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1 Introduction. Definitions and Discussions.

In the last 30-40 years functional equations have grown to be a large, independent
branch of mathematics with its own methods, circle of problems and, what is of great
importance, abounding in applications. If on an early stage of development (XVIII
- XIX centuries) functional equations plaied some auxiliary, may be even decorative
role, describing in an abstract form various fundamental functions from Analysis,
then nowadays functional equations turn out to be a powerful tool when solving
analytical problems in quite different fields of mathematics. Moreover, sometimes
these equations arise as an adequate description of such problems. Then having
solved the corresponding functional equation we solve thus an original problem. In
this paper we deal with precisely the latter situation.

One of the first functional equations has been studied by Cauchy. He formulated
the following problem: find a continuous functions F'(z) on R such that the equality

Flr+y)=F(x)+ F(y) (1)

holds for all points (z,y) € R% A solution of this problem is not complicated. From
(1) it follows that

k k
F(Q_z) =2 F(z) (2)
7=1 7=1
for arbitrary £ > 2 and z; € R. Setting F(1) = A and substituting z; = ... =z, = 1
we get from (2)
F(k) = Xk.
If zy =... =2z, =1/k in (2), then we arrive at the equality
F(1/k) = \/k.

From the last two equalities it immediately follows that for all integers m and n
F(m/n) = Am/n,
and by continuity we find that

F(z)= Az, z € R.



If we are interested in a function F(z) not on the whole line but only on the
interval [ = {z | —1 < z < 1}, then it suffices that the equality (1) be valid at all
points of the square

K =A(z,y)| [ey[ <1}

The previous arguments lead then to the unique solution F\(z) = Az, z € [.
The other Cauchy equation closely connected to (1) is that determining an expo-
nential function, namely

Flz+y)=F(x)F(y), (z,y) € R% (3)

If y = z in (3) then F(2z) = (F(2))* and hence F(z) > 0. If F(yo) = 0 for some yo
then F'(x + yo) = 0 for all x. Consequently F'(z) > 0. But then the function

Gz)=InF(z), z€eR
satisfies equation (1). Therefore by above
Gz)=X and F(z)=¢e".

Consider now a pair of continuous maps é; and d in [ = {t | —1 <t <1} and
let

where R[f] denotes the range of a map f.
Definition Given a function H : D — R the equation

FO(51+52)—F051—F052:H (4)

with F' an unknown continuous function: D — R we call a Cauchy type functional
equation.

Let I' be a continuous nonsingular curve in the plane R? with a parametric rep-
resentation

I'={z=(z1,22) | 21 =61(t), w2 =d2(1); t €1},

where

Si(—1) = 8y(—1) = 0. (5)

If H = 0 then equation (4) under the name " The Cauchy equation on the curve I'” was
carefully investigated in the 70s - 80s in a series of works (starting with the pioneer
paper of Zdun [11]) (see [1] and [2] with respect to references). The main goal of these
works was to prove that (as in the case of equation (1)) linear function F/(z) = Az is
the only solution of homogeneous equation (4). Nonhomogeneous equation (4) has
never been investigated.

Note that condition (5) means from a geometrical point of view that the origin
(0,0) in (¢, z) - plane is an end point of all the three curves

=80, 2=08(t),  z=681(t)+ (1), (6)

Quite recently it was clarified (see [4] - [9]) that several problems in such different
fields as Integral Geometry and boundary problems for Partial Differential Equations
can be reduced (sometimes in equivalent manner) to some Cauchy type functional
equations. What is characteristic is that in this case the corresponding curves (6) in
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the (¢, z) - plane form a configuration not satisfying hypothesis (5). For convenience
we fix this difference in configurations in the following definition.
Definition Let

[={t] —1<t<1} and [={t] -1<t<l}

We say that maps (31, 89,...,0, in [ form a Z - configuration if all the functions
b1, ..., 3, do not decrease and

Bi(=1) = ... = Bu(~1) = 0.

We say that two maps (; and 3 in [ form a P - configuration if both functions
do not decrease,

B1B2(t) #0 in I
and
Bi(=1)=0(1) =0, Bi(l)=1, B(-1)=-L (7)
The Figures 1 and 2 represent typical examples of Z- and P - configurations,
respectively, n = 2. Dotted lines in both figures represent the graphs of functions

2= Bi(t) + B5(1).
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The Figures 1’ and 2’ represent the curves I' = {(xy,23) | a1 = [i(t), 22 =
Ba(t), t € I}, corresponding to Z - and P - configurations of pairs 3y, 32, respectively.
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It should be noted that when dealing with equation (4) a transition from a 7 -
to a P - configuration leads to a significant complication of the proofs even in the
homogeneous situation. In particular some new dynamic methods were worked out to
overcome appearing difficulties. A new Maximum Principle for functional equations



plays a significant role when studying a homogeneous Cauchy equation. All these
results and methods are the subject of this survey. It is worth mentioning that
the new approach leads to completely new results also when curves (6) form a 7 -
configuration. It is interesting that the Cauchy type functional equation in the latter
situation also turns out to be equivalent to some problem in Integral Geometry.

Note in conclusion that our methods are admissible when dealing with sufficiently
smooth functions (both given and unknown). It would be interesting to weaken
restrictions of such type.

2 Solvability of the Cauchy Type Functional Equa-
tions

2.1 The Case of a P -configuration

In this subsection we describe the results related to the unique solvability of the
functional equation

F(5i(1) + Ba8)) = F(Bi(1) = F(Ba(1)) = H(1), tel (8)

in the case when the functions 1(¢) and 5(¢) form a P - configuration and satisfy a
nondegeneracy condition

Bi(t) + B3(t) > 0. (9)

Due to hypotheses (7) and (9) the map § = 81+ 32 in [ is a diffeomorfism preserving
the boundary dI. Therefore the maps

5 =prop™! and 5y =037
form a P - configuration on I and in addition satisfy the condition
51(t) + d2(t) =1, tel. (10)

Thus the change of variable ¢ — 37'(¢) reduces equation (1) in equivalent manner to
the form

BF := F(t)— Fodi(t)— Fody(t)= H(t), tel. (11)

It turned out that an essential part of information connected with solvability of this
equation may be derived by means of new dynamical methods, introduced in the
author’s papers [4] - [6],[8],[9]. The application of these methods becomes possible if
we associate equation (11) with a semigroup ®s of maps in [, generated by §; and
d3. On the one hand in term of orbits of this semigroup a necessary and sufficient
condition for the existence of a unique solution to equation (11) is easily formulated.
On the other hand an essential part of the proof of both existence and uniqueness of
a solution is based on the existence of very specific attractors of a noncommutative
dynamic system generated by semigroup ®s.

Turn now to the exact formulations. We denote by ®5 a noncommutative semi-
group of maps in [ generated by (d; and ;). The elements of @5 are maps in [ of
the form

(SJ:(S‘nO...O(S]‘
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where J = (j1,... ,Jjn) is an arbitrary n-tuple with all j; = 1 or 2. The semigroup ®s
naturally generates a dynamic system. In what follows we make use of the following
geometric terminology, connected to ®s.

(i) Given a map d; € ®5 an ordered set (¢1,...,t,4+1) of points in [ is called an .J -
orbit if

thyr = 0,1, for 1<k <n<oc. (12)
(ii) If the end points of an orbit coincide, i.e. t,41 = 1, then the orbit (¢1,... ,%,41)

is called cyclic or, in short, cyele.
Introduce the eritical sets

Ti={tel]dt) =0} j=1,2, and T=T1UT,.

(iii) If all the points of a J-orbit belong to the set T then the orbit is called critical.
The last definition unlike the previous ones is specific in the circle of problems in

question.
(iv) A J-orbit (t1,... ,tut1), n=1,2,..., is called T-properif in (12)

d;, =01 whenty €7y and d; =3d; whent; e Ts.

k

Definition We denote by s the set of all T - proper critical cycles in [.

Before formulating the main result related to the solvability of equation (11) we
note that the kernel of the operator B contains all linear functions and as will be seen
later on the cokernel of B is also nonempty. This makes us look for some necessary
conditions for solvability. To this end substitute in (11) successively { = —1 and
t = 1. As equalities (7) remain true for functions é; and dy, we find that for an
arbitrary function F € C([)

BF(—1) = BF(1) = —F(0). (13)

It follows that the range of the operator B consists of functions H whose values
at boundary points of [ are equal. Moreover, the unknown function F' has to be
connected with a given function H by the equality

Taking into account that solutions F(z) = Az of homogeneous equation (11) are
uniquely determined by the value F'(1) we arrive at the following natural problem:

given numbers A\, u € R and an arbitrary function H € C'*(I) satisfying
the condition

H(1) = H(-1) = — (14
find a function F' € 02([) such that
BF=H on I, F(0)=pu, F(1)=A (15)

Denote by T’ the sets of limit points of the sets 7;, 7 = 1,2. Now we are ready to
formulate the first result.



Theorem 1 Suppose that

mint > maxt. (16)
7 T
If the hypothesis
Ns = O (17)

is valid, then given arbitrary constants A\, i and function H € C'*(1) satisfying condi-
tion (14) there is a unique solution F' € C*(I) of problem (15). The inverse operator
H — F is continuous: C'*(1) — C*(I).

Remark The assertion remains valid if we replace the boundary condition F'(1) = A
by the condition F'(0) = A.

We now draw a reader’s attention to the following interesting fact closely con-
nected with the Cauchy equation (1).

In the plane R? of variables (z,y) consider an arbitrary nondecreasing twice dif-
ferentiable curve I' which connects points (0,1) and (1,0) and admits a parametric
representation of the form

r = 51(t)7 Y= _52(t)7 —1 S l S 17

(see Fig.2"). If these functions §; and d; satisfy conditions (16) and (17) then by The-
orem 1 the homogeneous equation (11) has no solutions except for F'(z) = Az, |z| < 1.

Thus in order to determine a linear function F' on the interval I the Cauchy
equality (1) has not to be valid for all points (x,y) of the square K = {(x,y) |
|z + y| < 1}. It suffices that the equality F(x + y) = F(x) + F(y) is valid for all

points of some abovementioned curve I'. For instance a side
r=0-1)/2, y=0+1)/2, —-1<t<I1

of the square K can play the role of the curve I'. Thus the original Cauchy problem
(1) turns out to be overdetermined.

When proving the uniqueness in Theorem 1 a Maximum Principle for functional
equations of a rather general form plays a crucial role. This principle has been
obtained for the first time in the author’s papers [6],[8],[9]. In the situation under
consideration the corresponding assertion looks as follows.

Theorem 2 [f G € C'(I) is a solution of equation
G(t) — 01(1)G 0 61(t) — 85(1)G 0 65(t) = 0,

(the differentiated homogeneous equation (11)) and the functions 61,0, satisfy hy-
potheses (16) and (17), then G takes its mazimum and minimum at the boundary

ol.

2.2 The Case of a Z-configuration

In this subsection we deal with the unique solvability of the functional equation

BF::FoZﬁj(t)—ZFoﬁj(t):H(t), tel, n>2, (18)
7=1 7=1
where the functions gy,..., 3, form a Z - configuration.
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It is easily seen that the homogeneous equation BF = 0 has nontrivial solutions
F = Xz, A € R. Furthermore, substituting zero for ¢ in (18) we arrive at a necessary
condition for the solvability of equation (18):

(1=n)F(0)=H(0), n>2.

On the other hand the same procedure with the differentiated equation (18) leads to
the equality (independently of F!)

H'(0) = 0.

These observations enable us to formulate the following well-posed problem for equa-
tion (18).
Given numbers g, A € R and a function H € C'*(1), satisfying conditions

H(0) = A, H'(0) =0, (19)
find a function F' € 02([) such that
BF=H on I, F(0)=X/(1—n), F'(0) = p. (20)

Theorem 3 Let (1,...,03, be twice continuously differentiable functions on I satis-
fying the only condition

> Bi6), >0 in a deleted neighborhood of the point t = —1. (21)

7,k=1
J#k

Then for an arbitrary function H € C?(I) satisfying condition (19) there exists a
unique solution F € C'*(I) of problem (20).

The proof of the existence in this theorem is based (as in Theorem 1) on a dy-
namical approach and cannot be given in the framework of this short survey. But the
proof of uniqueness is easier then in the case of P - configuration. Indeed, let H = 0
and =X =0in (20). Then BF(0) =0 and consequently the equalities

BEF =0 and %BF =0 (22)

are equivalent. Introduce a new variable

- iﬁ(” -

and let

§j=pBjop™"
be new maps in [, = [0,b] where b = 3(1). Then 3 6;(¢) =t and the second equation
n (22) can be written in the form

25’ )Gobi(z)=0, z€l, (23)



with G = F". It is clear that §%(2) > 0, 1 < j < n, and

i 5i(z) = 1. (24)

Therefore any constant solves equation (23). Let us show that there are no other
solutions. Take an arbitrary solution ((z) of (23) and denote

max G(z)= M.
Let M ={z€ ]| G(z) = M}. Prove that —1 € M. Indeed, denote
T = mzin{z | z € M}.

It is clear that T € M. If T # —1, substitute T for z in (23). Making use of (24)
we find that G(6;(T)) = M for some indices j' (those for which &%(T) # 0). If
0;(T) =T, then §;(T) = 0 for j # j'. It follows that §;(t) = 0 for t < T and hence
Z (9467 )(1 ) = 0 in a neighborhood of t = —1. But this contradicts hypothesis (21).

Therefore d;(T) < T in contradiction with the definition of 7.
Repeating the same arguments with minimum instead of maximum results in
equality
mIinG(z) =G(-1).

Thus min G = max G and therefore (¢ = const. As F'(0) = 0 it follows that G = 0.

This proves the uniqueness in Theorem 3.

2.3 Multiplicative Cauchy type functional equations

In this subsection we will briefly concern with "nonhomogeneous” multiplicative
Cauchy functional equations. We name like this any functional equation of the form

n

FoZﬁj:(ﬁFoﬁj)H, (25)

i=1 i=1

where H > 0 is a given function and functions (y,..., 3, form one of the above-
mentioned configurations. To the best of the author’s knowledge such a problem has
never been investigated. When H = 1 the only case of Z - configuration and n = 2
has been studied (see [11]).

Let functions fy,..., 3, on [ form a Z-configuration and satisfy hypothesis (21).
Repeating word for word the concluding arguments in Sec. 2.2 we find that only
positive functions F' may solve equation (25). But then this equation is equivalent to
equation

(InF)o Zﬁ]—Zth) of;+InH

which is nothing but equation (18). Consequently, applying Theorem 3 leads to the
following result.

Theorem 4 Given real numbers p and A > 0 and an arbitrary positive function
H e C*(1I) with H(0) = X\, H'(0) = 0 equation (25) has a unique solution F € C*(I)

satisfying conditions

F(0) = A/0=m and F'(0) = pAt/0-m),



Turn now to equation (25) with n = 2 and functions 3y, 5y forming a P - con-
figuration. The main novelty here compared with a Z - configuration is that even a
simplest equation

F=(Fob)(Fody) in 1

with &1(¢) + d2(t) = t may have oscillating solutions. Nevertheless the following
assertion is valid.

Theorem 5 Given positive numbers A\, € R and an arbitrary positive function
H € C*(1) satisfying the condition

H(1) = H(-1) = 4
there is a unique positive solution F' € C?*(I) of equation (25) such that
F(0)=1/u and F(1) = e

3 Problems in Analysis Reducing to Cauchy Type
Functional Equations

In this section we discuss several problems in classical Analysis which can be
reduced (sometime in an equivalent manner) to a Cauchy type functional equation.
What is interesting is that all these problems at first sight do not give even a merest
hint about a connection with functional equations. But having solved a correspond-
ing functional equation we automatically solve the original problem. We will trace
this connection by considering two problems in Integral Geometry and in Partial Dif-
ferential Equations which were studied for the first time in the author’s papers [4] -

7).

3.1 Some problems in Integral Geometry and Cauchy Func-
tional Equations

One of the typical problems in Integral Geometry is to reconstruct a function
in a domain D of R™ knowing its integrals over a family of subdomains in D. A
peculiarity of the problem we deal with is that we consider bounded domains D with
the boundary dD. The statement of this problem and the corresponding results turn
out to be intimately connected with both local and global properties of dD. This
connection is realized by means of a semigroup of maps in dD that we associate
with a problem in question. But exactly the same situation arises when studying
a Cauchy type functional equation (see Subsec. 2.1). It is no wonder: it will be
proved below that every Cauchy type functional equation is equivalent to (at least) two
different problems in Integral Geometry. These problems correspond to two different
configurations formed by the functions 3; and fs.

3.1.1 The Case of a P - configuration

3.1.1.1 Statement of the Problem

Let I, and I, be smooth nonsingular transversal vector fields in a disk B C R2
Introduce a curvilinear triangle D = OA; A, whose sides OA; and O A, are trajecto-
ries of vector fields I} and I, respectively. As to the side I' = A; A, it is assumed to



be an arbitrary smooth curve without singularities which is transversal at its ends to
I, and I,. In addition the closure D of a domain D is supposed to satisfy the following
hypotheses.

1° For any point p € D a trajectory of I; passing through p meets OAy, k,j =
1,2, k # j at a point m;p.

2° The set D is I; - convex, j = 1,2. This means that given points p and ¢ on any
trajectory 7; of the field L all the points r € 4; between p and ¢ belong to D.

Given an arbitrary point ¢ € I' let D, be a curvilinear parallelogram ¢g,Oqs,
where ¢; = m;q, 7 =1,2. The above conditions 1° and 2° guarantee an inclusion

D,CDforall geT  (see Fig.3).

Figure 3 Figure 4

In this subsection we will deal with a solvability of an integral equation of the
following form:

/fda — h(q), qeT. (26)

Dy

Here do is a measure in B, h(q) € C(I') is a given function and f € C(D) is an
unknown function.

The general problem formulated in [3] in connection with this equation looks as
follows: for which spaces of functions f and % is the map f — h one-to-one, and
which functions h(q) can be represented by the integral (26).

As to the second question it follows from (26) that any such function A belongs
to the space H(I') = (C'* N Co)(T') of all twice continuously differentiable functions
vanishing on the boundary dI'. Therefore the best possible solution of the problem
consists in a description of spaces F(D) € C'(D) such that the map

A:F(D)— H(T)
is one-to-one. One of the possible classes of such spaces is introduced below.

Definition Given a smooth nonsingular vector field Iin B we denote by C<l>(D)

the set of all functions in C'(D) which remain constant along any trajectory of the
field L

In this paper we consider the only case of vector fields
1= Tlll + 7"212, rire > 0

with constant coefficients r; and r,. But in this situation we obtain an exhaustive so-
lution of the problem in question by formulating the necessary and sufficient condition
for the curve I to ensure the above mentioned property of the operator

At C (D) = H(D).
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Much more general vector fields I are considered in the author’s papers [5] and [9].
To formulate the abovementioned condition we introduce one more projection mj :
D — T along trajectories of the vector field 1. Let

§1:7T107T1 and §2:7TIO7T2

be two maps in I'. Denote by ®, a noncommutative semigroup of maps in I'; gener-
ated by (; and (3. The analogy of ®, with semigroup ®s considered in Subsec. 2.1
is obvious. As in the case of ®5 we define an orbit in I' as a sequence of points
(q1,--- yGn,...) in ' such that

qr+1 :gjquv k:1727
and all ¢g;, are equal (; or (3. As above the critical sets
={qel[L(q) e T,(T)}, J=12

and 7 = T; U 73 are introduced and condition (16) is supposed to be fulfilled. Re-
peating word for word what has been said in Subsec. 2.1 we define cyclic, critical and
T -proper orbits corresponding to the semigroup ®.. Finally, we introduce the set
MN¢ of all T - proper critical cycling orbits generated by @, (see Fig.5 - Fig.7). Now
everything is ready for formulation of the main result of this subsection.

3.1.1.2 Main Result and an Outline of the Proof

Theorem 6 If all above hypotheses concerning to domain D, curve I' and vector
fields L, L and I are fulfilled then given an arbitrary function h € H(L') there is a
unique solution [ € C ( ) of equation (26) if and only if N = O. The inverse

operator h — f is contmuous H(T) — C(I)( ).

Let us outline the proof of this theorem. First of all choosing a special coordinate
system (a1, x2) in disk B we reduce integral equation (26) to the form

/ / Vdeydey = h(z),  z€ L (27)

with f an unknown continuous function on the interval I, = {t | —r; <t <ry}. Here
L=A{z]-1<z<1}, a(z) = (a1(2),az(2)) and equalities @1 = a1(z2), 29 = az(2),
z € I, define a parametric representation of the curve I'. It is clear that

a(z) >0, ay(2) <0, and (a]—ay)(z)>0, ze€lLl.

As to w, this is a function
w(x) = rexy — riay

which does not change its values along trajectories of the vector field 1. Denote
wi = w(x1,0), wg = w(0,22) and let

c=wroa: I, — I

where wr is a restriction of w to I'. By the above the function o is invertible. Intro-
ducing a new unknown function

F(t) = —/Otf(s)(t _ Gds/rrs, L€ T,
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we arrive at the following functional equation
Flwoa)— F(wioa)— F(wyoa)=h.

By setting

S =woaoc !, by =wyoaoo !

we rewrite this equation in the final form
F—Foé—Fody=hoo on I;. (28)

It is remarkable that the functions §; and &, which are connected one-to-one with
a geometric problem (26) form a P - configuration. Moreover as §;(t) + d9(t) = ¢
for all ¢t € I, equation (28) is nothing but a Cauchy type functional equation on
I;. As we know from Sec. 2.1 the solvability of this equation depends on whether
the corresponding set 915 is empty or not. Therefore to prove Theorem 2 it only
remains to show that the sets s and M, are empty or nonempty simultaneously.
The corresponding proof is given in the author’s paper [8]. This completes the proof
of Theorem 3.

Remark We would like to emphasize that by Theorem 3 each Cauchy type functional
equation (4) with the functions &1 and d3 forming a P - configuration is equivalent to
some problem in Integral Geometry of the described type.

To illustrate this result consider domains D represented by figures 5.6 and 7.

12 A 12 r A 12
A 2
N Q) AT 1
q2 < lq /1 p =€2(q) /
Lp 4=¢(p)
q e
D I D &(P) I e I
Figure 5 Figure 6 Figure 7

On these figures p € T1, g € Ty are the only points from 7. The curve I'
on Fig.5 has no points in 7. It follows that 91, = @, and by Theorem 3
problem (26) is uniquely solvable for all &~ € H(I'). On Fig.6 the orbits
(p, C1(p)) and (q,(2(q)) are the only T - proper orbits corresponding to
the semigroup @, with a beginning at points p and ¢, respectively. As
both orbits are not critical, we have 9, = © in the case, and problem
(26) is also uniquely solvable for all A € H(I'). On Fig.7, as is easily
seen, the orbit (p, ¢, p) is a critical T - proper cycle (as well as the orbit
(¢,p,q)). Therefore by Theorem 3 the operator A : C<1>(D) — H(T') is

not one-to-one.
In the author’s papers [5],[9] some necessary conditions for right hand sides h are

given to provide a solvability of equation (26). It is interesting that the number of
these conditions coincides with the number of elements in 9.
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3.1.2 The Case of a Z - configuration

Let L1} and I, be a triple of smooth nonsingular vector fields in a disk B C R? such
that I; and I, are transversal and

I=001 +byL,, 016y >0,

with by and by some functions on I'. Let D = OA;0’A; be a (two-dimensional)
curvilinear parallelogram in B whose sides OA;, O’ Ay and O A,, O’ Ay are trajectories
of the vector fields I} and L, respectively, and the "diagonal” I' = OO’ is a trajectory
of the vector field I Given an arbitrary point ¢ € I' denote by D, a curvilinear
parallelogram ¢¢;0q, with ¢; = m;q, 7 = 1,2, the same projections of the point ¢ as
in Subsec. 3.1.1.1 (see Fig. 4). In this Subsection we briefly discuss a solvability of
the integral equation

/D fdo = h(q), qeT, (29)

that is nothing other than equation (3), if do, h and f in (29) have the same meaning
as in (3). All the discussions around the formulation of problem (3) completely relate
to problem (29). The space Ho(I') of the right hand sides in (29) has to include all
functions h € CZ(T') which are twice differentiable in I' and vanish at the point O
together with their first derivative dgh. This leads to the following result.

Theorem 7 Let
Ir = Tlll + 7"212, rire < 0

be a vector field with r1 and ry some constants. Then for an arbitrary function
h € Ho(I') there is a unique solution f € Cipy(D) of equation (29). The inverse
operator h — [ is continuous: Ho(I') = Cipy(D).

Repeating word for word what has been said in Subsec. 3.1.1.2 we reduce equation
(29) in an equivalent manner to a Cauchy type functional equation

F—Foé—Fod;=H on I,

(see (28)). But in contrast to (28) this time the functions é; and é; form a 7 -
configuration. The needed result follows, therefore, immediately from Theorem 3.

3.2 First Boundary Problem for Hyperbolic Differential
Equations and Cauchy Type Functional Equations

To begin with we mention that in the framework of the classical theory of Partial
Differential Equations boundary problems for hyperbolic equations (all needed def-
initions are given below) are usually studied in domains closely connected with the
equation under consideration. What was typical to these equations (and more gen-
erally, to any evolution equation) is that if a domain is bounded, then a part of the
boundary is usually free of a priori information about an unknown solution. In the
presence of characteristics boundary conditions on the whole boundary of a bounded
domain usually treated as prohibited. Nevertheless, it turned out (see [4] -[7]) that
for a wide class of hyperbolic differential equations this taboo can be lifted. In other
words any equation of such kind defines (a wide class of ) bounded domains D C R?
such that the problem in which boundary values of an unknown function are given on
the whole boundary 0D is well posed. As will be shown later on this new boundary
problem turns out to be equivalent to a Cauchy type functional equation. Maybe this
explains why such a problem has never been investigated.
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3.2.1 Statement of the Problem

For the sake of brevity we restrict ourselves to a homogeneous differential operator
with constant coefficients.

In the (z,y)-plane R* we consider an arbitrary homogeneous z-strictly hyperbolic
operator P(0,,0,) of the 3rd order. The x-strictly hyperbolicity means that the
characteristic polynomial P(7, A) has, for any A # 0, three distinct real roots in 7. It
follows that the operator P = P(0,,d,) can be uniquely represented in the form

P(0y,0y) = a(0y — a10y)(0y — a20,)(0 — as0,) (30)

with some constants a, ay, as, as, where a; # ay, for j # k. The characteristics of the
operator P are straight lines

Y+ ayx = const, y -4 asx = const, vy 4 asx = const.

Let I, I, and I; be vector fields in R? parallel to these lines, respectively. Denote by
R1,Ra,...,Re characteristic rays beginning at some point 0. Choose any triple of
neighboring rays R;, say, Ry, Ry and Rs. Let Rz be the ray lying between R; and
Ry. Consider a curvilinear triangle D = OA; A, with sides OA; C Ry, OAy C Ros.
As to the side ' = A;A; it is assumed to be an arbitrary smooth curve without
singularities which is transversal to OA; and OA; (cf. Subsec 3.1.1.1). We suppose
the closure D to satisfy the hypotheses 1° and 2° of Subsec. 3.1.1.1. It follows in
particular that I' is transversal to the vector field L.

The First Boundary Problem for the above operator P(d,,0,) and domain D is
as follows.

Given functions ' € C(D) and h € C(9D) find a solution of the boundary
problem

Pu=F in D, u=nh on dD. (31)

We call a function u in D a generalized solution of the problem (31) if u € C*(D), u =
h on 9D, and for all functions ¢ € C5°(D)

/utpc,odxdy = /Fc,od:z;dy,
R2

R2

where ‘P is the formally adjoint differential operator.

3.2.2 The Formulation of the Result and a Sketch of the Proof

To formulate the main result concerning a solvability of problem (31) let us consider
the semigroup ®. of maps in I' introduced in Subsec. 3.1.1.1 with I = I5. The critical
sets 7; in the theory of Partial Differential Equations are usually called characteristic
sets. Similarly, we introduce J-orbits and accompanying notions of cyclic, character-
istic and T - proper orbits. Finally we introduce the set 9t whose elements are all
the 7, - proper cyclic orbits, consisting of only characteristic points in I

Denote by C*(dD) the space of continuous functions on 9D whose restrictions to
all sides of the triangle D are k times continuously differentiable functions. The main
result concerning the problem (31) is as follows.

Theorem 8 (see [10]) Assume that the characteristic sets Ty and Ty satisfy condi-
tion (16). Then for any functions F' € C(D) and h € C*(0D) there exists a unique
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generalized solution u(x,y) of the problem (31) if and only if the set N is empty. The
inverse operator (F, h) — u is continuous: C(D)xC*9Q) — C*D). If F € C*(D)
and h € C*2(9D), k > 1 is an integer, then u € C*?(D) is a classical solution of
the problem in question.

Proof:  We restrict ourselves to the proof of the existence of a unique generalized
solution to problem (31) with ' = 0. Let us write down the operator P in the
form (30). It is obvious that there exists a linear transformation in R* reducing the
problem under consideration to the problem

(r10; 4 r20,)0:0,u =0 in D, u=~h on 0D, (32)

where ryry > 0. (For convenience we preserve the previous notations for the domain
and functions). Here D is a domain in R? whose boundary 9D consists of three parts
I'y Uy, UT's, where

i={(v,y) ly=0, 0<e <1}, Di={(ey)|e=0, 0<y<1}),
I3 ={(z,y) |z = a1(t),y = aa(t); 0<t <1},

and
a1(0) =0, ay(l) =1; az(0) =1, ay(l)=0.

Note that the functions ay(t) and —ay(t) form a P - configuration.
Let

h =hy(x) on Iy, h=hs(y) on I's, and h=hs(z,y) on Is.
The continuity of the function A leads to the natural compatibility conditions
h1(0) = ha(0), hi(1) = hs(1,0), ha(1) = hs(0,1). (33)

Due to assumptions about the domain D) an arbitrary generalized solution u of the
equation in (32), satisfying boundary condition only on I'; U 'y, can be represented
in the form

xr

u@w):/(;Fﬁﬁ—hﬂﬁ)k+hﬁ@+hﬂw—hﬂ®, 0<ay<l. (34)

0

As to the function F', this is an arbitrary continuous function on the interval I =
(—rg,r1). The necessity of satisfying the boundary condition v = hs on I's leads to
the following integral equation for an unknown function F € C(I):

Ozl(t) Ozg(t)
/ ( / F(ryx — rly)dy)dx =H(t), 0<t<1. (35)
0o 0

Here
H(t) = —hy(as(1)) = ha(oa(t)) + ha (e (1), az(t)) + ha(0)

is a given function. What is important is that the function H(t¢), generated by an
arbitrary continuous and twice piecewise differentiable function h in (32), belongs to
the space H(I) = C*NCy(I) (see Subsec. 3.1.1.1). This follows from the compatibility
conditions (33). Conversely, the function u(x,y) which is defined by (34) with F' a
solution of equation (35) solves the problem (32).

Thus the problem (32) turns out to be equivalent to the equation (35) which is
nothing but the equation (27). The existence of a unique solution to the problem
(32) provided that 9%, = O follows immediately from Theorem 1.
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4 Functional Equations Determining Polynomials

This section is devoted to a class of functional equations whose solutions are only
polynomials. This class contains the Cauchy equation (1) and for many reasons can
be considered as a natural generalization of this equation.

Definition Given a function F' in R and an integer n > 2 we denote by P, the
operator

F = (P F)(x), x=(x1,--,2,) €R"
of the form
Pub(z) = F( _ v;) - z_j P(Y )+ 4 (=) Z F(x).

j=1 k=1 £k k=1

With this notation equation (1) has a form
,PQF(J?) = 0, T € R2,

and as we know all solutions [ of this equation are polynomials of degree 1 vanishing
at the origin. The first assertion of this section treats the general case of the equation

P.F = 0.
Theorem 9 Ifn > 2, then any continuous solution of the equation

Pl =0 (37)
is a polynomial of degree n — 1 vanishing at the origin.

Proof: We restrict ourselves to sufficiently smooth solutions F. Substituting

x =0 in (37) results in F'(0) = 0. Denote Fy = F® k=1,... n, and let
Ty = (L1, 00 Thets Tpgrs - 5 T0), Ok = 0f0xy, TF(2) = Fxw).
Then, as can be easily verified, we have
O Pul = Py (Filawy) — F1(0)), k=1.....n. (38)
Using successively this relation for k =n,n —1,... .3 we arrive at the equality
Pa(Foea = Foea(0)) (1, 22) = 0.
It follows by the Cauchy result (see Sec. 1) that
Fo2(z) = F,—2(0) + F,_1(0)z.

Integrating this equality n — 2 times leads to the desired result.

The following result considerably sharpens the previous theorem. It shows that
as in the case of the original Cauchy equation (1) problem (37) is overdetermined
(see Subsec. 2.1). In order to determine a polynomial of degree (n — 1) the equality
(PnoF)(x) = 0 has not to be valid for all points in R"™. It suffices that it is valid at
points of some hypersurface I'.
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Theorem 10 Let z = 2(x(n)) be a smooth function with z(0) = 0 and

0;z2(x(ny) >0, if x>0, j=1,....,n—1

Then any solution F € C"?(R,) of the equation

PnF(x(n),z(x(n))) =0

is a polynomial of degree n — 1, vanishing at the origin.

The proof of this theorem is reduced to the case n = 2 with the help of some variant

of equality (38), and making use of Theorem 3 completes the proof of Theorem 10.
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