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Abstract

In this paper, the problem on formation and construction of a shock wave for three dimensional
compressible Euler equations with the small perturbed spherical initial data is studied. If the
given smooth initial data satisfies certain nondegenerate condition, then from the results in
[20], we know that there exists a unique blowup point at the blowup time such that the first
order derivatives of smooth solution blow up meanwhile the solution itself is still continuous
at the blowup point. From the blowup point, we construct a weak entropy solution which is
not uniformly Lipschitz continuous on two sides of shock curve, moreover the strength of the
constructed shock is zero at the blowup point and then gradually increases. Additionally, some
detailed and precise estimates on the solution are obtained in the neighbourhood of the blowup
point.
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61. Introduction

In this paper, we are concerned with the development of singularities of solution to the follow-
ing three dimensional isentropic compressible Euler equations with the smooth spherical initial
data :

Op + div(pu) = 0

O¢(pu) + div(pu @ u+ pI) =0

0y (pe + 5pu®) + div((pe + 5pu” +p)u) =0
plt=0 = P+ £po(x), ult=0 = eug(z), Slt=0 = S

(1.1)

where u = (u1,usz,us) is the velocity, p the density, p the pressure, e the internal energy, I the
3 X 3 unit matrix, and S the specific entropy. Moreover, the pressure function p = p(p,S) and
the internal energy function e = e(p, S) are smooth on their arguments, in particular, d,p(p, S)
and Odse(p, S) > 0 for p > 0. With respect to the initial data in (1.1), p > 0 and S are constants,
e > 0 is a sufficiently small parameter, po(z),uo(z) € C*°(R?) and have compact supports in
the ball B(0,M). In what follows, we assume that ug(z) = wo(z)z, where wo(x) is a smooth
function in R3, and wo(z), po(z) depend only on r, r = \/z? + 2% + z2.

Under the above assumptions, by the results in [1] or [2], we know that the lifespan 7. of
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smooth solution to (1.1) satisfies:

2c

limelnT, =1 = — (1.2)

=0 (¢ (p, S) + ¢) min [¢29,wo(g) + 3quwo(q) +

lq|<M (q0qpo(q) + po(q))]

ol

where c(p,S) = 1/0,p(p,S), ¢ = ¢(p,S), moreover 7y > 0 as long as py(z) # 0 or ug(z) # 0.
Therefore, (1.2) implies that the nontrivial smooth solution of (1.1) must blow up in finite time.
To better understand the physical process of development of singularities from smooth flow and
the evolution of singularities starting from the blowup point, we are motivated to give a precise
description on the estimates of solution and its derivatives in the neighbourhood of the blowup
point.

Now we briefly mention some remarkable works on the hyperbolic conservation laws in one
space dimension, maybe this will be helpful to understand our motivation better in this paper.
With respect to the global existence and uniqueness of weak solution with the small value in the
BV spaces for 1-D hyperbolic conservation laws (not contain the source terms), many important
literatures have treated this problem and make the great success(see [3-7] and the references
therein), for instance, the results in [5] and [7] yield the uniqueness, continuous dependence and
global stability of weak, entropy-admissible solutions of the Cauchy problem for general n x n
systems of conservation laws with small initial data. For the system (1.1), if it has a spherical
structure, then by use of the polar coordinate transformation, one can change it into a 3 x 3
conservation law with the source terms which contain the singularities on » = 0. Because of the
appearance of the singular source terms, many essential difficulties can be met when one wants
to study the global existence and the uniqueness of weak solution. It seems that the problem on
the global existence of spherical weak entropy solution to (1.1) is still open. Here we should point
out that if the system (1.1) does not contain the third equation on the entropy, the authors in
8] have proved the global existence of weak entropy solution for p(p) = Ap” (1 <y < 2) outside
a core with the center at the origin. Anyway, whether the global weak solution exists or not,
the all above results don’t give the detailed properties of solution near the blowup point when
the classical solution breaks down. Corresponding to the understanding of physical process, an
interesting problem is to give a clear picture on the appearance of singularities starting from the
blowup point, particularly, the singularity with the type of shock.

As in [9], the above problem is still called as formation and construction of shock. For the
scalar equation, this problem has been completely solved early(see [10-12] and so on). It is well
known that in this case the formation of shock is caused by the squeeze of characteristics. For
2 x 2 p-system of gas dynamics the same fact is also true (see [13-14]) under the nondegenerate
conditions on the initial data or the blowup point. One of the basic ideas in [13] and [14] is
to introduce the Riemann invariants so that the p-system can be diagonalized and subsequently
analyze the singularity property of blowup point as in 1-D scalar equation.

For the n x n (n > 3) quasilinear strictly hyperbolic system in one space dimension with
the small initial data, if it is genuinely nonlinear with respect to a characteristic family and the
given smooth initial data satisfy the nondegenerate condition, then it is well known that the
corresponding smooth solution blows up at only one point at the blowup time(see [15-18]). Near
the blowup point, in [9] we have constructed a weak entropy solution. In contrast to the case
of 2 x 2 p-system in [13] and [14], where the existence of Riemann invariants play the crucial
role, one of the new ideas in [9] is to find a new transformation such that the solution is more
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singular along one direction than other directions for the n x n (n > 3) hyperbolic conservation
law, which generally can not be diagonalized by the Riemann invariants. By use of this new form
of n x n hyperbolic system and S.Alinhac’s result on the analysis of blowup system (see [18]), in
[9] we complete the construction of a shock starting from the blowup point through the delicate
analysis.

A natural problem is: If only the first order derivatives of smooth solution to 1-D conservation
law system with the source terms blow up meanwhile the solution itself is bounded, will the shock
starting from the blowup point be formed and propagated as in [9] and [13-14]? In particular, for
1-D compressible isentropic Euler equations, [9] has shown that the new shock will be formed and
propagated from the blowup point, does the similar phenomena happen for the multidimensional
system (1.1) with the spherical structure? For the latter question, we will give an affirmative
answer in this paper. To prove our conclusion, as in [9] and [13], one of the main difficulties
is that the derivatives of solution blow up with the ratio of 7~ and are not integrable with
respect to the space variable or the time variable although the solut10n itself is bounded, so here
problem is different from the usual Riemann problem on the hyperbolic conservation laws because
the usual Riemann problem generally has the discontinuous and piecewise smooth initial data.
However, comparing with the methods in [9], we find that some new ingredients are needed. The
first one is that we need a result on the extension of solution across the blowup time so that we
can analyze the blowup mechanism of smooth solution at the blowup point and give the detailed
descriptions on the derivatives of solution. More precisely, we will show that the 3-shock will
be formed from the blowup point. The second one is that we need to give a more complicated
computation induced by the appearance of source terms in order to prove the convergence of
iterative scheme when the shock is constructed, particularly, we should note that the constructed
approximate solution sequence is not uniformly Lipschitzian in the corresponding domain.

Our paper is organized as follows. In §2, we firstly prove that the solution of (1.1) blows up
with respect to the third eigenvalue, moreover there only exists a unique blowup point under the
nondegenerate assumption on the initial data. Secondly, we transform the system (1.1) to a new
form and give a precise description of result on the formation and construction of a shock. In §3,
by constructing an iterative sequence of approximate solutions near the blowup point, we prove
the existence of solution with a shock starting from the blowup point.

§2. Analysis on the blowup mechanism of (1.1) and main theorem

Now we study the blowup mechanism of smooth solution to (1.1) and extend the solution of
(1.1) across the blowup time meanwhile we will distinguish along which direction the first order
derivatives of p and « will blow up.

Let’s give a reduction on the system (1.1). Firstly, it is easy to know that (1.1) is actually
equivalent to the following system for the smooth solution:

Op + div(pu) =0

Osu + uVu + vp =

0:S +uVS = 0

pli=o =+ po(r), uli=0 = ewo(r)z, S|i=o = S

(2.1)

where V denotes (0z,, 0z, , Oz )-



Here we emphasize that the system (1.1) and (2.1) are not equivalent for the weak solution.
When the smooth solution of (1.1) blows up and the shock wave is formed, then across the shock
the entropy S will become a function of (¢, z) other than a constant.

Noting the initial velocity in (2.1) is irrotational, then the smooth solution to (2.1) has such
a form in t < T.: p(t,z) = p(t,7), u(t,r) = Vw(t,r) and S(t,z) = S, where w(t,r) is a potential
function of velocity.

From the second equation in (2.1), we get

8ti+V(%|Vw|2) = —Vh(p) (2.2)

where h'(p) = @, h(p) = 0. Hence dyw + 1|Vw|? = —h(p).
Notice h/(p) > 0 for p > 0, then by the implicit function theorem we know that

p=hH (@ + 5 VwP), p = h7H(0) (2.3)

Substituting (2.3) into the first equation in (2.1) and noting the variance of initial data, we have

Pw — A(h™ (= (0w + 3|Vw|?)),5)Aw + ZZ OkwO Opw + Z DiwOpwdZw = 0
k=1 i,k=1

. (2.4)
w(0,7) =€ [, swo(s)ds
Ayw(0,7) = —sipo(r) +e2g(r,€)

where g(r,€) = — [ 1o & (S22) |,y 0e po(s) @000 (5) 0o (5)ds — L2 (wo(r))>.

For the convenience to be written, without loss of generality we assume ¢ = 1 in this paper.

According to the results in [2] and [20], we know that the solution of (2.4) only blows up for
t < T. in the domain D = {(t,r) : et <t < T.,—4M < r—t < M}, which is near the surface of
forward light cone (in fact, the blowup point lies in ¢ = 7%.). In light of the standard process to
dispose the problem on the nonlinear wave equations with small initial data, as in [16] or [21-22],
we introduce the normal transformation o = r — ¢t and the slow time variable 7 = elnt to rewrite
the equation (2.4). Denoting by w(t,r) = £G(7,0), then a direct computation yields an equation
on G in the domain D

92 G+ p(G,VG)I2G + ce 7 q(G,VG)I?G + e 7r(G,VG) = 0 (2.5)
where
_ A (p,S) — (1 = 9w)?)
PG VG) = 2e(1 — Orw)
= (1+p¢(p,9))0,G + e < 0(0,¢™%,G, Vo . G)
1

1 - T
= 5 +e 7 0(0,67%,G, Vo)

r(GQ,VG _ 1 0,G —2(0,3)*) +e 0(0,e"%,G,Vy,.G
2 b
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Here the notation “O(0,e™ %, G, V, . G)" denotes the generic smooth function on its arguments.
To study the blowup mechanism of solution to (2.5), as in [19] and [20], we introduce a
transformation:

T=T1,0=p(T,Yy) (2.6)

which is only singular at the blowup point. Of course, this kind of function ¢(7,y) is unknown
and will be determined together with the solution G of (2.5). Writing G(7, p(1,y)) = m(7,y),
(0,G) (7, p(1,y)) = v(7,y). Then (2.5) is reformulated as follows

Oyv
—ILL+1,=0 2.7
ay(P 1 ( )

where
Hc(p, ) = (50rp — Bw +1)?)
2¢(1 — Oyw)
= 20,0 —2(1+pc(p, S))v+ e~ Fqu(e™ %, 0, m,v,0,0,0,m)

i
€

I =

I, = —-20,v+ e_§q2(6 » My v, Orp, Orm, 07 v, 872—‘707 aqz—m)
here the functions ¢;(i = 1,2) are smooth.

By the definition of blowup system corresponding to the quasilinear wave equation in [19], the
blowup system of (2.5) is defined as

=01, = 0,15 = ym — vd, = 0
{ 1 2 3 = 0ym —vdyp (2.8)

o(%,y) =y, m(F,y) = G(3,y),v(3,y) = (0,G)(F,v)

Obviously, if (2.8) is solved in the class of smooth functions, then (2.5) is also solved in the domain
where the transformation (2.6) is inverse. In particular, when the function ¢(7,y) satisfies the
following nondegenerate properties at some point (7. = elnT%,y.):

8y30(7-€7y5) = 0,85(,0(7'5,%) = 078280(757%) > 07857—()0(7—57y5) < O

and the function v has the property d,v(7.,y.) # 0, then one can get a complete description on
the blowup mechanism of smooth solution to (2.4) at the blowup point (T.,7r. = T: + ©(7c,Ye))-
Indeed, a simple computation implies that the solution w(t,r) and its first order derivatives are
continuous at the blowup point meanwhile the second order derivatives of w(¢,r) blow up with
the ratio of ﬁ Furthermore, we can give an extension property of solution to (2.8).

Lemma 2.1. In the domain D = {(r,y) : 2 < 7 < 279, —4M < y < M}, the blowup system
(2.8) has a smooth solution (¢, m,v) for small €, moreover [p|ck(py + [m|ck (py + [vler(p) < Ck,
here k € N and C}, is a constant independent of e. Particularly, if the function F(q) = ¢20,wo(q)+
3qwo(q) + %(qﬁqpo(q) + po(q)) satisfies the nondegenerate condition at a unique minimum point,
that is, F'(¢) has a unique strictly negative quadratic minimum point, then in the subdomain
Dy = {(1,y) : 27T, 4M <y < M} of D we have

ay@(Tu y) Z 0
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moreover there exists a unique point (7., y.) such that
Oyp(T,y) =0 & (1,y) = (Taaya)aas‘vo(TEa?JE) = 0783‘70(7&%) > 0,3;790(&,3/6) <0

and 0yv(7e,y:) # 0.

Remark 2.1. By (1.2), we know that 7. actually satisfies lir% Te = 2
e—

 (pe'(5,5)+1) min F(g)’

Hence the action of F'(¢) is very silimar to that of initial data for Burger’s equation.

Proof. The proof has been given in Theorem 2 of [20], so we omit it.

Based on Lemma 2.1, we can determine the blowup direction of (p,u,S) and construct a
3-shock starting from the blowup point (7.,7. = T. + ¢©(7:,y:)). Motivated by the physical
background we set u(t,z) = u(t,r)%. From the system (1.1), we can get a conservation law
system on (p(t,7),u(t,r),S(¢,r)) with the source terms

Qip + O, (pi) = — 22

r

Oh(pit) + 0, (pi? + p) = — 200" (2.9)
9 (pe + 5p0%) + 0, ((pe + 5pu® + p)a) = —2(pe + 5pu* + p)a
),

p(0,7) = p+epo(r),@(0,7) = cwy(r), S(0,r) = §

Here we should notice that the blowup point of (1.1) is far away from r = 0 and the new shock
will be constructed in the domain near the blowup point, hence the factor % is not singular in
our study.

A simple computation yields that (2.9) has three distinct eigenvalues A\;(¢,7) = @ — ¢(p, S),
A2(t,7) = @ and A3(t,r) = @+ ¢(p, S). The corresponding left eigenvectors are I; = (1, —m,
0), I3 = (0,0,1) and I3 = (1, m,O) respectively. Now we give a detailed information on the
blowup direction of (p, @, S) at the blowup point.

P
Lemma 2.2. Under the nondegenerate condition on F'(g) in Lemma 2.1, then 30, | @
S
P P
blows up at the blowup point (7%, r.) meanwhile /10, | @ | and l50, | @ | are still continuous
S S
and bounded. B
Proof. By (2.3) and u = Vw, S = S for t < T¢, we can get
P p 1
l30. | o | = —(Pw — ———= (0w + 0,ww))
S C(p, S) C(p, S)
Noting w = £G/(elnt,r —t), then one has
Lo, | =P {[1+ ! * _@,6-Yea- —_o2 G}
30r U = a N o A o T o\ JoT
S T‘C(p, S) C(p, S) TC(,O, S) r tC(p, S)

+ ha(e,mt, G, 0,G, 0. G)



Where h; is a smooth function on its arguments.

Additionally,
9 Oyv
(9:6)(rp(r.9)) = 0, — v0:. (22C) (. (1) = 522,
Y
2 Oyv
(80'TG)(T7(P(T7y)) = aT'U -5 0@ (210)
Iy
then
T 1 [ S PO L 1
g e, e, S)  re(p, S v te(p,§) T Oy
+ hi(e,r, t,m, v, 0-p, drm, dyv)
where l~11 is smooth.
Since I; = 0 yields
S)y—1t t
0 S =Dt m,
€ r r
Hence
Lo, [ o | = 222w
o S a rc(p,S’) Oy '
P
Then by Lemma 2.1, we know that I30, | @ | blows up at the point (7%, 7).
S
Similarly, by a direct computation we have
1,0 g SR L ¢ (v—ﬂ)+ ¢ a<pay”
T g ] rep,S) c(p,S) re(p.S) v te(p,S) ]9,

+ ha(e,r,t,m,v,0: @, 0rm, 0;v)
= hs (r,t,m,v, 0rp, 0rm, Oy v)

P
ol a ] =0
S

where hy and 7L2 are smooth.

Therefore Lemma 2.2 is proved.

Now we give a reduction on (2.9) so that each equation in new system only contains the
differentiation along the same direction. This reduction will bring us much convenience in order
to obtain the convergence of iterative scheme in the process of shock construction.
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Lemma 2.3. The system (2.9) can be reduced to the following form by an invertible transform
in the neighborhood of (p,0, S):

{ e A(w)_aTw =2 (2.11)
w(0,1) = ew(r, €)
M(w) a() 0 by ()
here A(w) = 0 Ao (w) 0 and a(0) = 0, B(w) = 0 is a smooth vector
0 —a(w) As(w) b3 (w)

function. Moreover (2.11) can be rewritten as
8tw1 + )\1(’111)8,«’101 + Fz(w) (8tw2 + )\1 (w)@rwz) =
Orwo + )\2(11))(97«11)2 =0 (212)
Byws + A3 (w)dpws — a(w)(Bpws + A3 (w)dywy) = L)

where a(w) and b;(w) (i = 1,2) are smooth, moreover, a(0) = b;(0) = 0.
Proof. As in 2 x 2 system, we introduce the Riemann invariants as follows

Oélzﬁ—F(p,S)
ay =98-S (2.13)
as =u+ F(p,S)

where 0,F (p, S) = @ and F(p,S) = 0.

Obviously, (2.13) is invertible as long as p > 0(in our discussion, p is only a small perturbation
of p, hence p > 0 is fulfilled).

Under the transformation (2.13), a direct computation from (2.9) yields

) ~
Oy + A\ 0rag + q(p, S)@Taz = _2% + zucsqp,s)
(9,50(2 + )\287«042 =0

242 2ic(p,S)

8t043 + )\18,«043 + q(p, S)@Taz = == —

r r

where q(p, §) = 2222 — ¢(p, $)9sF (p, ).
By a linear transformation as follows

wy = a1 — q(p, S)az
W = Qg (214)

w3 = az + q(p, S)

then one can get

([ duwr + A1 (w)drwr + a(w)Orws = —# + M
Orwa + Az (w)Orwy =0
Oyw3 + A3(w)Orwz — a(w)orwz = —¥ — M
w1(0,7) = cwy(r) — F(p+epo(r),S),w2(0,7) =0
(L w3(0,7) = cwp(r) + Fg(gﬁ+ epo(r), S)



where a(w) = —q(p, S)c(p, S) + q(p, S). .

Obviously, (2.13) and (2.14) transform the point (p,u, S) = (p,0,S) to the point (wq,ws, ws)
= (0,0,0). Moreover a(0) = 0.

In addition, by a simple algebraic computation, (2.12) comes from (2.11) directly, hence
Lemma 2.3 is proved.

By Lemma 2.2, it is easy to know that 0,ws blows up at the blowup point (7%, r.), meanwhile
Orwy and O,ws are continuous at (7:,r.). Hence we expect that a 3-shock will be formed and
constructed from the blowup point. Our result can be stated as

Theorem 2.1. For the system (2.9), suppose that F'(q) satisfies the nondegenerate condition
at a unique point, then for small € (2.11) admits a weak entropy solution with a continuously
differentiable shock curve I': r = ¢(t) starting from the blowup point (T%,r.) in [T.,7: + 1].
In [T.,T. + 1] x R\I', the solution w is also continuously differentiable. Besides the solution w
satisfies the Rankine-Hugoniot condition and entropy condition on I and the following estimates
hold in the neighbourhood Q of (T%,r.):

¢(t) >‘3(T€77”8)( 8)+O((t_TE)2)

wi(Te,e) + O((t = To)? + (r — 1o — Mg (T2, 1) (E — T2))2)
O((t—T.)* + (r —re — Aa(Te, 1) (£ — T2))2)3
(T

w3 (t,r) = w3 (Te,r.) + O((t = T)3 + (r —re — A3(T.,re)(t — T2))?)6

Therefore, returning to the system (2.9) we have near (7.,r.):

[

( ) ((t_Te)3+(r_T6 _)\3(T67T6))(t_T6))2) )
t,?“) :ﬂ( ) ((t_TE)B_*_(Ir_TE_)\3(T67T6))(t_T6))2) )
S(t,r) =5+ O((t — TP+ (r = e = Ag(T,re)) (E = T2))?) 3

=

here “O" stands for a uniformly bounded quantity independent of e.

Remark 2.2. Some weaker singularities of the solution of (2.9) may propagate into the
domain [T%, T + 1] x R along the 1-characteristics and 2-characteristics through (7%, r.) although
the solution itself is continuous there.

Remark 2.3. By [2] and [20], under the assumptions of Theorem 2.1 we know that the solution
of (1.1) or (2.9) doesn’t blow up away from the small neighbourhood of r. for ¢t € [T.,T. + 1].
Hence in order to complete the construction of shock wave in ¢ € [T.,T. + 1], we only study that
problem in the neighbourhood 2 of (T%,r.), here Q = {(t,7) : T. <t < T.+1,7. —2(T.+1—-t) <
r<r.+2(T-+1—1)}.

Remark 2.4. For 2-D compressible Euler equations (1.1) with the axisymmetric initial data,
which satisfies the nondegenerate condition, by the same method in this paper we can obtain a
similar conclusion as in Theorem 2.1.

Remark 2.5. From the proof of Theorem 2.1 below, we can extend our result in the time
interval [T, T. + é], where A > 0 is an appropriate constant depending on the initial data of

(1.1).

63. The proof of Theorem 2.1
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As remarked in the last section we only need to do analysis in the neighbourhood Q of (7%,r.).
The solution w of (2.11) in ¢ > T, will be constructed by an iterative procedure. To this aim, we
will construct a sequence of approximate solutions {w()(t,7)} and a corresponding sequence
{¢™ ()} standing for the location of the approximate shock, and show the convergence of
these sequences. Here we choose the solution of blowup system (2.8) as the first approxima-
tion w(® (¢,r), while ¢(°)(¢) is determined by an ordinary differential equation, which is derived
from the Rankine-Huginiot conditions. The advantage of this choice is that we can get a piece-
wise continuous solution of (2.11) which satisfies the entropy condition on $¢(°)(¢) and a “good”
estimate near the point (7.,7.). Subsequently the whole sequence {w(™(t,r)} can be succes-
sively determined by the characteristics method, and {¢()(#)} can be determined by the R-H
conditions correspondingly.

This section is arranged as follows: In Step 1, we give a first approximation of system (2.11)
and some precise descriptions of the approximation as a preparation for further discussion. In
Step 2, we will give an iterative scheme to construct the sequence {w(™ (¢,r)} of approximate
solutions, and establish the estimates on {w(™}, {0;w(™} and {9,w™}. Step 3 is devoted to the
proof on the convergence of all these sequences.

Step 1. First Approximation

Denoting by H(t,y) = t + ¢(elnt,y), then by Lemma 2.1, we know that H(t,y) satisfies the
following properties

ayH(tv y) =0 (ta y) = (Tea ye)a 8§H(Tea ya) =0, BSH(TH ye) >0, a;tH(TEa ye) <0 (3'1)
More precisely, by a similar treatment in [9] and [13], we can show the following two lemmas
which describe some subtle properties of H(t,y).

Lemma 3.1. 1) For t € (T.,T. + 1] and in the small neighbourhood of y., d,H(t,y) =0
has two distinct real function roots 7% (¢) and 77 (), moreover n% () < y. < n°(t) and 7= (¢),
7 (t) € (T, Te + 1].

2) Set r= (t) = H(t,n°(t)) and 3 (t) = H(t,n%.(t)), then

r = H(t,y) has three distinct real roots y° (¢,7) < yz(t,7) <y (t,r) if r € (ri.(t),re (t)).

r = H(t,y) has a unique real root y3 (t,r) if r > rZ (t).

= H(t,y) has a unique real root y° (¢,r) if » < r% (2).

3) Denote Q4 = {(t,r) € Q:T. <t <T. +1,r >ri(t)} and Q_ = {(t,r) € Q: T. <t <
T. 4+ 1,7 <712 (t)}, then y5 (t,7) € C>*° () and y5 (t,7) € C(Qy).

Lemma 3.2. Denoting d. = (t — T.)3 + (r —r. — X\3(T%,r.)(t — T.))?, then

lye(t,r) —ye| < Cde,|0,y%(t,r)| < Cde®
100y (t,7)] < CdZ P, |25 (,7)| < Cd®

where / is the direction of third characteristics passing (7%,7), and the generic constant C is
independent of €.
Based on Lemma 3.1 and Lemma 2.1, we can get two extensions of solution of (2.11) across
the blowup time 7.
10



In fact, we denote by p*(t,y) = p(t, H(t,y)) and u*(t,y) = a(t, H(t,y)), then by use of the
definitions of G(7,0), m(7,y), and v(7,y) they are defined as follows

{ p*(t,y) = h=(g(t,y))

* 5 m(eln (32)
u(t,y) = gy (v(elnt,y) — Zrre)

where g¢(t, e, ){v(slnt,y) - %[(%m(elnt,y) — v(elnt,y)0-p(elnt,y) — m(v(slnt,y)

H(ty)

From (

H/—/

y) =
_ m(elnt,y) \2 :|
2.13

), (2.14) and (3.2), we can define two vector value functions w (t,r) = (w9 4 (t,7),
w) 4 (t, 7“) 9.+t 7“)) as follows

w(l),:t(tvr) =u" (tvyzgl: (t,?“)) - F(IO* (t,yi(t,?‘)), S')
w8 (t,r) =0 (3.3)
wg o (t,r) = u*(t,yL(t, 7)) + Fp*(t,y%(t, 7)), S)

Note that wl (¢,r) are the smooth solutions of (2.11) in 4 respectively. Therefore, they both
are the extension solutions of (2.11).

Now we begin to define the first approximate shock curve ¢°(t) starting from the point (7., 7.).
Since we have chosen the entropy S = S, then we hope that ¢°(#) can be determined by the
corresponding Rankine- Hugoniot conditions for the first two equations in (2.9), that is,

{ [p1(4°(2))" = [pii] i (3.4)
[pt](¢°(t))" = [pu® + p(p, S)] '
Hence ¢°(t) should satisfy an ordinary differential equation as follows
{ d¢;t(t) = 5‘3(ta ¢0(t)) (35)
¢°(1x) =

where

1 o _,,0 o _,,0
Rs(t,r) = {/ AOG(E Tt §) 4 (1 - )G (1= §))d
0

0 0 0 0 24 3 0 0 0 0
(o gy —wy o —wy )7 ® LWyt Wy WL WS
48 4

and G(%:5%,5) is the inverse function of p in the transform (2.13) and (2.14) for the case of
S=2_.

As in [9] Lemma3.2, we have

Lemma 3.3. The equation (3.5) has a solution ¢°(t) € C*°[I.,T. +1], moreover ¢°(t) satisfies

r(t) < ¢°(t) < r°.(t), and

(1) = 1o + A3 (To,re)(t —T2) + O((t — T2)?),t € [Te, T, + 1]
11



Here the notation “O” still represents a generic quantity independent of «.
Define the function

wd (t,r) = { wie(br)r > 9 0
U Ll (), < @0(t) i=1,2

)

wg(t,r) =0

in . Obviously, w°(¢, ) is the solution of (2.11) in Q4 respectively. But it isn’t a weak solution
of (2.11) because it doesn’t satisfy the Rankine-Hugoniot condition along the curve v: r = ¢°(¢).
We will use an iterative scheme to construct the shock starting from the point (7%,r.) for the
system (2.11) through modifying the location of curve 7 as well as the solution on both sides of .
In the process of forthcoming iteration, (w’(t,r), #°(¢)) will be chosen as the first approximation
of iterative scheme. For the further requirements, now we give two lemmas on w®(t,r).

Lemma 3.4. In the domain Q\7, we have

1) wi(t,r) satisfies the estimates:

(3.6)
|0ywy (t,7)| < Ced: ®
020, 7)| < CedZ ®
2) wY(t,r) satisfies the estimates:
wi(t,r) —wi(le,r:)| < €§
wi(t,r) — wi(Te,re)| < Ced

|0,wl(t,r)| < Ce
_1
102w (t,7)| < Ced, ®
Proof. It is enough to prove the lemma in the domain €.
For the simplicity to write, from (2.13) and (2.14) we denote by wj (t,y) = u*(t,y) — F(p*(,v),

§) and wj(t,y) = u*(t,y) + F(p*(t,y), 5). Then w® (t,r) = w}(t,y4(t,r)) for i = 1,3,
1) Thanks to the existence and regularity in Lemma 2.1, one has

wy(t,r) — w3 (Te,re) = wi(t,y5 (¢,7)) — w3 (T, ye)
= w3 (Lo, ye ) (t = Te) + Oywy (Te, ye) (Y3 (8 7) — ye) + O(e(t — To)? + ey (t,7) — y:)?)
Ogws (t, 1) = pwi (t, % (t,7)) + Oywi (t, 4% (t,7))Deys (t,7)
Orwg(t,r) = Oyws (L, y3 (t,1) Oy (t,7)
Ofws(t,r) = Ogwi(t,y% (t,7)) Oy (t,1))* + Oywi (8, 45 (t,7) 07 y5 (¢, 7)

Hence (3.6) follows from Lemma 2.1 and Lemma 3.2.
12



2) Firstly we claim that
Oywi (Tz,y:) =0 (3.8)

In fact, by a direct computation from (3.2) one has

u*  em € Oym

Oyu* (t,y) = OyH(— i _H3) + E(ﬁyv e )
. p*
ty) = ——
8Z/p ( Jy) Cz(p*,S) 82/9

and 9,¢(t,y) = O H{ Lt sm (-5 -G -5+ 5{0v— (0], m—0yvd.p —vd. @) —

7 (v —5)(0yv — }
Since 0y H (T, y.) = 0,0y¢(7:,y:) = 0 and 9ym(7.,y:) = 0, then

8wa(TanE) = (I+II)

19
H(T.,y.)

where

9]
- Tee(p*(Teyye), S

_ 8yv(7_67y6) c a
11 = 40(,()*(T5,y5)75)( (P ( E7y5) S)

Taking the first order derivative on 7 on two sides of I3 = 0 in (2.8), and using the property of
9y(7:,y:) = 0, one has

)(a (T, Ye) — U(Taaya)ag%r@('raays))

c m(T57y6) )
mw(h,ya) - m) — i Tcp(TE,yE)>

8§Tm(7_67y6) - U(Taaya)agT(p(Tane) =0

that is, I = 0.
Additionally, Iy = 0 in (2.8) implies
€ G € m(Tea ye)
—0, JYe) = T:,y:),5) —1 ;
11‘E ()0(7-5 yE) C(p ( € yE) ) + H(Tg,yg)( ( € yE) H(Teaye))
This leads to 1T = 0. Hence (3.8) is proved.
Secondly, we claim that
8211}1‘ (Tsuys) =0 (39)

Indeed, by use of 0, H (1%, y.) = 82 H(T:,y.) = 0and 0y¢(7.,y:) = Oyw(Te,y:) = agm(TE,yE) =0,

we have .

82 * ey Ye) =
(T2 ve) H(T.,y.)

O2v(72,ye)
Using I; = 0 and I3 = 0 again in (2.8), one has

e2c2(p* (1., y:), S)

9y9(T:,y:) = H2(T., y.) (8?;”(76’96))2
2 _ EC(p (Taaya)as) 2 28 C( ( ana) S)p (Taaya)
8 9(T:,y:) = H(T.,y.) 8yv(7_67y6) + H2(T, yo)e(p (Tz, yo), S) (8 U(Teaye))

13



Hence

929(T:,ye)

T.,y:)
(@ (" (12,50, )

yg(Tsaya))z -

* 8 C TE, e
Rwi(Te,ye) = Oou* (T-,y:) + =4 (0" (Te, e ), ))p

{
Hp* (L2 2), 5)

=0

Now we start to prove (3.7).
Since (3.8), (3.9) and Taylor’s formula yield

Oywi (t,y5 (t,7)) = Ogywi (Tz,ye ) (t — Te) + O(e(t — T2)* + e(yi. () — ye)?)
32w1(t y3(t,r)) = atazwl( Teyye) (t = T2) + Oywy (Te, ye) (95 (8 7) — ve)
(8( Ts) + €(y+(t,7”) - ya) )

then by Lemma 2.1 and Lemma 3.2 one has

10, (45 ()| < Ced? , 02w (1,5 (t,7))| < Ced? (3.10)
Additionally,

wy (t, T)_wo(T!:‘?TE):atwl( Teoye)(t = Te) + Oywi (Te,ye ) (5 (8 7) — ye) + O(e(t — 1)+
+e(t—To)(y5 (8 7) —ye)? +e(yi(t,r) — ye)®)
yw? (t,r) = Owi(t,yL(t, 1)) + Oywi (¢, y5(t, 7))y (t,7)
Orwi (t,r) = Oywi(t,y5 (t,7)) 0y (t,7)
t

) 1
Ofwy (t,r) = Oywi (t,y% (t, 1)) (O3 (t,1)® + Oywi (¢, y5 () 07y5. (4, )

Combine this with (3.10) and Lemma 3.2, we show that (3.7) holds.
Denoting the jump of w(¢,z) on v by [w?], which equals w? (¢, ¢°(t) + 0) — w (¢, #°(¢) — 0),
we have
Lemma 3.5. The jump of w) (i = 1, 3) satisfies the estimates
[w2)] < Coe(t = T2)*, |[wg]] < Coelt — T2)%,
Proof. By using the estimates of ¢°(¢) on v, we have d. = (t—T.)>+ (¢°(t) —re — X3(T., 7)) (t—
T.))? ~ (t — T.)®. Therefore Lemma 3.4 1) implies

[w§]] < [w§ (2, @°(t) + 0) — w (Te, )| + [w§(t, ¢°(£) — 0) — w§(TL, 7.)| < Coe(t - T0)*

Now we show Lemma 3.5 holds for [w?].

Since w{ (t,r)—w) (T, r.) = Opwi (Te,y-)(t—T:)+O(
in Qy and wl(¢,r) — w(T:,r.) = Opwi (T, y-)(t — T-
e(y= —ye)®) in Q_, then [[w}]] = Jwi (¢, ¢(t) + 0) — wh
0(ed?)| < Coe(t — T.)3.

e(t—T.)%+ ( T.) (v —y=)*+e(y:—y:)°)
) +O(e(t = To)? +e(t — To)(y= — y-)* +
(Tz,re) — {wi(t, p(t) — 0) —w (T, 7o) }| =

14



Step 2. Iterative Scheme

Next we are going to improve the approximation sequence successively. Denote the unknown
shock curve by r = ¢(t). Then the slope of shock o(t) = ¢'(¢) must satisfy the Rankine-Hugoniot
conditions:

olp] = [pu]
olpii] = [pi® + P(p, S)] (3.11)
alpe(p, S) + 3pa%] = [(pe(p, S) + 3pa* + P(p, S))d]

and the entropy condition for 3-shock.
In light of the transform in (2.13) and (2.14), if we denote their inverse transform as (p, @, 5) =
(q(w), 23%2 S 4+ w,), then (3.11) is equivalent to the following conditions

alpr(w)] = [F1(w)] = 0
alp2(w)] — [Fa2(w)] = 0 (3.12)
alps(w)] = [F3(w)] =0

N

where py(w) = g(w), pa(w) = L2 p; (w), p3(w) = p1(w)(e(pr(w), S + wz) + §(24%2)?), and

(Fi(w), Fa(w), Fy(w)) = (pa(w), (“522)2p1 (w) + P(pr(w), § +ws), (e(pr(w), § +wp) + £ +

p .S
Plor():5502)) oo (w)).
The entropy condition for 3-shock can be written as

Aa(w_ (1)) < o(t) < As(wa (), Ao (w_(2)) < () (3.13)

here w4 (t) = (w1,+(t), wo,+(t), ws(t, £)) = (wi(t, #(t) £ 0), w2 (L, #(t) £ 0), w(t, #(t) £ 0)).

Now we claim that for small €, (wy,—(t),ws,—(t)) can be uniquely determined from (wy (%),
wa 4 (t), w3 +(t),0(t)) by two of three equalities in (3.12). This assertion is important because
by the entropy condition (3.13) we need the boundary value (wq,_(t),wz,—(t)) in order to solve
wy,—(t,r) and wy _(t,7) in the domain 2_.

Lemma 3.6 (w; _(t),wz _(t)) can be solved from the equations o[p; (w)] — [F1(w)] = 0 and
olpa(w)) — [Fa(w)] = 0.

Proof. By Lemma 2.3 and the assumption on ¢ = 1, we know that

(MWS)) 0)>_1 (M

8(11)1,’(1)2,11)3 a(1'017,('0271'03)

(0)) = diag{—1,0,1}

that is,
sy, ) (0 B0V (oo g
<m(0 _I> 5—5,21(0) 35;22(0) = —265)‘%1(0) _65)22(0)
s 500 —288(0) - 522 (0)

Additionally, a direct computation shows that
15



MIE\[\JIE\

9(p1,p2) _
a(wlp,wf,wg)(o) o

_8Sp(p7 S)
i 0
_g(e(ﬁa S) + :08 e(pa S)) ﬁase(ﬁa S) - aSp(ﬁa S)( (ﬁa S) + pa e ﬁ S
has the rank 2, hence by the implicit function theorem we know that (wq _(t),ws,—(t)) can
be determined by the two equalities o[p;(w)] — [F1(w)] = 0 and o[p2(w)] — [F2(w)] = 0.

Consequently, from Lemma 3.6, (3.12) is equivalent to:
]=0

Fy(w)] =0 (3.14)
(

where )3 is the third eigenvalue of matrix (f01(8piFj)(0p(w+(t)) + (1= 0)p(w_(t)))do)? =1, and
p(w(t)) = (pr(w (1)), p2(w (1)), p3(w=(1)))

Based on the above preparations we are going to construct the weak entropy solution of (2.11)
by using an approximate procedure. To avoid the difficulty caused by the unknown shock curve,

which may change its location in the process of iteration, we introduce a coordinate transform
to fix the shock on the t—axis:

{ z=r—¢(t)

(3.15)

Under the new coordinates, the blowup point becomes (7.,0) and the system (2.12) can be
changed into the following form:

By + (A1 — o(£)dwr + a(w)(Fpws + (M — o(£))Dyws) = L)

(t) z+¢(t)
Opws + (A2 — 0(t))d,ws = 0 (3.16)
(t)

Orws + (A3 — o(t))0, w3 — a(w)(Qrwa + (A3 — o(t))0,we) = zl;i(d>u()2)

w;i(t, 2)|t=r. = w; (Te,z+7r:),i=1,2,3

Denoting Q_ = {(t,2) : T. <t <T. +1,-2(T. +1—1t) <z <0} and Q4 = {(t,2) : T. <t <
T. 41,0 < z < 2(T. + 1 —t)}. Obviously, Q_ UQ, for small ¢ locates in the determinate region
of {(T.,z) : —K < z < K}. In order to construct the weak entropy solution of (2.11) in the
domain Q_ U (~2+ and prove Theorem 2.1, we take the following iterative scheme:

duwiH + (a(wl) — o™ ()i + a(wt) (Bews . + (Ma(wh) — o™(1)d.wh ;) = zbiszﬁg)
8twn+1 + o (w?) — 0™ (£))0, wg‘il —0
it + Oa(w}) — 0™ (0)0wh ! — a(wlh) (Grwh + + (Ns(wh) — 0™ (£)dwh 1) = Trgrns
i} 2 =r = w] (T, 24+ 70), wy Nty 2)|e=, =0,
(o wi (4 2)[e=r, = w L (T2, 2+ 70,
(3.17)
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and

(gl + Quwn) — 0™ ().l + a(w) (G- + (a(wl) — 0" (H) D) = Tk
Dyt + o) = o (1) 0wyt =0

0™ (t) = Xa(fy (9, F3) (Op(wt (1, 0+)) + (1 = ) p(w™ (£, 0-)))db)

wi ()=t = w) (T, 2 + 1) w3 2t 2)|e=1. = wl (Tt 2 +12),

[ w1 2)lamo = W] (8, 0-), wi T (E 2) oz = wi (2, 0-)
(3.18)
where wﬁtl (¢,0—) and w"+1(t 0—) are determined by the equalities:
n wn+l = [F ,wn-i—l
{ Un[Pl( n+1)] [F1( n+1)] (3.19)
0" [ps(w" )] = [F3(w" )]
Additionally, ¢" () = T- + [1, o™ (t)dt.
By the entropy condition (3 13) (3 17) and (3.18) can be solved by the characteristics method.
Since wg‘il = S, then (3.17) becomes
( n n n by (w?
it + (M (wh) — 0" (1) Dt = S
n n b3 (w
it + (As(wh) — o™ () Dyt = 2=k
Bttt + (g () — 0™ (1) 0w — a(w) Dyt + (s(w) — 0" (1) dw_) = 2L
\ wl ,+ (t Z)|t =T. — wl +(T67Z + TE) ngl_:l(t? Z)|t=Ts = wg,:l:(Tevz + 7”5),
(3.20)

For the requirements to estimate {w’ } and {0"(¢)} below, we need a relation between [w;](i =
1,2) and [ws3], that is

Lemma 3.7. There exist two smooth functions G;(wy 4 (t,04), ws 4 (t,0+), w3 _(¢,0—)) (1 =
1,2) such that

[wi] = Gi(wy 4 (£, 04), ws 4 (£, 04), ws._ (£, 0—))[ws],i = 1,2 (3.21)

Proof. The equality on [ws] is well known, since the change of entropy across a shock is a
small quantity of third order of the strength of the shock (for example, see [23] and [24]).
To prove the first equality (3.21), we can rewrite (3.12) as

o ] [wi][we]  [wi][ws]
=B | [wi][wa]  [w2]®  [w2][ws] (3.22)
[wi][ws]  [wa][ws]  [ws]?

here B = (b;;j(w_(t,0—),wy (t,0+)))3 j=1 18 a 3 X 3 smooth function matrix.
17



Since o(t) = Aa(w_(t,o—))Jngi(w_(t,o—))[wi]fz gy (w_ (£, 0 ), ws (¢, 04 ) [wi][w;] and
by Lemma 2.3 =t i,j=1

( 8(/)17027/03) >_1
a(1'0171'0271”3)

Ok, Fy, Fs) w_(t,0—)) — U[) O(p1,p2,p3)
w=w_(¢t,0—) 8(P17P27P3) 8(’101,102,’103)

w=w_(t,0—)
A(w_(t,0—)) —0o a(w_(t,0—)) 0
= 0 A2(w_(t,0-)) —o 0
0 —a(w_(t,0—))  Az(w—(¢t,0—-)) —0o

on two sides of (3.22) we can get

-1
then multiplying (%)
wW=w — (t,O—)

3 3
[wi] = > Qij(w_(,0-)[willws] + D Quji(w_(£,0=),wy (t,04))[w][w;)[wy]  (3.23)

i,j=1 1,5,k=1

here @Q;; and Q;jx are smooth.
Exchange the position of w_(¢,0—) and w4 (¢t,0+) in (3.23), one gets

3 3
[n] = = D Quj(ws (t,00)[willw] + Y Qiji(we(t,04), w (8, 0-))[wy[w;)[ws] ~ (3.24)

ij=1 ij,k=1

Summing up (3.23) and (3.24), we have

3
[wi] =Y Qiji(w—(t,0=),w (¢, 04))[wy][w;][wg]

ij,k=1

where Qijk are smooth.

Set [w1] = p[ws]?, and note that wy _(,0—) = wy (¢, 0+) — [w1], [wa] = Ga(wy +(t,0+),
w3+ (t,04), w3, (t,0—))[ws]?, then applying the implicit function theorem, one can obtain for
small [ws], p = G1(w1,4(t,04), ws 4 (t,04),ws, _(t,0—)), here the function G is smooth. Hence
Lemma 3.7 is proved.

Step 3. The estimates on {w"'(¢,2)} and {o"(t)}

In this section, we are going to give the estimates on {w’i** (¢, 2)} and {o™(¢)}. In the following
discussion, “N" represents a constant independent of n and e, which may be take different values
in different inequality.

Lemma 3.8. For small ¢, there exists a constant N > Cj independent of ¢, such that in Q_
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or Q+

w} € C'(Qx \ (T¢,0)) (3.25)
lwh 4 —w§ | < Ne(t —1T.) (3.26)
0 (w4 — w) 4)| < Ne((t = T0)* +2°)7% (3.27)
|0 (w] 4 — w§ )| < Ne((t—T.)% + 22) 7% (3.28)
jwiy —wd | < Ne(t —T.)%,i=1,2 (3.29)
|0, (why —w? )| < Ne(t —To)%,i=1,2, (3.30)
|8t(wi, —w?, )| < Ne(t —T.)%,i=1,2, (3.31)

7

hold for all n, here C is the constant appeared in Lemma 3.5.

Proof. Obviously, (3.25)-(3.31) hold for n = 0. Now we prove the conclusion by induction.
Assume these estimates are valid for n, we are going to prove they are still valid for n» + 1. The
proof is proceeded as the following six parts.

Part 1. The estimate of o™ (t)

If (3.25)-(3.31) are true, by using the expression of ™ (t) in (3.18) and the mean value theorem
we have

0" (t) — o ()] < Cne(t - Tv)

in [T.,T. + 1]. here Cy is a constant depending only on N.

Part 2. Estimates of wg‘il, w?f and w"il

We only give the estimate on w3+1 the estimates of others are completely similar or even
simpler, in particularly, wj ﬁ_l =8S.

Set v(t,z) = w?“ wy _, then v(t, z) satisfies the equation:

v+ (As(w™) —0™)dv = (As(w?) — Az(w™) + 0" — %), w§ _ + a(w ){d(wh _ —w) _)
+(Az(w?) — 0™)0, (wy _ — wg’_) — (A3(w?) = Az(w™) + 0™ — 00)8zw8,_}

— n — 63 w™ 63 w(i
+(@(w?) — a(w)) (Gl _ + (a(w?) — )0l ) + S — 2l

v(Te,z) =0

(3.32)
Noting

and

(0" (t) = o°(t))dt

3
P O BRSO R 1) RN PRI O) R 0))
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in view of the inductive hypothesis and @(0) = 0 and Lemma 3.4 we can use the characteristics
method to derive

t
fo(t, )] < aw™) (wh_ —wd )|+ Cst/ (1+ /5 —To)ds < Cxe(t— T2
T:

here and below Cy denotes a generic constant depending only on N. Hence for small £ (3.26)
holds.
Similarly, we can show
3
|wnJrl — w} +] < Cne(t—T:)2

Part 3. Estimates of w”Jrl and w”Jrl

It is enough to give the estimate on w”f_l. Set v(t,z) = w’f“ —w{ _, then v(t, z) satisfies the
equation:

v+ (Ar(w™) —0™)d,v = (A (w?) = Ay (w") + 0™ — 06°)d.w) _ — a(w™ ){d(w} _
—wj )+ (M(w) = 0™)0x(wh _ —wh ) — (A (w?) = Ady(w?) + 0" = 0%)0.w3 _}

- Bu(w™) by (w® (3.33)
—(a(wn) - a(w?)) (@, _ + (a(w?) = 0*)d.wd ) + sroh — P

(T, z) = 0,u(t, 2)|,=0 —w"+1(t 0—) —wf) _(t,0-)

Let £ = £(t, z,5) be the back characteristics of (3.33) through the point (¢, z) in the domain €_.
If the characteristics & = £(¢, z, s) intersects with z—axis, then similar to the estimate in Part
2, we have [v(t,2)| < Care?(t — T2)3. If the characteristics £ = £(¢, z, s) intersects with ¢—axis
at (s,0) with s > 7., then we have to estimate the value of w”“(t 0—). Firstly, by using the
inductive hypothesis and characteristics method we have

[o(t, 2)] < Jt (s,0-) = w) _(s,0-)] + Cne(t = T0)2 (3.34)
Secondly, by Lemma 3.7 we know
[wi™] = Gi(wih (s, 040), w3 (s, 04), wyt (s,0-) [wy ']° (3.35)
Since
wi T (s,0-) —w? _(5,0-)] < [P + [wiE (s,04+) — wd | (s,04)] + [[w?]|

and
[wi ™| < |wit(s,04) — wd 4 (s,04)] + [wi  (s,0—) — wy _(s,0-)] + [[wy]]

Hence by (3.34) and (3.35) and Part 2, one has for small ¢

nojeo
Njw

lu(t,z)| < Coe(t — T.)? + Cye2(t—T.)? < Ne(t—T.) (3.36)
Part 4. Estimates of |V(w§‘11 —wd )|
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Set v(t, z) = 0, (wg“+1 wy _), then v(t, z) satisfies the following equation

Opv + (As(w™) = 0™ (£)) 020 + 0= (A3 (w™))v = a(w ){0F, (w} _ — w5 )
+(As(w?) = 0™)0Z(wh _ —wj )} + (As(w?) = As(w?) — o™ + 0%)OZwh _}

+(As(w?) = Az(w™) + o™ — 00) 02w _ Z{ O A3) (w

— (O, As) (W) D,w? _}0,wl _ + Z{(awj- w™)yw” _ {0y (wh _ — w3 _)

+(>‘3(le) - O—n)aZ(wg,— - ’wg,_) - ()\3(’(1)0_) — )\3('(1)2) + o™ — JO)azwg,_} (337)

_((a S8 (W) 0w _ = (D, @) (w)Dzw?) ) (Opwd _ + (As(w?) — 0°)dwd _)}

+Z " ){0u; Az (W™ ) Dsw? 0w _ — By, Ag(w?)Dw? _0,w3 _}
b (wl) bs (w?)
+8z(z+¢n (t)) - 8z(z+¢0(t))
. v(T:,2)=0

Let £t = ¢nF1(¢, 2, 5) be the back characteristics of (3.37) through the point (¢, z), that is,
£+ satisfies the equation

{ et Ag(w’_‘(S,f”H)) —o"(s), T.<s<t

ds
€n+1|s:t =z

Similar to the treatments in lemma 8.1 and lemma 8.3 in [13] (the main reasons which we can
use the methods in [13] are: firstly, 0,,, A3(0) # 0 holds. Secondly, A3 and ¢ has a similar relation
as in [13] Lemma 3.1, see the formula (3.50) below. The two conditions are just only the keys to
prove Lemma 8.1 and Lemma 8.3 of [13] for the p-system of 2 x 2 gas dynamics), we can show
that there exists a constant C' independent of n and € such that

(s = To)* + (€™ 2 O((t - T2)* + 2%) (3.38)

and

|/ N (s, " Th)ds| < m?’ + Cpe/t =T, < % (3.39)

Combining the above inequalities with Lemma 3.4, b;(0) = 0 and inductive hypothesis, and
integrating (3.37) we have

[o(t, 2)| < la(w?)0:(w} _ —wy _)(t, 2)] +/T (0= (As(w™)) (5, 6" H)lv(s,y)lds

_T Vi =T 1
+C’M€/{ ik L E— _}ds
(t—To)3 +22)8  ((t—T.)3+22)5  ((t—T.)3 +22)3

< Cue?((t-T.)° + zz)_é +/T (02 (As(w?)))(5,€" D) |u(s, y)lds



Then in view of (3.39) and Gronwall’s inequality, for small € we know (3.27) holds. Moreover in
light of (3.33) we obtain (3.28).
Part 5. Estimates on [V(wi}' —w{ )|

Set v(t,z) = 0, (w’fjrl —wl ), then v(t, z) satisfies the equation:

3
Osv + ()\1(’(1)1) —o" (t))az’u + az()\l (wﬁ))v + Z{aijl(wi)azw?,_{_
Jj=1

by (w?) by (w) (3.40)
= 0w, M (w3)0xw] 1 )0:07 1} = 0 (xgmiy) — O: (o))
v(T.,z) =0
Let &' = ¢7F1(¢, 2, 5) be the back characteristics through the point (¢,z), for small ¢ we
have ;
A i (3.41)

By the characteristics method and by (0) = 0 we get
n+1
ot ) s Oe [ SN
7. ((s = Te)* + (§7)%)%
t
Vs —T,. - T,
+CN52/ { - En+1 T+ ———
7. (s —Te)°+ (§77)%)3

Substituting (3.41) into the above inequality, one has

t

oy " (s, &)
|1}(t, Z)| S CNEz t— TE + CNE/ ﬁds
T, — S)3

Hence Gronwall’s inequality implies

lo(t,y)| < Cye?\/t —T.
Part 6. Estimates on [V(wit" —w! _)| and |V(wit! —w) )|
We only compute |8t(w?,+_1 —w{ _)| and [0, (w’fil —wf )|
It is convenient to estimate Bt(w’f,tl — w) _) firstly since we can take the derivative on ¢ for
the boundary value w}’ _(t,0—) —w{ _(t,0—). Now we set v(t, z) = at(w’f,tl —w? _), then v(t, z)
satisfies the equation:

(0w + (M(wl) — 0™ ()0:v + (A (w?) — o™ (t)v + a(w? ) {07 (wh - —wj _)
+A(w?) = 0MOF (wh _ —wy )} + (A(w?) = Ay(w?) — o™ +0°)0Fwy _}
+@(w?) — a(w)){07wy _ + (A(w?) —0")oFwh _ — (A (w?) — Ar(w?)

3
Do e om0l + 3 (G @) w0l (Gt + (M)l — "0l ) (3.42)
j=1
—(Ow, Fz)(w‘l)@twg_(ﬁtwg,_ + (A (w?)) — 00)8zw(2),_} + a(w™ )0 (A (w™)

—O'n)azwg,_ - &(w(l)@t(Al(wO_) — 00)8211)8,_ = at(m) — at(m)
L 0(Te,2)=0
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It follows from Lemma 3.4, b;(0) = 0 and inductive hypothesis that lwi _(t,z) —wi (t,04)] <
Cne((t—T0)* +2%)% and |wl_(t,2) — w)_(t,0-)| < One((t — T) + 2%)% fori = 1,2,3.
Hence by the expressions of A3 and 0" (t), we have

As(w”) — o™ (t)| < Cne((t = T.)% + 22)s (3.43)
Furthermore, by Lemma 3.4 and the inductive assumption and (3.43) one has

CNE
Vi—Ts

Let £ = £(t,2,s) be the back characteristics of (3.42) through the point (¢,z) in the domain
Q_. If £ = £(t, 2, 5) intersects with z—axis before it meets t-axis, then integrating (3.42) along
characteristics and using the result in Part 1, inductive hypothesis and a(0) = b;(0) = 0, we have

|Opwy _(t, )| < (3.44)

Ju(t, 2)| < COne®(t =T / [(0e (AL (w2)))(5,E(E, 2, 8)) = (0r0™ ) (s) |0 (5, £(2, 2, 5))|ds

In view of (3.44) and the inductive hypothesis and the expression of ¢”(t),one has

t
[ 10w s 6(6,2.8)) = (B0 (9)]ds < Onev/E= T
T
So by Gronwall’s inequality, for small € we obtain:
[u(t, 2)| < Ne(t —T0)?

When £ = £(t, z, s) intersects with t—axis at (s,0) with s > T., then we have to use the boundary
conditions on t-axis. Indeed, by integration along characteristics we get:

[o(t, 2)| < Cne(t = T0)% + (9 (with — wf ))(s,0-))|

/ | 81? >‘1 )(37§(t7 Z, 3)) - (8t0n)(8)||v(87€(t7z78))|d8 (3'45)

Below we estimate the additional boundary condition |(0 (w’ftl w) _))(s,0-)].
Since

[wi ] < Jwit(s,04) — wd , (5,04)] + |wh(s,0—) — wl _(s,0+) + |[w3]|
S CN€(8 — TE)%
[0al Y] — [Byul]] < —NE
s—1T.
CNE
L
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So by (3.35)and Lemma 3.4 we can get |0y (w’ftl(s 0-)—w? _(s,0-))| < Cne2(s—T.)2 for small
e. Substituting this into (3.45) and using Gronwall’s inequality one has |v(t, z)| < Cye2(t—1T.)*

for small €.
Finally, since |A; (w™)—c"| > ; for small , then it follows from equation (3.33) that |9, (w] ”'H

w?,_)(t, 2)| < One?(t — Tg)l.
Summarizing all estimates obtained above we complete the lemma by induction.

Step 4. Convergence

To prove the contractivity of the sequences {o"} in [T.,T. + 1] and {w},} in Qs, we will
prove the contractivity of these sequences.

Lemma 3.9 For small €, there exists a constant C'y independent of € and n such that

3

lo™ = 0" Mooy < On S s =0 24 e ) (3.46)

i=1
lwg = wh ey + On D ks = wii ey < (1= {llwf s — 03T | orn)

i=1,2

+On Y wfs = wps ()} (3.47)

i=1,3
where ||wz'n,i ||L°°(Qi) |wi! —+ win,:rl”Loo((u) + ||wz'n,— - wzilllm(g,)

Proof. Firstly, in terms of the expression of o™ (t) and Lemma 3.8, (3.46) is obvious.
In order to prove (3.47), now we give an estimate on wg‘il —wy _. Set v(t,z) = wg‘H —wy _,
then v(t, z) satisfies the following equation:

(Dt Qaw?) — ™) = (™) — Ng(w) + 0" — 0" )0, uf
+a(w) {0 (wh _ — wi™) + (Ns(w”) — 0™)0; (wh _ — wi=") — (Ag(w? ™)
! —xs(w) 40" — 0" h)owh _} + (a(w™) — a(w” ) (uwh =t + (Az(w 1) (3.48)

bs (w™) by (w™ )

n— n—1
—0" N0 ) + e~ mreT
\ 0(Te,2) =0

The most trouble term in the right side of (3.48) is the first term (Az(w”™ ) — Az(w™) + o™ —
a”_l)azw;__l, because it contains the unbounded term azwg,__l, moreover 82111?7__1 isn’t integrable.

To estimate (As(w” ") = Ag(w"))d.wh !, we rewrite (O, As)(w")d.uwl = (ZETUE
ws —
{0:(As(w™)) = ) (O, As)(w")dzw] _} for k = 1,2, which is plausible due to dy,As(0) # 0.

j=1,2
Note that d,w} _(j = 1,2) and 9,(A3(w”)) can be estimated due to Lemma 3.8 and (3.9). We

now set

(Ag(w?) = Ag(w ™)) dwy~t =Y " J;
i=1
24



where
1
J = Z {/ / (02w, X3) (01 (Bw™ + (1 = 0)w™ ™) + (1 — 61 )w~1)0dOdb,
0 0
X (wi — —wp ) (wf_ = wiTh)} 0wy

T2 = D (0, Aa) (W) = (0, A) (wl) }Oswl —H (wf - — w)h)

J3 =3 (O, As) (W) (Dl =t — Dywl ) (wh_ —wh)

j=1
Ji = 0z (As(w?))(w§ _ — wy”")
Js == 3 (Ow,As)(w")0.wp _(wh_ —wy”")

k=1,2
_ (81019)‘3)(“}2) WD (w? — "t
P e LG L

Hence one can get

|(Aa(w?) = As(w? ™)) ws | < (10:(As(w))] +

+Cn Y [whe —wiy! (3.49)

i=1,2

Next we dispose the term (0" — a”_l)@wg‘,__l. Note that the relation between ¢" and
Ag(w’ (t,04)) can be derived in a similar way as in [23] or [24] as follows:

3

0" = A3(w-(t,0-)) + % Y (9w As) (w-(t,0-))[wii] + O([w"]) (3.50)

k=1
Similar to the estimate for (3.49), we can obtain:
CNE
t—1T.
+COx ) |wiy —wiy! (3.51)

1=1,2

— n— ]' n
(o™ — o™ 1)8zw3’_1| < (§|8z(>\3(w—))| +

Jwh = wg !

)

Based on the estimates (3.49) and (3.51), by a similar way as in the proof of Lemma 3.8 (in
particular, the Part 4) we can establish

_ 1.3
(l” + COneyit = T.)||ws _ — w?,—IHLoo(Q,) + (51”54‘
+ Cnevit - TE)“wS,:t — w33 e (yy) + On Z lwi s —wi s I poo (o)

i=1,2

||wn+1
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Similarly, we also have

) 13
lwg§t — w5 ey < (in2 5+ OnveVE=Tluf = w5 oy, + (Ging+

+ COnevit = T:)||wg 4 — wsy ||L°°(fli) ) +Cn Z s+

i=1,2

-1
(i ||L°°(S~2i)

The addition of two above inequalities derives

n 3 "
||w +1 ’(1)3 :l:”L‘x’(Qi) (Zln + CNE‘\/t E)||w37:t w3 :t1||Loo(Qi)+
+Cn Z [ wi,:tlHLOO(Qi) (3.52)
1=1,2

where the coefficient before the summation in the right side is less than 1 provided ¢ is very
small.

Similar to the analysis of Part 3 in Lemma 3.8, we can also establish the estimate

||wn—|-1 wy +||L°°(Q ) < Cye(t - Z lwi'+ — Z;1||L°°(fli) (3.53)

Finally, we give the estimate on w’fil —wY _. At this time, we should use the boundary condition
on z =0. Set v(t,z) = w’f“ —wf _, then v(t, ) satisfies the equation:

,

O+ (Ar(w™) — 0™)0,v = (A (W) = Ar(w™) + o™ — 0" 1D, wl _ — G(w™)x
) {0 (wh _ —wi ") + (Ar(w™) — ™) (wh _ —wh ') + (A (w" 1) = Ay (
+o" — o Howh _} — (a(w”) — a(w” 1)) (Quwh _ + (Ar(w") — o™)d,wh )

bi(w")  bi(w"Th)
z+o7(8)  24on (1)

L v(T:,2) =0,0(t, 2)|,=0 = w’ftl(t,O—) —wf _(t,0-)

+

If the back characteristics & = £(t, z, s) through the point (¢, z) intersects with z—axis before it
meets the t-axis, we have

t
n— ].
v(t, 2)| < |a(w )(wz_—wz_ |+CN€E |wi & 7;7:‘:1”L°°(Q:t)/T(1+87)d8

3
< One Y llwfs = w}i g oy (3.54)

While if £ = £(t, 2, s) intersects with t-axis at (s,0) with s > T, then similarly we have

[o(t,2)] < |wyt(s,0-) = wf _(s,0-)| + CNEZ lwp £t =} il oo (s (3.55)
i=1
26



By (3.35) and Lemma 3.7 and the above estimates, we get

|wn+1(s 0—)— w?_(s 0-)| < |wn+1(s 0+) — wy 4+ (s,0+)] +CN€(|wn+l(s 0—)
—wi _(s,0=)| + w5 (5,0-) — wy _(s,0—-)| + Jwi L (s,0%) — wh 1 (s,0%)])

< Cne Z lwf s = wiTH | (ou)

3
Hence [o(t, )] < Cye 3wty — 'z ey
=1
The estimate for |w”+1(t z) — wy _(t, z)| is similar and even simpler.

Synthesizing the above estimates, we have

B 3
o3k = w3ty + D (On + Dllwiy = 0l ey < (2ng +COnev/t - T

i=1,2

n n— Cny +CNn(Cy +1)e n
+ Oy (Cx + D0~ w33y + LN 57 (0 4 1),

i=1,2

-1
Wi+ ||L°°(S~2i)

Using 2ln% < 1 and Clil < 1, and replacing Cy + 1 by Cy, then we know that Lemma 3.9
hold for small €.

The proof of Theorem 2.1.

From the convergence of Lemma 3.9, we know that there exist functions o(¢) € C[T:,T.+1] and
w; +(t,z) € C(Qx) such that o”(t) uniformly converge to o(t) in [T%,T. + 1] and w4 (t, z) uni-
formly converge to w; + (t, z) in Q4 respectively. Similarly, we can prove Vi, w4 (t, z) uniformly
converge to V¢ ,w; 4 (¢, z) in the any fixed closed subset of Qi respectively. Moreover, by Lemma
3.6 and the systems (3.17) and (3.18) we know that w} . (¢, z) are equicontinuous on z for the fixed
t e (T.,T: + 1) in Q4 respectively. Hence w; 4+ (t,0=%) exist in (7;,7: + 1), moreover we can con-
clude that the Rankine-Hugonit conditions hold on the shock curve I' : r = ¢(t) = T + fT t)dt
by the equivalence of (3.12) and (3.14). Additionally, the entropy condition is also guaranteed by
w;,—(t,2), 2 < ¢(t)
wi,+(t7 z)? z > ¢(t)
is the weak entropy solution of (2.11). Finally, the estimates in Theorem 2.1 are the direct
conclusion of Lemma 3.6 and Lemma 3.8 combining with the convergence of the sequence of
approximate solutions.

Lemma 3.1 and the estimates in Lemma 3.8. So the functions w; (¢, z) = {
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