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PROBLEMS FOR LARGE TIMES
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ABSTRACT. We construct algebras of Volterra pseudodifferential operators
that contain, in particular, the inverses of the most natural classical systems
of parabolic boundary value problems of general form.

Parabolicity is determined by the invertibility of the principal sym-
bols, and as a result is equivalent to the invertibility of the operators within
the calculus. Existence, uniqueness, regularity, and asymptotics of solutions
as t — oo are consequences of the mapping properties of the operators in
exponentially weighted Sobolev spaces and subspaces with asymptotics. An
important aspect of this work is that the microlocal and global kernel struc-
ture of the inverse operator (solution operator) of a parabolic boundary value
problem for large times is clarified. Moreover, our approach naturally yields
qualitative perturbation results for the solvability theory of parabolic bound-
ary value problems.

To achieve these results, we assign ¢ = oo the meaning of a conical point
and treat the operators as totally characteristic pseudodifferential boundary
value problems.
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INTRODUCTION

The present article studies invertibility, regularity, and asymptotics of general sys-
tems of parabolic boundary value problems in an infinite space-time cylinder
within a new frame of pseudodifferential analysis on singular and non-compact
manifolds. More precisely, our approach is a combination of Volterra pseudodiffer-
ential calculus of boundary value problems with the transmission property at the
boundary and analysis of degenerate pseudodifferential operators with meromor-
phic symbolic structures via interpreting ¢ = co as an anisotropic conical point.

The general concept of pseudodifferential analysis to derive qualitative prop-
erties such as existence, uniqueness, regularity, and asymptotics of solutions to
partial differential equations via embedding the problems into an operator algebra
with symbolic structure is far developed, in particular, in elliptic theory. Ellipticity
is determined by the invertibility of the principal symbol — which is a tuple of
scalar and operator-valued components in general — and the existence of para-
metrices within the pseudodifferential calculus is proved. In particular, Fredholm
solvability of elliptic equations is achieved in natural scales of Sobolev spaces
associated with the problems under consideration with the parametrix being a
Fredholm inverse.

The literature on this topic is vast; we just refer to Hormander [31] (espe-
cially vol. III), Cordes [10], Egorov and Schulze [13], Kumano-go [40], or Shubin
[70] for introductions to the general theory; Boutet de Monvel [6], Grubb [26],
Rempel and Schulze [57] are concerned with elliptic pseudodifferential boundary
value problems (Boutet de Monvel’s algebra) that complete the classical elliptic
differential boundary value problems satisfying Shapiro—Lopatinskij conditions as
considered by Agmon, Douglis, and Nirenberg [1]; degenerate elliptic equations
(point singularities and more complicated structures) are subject to the works of
Schulze [63, 65], Melrose and Mendoza [48], Melrose [47], and Plamenevskij [55].
Schrohe and Schulze [59, 60] constructed an enveloping pseudodifferential operator
algebra of the differential boundary value problems of Fuchs type as considered by
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Kondrat’ev [36]; especially these works constitute one of the main sources of the
present article.

In contrast to the elliptic theory, much less attention has been paid to the
pseudodifferential analysis of parabolic equations. Much work is concerned with the
resolvent analysis of operators and consequences for the associated heat equation,
see, e.g., Gilkey [21], Seeley [67, 68], Grubb and Seeley [27], Shubin [70]; also the
works of Grubb and Solonnikov [28], Grubb [24, 25], and Purmonen [56] are to be
seen in this context. However, apart from the study of parabolic operators within
the substantially larger class of anisotropic elliptic ones, there are comparatively
few works that deal with parabolic operators directly.

Piriou [53, 54] introduced the calculus of Volterra pseudodifferential operators
that is specifically designed for the analysis of parabolic equations. The symbols
extend holomorphically with respect to the time covariable to the lower complex
half-plane, and, analogously to the elliptic theory, parabolicity is determined by
the invertibility of the principal symbol, but this is now to hold within the half-
plane, too. The main aspect is that under this hypothesis the operator itself is
invertible within the calculus, which is a much stronger structural result than to
just obtain a parametrix. While Piriou’s efforts were mainly concentrated to study
parabolicity on a closed spatial manifold in finite time, Rempel and Schulze [57]
initiated the analysis of parabolic boundary value problems in Boutet de Monvel’s
calculus in finite time, and Krainer and Schulze [39] studied parabolicity within a
calculus of Volterra pseudodifferential operators on a closed spatial manifold with
exponential weights as ¢t — oco.

The present article is concerned with the completion of the classical theory of
parabolic boundary value problems satisfying Shapiro—Lopatinskij conditions on a
compact spatial manifold with smooth boundary as considered by Agranovich and
Vishik [3], Ejdel'man and Zhitarashu [15] to an algebra of Volterra pseudodifferen-
tial operators on the infinite time interval with exponential weights at infinity. We
thereby also control the long-time behaviour of solutions in terms of exponential
long-time asymptotics (see Agmon and Nirenberg [2], Maz’ya and Plamenevskij
[46], Pazy [51]) as a regularity feature of the pseudodifferential calculus (see the
notes at the end of Section 4).

The main new aspect of this work is that the analysis of the relevant effects as
t — oo is included; this additional non-compactness in fact gives rise to degenerate
operators and requires to establish new structures of pseudodifferential Volterra
boundary value problems in order to achieve the desired results. More precisely,
with the new time coordinate » = e~! it is natural to treat the problems as
anisotropic totally characteristic ones with respect to r = 0, and we end up with
an analytic setup similar to boundary value problems on conic manifolds close to
a conical point, see Schrohe and Schulze [59, 60]; however, we have to cope with
additional difficulties that are due to parabolicity and Volterra calculus. As these
global aspects are the primary focus of this work, we exclude any considerations of
the initial value problem and restrict ourselves to inhomogeneous right hand sides
of the equations in space—time and homogeneous initial data, i.e., the operators



4 THOMAS KRAINER

are supposed to act within exponentially weighted anisotropic Sobolev spaces of
distributions that vanish identically near ¢ = —oo — in fact, we often meet this
simplification in the literature on parabolic operators, but, nevertheless, we shall
also pursue generalizations.

In [39] the case of empty boundary was considered; the present results on
boundary value problems now directly apply to problems from applications as also
the classical theory of differential boundary value problems is embedded. Notice,
e.g., that we may consider non-local perturbations in the calculus with vanishing
principal symbols (generalized drift and potential terms) of a parabolic differential
boundary value problem, and the qualitative properties of the new equation (exis-
tence, uniqueness, smoothness, and control of exponential long-time asymptotics)
remain unchanged as also this equation is invertible within the calculus, and the
qualitative properties are consequences from the general regularity concept. Note
that — as we carry out the construction of the Volterra calculus in Boutet de
Monvel’s algebra with unified order to keep notation reasonably small — we actu-
ally have to use reductions of orders on the boundary of the space—time cylinder
to make the differential boundary value problems fit directly into the concept; an
explicit construction of suitable parabolic reductions of orders can be found in [39].

Organization of the text. We briefly recall in Section 1 the basic definitions and
properties of the Volterra symbolic calculus before we enter the discussion of a
parameter-dependent Boutet de Monvel’s calculus in Sections 2 and 3. The pa-
rameter thereby represents the time covariable, and it is therefore necessary to
consider Volterra boundary value problems, i.e., the parameter runs over a com-
plex half-plane with holomorphic dependence. The parameter-dependent theory of
Volterra boundary value problems in Boutet de Monvel’s calculus is the elementary
building block for what follows in the remaining parts of this work.

In Section 4 we give a first structure result about the inverse of para-
bolic boundary value problems. This result already admits to prove and to con-
trol existence, uniqueness and smoothness of solutions in exponentially weighted
anisotropic Sobolev spaces, but not to observe exponential long-time asymptotics.
The remaining sections are devoted to establish the (smaller) calculus of totally
characteristic pseudodifferential Volterra boundary value problems that admits to
include also this missing feature. In Section 5 the meromorphic conormal sym-
bolic structure is studied — a central additional ingredient near the origin r = 0
(which corresponds to t — oo in the original coordinates). In Section 6 we give the
definitions of the weighted anisotropic Sobolev spaces and their subspaces with
asymptotics, while Sections 7 and 8 are devoted to establish the calculus itself
and its algebraic properties. Finally, in Section 9, we study parabolicity and give
a proof of the equivalence of parabolicity and invertibility within the calculus.

Concluding remarks. The theory of boundary value problems may conceptually
be regarded as a specific case of edge-degenerate problems, the boundary being
the edge (see Schulze [63, 65]). Though motivated by classical questions and be-
ing embedded in a classical context, the present article indicates, in particular,
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how the idea to systematically combine Volterra pseudodifferential calculus with
pseudodifferential analysis of singular problems may yield insights also for degen-
erate parabolic equations. It seems that this concept is the most promising one
to approach singular parabolic problems, where in general a hierarchy of sym-
bols and extra conditions of trace and potential type on the singular strata of the
space-time configuration as a whole are to be expected (see [66]).

Acknowledgement. The author expresses his gratitude to Professor B.—W. Schulze
from the University of Potsdam for many valuable discussions on the subject of
this article.

1. BASIC CALCULUS OF VOLTERRA SYMBOLS

We give a brief review over the basic definitions and properties of general
anisotropic operator-valued symbols and Volterra symbols. A detailed discussion
can be found, e.g., in Buchholz and Schulze [7], and Krainer [38]; we refer to Piriou
[53, 54] for classical material on scalar Volterra symbols. Throughout this work,
the anisotropy ¢ € 2N is fixed in all considerations of the symbolic and operational
calculi.

For (£,)\) € R* x R? we denote (£,\), := (1 + [¢[>¢ + [A]?)2, where | - |
denotes the Euclidean norm. Note that there exists a constant ¢ > 0 such that for
all s € R and &,& € R, A1, A2 € R? the following inequality is fulfilled (Peetre’s
inequality):

(& + €2, M+ Ao)i < (e, Al (60, Ma)E (1.1)

Moreover, for a multi-index 8 = (a,a') € Ny let |B| := |a| + £ - ||, where | - |
denotes the usual length of a multi-index as the sum of its components.

1.1. General anisotropic operator-valued symbols. Let A C R? be conical,
ie., for A € A and ¢ € Ry we have g - A € A; moreover, assume that A is closed,
and equals the closure of its interior points.

Let E and E be Hilbert spaces endowed with group-actions {Kko} and
{R,}, respectively. Recall that we consider strongly continuous group-actions
k: (Ry,-) — L(E), ie., for each e € E the function Ry 2 ¢ = ke € E is
continuous, and kyky = Koo for o,0' € Ry, as well as k1 = Idg. The space of
L(E, E)-valued anisotropic symbols of order p € R is defined as

SHERM x A;E,E) := {a € C®(R" x A, L(E,E)); forall k € Ny :

e - Ble
sup IR o° a(&, Nk, || (€ N) wHBle o o
(ENeR xA  EMe (6N €N, ¢ }
[Ble<k

The subspace of classical symbols is given as

SHR" x A B, B) = {a € SR x B, E)s a~ > xagup) ),
k=0
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where x € C*(R" x R?) is a 0-excision function, i.e., x = 0 near the origin and
X = 1 near infinity, and a(,_) € C((R* x A) \ {0}, L(E, E)) are (anisotropic)
homogeneous functions of degree u — k, the so-called homogeneous components of
a.

Recall that a function f : (R* x A)\ {0} — L(E, E) is called (anisotropic)
homogeneous of degree p € R, if for (¢,)) € (R™ x A)\ {0} and o >0

F(0€,0°N) = o"Ro f(& MK, (1.2)

1.2. Operator-valued Volterra symbols. The space of (classical) Volterra
symbols of order p € R is defined as

gt (R" x B; E, B) n A(H, C>(R", £(E, B))),

V(el) (]Rn X Ha EJE) = S'u;l

(cb)
where H := {z € C; Im(z) > 0} C C is the upper half-plane. We will also consider
Volterra symbols with respect to the lower half-plane H_, and a right half-plane
Hs := {z € C; Re(z) > S} with the origin “shifted” to § € R.

Notice that restriction from the upper half-plane to the real line induces
an embedding S"j;(ecl) (R* x H; E,E) — Sé‘c;f) (R* x R; E, E). The homogeneous
components of a classical Volterra symbol are holomorphic in the interior of the
half-plane H.

As usual, the symbol spaces of order —oo are defined as the intersections
over all symbol spaces of order i € R. Notice that these spaces are independent of
the anisotropy £ € 2N and the group-actions, and they are denoted as S(_V")O(R” X
A E E).

All symbol spaces carry Fréchet topologies in a canonical way.

1.3. Asymptotic expansion. Recall the definition of asymptotic expansion for
the spaces of (Volterra) symbols:
Let (ur) C R be a sequence of reals such that k—) —oo and 1 := MaX [l
—00 S
Moreover, let ay, € S{&;Z(R" x A; E,E). A symbol a € S(ﬁve) (R* x A; E, E) is called
the asymptotic expansion of the ay, if for every R € R there is a kg € N such that
k

for k > ko we have a — ) a; € Sg}g(R” x A; E, E). The symbol a is uniquely
j=1

~ oo
determined modulo S(_VO)"(R” x A; E, E), and for short we write a r‘\;) > ag.
k=1
Given a sequence of anisotropic operator-valued (Volterra) symbols ay as

o0

above, there exists a symbol a such that a (r‘\;) > ag. In any case, the proof relies
k=1

on a Borel argument: More precisely, within the framework of general symbols a

o0
can be constructed as a convergent series a(&,\) = > X(é; C%)ak (&, ), where
k=1 k

x € C®°(R"xR?) is a 0-excision function, and (¢x) C Ry such that ¢, — oo as
k — oo sufficiently fast. This argument breaks down for Volterra symbols, for the
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analyticity in the covariable is not preserved. Nevertheless, the result about asymp-
totic completeness of the Volterra symbol classes holds true, and we can construct

a as a convergent sum a(¢, () := io: (H (¢(ckt))ar) (€, ¢) using the (Fourier) kernel

cut-off operator

(H(@b)(€.0) // “trponte, ¢~ myarar 3 (S i) - oie. 0,

=0

(1.3)

where in this case ¢ € C§°(R) with ¢ =1 near ¢t = 0, and (¢;) C Ry with ¢ — o0
as k — oo sufficiently fast. The argument is worked out in detail in Krainer [38],
see also Buchholz and Schulze [7]. There are alternative arguments to prove the
asymptotic completeness, see, e.g., Mikayelyan [49].

1.4. The translation operator in Volterra symbols. For 7 > 0 the transla-
tion operator (TiTa) (&, ¢) :=a(§,( +ir) is continuous in the spaces

T, : SH¢

Vien ®" x H;E,E) 5”* (R x B B, E),

8§a holds. In particular, the op-

iT
k=0

erator I — T}, is continuous in the spaces

I—TiT:S“(‘ o(R® x H; E, ) —>55(‘;)Z(JR” x H E, E).

An important application of the translation operator is that it provides a
splitting of the principal symbol sequence in the classes of Volterra symbols. More
precisely, this means the following:

Let Sg,“;e) (R* x H) \ {0};E,E) denote the closed subspace of C°°((R™ x

H) \ {0}, L(E, E)) consisting of all anisotropic homogeneous functions of degree
i € R that are holomorphic in the interior of H. For every 7 > 0 the translation
operator is continuous in the spaces

Ty : SUY (R x H) \ {0}; E, E) — SU(R* x H E, E),
and for every 0-excision function y € C°°(R™ x H) the asymptotic expansion
Tira ~ (’;—,)k - X(8¢a) holds. This shows, in particular, that for the principal
k=0

homogeneous component of order x we have the identity (Tj,a), , = a.

(1)
In other words, the principal symbol sequence
0 —St (R x L E,E) — Si4(R* x L E,E) —
SO ((R* x H) \ {0}; B, E) — 0

for Volterra symbols is topologically exact and splits, and the operator T;, provides
a splitting of this sequence.
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1.5. The construction of Volterra parametrices. To illustrate the construc-
tion of parametrices within the Volterra symbol classes assume that we are given
a symbol

a(x,€,¢) € SHEL (R x R x B E, E) = C°(R™, S (R x H; E, E))

that is parameter-dependent elliptic with parameter-space H, i.e., the homoge-
neous principal component a(,) (7, &, () is invertible for z € R* and (¢, () # 0 with

llag (@, &,¢) 7t = O(1) as |z| — oo, uniformly for (|¢[*¢ + |§|2)ﬁ = 1. Notice
that within the Volterra symbol classes (parameter-dependent) elliptic symbols
are called parabolic in general.

Then there exists a Volterra symbol p(z,&,() € S;‘C‘;e(]R{” x R x H; E, E)
such that a#p — 1 and p#a — 1 are Volterra symbols of order —oo.

To see this note that according to Section 1.4 we have b := a(,)(z, ¢, C+i)te

SyMERY x R* x H; E,E), and ab — 1 and ba — 1 are Volterra symbols of order
—1, and so are a#b — 1 and b#a — 1. Now we may apply the formal Neumann
series argument to obtain p; notice that asymptotic expansions can be carried out
within the classes of Volterra symbols (see Section 1.3).

Observe that for this example we considered ordinary parameter-dependent
global pseudodifferential operators op,(a)({) on R™, i.e., the Leibniz-product of
(Volterra) symbols a(z,&, () and b(z, &, () is given as

. 1
(@60 = [[ e ala & 40 Obe+y, €. Odydn Y 5 (050) (D).

a€ENG

2. VOLTERRA BOUNDARY VALUE PROBLEMS ON THE HALF-SPACE

The present section is devoted to establish the structure of boundary value prob-
lems with parameters localized on the half-space. The parameter represents the
additional time-covariable which will later enter the considerations when having
the structure of the operators (boundary value problems) with respect to the spa-
tial variables at hand. For this reason it is crucial to consider Volterra boundary
value problems, i.e., the operators depend holomorphically on the parameter in a
half-plane.

We employ the classical calculus of Boutet de Monvel [6] for boundary value
problems, where we make use of a presentation of the boundary symbolic and
operational calculus due to Schulze (see, e.g., [65]) which emphasizes its pseudo-
differential nature. See also Grubb [26], Rempel and Schulze [57], and Schrohe [58]
for expositions on Boutet de Monvel’s algebra.

N

2.1. Spaces of distributions on the half-space. Let HS"S(]RQ be the closed
subspace of all distributions u € H*°(R") = ()% H*(R") such that supp(u) C
R'y, which coincides with the closure of C§°(R?) in H®%(R™).

Moreover, with the restriction operator r* : D'(R*) — D'(R7) we de-
note H*(R%) := r*H*%(R"), endowed with the quotient topology. The kernel
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of r* in H*°(R") equals Hg’d(ﬁﬁ), and there are continuous extension opera-
tors e;5 : H*O(R?) — H*°(R"). Hence the sequence 0 —» Hg’d(ﬁﬁ) —
H*%(R") — H*°(R?) — 0 is topologically exact and splits. Embedding and
complex interpolation properties carry over to the scales {H 876(]1@1)}376@&_

The Lz(]R’_f_)—inner product extends to a non-degenerate sesquilinear pairing
H575(]R7J_)><H§s’76(ﬁi) — C for s, € R, which induces an identification of the
dual spaces H*° (R} )’ = Hofs’fé(ﬁi) and Hg“%@i)’ ~ H %R,

Let S(R}) := r*S(R™), endowed with the quotient topology. Then S(R? ) =
proj-lim scp H*° (R ), and S(R? ) is dense in H*(R".) for all s, € R. Moreover,
we have §'(R%) := S(R? )’ = ind-lim, scpHy’ (R ).

We denote e™ to be the operator of extension by zero for functions defined
on the half-space R to functions defined on the full space R*. Then e makes
sense as an operator et : Hg’d(ﬁi) — H%9(R") for all 5,6 € R which coincides
with inclusion. For —1 < s < 1 the operator r* acts as a topological isomorphism
HS"S(@Z) — H®%(R7), and we may identify these spaces with each other. In
particular, the operator et is well-defined in H*?(R?) — S'(R") for s > —1.

2
By passing to direct sums (or tensor products) we have for N € Ny the

corresponding CN -valued analogues of the spaces above. If § = 0 we drop it from
the notation.
For functions u defined in a conical subset of R, we set

1
(kou)(zn) = 02 u(ozn) (2.1)
for p € Ry. Then {k,} gives rise to a strongly continuous group-action in the

spaces H*9(R CN), HS*(Ry,CN), and H*(R, ,CN) for all 5,6 € R.

2.2. Volterra transmission symbols.

Definition 2.1. Let A C R? be conical, and assume that A is the closure of its
interior. A parameter-dependent classical symbol
al(a',20), (€,60), V) € SHRY xR xA) = C7° (R, 55 (B x A))
with parameter-space A has the transmission property if
a((z',zn), (€', (€', ) &), A) € SRy xRET! XAy, Sfy (Ry,, ¥R, )),

where S}.(R,, XRe, ) is the space of symbols with the transmission property with
respect to z,, = 0, i.e., a(z,&,\) has the transmission property if and only if the
homogeneous components A(p—j) satisfy

D];n a(aﬁ')\)a(li*j) (xlv 0,0,-1,0) = eiﬂ(“_j_‘a“)DI;n a(aﬁ’)\)a(li*]') (xla 0,0,+1,0)
(2.2)

for k € Ny and o € N(()n_l)+q. We denote the space of classical parameter-
dependent symbols with the transmission property as S!' i (R*xR™ xA).

trcl
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The spaces of classical £(CN-,CN+)-valued parameter-dependent (Volterra)
symbols with the transmission property are defined as follows:

SIEE (R XR™ x A; €Y=, CV+) :=815¢ (R™ xR™ x A)®L(CN-, CV+)

trcl trcl
C Sé‘l;e(]R” xR? x A; CN-, CN+),
SIS (R xR xH; V-, CN+ ) =8¢ (R xR™ x H; CN-, €V )n

trcl
S (R xR xH; CV-, CN+).

Remark 2.2. According to the general theory of transmission symbols these spaces
are closed subspaces of the general (Volterra) symbol spaces. Moreover, the
(Volterra) symbols of order —oo have the transmission property, i.e., the condition
of having the transmission property is empty for smoothing symbols.

The spaces of (Volterra) transmission symbols are invariant with respect to
the following operations:

e pointwise products,
e taking partial derivatives,
o0
e asymptotic expansions, i.e., if a (N >~ a; with (Volterra) transmission sym-
Vv =0
bols a; then a is a (Volterra) transmission symbol,
e Leibniz-products,
e formal adjoints in case of general symbols; note that the Volterra symbol
class is not preserved under this operation.

Notice that also the kernel cut-off operator and the translation operator act within
the spaces of (Volterra) transmission symbols, and we may use the translation
operator to associate with a principal symbol a,)(z, &, ¢) that is holomorphic with
respect to ¢ € H and fulfills the symmetry relation (2.2) a parameter-dependent
Volterra transmission symbol a(z, €, ().

Remark 2.3. Let a € S*° (R* xR x A; CN-,CN+) be parameter-dependent ellip-
tic, and let p of order —u be such that a#p — 1 and p#a — 1 are of order —oo.
Then p has the transmission property.

In other words, the calculus of (Volterra) transmission operators is closed with

respect to the construction of (Volterra) parametrices to parameter-dependent
elliptic (parabolic) elements.
Definition 2.4. With a symbol a(x, &, \) € SHE(R? xR™ x A; CN-,CN+) we asso-
ciate the operator convention op; (a) = r*op,(a)e™, which is apriori well-defined
as a A-dependent operator family S(]R’_f_,CN*) — r+S'"(R*,CN+). We mainly
need the partial action

ops, (@) = r7ope, (a((«', 2n), (€,€0), M) : S(Ry,CY-) — r*S'(R,CN),
which depends as a family of operators on (z',&',\) € R* ! xR~ 1 xA.

Theorem 2.5. Let a € Sé;fl;l(]R” xR xA;CN-,CN+). Then op} (a) extends by
continuity from S(Ry, CN-), respectively C$° (Ry,CN-), to a family of continuous
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operators
1
opl, (@) : H**(Ry,C"=) — H*MO(Ry,CY*), s> -2, 0€R,
op} (@) : Hy' (R, €V ) — HU MR, CVY), t,6€R
More precisely, op;;“n(-) gives rise to a continuous operator

opt : SHL (R xR xA; CN-,CN+) —

SHERPE R XA H (R, CN= ), HS 1O (Ry.,CM+)), s> —3,0€R,
St (R xRP=1 x A; HP® (R, CN-), HE=#9 (R, CN+)), t,6 € R

For Volterra transmission symbols we obtain
op;'n : S,f:fl;, o (R xR™ x H cN-,cV+) —

SR xR xH Ho0 (R, CN- ), H7#9 (R ,CN+)), s> -1 JeR,
SR xR xH H® (Ry, €V ), H' (R, CY4)), 1,6 € R,

Notice that we employ the group-action {k,} from (2.1) on the Sobolev spaces on
the half-azis. For a € 8" (R xR" x A; CN-, CN+) we have

trcl
Ky topt (a)rg = opf (a®),
a’g((m’7 iL”n), (fla 6“)7 )‘) = a’((xla Qilmn)a (6,7 an): )‘)

In particular, if a does not depend on the variable x,,, then op;fn (a) is a classical
operator-valued symbol; if a(,_j) is the homogeneous component of order u —j of
a, then opf (a(,—j)) is the homogeneous component of order p— j of opf (a).

Remark 2.6. Since we are interested in the calculus on the half-space R , we may
also consider the symbol spaces

St (R xR x A; CN=, OV ) o= r S50 (R xR™ x A; CY-, CV+),
SEit (R xR xH; CV- N+ ) = #5150 (R xR™ xH; CN-, CN+),

i.e., the dependence on the variable z is restricted to @i.

2.3. The calculus of Volterra boundary symbols.

Notation 2.7. We denote the operator d; := r+9, et which gives rise to an
operator-valued symbol

SLERAL R x A HSO (R, CV), H=19(R,CN)), s> -1 §€R,
Syt (R xR xH H*® (Ry, CV), H* YO (R, ,CY)), s> -1, 0€R,
S (R xR A HY(Ry, CY), HY M (R, CY)),  t6€R,
S5 (B! xRV 1 B Hy® Ry, V), Hy (R, CY)), 6 €R

o, €



12

THOMAS KRAINER

Definition 2.8. a) A classical singular (Volterra) Green symbol of order p € R

and type zero is an operator-valued symbol

SHE (R xR XA S (Ry ), S(Ry ) RL(CY-, CV+),
T SEL R R X S (Ry ), S(R)@L(CY-,C).

Via S(Ry) = proj-lim, ser H9 (R} ) and S'(Ry) = ind-lim, sep HE® (Ry) the
space Sé“}e)cl(]l@”_l xR xA; S'(Ry ), S(R,)) is defined as

HA n— n— . 0 (M s",0'
(N SEa® xR xA; Hy* (Ry), H ' (Ry)),
s,s',0,0' ER

where the group-action (2.1) is involved on the Sobolev spaces. We shall make
use of analogous conventions also below.
A classical singular (Volterra) Green symbol of order u € R and type d € Ny

d .
is an operator-valued symbol g of the form g = ) gjai with classical singular
j=0

(Volterra) Green symbols g; of order p — j € R and type zero. Notice in
particular that

o [ SR xR XA HO0 (R, CY-), S(Ry, CY4))
5 S R xR G HOS (R, € ), S(Ry, CV))
for s > d— % We endow the space of classical singular (Volterra) Green symbols
of order © € R and type d € Ny with the topology of the non-direct sum of
Fréchet spaces.
The regularizing singular (Volterra) Green symbols of type d € Ny consist of

d )
all g = 3 g;0% with singular (Volterra) Green symbols g; of order —oo and
i=0
type zero.

A classical (Volterra) trace symbol of order u € R and type zero is an operator-
valued symbol

s [ SRR XA S (Ry), O@ £(CY-, €M),
S (R1 xR xH; ' (R, ), ©)® L(CN-,CM+).

A classical (Volterra) trace symbol of order u € R and type d € Ny is an

d )
operator-valued symbol ¢ of the form ¢ = ) t;0% with classical (Volterra)
j=0
trace symbols of order u — j € R and type zero. In particular, t gives rise to an
element

s e S (RTIXRUE XA HY (R, €Y ), €Y,
Sit (R xR xH; H5 (Ry, CN-),CM+)
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for s > d — %, and we endow the space of classical (Volterra) trace symbols
of order p € R and type d € Ny with the topology of the non-direct sum of
Fréchet spaces.

The regularizing (Volterra) trace symbols of type d € Ny consist of all ¢t =

d .
'Zo t]ﬁi with (Volterra) trace symbols t; of order —oo and type zero.
]:
c) A classical (Volterra) potential symbol of order p € R is an operator-valued
symbol

ke SEERP=1 X R?=1 xA; C, S(Ry )@ L(CY-, CN+),
SEE (R xR xH; C, S(Ry ))®L(CY-, CN+).

The space of classical (Volterra) potential symbols carries the Fréchet topology
of the projective limit. We call the (Volterra) potential symbols of order —oo
reqularizing.

d) The space of classical (Volterra) boundary symbols of order p € R and type
d € Ny consists of all operator-valued symbols

( H*(Ry,CN-)  H¥ MRy, CM¥)
sHit <]R”—1 xR xA; @ , ® )
(CM’ (CM+
ag € 5 N s N (23)
H**(R,C™-)  H*"°(Ry,C™+)
S{};l <]R”1 xR xH ® ) ) > )
\ (CM_ (CM+
where s > d — % and § € R, of the form
+
ap = (‘)I’wn(“) ty k) (2.4)
t s
with:

e a classical (Volterra) symbol with the transmission property

. {S*“‘ (R* xR™ x A; CN-, CN+)

trcl

Si, (R xR xH; CN-, CV+).
a is called the pseudodifferential part of the boundary symbol ag. Note
that this notion is non-canonical since the representation in the upper left
corner is not unique.
a classical singular (Volterra) Green symbol g of order 4 € R and type
deNy.
a classical (Volterra) trace symbol ¢ of order p € R and type d € Ny.
a classical (Volterra) potential symbol k of order u € R.
a classical (Volterra) pseudodifferential symbol

B L)
Sit (R xR xH CM-, CM+),
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We endow the space of classical (Volterra) boundary symbols of order u € R
and type d € Ny with the topology of the non-direct sum of Fréchet spaces.

If the pseudodifferential part of ag equals zero we call ag a generalized sin-
gular Green symbol. If all components of ag are regularizing, then ag is called
a regularizing boundary symbol.

Note that if the pseudodifferential part of ayp does not depend on the variable
Ty, then ag is a classical operator-valued symbol in the symbol spaces (2.3).

Ezample 2.9. The restriction operator

r:S(Ry) — C, u(x,) — u(0)
gives rise to a classical Volterra trace symbol of order % and type 1. Moreover,
we have 7 = r(1). To see this we first define for (¢',¢) € (R*~'xH) \ {0} and

ueSRy)

tO (617 () (U) :

/ g1 —i¢) Fem = €1) u(ar,) day,
0

1
a0 = - [0 ua,) da,.
0
Hence to,t; € C®((R"~'xH) \ {0}, £(S'(Ry),C)), and we have to(0f, 0'¢) =
g%to(f',()ﬁgl and t;(0¢',0%) = Q_%tl(f’,g)ngl for o > 0 with the group-
action {k,} from (2.1). Thus tg,¢; are anisotropic homogeneous and analytic in
the interior of H, and consequently to(¢', ¢ +1i) € SV Cl(]R" LxH; S'(R+),C) and
t(&,¢+i)e s, il’ (R*~! xH; S’ (R, ), C). By construction we have r = to +t,0,
and the assertion follows.

Remark 2.10. Let ag be a classical (Volterra) boundary symbol of order p € R
and type d € Ny. From Definition 2.8 we see that we may write

d .
8. 0
w=>a; (% )
Jj=0

with classical (Volterra) boundary symbols ag ; of order i — j and type zero.

Using this we see that the spaces of boundary symbols are invariant with
respect to the natural manipulations of the symbolic calculus. In particular, as-
ymptotic expansions can be carried out within (Volterra) boundary symbols of
fixed type d € Ny.

Notation 2.11. a) For v € Ny let v, denote the operator

In view of Example 2.9 we conclude that v, gives rise to a classical Volterra
trace symbol of order v + & and type v + 1.
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b) For reals g € R let 4 := max{0, u} be the “positive part” of p.

Proposition 2.12. a) Let g be a classical singular (Volterra) Green symbol of
order u € R and type d € Ny. Then g has a representation
d—1
9= kivi+90 (2.5)
j=0
with classical (Volterra) potential symbols k; of order p — j — %, and a clas-
sical singular (Volterra) Green symbol gy of order u € R and type zero.
The symbols k; and go in this representation are unique, and the mapping
(ko, ... ,ka—1,90) — g induced by (2.5) provides a topological isomorphism.
b) Let t be a classical (Volterra) trace symbol of order u € R and type d € Ny.
Then we may write

d—1
t= Z s + to (26)
j=0
with classical (Volterra) pseudodifferential symbols s; of order p—j — %, and a
classical (Volterra) trace symbol ty of order u € R and type zero. The symbols
sj and to are unique, and the mapping (So,.-. ,S4—1,t0) — t induced by (2.6)
is a topological isomorphism.

Proof. (2.5) and (2.6) follow from integration by parts in the representations of g
and t via their associated symbol-kernels. O

Theorem 2.13. Let
_ <0p$n(a)+g1 k1> b= <0p$n(b)+gz kz)
ag = , bo=

ty $1 ta S92

be classical (Volterra) boundary symbols of order pi,us € Z and type dy,ds € Ny .
Then the pointwise product within the spaces of operator-valued symbols (2.3) gives
rise to a classical (Volterra) boundary symbol agby of order pi + po and type
d = max{us + di,d2}, where more precisely
N -
aobo = <op%(aa¢?nb) +39 ig) ,
5
i.e., the pseudodifferential part of agby equals the Leibniz-product of the pseudodif-
ferential parts of ag and by with respect to the variable x,,. Note that we assume
that the “dimensions” fit together in order to be able to calculate the product.

Proof. In the framework of general parameter-dependent boundary symbols this
is a standard result in Boutet de Monvel’s calculus. Just the case of Volterra
boundary symbols requires a closer inspection.

First notice that the pseudodifferential part a#., b of apby is a classical
Volterra symbol with the transmission property. Hence we just have to show that
the remaining components are classical Volterra symbols. For agby is a parameter-
dependent operator-valued Volterra symbol in the symbol spaces (2.3), we at once
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obtain the analyticity of k and 3 in the interior of H ie., k is a classical Volterra
potential symbol, and § is a classical Volterra pseudodifferential symbol. Accord-

-1 o d-1 ~
ing to Proposition 2.12 we may write § = 2) k;jv; + go and t = 'Zo §jvj +to in
j= j=

the sense of (2.5) and (2.6), respectively. Now § and # are analytic in the interior
of H as operator-valued symbols, and from Proposition 2.12 we conclude that l;:j,
do, 8; and #y are necessarily also analytic in the interior of H, and thus they are
classical Volterra symbols. Consequently, § and # are Volterra symbols, and the
proof of the theorem is finished. O

Theorem 2.14. Let

e — opy (@) +g1 ki b — opy, () +g2 ke
0 t1 s1)7 0 ty S9

be classical (Volterra) boundary symbols of order pi, s € Z and type dy,ds € Ny .
Then the Leibniz-product ag#tbo is a classical (Volterra) boundary symbol of order
w1 + pe and type d = max{us + di,d2}. More precisely, we have

st = (V43 )

S

i.e., the pseudodifferential part of ag#bo equals the Leibniz-product of the pseudo-
differential parts of ap and by with respect to the variable x € R™. The asymptotic
eTpansion

1 (6% [e%
ok g T2 i) (050
aENy

holds within the spaces of (Volterra) boundary symbols.

Proof. The assertion follows from the general theory of (Volterra) pseudodiffer-
ential calculus with operator-valued symbols (see also [38]): We have the explicit
formula

ao#tbo(z',€',¢) = // e‘“”’"’ao(az',f' +1',Obo(z’ + 4, &, ) dy’ dyf

for the Leibniz-product (symbol of composition) at hand, and Theorem 2.13 guar-
antees that the integrand belongs to the appropriate spaces of (Volterra) boundary
symbols. Componentwise analysis now reveals the assertion of the theorem. O

Theorem 2.15. Let ag be a classical boundary symbol of order p < 0 and type
zero. Then the formal adjoint symbol

a(()*)(:g’,f',/\) = // efiy'ﬂ’a(wl o€ "‘77’;/\)* dy' dnf

is a classical boundary symbol of order u and type zero. Moreover, the pseudodif-
ferential part of a(()*) equals the formal adjoint of the pseudodifferential part of ayp.
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The asymptotic expansion
* 1 X
ay) (@, E N~ Y 08 D%a
aeNp~?t
holds within the spaces of boundary symbols.

2.4. Operator calculus on the half-space.

Definition 2.16. Let BE“’,‘%(R&A) denote the space of all operator families
A(X) = opgr(ap)(A), A € A, that are built upon parameter-dependent classical
(Volterra) boundary symbols ag(z',&',A) of order u € Z and type d € Ny. Let
B4Ry ; A) and B;Oo’d(]Rf_;H) denote the spaces of operators having regular-
izing (Volterra) boundary symbols. Note that we suppress the “dimensions” N_,
Ny, M_, and M, from the notation for better readability.

Every A()\) € Bé‘(,ﬁﬁ(ﬂ&ﬁﬁ ;A) acts as a family of continuous operators

AT\ +G(N) K(A)>: S(mécm) N S(mécm) . (2.7)

AN = < T(\) S(A\) S(R"=1,CM- ) S(R—t,CM+)

The components G(\), K(\) and T'(\) are called (parameter-dependent) (Volterra)
singular Green operator, potential operator and trace operator, respectively.

The spaces of (parameter-dependent) boundary operators carry the Fréchet
topology induced by the boundary symbols.

Definition 2.17. With an operator A()\) € Bflfl’d;l(ﬂ%ﬁ ; A) with boundary symbol
w = [OPL (@) +g kK
0 t s

we associate the following tuple of principal symbols:
e First we may pass to the homogeneous principal symbol

O'Z;K(A)(Jf,f,)\) = Q(y) ($7£7>‘) (28)

of the pseudodifferential part of A()), where (z,&,\) € R} xR? xA, (§,)) #
0. We call UZ;Z(A) the principal pseudodifferential symbol of A(N).
e With the notation a°(z’,&,\) := a((2',0),£,\) we pass to the boundary

symbol
o _ (opf. (@) +g K
0 — t s/’

which is a classical symbol in the spaces of operator-valued symbols (2.3).
Hence its homogeneous principal part is well-defined, and we set

o5 (A€ N) = o (' €M), (29

ag;e(A) is is called the principal boundary symbol of A(N).
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Note that these symbols are uniquely determined by .A(\), and the mapping
AN) — (UZ;Z(A),Ug;Z(A)) is continuous. In case of Volterra operators A(() the
principal symbols are analytic in the interior of the half-plane HL.

The tuple (UZ;K(A),Ug;K(A)) determines the operator A(\) up to classical
parameter-dependent (Volterra) boundary operators of order x4 — 1 and type d.

Theorem 2.18. a) Every A(\) € Bf‘}%;fl(Ri;A) extends from the spaces (2.7) to

a family of continuous operators

H*(R?,CN-) H*~H(R%,CN+)
A(N) - ® — <) (2.10)
Hs(Rnfl,(CM*) Hsfu(]RnfljcMJr)

for s >d— % Moreover, Bé“}Cl)ﬁ(Rﬁ;A) embeds into spaces of operator-valued

(Volterra) symbols taking values in bounded operators between (2.10).
b) The composition as operators on rapidly decreasing functions (2.7) is well-
defined as a continuous bilinear mapping

Bl (RE; ) x By (R A) — B (RE; A),

where d = max{us+di, ds}. The principal pseudodifferential symbol of the com-
position equals the product of the involved principal pseudodifferential symbols,
and the principal boundary symbol equals the product of the involved principal
boundary symbols.

¢) Taking the formal adjoint operator with respect to the L*-inner product(s) in-
duces a continuous antilinear mapping

s BEYURY ) — BYU(RYA)

for u < 0. In the classical case, the principal pseudodifferential symbol of the
formal adjoint operator equals the adjoint principal pseudodifferential symbol,
and the principal boundary symbol of the formal adjoint operator equals the
adjoint principal boundary symbol.

Notice that the spaces of Volterra boundary operators are not invariant with
respect to this operation.

Proof. a) follows from the general theorem on the boundedness of pseudodifferen-

tial operators with operator-valued symbols in abstract edge Sobolev spaces (see

Seiler [69]) together with the identification of the “ordinary” Sobolev spaces as
such via the group-action (2.1) (see, e.g., Schulze [65]).

b) is a consequence of Theorem 2.14, while ¢) follows from Theorem 2.15.

O

Notation 2.19. Let ¢ : KT;_ — C be a function, and let v = (Z;
functions u; on R} and uz on R, We denote the “multiplication” of u with ¢

= (al) =6 )
Plrn-1u2 0 @lrn-r

) be a vector of
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In this sense we have in a well-defined manner the multiplications ¢.4(\) and
A(N)¢ of parameter-dependent boundary operators A(A) with functions ¢ €
(K.
Definition 2.20. Let A(\) € BJyS" (R ; A). Moreover, let U C R}, be an open
subset. Then A()\) is called compactly supported in U if there exists a function
¢ € C§°(U) such that A(X\) = pA(N)e.

The spaces of compactly supported operators form subspaces which are topol-
ogized as strict countable inductive limits of Fréchet spaces.

Remark 2.21. Let U,V C R™ be open subsets, and let x : U — V be a diffeomor-
phism such that x restricts to a diffeomorphism Un{xz, > 0} — VN{z, > 0}.
Hence x also preserves the “boundary” {z,, = 0}, and for vectors v = (z;) of func-
tions (distributions), where v; is defined in VN{z, > 0} and v, in VNn{z, = 0},

we may pass to the pull-back x* v = (XI* XTv 02). Similarly, we also consider the
Un{z,=0}

push-forward x.u.
With an operator

ce(Vn{z, > 0N~ C(Vn{z, > 0})N+
A: @ — &)
cse(Vnx, = 0})M- c>(Vniz, = 0})M+

we may now associate the operator pull-back x*A, where (x*A)u = x* (A(x«u)),
and consequently y* A acts in the spaces

ce(Un{z, > 0N~ C>* UMz, > 0})N+
x* A : @ — @ .
ce(Un{z, = 0HM- C®(UN{z, = 0})M+

Of course we may also start from open subsets U,V of the half-space @i and x a
diffeomorphism in the corresponding category.

Theorem 2.22. With the notations from Remark 2.21 we have the following:

The operator pull-back x* gives rise to a topological isomorphism from the
space of compactly supported (Volterra) boundary operators of order p and type d
in'V onto the space of compactly supported (Volterra) boundary operators of order
w and type d in U.

Let x' denote the restriction of x to UN{z, = 0}. Hence x' : Un{z,, =
0} — Vn{x,, = 0} is a diffeomorphism of open subsets in R*~! = {z,, = 0}. The
tuple of principal symbols associated with the operator pull-back (x*A)(X) is given
as

ol (A (@,6,A) = o (A) (x(), [Dx(@) '€ ), } .
o (A, €L N) = o (A (@), [DX (&) THEL ).

Consequently, the calculus of (Volterra) boundary operators can be defined on a
compact manifold with boundary, and the tuple of principal symbols has an invari-

ant meaning as sections defined on the cotangent bundles.
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2.5. Ellipticity and parabolicity on the half-space.

Definition 2.23. Let A()\) € B ”(]R” ;A) be a classical parameter-dependent
boundary operator of order u € Z and type d < p4. We call A(\) parameter-
dependent elliptic provided that the following conditions are fulfilled:

e The homogeneous principal pseudodifferential symbol afz;e(A) (x,&N) is in-
vertible in £L(CN-,CN+) for all (z,£,)) € RZX]R”XA, (& A) # 0, and for
the inverse we have ||UZ;£(A)(CU,£,/\)71H = O(1) as |z| — oo, uniformly for

1
(J€1*“ 4+ |A[?)* = 1. (In particular, we have N_ = N,..)

e There exists some sg > d— % such that the homogeneous principal boundary

symbol Ua;l(A) (z',€',\) acts as an isomorphism in the spaces

Hoo(Ry,CN-)  HoR(R;,CVY)
ol (A) (', € N) : ® — &
(CM’ (CM+

for (z',&',0) € R xR 1 xA, (¢,\) # 0, and for the inverse we have
1
o (A) (@, €', \) 7| = O(1) as |2'] — oo, uniformly for ([¢/]2¢+|A]2)* = 1.

An operator A(() € B“ﬁg/(]R”' H) of order 1 € Z and type d < py is called
parabolic provided that A((¢) is parameter-dependent elliptic as an element of
BYEYRY  H).

Proposition 2.24. Consider a principal boundary symbol
o d )
opt (a) + 3 g0 K
j=0
d )
Z t]'ai S
=0

of order p € Z and type d < py, i.e.,

e a’ =a’((2,0),&, ) is (anisotropic) homogeneous of order p and independent

of the variable x,,, and it satisfies the symmetry relation (2.2),
g; (', &', A) is (anisotropic) homogeneous of order pu —j,

k is (anisotropic) homogeneous of order p,

tj(z', &', ) is (anisotropic) homogeneous of order p — j,

s is (anisotropic) homogeneous of order p.

We assume that ag is parameter-dependent elliptic:
i) There exists the inverse p°((z',0),&,A) = a°((2,0),&,A)~! for o' € R*—!
and 0 # (&,\) € R*xA, and we have ||p°((z',0),&N)|| = O(1) as |2'| — oo,
1
uniformly for (|¢[*¢ + |A*)** = 1.
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it) There exists some so > d — % such that ao(z',&',\) acts as an isomorphism
in the spaces

HORy,C)  HO (R, O
aog(x', €, N) : D — D
(CM_ (CM+

for (z',&',0) € RIxR L1 xA, (¢,\) # 0, and for the inverse we have
1
laola', €)1 = O(1) as 2| — oo, uniformly for (/2 + [N2) % = 1.

Then the inverse agl is a principal boundary symbol of order —p and type d' <
(—p)+. More precisely, we have

N

d .
opf, (1°) + 2 9;0%
]:

V3]

d
> 0%
j=0

where

o p° is the inverse of av,
g; (', &', N) is (anisotropic) homogeneous of order —p — j,

€2

is (anisotropic) homogeneous of order —pu,

(', &', N) is (anisotropic) homogeneous of order —p — 7,
is (anisotropic) homogeneous of order —p.

k
tj
5

[ ]
Moreover, if ag is a Volterra principal boundary symbol, i.e., all components a®,

gj, tj, k, and s are analytic in the interior of the half-plane H, then also aal 15 a
Volterra principal boundary symbol.

Proof. In the case of general principal boundary symbols, i.e., without the ana-
lyticity in the interior of the half-plane, the assertion is subject to the classical
analysis in Boutet de Monvel’s algebra (see Grubb [26], Schulze [65], or Schrohe
[58]).

It remains to prove that the inverse a ! is again a Volterra principal boundary
symbol, provided that ag is a Volterra principal boundary symbol. First notice that
ag !is analytic in the interior of H, and so are k and §. Moreover, as being the
inverse of a®, we conclude that p® is a Volterra principal symbol. Hence we just
have to show that

d d
g=> g0, and f=Y #0l (1)
7j=0 7j=0

can be represented as asserted, i.e., g; and fj can be arranged to be analytic in
the interior of H. Note that § and ¢ are analytic since ag ! is analytic. Now apply
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Proposition 2.12 (adapted to principal symbols) to obtain

d'—1 d'—1
g=> kivi+g, t=) &y+t (2)
=0 =0

with unique principal potential symbols Ich, a unique principal singular Green
symbol ¢’ of type zero, unique principal pseudodifferential symbols §;, and a unique
principal trace symbol ¢’ of type zero. For these representations hold topologically,
we see that k;, ¢/, §; and ' are analytic in the interior of H. Employing Example 2.9
we now conclude that, starting from (2), we indeed can arrange all “coeflicients”
n (1) to be analytic, which finishes the proof of the proposition. O

Theorem 2.25. Let A(\) € Bf‘vd)fl(]R” iA) be a classical parameter-dependent
(Volterra) boundary operator of order u € Z and type d < p4 with boundary

symbol ag. The following are equivalent:

i) A(\) is parameter-dependent elliptic (parabolic).

it) There exists a classical (Volterra) boundary symbol py of order —p and type
d < (—p)+ such that aopo — 1 and poag — 1 are classical (Volterra) boundary
symbols of order —

iii) There exists P(\) € B(V“)jl Aq(]R” ;A), d < (—p)4, such that

ANPR) — 1€ B (R A),
PAR) — 1€ B (R ; A),
where di = max{—pu+d,d'} and do = max{p +d',d}.

Proof. Note first that we may pass from the pointwise product in ii) to the Leibniz-
product in view of Theorem 2.14. Hence the equivalence of ii) and iii) is evident:
iii) implies ii) follows immediately from Theorem 2.14, while ii) implies iii) is a
consequence of the usual formal Neumann series argument which is applicable since
asymptotic expansions can be carried out within classical (Volterra) boundary
symbols of fixed type.

iii) implies i) follows from the multiplicativity of the tuple of principal symbols
under forming compositions on the level of operators. Hence it remains to show that
i) implies ii): Let p(x, &£, \) = O':Z;Z(A)(ZL“, ¢, A\)"!, and denote p°(z',£,\) = pl{a,—0}-
According to Proposition 2.24 the inverse of the principal boundary symbol of A(\)
is a principal (Volterra) boundary symbol of order —u and type d' < (—pu)4, where
more precisely

o (A) = <0p$n (1%0) +g 73)

S

Now we define pg as follows:
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e In case of general boundary symbols choose a 0-excision function x €
C®(R* xA). With x" := x|ge, =0} set p'(z,£, ) := x(&, Mp(z, £, \), and

opt /+ I~ l];;
poz:<pxn(p) X'g Xk)

Xlt XI§
e In case of Volterra boundary symbols we set

oo (opE (p(z, €, ¢ 1) + gla' €, ¢ +10) k(z', ¢, +1i)
Pl 6,0 = ( f@',€,C+1) 5(:6’,6’,C+i)> '

Thus py is a classical (Volterra) boundary symbol of order —p and type d’ < (—u)4,
and the tuple of principal symbols associated with py equals the inverted tuple of
principal symbols associated with ag. Consequently, agpo — 1 and poag — 1 are
classical (Volterra) boundary symbols of order —1, and the proof of the theorem
is complete. O

3. VOLTERRA BOUNDARY VALUE PROBLEMS ON A MANIFOLD

The present section is devoted to establish the parameter-dependent Volterra cal-
culus of boundary value problems on a compact manifold with boundary, i.e., we
shall give the globalized definitions and properties of the calculus from Section 2.
In fact, these operators constitute the elementary building blocks in what follows
in the remaining parts of this work.

To this end, let X be a compact smooth manifold of dimension dimX = n
with boundary ¥ = 0X, dimY =n — 1. We set X := X \ Y. Let E and F be
complex vector bundles over X of dimensions N_ and N, respectively, and let
J_ and Jy be complex vector bundles over the boundary Y of dimensions M _
and M, . Note that the dimensions of the bundles are allowed to be zero. With X
we associate its double 2X, which is a closed manifold and contains a positive and
negative copy X 4+ of X; we identify X with the positive copy X in 2X. Recall
that vector bundles on X can be lifted to 2X via the projection 7+ : 2X — X,
and in general we make no difference between a vector bundle and its lifting to
the double. For convenience, we fix Riemannian metrics on X and on Y, as well
as Hermitean inner products on the bundles E, F', J_ and J;. In particular, these
data determine Hilbert space structures on the L2-spaces of sections in the vector
bundles.

A local chart will be denoted as a tuple (k,,U), or simply &, where Q@ C X
is an open subset and k : 0 — U is a diffeomorphism. We distinguish between
two kinds of local charts:

e (k,Q,U) is called a local interior chart if Q C X is contained in the interior
X, and U C R" is some open subset.

e (k,Q,U) is called a local boundary chart if QNY # 0, i.e., Q covers some part
of the boundary, and U C R, is open.
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In any case, we will assume that local charts are chosen in such a way that the
involved vector bundles are trivial over 2, respectively over QNY. The transi-
tion matrices of the fibres that arise in changing local frames of the bundles are
suppressed from the notation.

The pull-back of a vector u = (Z;) of functions u; in R® and us in R*~! with
respect to a chart x will be denoted as k*u, where

wu= () = (0 i) (o)

and similarly we handle the push-forward ..v of vectors v = (;!) of functions v in
X and v, in Y. Hence also the operator pull-back and push-forward with respect
to k is well-defined with the usual formula.

For ¢ € C*(X) we denote the multiplication of ¢ with a vector u = (1) of

u2
functions u; in X and us in Y as ¢u, where

o= () = (6 on) ()
olyus 0 wly) \u2/)’

Recall that we may find finite open coverings of X that consist of some inte-
rior and some boundary charts, and to each such covering there exist subordinated
partitions of unity. Consequently, most constructions can be carried out first lo-
cally, and afterwards patched together globally on the manifold.

3.1. Sobolev spaces on a manifold with boundary. For s € R let Hi(X, E)
be the closed subspace of all u € H*(2X, F) with supp(u) C X, which equals the
closure of C§°(X, E) in H*(2X,E).

With the operator 7+ : D'(2X,E) — D'(X,,E) of restriction we set
H*(X,E) = r*H*(2X,E), endowed with the quotient topology. The kernel of
rT in H*(2X, E) is given as H§(X_, E), and there are continuous extension op-
erators es : H*(X,E) — H®(2X,E), i.e., the sequence 0 — H$(X_,E) —
H*(2X,E) — H*(X,E) — 0 is topologically exact and splits.

The L?(X, E)-inner product extends to a sesquilinear pairing H®(X, E) x
Hy*(X,E) — C and provides an identification of the dual spaces Hg(X, E)’ =
H=*(X,E) and H*(X,E)' = Hy*(X,E). The space C=(X,E) = rtC®(2X,E
of smooth sections up to the boundary is isomorphic to proj-lims_, . H*(X, E
and is dense in H*(X, E) for all s € R. For the dual space we have C*® (X, E)’
ind-lim,_, o HJ(X,E).

Let e denote the operator of extension by zero for sections defined on X
to 2X. Hence e™ makes sense as an operator HS (X, E) — H*(2X, E) for every
s € R, which coincides with the inclusion. For —1 < s < 1 we have H§ (X, E) =
H*(X,E), and thus the operator eT is well-defined in H*(X, E) — D'(2X, E)

for s > —%.

~— —

1

3.2. Operator calculus and symbolic structure.
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Notation 3.1. We denote the operator 04 := r™d,e*, where 9, is a vector field on
X supported near the boundary which coincides close to Y with the inward unit
vector field with respect to some Riemannian metric on X.

o,
0
) of sections u; defined on X, and uy defined on Y.

. 0 .
Moreover, we shall also write 01 = ( 1> as an operator acting on vectors

w1

u = (uz

We intend to define spaces of operator families

(X, E) c=(X,F)
A - @ N S (3.1)
COO(Y7 J*) COO(YJ J+)

depending on the parameter A € A. For better readability we will suppress the
vector bundles from the notation.

Definition 3.2. The space B~ °°(X;A) consists of all operator families (3.1)
which are given (componentwise) as integral operators with smooth kernel sections,
depending rapidly decreasing on the parameter A € A. In other words, the space
B~>>%(X; A) consists of all those operator families that act continuously in the
spaces

HE(X, E) H'(X, F)
A(N) : ® — ®
HS(Y,J,) Ht(Y7J+)

for all s,t € R, which induces a topological isomorphism
C®(X,E) C®(X,F)
B=0(X; A) :3(A,£< ® ® >
DI(Ya J—) (O (Y7 J+)

The space By,">"(X;H) is by definition the closed subspace of all A(\) €
B~°9(X;H) that are analytic in the interior of H.
For d € Ny we define the spaces B(Vo)o’d(X; A) to consist of all operator families

d .
(3.1) having a representation A(X) = > G(A)d, with G(A) € B(VO)O’O(X;A). We
j=0
may regard these spaces as Fréchet subspaces
HS(XaE) Ht(XaF) >

B(‘V(’)"’d(X;A)gS(V")O<A; ® : ®
H(Y,J-) HYY,J;)

for s > d — % and t € R, endowed with the topology of the non-direct sum (with
respect to the spaces of type zero above).
For p € Z and d € Ny the spaces Bé“’,d)ﬁ
(3.1) that satisfy the following conditions:
i) For all ¢,9» € C*(X) having disjoint support we require pA(\)) €

By (X5 A).

(X; A) consist of all operator families
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ii) For all ¢,1 € C*°(X) supported in a local boundary chart (k,Q,U) we have
ke (PANY) € B (R A).

iii) For all ¢, € C*(X) supported in a local interior chart (x,, U) we have

_ (op=(a)(A) +9(A) k(N
Kx (‘PA(/\)Q/)) = ( t(\) s(\) )’

where a is a classical parameter-dependent (Volterra) pseudodifferential sym-
bol of order p € Z, and g(A), k(X), t(A\) and s(A) are integral operators with
rapidly decreasing kernels that depend rapidly decreasing on the parameter
A € A, and in the Volterra case they are additionally analytic in the interior
of the half-plane A = H.

We endow these spaces with the projective topology with respect to the mappings

induced by i)-iii).
We call the operators in Bé“’,d)ﬁ(X ;A) (Volterra) boundary operators of order

it € Z and type d € Ny. The operators of order —oo are called regularizing.

Definition 3.3. With an operator A(\) € Bf"gfl (X; A) we associate the following

tuple of principal symbols (see also Theorem 2.22):
e Let m: (T*XxA)\ 0 — X be the canonical projection. Then the principal
pseudodifferential symbol of A()\) is well-defined as a smooth (anisotropic)
homogeneous section

o (A) : (T*XxA) \ 0 — Hom(r*E, 7" F), (3.2)

i.e., we have O':Z;Z(A)(Qfg;,gl/\) = Q“O’Z;Z(A)(fw,A) for o > 0. For Volterra
operators the principal pseudodifferential symbol is analytic in the interior
of the half-plane A = H.
e The principal boundary symbol of A()) is given as a smooth section
H*(Ry)@m*Ely H* " (R;)®n*Fly
O'g;l(A) :(T*Y xA)\ O —)Hom( @ , ® >
a*J_ " J+
for s > d — %, where 7 : (T*Y'xA)\ 0 — Y is the canonical projection. We
may also replace the Sobolev spaces H*(R;.) and H* #(Ry) by the space
of rapidly decreasing functions S(Ry ). The principal boundary symbol is
(anisotropic) homogeneous in the sense

: ke®1 0 : kil 0
o Ao n = ("7 D)t ()
for p > 0 with the group-action {k,} from (2.1). For Volterra operators the
principal boundary symbol is analytic in the interior of A = H.
The mapping A(\) — (ag;e(A),ag;e(A)) is continuous, and the tuple of princi-
pal symbols determines the operator A(\) up to classical parameter-dependent
(Volterra) boundary operators of order u — 1 and type d.



ON THE INVERSE OF PARABOLIC BVP 27

Theorem 3.4. a) Every A(\) € Béb",d);fl(X;A) extends from the spaces (3.1) to a

family of continuous operators

H(X,E) Hs (X, F)
AN : ® — <) (3.4)
HS(Ya J*) HS*N(Y: J+)

fors>d— %, which induces an embedding of the boundary operators into spaces
of operator-valued (Volterra) symbols within these Sobolev spaces.

b) The composition as operators on (3.1) gives rise to continuous bilinear map-
pings Bél‘i’)i};l(X; A) XBK‘}’)‘Z;Z(X; A — Bf‘};rc‘;%d;[(X; A), where d = max{u+
dy,d2}. Note that we assume that the bundles fit together in order to be able to
carry out the composition.

For A(X) € Bél‘i’)i};l(X; A) and B(\) € BE‘@S‘Z’;‘;[(X; A) we obtain the following

formulas for the principal symbols of the composition:
01’;14_”2;((.’45) — 051;5(.4)052;4(3)7 ag‘””ﬂ(AB) — Ugué(A)agz;f(B)'

c¢) Taking the formal adjoint operator with respect to the L*-inner product(s) gives
rise to an antilinear continuous mapping * : BZ’O;Z(X;A) — BZ’O;Z(X;A) for
uw < 0. For A(\) € Bfl’O;Z(X;A) the principal symbols of the formal adjoint
operator are given as

o (A7) = o (A, ol (AT) = b (A"

Note that the space of Volterra boundary operators is not preserved under this
operation.

Proof. The global result a) on the boundedness of operators in the Sobolev spaces
follows from the corresponding local results.

For the proof of b) note first that the spaces of regularizing operators re-
main invariant under composition with arbitrary boundary operators, including
the formula for the types, which is immediate in view of a) and Definition 3.2.
Consequently, the proof is reduced to consider the composition of operators sup-
ported in a local chart. But for these we may apply the local results: If we deal with
local boundary charts we obtain the desired assertion from Theorem 2.18, while
for local interior charts it follows directly from the general calculus of (Volterra)
pseudodifferential operators.

By Definition 3.2 assertion c) holds for regularizing operators. Hence the
proof reduces to consider operators supported in a local chart, and for these we
may apply the local results from Theorem 2.18 for local boundary charts, and the
general theory for local interior charts. O

Remark 3.5. The global spaces of (Volterra) boundary operators of fixed type
d € Ny are invariant with respect to taking asymptotic expansions:
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Given A;(A) € va)jl‘”(X A) for j € Ny we find an operator A(\) €

By (X5 A) such that A(A) o _z A;(V), ie

N
Z EBN N 1d€(X A)
=0

for N € Ny. Clearly, A(A) is umquely determined up to regularizing (Volterra)
boundary operators of type d.

To see this note that the spaces of boundary operators are built upon a hi-
erarchy of operator-valued (Volterra) symbols, and the standard result about as-
ymptotic completeness of these implies the asymptotic completeness of (Volterra)
boundary operators of fixed type.

In case of Volterra boundary operators we may construct A(¢) as in Section

1.3 as A(Q) = X (H(p(cjt))A;)(¢) with convergence in the space of Volterra
7j=0
boundary operators using the (Fourier) kernel cut-off operator H from (1.3).

3.3. Ellipticity, parabolicity, and global parametrices.

Definition 3.6. a) An operator A(\) € Bé‘l’d;l(X;A), where d < py, is called
parameter-dependent elliptic provided that both the principal pseudodifferential
symbol and the principal boundary symbol of A(\) are invertible, i.e., the
families (3.2) and (3.3) are pointwise bijective.

b) An operator A(C) € B (X;H), where d < i, is called parabolic if A(C) is
parameter-dependent elliptic in the sense of a) as an element in Bfl’d;l(X ; H).

Theorem 3.7. Let A()\) € #V% KZ(X A), where d < py. Then the following are
equivalent:
i) A(N) is parameter-dependent elliptic (parabolic).

ii) There exists P(\) € B(_V”)’g;z(X'A) d < (—p)y, such that AN)P(N) —1 €

By ™M(X;A) and P(VNAN) -1 € B e (X;A), where dy = max{—p+d,d'}
and dy = max{p +d',d}.
Every P(X) satisfying i) is called a (Volterra) parametrix of A(X).

Proof. Clearly, ii) implies i) in view of the multiplicativity of the tuple of principal
symbols under composition.

Let us prove that i) implies ii): Using a covering of X by local charts and
a subordinated partition of unity we may pass from the global operator A(A) to
local representations on the half-space (for local boundary charts), respectively to
operators on R” with regularizing entries except for the upper left corner (for local
interior charts). In case of the half-space these operators are parameter-dependent
elliptic (parabolic) in the sense of Definition 2.23, and in case of operators in the
interior we obtain parameter-dependent elliptic (parabolic) elements in the up-
per left corner. More precisely, the property of being parameter-dependent elliptic



ON THE INVERSE OF PARABOLIC BVP 29

(parabolic) is localized on some compact subset. Using Theorem 2.25 for the in-
volved (local) boundary operators as well as the standard parametrix construction
for the operators in the interior (for Volterra operators see also Section 1.5) we ob-
tain to each local representation a (Volterra) parametrix. Patching these together
on the manifold we find the parametrix P()) as asserted. O

Theorem 3.8. a) Let A()\) € Bfl’d;e(X;A), d < py, be parameter-dependent el-
liptic. Then for |\| > 0 sufficiently large the operator A(N) is invertible, re-
garded either as an operator in the spaces of smooth functions (3.1), or alterna-
tively as an operator in the Sobolev spaces (3.4) for sufficiently large reqularity.
More precisely, the set of all A € A such that A()) is not invertible is compact
in A, and for each neighbourhood U C A of this set there exists a parametriz
PA) € B X A), d < (—p)y, such that P(\) = AN~ for A ¢ U.

b) Let A(C) € B"j’gl;e(X;H), d < py, be parabolic. Moreover, assume that A(()
acts as an isomorphism either in the spaces of smooth functions (3.1), or in the
Sobolev spaces (3.4) for sufficiently large regularity. Then the inverse P(() =

A(Q)™! belongs to B‘;*Cbl’d’;l(X;]HI) for some d' < (—p)+.

Proof. Let us prove a): According to Theorem 3.7 we first choose a parametrix
P'(A) of the operator A(X), and let A(A)P'(A) = 1 + Rr(A\) and P'(N\)AN) =
1+ Rr(A\). For Rp(A) and Rpr(A) depend rapidly decreasing on the parameter
A € A, we conclude that both 1+ Rr(\) and 1+ Rgr(\) are invertible for |A| > 0
sufficiently large. Hence the set of all A € A such that A()) is not invertible is
necessarily compact. Let x € C*°(A) be an excision function of the non-bijectivity
points of the operator A(\) with x = 1 outside the given neighbourhood U. Now
we define

Pr(A) = P'(A) = RLN)P'(N) + RL(N)x (VAN T Rr()),

Pr(A) :=P'(A) = P'(NRr(N) + RL(A)xNAN) T Rr(A).
From the defining mapping property of regularizing elements in the calculus we
conclude that both Pp,(A) and Pr()) belong to B,"* HX5A), d < (—p)y, and
in fact are parametrices of A()X). Moreover, a simple algebraic calculation shows
that Pr(A) = Pr(\) = A\~ for X\ ¢ U, i.e., with either P(\) = Pg()\) or
P(A) = Pr(N) assertion a) is fulfilled.

The proof of b) is even simpler for we need not argue with an excision func-
tion. O

Proposition 3.9. Assume that the vector bundles are given as E = F and J_ =
Ji. Let G(N\) € B(Vof’d(X; A) such that 1+ G(\) is invertible in the spaces (3.1), or
in (3.4) for sufficiently large regularity. Then the inverse is given as (1+G(\)) ™! =

1+ G'(\) with some G'(\) € B(Vof’d(X; A).

Proof. This is a simple consequence of the identity

1+GAN))L=1-GN)+GNA+GA\)LGW).
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O

4. PARABOLICITY AND INVERTIBILITY IN AN INFINITE SPACE—TIME CYLINDER

The aim of the present section is to give a rough description of the inverse of
parabolic boundary value problems in an infinite space—time cylinder [to, 00)xX.
To this end, we consider boundary value problems in Rx X that are given in terms
of Volterra pseudodifferential operators

ops(a)u(t) = Fta(t, ) Fu = e =7 q(t, r)u(t') dt' dr
I

with symbols a(t, ¢) € SY(R, B“j"ff (X;H.)), i.e., we assume that the “coefficients”
depend on the time variable ¢ € R like a classical symbol of order 0. Clearly, op:(a)
is well-defined as a continuous operator

(R, (X, E)) C>(R, 0> (X, F))
opt(a) : @ — @ : (4.1)
Co°(R,C>= (Y, J-)) C*(R,C> (Y, J3))

Observe that we may write

C*(X,E) C*(X,F)
opi(a) = " op(T_iya)e 7" : CF° (]R, ® > — O™ <]R, @ >
C>(Y,J-) C>(,J})
(4.2)

for v > 0, where (T_;,a)(t,¢) = a(t,( —iv) € SY(R, B“j"ff (X;H)).
With the symbol a(t, () we associate the following tuple of principal symbols:

i) The principal pseudodifferential symbol is given as a smooth section
it . X * *
af; (a) : Rx ((I'*X xH_) \ 0) — Hom(r*E, 7*F)

i H 14 4
thatols homogeneous in the sense Ufz (a)(t, 0&., 0°¢) = Q”UZ (a)(t, &, Q) for
0> 0.
ii) The principal boundary symbol is well-defined as a smooth section

H*(Ry )@ Ely  H*7H(Ry)@r"Fly
o' (a) : Rx ((T*Y xH_ )\ 0) — H0m< ® : ® )
mJ_ T Jy

for s >d— % that is homogeneous in the sense

-1
o 0= () ot@ieeno (7,7 )

for p > 0 with the group-action {k,} from (2.1).
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iii) The principal pseudodifferential-exit symbol
o (@) : (R\ {0})x ((T"XxH_) \ 0) —> Hom(r"E, =" F)

is by definition the principal part with respect to ¢t € R of the principal pseu-
dodifferential symbol associated with a(t, (). In particular, it is homogeneous
in the sense Ufz;ii (a)(glta 92590: ng = anfz”i (a) (t7 gz: C) for 01,02 > 0.

iv) The principal boundary—ezit symbol

¢ H*(Ry)@n*Ely HH(Ry )@n*Fly
ohe(a): (R\{0})x((T*Y xH_)\0) —)Hom( ® , o )
a*J_ 71""1]+

for s > d — % is defined as the principal part with respect to ¢ € R of the
principal boundary symbol. It is homogeneous in the sense

: Koy ®1 0\ ktol 0
At g0 = & (7 ) abl@ee.o ("5 )

for o1, 02 > 0 with the group-action {k,} from (2.1).

v) The principal ezit symbol is by definition the homogeneous principal compo-
nent of a(t, ) with respect to ¢ € R. It is well-defined as a family of operators
depending on ¢t € R\ {0} and ¢ € H_ in the spaces

H*(X,E) H (X, F)
CHOIAGE ® — D
H3(Y,J.) Hs=1(Y, J,)

for s > d — § that is homogeneous in the sense 02 (a)(ot, () = 02(a)(t,() for
o> 0.

Observe that also O'Z;K(Ug(a)) = afz;’i(a) and o4 (09%(a)) = agjf(a), and all princi-
pal symbols are holomorphic with respect to { in the interior of the lower half-plane
H_.

Both the principal pseudodifferential-exit and the boundary—exit symbol are

by definition constant on {t > 0} and {t < 0} with values ¢ (a)(£00,&,, ()

e
and Ua;ﬁ(a)(ioo,f’w,,g), respectively, as they are homogeneous with respect to
t € R\ {0} of order 0. Moreover, we have af;;e(a)(t, &, 0) wnd affi(a)(ioo, &, 0)
—do0 V>

and Ua;l(a) (t,&.,0Q) il Ugjﬁ (a)(£o00,E,, (). Therefore, we may also consider the

z'
principal pseudodifferential symbol and the principal boundary symbol as given on
the compactification [—oo, +00] of R, and drop the separate control of the “mixed”
principal symbols.

Notation 4.1. Let ("4 be the set of triples (az/’u) (t, &, 0), a‘(?u) (t, €0, C)s afy (8, Q)
where

. a?’“) (t, &, ¢) depends like a classical symbol of order 0 on ¢ € R taking values

in the space of principal pseudodifferential symbols on (7*X xH_ )\0 of order
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it € Z that satisfy the transmission condition with respect to the boundary
0X;

. a‘ab) (t,€.:,C) depends like a classical symbol of order 0 on ¢ € R taking
values in the principal boundary symbols of order u € Z and type d € Ny on
(T*Y x H_) \ 0, and the upper left corner of a‘ab) is compatible with azpu);

® afy)(t,¢) is a homogeneous function of order 0 with respect to ¢t € R\ {0}
taking values in B4 (X;HL);

. Ug;l(a‘(fo)) =o? (azpﬂ)) and Ua;l (aly) = o? (a?ﬂ)) (compatibility condition);

e all functions are holomorphic with respect to ¢ in the interior of the lower
half-plane H_.

Theorem 4.2. The principal symbol sequence
— —1,d;¢ ,d;l . (0y,00,0¢)
0 — S HR,BE X HL)) — SY(R, BELE (X HL)) 7257 swd 0
is exact and splits.

Proof. Clearly, the tuple of principal symbols determines a Volterra symbol a(t, ¢)
up to terms of lower order, both with respect to ¢ € R and with respect to the
pseudodifferential order in the parameter-dependent Boutet de Monvel’s calculus.

Let (a?’“),a&), afy)) € »(#):d be given. For the principal symbol sequence for
parameter-dependent Volterra boundary operators in Boutet de Monvel’s calcu-
lus is topologically split exact (the splitting is induced by the translation oper-
ator in local coordinates, see also Section 1.4), we first find a symbol a(t, () €
SO (R, B“j"ff/ (X;H_)) with O':Z;l(fl) = azp“) and Ua;l(d) = a?ﬂ). With a 0-excision
function x € C*(R), i.e., x =1 for |¢| > 0 and x = 0 near ¢ = 0, we now define
alt,¢) = a(t,¢) — X(8) (2@ (¢, ¢) ~ afy)(t,C)). Thus a € SG(R, BY%! (X;H))

with (UZ;K(a),ag;e(a),ag(a)) = (a?’“),a&),afo)), and the proof of the theorem is

complete. O

Definition 4.3. We define spaces of exponentially weighted Sobolev spaces as
follows: Let Z be a closed manifold, and V' € Vect(Z) a complex vector bundle
over Z. For s € R let

H (R Z,V) i {L;(R, H(Z V) NHI R LXZ,V) 520,
L*(R,H*(Z,V))+ Hi(R,L*(Z,V)) s<0,
and H*V(Rx Z,V) := e H%*(Rx Z,V) for v € R.

Moreover, we define the weighted anisotropic Sobolev spaces on the infinite
cylinder with boundary as H*V(Rx X, E) := r+ H*7{(Rx (2X), E), i.e., by re-
striction of the corresponding Sobolev distributions from the double.

The closed subspaces of distributions with support in [tg, c0) are denoted by

Hgml([to, o0)x Z,V) and Hgml([to, o0)x X, E), respectively.
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Theorem 4.4. For every v > 0 the operator opi(a) extends from the spaces (4.1)
by continuity to

H*(Rx X, E) H*#74Rx X, F)
opt(a) : @ — @ (4.3)
H*VYRxY,J ) H*#74RXY, J,)

for s >d— % Moreover, it restricts to a continuous operator

HE ([to, 00)x X, E) HE [ty 00) X X, F)
ope(a) : @ — & (4.4)
Hy ¥ ([to, 00) XY, J_) Hy ™" ([to, 00) XY, J4)

for every ty € R.

Proof. The continuity of op:(a) in the spaces (4.3) for v = 0 follows from the
general boundedness results of operators in Boutet de Monvel’s calculus. The case
of general v > 0 then follows from the identity (4.2).

Clearly, the Volterra operator op;(a) respects the spaces (4.4). Recall that this
follows from the Paley—Wiener characterization of the Fourier image of functions
supported by [tg,00) as holomorphic functions in the interior of H_ (see, e.g.,
Eskin [16], Rempel and Schulze [57]); these spaces of holomorphic functions remain
invariant with respect to multiplication with the symbol a(t, ¢). O

Theorem 4.5. Let a € SY(R, B“}lc’ldl;e(X;H_)) and b € SY(R, B‘&Zéldz;e(X;]HI_)).
Provided the vector bundles fit together, the composition as operators in the spaces
(4.8) for each v > 0 is given as op;(a)oop:(b) = op(a#tb) with the Leibniz-product

oo

ity 1
a#b(t, ) = //e CTa(t, ¢+ T)b(t +t',¢)dt' dr ~ > o (0fa) (DfD).
k=0
The asymptotic expansion is to be understood in the following sense:
N-1
agtb = Y 75 (0¢a) (Dib) € SN (R By "~ (X L))
k=0

for N € Ny, where d = max{us + di,d>}. In particular, we have

A D)1 62, €) = 1 (0) s O () 0,6, ),
Ug1+uz;€(a#b)(t7§;,,g) = ag“e(a)(t,f'zz,C)Ug%e(b)(taf;uo:
o0 (a#b)(t,¢) = 02(a)(t, )0 (b)(t, C).

Proof. The general pseudodifferential calculus implies that the composition as op-
erators in (4.3) for v = 0 is indeed given as op:(a#b), and the oscillatory integral
formula for the Leibniz-product holds. From this formula it is easy to see that a#b
is a Volterra symbol of boundary value problems, and the asymptotic expansion
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holds as desired. The assertion for general v > 0 now follows from the case vy =0
and (4.2) via
opt(a)oopt(b) = (e"’tOpt(T,wa)e_"’t) (evtopt(T—wb)e_w)
= e opy(T— i (a#b))e™ 7" = op;(a#b),

and the proof of the theorem is complete. O

4.1. Parabolicity and the construction of the inverse.

Definition 4.6. A Volterra symbol a € S (R, B“j"ff/ (X;H)), d < pyg, is called
parabolic with respect to the weight vo > 0, if the following conditions are fulfilled:

i) Both the principal pseudodifferential symbol U:Z;Z (a)(t,&:, ¢) and the principal
boundary symbol ag;e(a)(t, &1, ¢) are invertible for all ¢ € [—o00, +00] and all

covectors (&;,¢) # 0 and (&,.,¢) #0.

Recall that this actually means that the principal pseudodifferential sym-
bol, the principal boundary symbol, the principal pseudodifferential-exit sym-
bol, and the principal boundary—exit symbol are invertible.

ii) There exists so > d — 3 such that the operator family

H*(X,E) H* X, F)
o%(a)(t,¢ —iv) : & — & (4.5)
Ho (Y, J_) He= (Y, J,)

is invertible for all ( € H_ and ¢ # 0.

Proposition 4.7. Assume that a(t, () fulfills condition i) in Definition 4.6. Then
a(t, ) is parabolic with respect to some weight vo > 0, i.e., condition ii) in Defi-
nition 4.6 is simply a weight condition.
Proof. For UZ;Z (0%(a)) and U’a‘;e(ag(a)) are invertible by condition i) of Definition
4.6 we see that 0%(a)(t,¢) € B“}’fl;e(X; HL ) is parabolic in the sense of Definition
3.6, and therefore the operator family (4.5) is invertible for 79 > 0 sufficiently
large according to Theorem 3.8 — note that the principal exit symbol is constant
on {t > 0} and {t < 0} as it is homogeneous of order 0 with respect to ¢ € R\ {0}.
O

Theorem 4.8. For a Volterra symbol a € SY(R, Bé’i}l(X;]HL)), d < pg, the
following are equivalent:
i) a(t, () is parabolic with respect to the weight o > 0.
i) There exists b € Sgl(R,B;“C’ldl;[(X;]HL)), d < (—w)y, such that a(t,¢ —
i70)#b(t,¢) = 1 and b(t,()#a(t,{ —iv) = 1, i.e., T_sy,a has the Leibniz-
inverse b.

In particular, the parabolic operator opi(a) is invertible in the spaces (4.3), (4.4)
for v > 70, and the inverse is given as op(a) "t = €7 op;(b)e 7L,
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Proof. For a(t,( — i7p) is parabolic with respect to the weight 0 if and only if
a(t, ¢) is parabolic with respect to the weight y, we may assume for the proof of
the equivalence of i) and ii) that o = 0.

Let us assume first that ii) holds. Theorem 4.5 implies that the tuple of princi-
pal symbols associated with b(¢, {) invert the tuple of principal symbols associated
with a(t, (), and consequently a(t, () is parabolic.

Next assume that a(t,() is parabolic with respect to the weight 0. Then
the triple (ag;e(a)_l,ag‘;e(a)_l,ag(a)_l) of inverted principal symbols defines an
element in SC-M-4 with d' < (—p)+ — note, in particular, that the inverted
principal exit symbol is indeed a principal exit symbol due to Theorem 3.8.
From Theorem 4.2 we conclude that there exists a Volterra symbol ¢(t,({) €
SO (R, B;’z’ldl ;Z(X ;H_)) having this tuple of principal symbols, and by Theorem
4.5 we have a#tc = 1 —r and c#fa = 1 —ry with r; € S_*(R, B;ljj ;Z(X;]HI_)) for
j =1,2, where d; = max{—u+ d,d'} and d» = max{p + d', d}.

Hence the proof is reduced to show that for a Volterra symbol r €
SHR, By LB (X HL ), where d € Ny, there exists ' € S(R, By 5 (X HL))
such that (1 —r)#(1 + ') = 1 and (1 +r)#(1 —r) = 1. We apply a formal
Neumann series argument twice to obtain further reductions.

The first application of the argument refers to the pseudodifferential order
in the parameter-dependent Boutet de Monvel’s calculus on X, i.e., let r'(¢, ()

N—1
such that v — > ri#) ¢ S (R, B;]:l’d;l(X;H,)) for N € N. Then we have
j=1

1 —r#A+7) =1 € S (R,ByUX;HL)) and (1 4+ #)#(1 —7r) -1 €
Sc_ll(]R, B;Oo’d(X;]HL)), and consequently we may assume from the very begin-
ning that r € S;' (R, B,,°"(X; H.)).
The second application now refers to the order in the variable t € R,
ie., let 7'(t,¢) such that r' — Nzl ri#) ¢ S;N(R,B;Oo’d(X;H_)) for N €
j=1
N. Then (1 — r)#(1 + ') —1 € S°(R,B,**(X;H_)) and (1 + r')#(1 —
r)—1 e S™(R, B;Oo’d(X;]HI_)), and the proof is reduced to show that for
r € S"X’(R,B;Oo’d(X;H,)), where d € Ny is arbitrary, there exists ' €
ST(R, B;Oo’d(X;H_)) such that (1 —r)#(1+7') =1and (1 +r")#(1 —-7r) = 1.
For the operator G := opy(r) is compact in the Sobolev spaces, 1 — G is
invertible if and only if it is one-to-one. Note that

S(R,C> (X, E))
ker(1 - G) C ®
S(R,C>(Y,J.))

)

and consequently it is sufficient to prove the injectivity of the continuous extension

) H*(X,E) ) H*(X,E)
1-G: L <]R, HS(SE,J,) ) — L <JR, HS(;?L) ) (1)
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for some s > d — 5. We may write (Gu)(t fg t,t")u(t') dt’ with

o000 GS(RXK,C( )

and ¢g(t,t') = 0 for ¢t < t'. The general theory of Volterra integral opera-
tors in L2-spaces now implies that (1) is invertible, i.e., the Neumann series
(1-G)' = 3 GY is convergent. Thus ker(1 — G) = {0}, and the operator

1 — G is invertible in the Sobolev spaces, too. Writing G = Z Gj 8 with

G; = opi(r;), r; € S™°(R,By;°(X;H_)), we conclude that (1 -G)t =
d .

1+G+ Y (G(1—G)7'G;)d7., and each of the Volterra operators G(1 — G)~'G;
j=0

is continuous in the spaces

S(R,C> (X, E)) S(R,C>*(X,E))
G(1-G)'Gy: ® — @ 7
S(R,C (Y, J_))' S(R,C (Y, J_))

ie, G(1 — G)7'G; = op(7j) with 7; € ST2°(R, B;OO’O (X;H_)). Consequently,
(1-G)! =1+ G with G’ = op¢(r') as asserted, and the proof of the equivalence
of i) and ii) is complete.

The second assertion of the theorem about the structure of the inverse of a

parabolic operator op;(a) now follows immediately from (4.2) and Theorem 4.4.
O

Remark 4.9. Usually we are just interested in the invertibility of a parabolic
boundary value problem in the spaces (4.4) and the structure of the inverse opera-
tor therein. Actually, we can relax the parabolicity conditions from Definition 4.6
to be fulfilled only on the time interval [to, 00), and Theorem 4.8 localized to this
interval is then valid, i.e., there exist Volterra symbols b; (t,() and by(t,() such
that (T_iyoa) #b1|[ty,00) = 1 and ba#(T—iy,a)ljty,00) = 1, and the operator op;(a)
is bijective in (4.4) for v > o with inverse op;(a)™! = e™%op;(b)e~7°!, where we
can choose b either as b; or bs.

In the theory of parabolic partial differential equations and boundary value
problems we are interested not only in existence, uniqueness, and smoothness,
but also in the long-time behaviour of solutions. Thereby, it is most natural
to ask Whether the solution has exponential long-time asymptotics of the form

u(t) ~ > Z cjithePit as t — oo, where p; € C and the c;j, are smooth sec-
j k=0

tions on X (and on Y), provided that the right hand side of the equation has

an analogous behaviour. Clearly, such can only be expected if the dependence of

the equation and the boundary conditions on the time variable is “moderate” as

t — o0.
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Under our present hypotheses, exponential long-time asymptotics cannot be
observed in general. Moreover, the structure result about the inverse operator
(solution operator) of a parabolic boundary value problem as given in Theorem
4.8 is too coarse to provide insights about the long-time behaviour in terms of
exponential long-time asymptotics, even if the assumptions about the particular
equation under study are sufficiently strong.

For this reason, the program of the remaining sections is to construct a sub-
algebra of pseudodifferential Volterra boundary value problems that also allows
the control of exponential long-time asymptotics. This subalgebra is closed under
inversion of parabolic elements, and from the more specific symbolic and oper-
ational structure of this smaller calculus we obtain much stronger results about
the inverse operators (near ¢ = oco) than those given in Theorem 4.8 within the
large calculus. In particular, the control of exponential long-time asymptotics is a
regularity feature for parabolic elements in this calculus — this requires meromor-
phic symbols near ¢ = oo in combination with Paley—Wiener characterizations of
function spaces with asymptotics.

To this end, we make use of the substitution r = e~* which transports the
relevant effects near ¢ = oo to r = 0. We assume that the equations and bound-
ary conditions under study are totally characteristic in the new coordinates with
respect to the hypersurface r = 0. This clearly is a more restrictive time depen-
dence than that considered in the present section. To illustrate this condition, let

M .
A = Y A;(t)8] be a differential boundary value problem, where the A;(t) are
=0
operator-valued coefficients taking values in differential boundary value problems
~ M :
on X. In the new coordinates we may write A as A = ) A;(—logr)(—r0,)’,
Jj=

and our assumption means that the coefficients A;(—logr) extend smoothly up to
the origin r = 0. Note that exponential long-time asymptotics are transformed to

mj
conormal asymptotics @(r) ~ 3. Y, &1 log®(r)r~? as r — 0, while the exponen-
j k=0

tially weighted Sobolev spaces are mapped to totally characteristic Sobolev spaces
with power weights at the origin — the latter are expressed as weighted Mellin
Sobolev spaces.

Summing up, we analytically find a situation of totally characteristic pseudo-
differential operators. The elliptic theory of these has been investigated extensively
in recent years, and we adopt certain structures that have been developed in this
theory for our construction of the Volterra calculus of boundary value problems;
in particular, the works of Schrohe and Schulze [59, 60] about elliptic boundary
value problems on manifolds with conical singularities are to be mentioned in
this context. For this reason, we will call the operators in our calculus Volterra
boundary cone operators, even if there is just the analytic and not a geometric
correspondence.
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5. CONORMAL SYMBOLS OF BOUNDARY VALUE PROBLEMS

In the present section we are going to introduce certain spaces of meromorphic
operator functions taking values in Boutet de Monvel’s algebra that later will
serve as Mellin symbols. Notice that meromorphic Mellin symbols naturally occur
in the pseudodifferential calculus of totally characteristic operators, and in the
elliptic theory of boundary value problems they were investigated by Schrohe and
Schulze [59, 60]. Volterra conormal symbols were considered in the boundaryless
case by Krainer and Schulze [39].

Definition 5.1. A Mellin asymptotic type (of boundary value problems) is a finite
or countably infinite set P = {(pj,m;,L;); j € Z}, where the m; € Ny are
integers, the L; are finite-dimensional subspaces of B~°¢(X) consisting of finite-
dimensional operators, and the p; € C are complex numbers such that only finitely
many are located in each strip {z € C; ¢ < Re(z) < ¢'} with ¢, ¢’ € R.

For the empty asymptotic type we shall use the notation O, and we denote
the “projection” of P to C by m¢P := {p;; j € Z}. The collection of all Mellin
asymptotic types is denoted by As(B~°¢(X)). Note that we suppress the vector
bundles E and F on X as well as J_ and J, on the boundary Y from the notation
for better readability.

Notation 5.2. For # € R we denote 'z := {z € C, Re(z) = f}, and Hg := {z €
C; Re(z) > B}. We shall consider parameter-dependent operators with parameter
running over I'g as well as Hz which are then to be identified with [y and Hj via
shifting the origin to 3.

Definition 5.3. For y € Z and P € As(B=>%(X)) the space M4 (X) of
(anisotropic) meromorphic Mellin symbols (of boundary value problems) of order
p and type d € Ny with asymptotic type P consists of all functions a € A(C \
meP, B#4(X)) with the following properties:

e For every (p,m, L) € P we may write in a neighbourhood U (p) \ {p}
m
a(z) = Z ve(z — p) =Y 4o (2)
k=0

with v, € L,k =0,... ,m, and ap holomorphic in p taking values in B*?(X).
e For every compact interval I C R we have
m;

a(B +it) — > > 0tk € BYH(X;Tp) (5.1)

{(pj mj,Lj); Re(p;)e€l} k=0

uniformly for 8 € I with suitable o, € L;, where the functions 1, » are
analytic in C\ {p;} and meromorphic in p; with a pole of multiplicity k£ + 1
such that for every pj-excision function x € C*(C) the function x - ¥, x
belongs to C*(Rs, S(I')).
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Let Hz be a right half-plane in C, and m¢P N Hz = (). We define the space of
meromorphic Volterra Mellin symbols (of boundary value problems) of order pu
and type d € Ny with asymptotic type P as

MES (X5 Hg) o= Myt (X)NBY G (X5 Hs). (5.2)

Analogously, we define the spaces M, °*4(X) and My, j’.f”d(X ;Hg) of regularizing
meromorphic (Volterra) Mellin symbols of type d € Ny with asymptotic type P.

If P = O is the empty asymptotic type the spaces are called holomorphic
Mellin symbols.

Remark 5.4. The topology on the space M Iﬁ’jl;l(X ) is determined by the following
ingredients:

e The topology of A(C \ mc P, B*4(X)).

o Convergence of the Laurent coefficients v, in the corresponding coefficient

spaces L; C B~°>4(X).

e Uniform convergence of (5.1) for # € I for every compact interval I C R.
With this topology Mlﬁ’jl;l(X) is a Fréchet space. Note that the topology does not
depend on the particular choice of the functions ¢, involved in (5.1) and the
coefficients o, determined by them.

The topology of meromorphic Volterra Mellin symbols is given as the in-
tersection topology determined by (5.2). Notice that the spaces of meromorphic
Volterra Mellin symbols are independent of the right half-plane Hjz as long as
Hs NP = 0. In particular, holomorphic Volterra Mellin symbols are parameter-
dependent Volterra boundary value problems with respect to any right half-plane
Hz C C. Therefore, we suppress the half-plane from the notation when we deal
with holomorphic Volterra Mellin symbols.

Remark 5.5. The Mellin kernel cut-off operator with respect to the weight v € R

(Hﬁ,((p)a) (z) :== //r”tp(r)a(z —iT) % dr ~ l(rar)kgo(r)|,,:1 .Bfa

1% k!
RE, M) =0

actually gives rise to continuous bilinear

for z € I‘%ﬂ, respectively z € H%ﬂ,

mappings in the spaces
,d;d . ,d;l
H. : Cgo(]R-F)XB?l (X)F%—fy)_)Mgcl (X)7
v ,d;l . ,dil
Cgo(RF)xgécl (X’Hlifw) - M\'L},Ocl(X)'
General statements about the (Mellin) kernel cut-off operator as an operator acting
in spaces of (holomorphic) operator-valued (Volterra) symbols can also be found
in [38], [37].
In particular, for P € As(B=>(X)) we have
,d; e _ ,d;l —00,
Mt (X) = MEG (X) + M (),
,d;l . _ ,d; —00,d .
M\L;,Pcl(X’ HB) - M‘lZO cl(X) + MV,C;) (X’ HB)
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algebraically and topologically with the topology of the non-direct sum of Fréchet
spaces on the right hand sides.

These decompositions imply that with a meromorphic (Volterra) Mellin sym-
bol a(z) we can associate a unique tuple of principal symbols

H4 H4 H4 H4

oy (@) = oy (alr,) oy (a) = o) (alw,)
H4 _ it H4 _ it

o5 (a) = 05" (alr,) o5 (a) = 05" (alu, ),

where # € R is chosen such that the principal symbols make sense; actually they
then do not depend on the particular choice of 3.

Definition 5.6. a) Let (v, (—N,0]) be a weight datum, N € N. For € Z define
the space of conormal symbols of type d € Ny with respect to the weight datum
(77 (_N7 0]) as

SHEX, (7, (=N, 0) o= {(ho, - shy )i hy € MEGH(X), mePoMTaps = 0}

The subspace of Volterra conormal symbols of type d € Ny with respect to the
weight datum (v, (—N,0]) is defined as

S, (9, (=N, 0D) = {(ho, -, hv1); by € MEE! (X Hapn )}
b) We define the Mellin translation product
ShE X (s (N, 0D) < Z42 (X (o, (=, 0) — S5 (3, (-, 0))),
(90, -+ sgn-1)#(ho,- - s hn-1) = (ho, .. ,hn—-1),
hy = Z (T—q9p)(hq),

ptq=k

where d = max{pus + di,d>}. Here T denotes the translation operator, i.e.,
((T—q9p)(hq)) (2) = gp(z — q)hy(2). Notice that the bundles have to fit together
such that the product can be calculated.

c¢) For p <0 we define a *-operation

S, (7, (=N, 00) — ShPUX, (=, (=N, 0]),
(ho, - ;hN—l)* = (ilo, - ,iLN_l),
hi(z) = (he(n+1—k—7))",

where ) denotes the formal adjoint with respect to the L2-inner products on
the manifold and on the boundary.

Theorem 5.7. a) E“M‘f’;é) (X, (7, (=N,0])) is a vector space with componentwise
addition and scalar multiplication.

b) The Mellin translation product # induces an associative product, i.e., it is well-
defined as a bilinear mapping

EF](}&?\I/’)[(XJ (’77 (_Na 0])))(2%&?‘2/’)[()(7 (77 (_N7 0])) — El’](}(f\lg’d;l(Xa (77 (_N7 0]))7



ON THE INVERSE OF PARABOLIC BVP 41

where d = max{pus + dy,d2}, and we have (a#b)#c = a#t(b#c) in the corre-
sponding spaces.
¢) The x-operation is well-defined as an antilinear mapping

2 DONX (7, (=N, 0])) — 44X, (=, (=N, 0))
for 1 <0, and we have (a#b)* = b*#a*, (a*)* = a.
5.1. Ellipticity and parabolicity for conormal symbols.

Definition 5.8. a) An element a = (hg,... ,hn_1) € Eﬁ/}d;[(X, (v, (=N, 0])),
d < pyg, is called elliptic if

e holr,, np1 e By X I‘n+1 ) is parameter-dependent elliptic,
e there ex1sts so € R, so> 0 sufficiently large, such that
H*(X,E) Hoo (X, F)
ho(z) : P — @
HSO(Ya J—) HSO_“(Ya J+)

is bijective for all z € FnTHﬂ

b) An element a = (ho,... ,hn_1) € Z“M‘f{,l(X, (v, (—=N,0])), d < pg, is called
parabolic if

. h0|H_+_ is parabolic as an element in B4%*(X; Hagr_,),
e there ex1sts so € R, so > 0 sufficiently large, such that
H*(X,E) H®o—H(X, F)
ho(z) : ® — @
Heo(Y,J-) Heo—r(Y, J})

is bijective for all z € Hn%_,y.

Notation 5.9. Let us denote the unit with respect to the Mellin translation product

as
1 .= (1,0, P ,0) 6 E(])\f(:ev) (X7 (77 (_N7 0]))

Theorem 5.10. Let a € 3% ‘f V) (X, (7, (=N,0])), d < py. Then the following are
equivalent:

a) a is elliptic (parabolic) in the sense of Definition 5.8.

b) a is invertible within the algebra of (Volterra) conormal symbols, i.e., there

exists b € X “(“i/)l(X, (v, (=N,0Q))), d' < (—p)+, such that a#b =1 and b#a =
1.

Proof. Without loss of generality we may assume N = 1; the general case is subject
to simple algebra.

Let us assume that a is elliptic. In particular, there exists € R such that
alr, € B‘“”(X;FB) is parameter-dependent elliptic. Let p € B;“’dl;l(X;FB),
d < (—p)+, be a parameter-dependent parametrix according to Theorem 3.7.
Substituting p by H%_B(Z/J)P; where ¢ € C§°(R}) with ¢ = 1 near r = 1, we may
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assume that p is a holomorphic Mellin symbol of order —u and type d' (see also
Remark 5.5).

We have ap = 1 + r with a regularizing meromorphic Mellin symbol r. Note
that 1 + r(z) is a finitely meromorphic Fredholm family in the Sobolev spaces
that is invertible for |Im(z)| sufficiently large, uniformly for Re(z) in compact
intervals. The general invertibility result for such families (see Gohberg and Sigal
[22]) implies the invertibility of 1 + r with inverse being a finitely meromorphic
Fredholm family, and from the identity (1+7) ' =1—7r +r(1+r) 17 we derive
that (1 4+r)~! = 1 4+ ' with a regularizing meromorphic Mellin symbol . This
shows that a is invertible from the right with inverse p(1 + r'); the invertibility
from the left follows analogously, and thus a is invertible with inverse b = p(1+1')
as desired. Note that in view of the bijectivity of a(z) for z € FW.T-H_,Y clearly b is
free of poles on this weight line, and consequently belongs to the space of conormal
symbols associated with the weight datum (v, (—1, 0]) as asserted.

If a is a Volterra conormal symbol we first apply the invertibility of a as a
general conormal symbol as proved above, and from Theorem 3.8 we conclude that
the inverse in fact belongs to the space of Volterra conormal symbols as desired.

This finishes the proof of the theorem for the converse assertion is evident.

O

Notation 5.11. We denote the subspaces of regularizing (Volterra) conormal sym-
bols of type d € Ny as E?v[(y) (X, (v, (=N,0])).

Proposition 5.12. Let a = (ho,-.. ,hn—1) € E?v[(y) (X, (v,(=N,0])). Then the
following are equivalent:
a) There ezists so > 0 sufficiently large such that

H*(X,E) H*(X,E)
H*(Y,J_) H*(Y,J_)

is bijective for z € Tngx_ (or z € Hw%_,y).
b) 1+ a is invertible with respect to the Mellin translation product with inverse
(l + a)_l €1+ 27\4(’\/) (X7 (77 (_N7 O]))

Proof. This follows from the proof of Theorem 5.10 (note that it suffices to consider
the case N =1 also for this proof). O

6. SOBOLEV SPACES OF THE VOLTERRA CONE CALCULUS

The present section gives the basic definitions of the natural anisotropic weighted
Sobolev spaces and their subspaces with asymptotics that are employed in the
pseudodifferential calculus associated with parabolic boundary value problems.
Recall that we make use of a variant of the cone calculus for boundary value
problems as introduced by Schrohe and Schulze [59, 60]. Therefore, material about
Sobolev spaces similar to those considered below can also be found in their works;
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however, near infinity we will employ spaces that are strictly different even in the
isotropic setting.

A discussion of the spaces in the boundaryless case can be found in [39].
Observe that on a manifold with boundary we obtain the desired Sobolev spaces
on the one hand simply by restriction from the double, and on the other hand by
taking the closure of the smooth functions with support in the interior (see Section
6.3 below).

We refer, e.g., to Lions and Magenes [44], Agranovich and Vishik [3], Grubb
and Solonnikov [28] for introductory classical material about anisotropic Sobolev
spaces adapted to parabolic equations in a cylindrical configuration; general state-
ments about weighted Mellin Sobolev spaces and spaces with asymptotics in singu-
lar analysis can be found in the monographs of Schulze [63, 65], see also Dorschfeldt
[12].

6.1. Abstract cone Sobolev spaces. Let E be a Hilbert space. For s,y € R
the abstract weighted Mellin Sobolev space H*7(R;, E) is defined as the closure
of C§° (R, E) with respect to the norm

Julff = 5 [ () | Myu(a) s de

r
3

with the weighted Mellin transform M~ u(z) = [ r*u(r) & for z € i,
R

Recall that for s € R the standard abstract Sobolev space H*(R, E) is the
closure of C§°(R, E)) with respect to the norm

Jul = / ()| Fu(©)|% de
R

with the (normalized) Fourier transform F. Moreover, for s, € Rlet H*(R, E)s :=
(Y 'H*(R,E).

Observe that the mapping u(r) — €7~ 2)tu(e~t) induces an isomorphism
HPY (Rt , E) = H*(R, E). In particular, the control of exponential weights near
t = oo in the space H*(R, E) is transformed to the control of power weights in
H%Y (R, , E) near r = 0 — the latter is reflected by the parameter v € R.

For s,7,d € R the abstract cone Sobolev space is defined as

KSRy, E)s := {w(r)us (r)+(1—w(r)ua(r); ug € H¥ (R4, E), uz € H*(R, E)s }

with an arbitrary cut-off function w € C§°(R), i.e., w = 1 near r = 0. Notice that
K#7(Ry, E)s is represented as a non-direct sum of Hilbert spaces, and we have

’COVO(]R—FaE)O = L2(]R+7E)'

6.2. Sobolev spaces in the boundaryless case. Let Z be a closed manifold
of dimension n, and E € Vect(Z) a complex vector bundle. As usual, we employ
the notation Z* = Ry x Z for the cone over Z.
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For s,7v,d € R we define

n

KO0=E Ry, H (2, B))s0K 7~ Ry, L2(Z,E))s 520,

ICS,’Y;Z(Z/\,E)d = A s . m N
KO3 (Ry,H*(Z,E))s + K+~ % (R, L*(Z,E))s s <0.

The shift of the weight by one half of the dimension of Z is employed for traditional
reasons, and is a tribute to the origin of the function spaces in the analysis on
manifolds with conical singularities.

Moreover, with some cut-off function w € C§° (R ) we define S7(Z", E) to be
the space of all u(r) = w(r)ui(r) + (1 —w(r))uz(r) with u; € Ty—z (Ry,C>(Z, E))
and uy € S(R,C**(Z,E)), where for any Fréchet space F' and v € R we denote
T,(Ry, F) = M;l(S(F%Jr,F)). Note that S7(Z", E) carries a nuclear Fréchet
topology.

6.2.1. Spaces with asymptotics. An asymptotic type associated with the weight
datum (v,0), ©® = (0,0] with 6 < 0, is a finite set P of triples (p,m, L), where
m € Ny is an integer, L a finite-dimensional subspace of C*°(Z, E), and p € C
such that 2 — y + 6 < Re(p) < 2L — 1.

Let w € C§°(Ry) be an artibrary cut-off function near r = 0, and P an
asymptotic type associated with (-, ®). Define

Ep(ZM E) = {w(r) Z Zc,hkr*p log®(r); ¢, € L}.

(p,m,L)EP k=0

This is a finite-dimensional subspace of C*®°(Z", E), and we endow this space with
the norm topology. Moreover, we define
K§" (2", E)s == () K¥T4(2", E)s,
F<vy—0
K374 (20 B)s = K§H(Z", E)s + Ep(Z7, E),
Sp(Z"E) = () k372", B)s,

s,0ER

which are Fréchet subspaces of K*7¢(Z", E)s and S7(Z", E), respectively.

6.3. Sobolev spaces in the case with boundary. We employ the notation
and conventions from Section 3. With the restriction rT of distributions defined
on (2X)" to X" let

Kipy (XM B)s o= r " K3 ((2X)1, E)s,y

(P)
S’Y (XAJE) = T+SZP)((2X)/\JE)7

(P)

endowed with the corresponding quotient topology. Moreover, let ICS"”Z(XA, E)s
be the closure of C§° (X", E) in K®7V¢((2X)M, E)s.
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Observe that the r~% L?-inner product in the space r~3L*(X",E) @
r~% L*(Y",J_) extends to a non-degenerate sesquilinear pairing

Ko (XA, E) 5 45 Ko* X E) g
() @ x : -
K58 YN T Yaps KBV, ) s s

for s,v,0 € R, which allows an identification of the dual spaces.

Following the tradition from the analysis on manifolds with conical singular-
ities, we will take the r—2 L2-inner product as the reference inner product in the
scale of Sobolev spaces.

7. ALGEBRAS OF SMOOTHING OPERATORS

Before being able to formulate the Volterra cone calculus associated with parabolic
boundary value problems we need some preparations about the ideals of smoothing
operators close to r = 0. They are given as Green operators — the smallest ideal
in the calculus without any relevant symbolic information — and the larger ideal
of smoothing Mellin and Green operators. The quotient of the latter ideal by the
Green operators is isomorphic to the regularizing conormal symbols (with the
Mellin translation product as multiplicative structure) as considered in Section 5.

Definition 7.1. a) An operator
’ng‘y;l(y/\, E)d ’Ct;y;l(X/\, F)é’
Ge £< @ ; D )
Y, T )y KR, Ty
for all s,t,8,0" € R is called a Green operator of type zero with respect to the

asymptotic types (Pi, P2) and (Q1,Q2), if G and its formal adjoint G* with
respect to the r~2 L2-inner product induce continuous operators

K34X" E)s Sp (XN F)
G : @ — . ©® ,
]Cs,vfé;f(y/\”]i)é S;;E(YA,J+)
Ky X F)s S, (X", E)
G*: & — ) D
5154 T, ) Sézfé(y/\,!]_)

for all 5,6 € R The space of all Green operators of type zero is denoted by
CY(XA, (+,0)).
b) A Green operator G € C& (X", (v,0)) of type zero is called a Volterra Green
operator of type zero provided that the following condition is fulfilled:
For every rg € Ry we have (Gu)(r) = 0 for r > ro for all u = (u1,uz2) €
CP(Ry,C®(X,E)) ® C3°(Ry.,C>(Y, J_)) such that u(r) = 0 for 7 > ry.
The space of all Volterra Green operators of type zero is denoted by
COG,V(X/\7 (77 @))
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¢) The space C’é( V) (X", (v, 0)) of (Volterra) Green operators of type d € Ny con-

d .
sists of all operators G of the form G = ) G;0} withG; € Cg( V) (XM, (v,0)).
=0 7
0+ 0
0 1

In particular, the operators in C& (X", (7, ©)) are well-defined as continuous
operators in the spaces

Recall that we also write 04 for the operator matrix

Ko7 X N, E)s SYXN F)
G: D — D
Ksr=ait (YN, J_)s ST (YN T

fors>d—%and6€]R.

Remark 7.2. From Definition 7.1 we conclude that the class of (Volterra) Green
operators is independent of the particular anisotropy £ € 2N. Moreover, it forms
an operator algebra, i.e., the composition induces a well-defined mapping

ngl(,v) (XA7 (77 @))Xcé?(yv) (XA7 (77 @)) — Cg;Z(7V) (XAJ (’77 9))

for dy, ds € Np; note that the vector bundles are assumed to fit together to be able
to calculate the composition.

Proposition 7.3. An operator G belongs to C&(X", (v,0)) with respect to the
asymptotic types (P1, P2) and (Q1,Q2) if and only if

Ko7 (XM, E)se Sp (XN F)
ooy Vs )
Ko7 (YA T oo ShP(YN L)

So (XN E) Ko (XA, F oo
o ) ne, )
Sgr F(YN ) K7 B (YA, Uy oo

The Sobolev spaces of orders oo are by notation the intersections of all spaces with
finite orders. In particular, we have

S™(XMNE) S7(XMF)
(XA, (7,0)) = ( 5 )@( 5 )
STITE(YA, T STTE(YN, )
and every Green operator G of type zero induces a nuclear operator
Ko7 ( XN, E)s KETEXN, F) g
Gel ® , ® >
Ko HUYA T )y KRTEAYA, )

for s > —% and all t,6,0" € R.
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The projective tensor products are to be understood in the sense that in the
representation of the nuclear operator G as a projective series the functionals origi-
nate from the spaces in the first factor as these are considered as distribution spaces
according to the Riesz representation induced by the r—% L?-inner product.

Proof. The proof follows from the following general statement which is subject to
elementary properties of tensor products (see, e.g., Jarchow [33]):

Let H, and H, be Hilbert spaces, and E — Hj and F' — H, nuclear Fréchet
spaces. Then an operator G : Hy —» Ho satisfies G(H;) C F and G'(H}) C E if
and only if G € E®,Hy N H|®,F C H|&,Hy, = (*(Hy, Hy). O

Theorem 7.4. a) Let G € C&(X", (7, 0)) such that

]Cs,’y;Z(X/\jE)é ’Cs,’y;f(X/\,E)d
14+G: & — ® (7.1)
K=Y J ), Ks=28(Y N T s

is invertible for some s > d — % and some § € R. Then 1+ G is invertible in
the Sobolev spaces for all s > d — % and all § € R, and the inverse is given as
(1+ G)_1 =1+ G1 with a Green operator G1 € C4(X", (v, 0)).

b) Let G € C&V(XA, (7,0)). Then 1+ G is invertible as an operator in (7.1) for

all s > d — % and all 6 € R, and we have (1 + G)_1 =1+ G1 with a Volterra
Green operator Gy € C& (X", (v, 0)).

Proof. For the proof of a) note first that we may write

1

(1+G) ' =1-G+G(1+G) G

d . . ~
Writing G = ) Gjaj_ with Green operators G of type zero we see that the
j=0

operator G = —G + G(l + G)_IG fulfills the conditions in Definition 7.1, and
consequently belongs to CZ (X", (v, ©)).

Let us prove b). We first consider the weight v = . For Green operators are
compact (even nuclear) in the Sobolev spaces, the operator 1 + G is Fredholm of
index zero. Thus for the proof of the invertibility it suffices to check that 1 + G is
one-to-one. From Definition 7.1 we see that

S: (XN E)
ker(1+ G) C @ ,
S*z (YN J)
and consequently we may regard 1+ GG as an operator
S%(XNE) S%(XNE)
1+G: @ — @ . (1)
S (YN, I2) S (YN I-)
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From Proposition 7.3 we conclude that (1) extends by continuity to

2 H*(X,E) ) H(X,B)
1+G:L (]Ri+, Hs(é‘j,.]_) ) -t <R+’ Hs(;.ja‘]—) )

for s > d — % Moreover, G is a Volterra integral operator in this L2-space with
continuous Volterra integral kernel

H*(X,E)
kec<m+xm+,c< N ))

ie, k(r,r") = 0forr > r', that satisfies the estimate sup{g(r)g(r')||k(r,r")||; r,r' €
R.} < oo, where g € C(R,) is a function of the form g(r) = w(r)rz (log(r)) +
(1 —w(r))r with a cut-off function w € C§°(R4) near r = 0. In particular, we have
I ﬁ dr < oo, and the general theory now implies that G is quasinilpotent in

+
L? — the properties of the kernel k(r,r') as stated above imply that the series of

iterated kernels associated with (—G)J for j € N is convergent, and consequently
the Neumann series > (—G)7 converges.

In particular, 1 4+ G is one-to-one in the spaces (1), which implies the invert-
ibility as an operator in the cone Sobolev spaces (7.1). In fact, the inverse is given
as (1+G)~! =1+ G, with a Volterra Green operator of type d, which follows in
the same way as in the proof of a). This proves the assertion for the weight v = .

Next consider the case of general weights v € ]R We may write 1 + G =
r’— ( + G)r (*=%), where the operator G := $)Gr7~% belongs to
C‘é’v( ", (%,0)). From the first part of the proof we conclude that 1 + G is

invertible, and we have (1 + G’)fl = 1 + G, with a Volterra Green operator

Gi € C¢ (X", (%,0)). Thus also 1 + @ is invertible with inverse (1 + G)_1 =

1+ Gy, where Gy := r7~2Gyr~ "~ %) is a Volterra Green operator in the space
C&V(XA, (v,9)). This completes the proof of the theorem. O

7.1. Smoothing Mellin and Green operators.

Definition 7.5. The space C§;, (X", (v,(=N,0])) of smoothing Mellin and
Green operators of type d € Ny with respect to the weight datum (v, (=N, 0]),
N € N, consists of all operators

S7(XMN E) ST (XM F)
A S — S
S1E(YA, ) SE(YN, Jy)
of the form
N-1
A= wriopyy(hj)w + G (7.2)

j=0
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with a Green operator G € C&4(X", (v, (—N,0])), and

i) a cut-off function w € C§°(R4) near r = 0,
i) y=53-j<y<v-

ili) meromorphic Mellin symbols h; € M;joo’d(X) such that mc PNy = 0.

Recall that op ) (hj)u = ./\/l;j1 hj(z) M., u is the Mellin pseudodifferential operator
with respect to the weight -y; associated with the symbol h;.

Moreover, we define the space Cj‘fprGy(X/\, (7, (=N, 0])) of smoothing Vol-
terra Mellin and Green operators of type d € Ny with respect to the weight datum
(v, (=N,0]), N € N, to consist of all operators

RE)

N—
A= wr opM h jw+G (7.3)
7=0

,_.

with a Volterra Green operator G € C& (X", (v, (=N, 0])), and

i) a cut-off function w € C§°(Ry) near r = 0,

i) meromorphic Volterra Mellin symbols h; € M‘;gd(){; Hn#_w_j).

Remark 7.6. The following properties follow analogously to the corresponding as-
sertions about smoothing Mellin and Green operators in the calculus of boundary
value problems on manifolds with conical singularities, see Schrohe and Schulze
[59, 60]. A detailed discussion of Volterra Mellin and Green operators in the bound-
aryless case can be found in [39]; similar arguments also apply in the present
situation. One basic ingredient for the proofs are characterizations of the Mellin
images of Mellin Sobolev spaces and their subspaces with asymptotics as meromor-
phic functions (Paley—Wiener theorems; see also Dorschfeldt [12], Schulze [61, 63]).
Hence the application of the operators is reduced to multiplication with the mero-
morphic symbols, and we may also shift from one weight line to another using the
residue theorem to express the error term.

a) CJdVI+G(,V) (X", (v,(=N,0])) is indeed a linear space; any change of the cut-off
functions involved in the representations (7.2) and (7.3) just results in a change
of a (Volterra) Green operator of type d, and the same applies to changes of
the weights v; according to ii) of (7.2).

b) We have a well-defined conormal symbol mapping

oM - C%/I—i-G(,V) (X/\a (77 (_N7 O])) — E?VI(,V) (Xa (77 (_Na 0]))7
Ar— (ho, A ;hN—l)

with the meromorphic (Volterra) Mellin symbols hj from iii) of (7.2), respec-
tively ii) of (7.3). We write 0% (A) := hy for k= 0,... ,N—1, and call 03,5 (A)
the conormal symbol of order —k of the operator A. For simplicity, we refer to

09, (A) just as the conormal symbol of A.
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c¢) The composition induces a bilinear mapping
CX/‘}+G(7V) (XAJ (’77 (_Na 0])) XC?\;+G(7V) (X/\, (’77 (_Na 0]))

— C?\;+G’(yv) (XA7 (77 (_N7 0]))

The conormal symbols o (AB) of the composition of operators A and B are
given by the Mellin translation product op(AB) = oy (A)#op(B) of the
conormal symbols associated with A and B.

d) The (Volterra) Green operators share the properties of a two-sided ideal in
the smoothing (Volterra) Mellin and Green operators. In fact, the space of
(Volterra) Green operators of type d € Ny coincides with the kernel of the
conormal symbol mapping in the space C]dVHG(,V) (X", (v, (=N, 0])), which in-
duces an isomorphism

C?M+G’(,V) (XAa (77 (_N7 0]))/Cg¥(,V) (XAa (77 (_N7 O])) = E7\4(,V) (X7 (77 (_N7 O]))
e) Taking the formal adjoint with respect to the r~2 L2-inner product induces a
well-defined antilinear mapping
* 1 C?WJrG(XA: (77 (_N7 0])) — C?WJrG(XA: (_77 (_Na 0]))

The conormal symbols oy (A*) of the formal adjoint A* of a smoothing Mellin
and Green operator A of type zero are given as o (A*) = op(A)* with the
x-operation from Definition 5.6.

Definition 7.7. a) Let A € C§,, (X", (v, (=N,0])). Then the operator 1+ A is
called elliptic if there exists so € R, sg > d — %, such that the operator family

H*(X, E) H* (X, E)
1+0%(4)(z) : @ — @ (7.4)
H* (Y, J_) H*(Y,J_)

is bijective for all z € FnTﬂﬂ.
b) Let A € Ciri v (X", (7,(=N,0]). The operator 1+ A is called parabolic if

there exists so € R, s > d — %, such that the operator family (7.4) is bijective
for all z € H-]I&Jr.
2

Theorem 7.8. a) Let A € Cf{; (X", (v,(=N,0))). Then the following are
equivalent:
i) 14+ A is elliptic in the sense of Definition 7.7.
it) There ezists B € C (X", (v,(=N,0))) such that (1 + A)(1 + B) =
1+ Gy and (1 4+ B)(1 + A) = 1+ Gy with Green operators G1,Go €
Cg}(X/\a (77 (_N7 0]))
b) Let A€ C]dVHGy(XA, (7,(=N,0])). Then the following are equivalent:
i) 14+ A is parabolic in the sense of Defintion 7.7.
it) There exists B € C{ (X", (v, (=N,0]) such that (1+ A)(1+ B) =1
and (1+ B)(1+ A) =1, i.e., 1+ A is invertible with inverse (1 + A)~! =
1+ B.
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Proof. According to Definition 7.7 the operator 1+ A is elliptic (parabolic) if and
only if the conormal symbol 1+ o (A) fulfills the conditions of Proposition 5.12.
Consequently, the ellipticity (parabolicity) of 1+ A is equivalent to the invert-
ibility modulo (Volterra) Green operators which proves a). Using Theorem 7.4 we
conclude that also assertion b) holds. O

8. THE ALGEBRA OF VOLTERRA BOUNDARY CONE OPERATORS

The aim of the present section is to establish the Volterra cone calculus associ-
ated with boundary value problems. As announced before, when localized near the
origin this calculus forms a proper subset of the operators considered in Section
4 (up to weight-shifts) — note that we formulate the calculus in the new time
coordinate r = e~? — and with the more involved symbolic and operational struc-
ture we are able to derive results about conormal asymptotics (which corresponds
to exponential long-time asymptotics in the original coordinates) as a regularity
feature. The discussion of parabolicity and invertibility, however, is postponed to
the subsequent section.

Notation 8.1. For functions ¢,¢ :  — C defined on a topological space Q0 we
write ¢ < ¢ if ¥ =1 in a neighbourhood of supp(yp).
Definition 8.2. We define the space C{y/* (X", (v, (=N, 0])) of classical (Vol-
terra) boundary cone operators of order (u,v) € Z xR and type d € Ny associated
with the weight datum (v, (—N,0]), N € N, as follows:

An operator

S (X", E) S (XN, F)
A: @ — 53]
STE(YN, L) STE(YN, )

belongs to C(‘“’,';’Cdl;e(X/\, (7, (=N, 0))) if and only if
e for all cut-off functions w,& € C§°(R,) near r = 0 we have
wAD = oply 2(h) + Ayrc (8.1)

with some h € C* (KJF,M(”‘}d)é (X)), and a smoothing (Volterra) Mellin
and Green operator Ap+q € C]dVH_G( V) (X", (v, (=N,0])) of type d,

e for all cut-off functions w, & € C§°(R,) near r = 0 we may write
(1 -w)A(1 — @) = opr(a) (8.2)

with some a € S (R, B4%*(X;R)) (resp. a € S%(R, B4 (X H))),

e for all cut-off functions w, @ € C§°(R4) near r = 0 such that w < & we have

wA(L = @), (1 - ®)Aw € Cg( (X", (7, (=N, 0]). (8.3)
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Remark 8.3. According to Definition 8.2 a (Volterra) boundary cone operator is
given near the origin r = 0 by a Mellin pseudodifferential operator up to a smooth-
ing (Volterra) Mellin and Green operator. Recall that

1 T\ ? o dr!
U= 5 / /(F) h(r, z)u(r') pva dz
r R,

n+1
it

opys ? (R)u(r) = M3* s h(r, 2) M,

[NIE]

for smooth functions u with compact support. The symbol h(r,z) is thereby a
function depending smoothly on r € R taking values in operator-valued symbols
with respect to the variable z € T’ EEST More precisely, these operator-valued
symbols are themselves parameter-dependent boundary operators in Boutet de
Monvel’s calculus on X, and the parameter in fact runs over the whole complex
plane with a specific control in terms of (locally) uniform estimates.

From the identity (8.1) we see that we are free to specify a certain behaviour
of h(r, z) with respect to r — oo. It is natural in the symbolic calculus of Mellin op-
erators to impose global C§P—estimates, i.e., we additionally assume (—r3,.)*h(r, 2)
to be bounded on R, for all £ € Ny. Using such global estimates we automatically
obtain explicit oscillatory integral formulas, e.g., for the Leibniz-product (symbol
of composition) and the formal adjoint symbol of Mellin operators (Kumano-go’s
technique applied to Mellin operators), and from these explicit expressions it is
easy to see that the operators we have in mind — such that are based upon
Volterra symbols and holomorphic Mellin symbols of boundary value problems —
are indeed well-behaved with respect to all manipulations.

For a discussion of general Mellin pseudodifferential techniques in the study
of operators on manifolds with conical singularities we refer to the monographs of
Schulze, see, e.g., [63]; Mellin operators of boundary value problems are considered
in Schrohe and Schulze [59, 60]; Volterra Mellin operators (also with holomorphic
Mellin symbols) in the general framework of operators with operator-valued sym-
bols are studied, e.g., in [37], and in the more concrete setting of parabolicity in
the boundaryless case in [39].

Analogously, a (Volterra) boundary cone operator is given near r = co as an
ordinary Kohn—-Nirenberg quantized pseudodifferential operator with (Volterra)
symbol a(r, (), i.e.,

opr(a)u(r) = F ra(r,)Fu = =g (e, (') di' dr,
/]

where we assume an additional behaviour as a classical symbol of order v € R
with respect to the variable r € R as r — oo.

Observe that we have reversed orientation in the time coordinate. Therefore,
the half-plane of Volterra symbols changes from the lower (as considered in Section
4) to the upper half-plane for standard pseudodifferential operators, and a right
half-plane is involved for Mellin symbols in the Mellin pseudodifferential calculus.

Recall that we are mainly interested in the structure of the calculus near
r = 0, which corresponds to time ¢ — oo in the original space—time coordinates.
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Therefore, we could equally well study only Mellin operators restricted to some
subinterval (0,79] of Ry . Actually, this is precisely what we obtain when we restrict
a boundary cone operator to such an interval. However, we want to emphasize that
the operators away from r = 0 are just ordinary (Volterra) operators, which is an
important structural information. Moreover, our constructions as r — oo may also
be regarded as a generalization of the operator calculus from Section 4 to arbitrary
order v € R.

Theorem 8.4. Let A € C*%" (X", (v, (=N,0))). Then A extends by continuity
to an operator

/CS,’V;K(X/\,E)J /Cs_”me(XA7F)5_"
A: ® - o
K= 54V, T ) o= (Y )5

for all s > d—% and all § € R. Moreover, for every pair (Py, Py) of asymptotic types
there exists a pair (Q1,Q2) of asymptotic types such that A restricts to continuous
operators

K3 (XN, B)s Ko (X" Fs
A: D — D

sy— %38 ERTRE S

Kyl 2 (YN, J2)s Ko, RN, Iy s

foralls>d—% and all 6 € R.

Proof. The first boundedness assertion is clear. Carrying out a Taylor expansion
in r = 0 of the holomorphic Mellin symbol h(r,z) from (8.1) reveals that we

N-1
may write A = Y wriopy}(hj)w + G similar to (7.2) and (7.3), where o (A) =

=0
ho,...,hn_1) is a conormal symbol, and G is continuous in the spaces
( ) ) y ) p
]CS’WZ(X/\, E)5 K%:H:’Y;Z(X/\, F)J—u
G: D — D
_ 1. _ _ 1.
K=Y, T ) K2 0, T s

for s > d — % with some asymptotic types (R, R2). Hence the proof is reduced
to consider the Mellin operators, but for these the desired assertion follows from
the Paley—Wiener characterizations of the Mellin images of the weighted Mellin
Sobolev spaces and their subspaces with asymptotics as meromorphic functions
(see Dorschfeldt [12], Schulze [63]), which reduce the action of the operators to
multiplication with the meromorphic symbols. O

As a consequence of the Paley—Wiener characterizations of the Fourier and Mellin
images of functions supported by a half-line as analytic functions in a half-plane,
we conclude that the following mapping property holds for Volterra boundary cone
operators A:

For every 1o € Ry we have (Au)(r) = 0 for r > rg for all u = (u1,u2) €
CP(Ry,C®(X,E)) ® Cg°(Ry,C®(Y, J_)) such that u(r) = 0 for r > ro.
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Using this property and a density argument, we obtain from Theorem 8.4
at once the boundedness of Volterra boundary cone operators in the subspaces
consisting of those elements (distributions) that are supported by (0, 7] for each
ro € Ry (see also Theorem 4.4).

Theorem 8.5. An operator A belongs to C(’“’/’;’cdl;z(X/\, (v, (=N, 0])) if and only if
for some (all) cut-off functions ws < w1 < wo we may write

A=uw op;(/[_% (h)ws + (1 —wi)opr(a)(1 —ws) + Ay, (8.4)

where Apya € Cj‘f,I+G(7V)(X/\,(%(_N,O])), h € COO(R+’M(L‘},d);éCl(X))7 a €
SY/(R, B% (X5 R)) (respectively a € SY (R, Bl S (X; H)).

Theorem 8.5 says something about the richness of the (Volterra) cone calculus of
boundary value problems. The proof is quite technical, and most of the calculations
are rather straightforward.

The most difficult aspect of the proof is that we have to be able to rewrite
Mellin operators as Kohn—Nirenberg quantized pseudodifferential operators and
vice versa away from r = 0 and r = oo. This is in fact subject to Mellin quantiza-
tion, and there exist many proofs of this result in the literature about pseudodif-
ferential calculus on manifolds with singularities (see, e.g., Schulze [63], Gil, Seiler,
and Schulze [19, 20], Schrohe and Schulze [59, 60] in the framework of boundary
value problems on manifolds with conical singularities, also [37], [39] for a proof
in the framework of Volterra operators). Therefore, we restrict ourselves to give a
precise statement below in that form as it is needed in this work:

Let p,¢ € C°(Ry) with ¢ < .

i) For h € C°°(]R+,M(“‘;7d);é (X)) there exists a € C*(R, B4%E(X;R)) (respec-
tively a € C° (R, B{j’f/ (X;H))) such that op,, * (h)i) = wop,(a)y) modulo
Cg;(,v) (XAa (77 (_Na 0]))

ii) Conversely, given a € C*°(R, B4%*(X;R)) or a € C®(R, BY%(X; H)), there

n

exists h € C°(Ry, M(“‘f)% (X)) such that gop,(a)y = wop,; * (k)1 modulo
C(Ci;(VV) (X/\7 (77 (_N7 0]))
The principal symbols associated with a and h in i) and ii) are related as follows:
@(T)UZ;Z (h) (’I", 61'7 nT—H A 'L(’I"/\)) = 90(7”)0—17;;[ (a) (’I", fl‘; A)7
(r)ah (W(r, &, B =7 = i(rA) = p(r)oh" (a)(r, €0, A)
for r € Ry and (&, ) € (T*X xA) \ 0, respectively (¢,,A) € (T*Y xA)\ 0, where
either A=Ror A =H.

8.1. The symbolic structure. Let A € C(’“’,’;’Cdl;e(X/\, (7, (=N,0])),and 0 < T <
T1 < oo. From Definition 8.2 we see that there exist

v ,d;
S (B, By ™ (X: )

(R, By (X5 H))

h € CF Ry, MESE (X)), a€ {
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such that for all cut-off functions w, & € C§°(R4) near r = 0 with X[0,Ty] < W,w <
X[o,1;] We have

_n
2

WAG — WOPL (h)‘:} € C]%4+G(,V) (XA7 (77 (_N7 0]))7 (8 5)
(1= )AL= ) — (1 - w)op,(@)(1 - &) € Cl ) (XA, (1, (~N,0)).
In particular, if xjo,7,) < w3 < w1 < w2 < Xjo,1y] are cut-off functions, we
have A = wlop;(,[_%(h)wz + (1 — w)opr(a)(1 — ws3) + Ay with Ayre €
Oty (X7 (3, (=N, 0]).
Any tuple (h,a) that satisfies (8.5) is called a complete interior symbol of the

operator A, subordinated to the covering {[0,7}), (T2,00)} of Ry. Note that the
relation A — (h, a) is non-canonical.

Definition 8.6. With A € C(‘L",’;’g;l(XA, (7, (=N, 0])) we associate the following
principal symbols — note that below A is either given as A = R in case of a
(general) boundary cone operator A, or A = H in case of a Volterra boundary

cone operator A:

i) The principal pseudodifferential symbol is well-defined as a smooth section
ol (A4) : R x ((T"X xA) \ 0) — Hom(r"E, 7" F) (8.6)

that is homogeneous in the sense O'w;l(A)(T', 0,00\ = g“a{fj‘Z (A)(r, &, ) for
0 > 0. For Volterra boundary cone operators the principal pseudodifferential
symbol is analytic in the interior of the half-plane H.

ii) The principal boundary symbol is given as a smooth section

H*(Ry)om*Ely H* (R )@ Fly
ol (A) : Ry x ((T*Y xA) \ 0) —>Hom< ® , ® >
mrJ_ 7T*J+

(8.7)

for s > d— %, and it is homogeneous in the sense

: Koe®1 0 ; K,t®l 0
oo N = o (0 D) B imen ()

for o > 0 with the group-action {k,} from (2.1). For Volterra boundary cone

operators the principal boundary symbol is analytic in the interior of HL.
More precisely, let A = wlop}(;% (h)ws + (1 — wy)op,(a)(1 — w3) + A+ be any
representation of A according to (8.4). Then
T (A)(r, &, N =wr (1) ol () (1, &, 2 =y —i(rN) + (L—wi(r) o (a) (7, &, M),
o5 (A)(r, &, N) = (r)a ¥ (h) (r, €, 252 =y =i(rA) +(1—wi (1) o5 (@) (r, €41, V),

(8.8)

forr € Ry and (&, ) € (T*X xA)\0, respectively (¢, A) € (T*Y xA)\0, with the

x>

associated principal symbols to A and a. Consequently, both O':Z;l (A)(r,&,rtN)
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and O'g;l(A)(T', ¢, r71\) extend as smooth (anisotropic) homogeneous sections up

to the origin r = 0, and O':Z;l (A) and O'g;l (A) behave like classical symbols of order
veERasr — oo.

iii)

iv)

v)

vl

08,8

vi)

Let A be written according to (8.4). We define the conormal symbol of order
—kof Aas 0,/ (4)(2) = +(0%h)(0, 2)+o, (Avic)(2) fork=0,... ,N—1.
The conormal symbol of order 0 is also called the conormal symbol simply,
and it is regarded as a family of operators

H*(X, E) H*#(X, F)
o9 (A)(2) : ® — ® (8.9)
He(Y,J.) Ho 1 (Y, J,)

for s > d — %, depending on z € Fn+1_,y in case of general boundary cone
2
operators, and z € Hay1 __ in case of Volterra boundary cone operators.
2

-
The tuple op(A) = (09,(A4),... ,U;/‘,(N_l)(A)) defines an element in the

space Eﬁﬁi{,) (X, (v, (=N,0])), see Definition 5.6.

The principal pseudodifferential—exit symbol
" (A) Ry x (T X xA) \ 0) — Hom(n"E, 7" F) (8.10)

is by definition the principal part with respect to r — oo of the principal pseu-
dodifferential symbol associated with A, i.e., we have O'Z:Z;Z(A) = UZ:Z;Z(a)
with the symbol a(r,A) in (8.8) (restricted to Ry ). In particular, it is ho-
mogeneous in the sense O'Z:Z;Z(A)(gl’f‘, 026z, 050) = g’l’gé‘ag”:;e(A)(r, £y A)
for p1,02 > 0, and for Volterra boundary cone operators the principal
pseudodifferential-exit symbol is analytic in the interior of H.

The principal boundary—ezit symbol

H3(Ry)@m*Ely HS #(Ry)Qm*Fly
(4) : Ry x (T*Y xEL) \ 0) — Hom( e ® )
. T s

for s > d — % is defined as the principal part with respect to r — oo of

the principal boundary symbol, i.e., we may write Ug’e”;l(A) = Ug’e'”l(a) with
the symbol a(r,\) in (8.8) (restricted to Ry ). The principal boundary—exit
symbol is homogeneous in the sense

) v Ko, ®1 0 v; K71®1 0
G e e = et ("™ ) on @ (57 )

U@,e

for g1, 02 > 0 with the group-action {k,} from (2.1), and for Volterra bound-
ary cone operators it is analytic in the interior of H.

The principal exit symbol is by definition the homogeneous principal compo-
nent of the symbol a(r, A) from the representation (8.4) of A with respect to
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r — oo. It is well-defined as a family of operators depending on r € Ry and
A € A in the spaces

H*(X,E) H* (X, F)
ol (A)(r, A) @ — @ (8.12)
Ho(Y, J_) Ho1(Y, J,)

for s > d — % that is homogeneous in the sense o (4)(or, ) = 0"o% (A)(r, A)
for o > 0. For Volterra boundary cone operators the principal exit symbol is
analytic in the interior of H.

8.2. Compositions and adjoints. Let A € C(“VVCL%Z(XA (7, (=N, 0])). Carrying

out a Taylor expansion in r = 0 of the holomorphic Mellin symbol h(r, z) from

N-1
(8.1) yields a representation 4 = Y wriop)’(h;)w + G similar to (7.2) and (7.3),
i=0
where o) (A) = (ho, ... ,hy_1) is the tuple of conormal symbols associated with
A, and the remainder G is an operator of order (u,v) and type d that generates
asymptotics; in particular,

Ks,’y;Z(X/\, E)(S IC;;IH’WZ(X/\, F)dfu
G: ® — ) @
K=t (YR, T)s Ko TR YA )5

for s > d — 1 with some asymptotic types (R1, Rz).
Using such representations it is easy to see that the composition AB of

(Volterra) boundary cone operators A € C“‘};Z}’dl’ (X/\ (7, (=N,0])) and B €

C(’“i"g’d% (X", (v, (=N,0])) can be written as AB = ZO wrjop;\}(gj)w+G’, where
]:

the tuple (go, ... ,gn_1) is given as the Mellin translation product o (A)#op (B)

of the conormal symbols associated with A and B, and G' is an operator of order

(t1 + p2,v1 + v2) and type d = max{ps + di,d>} that generates asymptotics. In

particular, we obtain the following:

Proposition 8.7. Provided the vector bundles fit together, the composition of op-
erators is well-defined in the spaces

Ol XN, (3, (=N, 0D) X O oy (X (3 (=N, 00)
> Oy (X7 (7 (<N, ),
Oty (X (1 (=N 0) OB (XA, (3, (=N, 0])
s Oy (X (1 (<N, 0)).

In other words, the smoothing (Volterra) Mellin and Green operators as well as
the (Volterra) Green operators form two-sided ideals in the algebra of (Volterra)
boundary cone operators (see Theorem 8.8 below).



58 THOMAS KRAINER

Theorem 8.8. Consider (Volterra) boundary cone operators
w1,diil
A € C(N{})c; ! (X/\ (77 (_N7 O]))a

Be C(N\%Z?’dme(X (77 (_N7 O]))a

and assume that the vector bundles fit together in order to be able to form the
composition.

Then AB € Cl3 1= P25 (X1, (v, (=N, 0])), where d = max{p, + di, d>},
and the symbols assoczated with the composition are given in terms of the symbols
associated with A and B as follows:

o Let 0 <To < Ty < o0, and (hy,a1) and (ha,az2) be complete interior symbols
of A and B subordinated to the covering {[0,Ty), (T»,0)} of Ry. Then the

tuple of Leibniz-products (h1#hsa, a1#tas) is a complete interior symbol of the
composition AB; recall that

ds =1
hi#tha(r, 2) // “7h1 (ryz +in)ha(rs,z) — dn (f‘\;) Z E(@fhl)((—rar)khz),
RE, k=0

. 1
a1 #as(r,\) = // e “ay(r,\ +n)az(r + s,\) ds dn (r‘\;) Z o (8§a1) (Dfag).
k=0

e The principal pseudodifferential and boundary symbols are given as
UZ1+uz;€(AB) _ UZM(A)UZZ;K(B)’
ol THENAB) = o (A)ak Y (B).

e We have the identity op(AB) = op(A)#ou (B) for the conormal symbols,
where # denotes the Mellin translation product (see Definition 5.6).
e The principal symbolic structure as r — oo is determined as follows:
oyl AB) = oy ()2 (B,

oL (AB) = ol (A)at (D),

o T2 (AB) = 0 (A)o* (B).

Proof. Choose cut-off functions x[9,7,) < w,& < © <@ < X[o,1,]- We may write

[NE)

WAB® = (wAD) (0B&) +wA(l — &) B = wopjy * (hy)doply * (he)@
= woply 2 (hi#he)i — woply 2 (h1)(1 — @)opy 2 (he)@ = woply 2 (ha#hs)@,

where = means equivalence modulo C]@JFGLV) (X", (v, (=N,0])). Note that we
have used, in particular, the considerations from Section 7, Proposition 8.7, and
general properties of the symbolic and operational calculus of Mellin pseudodiffer-
ential operators (with holomorphic (Volterra) symbols).
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Next let x[o,7,) < W <@ < w,w < X[o,1y], and write

(1-w)AB(1-%) = (1 -w)A(1-)) (1 —0)B(1 —@)) 4+ (1 — w)A0B(1 — @)
= (1 —w)opr(a)(1 — D)1 — D)opr(az)(1 — @) = (1 — w)op, (a1 #a2)(1l — @)
—(1 —w)op,(ar)wop,(az)(l — @) = (1 — w)op, (a1 #az)(1 — &),

where in this case = means equivalence modulo Cé(vv) (X", (v, (=N,0])). Also for
this calculation we have used, in particular, the references given above, and general
properties of (Volterra) pseudodifferential calculus (see also Section 4).

It remains to consider the operators wAB(1—®) and (1 —&)ABw with cut-off
functions w < @. Let @ € C§°(Ry) such that w < & < @, and write

wAB(1 — @) = (wA(1 = @))B(1 — @) + wA(0B(1 — @),
(1-0)ABw = ((1 - @)AQ)Bw + (1 — ©)A((1 — @)Bw).

From Definition 8.2 and Proposition 8.7 we conclude wAB(1 — @), (1 —©)ABw €
CéLV) (X/\, (’77 (_Na 0]))

Summing up, we have shown that the composition AB is indeed a (Volterra)
boundary cone operator of order (p1 + p2,v1 + v2) and type d = max{us +d;,d>}
as desired, and the formula for the complete interior symbol holds. This formula
implies the corresponding formulae for the principal pseudodifferential symbol, the
principal boundary symbol, and the principal symbols as r — co. The formula for

the conormal symbol follows from the arguments at the beginning of this section.
O

Theorem 8.8 represents the main algebraic result about the calculus. Below we
state a result about the formal adjoint operator associated with a boundary value
problem which is given as a boundary cone operator of order less or equal to zero
and type zero. However, as we are mainly interested in the class of Volterra bound-
ary cone operators and the study of parabolicity, and as this class is not preserved
under taking the formal adjoint, we restrict ourselves to give the statement and
skip the proof.

Theorem 8.9. Let A € C*"% (X", (y,(=N,0))), and p < 0. Then the formal
adjoint operator A* with respect to the r~—% L*-inner product is a boundary cone
operator in the space CZ"”O;Z(XA, (=7, (=N,0])), and the symbols of A* are given
as follows:

o Let 0 < Ty, < Ty < o0, and let (h,a) be a complete interior symbol of A
subordinated to the covering {[0,T1), (Ty, 00)} of Ry. Then (h*),a™) is a
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complete interior symbol of A*, where

K (r,z) = [ [ s"h(sr,n+1—%+in)* L dy~ Z HO¥(=r0p) ¥ h(r,n +1 - 2)*,
RR k=0

)(r, \) // " "a(r + s, A 4 0)*[r + s]" ds dn

53D

k=0 p+q=Fk

(DI (04Dt

Here [-] denotes a suitable smoothing of | - |.
e The homogeneous principal symbols are given as

oU(AT) =AY, ol (A= ol ()",
OB (AT =AY, o (A= ol ()",

oY (A") = 0¥ (4)",

e We have the identity op(A*) = op(A)* for the conormal symbols with the
x-operation from Definition 5.6.

9. PARABOLICITY AND INVERTIBILITY IN THE VOLTERRA CONE CALCULUS

This section is devoted to study parabolicity and invertibility for Volterra bound-
ary cone operators. The result about the equivalence of parabolicity and the ex-
istence of the inverse within the calculus was announced at the end of Section 4,
and sharpens Theorem 4.8. As a Volterra boundary cone operator, the inverse of
a parabolic boundary value problem encodes sufficiently much structural informa-
tion such that also conormal asymptotics (exponential long-time asymptotics) of
solutions can be observed and controlled.

In addition, we obtain as a by-product a Fredholm theory for general
anisotropic elliptic boundary value problems, and construct a parametrix within
the calculus of boundary cone operators.

Definition 9.1. Let A € C”V';il(X/\ (7, (=N, 0])), where d < py. A is elliptic
(resp. parabolic), if and only if the following conditions are fulfilled — in i), ii),

iv), v), and vi) below we denote either A = R (ellipticity) or A = H (parabolicity):
i) The principal pseudodifferential symbol UZ;Z(A)(T, &,r7)) is invertible in
Hom(7*E,n*F) for all (&;,A) € (T*XxA)\ 0 and all r € R;.
ii) The principal boundary symbol O'Z;K(A)(T‘, ’,,r~1X) is invertible in (8.7) for
all (&L,,)) € (T*Y xA)\ 0 and all r € Ry.

iii) The conormal symbol ¢9,(A)(z) is invertible in (8.9) for all z € Lngr (el-

-
lipticity), or z € Hn+1 (parabolicity) respectively.

iv) The principal pseudodlfferentlal exit symbol o) ’"’e( )(r, &, A) is invertible in
Hom(7*E,7n*F) for all (£,,)) € (T*XxA)\0 and reR;.
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v) The principal boundary—exit symbol Ug:e'”[(A)(r, €’,,A) is invertible in (8.11)
for all (¢.,,A) € (T*Y xA)\Oand r € R;.

vi) The principal exit symbol 0% (A)(r, A) is invertible in (8.12) for all A € A and
reR;.

Theorem 9.2. For A € C(‘“’,';’cdl;e(X/\, (7, (=N,0])), where d < py, the following
are equivalent:

i) A is elliptic (parabolic).

ii) There exists P € C(V*;’C;V’dl;l(XA, (7, (=N,0)])), d" < (—p)+, such that AP —
1€ C& ) (X (7, (=N,0]) and PA -1 € C& |\ (X",(7,(=N,0))), where
dy = max{—p+d,d'} and dy = max{p+d',d}.

Moreover, if A is parabolic, then we even find a Volterra boundary cone operator P
in 1) with AP =1 and PA =1, i.e., A is invertible within the algebra of Volterra
boundary cone operators.

Proof. We carry out the proof for Volterra operators and parabolicity only — the
case of elliptic operators is similar (even simpler).

Clearly, ii) implies i) for the principal symbols associated with P invert the
principal symbols associated with A by Theorem 8.8.

Now assume that A is parabolic, and let (h,a) be a complete interior
symbol of A subordinated to some covering {[0,71), (T%,00)} of Ry, and let
{[0,T1), (T2, 0)} be a strictly refined covering.

Let us consider the holomorphic Volterra Mellin symbol h(r, z) first: From
Definition 9.1 we conclude that we may regard h(r, z) as a parabolic C*°—family

in B"j’fl;e(X;H%ﬂ), depending on r € [0,T}). By Theorem 3.7 there exists h' €

C>([0,T1), B;ﬁid’;l(){; Hag1_)) such that h(r, 2)h'(r, z) =1 and b/ (r, z)h(r, z) — 1
are C*°—families of regularizing Volterra boundary operators in the parameter-
dependent Boutet de Monvel’s calculus (see Section 3). Employing a formal Neu-
mann series argument, we find a modified A/ (r, z) € C (R, B, (X; Hegr )

such that for all cut-off functions w, € C§° (R, ) near r = 0 with w < & < X[0,7%)
we have that (wh)#(Oh') — w and (wh')#(0h) — w are again a C*°—families of
regularizing Volterra boundary operators in the parameter-dependent Boutet de
Monvel’s calculus. Now define h(r, z) := (H- 2 (¢)h')(r, z) with the Mellin kernel
cut-off operator H,_=, where ¢ € C§°(R;.) with ¢ =1 near r = 1 (see Remark
5.5). We thus end up with w(op;(;%(h#ﬁ) — 1)@ € Cit gy (XN, (v, (=N,0])
and w(opj\/f_%(ﬁ#h) -1 € C’j‘fjJrGy(X/\, (v, (=N, 0])) for all cut-off functions
w, @ < X[ )} note that he C?(RJF,M‘Z*(L)’Z;[(X)).

It is much easier to prove that there exists @ € S,;" (R, B;‘Z}dl “(X;H)) such
that for all cut-off functions x| 7,) < w,@ we have (1 -w) (opr(afta)—1)(1-d) €
CétV(XAa (77 (_N7 O])) and (1 —W) (OpT(a’#a) - 1) (1_(;}) € Cé%V(XAa (77 (_N7 O]))
(see also the proof of Theorem 4.8 for the case v = 0).
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Choose cut-off functions Xjo, 7] = w3 < w1 < W2 < Xy and define
P i= wiop); f (Rws + (1= wi)op, (@)(1 — ws) € Oy (XN, (7, (=, 0])).
For the tuple (hJ @) is a complete interior symbol of P’ subordinated to the cov-
ering {[0,71), (T5,00)} of Ry, we conclude from Theorem 8.8 that AP’ — 1 €
C?\41+G7V(X/\7 (’77 (_Na 0])) and P'A—1¢€ C?\;+G’,V(XA7 (77 (_N7 0]))

By Theorem 5.10 we have g := 09%,(4)~' — 0%, (P') € M;’OQO’d (X;Hn#7
With a cut-off function w € C°(R;) define P := P’ + wop); 2 (
Oyl XA, (1, (=N, 0D). Then AP =1 € Cjty g (X7, (7, (=N, 0]
PA-1€C g (X", (v,(=N,0])) with 09, (AP) =1 and 0%, (PA) = 1.

According to Theorem 7.8 there exist D; € Cj'\lj+G7V(X/\, (v, (=N,0))), j =
1,2, such that both ((1+ D2)P)A — 1 and A(P(1+ D;)) — 1 are Volterra Green
operators, and thus either P := P(1+D;) or P := (1+ D,)P fulfills the conditions

in ii). The missing claim about the invertibility of A within the calculus follows
from Theorem 7.4. (]

g)w
)) and

Corollary 9.3. Let A € Cfl’"’d;e(X/\, (7, (—=N,0))), d < py, be elliptic. Then

’Cs;‘y;l(X/\,E)a ICsfuml(X/\,F)(;,,,
A D - @
KoomRA L)y KRN )

is a Fredholm operator for all s > py — % and § € R.

Proof. This follows from Theorem 9.2, and from the fact that Green operators
induce nuclear, in particular compact, operators in the cone Sobolev spaces by
Proposition 7.3. O

Corollary 9.4. Let A € C’{j’Zl’d;l(XA, (v, (—=N,0))), d < py, be parabolic. Then

’Cs,’y;f(X/\,E)J ICS—M’Y;Z(X/\,F)(S—V
A & - @
K= 34V N, T ) o= (Y )5

is bijective for all s > py — % and 6 € R, i.e., the equation Au = f is uniquely
solvable in these spaces.

Moreover, if f has asymptotics of “length” N, i.e., if f belongs to the sub-
spaces with asymptotics associated with the weight interval (—N,0], then so does
the solution u.

Remark 9.5. Let A € CU“%Y (X", (y,(=N,0)), d < py. If just the condi-
tions i) — iii) of Definition 9.1 of parabolicity are fulfilled we still find P €
C;’él’_"’d’;e(X/\, (7, (=N,0])), d < (—p)4, that is an inverse of A when consid-
ered as operators in the subspaces of the cone Sobolev spaces that consist of all
distributions having their support in (0,ro] for every fixed 7y € R; .
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9.1. Reduction to the boundary. Classically, boundary value problems are
often studied via reduction to the boundary. Given the solution operator to a
particular boundary value problem associated with a fixed interior operator, we
can judge about the solvability and regularity of other boundary conditions simply
by studying an operator on the boundary that is determined from these conditions
and the solution operator.

In this final section we demonstrate that reduction to the boundary of para-
bolic boundary value problems in infinite space—time naturally fits into the pseu-
dodifferential calculi constructed in the present article and in [39]. More precisely,
the reduced operators on the boundary are Volterra pseudodifferential operators
in the boundaryless calculus from [39], and an interior operator is parabolic with
some boundary conditions if and only if its reduction to the boundary by a fixed
parabolic boundary value problem is parabolic on the boundary.

Assume that

5730 YA ST (XA
Lo KT By KX B
T Q) b - K

Ker=3i (Y1, J_)s s =S YA, T sy

is a parabolic Volterra boundary cone operator in C#"% (X", (v, (=N, 0])), where

d < py, and let (E g) € C’;‘él’f'/’d’;[(XA, (v, (=N, 0])) be the inverse according
to Theorem 9.2.

Moreover, let

. 57 YA s XA
L KT By KT, F)oy
T o) ® = e
K= 58V, J ) Ko =5t (YA Ty )5

in C“}’Zl’d;e(X/\, (7, (=N, 0])), d < py, be another set of boundary conditions asso-
ciated with A.

With appropriate order reductions R*", RF ¢ C‘*}’?il(Y/\, (y—1,(=N,0))),
i.e., R*" and R*" are parabolic Volterra cone operators in the boundaryless cal-
culus with respect to the bundles J_ and J_, respectively, and thus they are

invertible with inverses R=*~" and R~*~" (see [39]), we may write

A K K 1 0 0 A K K
T Q o |=|TP TK (Q-TPE)R™||T 0 Q
0 0 R R RMY()  —RMYTKR MV 0 Rrv 0
]CS’WZ(X/\, E)5 ]Csfu,w;l(X/\7 F)dfu
® ®
Ksr=at (YN J )y — KS—mr= sl (YN J )5,
® ®
Ken=3t(Y N, I )s Ke=mr= 58 (YN, T )52,
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Consequently, the Volterra boundary cone operator <§ g) is parabolic if and

only if the Volterra cone operator

_( TK (Q-TPK)R ootn 1
5= <RN7VQ —RV”VTIN(R*I—M*V ) € CVcl (Y 7(7 27( N, 0]))

is parabolic. Recall that S is the reduction to the boundary of the boundary value
roblem 4 K b 4 K
p T 0 Y\r Q)
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