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Abstract

Exterior tensor products of elliptic operators on smooth manifolds and mani-
folds with conical singularities are used to obtain examples of elliptic operators on
manifolds with edges that do not admit well-posed edge boundary and coboundary
conditions.
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Introduction

A well-known tool of elliptic theory is the so-called exterior tensor product of operators,
introduced by Atiyah and Singer in [1]. Recall that the exterior tensor product Di#Ds
of two elliptic operators D; and D, on smooth manifolds M; and M, is some elliptic
operator on the product M; x M,. If both manifolds are closed, then the index of the
tensor product is equal to the product of indices of the factors

ind Dl#Dg =ind _D1 ind DQ. (01)



Exterior tensor products and formulas of this type play a fundamental role in the index
theory of elliptic operators: the first proof of the Atiyah—Singer index theorem (e.g., see
[2]) used formula (0.1). A more general formula is valid when one considers a locally
trivial fiber bundle, instead of a direct product of manifolds, see [3]. This formula was
used in the K-theoretic proof of the index theorem.

The aim of the present paper is to construct a certain product of elliptic operators
defined on manifolds with isolated singularities and operators defined on smooth man-
ifolds. We show that as a result of this product we obtain a very interesting class of
operators on manifolds with edges. Indeed, this class contains some operators that re-
quire no (co)boundary conditions along the edge to obtain the Fredholm property. On the
other hand, this class contains some operators for which the obstruction to the existence
of (co)boundary edge conditions (see [7]) is nonzero. We also give explicit examples of
operators that have no elliptic edge problems.

This paper is organized as follows. First we briefly recall the exterior tensor product.
We then pass to the exterior tensor product of an elliptic operator on a smooth manifold
by an operator defined on manifold with an isolated conical singularity. We prove that
the resulting edge-degenerate operator does not require boundary conditions along the
edge. Moreover, we employ exterior tensor products to construct another class of edge-
degenerate operators. For these operators we compute the obstruction to the existence
of an elliptic edge boundary value problem. We finally give some examples where the
obstruction does not vanish.

1 Exterior tensor product of elliptic operators

Let M; and M, be two smooth manifolds (possibly, with boundary). Consider two
elliptic differential operators of order m

D1 : COO(Ml,El) — COO(Ml,Fl), D2 : COO(MQ,EQ) — COO(MQ,FQ). (]_]_)

The operators act on sections of vector bundles Fi, E,, Fi, F, over the corresponding
manifolds.

The exterior tensor product Di# D5 of operators D; and Dy, is an operator on the
Cartesian product M = M; x M, defined as

Di®1ly, 1y ® D ( EB1 2) ( EB1 2)
B @ D> 1@ 1k, C®(M,F, ® F,) C®(M,E, ® F).

(1.2)
Here for brevity the pull-backs to M of vector bundles from the factors are denoted by the
same letters as the initial bundles. The formal adjoint operators are taken with respect to
some Hermitian metrics in vector bundles and some smooth measures on the manifolds.



By A ® 15 we denote the operator on the product of two manifolds that corresponds to
some operator A on one factor and a vector bundle E on the other factor.
It follows from the relation

DD, ® 1p, + 1p, ® DiD, 0 )

0 DDy ®1p, +1p @ D Ds5
(1.3)
that the tensor product of elliptic operators is an elliptic operator. For brevity here and
below by a tensor product of operators on different manifolds we mean the exterior tensor
product.
From the topological point of view, one can say that the expression (1.2) on the level
of principal symbols of the corresponding elliptic operators defines a product

(D1#D2)"(D1#D>) = (

K(T*M,) x K(T*My) — K(T*(My x Ms,))

of the K-groups of the cotangent bundles of the manifolds. More precisely, the difference
constructions of elliptic symbols o(D;) and (D) are mapped to the difference construc-
tion of the product o(D;)#o (D).

Atiyah, Patodi and Singer showed in [4] that the difference construction of the symbol
of an elliptic self-adjoint operator is an element of the odd K-group K'(T*M) of the
cotangent bundle of a smooth manifold M. On the other hand, it is obvious that if the
first factor D; of the tensor product is self-adjoint then the result D;# D, turns out to
be self-adjoint as well. Thus, one sees that in this case the tensor product also induces a
product in K-theory:

KHNT*My) x K(T*My) — K*(T*(M, x My)).
The remaining third product
Kl(T*Ml) X Kl(T*MQ) — K(T*(Ml X MQ))

of two odd K-groups can also be defined in terms of elliptic operators. Namely, for a pair
Dy, D, of elliptic self-adjoint operators the tensor product is defined by the formula

Dl#D2 =D ® ]-E2 +1 (1E1 X Dg) : COO(M, Ei® Eg) — COO(M, Ei® Eg) (14)

Of course, this operator is not self-adjoint.

2 Example 1. An operator on a manifold with edge
that does not require edge conditions

Let us apply the tensor product when manifolds have singularities. We consider the
simplest case.



Assume that the smooth manifold M; is closed and operator D; on it has smooth
coefficients. Moreover, let M, be a manifold with boundary and assume D5 on the interior

M, to have a conical degeneracy (see [5]), i.e. it has smooth coefficients in the interior,
while in a certain neighborhood of the boundary it has a decomposition of the form

8 8 m—k
D2|U6M2 =r ™ Z Qg (w,r, _Za—w> (27"5) ,

0<k<m

where r,w denote the normal and the tangential variables at the boundary, while the

coefficients ay, (w, T, —i%) are smooth families with parameter r of differential operators

of order 0 < £ < m on the boundary of Ms. The principal symbol of the corresponding
coefficient will be denoted by ax(w,r,q). In this case D, is a continuous operator in the
scale of weighted Sobolev spaces on Ms:

D2 : HS’IY(MQ) — Hsjm”yim(Mg). (21)

Let us assume that both D; and Dy are elliptic. Recall that for conically degenerate
operators the ellipticity condition amounts to two requirements:
a) interior ellipticity: for r # 0 the principal symbol of the operator must be invertible,

and for r = 0 the symbol
> ap (w,0,9) p" "
0<k<m

must be invertible for all p? + ¢? # 0 as well;!
b) the conormal symbol

0\ -
D)) = Y <w, 0 —%) gt
0<k<m
must be invertible as operators
o.(Dy)(p) : H?(0My) — H*™™(0Ms)

for all values of the parameter p on the weight line

L,={peC|Imp=nr}.

(The conormal symbol is an operator family on the boundary, elliptic with parameter p.)
It is known that an elliptic operator D, defines a Fredholm operator in weighted
Sobolev spaces (2.1); e.g., see [7].

!These two conditions can be - combined if one considers the symbol of the operator on the so called
compressed cotangent bundle 7* M5 of the manifold with conical singularities, e.g., see [6]



Let us now comnsider the tensor product of D; and D,. Near the singularity, i.e. for
small r, the product has the form

Tle X ]-E2 1F1 X TmD; ) (2 2)

D, #D —pm
1 2‘M1><U6M2 ( lp, @ r™Dy —r™D7 @ 1p,

Here, just as in the preceding, D* is the formally adjoint operator. For manifolds with
conical singularities the adjoint is taken with respect to the measure r‘dwdzdr.

Let us consider M, as the interior of a manifold
HQ - MQ/ aMg

with conical singularity obtained under the identification of all points of the boundary.
Now geometrically the product (2.2) corresponds to the manifold

W:Ml XMQ

with edge M;.
From the analytical point of view, (2.2) also corresponds to this singular manifold,
since the corresponding operator is edge-degenerate, i.e. it has a decomposition of the

form (cf. [8])
i AW ANANCAY
P=r E br. <r,m,w,—z%> <zr§> (—zr%> , (2.3)

k+[l[<m

where the multiindex [ has length equal to the dimension of M, while the coefficients

b T, Ww —ii
k,l y by Wy 8&)

denote smooth families of differential operators of order m — k — || on 9M, with smooth
coefficients. The operators smoothly depend on parameters r, x up to r = 0.

It is well known (see [5]) that the ellipticity condition for edge-degenerate operators
consists of two parts:

a) interior ellipticity, i.e. the invertibility of the principal symbol for r # 0 and the
invertibility of the symbol

Z bk,l (07 €T, w, Q) pké-l
k+]1|<m

for p* +¢* +&* # 0;

b) the invertibility of the so called edge-symbol of the operator. For operator P as in
(2.3), the edge-symbol is defined as

oA(P) (@, &) =17 Y by <O,$,w,—ia%> <ir%>k(rf)l.

k+|l|[<m



It is a family of operators parametrized by the cosphere bundle S*M; of the edge. More
precisely, each operator of the family acts in special weighted spaces:

oA(P)(x, &) : K (Kons,) — K7™ (Ko,
on the infinite cone (here Kg denotes the infinite cone

Ko~ {Qx R} /{2 {0}) 2.

with base ).

Let us recall the definition of the spaces %7 (see [5]).

For a smooth compact manifold € of dimension n—1 the space K*7(Kg) on the infinite
cone Kq is defined as the completion of C§°(€2 x Ry ) with respect to the norm

||u||1cs,v(KQ) = ||301u||Hs,7(KQ) + ||302U||Hs(Kgm{r>R}) ] (2.5)

where ¢ (1) + p2(r) = 1 is a partition of unity on R, such that ¢, is zero at infinity and
@y is zero near the origin, while H*(Kq N {r > R}) is the “usual” Sobolev space that is
obtained if we cover €2 by local charts diffeomorphic to some domains on the sphere S™ !
and interpret (r,w) as polar coordinates in R and rewrite in these coordinates the usual
Sobolev norm. Possibly a simpler description of this space for nonnegative integer s can
be given by an equivalent norm:

n—1—48 S a ’
Hs(Kon{r>R}) — /T o {7”2 |U|2+‘<7”§> u

Q

2

[l

+ ((—Ag)su,u)} dr dw,

u € C°(KqNn{r > R}), where Agq is the Beltrami-Laplace operator on 2.
Under the above-mentioned ellipticity conditions, the operator (2.3) is Fredholm in
the wedge Sobolev spaces

P W (W) —s W7 (W),

(The definition of these spaces, as well as the proof of the Fredholm property, can be
found, e.g., in [5, 7]. From now on we assume that v = m/2.)

Let us show that the ellipticity condition holds for the tensor product of our operators.
The edge symbol of the tensor product (2.2) is given by

o(D1)(x, 7€)  0.(Ds) (irgy)
0u(D2) (ir2) =" (Dy)(x, 7).
(We write A instead of A ® 1 etc. for brevity.) The conormal symbol of this family is

equal to
B 0 ae(D3) (p)
Oc¢ (UA(D)) - ( O'C(DQ) (p) 0 ) :

on(D1#Dy)(x, &) =1 ™ (

7



It is well known that if a conically degenerate operator D, of order m is Fredholm for a
weight -, then the adjoint operator is Fredholm for the weight m — ~; for v = m/2 the
two weights coincide. Under this condition, the conormal symbol of the edge symbol is
invertible, so that the edge symbol is a family of Fredholm operators. To prove that this
family is actually invertible, we shall show that the kernel of each operator of the family,
as well as the kernel of the adjoint operator, is trivial.

To this end, just as in Section 1, we consider the product

T = UX(Dl#DQ)O.A(DI#DQ)

(where the adjoint operator is taken with respect to the inner product in the space K%0)
and prove that the kernel ker T' = ker oy (D1#D>) is trivial. A straightforward computa-
tion shows that this product, modulo terms of order 2m — 1, has the form

S (a*<D1>a<D1>(x, 16)+ 0 (DouD) (ir) 0 )

0 o(Dy)o*(Dy)(x, 7€) + 0e(Da)oy (Da) (i) -

(2.6)
(Lower-order terms arise from commutations with the weight.) Moreover, the equality is
exact for r < €, where ¢ > 0 is sufficiently small, since the weight is equal to 1 in this
region. It follows that if a vector function u(r,w) lies in the kernel of T', then u = 0 for
r < ¢. Indeed, suppose the opposite: Tu = 0, but u # 0 for r < £. Consider a smooth
partition of unity 1 = x%(r) + x3(r), where x; and x» are real, y; = 0 for r > &, and
x1 > 0 and r < €. Then we arrive at a contradiction:

0= (U,TU) = (Xlua TXIU’) + (X?ua TXQU) Z (Xlua TXIU’)
> (Xlu,diag{a*(Dl)a(Dl)(:r,rf),U(Dl)a*(Dl)(x,rf)}Xlu) > 0.
(The last inequality follows from the fact that
0" (Dy)o(Dy)(z,r€) and o(Dq)o*(Dy)(x, ré)

are self-adjoint matrix functions that are strictly positive for r > 0).
It follows that ker T’ = kerI’, where the operator

— (a*(m)a(pl)(x,v(r)o+a:<DQ>ac(D2> (irgr) 0 )

T ~
0 o(D1)o”(Dr)(z,v(r)§) + oc(D2)oz(D2) (”a%)
(2.7)
differs from 7" in that r has been replaced by v(r) wherever it is multiplied by &; here
v(r) =r for r > ¢ and v(r) > £/2. The operator

U =r"(v(r)& — (ro/or)* — AQ)_mf

has an operator-valued symbol satisfying the conditions of Definition 5.3 and hence is
invertible (together with 7" and T') for sufficiently large |£]. It follows from the homogeneity

8



properties of 7' that T'(§) is invertible for all £ # 0, so that ker T" = ker op (D1 #D5). A
similar computation (with reverse order of the factors) shows that cokeroy(Di#Ds) is
also trivial.

Thus, the tensor product D;# D, is an elliptic operator, and from the finiteness the-
orem (see [7]) we obtain the following result.

Theorem 2.1. If the operator Dy s elliptic and the operator Dy is elliptic for the weight
v =m/2, where m = ordD; = ordD,, then the tensor product

Di#Dy : W (W) — W7 (W),
15 a Fredholm edge-degenerate operator for the same weight.

We see that the tensor product construction produces an elliptic operator D;# D, on
a manifold with edges which, in contrast to the general theory (see [5]), does not require
additional edge boundary and coboundary conditions.

3 Example 2. An operator on a manifold with edges
admitting no well-posed boundary and coboundary
conditions

In elliptic theory on manifolds with edges, there is an obstruction to the existence
of well-posed edge boundary and coboundary conditions. In a sense, this obstruction is
similar to the Atiyah-Bott obstruction [9] to the existence of well-posed classical boundary
value problems. However, the question as to whether this obstruction is always trivial
has been open yet. Using the tensor product technique, we give an example where the
obstruction is nontrivial.

This time we again start from a closed manifold M; and a manifold M, with boundary.
However, to this pair we assign a different manifold with edge 0 Ms, namely, the manifold

WI:Ml XMQ/N,

obtained from the Cartesian product of M; and M, by identifying all points of the bound-
ary My x OM, lying in the same fiber of the projection M; x 9My — OM,. The coordinates
on M, will be denoted by w, and the coordinates in a neighborhood of the boundary of
Ms by r,x.

Example 3.1. By way of an illustration, we take the circle M; = S!' and the two-
dimensional disk M, = D?. Then the product M = M, x M, is the solid torus, and
the space M, is homeomorphic to the two-dimensional sphere. The manifold with edge
W = M, x M, is homeomorphic to the product S x S? of spheres. Furthermore, the space
W itself can be obtained from the solid torus by identifying the meridians lying on the

9



boundary. On the other hand, the manifold with edge W' considered in this section is
obtained by identifying the parallels on the torus. One can readily see that the resulting
space is homeomorphic to the sphere S3.

As before, let D; be an elliptic operator on M;. Next, let Dy be an elliptic operator
on M, without degeneration and suppose that in a neighborhood of the boundary it has

the form 5 5
D2|U6M2 =T <E + A (x, —’La—x>> y

where A = A(z, —i0/0x) is an elliptic self-adjoint operator on the boundary with principal
symbol a(z, ) and I is an isomorphism of vector bundles. For brevity, we assume that T’
is the identity map.

Now we consider a neighborhood U of the boundary of M; x M, and choose a diffeo-
morphism gy of U on the product

[0, ].) X M1 X aMg

On the product (0,1) x M;, we consider the cone-degenerate (at r = 0) elliptic operator

.9 % COO((O, 1) X Ml,El) C’oo((O, ].) X Ml,El)
1 —irs; Dj o N &
c=-{ 7 L)
LT C*((0,1) x M, Fy) C*((0,1) x My, Fy).

Its principal symbol is Hermitian and satisfies the interior ellipticity condition. Now
consider the tensor product (1.4) of the self-adjoint operator A by C. The tensor product
A#C' is an operator on [0,1) x M; x OMs and has the form

o 1 0 r2 4rA(z,—id) D (w, —iZ) 1 0
o Dy (w,—i2)  rZ—rA(z,—il) 0 —i )

It follows that for r = 1 the resulting operator coincides (up to isomorphisms of vector
bundles specified by the first and the third matrix factors in the product) with the operator

Ta% +rA (Jc, _ia%) Dy (w, —i%)
) )

Dy (w, —i%) T% —rA (x, —iZ

Di#tDy =17 (

Thus on the wedge manifold we have the globally defined operator
D = (Di#Dy) x + g5;(A +iC)(1 — x),

where y € C§°((0,1]) is a cutoff function equal to 1 for > 9/10. The resulting operator
is edge degenerate. Let us verify the ellipticity.

10



A.. The interior ellipticity for r # 0 is obvious, since the operator is the tensor product
of elliptic operators. The interior ellipticity for » = 0 of the principal symbol also holds,
since for r = 0 we have the symbol

ip+a(z,§) o"(Di)(w,q)
O.(Dl)(MJQ) zp—a(:r,f) 7
which is obviously the tensor product of invertible symbols.

B. Now let us find conditions under which the edge symbol of D is a Fredholm family.
Let oy (D) (z,€) be the edge symbol of D. It is a family parametrized by T*0M,\ {0}:

r%+m (x,&) D3 (w,—i%) )

D, (w, —i%) rl —ra (z,8)

ox (D) (z,&) =1 (

or

The operator of the family act in the spaces

KT (Ry x M, By @ Ey) T Ry x My, By © Bay)
os (D) (,€) : ® — ®
ICS”Y(R_F X M, B ® FQ,x) ’Csfl”yfl(R_‘_ X M, E1 ® ngx).

By 0. = 0. (0x (D)) we denote the conormal symbol of the edge symbol. It has the
form

. . H (M, F1 ® Es HsflM,E®Ex
e, —ip Dy ( 1@1 2’) R ( IEBI 2,)
O¢ x,w,—@% = D i :
VTP H My B ® Fy) H*Y(My, By, ® By).
(3.1)

Proposition 3.2. For each x € OMy and p on the real line, the family (3.1) has a single
degeneracy point p =10 , and the corresponding root space is

ker D1 X EQ,I D ker Dr X FZ,:c-

The proof obviously follows from the representation of the conormal symbol in form

of the sum
o, = —ipl + 0 Dp
c — p -Dl 0 :

Corollary 3.3. There ezists a sufficiently small € > 0 such that for every point (z,§) €
S*(OM,) the edge symbol o (D) (z,€)

O

ox (D) : K3 (Ry x OM,) — K27 LR, x OM,)

s Fredholm for all nonzero weights in the interval —e < v < ¢.

11



The proof follows from the ellipticity (interior and conormal) of the operator o, (D)
(see [5]).
We denote the index of the Fredholm family o, (D) (x, §) parametrized by the cosphere
bundle of the edge OM, by
indoy (D) € K (S*0My) .

The definition of the families index can be found in [10]. It turns out that we can give an
explicit expression for this index in the case of the tensor product.

Theorem 3.4. The indez of the family op (D) is equal to
indop (D) = dimker Dy [L (0 (A))] + dimker D} [L_ (0 (A))] € K (S*0My),  (3.2)

where by Ly (0 (A)) € Vect (S*OM,) we denote the positive spectral subbundle of the
invertible Hermitian symbol o (A) and L_ (o (A)) is the complementary subbundle corre-
sponding to negative eigenvalues.

The proof will be given in the next section, and now we just apply this result.
It was shown in [7] that an elliptic edge-degenerate operator admits a well-posed edge
problem if and only if the index of the edge symbol is zero as an element of the quotient

group
indoy (D) € K (S*0OM,) /7" K (0My) ,

where 7 : S*0M, — M, is the natural projection.

Theorem 3.5. In the quotient group K (S*OM,) /7* K (0My), the following formula holds
for the index of the edge symbol:

indoy (D) = ind Dy [Ls (o (A))]. (3.3)

Proof. Indeed, L, (A) and L_ (A) are complementary subbundles in 7*E,. Hence in the
quotient group one has

(L (A)] = —[Ly (A)] € K (S°0My) [n°K (D).

Now the desired formula can be obtained from the expression (3.2) by a straightforward
substitution. O

Corollary 3.6. If Di has a nonzero index and the operator A on the boundary corre-
sponding to Dy determines a nonzero element of the group K(S*0Msy) ® Q/K(0M2) ® Q,
then the obstruction is nonzero for the corresponding edge-degenerate operator D.

Let us give a specific example in which the element (3.3) is nonzero.
First, we consider the simplest local model.

12



Example 3.7. On the cylinder My, = S' x [0,1), we consider the Cauchy—Riemann
operator Dy = 3/0r — i0/d¢p. Next, let M; = S? and let D; be the Euler operator

Dy =d+6: AV(S?) — A°U(S?),

Then
ind D; = x(S?) = 2,

L) ©={ T 20

This bundle is a generator of the group

K(S'SY) /m*K(S") =2 Z/Z~Z.
The corresponding operator in a neighborhood of the edge has the form
. ( Ta% — ir% Dy (w,—i%) )

D, (w, —i%) T% +ird

‘ M xU
Op

By applying Corollary 3.6, we find that this operator has no well-posed edge boundary
and coboundary conditions.

One can readily show that the Cauchy—Riemann operator extends to be an elliptic op-
erator on the two-dimensional disk D?, containing the cylinder M, as a collar neighborhood
of the boundary. By reproducing the above argument, we arrive at an edge-degenerate
operator on a closed manifold with edge.

4 Computation of the index of the edge symbol

Proof of Theorem 3.4. To simplify the computations, we assume that the principal symbol
of A satisfies the equality a2 (z, &) = |¢]°.

1) For an arbitrary positive r, consider the family of conormal symbols
ip+ra(z,&) Di(w, —i%)
D, (w, —i%) ip—ra(z,§) '

Obviously, the singular points of this family in the strip |Imp| < & can be obtained by
clockwise rotation by an angle of 7/2 from the eigenvalues of the family of self-adjoint

operators
ra(z,€) Dz (w, —i%) (42)
D, (w, —i%) —ra(x,§) '
with absolute value less than €. These eigenvalues, as well as the corresponding eigenspaces,
are described in the following lemma.

oA(D)(x, 7€, p) = ( (4.1)

13



Lemma 4.1. For || = 1, the small eigenvalues X of the operator in (4.2) are equal to
+r,, and for A = r the corresponding eigenspaces have the form

( kerD1 &® L+ (a ($,§)) )
ker D} ® L_ (a(x,€)) )’

while for A = —r we have
ker D1 ® L_ (a(z,£))
ker D} @ L (a(z,€)) )

In particular, for r # 0 the zero eigenvalue is missing.

Proof. Consider the eigenvalue problem

("5 ) (D0) e

By applying the latter operator once again, we obtain

r*I + D; D, 0 ) e[
0 r?I + D, D; v ] v )’

N =124,

Hence we have

where ;% is a (nonnegative) eigenvalue of DiD;. Hence if )\ is small, then p = 0 (it is
constant) and r is small. Hence A = £, and for the eigenvectors we have
Dyu =0, Djv=0.
Thus, system (4.3) can be reduced to the equations
r(a(z,&) F1)u=0, r(a(z,&)£1)v=0.
For r # 0, we arrive at the desired inclusions
u € ker Dy @ Ly (a(w,§)),

v € ker D} ® Ly (a(x,€)).

One can easily verify that all pairs (u, v) satisfying these conditions are indeed eigenvectors
of the operator (4.2).
The proof of the lemma is complete.

U
Now let us split the half-line » > 0 into two intervals (0,¢’) and (', +00) such that
the family (4.1) is invertible on the weight line Imp = —¢ on the closure of the first

14



interval. It suffices to take a sufficiently small £’ and use the continuous dependence
of the family (4.1) on the parameter r. On the remaining part [¢’, +00), the family is
invertible on the weight line Imp = 0 by Lemma 4.1.

By a small deformation of the family (4.1) of conormal symbols, we can ensure that
this family is independent of r in a neighborhood of r = ¢'. By 7,(D) we denote the
differential operator on the infinite cone Kj;, obtained for r > £’ as a restriction of the
operator

oa(D) =r~"ox(D) (:r,s’f,ir%) :

This operator is continuous in the weighted Sobolev spaces
5A(D) . Hs,—E,U(KMl) N Hs—l,—e—l,—l(KMl)

on the infinite cone and is Fredholm. To make the exposition more self-contained, we
recall the definition of weighted Sobolev spaces on the cone (e.g., see [11]). Namely, the
cone Ky, can be treated as a manifold with two conical points r = 0 and r = oco. (The
radial variable in a neighborhood of the latter is v = 1/r.) Then H®"72(K);, ) is the
weighted Sobolev space of order s with weight v; at » = 0 and weight (—72) at ' = 0.

Lemma 4.2. One has
ind O'A(D) =ind 5A(D)

The proof will be given in Appendix II.
Now let us compute the index of the family o, (D) in weighted Sobolev spaces. Con-
sider the following homotopy of the operators of the family:

or =1 "op(D) <m, (r+ N, @r%) A€ 0,1).

By construction, this is a homotopy of Fredholm operators, since the conormal symbol
at infinity remains unchanged, and the conormal symbol at » = 0 remains invertible on
the weight line Im p = —e. Moreover, at the end of the homotopy at A = 1 the operator
0, is equivalent to an operator with constant coefficients on the infinite cylinder with
coordinate ¢ = Inr. The index of families of this type was computed in [14]. Moreover,
the cokernel of the operator is trivial, and hence the index satisfies

ind&l = [ker gl] € K(S*aMg)
The latter operator has the form

= _ . Ta% +é'a(x,&) Di (w, —i%)
o, = .
' D, (w, —i%) 7"8% —éla(z,€)
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One can readily compute the kernel of this operator on Kj;,. Namely, the expansion in
eigenfunctions of the self-adjoint operator

( ea(z,§) Di(w,—il) )
D, (w, —i%) —c'a (z,€)

shows that the kernel of the operator o; in the weighted Sobolev spaces is isomorphic
to the eigenspace of the operator (4.4) corresponding to small positive eigenvalues. By
Lemma 4.1, this subspace is

L, (0(A) (z,6) ®ker Dy & L_ (0 (A)) (,€) ® ker DI, (4.5)

(4.4)

which provides the global equality of vector bundles:
kero; ~ Ly (0 (A)) ®@ker D1 & L_ (0 (A)) ® ker Dj.

By Lemma 4.2, we arrive at (3.2).
The proof of Theorem 3.4 is complete.

5 Appendix I. Elliptic operators with parameter
in the spaces K*7(Kj)

Let €2 be a smooth compact (n—1)-dimensional manifold. We shall consider operators
depending on the parameter £ € R! in the spaces K*7(Kq) on the infinite cone K.

As symbols we take operator-valued functions (ranging in the space of operators in the
Sobolev scale on Q) of the variables r € Ry, p € R (the conormal variable), and £ € R
(additional parameters).

Definition 5.1. By L™ = L™(R, x RxR'), where m < 0, we denote the space of smooth
functions

F:R, xRxR — (|L(H(Q), H™()), (5.1)
defined for all r, p, and sufficiently large |£| and possessing the following properties:

1. For r < R, where R is an arbitrary positive number, F(r,p,&) is an mth-order
¥DO with parameters (p, ) € R on Q in the sense of Agranovich—Vishik [12] and
smoothly depends on 7 as such a ¥DO. Moreover, as r — 0, all derivatives

0
(rg)k(TmF(T,p, §), k=0,1,2...,

are uniformly bounded as mth-order ©)DO with parameters (and in particular as
elements of the space [ E(HS(Q), Hs_m(Q))), and the family ™ F(r, p, £) itself con-
verges to some mth-order DO Fy(p, &) with parameters (p,§).
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2. For r < R, where R is an arbitrary positive number, the operator function
G(r,n,€) = F(r,r,§), neR, £eR, (5.2)

satisfies the estimates

o+
‘ ghem? {ai’éanﬁ(}(r?n:g)} UkH <Cpir®, a+f=7=012,..., keZ,
(5.3)
where
Ao 1/2
U=U(rn.8) = (52 - 7) - 54)

To each element F' € L™, we assign a family of linear operators on C§°(R; x ) with
parameters £ € R by setting

1 1
ﬁ:XIOF 72",2'7"2,6 OQOI+X20G %77'276 C V2, (55)
or or

where x;(r) and x2(r) are cutoff functions associated with ¢; and ¢y. (Thus, x;0; = ¢,
X1 = 0 at infinity, and xy = 0 near zero.)

Theorem 5.2. The following assertions hold.

0) For F € L™, the family F is independent of the choice of the partition of unity and

cutoff functions modulo families of the form a—i-Q, where G € L™ and Q satisfies
the estimates

@@ K (Ka) — K O(Kq)| < Cuonle]™

forall s, s', N and is compact in all these pairs of spaces. (The space of such operator
families will be denoted by Q.)

1) If F € L™, then the operator
F(g) : K0 — om0
is continuous for all & # 0 uniformly in & for |£] > e > 0.

2) If F e L™, then
| o0 — koo

<l

and for all s the operator F\(f) is compact in these spaces for € # 0.
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3) If F e L™, j=1,2, then
P F, = EFQ ( mod Emﬁm?*l) , (5.6)

where by Lm+ma=l e denote the space of operators of the form F+ Q, F €
Lm0 e Q. If F e L™, then

-~

=1 ( mod Em—l) , (5.7)

where the star stands for the adjoint operator in K*° for arbitrarily chosen s.

The proof of items 0)-2) is based on item 3) and the obvious fact that for given N and
negative m of sufficiently large absolute value one has the estimates

|F(©): k29 (ka) — k=¥ (Ka) | < Clel™, sl < N, (58)

and these operators are compact in the spaces indicated. The proof of item 3) is a standard
exercise in noncommutative analysis (e.g., see [13]).

O

Definition 5.3. An operator-valued symbol F' € LY is said to be elliptic if it is invertible
for sufficiently large |£| and F~* € L°.

Theorem 5.4. If F € L° is an elliptic symbol, then the family F\(f) consists of Fredholm
operators of index zero invertible for sufficiently large |£|.

The proof directly follows from 5.2.
U

6 Appendix II. The index of edge symbols in the
spaces K*7 and H*"

Theorem 6.1. Let
o
D= D<x,12"§,ir§> KV Kq) — KPY(Kq), (2,6 € T*X \ {0} (6.1)
be a given elliptic edge symbol. Then there is an Ry > 0 such that
ind D =indD € K(5*X); (6.2)
here

D : H(Ko) — H*(Ky)
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s the family of operators in weighted Sobolev spaces on the infinite cone given by the
formula

2
~ 1 0

D=D T — 6.3

(et vz ). (63)

where > : Ry — Ry is a monotone nondecreasing function such that r(0) = 0 and

x(r) = Ry forr > Ry.

Proof. We take an Ry so large that the operator family D(z, Ry£,p) be invertible for
all p € R and all € with || > 1. It follows from the relative index theorem for abstract
elliptic families (see [15]) that

ind D = ind D + ind Dy, (6.4)

where the operator D, is given by the expression

D, = D(x, (72" + R@f,ir%) CKY(Kq) — KP%(Kg), (2,€) € S*X. (6.5)

The symbol
Dy = D(z, (r + Ro)&, p) (6.6)

of the resulting operator satisfies the conditions of Definition 5.3, so that for sufficiently
large A > 1 the family

~ 0
Dy, = D<:r, (F + Ro)\E, ira—> KV (Kq) — KP(Kg), (x,6) € S*X (6.7)
r
is invertible for all (z,£) € S*X. On the other hand, by the assumptions of the theorem,
this family is elliptic for all A > 1, so that
ind lA)D\ = const = 0,

that is, ind 131 = 0. The proof of the theorem is complete.

Proof of Lemma 4.2 We multiply the symbol o, (D) on the left by the family
r™(v(r)€ + (ird/or)? — Ng) ™2,
whose index is zero. By applying Theorem 6.1 to the resulting family, we obtain
ind r™(v(r)&24(ird/Or)* = Ag) ™20, (D) = ind s¢(r)™ (v(r)E24(ird/Or)? — Ag) ™25 (D).
It remains to note that
ind »¢(r)™(v(r)€% + (ird/or)? — Ag)™™?% = 0.

The proof is complete.
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