Global existence of a shock for the supersonic flow past a curved wedge

Yin Huicheng
(Department of Mathematics, Nanging University, Nanjing 210093, P.R.China)
(Institute of Mathematical Sciences, CUHK, Shatin, N.T., Hong Kong)

Email address: huicheng@nju.edu.cn

This note is devoted to the study on the global existence of a shock wave for the super-
sonic flow past a curved wedge. When the curved wedge is a small perturbation of a
straight wedge and the angle of the wedge is less than some critical value, we show that
a shock attached at the wedge will exist globally.

§1. Introduction

This note is concerned with the global existence problem of a shock wave for the stationary
supersonic flow past an infinite curved wedge. When the wedge is straight (that is, it is formed
by two planes), such a problem has been solved well in the book [1] by the shock polar. For
the curved wedge, if the direction of the supersonic coming flow is perpendicular to the edge
of the wedge and the angle of the wedge is less than a critical value, which is determined by
the velocity, density and adiabatic exponent of coming flow, then the local existence of a shock
attached at the edge is proved in [2-4]. Besides, the author in [5] established the global existence
of a weak solution by use of the Glimm’s scheme for the isentropic steady supersonic flow past
a 2-D infinite curved wedge with a sharp angle. Our main interest is on the structure of the
global weak solution of such a problem. The aim of this paper is to show the global existence
of a shock as observed in physical experiments, moreover we will remove the restriction on the
sharp angle in [5].

Now let’s give a detailed description of our main result. Suppose that the stationary inviscid
supersonic flow past a 2-D wedge is governed by the steady Euler system. Under the assumptions
that the flow is isentropic and irrotational, the system can be written as

0u(pu) + By (p) = 0

0z (pu?) + 0y (puv) + 0, P(p) =0 (1.1)
0z (puv) + 0y (pv*) + 9, P(p) = 0

where p, (u,v) and P(p) represent the density, the velocity and the pressure respectively.
Suppose that there is a uniform supersonic flow (u,v) = (go,0) with constant density py > 0,
which comes from minus infinity. The flow hits a 2-D wedge along the direction perpendicular
to the edge of the wedge. When the angle of the wedge is less than a critical value b,, then
the flow on the upper part and on the lower part can be determined independently. Without
loss of generality, in this paper we only take into account the upper part of the wedge, whose
equation in z > 0 is described by a smooth function y = b(z) with b(0) = 0 and b'(0) = by > 0.

* The author was supported by the National Natural Science Foundation of China.
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If by < b, then there will be a shock attached at the point (0,0). Denote by y = x(z) the
equation of the shock front for z > 0 , here x(0) = 0. On the wedge and the shock front, the
following boundary conditions should be satisfied

ub' (z) —v =0, on y = b(x) (1.2)
and

[pulx'(z) — [pv] =0,

[ou? + P(p)lxX'(z) = [puv] =0,  on  y=x(z) (1.3)

[puv]x' (z) = [pv® + P(p)] = 0,

where the system (1.3) comes from the Rankine-Hugoniot conditions.
Since the flow is irrotational, then one can deduce from (1.1) that

Ve (gl + o) + h(p) = 0 (14)

where h(p) is the specific enthalpy, and h'(p) = @, c2(p) = P'(p) > 0 for p > 0.

The integration of (1.4) leads to the Bernoulli’s law

1 1
§(U2 +0%) + h(p) = 5‘]3 + h(po) = Co (1.5)
Then by the implicit function theorem we have
1
p=h"Cy— §(u2+112)) = H(u® + v?) (1.6)

Consequently, substituting (1.6) into the first equation in (1.1) we can reduce the system (1.1)
into the following 2 x 2 system on (u,v)

{ Oy (Hu) + 0, (Hv) =0

1.7
Opv — Oyu =0 (17)

It is easy to verify that (1.7) is strictly hyperbolic with respect to xz—direction if u > ¢(p).

uo—clp)yurtvz—c(p) . 4

u?—c?(p)

Indeed, for v > ¢(p),(1.7) has two distinct real eigenvalues A1 (u,v) =

Ao (u,v) = L@y uiroi = p),

u?—c?(p)
Furthermore, by (1.3) we obtain the following free boundary conditions on y = x(z)

{ [Huly' (z) — [Ho] = 0
(ol (2) + [u] = 0

(1.8)

The main conclusion in this paper can be stated as:
Theorem 1.1. Suppose that the upper part of a curved wedge is given by y = b(z), which
satisfies

b(0) =0,  b'(0) = by (1.9)

|(14 ) ——(b(x) — boz)| < ey  for 0<k<2,  z>0, (1.10)



Assume that a uniform supersonic flow parallel to the z-axis comes from minus infinity with
velocity (qo,0), density pg > 0 satisfying qp > ¢(pp). Additionally, by > 0 is assumed to be less
than b.. Then (1.7) with the boundary conditions (1.2) and (1.8) admits a global weak entropy
solution with a shock attached at the origin. Moreover, the location of the shock front and the
flow field between the shock and the wedge tend to the corresponding ones for the flow past the
unperturbed straight wedge y = bz with the decay rate (14 x)~%, here J, is some constant
independent of .

Remark 1.1. We emphasize that there are no other discontinuities in our solution besides
the main curved shock. This is contrast with the results in [5]. The condition (1.9) comes from
the local existence theorem in [2-4] and the condition (1.10) especially gives a restriction on the
perturbation of the wedge for large . Our result demonstrates that the shock which produced
by the supersonic flow past a wedge is structurally stable in a global sense.

Remark 1.2. Since the shock is weak, then the isentropic equation (1.7) actually gives a
good approximation for the general 2-D stationary compressible Euler equations (see [6-7]).

In order to prove Theorem 1.1, we need to establish some global uniform estimates for the
solution and its derivatives by the characteristics method. This is also the spirit of the results
in [8]. To obtain the needed uniform estimates, we have to give some detailed computations
in terms of the physical properties of shock wave as well as the boundary conditions (1.2) and
(1.8).

This note is organized as follows: In section 2, we give a reformulation of problem (1.7). In
section 3, we complete the proof of Theorem 1.1.

62. The reformulation of main problem

In this section, we firstly recall some basic properties for the supersonic flow past the straight
wedge y = boz in £ > 0. On the left of shock wave, the flow has the density pg and the velocity
(go,0), between the shock and the fixed boundary, the constant solution (py,us,vy) can be
obtained by use of the shock polar curve (see [1]). Here and below, uy > ¢y = ¢(p4) will be
assumed.

Now we list some properties on the solution (p4,us.v4). Denote by y = spx the equation of
shock wave, then the Rankine-Hugoniot condition (1.8) implies

{ P40+ — So(p+ut — pogo) =0 2.1)
u++sov+—q0:0 '
by use of the fixed boundary condition v = byuy in (1.2), one can get
Ut = TTsotg
Vo = bo qo 29
+ 1+Sob0 ( ° )
— So0po(1+s0bo)
p+ - so—bo
Meanwhile, s¢ is determined from the Bernoulli’s law (1.5), namely, sy satisfies
1+ b2)¢2 1 b
(L+55)g5 , , s0po(1+ s0 0)) — (2.3)

2(1 + 80b0)2 Sp — bo
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From the book [1], for uy > c4, we know that the algebraic equation (2.3) on s¢ has three
distinct real roots when by is less than the critical angle b,.. Physically, sy takes the intermediate
value, it corresponds to the formation of weak oblique shock. Since the shock is weak, without
loss of generality we will assume

o4 < 2¢(po) (2.4)

Additionally, the P.Lax’s entropy condition on 2-shock holds:

__clpo) (2.5)
V@i —c?(po) < 50

{ Ay, v4) < so < Az(ug,v4)

From (2.5), one easily gets
SoU4 — U4

<c
T+s (p+)

The physical sense of (2.6) is: across the shock, the normal velocity of supersonic flow becomes
subsonic.

Based on the above preparations, now we can reformulate the nonlinear problem (1.7) since
the solution of (1.7) is actually a small perturbation of (p4,u,v4).

Introducing two Riemann invariants as follows

(2.6)

wy = arctgE + F(vVu? 4+ v?%) — arctgby
u

wy = arctgg — F(\/u? 4 v?) —arctgby (2.7)
u

where F'(q) = W and F'( 1”+1SJ;Z§ ¢o) = 0, then we can change (1.7) into a 2 x 2 system

on (wy,ws):

{ 8$UJ1 + )\1 (w)8yw1 =0 (28)

Ogwa + A2 (w)Oyws =0
where \;(w) = X\ (u(wy, ws), v(wy, we)),i = 1,2, u(wy,ws) and v(wy,wy) are the inverse func-

tions of (2.7), moreover u(0,0) = u4 and v(0,0) = v4.
Correspondingly, the boundary condition (1.8) on y = x(z) becomes

H (w1, w2)v*(wy, wz) + (H (w1, wa)u(wy, wz) — pogo) (u(wi, ws) — go) = 0, (2.9)
X () = Sosplente), (2.10)
and the fixed boundary condition (1.2) is
w(wy, w)b' (z) — v(wy, wy) =0 on y = b(x) (2.11)

By Taylor’s formula and the implicit function theorem, for the small |w;| and |wsz|, (2.9) can be
rewritten as
wy = Awg + f1(ws) on y = x(x) (2.12)
4



where

C+U+ +upyfuf +vi - m1 — maAa(uq, vy )
Ccivp _*_u_i_\/ﬁml maAy (U, v4)
my = —p—+vi + 2pyvy + p—2U+U+(QO —uy)
P+ 2 P+ 2
Mg = = 5 U4V} + (c—2u+ = p+)(q0 — u4) + (p+ut — pogo)

+ +

and f1(0) = f{(0) =0, f1(w) is smooth.
Similarly, from the boundary condition (2.11), one can derive

wy = Bwy + fo(b (z) — bg, wy) on y = b(x) (2.13)

C4V4 +u+m 1+ b (ug, vy
C+U++U+\/T1+b0>‘2 Uy, V)

and f>(0,0) = (02f2)(0,0) = 0, f2 is smooth.

Hence in order to prove Theorem 1.1, by the local existence of solution in [2-4], we only need
to solve the problem (2.8), (2.10), (2.12), (2.13) with the small initial data w;(z,y)|z=1( = 1,2)
and (x(z) — s0z)|z=1 in the domain {(z,y) : > 1,b(z) <y < x(z)}. The smallness means

where

sup Vg wi(ly)| < Ceo,  [x(1)=s0| < Ceo,  [X'(1)=s0| <Cep  (2.14)
|a|§1b(1)§y§X(1)

where g is given in Theorem 1.1. We note that (2.14) can be derived from the result on the
local existence and stability in [2-4].

63. The proof of Theorem 1.1

In order to prove Theorem 1.1, as the first step, we need to verify that the condition |AB| < 1
holds, where the constants A and B appear in (2.12) and (2.13) respectively. The condition
|AB| < 1 will lead to the uniform bound of solution to (2.8) in the domain {(z,y) : ¢ > 1,b(z) <
y < x(z)}.

Lemma 3.1. In (2.12), m; > 0 and mg > 0.

Proof. In terms of the expressions of uy, v in (2.2), we have

p+v1 bogd (s0 — bo) 0

P+V+ o 2 2 P+Y+ 2

m; = 2¢7 — v+ ug(qo — ug)) > Uy Tur(go —uy)) =
Similarly, we can get

P+

my =5 <(u3_ — ¢ )(q0 —ug) — “+U-2i—> + (4t = pogo)
+
bopoqo ( 2 2 2)
= ———"— | so(sp — bp)u’ + (1 —3s5)c
o —bo) @ ( Jui + (1 —sp)cy
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If so < 1, obviously one has may > 0.

If sp > 1, then the entropy condition (2.6) leads to

bopoqo 2 o\ (50 — bo)?u?. b3 pogou’.
> —b 1-— > >0
me (s0 — o)A s0(s0 = boJuy + (1= 50) 1+ s i

Hence Lemma 3.1 holds.
Lemma 3.2. 1). 1+ bpA1(uy,vy) > 0.
2). Under the condition (2.4), |AB| < 1 holds.

Proof. 1). By a direct computation, one has

ul — L + bouyvy — bocyyJul + v — A (1+08)/ud + 03 — A
1 + bo)\l(U+,U+) =

5 5 = >0

u? —c 2 .2 _ 2
% \Jui +vi — ¢+ bocy

2). Firstly, under the condition (2.4), we assert

my — m2)\1(u+,v+) >0 (31)

Indeed, if v4 < ¢y, then Aq(uy,v4) < 0, so by lemma 3.1, (3.2) obviously holds. If vy > ¢y,
then A1 (uy,vy) > 0, moreover by (2.4) we have vy < 2¢;. A direct computation yields

m1 — mai (uy,vy) = Fc)—2+(2civ+ — 03 + (o — uy)yJul + 02 — & +upvi i (uyg,vy))
+

— (prut — pogo) A1 (u,v4)

P+V+ uyvy 1
> o (2] = R+ epug) F ppvg (F = —)A (g, 04)
cx ci S0
P+U4+ 1 1
> =g (er +03) (24 —vg) + oo (- = =) (uy,v4) >0
L 0 S0

Now we show |AB| < 1.
If mqy — maXa(ug,vy) > 0, by (3.1) and Lemma 3.1 then

1 - |AB| = (ma + bomny)(Ae(ug, v4) — Ap(ug,vy))

(my — m2>\1(u+é 04)) (1 + boAz(ut, v4))

>0



If mqy — maXa(ug,vy) <0, by (3.1) and Lemma 3.1 then

m1 — 2bpmaAs (U, v4 ) Ao (U, v4) + (boma — ma) (A1 (ug,v4) + Aa(uy, v4))
(m1 — maAi (us,v4)) (14 boAa(ug, vy )

2p 404 { 27(,,2 2
= [2¢2 + (sqb ul|(uy — ¢
d(ud — c)(my — maAi(uy,v4)) (1 + boAz(ug, vy)) #  (sobo = boJui](uy = &)

1 - |AB| =

1
— [(1 - bg)(SO - bg)ui - (80 + 2by — S_O)Ci]bou_z’_ - [60(80 - bo)u_Z'_

—bo(s0 — i)CJF](50“+ Ci)}
S0

2p 404 { 1
N 2 + by (s0 + 2bp — —
(% = )0 — maa (s, 0 ) (L + bodalug, o)) |2 F Polo 200 = )

1 1
+ b3 (so — —)]uF — [2+ bo(so — —)]Ci}
S0 S0

S 263 pvyu’
(uf — c3)(m1 — maAs (ug, v4)) (1 + boAa(usg, v4))

(1 + Sobo) >0

Therefore |AB| < 1 holds.

To prove Theorem 1.1, now we give a uniform estimate on w and its derivatives.

Lemma 3.3. Set Dr = {1 <z <T,b(z) <y < x(z)} forany T > 1. If w € C?(Dr) satisfies
(2.8)-(2.11) and (2.14), then there exist two positive constants Cy and Cy independent of £y and

T, such that |95, w;| < % in Dy for |a| < 1,7 =1,2, and |82 (x'(z) — sp)| < OE;J%
in [1,7] when 0 < j <1, here ¢y > 0 is an appropriate constant.

Proof. We shall use the reflected characteristics method to obtain the needed estimates
(such a method has been used in Lemma 2.1 of Chapter 5 of [8]). By the local existence result
of solution in [2-4] and the continuity induction, we only need to prove

For some constants Cy > 0,0 < dp < 1, if |07 ,w;| < - in D for |a| < 1,7 = 1,2,

(1-{—$)50“‘|‘l
then there exist two positive constants C < Cy and Cy such that | Oy ywi| < % in Dr
for |a| < 1, and |02 (x/(z) — so)| < (1560% in [1,7] when 0 < j < 1. (3.2)

Below we denote by C various strictly positive constants independent of ¢g and 7. If (z,y) €
Dr,z < T, we shall denote by v; (t,z,y)(j = 1,2) the backward j-th characteristic curve pass
the point (x,y), namely

dv; (t,z,y) _
{ D OB wt A (e y),  t<a )
’Yj_(t?xay”t:x =Y

By the assumptions in (3.2), one has

Ce .
— >\j(u+7“+)| S m m DT (34)

|de_ (t,z,y)
dt
7



IE{(t vy (tzy)} N {(t2) - 2 =x(0)} = Tilz,y),&(z,9), {(tye (L2,y)}N{{E2) : 2 =
b(t)} = (Ta(z,y),&2(x,y)), then from the system (2.8) we have

If{(tv71_(t7F2(x7y)7€2($7y))}ﬂ{(tv z) R= X(t)} = ("Tl(mvy)vnl(xvy)) and {(t772_(tvrl($ay)a

&i(z,y) N {(t,2) : 2 = b(t)} = (m2(x,y),n2(z,y)), then by use of the characteristics method
and the boundary conditions (2.12) and (2.13) we get

w2 (z,y)| = [Bwi(Ta(z,y),&(x,y)) + fo(b'(T2(z,y)) — bo, wi(2(,y), L2(2,y)))|
= |Bwi(mi(z,y),m(z,y)) + f2(t'(T2(2,y)) = bo, wi(m1(z,y), m(z,y)))]
< [ABwa(mi(z,y),m (2, y))| + |Bfi(w2(m1 (2, y), m (2, y)))|
+1f2(0"(T2(,y)) = bo, Awz (71 (2, ), M (2, y)) + fi(wz(mi(z,y), 1 (2,9))))]

Noting that for small €y, one has

di —060 S

S].-FC&"O

xr

’/Ti(xay)
T

didy — Cey < <d; + Ceg (36)

ek dy = BN 5 0 = ez 5 0
Assume |fo(b'(2) — bo,wz)| < C1]b'(x) — bo| for small |ws|, then by assumption in (3.2) and

by use of (3.6) and did> < 1, we obtain

€0

|AB|
w2 (2, y)| < (Z—=5Co+C1 + Cgo)m

(d1dz)0
Similarly, one can obtain

|AB| €0
< (—/——m -
lwi(z,y)| < ((d1d2)50 Co + Ceyp) T

I {(t,y (tz,y) 0 {(t2) 2 = x(t )} =0, or {(t, 5 (t,2,9))} N{(t,2) : 2 = b(t)}
{( (¢t an(!E y), &z, ) N{(t,2) : 2= x(#)} =0, or {(t,7; (t,1(z,y), fl( y))
z =0b(t)} =0, then by (3.4), (2.5) and the initial data (2.14) we can conclude

x < O, |wi(z,y)| < Ceo

where C is independent of .
Therefore, if we choose 0 < §p < 1 such that

% < 1, and set Cy = maff{%a 26(1

(d1dz)%0
_ C1(1+ d|23\60) - -
+C)%} and C}) = mam{l(l—j,gz‘), C(1+ C)%}, then we know (3.2) holds for |a| = 0.
© (d1dp)%
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At this time, one has

(wy, wa) — uy

(uy — qo)(v(wy, we) —vy) | C~'060
v(wy, ws) =

vpv(wi, ws) (1+ )%

u
X' () = s < | |+

Next we prove (3.2) for |o| = 1.
Denote by Z = 0, +b'(x)0, the tangent vector field of boundary y = b(x). Set @0; = Zw;,i =
1,2, then from (2.8) we get

{ O, w1 + A1 (w)é)yu‘)l =fi (3 7)
8$1172 + )\2 (w)8yw2 = f2 '
where f; = b”(:v)aywz - (8w1>\iw1 + 8w2 )\sz)aywz
From (2.13), one has
Wy = (B + (02.f2) (V' () — by, w1))@1 + (91f2) (V' () — bo, w1)b" () (3.8)

To get the boundary condition of @ on y = x(z), one should notice that the vector field
V =0y + x'(x)0, tangent to y = x(z) can be expressed as follows

1 / / !
V= m{()\i(w) — X' @) Z + (X' (z) = V' (2)) (0 + Xi(w)D,)}

So on the shock y = x(z), from (2.12) and (2.8) we have

o = Qe(w) = x'(2)(V(2) — Ay (w)))
P Qu(w) = (@) (@) = A (w))

By the assumptions in Theorem 1.1 and (3.2), we have

(A + fi(w))w, (3.9)

1 1 Ce?

2
|filz,y)] < 050((1 + z)3+0 + (1 +x)2+250) < (1 + 2)2+2%

(3.10)

Using the notations above, if v; (¢, z,y) and 7, (¢, z,y) both intersect with fixed boundary and
shock front, then by the characteristics method, (3.10) and the boundary conditions (3.8), (3.9),
one has

Fz(ﬂ?,y) ng
@2 (2, y)| < [@2(T2(2,y), &2(2, y))] +/ (1 1 )220 8
) Ce?
< |Bwy (Ta(z,y), L2 (2, )| + m
) Ce?
< |Bwy (1 (2, y), m (2, y))| + m

_ Ced
< |ABldyda|wa (1 (2, y), m (@, y))| + m
|AB| C0€0 CE%

- (d1d2)60 (1 + .’I‘)1+60 (1 + .’L‘)1+260
9




Similarly, we have

w1 (z,y)| < |AB| Coeo Ce?

w1 (x

Y > (d1d2)50 (]_ +$)1+60 (1 +$)1+250

Noting 9 w; = %’ yw; = —)\i(w;ﬂ_"b,(x) and (d|1‘zf)|50 < 1, then similar to the proof on

w in the above we know that (3.2) also holds for |a| = 1.

2
Since x"'(z) = Z@wi <%) (Opw; + Oyw;x'(z)) on y = x(z), then by the esti-
i=1 ’

mates on w; and 0, w;, O,w;, it is easy to conclude

" Coeo
X" (z)] < A+ 2)t%

Therefore (3.2) and Lemma 3.3 are proved.

Proof of Theorem 1.1. Since the local existence of the solution of (2.8)-(2.11) near the
origin (0, 0) is achieved in [2-3], while for any given z, the solution of (2.8) with the initial data
given on x = z( as in (2.14) and the boundary conditions (2.9) -(2.11) in [z¢, 2o + %] can be
obtained by use of the characteristics method. Therefore, by Lemma, 3.3, we can get the smaller
initial data of w on %, then the solution can be extended continuously to the whole domain.
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