and f*¥ o S are homotopic
endomorphisms of the augmented Dolbeault complex. Hence they induce the
same endomorphism of the cohomology of (1.2), i.e., Hf* = H(f* o S), and
the lemma follows.
O
Note that ffoS is a smoothing endomorphism of the augmented Dolbeault
complex (1.2).

Lemma 3.2 IfE = {Eq}ng1 s a smoothing endomorphism of the complex
(1.2), then

n

Ly(E) =Y (-1)"tr E,. (3.1)

g=-1

Proof. The proof of this lemma repeats the proofs of Lemmas 4.2, 4.3
and their Corollary in [BS91] word for word. It relies essentially on Theorem
19.1.15 of [H6r85]. Namely, consider Hilbert completions H*Y(D) of order
s > 1 of the spaces £9(D). The operators E, extend by continuity to maps
of H*Y(D), i.e., B H*!(D) — H*®*Y(D). The extensions obtained this way
are of trace class, and their traces are independent of s. Since the augmented
Dolbeault complex (1.2) possesses a “good” parametrix given by Lemma 2.2,
it follows that the cohomology of (1.2) is isomorphic to the cohomology of the
augmented Dolbeault complex evaluated in Hilbert spaces H*Y(D) in the usual
way. Applying Theorem 19.1.15 of [Hor85] then establishes the generalised
Euler formula (3.1).

O

4 Integral formula for the Lefschetz number

Denote by K7, (¢, 2) and Kp, (C, 2) the kernels of operators T, and L, respec-
tively. Away from the diagonals of D and 0D these are differential forms of
bidegree (n,n — ¢) in ¢ and (0,¢) in 2, and (n,n —¢ — 1) in ¢ and (0, ¢) in z,
respectively.
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Let A stand for the diagonal map D — D x D. Then the operation tr A* is
the usual restriction of a 2n-form on D x D to a 2n -form on D, i.e., tr A* = Af
with tr a trace in fibres.

Consider the following differential form of bidegree (n,n — 1) defined away
from the set Fix(f, D) in D:

n

p(T) =Y (~1)1AHL x f)P Ky, (4.1)

g=1

Lemma 4.1 The Lefschetz number for the augmented Dolbeault complex is
given by

Ly(ff) = pov. / AL % K, — pov. / do(T), (4.2)
D D
where the integral is understood in the sense of principal value.

Proof. Since f#o S is a smoothing endomorphism of (1.2) it follows from
Lemmas 3.1 and 3.2 that

n

Lp(fn) = Z(—l)qtrfgosq

- /Di(_nmm x f)'Ks,. (4.3)

By assumption, the set Fix(f, D) is of zero measure. Since the integrand
in (4.3) is of class L'(D), we get

Lo =tim [ S (1AM x £,

e—0
D\U. q=1

where U, is the set of all points ( € D whose distance to Fix(f, D) is less than
£.

We now make use of equalities (2.7) to evaluate the integrand in the latter
integral. Suppose ((,z) € (D x D)\ A is an arbitrary point. Pick a differential
form u € £9(D) of degree ¢ > 0, which is supported in a small ball around
¢ and vanishes near z. Since the singularities of K7, lie on A we obtain by
Stokes” Theorem

P, 10u+0Pu = T, 0u+ dT,u
= / U(C) A (5éKTq+l (C) Z) + 5ZKTq (C) Z))
D
= = [ w0 nKsc.2)
D
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where 9, = (—1)77'0, is the transpose of 0 on forms of bidegree (0,¢). It
follows that B ~
—Kg, = aéKTq+1 + 0, K7,

holds on D \ U,, whence

/ Z 1A% (1 x ) K,

p\v. =1
/ Z 1A% (9.(1 x ) Ky, — 9p(1 x ) Ky,) + APOL(1 x f)* Ky
p\v. 97t
. / 5(2(-1)%%1 x f)”KTq) + AR x f) K.
D\U. =1

The differential form in parentheses is just ¢(7"). Since it is of bidegree (n,n—1)
we may replace 0 by the total exterior derivative d, which establishes the
lemma.
U
For T, given by (2.2) it follows from (2.1) that

n

p(T) = N(1x f)FY (-1)"Kr,

_ > : (n_l)!w/ C___

= NIy (=) M
(=1 (=)

= T (eroE)

_ (n=1) - —1)i- 1 G fJ(C)

= @)y ;;( o A= T,

the form of incomplete logarithmic residue.

As mentioned, the endomorphism f* on holomorphic functions in D which
are C'*° up to boundary has no regular trace, for this space is infinite dimen-
sional. Moreover, there are no canonical regularisation of the trace functional.
Still we may introduce a regularised trace on holomorphic functions from purely
heuristic considerations. On smooth functions f* has the kernel §(¢C — f(2)),
hence its trace is

!A5&—fKD%

where v = (22)7"d{ Ad( is the volume element of D. On holomorphic functions
in D smooth up to the boundary the Dirac functional fails to have a unique
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representation. Any integral representation of holomorphic functions can be
actually thought of as a representation of the delta-function. The most suit-
able of them are integral representations whose kernels are holomorphic in the
external variable z, for they determine projections onto the space of holomor-
phic functions. This is just the case for the component F{ of the parametrix
(2.7).

Definition 4.2 By the regularised trace of the endomorphism (Hf*)o on
H°(& (D)) is meant

tr (Hf" =pv. | A1 x f)fKp, +/ AF(1 x f)*Kg,.
oD D

Now we are in a position to introduce the total Lefschetz number Li(f*)
for the endomorphism f* of the Dolbeault complex (1.1) itself. Namely, let us
set

L(f%) = tr (Hf"o + Ly(f%). (4.4)

Lemma 4.3 As defined in (4.4), it follows that

L) =pv. [ A1 x Pk, — p.v./pdcp(T).

oD
Proof. Indeed, analysis similar to that in the proof of Lemma 4.1 shows
that B
Aﬁ(l X f)ﬁKSo = _Anaé(l X f)ﬁKTl

away from the set of fixed points of f. Hence the lemma follows.

5 Local indices

, D) consists of isolated fixed points only. For any p € Fix(f, D),
,£) the ball of radius ¢ > 0 with centre at p. If ¢ is small enough
(p,e) does not contain any fixed point of f different from p.

Suppose Fix(f
denote by B(p
then the ball
Set

U. = ( UpeFix(f,ﬁ) B(p7 5)) nD.
Using Lemma 4.1 we get by Stokes’ formula

—p.V./dgp(T) = —lim do(T)
D e—0 D\UE
= —lim o(T) + lim o(T)
€20 Jap\u. Z €20 JoB(p,e)nD

peFix(f,D)

= —p.v./aDgo(T)—F Z 1i(p), (5.1)

pEFix(f,D)
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where
pi(p) = lim p(T) (5.2)
e=0 0B(p,e)ND

is called the local index of the fixed point p.

Lemma 5.1 Ifp € D is a simple fized point of f, i.e., detc(1— f'(p)) # 0,

then
1

1) = St )

Proof. We change the variables in a small neighbourhood of p by the
formula w = ¢ — f({). Since p is a simple fixed point of f this change of
variables is biholomorphic near p. Hence we obtain by the Bochner-Martinelli
formula

pi(p) = lim 1 (n_ll!w' TN
Ho(lf)*i(pﬁ) det¢ g_zj(((w)) (272) (|w|2)
i 1 n—1) « W -
-5 | G o D () e A ]
2B(0,0)
B 1
- dete(1-F())’
as desired. -

Note that the differential form ¢(7') is actually closed in a punctured neigh-
bourhood of a. Hence the problem of evaluating p;(p) reduces in general to
calculation of the so-called Grothendieck residues. In [Tsi92, §6] an algebraic
interpretation of the local residue is given in terms of the trace of a finite
extension (connected with the map f) of the field of germs of meromorphic
functions at p.

For fixed points of f on the boundary the local index p;(p) is still indepen-
dent of whether p is attracting or repulsing.

Lemma 5.2 If p € 0D is a simple fized point of f then
1 1
2 detc(1 — f'(p))

Proof. Once again we make the change of variables w = ¢ — f(¢) in a
small neighbourhood of p. This yields

11:(p)

: o¢ (n=1)! ,/ w
wi(p) = lim detc— w
) =0 Jo_p. (oBpearp)  Ow (2m)" <|w|2
1 _ (n—1)!
= lim W'
detc(1 = f'(p)) ==0Ju_p.(oB@enp) (2m2)" (

)/\dw

w

)/\dw,

|w]?
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for detc ('(w) is smooth at w = 0. The holomorphic map w = ¢ — f(¢) keeps
the orientation of C", hence the limit on the right is independent of whether p is
attracting or repulsing. In fact this limit is known to be 1/2; which establishes
the formula.

O

6 Holomorphic Lefschetz formula

We now come back to evaluating the total Lefschetz number (4.4) for the
endomorphism f* of the Dolbeault complex (1.1). Namely, using (5.1) we
easily get

L(f% = pwv. /apAﬁ(l x f)*Kp, — p.v. /SDQO(T)_F Z wi(p)

p€eFix(f,D)
= p.V./ Af(1 x f)”(KFO —Z(—1)qKTq) + Y ).
oD q=1 pEFix(f,D)

As already noted, the kernels K, vanish for ¢ > 0. On the other hand, the
kernel K7, if restricted to the boundary of D, coincides with —K},,_,. Hence
it follows that

n

8L (K = 31K = AL 1 (K = 301 K, )

g=1 q=1

—_

n—

— A1 xf) (—1)4(KMq —KFq>

Ji
(o=}

away from the set Fix(f, 0D) on the boundary. Since Kj;, — K, is a difference
of two Leray forms it is in fact exact. Its primitive can be easily calculated,
namely

Af(1 x f)F (—1)Q<KMq - qu)
= n—1
= Aﬁ(l X f)ﬁ (—1)qKLq+loé+5oLq
q=0
= ) (-1)PA%(1 x f)ﬁ( — O K1, + @KLq)

q=1

_ a(i(—n%ﬁ(l X f)“KLq>,

g=1



18 A. Kytmanov, S. Myslivets, and N. Tarkhanov

the first equality being due to (2.6). We can here replace the 0-derivative by
the total derivative d, for the differential form

n

o(L) = M1 x [ SO(-1)7K,
g=1
is of bidegree (n,n — 1).
This yields readily the main formula for the Lefschetz number L(f*),
namely

LiF) = Y o) v [ detL) (6.1)
pEFix(f,D) oD

Theorem 6.1 As defined in (4.4), the Lefschetz number of the Dolbeault
complex is given by

L(fH= Y. wmp+ Y, wd+ D, mb),
p€eFix(f,D) p€eFix(f,0D) p€eFix(f,0D)
where

pi(p) = lim (1),

£=0 0B(p,e)ND
p(p) = lim p(L).
€20 Jo(B(p,c)naD)
Proof. By Stokes’” Theorem we get
—p.v./ dp(L) = —lim dp(L)
oD

e—0 8D\Og

= lim / (L)
2 =20 Jo(B(p.e)noD)

peFix(f,0D)

= Y m),

peFix(f,0D)
as desired.
O
Theorem 6.1 gives at once the most elementary result of the Lefschetz
theory. Namely, if f has no fixed points then L;(f*) = 0.
For L, given by (2.2) it follows from (2.1) that

o(L) = Aﬁ(le)uz%/o w:;1((1_A)|§:;|2+A@};C(?,)Z))Ad<

I | N (5 P(Q)
- [ (o VAR e ) M

(6.2)
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where

/01 F(, ) = /01 (d)\J F(-,A))d)\

for a differential form F'(-, \) in A among other variables, dA| being convolution
by the 1-form dA.

7 Evaluation of the boundary contribution

If p € 0D is a simple fixed point of f then the local index p(p) can be explicitly
calculated by a delicate but very elementary analysis. In what follows we
always assume that n > 1.

Lemma 7.1 Assume f is a holomorphic map of D which extends to a C>
map of D, and p is a simple fized point of f on 0D. Then

1 1
+= if p is attracting,
2 detc(1 — f
11y(p) = 1 c( 1 f'(p))

—= if p is repulsing.
2 detc(1- 7)) ’
Proof. In a small neighbourhood U of p € 0D we change the coordi-
nates by w = ¢ — f(¢). Without loss of generality we can assume that the
hypersurface 0D N U transforms to

(1-1).0DNU) ={w: e(w) <0}, (7.1)
where o(w) = |w'|*> + (Rw,)? — Sw,, and w' = (wy, ..., w,_1), see Fig. 1.
Sun oD

Fig. 1: Evaluation of local indices

The hypersphere 0B(0, €) meets (1—f),.(0DNU) in an (2n—2) -dimensional

sphere of radius
1 1
d=\/—5+4/ - +¢&?
\/ 5 + 1 +e
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with centre at (w',Rw,) = 0 lying in the hyperplane Sw, = §?. To simplify
calculation, we replace € by &2 4+ &4, thus reducing the intersection to the
(2n — 2) -dimensional sphere of radius ¢ lying in the hyperplane Sw,, = 2. We
write

Cle) == {w : W')* + Rw,)?* = &2, Sw, =&}

for this cycle and give it the orientation induced by the (2n — 1) -dimensional
ball.
By definition,

= lim (n—1) W'
,U/b(p) = lﬂo OB (pe)n0D)x[0.1] (27.(_7/)’n, (n(g, )\)> A d¢
where = O )
N (4 Pl
e (S ER (IS}

After the change of variables w = ( — f({) we get

dw
1—f"(C(w)))

o =t [ S () A g

e—0 (271'7,)”
((1—=£)«0(B(p,e)NOD))x[0,1]

with
N P(¢(w))
e = = Vi * A w)), up
_ _ 1
P(C(w)) = (wl,...,wn,l,%wn—Q—).
Since

(P(C(w)),w) = W + (20 = 5 )

with z,, = Rw,, the components of the vector-valued function n({(w), \) are

(A 20
o= (1= N)—L + ) J =1,...,n—1
Ui ( )|w|2 + 2|w’|2+2xnwn+zwn’ J ) ) TV )
w 20y, +1
= (1=N)—=+A - :
I ( )|w|2 * 2|w' |2 4 2z wy, + 1wy,

For small £ > 0 the cycle (1 — f).0(B(p,e) N9D) on (1 — f).(0DNU) is
homologous to the cycle +C(¢), if p is an attracting fixed point of f, and to
the cycle —C(g), if p is a repulsing fixed point. To prove this we note that the
holomorphic map 1 — f keeps invariant the orientation of D. Hence it keeps
invariant the orientation of the tangent hyperplane at p if p is attracting, and
changes it to the opposite one if p is repulsing. By evaluating the integral over
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the surface (1 — f).0(B(p,e) N 0D) we may therefore replace this cycle for
sufficiently small ¢ > 0 by (£1)C(¢), depending on whether p is attracting or
repulsing.

On every surface C(¢) the denominators of 7; can be easily estimated,
namely

2lw'f? + 2zpw, + 1w, = 2w'|* + 222 + 20, Sw, + w,
= 1w, (1 + 26%) + £
# 0
for all € > 0. Moreover, we have |w|? = &2 + .

We next transform the differential form w’(n(¢(w), A)) A dw on the surface
C(e). We have

—_

n—

B - w; 21 .
W) Adw = (=1 <(1 a )\)62 + et A 12, (1 + 262) 4+ 62>d77[]] M dw
j=1 n
—qe? 2z, +1
-1 n—1 1 — Tn [ n ‘
+ (=1 (( A g2 + ¢4 * 1wy, (1 + 2e2) + 62)d77[n] N dw
(7.2)
Since
dw = dw' A dz,,
holds on C, it follows
. 1—A 2\ n=2
dnlj] A dw = (62+€4 T T2 +€2) dw[j,n]
[ —r 2%, +1
A — dANd
( g2 + ¢t +mn(1+252)+52) v

for1<j<mn-—1,and
dnln] A dw

((1—)\+ 2\ )d—+—<_1+ 2 )d)\)
= Wy + W

e24et  ax,(14-2e2)4-£2 ' Ne2qet g, (1+4262) &2
AR

(2 )i+ ) )
W1 + Wy

e24et  ax,(14-2e2)4-£2 ! "Ne2pet ', (1+4262)+e2

A dw

whence

dn[n| A dw

1 2 1—A 2\ n—2
i SE=A ) (st )
g2+t amp(1+2e2) 462/ \e2 4+ et (1 +2e2) + &2
A (=1)tw; dw(j, n] A dw
1

—_

<.
Il
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up to a summand which does not contain dA.
Summarising we arrive at the equality

wn/\dw

)

( 2\ )nld)\<_xn 1€ n 2z, +1 )
52 + 54 zxn(l + 2e2) + 2 e24+et oz, (14 2e2) €2

n—

A ( 1)t~ o dw[j, n] A dw

1
TP 2\ n—2 162 21,41

<2 i 2 2) <(_)‘)2 T n2 2))‘
e2+et  aw,(142e2)+¢ g2+¢ 1, (14-262) +-¢

—_

n—

1 2 -
— 1), dw[j, n| A d
oy +mn(1+2g2)+82) 1( )" w; dwlj, n] A dw

<.
Il

which finally gives

, 1= 2 n—2
w(n) ANdw = <62+€4+Z$n(1+262)+62) dA
o(1 + 22) ) <

2+t (1 + 262 )+ &2 ~o; dafj,n] A dw.
=1

.

Using the formula

/0 (1= A A2 g = k!(r(zn—_Ql—)!k)!

and the binomial formula we get
1 k 9 n—k
(52+54) (wcn(1+262)+52> )

[ ewmnan = (

1)™ (142 -
X (= 2(; +27) Z I=Yw; dw[j,n] A dw.

TTM

j=1

Denote this (2n — 2) -form by F(w', z,,£?). Then

= im = (n — 1)!
polp) =BV | derei = FC(@) @mo

We pass to integration over the unit sphere S?*=2 in the hyperplane of variables
(w', z,,) by replacing

F(w', x,,€%).

w' = ew,
T, — €I,
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for € > 0 small enough. Since

3
—

Fleut,em ) = ( ( =) (e )
ew', ewy,, %) = £
T pt 1+¢e2/) \uz,(1+22) +¢
Dl +28%) &
X (= (Z e ~lw; dwlj,n] A dw
n —

=1

<.

the most delicate summand to handle corresponds to & = n — 1. For this
summand it follows

n—1
1yt o1+ 282) & .
I ( ) N (—1) '@ dwlj,n) A d
30 1+ g2 1y (1 +2e2) + ¢ n—l = @ daljn] A dw

c()
1

n—1
1 1 ,
- . NG =Ll ol '
on—1 ll—{%/ 1, (1 +2e2) 4 ¢ 4 / Z( L7y dwlj,nf A dw
21

[w'|=4/1—22 =1
1
_ [/ i (1— Z jl__d_. A duw'
T on-—1 55% an(1—|—2€2 —|—5 - wj U)[],n] w
|w'|=1 J=
1 (2my)”
2 (n—1)! 73)

since
lim/1 (1= )" dx
e=0 ) J oy (14+2e2)+¢ "
1 2\n—1 1
1— =1 1
lim / ( Tu) dx, +/ dx,,
e=0 \ J 1w, (1 +2e%) +¢ 1y (14 2e2) + ¢
1 2 —1 1 2
1— 21— 1 iz, (142
lim / ( Tu) dxn+/ (1 + €)+€dajn
=0\ J 4 1T, Cq 22(1 4 2e?)2 + £2
lim 2 / 1 ! d
1m n
0 - o X2(1+2e2)% 4 &2 v
) 2 1+2¢
lim ——— (arctan ajn>
e—0 1+ 2¢2 €

= 7'('7

1

0

the third equality being a consequence of the integrand oddness, and

n—1

/ S (= 1)Ly dalj, ] A du' = / (n— 1) d@ A du’
|w'|=1 |w'|<1
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= (n—1) (2@)”1/| » dv

(2ma)nt
(n—2)!"

We next compute the limits of summands in F(sw',ex,,e%) corresponding
tok=1,...,n— 2. To this end we proceed in much the same way as above,
thus obtaining

nek (_1\n 2
}cii% ) 6n_l_k(l 4252)]6(2:5”(1 +2252) +6> " 1;(:1(1—J;)26 ) ()

2n—k—1 9 n—1 1 1 — p2)n-1
— v ( TM/) lim 6n1k/ ( ‘,I;n) d.’I/'n
n—1 (n—2)! 0 _q (1 (1 4 282) )k

— 2" (2m)n lime" =k /1 4(1 — x%)"’lk dz,,
n—1 (n—2)! 0 _1 (wxy + o)

(...) meaning the differential form

(=1)tw;dw[j, n] A dw.

" o, + |nFk
1 2j—2
n—1—k |£L'n|
< / R P e R
1 oz, + €|
1
< € / |20 %2 da,
~1
— 0
when € — 0. Moreover, the limit
1 1/e
. 1 i dv
lim [ v 1k ——————dr, = lim ——
20/ (120, + )" =0 J /e (w4 1)

B /°° dv
) (1)
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vanishes by the residue theorem.
Summarising we conclude that

pp(p) = (£1) lim 1 (n—1)!

F(ew' ex,, &2
e—0 §2n—2 det(c(l — f’(C(&w',€$n752))) (27-”)71 (Sw »ELn, € )

— ! im =)
~ D G ) B s @

1 1
2 detc(1 - f'(p)’

which is due to (7.3).

= (1)

O

It is amusing that the contributions p;(p) and p,(p) of repulsing fixed points

on the boundary cancel in a wonderful way while those of attracting fixed

points p € 0D are doubled. This leads to an elegant Lefschetz fixed point

formula for the Dolbeault complex in the case where all fixed points of f on
the boundary are simple.

Corollary 7.2 Let f be a holomorphic map of D which extends to a C>
map of D. If all fired points of f in D are simple then

1
Li(ff) = > deto(1— 07 (1))

pEFix(f,D)UFix(®)(f,0D)

Proof. Combining Theorem 6.1 and Lemmas 5.1, 5.2 and 7.1 establishes
the formula.
O

8 An example

Consider a constant map f : D — D, i.e., f(z) = a for some a € D. This
map has a unique fixed point a in D, and detc(1 — df(a)) = 1. In particular,
a is simple. If @ € 9D then this fixed point is attracting, as is easy to check.
The operator fi on £(D) N O(D) reduces to u — uo f = u(a), ie., to the
Dirac functional supported at a. This operator is not of trace class, however,
it acts along the constant basis function and has therefore a natural candidate
for the trace, namely, tr (H f*); = 1. This trace can be evaluated by any
representation of the Dirac functionals on the space of holomorphic functions.
One can make use e.g. of the Bergman or Szegd kernels as well as of the
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Cauchy-Fantappie integral. This agrees with our definition of the regularised
trace, for

tr(Hf" = p.v. /m) (?Q;Z;g’w'(;éfi)) /\dg—/DAm x ) Ks,

= 1.

It is immediate that f} = 0 for all ¢ > 0. Hence it follows that L, (f*) = 0.
We thus get

1
Li(f) = > deto(1— 0/ (p)’

peFix(f,D)UFix(®) (£,0D)

for both sides amount to 1.

For a ball in C" the operator Fj is the Cauchy-Szego integral. It gives an
orthogonal projection onto the space of holomorphic functions in D. Hence
the regularisation

p-v. [ Kr(C f(Q))
oD
is closely related to the Szegd projection in a ball.
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