LOCAL ASYMPTOTIC TYPES
INGO WITT

ABSTRACT. The local theory of asymptotic types is elaborated. It appears
as coordinate-free version of part of GOHBERG-SIGAL’s theory of the inver-

sion of finitely meromorphic, operator-valued functions at a point.

1. INTRODUCTION

Asymptotic types arise in singular analysis. They provide a link of formal
asymptotic analysis to functional analysis. The basic idea consists in assigning
certain types to conormal asymptotic expansions of solutions to elliptic P.D.E.
and, more generally, to elliptic pseudodifferential equations near singularities
of the underlying geometric configuration. This allows to set up a functional-
analytic frame by incorporating such asymptotic types into function spaces.
The idea goes back to REMPEL-SCHULZE [8] in the one-dimensional case and
to SCHULZE [9] in the higher-dimensional one. Meanwhile, there is a great
variety of different notions of asymptotic types used in different situations and
emphasizing the one or other aspect of this concept, see SCHULZE [10].

The needs of a treatment of non-elliptic equations, and of certain nonlinear
elliptic equation as well, however, require still more refined notions of asymp-
totic types. Already in the simplest case of a conical point the answer to the
question what is the “best,” i.e., most refined, notion of an asymptotic type
is quite involved, at least in its formulation, see L1u-WiTT [5]. To be able

to provide an answer in even more complicated situations, like egdes, corners,
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and so on, a general concept of a (pre-)asymptotic algebra (that being a situ-
ation in which a priori the notion of asymptotic types makes sense) has been
introduced by WitT [12].

The local theory of asymptotic types, i.e., asymptotic types “at only one
singular exponent,” as presented in this paper, is fundamental in all further
developments for two reasons: First, the answer in that case is part of the
answer in all succeeding cases; secondly, various techniques particularly devel-
oped here can be generalized to more intricate situations. (This concerns, e.g.,
the factorization of symbols, see (3.20), and generalizations of Corollary 1.3
below.) In fact, the local theory of asymptotic types appears in a well-defined
sense, see Remark 3.5, as coordinate-free version of part of the theory of the
inversion of finitely meromorphic functions at a point. For the latter, we refer

to GOHBERG-SIGAL [4].

Let us describe the content of this paper in more detail: For F being a Ba-
nach space, p € C, let MZH(E(E)) be the space of all germs of finitely meromor-
phic functions F(z) at z = p taking values in L(F), see Definition 3.1 (a). The
algebra MJ"(L(E)) is regarded as (canonically) acting on the space M,,(E) of
all germs of meromorphic functions u(z) at z = p taking values in E. As dis-
tinguished subspace in the sense of asymptotic algebras, we choose the space
A,(E) of all germs of holomorphic functions in M, (E). Further, we identify
the quotient space M,(E)/A,(E) with the space £ of all finite sequences
in E, see (3.4). Under this identification, a linear subspace J C E* is called
an asymptotic type (local asymptotic type, at the singular exponent p) if
dim J < oo and T'J C J, where T is the right shift operator on E*°, see (3.2).

Theorem 1.1. (ME(L(E)), M(E), A,(E), J(E)) constitutes an asymptotic

symbol algebra in the sense of Definition 2.2.

There are two fundamental characteristics associated with an asymptotic
type J € J(E): The number and the sizes of Jordan blocks, respectively, with
respect to T', the latter acting as nilpotent operator on J. Let ¢(J) be the
number of Jordan blocks; then we always have ¢(J) < dim E. (This condition
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is void if dim E = c0.) For F € MJ"(L(E)), J € E* being a linear subspace,
there is the notion of push-forward J of J under F, see (2.1) and Lemma
3.3 (b). JE C E™ is then a linear subspace and, additionally, J* € J(F) when
J € J(F). Let OF be the amount of asymptotics “produced” by F, i.e., the
push-forward of the empty asymptotic type O under F', and Ly be the amount
of asymptotics “annihilated” by F', i.e., the largest linear subspace of E* such
that (Ly)" = OF, see (2.2) and Lemma 3.3 (a). If F is normally meromorphic,
i.e., it belongs to the group M}° (L(E£)) of invertible elements of the algebra
MIM(L(E)), see Definition 3.1 (b), then, in fact, Lr € J(E). Moreover,
OF = O (no asymptotics is “produced” by F) if and only if F' € A,(L(E)).

The second main result of this paper is the following:

Theorem 1.2. Let J, K € J(E). Then there is an F' € M} (L(E)) such
that Ly = J and OF = K if and only if

0(J) + ((K) < dim E. (1.1)

Note that Proposition 2.4 below shows that Ly and OF are, in fact, the two
most important quantities for controlling asymptotics of solutions to elliptic

equations. In our case, these elliptic equations are of the form
F(z)u(z) = v(z), F e M (L(E)),

where, for a given v € M,(E), u € M,(E) is sought. (The general case
F e M3°(L(E)) corresponds to an elliptic pseudodifferential equation, while
in case I' € Mp*(L(E)) N Ay(L(E)) we have a good analogue of an ellip-
tic differential equation.) There are two extreme cases to discuss for (1.1):
dimE =1, i.e., E = C, in which case either F'(z) or F!(z) is holomorphic
(or both), and dim E = oo in which case this condition is void.

As an immediate consequence of Theorem 1.2 we obtain:
Corollary 1.3. We have

J(E) = {Lp; F € M) (L(E)) N A, (L(E))}. (1.2)
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The paper is organized as follows: In Section 2, for the reader’s convenience
the notion of an asymptotic algebra is recalled. In particular, we recall some
rules for manipulating asymptotic types then used in the following computa-
tions in Section 3. In Section 3.1, we introduce some basic notion and prepare
for the application of the general concept of an asymptotic algebra. In the situ-
ation under consideration, the most refined notion of asymptotic type comes up
canonically, this is exposed in Section 3.2. Then, in Section 3.3, the information
gained so far is used to rewrite (basically) known results about the singularity
structure of inverses to normally meromorphic functions in these new terms.
In particular, this enables us to prove Theorem 1.2 that concerns the emer-
gence of asymptotic types, more precisely, the “production” /“annihilation” of
asymptotics in terms of asymptotic types. This latter result is prototypical for
the construction of function spaces with asymptotics in various applications,

see Remark 2.3 below.

2. ASYMPTOTIC ALGEBRAS

Here, we introduce a simplified, but sufficient for the application we have in
mind, version of asymptotic algebra. Comments on more general concepts of
asymptotic algebras are given in the remarks. For a detailed exposition of the

latter, see WITT [12].

2.1. Generalities. Let 9T be a unital algebra, § be a linear space, §o be its
linear subspace, and gy be a faithful representation of 9t on §. The quadruple
(M, 00, T, o) is called a pre-asymptotic algebra. (We also write 90t if the
triple (09, S, So) resp. (I, F,To) if the representation g, is understood from
the context.) It is important to note that on this level no topologies are
involved. The linear subspace § is, in general, not invariant under the action
by elements of 991. This leads to the notion of asymptotic type: In a sense,
an asymptotic type measures the deviation of Py for P € 9 (P is go(P))

from the distinguished subspace §,. Therefore, asymptotic types are linear
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subspaces of the quotient space §/§o. These linear subspaces have, of course,
to satisfy certain further properties.

Before we proceed, we introduce some notation associated with the quadru-
ple (I, 00, T, So): Let m: §F — §/Fo be the canonical projection. For a linear
subspace J C §/Fo and P € M, we define F; = 7 1(J) and

J' = (PF;+30)/So (2.1)

as the push-forward of J with respect to P. O = §y/Fo is the empty asymptotic
type. In particular, Fo = Fo, and OF is the amount of asymptotics “produced”
by P € 9%. The elements of §, are interpreted as the elements having no
asymptotics, i.e., the “flat” elements. For P € 91, Lp denotes the largest
linear subspace of §/Jo such that (Lp)” = OF | i.e.,

Lp= (P 'Fo+ So)/@o- (2.2)
Lp is the amount of asymptotics “annihilated” by P € 9.

Definition 2.1. A quintuple (9, 0o, §, Fo,J), where (I, 0o, T, Fo) is a pre-
asymptotic algebra as above and J is an l.a.t. (lattice of asymptotic types) on
it, is called an asymptotic algebra. Thereby, J is an La.t. on (9, gy, §, So) if
it is a sub-lattice of the complete lattice of all linear subspaces of §/Fo such
that

(i) O € 3;

(ii) for all J € J and P € 9M, there is a K € J such that J* C K;

(iii) J is closed under arbitrary non-empty intersections.

The elements of J are called asymptotic types; §, for J € J is the space of
the elements of § having asymptotics of type J.

Requirement (ii) is flexible enough to encompass different notions of asymp-
totic type (depending on the respective context) on a given pre-asymptotic

algebra (9M, 09, §, §o). There is always a distinguished l.a.t., denoted by

30 - 30,9.717 (23)
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namely the least l.a.t. on (90, 0y, §, Fo) having the property that J© € J when-
ever J € J, P € 9, i.e., equality holds in (ii). Since one wants asymptotic
types to reflect a certain “internal structure” of the problem under considera-
tion, the La.t. Jo is, in general, too large in order to be useful. (Exceptions are
asymptotic symbol algebras, see Section 2.2.) L.a.t.’s arising in applications
are typically generated (as lattices) by the Lp’s for elliptic P € 9t admitting

a “distinguished” parametrix.

Remark 2.1. (a) In the above context, elements of 9t are interpreted as “op-
erators.” Typically, however, asymptotic types are determined on the level of
“symbols of operators.” In general, such a symbol does not act on §, but it
acts only on “F modulo §p in the image.” Then, a pre-asymptotic algebra is
a quadruple (9, 0, F, Fo), where M, F, Fo are as above and p is an (injective)
linear map o: M — L(F,§/So) sending the unit of M to the identity such
that, for all P, ) € 90, the diagram

5 =5 3/

d l

5/30 —— (3/30)/Q30

commutes. (The second horizontal line is induced by Q: § — §/Jo, the second
vertical line is the quotient map.) An example for o is the composite 7 o
00, where gy is a genuine (faithful) representation of 9% on §. L.a.t.’s J on
(M, 0, §, §o) and asymptotic algebras (9N, o, §, To, J) are introduced as before,
where now J¥ = PgF;.

(b) Property (iii) of Definition 2.1 implies that every non-empty subset S C
J possesses a greatest lower bound, A S = (1,5 /, and every bounded subset

T C J possesses a least upper bound,
V7T =N\{K; KD Jforall J €T}

In particular, A J = O.
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There is a number of useful rules which permit a manipulation of asymptotic

types. Let 91! denote the group of invertible elements of 9.

Lemma 2.2. Let (I, 09, T, Fo, J) be an asymptotic algebra as in Definition 2.1.
(a) If P € MY, then Lp = OF™".
(b) For P, Q € M, and J € J, (J©)9 =J%" v O
(¢) For PeM, QeM!, (Lp)? =Lpg-1V Lg-1.

Proof. The proofs of (a) to (c) are straightforward. O

2.2. Asymptotic symbol algebras. In pseudodifferential analysis, elliptic-
ity is the same as invertibility on the level of principal symbols. This motivates

the next definition.

Definition 2.3. An asymptotic algebra (9, 0y, §, So,J) is called a symbol
algebra if it is reduced, i.e., S € 9 and S§ C §, for some J € J implies S =0
and if, in addition, J = Jo.

Remark 2.2. (a) For an asymptotic algebra (9, o, §, §o,J) as in Remark 2.1,

we have the ideal

Sy ={S e M; SF C J for some J € J}
of the residual elements and the multiplicatively closed set

E={PeM; PQ-1,QP—1¢c &;yforsome Q € N}

of the elliptic elements. Reducibility for an asymptotic algebra means that &g
consists entirely of invertible elements.

(b) In general, a symbol algebra (M, o, §, To,J) for a pre-asymptotic alge-
bra (9, o, §, To) is an asymptotic algebra, where J = Jom, together with a
homomorphism O: 9T — N of unital algebras such that

(p(P)—o(OP)F < J

for all P € 9 and some J € Jom (where J may depend on P). In that
case, Jom is also an la.t. for (9,0, §,To). Whenever a symbol algebra
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(N, 0, T, S0, Jom) for the pre-asymptotic algebra (9N, o, §, Fo) is known, Jox is
a natural candidate for an La.t. to equip (9, o, §, Fo) with it. The advantage
of Jo.m lies in its computability. Asymptotic algebras occuring in singular anal-

ysis can often be reduced to symbol algebras, see Liu-WiTT [5], WITT [12].

For the rest of this section, we shall assume that (9%, 0, §, §o, J) is a symbol
algebra as in Definition 2.3. The major result in this context admitting in its

consequence to operate on asymptotic types is stated next.

Proposition 2.4. Let (M, o, T, To,J) be a symbol algebra. Then, for P €
ML, Lp is an asymptotic type. Furthermore, there is an order-preserving
bijection

{Je€3;JDLp} - {K €3 KD Lpa}, J—J, (2.4)

with its inverse given by K — KF7'

Proof. By Lemma 2.2 (a), Lp = OF " € 3. Moreover, Lemma 2.2 (b) implies
(JPYP™ = JV Lpand (KP)P = KV Lp-1 for any J, K € J. This yields
the order isomorphism in (2.4). O

As an example, we state the following useful consequence of Lemma 2.2
and Proposition 2.4. Let % = {P € M; PFy C Fo} be the sub-algebra of all
elements P € 91 leaving the distinguished subspace §, invariant. Note that
P € 2 if and only if OF = O.

Proposition 2.5. For P, Q € M NnA, PQ~, QP! € A if and only if
Lp = Lo.

Proof. We show that, for P € M, @ € M NA, Lp C Ly if and only if
Lpg-1 = O. If, in addition, P € 9M~!, then this latter condition is equivalent
to QP! e .
In fact, by Lemma 2.2 (c),
LpV Lo=(Lpg1)? "

Thus Lp C Lg ifand only if Lo = (Lpg-1) @' and this holds, by the foregoing
proposition, if and only if Lpg-1 € Lg-1 = O. U
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Remark 2.3. For (IM, 0y, T, S0, J) being an asymptotic algebra, we have

F:8;— Sk

for any F € 9, where the asymptotic types J, K € J are so that JI C K.
That is, elements of § having asymptotics of type J are mapped by F' to
elements of § having asymptotics of type K. If (I, oo, T, To, J) is a symbol
algebra, then we can take JY for K. Moreover, if u € §, Fu € §x for some
K € J, where now F € M~! (and 90 continues to be a symbol algebra), then
u € §xr-1, and Proposition 2.4 states that F' realizes an isomorphism from
$sonto §yr if J O Lp.

Furthermore, if J € J is such that J = \/,.; Lg, for some bounded family
{G}liez M N, then §y = >, {u € § Gu € Fo}, and from Propo-
sition 2.5 we recover that this characterization is actually independent of the
choice of the family {G,},ez. Via the construction of suitable G,, this is the
way employed in the definition of function spaces with asymptotics, see, e.g.,
Liv—WirT [5].

3. LOCAL THEORY OF ASYMPTOTIC TYPES

The local theory of asymptotic types is the theory of asymptotic types at a
fixed singular exponent, but allowing all the other characteristic to vary, e.g.,

its algebraic multiplicity (regarding the singular exponent as an eigenvalue).

3.1. Finitely meromorphic functions. Let £ be a Banach space. We shall
consider the m-fold product E™ for m € Ny, where E° = {0}. We identify E™

with a subspace of E™*! via the map

, (¢07---7¢m71) v (07¢07---7¢m71)- (31)

E™ — pmtt

Further, we set
E*= ] E™
meNy
Thus, E* is the linear space of all finite sequences in E, where the sequences

(hoy -y Om—1) and (0,...,0,¢9,...,dm_1) for h € Ny are identified.
——

h times
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On E*°, we define the right shift operator 7" by

T: E% _)Eoo, (¢07"'7¢m727¢m71) = (¢07'--7¢m72)- (32)

By M, (E) for p € C we shall denote the space of all germs of E-valued
meromorphic functions at p. Moreover, A,(E) is the space of all germs of

E-valued analytic functions at p.

Definition 3.1. (a) ME"(L(E)) is the space of all germs of L(E)-valued,
finitely meromorphic functions at p, i.e., the space of all F € M,(L(E)) such
that

Fy Fy F,q

F(z) = (z—p)"+ G p) +...+Z_p

+F,+) Fu(z—p) (33)

i>1
with finite-rank operators Fy, F,..., F,_1 € L(F).

(b) MR (L(E)) is the space of all germs of L(E)-valued, normally meromor-
phic functions at p, i.e., the space of all FF € MI"(L(E)) such that F(z) € L(E)
is invertible for z close to p, z # p, and, moreover, F, € L(F) in the represen-

tation (3.3) is a Fredholm operator (then necessarily of index 0).
For the next result, see BLEHER [2].

Proposition 3.2. M (L(E)) is an algebra and M3 (L(E)) is its group of

twvertible elements.

3.2. Local asymptotic types. The idea is to choose 9t = Mgn(ﬁ(E)), 5=
M,(E), and §y = A,(E) in Definitions 2.1, 2.3.

The quadruple (ME(L(E)), 0o, Mp(E), Ay(E)), where gy is the canoni-
cal action of MJ"(L(E)) on M,(E), constitutes a pre-asymptotic algebra.
Equipped with the La.t. Jo, see (2.3), this pre-asymptotic algebra turns out
to be an asymptotic symbol algebra. We shall uncover this l.a.t. Jp.

We identify the quotient space M, (E)/A,(E) with E* via the map

¢0 ¢1 ++¢m71

+
(z=p)™  (z—p)m* Z2=p
This identification is compatible with (3.1). Moreover, multiplication by z — p

= (¢07¢17'--7¢m71)- (34)

corresponds to the action by T'.
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Lemma 3.3. (a) For F € M;}n(E), the space Lp consists of all sequences
(60, D1, ..., Pm_1) € E® for which there is a ¢(z) € A (E) such that

¢0 ¢1 ¢m—1 7 p
F(z) <(z—p)m + = +o — + ¢( )) € A, (E),

see (2.2).
(b) For F € MJ"(E) and J C E™ being a linear subspace,

JE = {(F0¢07 Figo + Fopr, ..., Frpp100 + Frppy o1 + -+ - + F0¢m+y,1);
(¢07 ) ¢m71) € J: ¢m7 ¢m+17 R ¢m+l/71 € E}
where F is given in the form (3.3), see (2.1).

Remark 3.1. For F € A,(L(F)), i.e., v =0 in (3.3), the operation .J > J is

given directly on the level of the space E*°,

()" E* = E=,(¢o, ..., Pm—1)
— (Fodo, Fidpo + Fodu, -, Fr1¢0 + -+ Fodm-1). (3.5)

Then J* = {®"; & € J}. Moreover, Ly is the kernel of the map ()¥. The
map () restricted to E™ only depends on Fy, Fi, ..., Fy,_1. Therefore, we

Lemma 3.4. Let F € Mi*(L(E)). Then:

(a) Ly C E™ is a linear subspace that is left invariant under the action by
the right shift operator T', i.e., TLrp C Lp;

(b) If J C E* is a linear subspace that is left invariant under the action
by T, then J¥ C E* is a linear subspace that is also left invariant under the
action by T

(¢) dim J < oo implies dim J¥ < oc.

Hence, we introduce local asymptotic types as follows:

Definition 3.5. An asymptotic type, J, on E is a finite-dimensional subspace
of E* such that T'J C J. The set of all asymptotic types on E is denoted by
J(E).
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Remark 3.2. By virtue of Lemma 3.4 (b), (¢), J(F) already supplies an l.a.t.
for the pre-asymptotic algebra (M (L(E)), 00, My(E), Ay(E)). The asymp-
totic algebra (ME"(L(E)), 0o, My(E), Ay(E), J(E)) is readily seen to be re-
duced.

Notice that, for J € J(FE), J C E™ for some m € Ny and, therefore, the
right shift operator 7' is nilpotent on J, since 7™ = 0 on E™. We will need

the following fact from linear algebra.

Lemma 3.6. Let J be a finite-dimensional linear space and T': J — J be a

nilpotent linear operator. Then there are ®,...,®, € J such that
O, Tdy,..., T™ 10y, ..., 0, TP,,..., T P, (3.6)

where m; € Ny, m; > 1, is a linear basis of J, while T™®; = 0 for 1 <
j < e. Furthermore, the numbers mq,...,m, are uniquely determined up to

permutation.

Proof. Choose a linear basis for .J for which the associated matrix to 7" is in

Jordan form. H|

Hence, the numbers my, ..., m, appear as the sizes of Jordan blocks; dim J =
my + - -+ + me. The tuple (my,...,m,) is called the characteristic of J (with
respect to the nilpotent operator T'), e is called the length of its characteris-
tic, and ®4,..., P, is said to be a characteristic basis of .J, of characteristic
(my,...,me), or simply an (my, ..., m.)-characteristic basis of J. Note that
the space {0} has empty characteristic with length e = 0.

The next lemma hints at an effective method for finding the characteristic
and a characteristic basis upon constructing a suitable basis of ker T". A proof

will appear elsewhere.

Lemma 3.7. Let J be a finite-dimensional linear space and T: J — J be a
nilpotent linear operator. Suppose that the characteristic of J is (my, ..., me).
Then ®q,...,P®, € J is an (myq, ..., m.)-characteristic basis of J if and only if

T™=t®,, ... Tm=1®, constitute a linear basis of ker T
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In particular, the length e of the characteristic of J equals the number
dim ker 7'

We add a general remark concerning the appearance of asymptotic types.

Remark 3.3. Let J € J(F) have characteristic (my,msg,...,m,). Let

1 1 e e
o= (o, oW )@= (88, 0 ) (3.7)
be an (my,...,m)-characteristic basis of J. The vectors ¢gl),...,¢(()e) are

linearly independent, since 7™ ~'®; = (¢gj)) for 1 < j<e. Weset
Ll:span{@(g); m; —k>m—1+1}, 1<[<m,

where m = max;<j<.m;. The spaces L; are actually independent of the choice
of ,...,®,, since L; is the projection of J on the [th component of E™. In
particular, J C L; x --- X Lz C E™. In this relation, however, equality in
general fails to hold.
Equality holds, i.e.,

J=Li X Ly X+ X Ly, (3.8)
if and only if ¢§Cj) € span{¢(()h); my >m; —k}forl <j<e 1<k<m;—1
Again, this is a condition that is independent of the choice of ®,,..., ®.. This

condition, in turn, is fulfilled if and only if
L, = span{g\’; m; >m—1+1}, 1 <1 <m, (3.9)
see also (3.18) and Remark 3.7 (a).

For J € J(E), let £(J) denote the length of its characteristic. Note that the
linear independence of ¢, ..., ¢\ implies that £(J) = e < dim E.

Ezample 3.4. For dim E = 1, an asymptotic type is uniquely determined by a
number m € Ny. Indeed, £ = C in this case and, if the asymptotic type J has
characteristic (m), then J = C™. Moreover, for F € MA*(L(C)) = M,(C),
F e My (L(C)) exactly means that F'(z) #Z 0. Then Lp = C™ if and only if

F(z) has a zero of order m at z = p.
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Lemma 3.8. (a) For each tuple (my,...,m,) with e < dim E, there is a
J € J(F) having characteristic (my,...,me). Moreover, J € J(E) can be
chosen, via (3.9), in the particular form (3.8).

(b) For J, K € J(E),

UIANK)> () +(K)—dimE)*. (3.10)

Furthermore, if (mq,...,me), (n,...,ny) are tuples with e < dimE, f <
dim E, then there are J, K € J(E) having (mq,...,me) and (nq,...,ny),

respectively, as characteristics such that in (3.10) equality holds.

Proof. (a) is follows from the description given in Remark 3.3. (b) is concluded
from the fact that ¢(J) equals the dimension of ker T', where the operator T is

considered as acting on .J, see Lemma 3.7. U

Moreover, for J, K € J(FE), it is seen in the same way that ¢(JAK)+£(JV
K) =((J) +{(K). Thus

((JV K) <min{{(J) + {(K),dim E'},

and equality holds if and only if equality holds in (3.10). Note that if these
equalities take place, then J, K € J(FE) are understood to be in general posi-

tion (with respect to each other).

Remark 3.5. In GOHBERG-SIGAL (4], p € C was called a characteristic value
for F € Mi*(L(E)) if dim Ly > 0. If, additionally, F € M3 (L(E)), then
one finds an (my, ..., m,)-characteristic basis ®,...,®, of Ly as in (3.6). If

®y,..., P, are given by (3.7), then

1 1 1 e e e
¢(() )7¢g )7 s '7¢£nz—17 s 7¢(() )7¢§ )7 s '7¢£711—17 (311)

was called a canonical system of eigenvectors and associated vectors for F(z)
at z = p. Vica versa, if a canonical system of eigenvectors and associated
vectors (3.11) is given, then the vectors @y, ..., ®, formed in (3.7) constitute an
(my, ..., me)-characteristic basis @1, ..., ®, of L. In this sense, we talk about

a coordinate-free version of part of GOHBERG-SIGAL’s theory. The numbers
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m; for 1 < j < e were called partial null multiplicities and mq+mo+- - -4+m, (=

dim L) was called the null multiplicity of the characteristic value p of F(z).

3.3. Singularity structure of inverses. Let £’ be the topological dual to
E. For ® € E*, ¥ € (E')*®, where we have ® = (¢o, ¢1,...,0m 1), ¥ =
(o, Y1, ..., m—1), we define

Po ® o
(z —p)™
R Yy + @o ® m—1 @ Yo + -+ Qo @ Yy
T T LY 60 @ Vs
(z =p)m z—p
where, for ¢ € E, ¢ € E', ¢ @1 € L(F) is the rank-one operator h — (¢, h)¢,
h € E, with (, ) denoting the dual pairing between E, E'.

(@ ® W)z —p| =

Proposition 3.9. Let I' € M}*(L(E)), J € J(E). Let ®y,...,. € J be an
(my, ..., meg)-characteristic basis of J. Then Ly C J if and only if there are
Uy,..., ¥, € (B such that T™V; =0 for 1 < j < e and the principal part
of the Laurent expansion of F~(z) at z = p equals

e

> (@@ )z - pl. (3.12)

=1
In that case, ¥q,..., U, € (E')® are uniquely determined. Furthermore, Lp =

J if and only if, in addition,
U, TV,,..., T™ N, . U, TV, ... T" ¥,
are linearly independent.

Proof. Let @, = (¢”,..., ¢ 1), @ = (6%, ..., 0% _}) be as in (3.7).
Recall that the eigenvectors qﬁ[(]l), . .,¢((f) are linearly independent. Choose
¢; € £’ for 1 < j < e such that (¢, qﬁgjl)> =0, for 1 < j,j' <e. Furthermore,

let G = F~L,
Gy G, G,_

f— . .. 1 j— k
G(z)—(z_p)g+(z_p)g_l+ +Z_p+G(,+;G(,+k(z p)*,
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with finite-rank operators Gy, Gy,...,G, 1 € L(F). Under the assumption
GU 7& 07

o < m = max m;
1<j<e

is a necessary condition for both Ly = OY C J and (3.12) to hold. Thus, by
possibly enlarging o, we may assume that o = m.

Condition (3.12) is equivalent to

> Yoo W eyd 0<i<m-1, (3.13)
m; >m—1 r+s=m;j—m-+1

for suitable ng), 1 <s<e, 0<j<m;—1, where the first sum is extended
over all j such that m; > m — [. The relation with the ¥y,..., ¥, € (E')™ is
U= (0, ) W = (8wl ),

Suppose that (3.13) holds. Then, for h(z) = >, (2 —p) € Ay(E),
where h; € E,

(Gohm Giho + Gohy, ..., Gg1ho + -+ -+ Gohmfl)

—ZZ( YO0 ko) + -+ (W) by 1)) T

7=1 s=1
in £, ie., Lr = O% C J. Moreover, equality holds if and only if ¥,
TU,, ..., 7™, ... U, TV, ..., T"= ¥, are linearly independent.
Now, suppose that Ly = OY C J. Then, for 1 <[ < m, we have

GoE + -+ G E Cspan{g{); 1 < j <e,0<s <my; —m+1—1}

such that the hypothetical relation (3.13) determines ng ) uniquely. To see this,
we proceed by induction on m — m; +s. For m —m; +s = 0, i.e., m; = m,
s = 0, we obtain (¥, h) = (¢, Goh), h € E, for m; = m, i.e., v = Gy,
This leads to Gy = ij:m qﬁéj) ® w(()j). Furthermore, if 1% for m — m;+s <l
for some [ > 1 have already been found, then

hy=(g,Ghy— > > @V e, hek,

mj >m—lr+s'=m;—m-+l,
m—m;j+s'<l
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form —m;+s=11ie.,

W=agi- > > el

mj>m—lr4s'=m;—m-+l,
m—mj+s'<l

which gives us (3.13). This furnishes the proof. O]

Corollary 3.10. Under the assumptions of the previous proposition, if @,
..., P is an (my, ..., me)-characteristic basis of Ly, i.e., we have J = Ly,
then Wy, ..., U, € (E')® is an (my,...,m.)-characteristic basis of Lp. In

particular, Ly and Ly have the same characteristic.

Remark 3.6. In GOHBERG-SIGAL [4, Theorem 7.1], it was shown that, for each
F e My (L(E)), there exist an (my,. .., m.)-characteristic basis ®y,..., ®.
of Ly and an (my,..., m¢)-characteristic basis ¥y,..., U, of Lp (this stated
in the language expounded in Remark 3.5) such that the principal part of the
Laurent expansion of F~!(z) at z = p has the form (3.12). In that respect,

Corollary 3.10 is more general.

3.4. Proofs of the main theorems. In view of Lemma 2.2 (a) and Re-
mark 3.2, Theorem 1.1 follows after Theorem 1.2 is proved. Thus, we imme-

diately enter the proof of our second main theorem.

Lemma 3.11. Let J, K, L € J(E), JANK = O. Then there is an F €
MBS (L(E)) N A(L(E)) satisfying Ly = J and K* = L if and only if K and

L have the same characteristic.

Proof. For F € My (L(E)) N A (L(E)), Ly = J, and K¥ = L, the operator
() from (3.5) induces an isomorphism ()*: K — L which commutes with T
Thus, the condition is necessary.

Suppose that K and L have the same characteristic. First, we treat the
case J = O. Let K and L have characteristic (ny,...,ns). Further, let
(®1,...,Pf) be an (ny,...,nys)-characteristic basis of K and (VUy,...,¥) be

an (ng,...,ns)-characteristic basis of L. We are going to construct operators
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Fo, Fy,...,Fsq € L(E), where 7 = maxj<g<sny, such that Fj is invertible
and

‘I)I(CFO ..... Fno1) _ U, 1<k<f{.

These relations mean that Fy, Fy, ..., F,_, satisfy

FO¢[(]k) = 77/}[(]]6)7
F1¢§Jk) + F0¢§k) = w%k)a ng Z 27
......... (3.14)

Fﬁ—2¢t()k) ot F0¢£-zkj2 = wgi)b ng 2> n—1,

Fr1od) + Fu 00l + -+ Fpot® | = o ny =7,

for 1 < k < f, where @ = (¢§",..., 0\ ), ¥ = (4",..., 0l ) for
1<k<f.
We proceed as follows: For 1 <[ <n,0<k<I[—-1,let

Kl(k) :span{¢£h); r<l—Fk—1,ny Zr+k—i—1}.
Note that, for 1 <l <n, 0 <k <I[—1,

K = K" + span{¢"); np > 1+1}.

By induction on [ = 1,...,7n, we shall determine Fj on Kl(o), F} on Kl(l), ey
F;_1 on Kl(l_l) such that Fj is bijective from the space Kl(o) onto its image and
the system (3.14) of linear equations is fulfilled up to the Ith equation.

The beginning of induction, [ = 1, is clear: ngbgk) = wék) for 1 <k < f
determines Fj uniquely on the space K fo). Furthermore, Fj is a bijection from
K{O) onto span{z/}ék); 1 <k< f}, since both spaces are spanned by linearly
independent sets of f eigenvectors. Now, suppose that, for some 1 <[ < n—1,

the construction has already been performed and consider the equation
Fiof + Fagl? + - + Fogl? =y (3.15)

which should hold for all 1 < k < f such that n, > [+ 1. Let a be the number
of h such that n, > [ 4+ 1. Assuming n; > ny > --- > ny, we, therefore,
have n, > [ + 1 if and only if h < a. Now, by induction on £k =1,...,a, we
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extend the operator Fj to Kl(o) + span{qﬁgh); 1 < h < k}, the operator Fj to
Kl(l) —i—span{qﬁgf)l; 1 < h <k}, ... the operator F;_; to Kl(l_l) —i—span{qﬁgh); 1<
h < k}, and the operator Fj to span{qﬁgh); 1< h <k}

The beginning of induction, k£ = 0, is empty. In the inductive step, from
k —1 to k for some 1 < k < a, the value for Fl¢(()k) and the values for E_r¢£k)

for all these 1 < r <[ satisfying
Pk) ¢ Kl(lfr) +span{op™; 1 < h < k} (3.16)

are to be chosen in such a way that (3.15) is fulfilled. If [ is not among the r

satisfying (3.16), then after the corresponding choice we still have
Fy is injective on the space Kl(o) + span{¢l(h); 1<h<k} (3.17)

while if [ is among these r, then there is at least one other 0 < r <[ — 1 such
that Fl,r¢,(nk) is to be chosen, e.g., r = 0, and this choice can always be made
in a manner such that (3.17) is fulfilled.

Having defined, for 0 < [ < n — 1, the operators F; on K,%l), it remains to
extend these operators to bounded operators F; on E such that Fj is invertible.
We set

F(z)=Fy+F(z—p)+---+Fp 1(z —p)™@ Y
and obtain F € M2 (L(E)) N A,(L(E)) such that F~' € A, (L(E)), ie.,
Lr = O, and, moreover, K = L by construction.

Now, we switch to the general case. Let the asymptotic type J have charac-

teristic (my, ..., me) and let Jy = Ly X Ly X - -+ X Ly be as in (3.8) also having
characteristic (my,...,m.). Consider the operator
Fy(z) =Ty + Y (2 — p)™TI;, (3.18)
j=1

where I1; € L(E) for 1 < j < eis a rank-one projection onto the space spanned
by the jth eigenvector of T" on Jy, orthogonal to all other projections II, for
1<h<eh#jand Iy =1-Y°_ ;. Then Fy € MM (L(E))NA,(L(E)),
and Lp, = Jo. By the first part of the proof, there are G, H € M}*"(L(E)) N
A,(L(E)) such that G™', H=' € A,(L(FE)) and J¢ = J,, L¥ = L, where
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K% = K, and K{O = Ly. Note that JyA Ky = (J A K)¢ = 0% = O such that
K, Ky, Ly, and L all have the same characteristic. We set

F(z) = H(2)Fy(2)G(2) (3.19)
and conclude that F' € Mp(L(E)) N A,(L(E)), Lp = J, and K" = L, since

Lp = Lyp,g = OO H — 0@~ — 1 .
= (LFO) @ = JOG71 =J,
KF — KHFOG — (KG) HFy — Ké:[FO — (K(fb) H — L(I){ — L

by the help of Lemma 2.2. O

Remark 3.7. (a) In the proof of Lemma 3.11, normal factorization enters via
the construction in (3.18), (3.19). This technique played a predominant role
in GOHBERG-SIGAL’s paper, see, e.g., [4, Theorem 3.2].

(b) The previous lemma remains valid if the condition JAK = O is skipped.
In that case, there is an F' € My (L(E)) N A,(L(E)) satisfying Ly = J and
K*¥ = L if and only if K/ (J A K) and L have the same characteristic. Here,
the right shift operator induces a nilpotent operator on K/ (J A K), since both
K and J A K are invariant under the action by 7'.

Proof of Theorem 1.2. Assume that Lp = J, OF = K for a certain F €
M (L(E)). Let ¢§1’, ce ¢(()8) be a canonical system of eigenvectors for F'(z)
at z = p and z/_)(()l), ce @éf) be a canonical system of eigenvectors for (F')~1(z) at
z = p. Since the representation (3.12) is valid for both F, F'' € M} (L(E)),
the relation F(2)F~'(z) = 1 immediately implies that (", ¢} = 0 for
1<j<e 1<k<f. Thisyields ((J)+{(K)=e+ f <dimE.

Now, let ¢(J) + ¢(K) < dim E. We choose J;, K, € J(FE) such that J; has
the same characteristic as .J, K, has the same characteristic as K, and J1AK; =
O, ie., J, K; € J(E) are in general position. (This is possible in view of
Lemma 3.8 (c).) By virtue of Lemma 3.11, there are F, G € M}*(L(E)) N
A,(L(E)) such that Ly = J, K, = K, L¢ = K,, and J;Y = J. By
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Lemma 2.2 (c), we obtain
Lpg = (Lp)% =0=J, Lgp=(Lg)" = K\" =K, (3.20)

showing that FG~' € M (L(E)) is as required. O

The statement that Ly characterizes the amount of asymptotics annihilated
by F € MZH(E(E)), while O contains the asymptotics produced by it, has
to be read with some care. In fact, Theorem 1.2 shows that, already for
F e My (L(E)), L ANOF # O is possible provided that dim E > 1.

We conclude with a simple example.

Example 3.8. Let

A
F(z)=1+ ,
Z—p
where A € L(E) is a finite-rank operator and A%> = 0 (dim E > 1 if A # 0).
Then F' € M} (L(E)), with its inverse being given by F~"(2) = 1—-A(z—p)~".

We get

Ly =0" = AE.

Here, asymptotics of type AE are annihilated, while at the same time in a

complementary direction exactly this sort of asymptotics is produced.
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