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Introduction

The standard form of a boundary value problem for a differential operator
A:C®(X,E) = C®(X,F) (0.0.1)
on a smooth manifold X with boundary is
Au=f on X, Tu=g onY :=0X. (0.0.2)

Here, E, F € Vect(X), where Vect(-) denotes the set of smooth complex vector
bundles on the manifold in the brackets, T = (74,...,Tn) is a vector of trace
operators T = r’fj, j =1,...,N, for differential operators fj : C®(V,E) —
Cc>=(V, 6]) in a collar neighbourhood V' = Y x [0,1) of Y, with bundles CN}'j €
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Vect(V') and the restriction operator r'v := v|y. Setting G; = é]’hf and G =
@;.V:l G, we can identify (0.0.2) with a column matrix operator

C*(X, F)
A

A= :C*(X,E) @ .
<T> - C=(Y, Q)

For p=ord A, pj = ord fj, we have continuous extensions to Sobolev spaces

H* (X, F)
A:H(X,E) = o (0.0.3)
D)= H7H72(Y,G;)

for every sufficiently large real s. Here and in the sequel we assume X to be
compact.

It is well-known that (0.0.3) is a Fredholm operator for any fixed (sufficiently
large) s € R if and only if

(i) A is elliptic, i.e., the homogeneous principal symbol
oy(A) ¥ E = 7y F (0.0.4)
(with the canonical projection mx : 7*X \ 0 — X) is an isomorphism,

(ii) the trace operators T satisfy the Shapiro-Lopatinskij condition with respect
to A, i.e., the boundary symbol

F'o HH(Ry)
oo(A) iy E' @ H*(Ry) — 7y @ (0.0.5)
G

(with the canonical projection my : T*Y \ 0 — Y) is an isomorphism.

Here, E' denotes the restriction of any E € Vect(X) to Y, and o5(A) is locally

given by
%P(A)(?J;O;U;Dt) )
rlaw (TJ)(y7 07 1, Dt))j:l,.,,,N

where (y,t) € Y x R, are local coordinates in a collar neighbourhood of Y in X.

The Shapiro—Lopatinskij condition will also be refered to as SL—condition.

It is often convenient to restrict o5 (.A) to the unit cosphere bundle S*Y induced
by T*Y, where a Riemannian metric is fixed; let m; : S*Y — Y denote the canonical
projection. We simply denote o5(A)|s+y again by os(A).

If the ellipticity condition (i) is fulfilled, the boundary symbol oy(A4)(y,n) =
oy (y,0,n, D) represents a family of Fredholm operators

ool A)y,m) = ((

oo(A) :miE'@ H*(Ry) = 77 F' @ H*™H(R}.) (0.0.6)
parametrised by the compact space S*Y. There is then an index element

indg+y Ua(A) € K(S*Y)
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In the present case the operators (0.0.6) are surjective for all (y,n) € S*Y, and
condition (ii) entails indg+y 0g(A) = [7}G] € 77 K(Y'). In other words,

indg=y 0p(A) € 1 K(Y) (0.0.7)

is a topological obstruction to oy(A) for the existence of SL-elliptic boundary
conditions T'. (0.0.7) is just the Atiyah-Bott condition from [1].

There are elliptic differential operators (0.0.1) that violate condition (0.0.7).
It is well-known that Dirac operators in even dimensions and other interesting
geometric operators belong to this category, and possible boundary conditions that
lead to associated Fredholm operators are rather different from SL—elliptic ones.
In fact, after the work of Calderdén [5], Seeley [24], Atiyah, Patodi and Singer
[2], another kind of conditions (here, briefly called conditions) became a natural
concept in the index theory of boundary value problems. There is now a stream
of investigations in the literature to derive index formulas in terms of np—invariants
(and their various generalisations) of elliptic operators on the boundary. Let us
mention, in particular, Melrose [10], Booss-Bavnbek and Wojciechowski [3], Grubb
and Seeley [8], Savin and Sternin [14], [15], as well as [13], and the references there.

General elliptic boundary value problems for differential operators and (inho-
mogeneous) boundary conditions in subspaces of Sobolev spaces (that are images of
pseudodifferential projections on the boundary) have been studied by Seeley [24],
see also joint works of the first author with Shatalov and Sternin [23]. It is natu-
ral to embed such problems into a pseudodifferential algebra, such that arbitrary
elliptic operators admit either elliptic SL— or global projection conditions, where
parametrices of such elliptic bondary value problems again belong to the algebra.
Such a calculus for operators with the transmission property at the boundary has
been introduced in [20] as a “Toeplitz extension” of Boutet de Monvels’s algebra,
cf. [4] or [11].

Elliptic operators in mixed, transmission or crack problems, or, more generally,
on manifolds with edges, also require extra conditions along the interfaces, crack
boundaries, or edges, cf. [9], [19], or Egorov and Schulze [6]. The transmission
property is not a reasonable assumption in such applications. In simplest cases the
additional conditions satisfy an analogue of the Shapiro—Lopatinskij condition as
a direct generalisation of SL—ellipticity of boundary conditions in boundary value
problems, cf. [17], [19]. However, for the existence of such conditions for a given
elliptic operator in the interior we have a similar kind of topological obstruction
as in boundary value problems. Thus it is again natural to ask whether there are
Toeplitz extensions of the corresponding algebras that contain the original operator
algebras but admit all “interior” elliptic symbols that were forbidden before by that
obstruction. The present paper gives the answer for pseudodifferential boundary
value problems with general interior symbols, i.e., without the condition of the
transmission property at the boundary. Our algebra may also be regarded as a
model for operators on manifolds with edges, though the case of boundary value
problems has some properties that are not typical for edge operators in general. In
a forthcoming paper [22] we will treat the case of elliptic operators on a manifold
with smooth edges.

Acknowledgement: The authors thank T. Krainer of the University of Potsdam,
and A. Savin, V. Nazaikinski and B. Sternin of the Moscow State University for
helpful discussions and useful remarks on the manuscript.
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1 Operators with the transmission property

1.1 Operators on a manifold with boundary

The study of ellipticity of (say differential) operators A on a C*® manifold X with
C™ boundary Y gives rise to a number of natural questions.

First we may ask the nature of boundary conditions that (for compact X)
complete A to a Fredholm operator in suitable spaces. The answer in general is
that a certain type of adapted global pseudodifferential projections on Y contribute
to the boundary conditions, and that Shapiro—Lopatinskij elliptic conditions are
the simplest variant in this set—up.

Another question is the structure of parametrices of elliptic boundary value
problems that leads to pseudodifferential operators (similarly to the case without
boundary). Therefore, it is desirable to have an algebra of corresponding pseu-
dodifferential boundary value problems. An answer is given in [20] in terms of an
operator algebra S(X) that contains Boutet de Monvel’s algebra B(X) as well as
an algebra 7 (V") of (generalisations of) Toeplitz operators on the boundary.

For the analytic part of this discussion it is necessary to specify the behaviour
of pseudodifferential symbols (locally) on X near Y. The simplest choice consists
of classical symbols a(x, ) that are smooth in z up to the boundary Y. However,
as is well-known from the classical analysis of pseudodifferential boundary value
problems, cf. Vishik and Eskin [26], Eskin [7], Boutet de Monvel [4], Rempel and
Schulze [12], smoothness alone is often too general.

An additional condition on symbols is the transmisssion property at the bound-
ary. The transmission property suffices to generate an algebra that contains all dif-
ferential problems together with the parametrices of elliptic elements. The trans-
mission property has been imposed in B(X) as well as in S(X). It is a natural
condition, if we prefer standard Sobolev spaces on X or scales of closed subspaces
as a frame for Fredholm operators. On the other hand, to understand the structure
of stable homotopies of elliptic boundary value problems, or to reach particularly
interesting applications, the algebra B(X) appears too narrow. It is interesting to
consider a larger algebra, namely, a suitable subalgebra £(X) of the general edge
algebra on X, cf. [19] and [21]. In this interpretation X is regarded as a manifold
with edge Y and R (the inner normal from a collar neighbourhood of Y) as the
model cone of the “wedge” ¥ x Ry. The algebra £(X) is sufficient for studying
mixed and transmission problems and consists of pseudodifferential boundary value
problems not requiring the transmission property; all classical symbols on X that
are smooth up to Y are admitted in £(X).

The operators in £(X) act in a certain scale W*7(X) of weighted edge Sobolev
spaces that are different from the standard Sobolev spaces H*(X), except for s =
v = 0 where we have W%(X) = L*(X) = H°(X).

To illustrate the idea of constructing our Toeplitz extension 7 (X) of £(X) we
first have a look at the corresponding construction for Boutet de Monvel’s algebra
B(X). The general case will be studied in Section 2 below.

Let X be a compact, smooth manifold with smooth boundary Y and E,F €
Vect(X), J_,Jy € Vect(Y). Then B*»4(X;b) for b = (E,F;J_,J;) and p € Z,
d € N is defined to be the space of all block matrix operators

C®(X,E) C>®(X,F)

A: & - @ (1.1.1)
Co(Y,J_)  C®(Y,Jy)
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of the form

+ pot
A= (r ]ge 8) +G+C, (1.1.2)

where the ingredients of (1.1.2) are given as follows:

(i) P is a classical pseudodifferential operator of order p on 2X (the double of
X, obtained by gluing together two copies of X along the common boundary
Y, such that 2X is a closed, compact, smooth manifold), where P has the
transmission property with respect to'Y, and et is the operator of extension
by zero from int X to 2X, and rT is the restriction from 2X to int X.

Recall that the transmission property of an operator P in  x R 3 z = (y, 1),
1 C R*! open, with respect to t = 0 is defined in terms of the homogeneous
components p,—j)(y,t,n,7), j € N, of a (left) symbol p(y,t,n,7) of P by the
condition

[Dsz{p(ufj) (y7 t,m, T) - (_l)u_jp(ufj) (ya t,—n, _T) }]|t:077I:0 =0

forally € Q, 7 € R\ {0}, for all k € N, « € N*°! and all j. This is an
invariant condition under coordinate changes that preserve the boundary. Thus,
for E,F € Vect(2X) we have L (2X; E, F)y,, the space of all pseudo—differential
operators on 2X acting between spaces of sections of E and F , the symbols of
which in local coordinates near Y have the transmission property. For E = E|x,
F = Flx we set L(X; E, F)y, = {r"Pet : P € L*(2X;E, F)i;}. In other words,
the operator in the first summand on the right of (1.1.2) belongs to L% (X; E, F).
We shall often set ¢ =n — 1.

(ii) The operator C belongs to B~>>(X;b), i.e., it is smoothing and of type d.

Here, B~°%(X;b) is the space of all operators (1.1.1) that have C* kernels
up to the boundary. On X and Y we fix Riemannian metrics such that a collar
neighbourhood of Y has the product metric from [0,1) x Y. Then the entries of
C = (Cij)i,j=1,2 are integral operators with C'*° kernels over X x X, X xY, ¥ x X
and Y x Y, respectively, that are sections in corresponding external tensor products
of bundles on the respective Cartesian products. Now B~°%(X;b) is defined to
be the space of all operators

d .
o/ 0
c:co+ch (5 0)
j=1
for arbitrary C; € B~>°(X;b), j =0,...,d.
(iii) The operator G in (1.1.2) is a block matrix (G;j); j=1,2, where G11 on (int X) x
(int X), G12 on (int X) x Y, Ga1 on Y x (int X)) have C* kernels, Gy Is a
classical pseudodifferential operator of order pn on'Y, while G near Y in local

coordinates (y,t) € Q x Ry has the form of a pseudo-differential operator
with operator—valued symbol g(y,n), i.e., G = Op(g),

(Op(g)u)(y) = // e V=Yg (y, m)u(y') dy'dn,



1 OPERATORS WITH THE TRANSMISSION PROPERTY 6

and
8] 0
9(y,m) = go(y, ) +;gg ys1) (0 0) (1.1.3)
with g;(y,n) € Ré_j’o(ﬂ x R?, (k,l;j—,j+)), where k, I, j_ and ji are the
fibre dimensions of the bundles E, F, J_ and J, respectively.

Let us recall the definition of the so—called Green symbols of the class REO(Q X
RY, (k,l;j—,j+)) from [18] or [19]. First, if H and H are Hilbert spaces, and
{ka}rer, and {Kr}rer, are groups of isomorphisms on H and I:T, respectively,
strongly continuous in A € Ry, we have the space

S*(QxRI;H,H), veR, (1.1.4)

of operator—valued symbols, defined to be the set of all a(y,n) € C*(Q xR?; H, It~[)
that fulfill the following symbol estimates:

I DS Daly, m)} kel iy < etV

forally € K,n € RY, for all K, a, 8 € N*~! | with constants ¢ = c(a, 3, K) > 0
IfH = L HJ is a projective limit of Hilbert spaces H’ with continuous em-

beddings HI+! < Hi for all J and K acting on HI by restriction of a corresponding
strongly continuous group on H° , we can form the symbol spaces S¥(Q2xR?; H, H7)
for all j and then set

S¥(Q x R H, H) = lim §”(Q x RY; H, H).
JEN

An element a(y,n) € S”( x R?; H, H) is called classical, if there are functions
ag—1)(y,m) € C=( x (R*~*\ {0}, L(H,H)), | € N, such that
Q(y—1) (ya /\77) = All_lf"'v:)\a(u—l) (?J;ﬂ)’ﬁl (115)

for all A € Ry, such that a(y,n) — le\;o x(maqw—n(y,n) € Sv=(N+)(Q x RY; H, IC-VI)
for every N € N; here, x(n) is any zero excision function in R*~!. Let S%(Q x
RY; H, H ) denote the space of all classical symbols of order v.

Let, in particular, H := L?(Ry ,C*)® /- and H™ := (t)""H™(R, ,C") & T+,
where H*(Ry,C') = H*(Ry) ® C', with the standard Sobolev space H*(R;) =
H*(R)|r, on Ry of smoothness s € R. Then we have H := @1 Hm =

S(R4,C") @ T+ with the Schwartz space S(R;) = S(R)|g, - Sefting
m\(u@v):)\%u()\t)@v forudveH,
and, similarly, Ky := k) on H™ for each m, we get the symbol spaces
v (2 x RY; LRy, CF) @ O-, S(R,,C) @ TU+), (1.1.6)
and, analogously,

v (Q x R LA(Ry, ) @ O+, SRy, CF) @ ¢-). (1.1.7)
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Then RSO(Q xRY;v) for v = (k,1;j—, j+) is defined to be the space of all operator—
valued symbols g(y,n) in (1.1.6), such that the pointwise adjoint ¢g*(y,n) belongs
to the space (1.1.7). We then define Réd(ﬂ x R?;v) (the space of so—called Green
symbols of order v and type d) to be the space of all symbols of the form (1.1.3)
for arbitrary g;(y,n) € RS *2(Q x R%;v), j =0,...,d.
For every A € B*4(X;b) we have a principal symbol o(A) = (oy(A),05(A)).
Here,
oy(A) i mxE = 7} F (1.1.8)

is the interior symbol that is the restriction of the homogeneous principal symbol
of P from T*(2X)\ 0 to T*X \ 0, cf. formula (1.1.2). Moreover,

E'® H*(Ry) F'@ H*7H(Ry)
oo(A) 7y ( ® ) — Ty ( ® ) (1.1.9)
J_ Ji

is the boundary symbol of A. It is defined for all s > d — % It is often convenient
to consider it as a family of maps

E'®S(R4) F'®S(Ry)
os(A) : 7y ( @ ) — 7y ( ® ) . (1.1.10)
J_ J+

05(A) is defined by
oo(rTPet) 0

o) = (D D) + 0000,

with o5 (rT Pet) =rtoy,(A)(y,0,m, Dy)et, and

d .
a5(9)(y,m) = 05(90)(y,m) + Y_ 05(9;) (v, ) (aog 8) : (1.1.11)

=1

where 05(g;) is the homogeneous principal symbol of g; as a classical symbol in
the space (1.1.6) for v = —j, j =0,...,d. Then, according to (1.1.5), we have

) =3 (5 3 oat0m (5 (1’)_1 (1112

for all A € R, . Here, (kau)(t) = A2u(At) for u(t) € E' © H*(Ry ), and 1 denotes
the identity map in the respective fibres of J ,.

We systematically employ various standard facts about operators in B*?(X;b).
In particular, every A € B*?(X;b) induces continuous operators

H*(X,E) H*"X,F)
A @ o ® (1.1.13)
Hs(Ya J—) HS_N(Ya J+)
for all real s > d — %, and (1.1.13) is compact for o(A4) = 0. Moreover, A €
B4(X;b), b = (Ey, F;Jo,Jy), and B € B»*(X;¢), ¢ = (E, Ey; J_, Jy), implies
AB € BV (X;boe) forboc = (E,F;J_,J.), h = max(v + d,e) where

o(AB) = o(A)o(B)

with componentwise multiplication.
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1.2 Conditions with pseudodifferential projections

An operator A € B*?(X;b) is called oy—elliptic, if the interior symbol o, (A)
defines an isomorphism (1.1.8). In this case,

r* oy (A)(y, 0,1, Dy)e’ : B) @ HY(Ry) — Fl @ H #(Ry) (1.2.1)

is known to be a family of Fredholm operators for all (y,n) € T*Y \ 0 and all
s > max(p,d) — 3.

The Fredholm property of (1.2.1) is equivalent to that of
rtoy(A)(y,0,n,Dy)et : B, @ S(Ry) = F, © S(Ry) (1.2.2)

for all (y,n) € T*Y \ 0.

An operator A € B*9(X;b) is called SL-elliptic, if it is oy—elliptic and if, in
addition, o(A) defines an isomorphism (1.1.9) for any s > max(u,d) — 1 (or,
equivalently, an isomorphism (1.1.10)).

Let B*(X;E,F) denote the space of upper left corners of operator block
matrices in B#4(X;b), b = (E,F;J_,Jy). The question whether or not a oy,
elliptic element A € B»%(X; E,F) may be interpreted as the upper left corner of
an SL-elliptic operator A € B*%(X;b) gives rise to an operator algebra of boundary
value problems that is different from Boutet de Monvel’s algebra. A general answer
may be found in [20]; it consists of a new algebra with boundary conditions that
we call global projection conditions. Operators in this algebra

HY(X,E) H""(X,F)
A o o ® (1.2.3)
PS(Y,L_) PS_H(Y7L+)

that are characterised by the following data.
(i) The upper left corner u.l.c. A = A belongs to B#4(X; E, F).

(ii) Ly are triples
Ly = (Pg,Js, Ly) (1.2.4)

for certain bundles Jy € Vect(Y), Ly € Vect(T*Y \ 0) and elements Py €
LY(Y; Jx, Jy) that are projections, i.e., (Py)? = Py, where Ly is the image
of the homogeneous principal symbol

pt o wyJe =y Je (1.2.5)
OfPi.

Note that then (p+)? = p+. Given a projection (1.2.5) there always exist such
projections P, ; they are not unique, and we fix some choice, cf. Section 1.3 below.

(iii) The spaces on the boundary Y in (1.2.3) are given by
P*(Y,Ly) = PLH*(Y, Jy), (1.2.6)

s € R. These are closed subspaces of H*(Y, J1).
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(iv) (1.2.3) is defined to be a composition
A=PLAR_ (1.2.7)
for an A € B~4(X:b), b= (E,F;J_,J.), and

1 0 10
pe=loon) mm(a)

where 1 are the identity operators in corresponding Sobolev spaces on X,
while R_ : P*(Y,L_) — H*(Y,J_) is the canonical embedding.

Let S»¢(X;v) for v = (E,F;L_, L) denote the set of all operators (1.2.3)
described by (i)—(iv). Continuity of (1.2.3) holds for all s > d — 1.

Ellipticity of an operator A € S*(X;v) is defined by a pair of principal sym-
bols o(A) = (oy(A),05(A)), where oy(A) = oyp(u.l.c. A) : 7% E — 7% F is the
interior symbol and o5(A) the boundary symbol which is a bundle homomorphism

B ®SRy) 7w F @ S(Ry)

os(A): @ — @ (1.2.8)
L_ Ly
where B
oga(A)(y, An) = A <Fg‘ 2) os(A)(y,n) <F6)‘ 2) : (1.2.9)

here, 1 are the identity maps in L_ and L., respectively. A is called elliptic if
both oy (A) and o5(A) are isomorphisms. Instead of S(R;) in (1.2.8) we could
equivalently consider Sobolev spaces H*(R; ) for arbitrary s > max(u,d) — %
Given a 0 € R we set o™ = max(p,0). Let us recall from [20] that if A €
S*4(X;v) is elliptic the operator (1.2.3) is Fredholm for any (and then all) real
s > max(p,d) — 1. There is then a parametrix B € S7¢(X;v ™) fore = (d— p)*

—1 __ . .
- y by My L —
and v (F,E;L;,L_) in the sense that
BA-T e S "(X;v), AB—TI €S %" (X;v,) (1.2.10)

for d; = max(u,d), d, = (d — N’)Jr: v, = (E,E;L_,L_), v, = (F,F;L;,L.).
Clearly, the remainders in (1.2.10) are compact in the respective spaces in (1.2.3).

Notice that ind A depends on the choice of the global pseudodifferential projec-
tions Py. However, the freedom in the choice of the projections does not affect the
Fredholm property. This is a general fact on operators in Hilbert spaces, as we shall
discuss now. To this end, let H™ and H~ be Hilbert spaces, Py, P+ € L(Hy) be

projections such that Py —]Bi is compact. If we now set PHy :=im Py = Py (Hy),
and, similarly, PH., the following result holds:

Proposition 1.2.1 Let A € L(H_,H) such that
A=P A:PH, —» PH_,
is a Fredholm operator. Then this is also true for
A=P_A:PH, - PH_
and we have the relative index formula

ind A —ind A = ind(P; : PH; — PH,) +ind(P_ : PH_— PH ). (1.2.11)
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Proof. First let us show that the operators on the righ-hand side of (1.2.11) are
indeed Fredholm. Since Py acts as the identity on PH,

P+ﬁ+—].:P+ﬁ+—(P+)2:P+(ﬁ+—P+)2PH+—>PH+

is compact. Hence Py is the Fredholm inverse of ]3+, and P+]3+ :PHy — PHy is
Fredholm with index 0. The analogue holds for the projections P_, P_. Therefore,
the operator

B:pH, 5 PH, 4 PH 15 PH
is Fredholm with index
indB =ind A + ind(P; : PHy — PH,) +ind(P- : PH_ — PH_).
On the other hand,
B = (P_P_)A(P P,)— P_[P_ P_]AP, P, + P_P_A(1 — P,)P,
where [13_, P_] is the commutator, which is a compact operator H_ — H_, since
[P_,P_|=P_P_—P_P_=(P_—-P_)(1-P_—P_).

Moreover, (1 — Py)Py = (Py — Py)P, : H, — H, is also compact. Hence
(P_P_)A(P, P,) differs from B by a compact remainder and thus is itself Fredholm
with the same index _ B

indB = lnd(P_P_)A(P+P+)

Above we have seen that P_P_ and P+15+ are Fredholm operators of index 0.
Hence, A itself is Fredholm and ind B = ind A. O

1.3 Projections and Fredholm families

In this section we recall the result on the existence of a pseudodifferential projection
to a given homogeneous principal symbol that is a projection. Moreover, we give
some construction on families of Fredholm operators that will be used below in
boundary value problems.

Let M be a closed compact C* manifold with the space L: (M E, F) of classical
pseudodifferential operators of order u, acting between distributional sections of
vector bundles E and F' on M. Recall that the homogeneous principal symbol
of order p of an operator A € L¥,(M;E,F) is a bundle homomorphism oy (A) :

cl

7 E — n*F where 7 : T*M \ 0 — 0.

Theorem 1.3.1 Let p : 7*E — 7n*E, E € Vect(M), be a projection, i.e., p* = p,
with p(z,A) = p(z,§) for all (z,§) € T*M \ 0, A\ € Ry. Then there exists an
element P € LY (M; E,E) with P> = P and o4 (P) = p.

Moreover, if p = p* satisfies the condition p = p*, there is a choice of P = P2 €
LY (M;E, E) with o, (P) =p and P = P*,

The adjoint of p refers to a given Hermitian metric in £ and the adjoint of P to
a fixed scalar product in the space L?(M, E), with respect to a Riemannian metric
on M and the Hermitian metric in F.

Let H be a (complex) Hilbert space, L(H) the space of linear continuous op-
erators, K(H) the subspace of compact operators in H, L(H)/K(H) the Calkin
algebra, and 7 : L(H) — L(H)/K(H) the canonical map.
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Lemma 1.3.2 Let p € L(H)/K(H) be an element with p> = p and choose any
Q € L(H) with mQ = p. Then the spectrum o, (Q) of Q has the property that

o) (@) N (C\ ({0} U{1})) is discrete.

Proof. First observe that p?> = p implies ok (@) € {0} U {1}. In fact,
for A € C\ ({0} U {1}) =: U there exists (A\e — p)~* = 25p + +(e — p), where
e € L(H)/K(H) is the identity, e = w1 for the identity I € L(H). Now U 3 XA —
A — @ € L(H) is a holomorphic Fredholm family in U, and A\ — @ is invertible
in L(H) for [A| > ||Q||lz(zr)- A well-known invertibility result on holomorphic
Fredholm families, cf. [], implies that A\l — @ is invertible for all A € U \ D for a
certain discrete subset D (i.e., D is countable and D N K finite for every compact
subset K C U). O

Proof of Theorem 1.3.1. Lemma 1.3.2 implies that there exists a 0 < § < 1 such
that the circle C5 := {\: |\ — 1| = d} does not intersect o) (Q). We set

271T (M —Q)~! (1.3.1)

Cs

Then P? = P, and we have P € LY (M; E, E) as a consequence of the holomorphic
functional calculus for LY (M; E, E). Moreover, we have

1

2mi
Cs

1 1 1 1
—{%/m”}“{%/xﬁ}(@‘m-
Cs C

§

7y (P) (Ae —p)~'dA

The second summand on the right hand side vanishes, while the first one equals p
by the Residue theorem.

To prove the second part of Theorem 1.3.1 we suppose p = p*. Then, if P, =
P? € LY (M;E,E) is any choice with oy (P1) = p, also Q := PyP, € L%Y(M; E, E)
satisfies 0y (Q) = p*p = p*> = p. For Q we have Q@ = Q* > 0. Let n be the spectral
measure of (). Then the projection P € LY (M;E, E) defined by formula (1.3.1)
equals the spectral projection

n(Bs(1) N O'L(Lz(M,E))(Q)) for Bs = {)\ eC: |)\ — ].| < 5}
In particular, we have P = P* = P?, and o, (P) = p as above. O

As noted in the beginning, the boundary symbols to elliptic symbols with the
transmission property on a manifold X with boundary Y are families of Fredholm
operators, acting in spaces normal to the boundary, parametrised by points in S*Y
The situation for symbols without the transmission property will be similar. To
analyse the nature of associated boundary conditions, we need some observations
on Fredholm families in general. Let Hy, Hy be Hilbert spaces and M a compact
topological space (for simplicity assumed to be arcwise connected). For every
operator family a € C(M, L(H;, H3)) such a(m) : H; — Hj is Fredholm for every
m € M we have an index element indys a € K (M) in the K—group of M. If the
dimension of kera(m) (and then also of cokera(m)) is independent of m € M,
there are subbundles L, C M x Hy and L_ C M x H, such that L+ m = kera(m),
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Z_,m +ima(m) = Hs and E_,m Nima(m) = {0} for all m € M. In general, this is
not the case. To simplify notation the trivial bundle M x F' with fibre F' is often
denoted by F.

Lemma 1.3.3 Let Ly € Vect(M) be any fized choice such that indp a = [Ly] —
[L_]. Then there exists an operator function ¢ € C(M,L(H,, H»)), where c¢(m) is
of finite rank for every m € M, such that a := a + ¢ has the following properties:

i a = + a = —> - ) L ’ L — ’

(i) kera = Ly, cokera = L_, i.e., there are subbundles Ly C M xHy, Ly = Ly
and L_ C M x Hy, L_ = L_, such that Ly , = kera(m), L_ p, +ima(m) =
Hy and L_ ,, Nima(m) = {0} for allm € M.

(ii) There are (continuous) homomorphisms

k:L_ —H,  t:H —Ly (1.3.2)
such that
~ ’]‘C’ H1 H2
(fﬂ 0) D - O (1.3.3)
t L. L,

1 an isomorphism.

Proof. We first apply the well-known fact that there is an N_ and an injective
m-independent map ky_ : CN- — H, such that

H,
(a(m) ka): ® — Hs
(CN,

is surjective for all . € M. Recall that knx_ can be found via a finite-dimensional
subspace V' C H, such that ima(m) + V = H, for every m € M; such a V
always exists, and then ky_ may be taken as any isomorphism C¥- — V for
N_ =dimV. Set Jy :=ker (a ky_) which is a subbundle of 1, and identify .J
via an isomorphism with an element J. € Vect(M). We then have

indyr a = [74] - [CV-] = [L4] - [L_]

in K (M). We can choose N_ as large as we want, and we now replace N_ by N_+N
for some N and form the corresponding injective operator ky_yn : CN-+V — H,.
Let p: Hy — imky_ 4 n denote the orthogonal projection and write a’ := (1 —p)a.
Then, applying the above construction to a’ instead of a with ky_n in place of
kn, we get a bundle .73 C H; and a corresponding J? = J, & CN € Vect(M) such
that j?_ = kera',

indy a® = [J9] — [CN-*N] = [L4] — [L_]. (1.3.4)

We may assume that the given bundles L. are both subbundles of CV for a suffi-
ciently large choice of N. Taking that IV in our construction we find complemen-
trary subbundles Lz of Ly in J? and CN-1% respectively, i.e.,

LioLy=J), L_@®Lt=CV-*tN
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Then (1.3.4) implies [L7] = [L*] in K(M), i.e., there is an R such that L+ ®CF =~
Lt @ CP. By replacing the number N by N + R =: Ny and carrying out the
above construction with Ny we arrive at an operator family a9, instead of a® where
indys ay = [J) gl = [CN-FNr], 0 5 = J) © CF, and we get bundles Lz 5 instead
of L. Since Ly p = Li ® CF, we therefore obtain L , = LT . In other words,
choosing IV sufficiently large in the construction of a® we get

Lt =L

By construction there are subbundles Z,, Lic H, such that L L, Lixpd
where L &) Zf = Imkn_4n, and there are subbundles L, Ei C H; such that
Ly = Ly, L+ = L+ where L @ L+ = kerap. Choose any isomorphism A : Lt —
Zf, and let 7+ : H; — Ei denote the orthogonal projection, ¢+ : Lt - Hs the
canonical embedding. Then ¢ := 1> o Aox* : Hy — Hs is a continuous family
of operators of finite rank, and we can form a := a + ¢ for ¢ := —pa + ¢q. Then
a satisfies the relations of (1.3.3). To construct the isomorphism (1.3.2) it suffices
to choose isomorphisms k : L — Z,, t: Z+ — L, and to set ko= ok, t = tm,
where ¢ : L — H, is the canonical embedding, = : H; — Z+ the orthogonal
projection. [l

Corollary 1.3.4 Let p(,) : nxE — 7% F be a homogeneous elliptic (of order
i € Z) principal symbol with the transmission property at the boundary (that is,
locally belonging to a classical symbol with the transmission property), and form the
associated boundary symbol oo(p())(y,n) = v p()(y,0,m, Dy)et : B'@ H*(Ry ) —
F'®@ H=*(Ry ), s > max(p,0) — %, that is a family of Fredholm operators, (y,1) €
S*Y, and let Ly € Vect(S*Y) such that [Ly] — [L_] = inds+y 0a(p(u)). Then
there exists a homogeneous principal Green symbol (of order ) g(,)(y,n) such that
coker(oa(p(uy) + 9(u)) = L and ker(oa(p(n)) + () = L+

2 Boundary value problems not requiring the trans-
mission property

2.1 Interior operators

Let X be a smooth, compact manifold with smooth boundary Y, let E,ﬁ €
Vect(2X), and set B : E|x, F = F|x. We then define the space

LA(X; B, F)amootn = {1t Pe™ +C: P e LY (2X;E,F), C € L™=(int X; E, F)}.

(2.1.1)
Note that (2.1.1) can also be defined mod L~*°(int X; E, F') in terms of charts
on X and local symbols in the half-space that are smooth up to the boundary.
We admit arbitrary such symbols, and, as is well-known, cf. [21], the calcu-
lus of operators in (2.1.1) is far from that of the subspace LY (X;E,F). Let
SW(T*X \ 0;E,F) for p € R, E,F € Vect(X) denote the set of all bundle ho-
momorphisms a(,) : 7xE — wxF such that ag,(7,\) = Ma(,(z,§) for all
(z,€) € T*X \ 0. Every A € L'(X; E, F)smooth has a well-defined homogeneous

cl

principal symbol o7 (A) € S (T*X \ 0; E, F), namely oy (4) = UZ(AV)

T+ X\0 for
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any A € L*(2X;E,F) such that A = rtAet + C. Moreover, there is a (non-
canonical) linear map

op: SU(T*X \ 0; E,F) = L*(X; E, F)smooth (2.1.2)

that can be generated by a standard procedure in terms of charts and local rep-
resentatives of operators with given principal symbols where af/j(op(p(u))) = ay)-
To introduce a convenient scale of weighted Sobolev spaces we first look at Ry .
Let M denote the standard Mellin transform M u( fo t=~Lu(t) dt, first defined
for u € C§°(R+) (then Mu(z) is holomorphic in z) and then extended to various
distribution spaces (also vector—valued ones) where z is often assumed to vary on
some weight line I's := {z: Rez = #}. Let H*7(Ry) for 5,7 € R denote the com-
pletion of C§°(Ry ) with respect to the norm {(27i) " [(1 + |2]2)*|Mu(z)]? dz}=.
Moreover, let

KO (Ry) :={wf+(1—-w)g: fEH(Ry), g€ H(Ry)} (2.1.3)

where w(t) is any fixed cut-off function (that is, w € C§°(Ry) and w = 1 near
t = 0). The space (2.1.3) will be considered in a natural norm (corresponding to
iy = o f 1B, + 11— )l
over all f and ¢ in the respective spaces such that u = wf + (1 —w)g. In particular,
we have K®O(R, ) = L?(R, ) that we take with the standard scalar product.

Let H be a Hilbert space with a strongly continuous group of isomorphisms
{kr}rer. Then the “abstract” edge Sobolev space W*(R?, H), s € R, is defined to
be the completion of S(R?, H) (the Schwartz space of H-valued functions on R?)
with respect to the norm

2 1 . .
Tre(r,)} 2, where the infimum is taken

1

{ [ ezyamitran}”

R4

where 4(n) is the Fourier transform of w, cf. [17]. There are also “comp” and “loc”
variants of such spaces We,,,, (2, H) and Wi (2, H), respectively, on any open set
2 C R?; the scheme of the definition is analogous to that for scalar Sobolev spaces.
More generally, we may insert Fréchet spaces H, written as projective limits of
Hilbert spaces.

Given a symbol a(y,n) € S*(Q x R?; H, H) we can form the associated pseu-
dodifferential operator Op(a)u(y) = [[ e!¥=¥)a(y,n)u(y’) dy'dy. We then have
continuity

Op(a) : W;

comp

(Q, H) — WEHQ, H) (2.1.4)

loc

for all s € R.

Setting (kxu)(t) = Azu(At), A € Ry, we get a strongly continuous group of
isomorphisms on K%%(R, ) for every s,7 € R. According to notation in Section 1.1
we then obtain spaces

WHR?, K57 (Ry)) =2 WPY(R? x Ry ).

Note that W»7(R? x Ry) C Hf (R? x Ry) for every s, € R. There is now a
staightforward definition of spaces W#7(X, E) on X for any E € Vect(X), using an
atlas on X with transition maps that we assume to be independent of the normal
variable in a collar neighbourhood of the boundary.
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Theorem 2.1.1 [18] For every A € LE(X; E, F)smooth and every v € R there is

an operator C, € L=>°(int X; E, F) such that A, := A — C induces continuous

operators
A, WS (X, E) —» WP 11X, F) (2.1.5)

for all s € R.

There are many ways to find suitable operators C'y. We shall see more details
later. Any choice of a correspondence A — A, may be regarded as an operator
convention that maps a complete symbol of A (i.e., a corresponding system of
local symbols (a;);j=1,... n) to a continuous operator (2.1.5). Setting opw(a(u)) =
op(a(y) )y, cf. (2.1.2), we also get a map

op, : SY(T*X \ 0; B, F) - (| LOV*(X, E), W™ "*(X, F)).
seER

In this paper we solve the question of how to construct an operator algebra
T (X) of boundary value problems

A:<A7 K

T o) R @ (2.1.6)

) WY (X, E)  Ws—mI=R(X | F)
Ps(Y,L_) P r(Y,Ly)

for arbitrary A € L (X; E, F)smootn and operators 7', K and (), where
(i) P*(Y,L*) are spaces of the kind (1.2.6),

(ii) every oy-elliptic operator A € L (X; E, F)smootn occurs (up to a stabili-
sation) as an upper left corner of an elliptic (and then Fredholm) operator
(2.1.6) for a suitable choice of data L* and T, K and @,

(iii) 7(X) contains the parametrices of elliptic elements.

The construction will be given in such a way that 7 (X) is the Toeplitz extension
of another algebra £(X) of operators

L R\ WUUXE) WX F)
A= ( J ~> : ® — ® (2.1.7)
Q) myy)  HMYI)

that plays a similar role as B(X) in connection with its Toeplitz extension S(X).

2.2 Edge amplitude functions

The algebra £(X) will locally be defined by a specific kind of operator—valued
amplitude functions. Let €2 C R? be an open set corresponding to a chart on Y,
and consider the symbol space S/(2 x Ry x R") (= SH(Q2 x R x R™) o xi, xrn)>

p € R. We use the fact that for every p(y,¢,n,7) € S (Q x Ry x R} ;) there exists
an element p(y,t,7,7) € SH(Q x Ry x R -) such that

py,t,n,7) =t "ply,t,tn,tt) mod ST (2 x Ry x Ry ). (2.2.1)

With p(y,t,n,7) € SH(Q x Ry x R =) we want to associate an operator—valued
symbol

aly,n) = o(O)t"*{am(y,n) + ar(y,m)}o(t) : K>7(Ry) = KTH77H(Ry) (2.2.2)
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with cut—off functions o(t), o(¢t) and operator families ans(y,n) and ar(y,n) that
will be constructed as follows.

First, let M (R? x C) denote the space of all functions f(n, z) € A(C, S% (R?))
such that f(n,3 + ir) € SH(R4HY) for every B € R, uniformly in compact §-
intervals. The space M{5(R? x C) in Fréchet in a natural way. Given an element
h(y,t,7,2) € C(Q x Ry, ME(RL x €)) we set

h(y,t,n,z) = E(y,t,tn,z). (2.2.3)

Functions of the form (2.2.3) will play the role of symbols of Mellin pseudodiffer-
ential operators. Set I'g := {z € C: Rez = [} for any real  and consider Im z as
the Mellin covariable. Let S% (I'3) denote the space of classical symbols of order
with respect to z on the line I'z. For every f(¢,t',2) € C° (R x ]R_F,Sfl(f‘%_v)),
v € R, we set

oD (Pult) = 5 /’(t)_{é_7+”)fu¢czﬁwf>%?dn

o )\

first regarded as an operator C§°(R;) — C*°(Ry). Inserting the function (2.2.3)
as the Mellin symbol we get a family of operators op},(h)(y,n), where (by Cauchy’s
theorem)

o}, (h)(y,mu = op (W) (y,m)u  for every 7,7 € R,
Theorem 2.2.1 [16] For every p(y,t,7,7) € SH(2 x Ry x R") there ezists an
element h(y,t,7,z) € C®(Q x Ry, ME(R? x C)) such that for

by, t,m,7) = Ply,t,tn,t7), Dy, t,m,2) = h(y,t, i, 2)
we have
opy(b)(y,m) = opy, (h)(y,m) mod C*(Q, L™ (R ; RY)) (2.2.4)
for all v € R, and h is unique modC™ (€ x Ry, M;>(R? x Q).

Then, if we set

bo(y,t,n,7) :=p(y,0,tn,tr), ho(y,t,m,2) :== h(y,0,tn, 2), (2.2.5)
it follows that

op;(bo) = opy (ho)(y,m) mod C= (€, L™ (Ry;RY)).

In this paper a cut—off function w(t) is an element of C§°(Ry) that equals 1 in
a neighbourhood of ¢t = 0. If w,w are cut—off functions, we write w < w if @ equals
1 on suppw. Let us fix a function n — [n] in C>°(R?) where [n] = |n| for |n| > ¢
for some ¢ > 0.

Remark 2.2.2 Let wy,ws,ws be arbitrary cut—off functions such that ws < wy <
wy. Then, starting from an arbitrary p(y,t,n,7) € SL(Q x Ry x R™), we form a
symbol p(y, t,n,1n) via relation (2.2.1) and set
an (y,m) = wi(tn]) opy; (k) (y, mws (), (2.2.6)
() = (1= wr (1)) op, (), 1) (1 — ws (¢n])) (2.2.7)

with b(y,t,n,T) and h(y,t,n,7) being related to each other as in Theorem 2.2.1.
We then have

op;(b)(y,m) = am(y,n) + ar(y,n) mod C(Q, L™ (R ; R?)).
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Set S(c¢,c') :=={2€ C: c<Rez <}, and let M~>°([p). for B € R, € > 0,
denote the subspace of all f(z) € A(S(f — e, + ¢)) such that f(z)|r, € S(T'y) for
every f —e < § < f+¢, uniformly in compact subintervals. The space M~ *°(I's).
is Fréchet in a natural way.

Then, if wy (t) and w4 (t) are arbitrary cut—off functions and f(y,z) € C>°(Q, M (T

the operator family

m(y,n) == w1 (tn])r™" opy, (f) (y)w2(tn]) (2.2.8)

is an element of S% (2 x R?; K*7 (R ), K7 #(Ry)) for every s € R. The spaces
K8 (R, ) are endowed with the group action (kau)(t) := Azu(At), A € R,

More generally, we also may employ spaces K%7¢(Ry) := (t)7¢K%7(R;.) for
5,7,0 € R, with {kx}er, being given as before; then K*7(Ry) = K#7(Ry).
The following definition will refer to spaces of the form K*7¢(R,,C') @ ¢/ with
the group action {kx ® idg }rer,-

Definition 2.2.3 RE,(QxR?,g;v). forp € R, e >0, 9 = (7,0), v = (k,l;j—,j+),
is defined to be the space of all

gyme [ ShOQxRGEY(Ry,C*) O, KM ae(R,,C) @ OF)

s,r,0€ER
0<a<e

such that

gy e [ Sa@xRGETR,,C) @ CF KH (R, CF) © OF).
s,r,0€ER
0<a<e

The (pointwise) formal adjoint g* is defined by

(gu, U)LZ(RJr,(C’ oo+ = (u, 9*1})142(R+y(f3’c ley

for allu € C°(Ry,C*) © U-, v e O (R ,C) @ T+

For purposes below we set,

ST(Ry)c = lim KmIoe(Ry), (2.2.9)
Oré%uefs

The elements g(y,n) € Re(Q x R?, g;v). are called Green symbols of flatness
e > 0 relative to the weights v,d € R.

Moreover, let R*AL/HG (2 x RY, g;v). denote the space of all operator families of
the form

c(y,n) == (m(%’") 8) +9(y,m) (2.2.10)

for arbitrary g(y,n) € R (2 x R?, g;v). (regarded as a block matrix with an { x k-
block matrix upper left corner) and an m(y,n) of the form (2.2.8) for f(y,z) €
C>(Q,M~>(1_,):) ®C ®C*.

Finally, we introduce R*(2 x R?, g;v). as the space of all operator families of
the form

aly,n) = <a””(g’") 8) + ¢y, n) (2.2.11)

1
2

7v)€)7
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for arbitrary c(y,n) € Ry, (2 x R?, g;v). and [ x k-block matrix family ay(y,n)
where the entries have the form

a(t)t™"(am(y,n) +ar(y,n))o(t)

with arbitrary ays(y,n), ar(y,n) as in Remark 2.2.2 and cut—off functions o (t), o ().

2.3 Boundary value problems

We now establish pseudodifferential boundary value problems as a subalgebra of
an algebra of edge operators. Concerning general material on pseudodifferential
operators near edge singularities, cf. Schulze [19] or Seiler [25].

For H = K*7(Ry) we set

WS (RE) = W*(RY, K57 (Ry.))

where n = q + 1, further ch’_:;lp(y) (2 xRy ) = Wmp(Q,K57(Ry)), and similarly
for “loc”. By virtue of W*7(R}) C H{ .(R}) we define the spaces W*7(X) on
a compact smooth manifold X with smooth boundary Y as the subspace of all
u € HE (int X) such that the restriction to neighbourhood of a boundary point in

loc

local coordinates (y,t) € © x Ry belongs to W(f(’)?np(y)(ﬂ x Ry ). More generally,
for a bundle E € Vect(X) we define spaces W*7 (X, E) of distributional sections
by a similar scheme as for standard Sobolev spaces, using the invariance of the
local spaces under transition diffeomorphisms (we suppose the coordinate diffeo-
morphisms to be independent of the normal variable ¢ in a collar neighbourhood
of the boundary).

Note that there are continuous embeddings
W (X, E) = W*(X, E) (2.3.1)

for all s' > s, 4" > ~ which are compact for s’ > s, y' > .
Let RF(Qx R?; g, (k,1)). = RH(QxRY;g). @ C' @ C* for g = (v, — ), and let

RH(Q xR g,v)- forv = (k,l;j_,j+) (2.3.2)
defined to be the set of all operator families

K=7(Ry) @ CH Ko7 A (R @ C

aly,n) = (p(yo, 0 8) +9(y,m) : C?_ — (C% (2.3.3)

for arbitrary p(y,n) € R*(Q x R%; g, (k,1)). and g(y,n) € R (2 x RY;g,v)., cf.

Section 2.2. B
Denoting the space in (2.3.3) for a moment by H and H, respectively, endowed
with group actions diag(ﬁ)\,id))\eR+, where id means the identity in U~ or (C”,
we have a(y,n) € S*(Q x ]R{q;H,j-vI) for every s,y € R. If U C X is an open
neighbourhood, U’ := UNY # 0, where U is diffeomorphic to Q x R, and if
Ely = QxR xCk Fly = (QxRy) x T, Je|pr — Q x G+ are trivialisations
of bundles E, F' € Vect(X), J+ € Vect(Y), we can pull-back Op,(a) to U as an

operator
Ce(U, Ely) C>(U, F|v)
AU . S¥] — @ ’
Ce W', J-or)  Cg(U, Jy|ur)
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using a corresponding invariance under transmission maps.

Now let 0,0 € C*°(X) be elements supported by a tubular neighbourhood
> Y x[0,1) 5 (y,t) of the boundary Y where o(t),5(t) equal 1 for 0 < ¢t < 1,
choose an open covering {Uj, ..., U}, } of Y by coordinate neighbourhoods, and let
{¢1,...,om} denote a subordinate partition of unity and {t1,...,%¥y} another
system of functions ¢; € Cg°(U;) such that @;1; = ¢; for all j.

Let U;j := U} x [0, 1), and form operators

é(wéa :) A, (1/16& £j>+<(1_0)A6m(1—§) 8) .

where Ay, is associated with local symbols a;(y,n) in the above-mentioned sense,
Aing € LY (int X; E, F'), and Ge C*(X) is a function supported in ¥ x [0, 1) such
that 06 = 5. To get a calculus we also define global smoothing operators, that are
defined by the mapping properties

W (X, E) - W (X F)

G: ® - ® (2.3.5)
HS(Yan) HOO(YaJ+)
where
WXL F) WS (X E)
g*: ® - ® (2.3.6)
H*(Y, J) H>®(Y,J.)

for all s € R and all 0 < a < ¢ for some € > 0. Here, G* is the formal adjoint of G
in the sense

(QU;U)W0~0(X,F)@H0(Y,J+) = (u;g*'U)WO’O(X,E)@HO(Y,J_)

forallu € C§°(int X, E)® C>(Y, J_), v € C§°(int X, F)® C>(Y, J; ), with respect
to a choice of scalar products in the spaces W°(X, E), W0 (X, F) and H°(Y, J_),
H°(Y, J}), referring to the Riemannian metrics and bundles E, F and J_, J,. Let
L7 (X, g;v). denote the space of all operators G with these mapping properties,
where g = (7,7 — p) are given weight data, v, € R, and v = (E, F; J_, J;) the
tuple of bundles.

Definition 2.3.1 LV (X, g;v): for any fized ¢ > 0 is defined to be the space of all
operators A = Ay + G, where A, is of the form (2.3.4) and G € L;(X, g;v)..

Note that
‘Cu(Xag;'U)E’ g ‘Cu(Xag;'U)s

for every ¢’ > ¢.

Let L5, (X, g;v): (LE(X, g;v):) denote the subset of all elements in £ (X, g;v)-
where the local amplitude functions a;(y, ) belong to Ry, o (2xR?, g;v). (R (2%
R?, g;v).) for all j. Moreover, let L*(X, g; E, F)., Ly, ;(X,g; E,F)., and L, (X, g; E, F).
be the space of upper left corners of the corresponding spaces £#(...)c, Ly, (.. .)e,
and LZ(...), respectively, where v = (E, F; J_, J,).

Remark 2.3.2 We have

LY, «(X,g;E,F). = [*(X,g; E,F). N L™ (int X; E, F).
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Theorem 2.3.3 Every A € LH(X,g;v): induces continuous operators

WX, E) WXL F)
A: @ — & (2.3.7)
Hs(Ya J—) HS_N(Ya J+)

or all s € R. FElements A € L;>(X,g;v): induce compact operators (2.3.7) for
G
all s, € R.

Proof. It suffices to observe that the summands in the definition of A have the
asserted mapping property. For G this is the case by definition; the interior part in
(2.3.4) is standard. Concerning diag(p;o, p;)Au, diag(y;o,;) in (2.3.4) we may
apply (2.1.4) to the underlying local symbols a;(y,n).

For the second assertion it suffices to combine the mapping property with cor-
responding compact embeddings of our Sobolev spaces, cf. formula (2.3.1). O

Let us now establish the principal symbolic structure of £#(X, g;v).. First, the
upper left corner A of an element A € £L¥(X, g;v). belongs to L: (X; E, F)smooth,
cf. notation (2.1.1), and there is then a homogeneous principal symbol of order u

oy(A) :=0y(A) : 7% E = 7% F, (2.3.8)

mx : T*X\0 — X. In addition, we have a homogeneous principal boundary symbol
of order p

E'® K*7(Ry) Fro Kot (Ry)
oy(A) : 7y ® = Ty @ , (2.3.9)
J_ J.

my : T*Y \ 0 — Y, that is invariantly defined by local terms, i.e., for the amplitude
functions (2.2.11).
Locally, we set

oo (A) ) = <aa(a¢0)(y,n) 8) +o5(c)(y,n), (2.3.10)

where o5(c) is the homogeneous principal component of the classical operator—
valued symbol ¢(y,n), cf. formula (2.2.10), in particular,

oa(m)(y,n) = wi(tln))t™" opy, () (y)w2 (t[n) (2.3.11)

in the notation of (2.2.4). Moreover, we set

oa(ay)(y,n) = wi(tln))t™" opy, (ho) (y, m)w2 (t|nl)
+ (L= wi(tn]))" opy(bo)(y, ) (1 — ws(tlnl)), (2.3.12)
cf. formulas (2.2.5) and (2.2.6), (2.2.7).

The homogeneity of o5(A)(y,n) is formally analogous to (1.2.9).
Let us set

o(A) = (04 (A),00(A))- (2.3.13)
Note that every A € L#(X,g;b). has a subordinate principal conormal symbol

omoa(A)y,2) : B, = F, (2.3.14)
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foreveryy €Y,z € C, Rez = % — 7y, that only depends on A = u.l.c. A, namely

UMO'@(A)(yaz) = h(yaoaoaz) +f(yaz)a (23]—5)

cf. formulas (2.2.5) and (2.2.8).

Theorem 2.3.4 A € LV(X,g;b). for g = (v,v,7 — (u+v)), b = (Ey, F;Jo, J+),
and B € LY(X,h;c)z for h = (v,7 —v), ¢ = (E,Ep;J_,Jo) implies AB €
£H+V(X7goh;b00)min(s,§) fOT’gOh = (777_ ([,L-l-l/)), boc= (EaFa J—7J+)7 and
we have

o(AB) = o(A)o(B)

with componentwise multiplication. If A or B belongs to the subspace with subscript
M + G (G), then the same is true of the composition.

Definition 2.3.5 An operator A € LH(X, g;v): forg = (v,v—p),v = (E,F;J_, J}),
is called SL—elliptic if both (2.3.8) and (2.3.9) are isomorphisms.

The bijectivity of (2.3.9) is an analogue of the Shapiro-Lopatinskij condition.
If this holds, we also call oy(A) SL-elliptic. The bijectivity of (2.3.3) for an s =
sp € R is equivalent to that for all s € R.

Theorem 2.3.6 Let A € LH(X,g;v). be SL—elliptic. Then there is a parametriz
P e L7MX,g vz for a certain € > 0, where g7' = (y — p,7y), v7! =

(F,E; J4,J_), i.e., the remainders
C:=1-PA and Cr:=1—AP (2.3.16)

belong to L7 (X, gl;vl)min(ag) and L7 (X, g,,;'ur)min(ag), respectively, for g, =
(v,7), v =(E,E;J_,J_) and g, = (v — p, v — ), vr = (F, F; J4, J4).
Theorem 2.3.4 entails o(P) = 0~ !(A) with componentwise inversion.

Remark 2.3.7 If A € LV(X, g;v). is SL-elliptic, the operator (2.3.7) is Fredholm
for every s € R, and the parametriz P can be chosen in such a way that the
smoothing remainders are projections of finite rank, where C; projects to ker A and
Cr to a complement of im A for every fized s; ker A is independent of s as well as
dim coker A, i.e., ind A is independent of s.

For references below we want to formulate the following result:

Theorem 2.3.8 For every v,u € R and E € Vect(X) there ewists an elliptic
operator Ry, € L*(X,(v,v — p); E, E). for some ¢ > 0 such that oy (RY)(E) =
|€|* id g, where

R W (X, E) — W7 1(X, E)

induces isomorphisms for all s € R and (Ri,)™" € L™"(X,(y — u,7); E, E)..

Theorem 2.3.8 corresponds to [21, Theorem 4.2.8]; the version in [21] is more
precise insofar the operators R}, even belong to operator spaces with constant dis-
crete asymptotics. These spaces are contained in the present ones for a sufficiently
small € > 0.
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3 Operators with global projection conditions

3.1 Constructions for boundary symbols

The results of Section 2.3 show that for every a(,)(z,&) € SW(T*X \ 0; E, F)
there exists an element A, € L*(X,g; E, F). for arbitrary v € R, ¢ > 0, such that
0y (A) = a(y. Infact, in formula (2.3.4) it suffices to assume Ay, € LY (int X; E, F)

to be of the form A;,, = ﬁ|intX for some A € Lffl()i; E, F)smooth Where oy (A) =

a(u), and to take local symbols p(y, t,n,7) € SH(Q xRy xR") @ C' @ C* having a,

as homogeneous principal part (cf. Remark 2.2.2 and the construction of ay(y,n)).
Let

op, : SU(T*X\ 0;E,F) - L"(X,g; E, F). (3.1.1)

denote the map that follows from such a construction. Clearly, (3.1.1) is not
canonical (and not necessarily linear), but it is a right inverse of the principal
symbolic map

oy LM(X,g;E,F). » SW(T*X \ 0; E, F). (3.1.2)

Let S(T*Y \ 0; E',F"). for g = (7, — p) denote the space of all homogeneous
principal boundary symbols

ao(A)(y,n) : 7y E' @ K*7(Ry) — w3 F' @ KS77T7H (R, ), (3.1.3)

my : T*Y \ 0 = Y, belonging to elements A € LM(X,g; E, F)..
Moreover, set

SUW A(TY \OGE F'). = {0s(A): A€ Lh o (X,g;E,F).},

and define S* (T*Y'\0,g; ', F'). in a similar manner in terms of L% (X, g; E, F)..

Observe that (y,n)-wise the operators (3.1.3) are elements of the cone alge-
bra on Ry with weight control of breadth e relative to the weights v and v — p,
respectively. From the cone theory we have an interior symbolic structure in
(t,7) € T*Ry \ 0 that is the standard one of classical pseudodifferential opera-
tors on Ry 3 ¢, the exit symbolic structure that is responsible for ¢ — oo and the
principal conormal symbolic structure for ¢ — 0

omoa(A)(y,2) : E, — Fy, (3.1.4)

yeY,zeC, Rez:%—y.

Let us set Ty X :=T*X|y, and let St (T3 X \ 0; E', F') denote the space of all
restrictions of elements of S (T* X \0; E, F) to Ty X \0. Setting A = op, (a(,)) for
an ag, (z,€) € SW(T*X \ 0; E, F), the operator family (3.1.3) admits to recover
() |T;X\0 e S (Ty X\ 0;E,F) in a unique way which gives us a linear map

ol SY(T*Y \0,g; E',F'). = SW(Ty X\ 0; E', F')

where
kerol, = S o(T*Y \ 0,g; E', F').. (3.1.5)

Remark 3.1.1 A pair (py,ps) € SW(T*X \ 0;E,F) x SW(T*Y \ 0,g; E', F").
equals the symbol o(A) = (o0y(A),05(A)) of some A € L*(X,g; E, F). if and only
if py = oy (A) and py|ry x\0 = 0y (Ps)-
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Remark 3.1.2 For every choice of op,, the composition oy op., induces a linear
map
[op0p,] : SW(T*X \0;E,F)
= SW(T'Y\0,g; B', F'). /Sif.6(T"Y \ 0,95 E', F')..
An element of S (T*X \ 0; E, F) is called elliptic, if it defines an isomorphism
% E — 7% F.

Theorem 3.1.3 Let Y = 90X satisfy the following condition. There exists a vector
field v on Y (i.e., a section in T*Y) such that v(y) # 0 for everyy € Y. Then
for every v € R the map op.,, can be chosen in such a way that the ellipticity of

ay(T,§) € SW(T*X \ 0; E, F) entails the Fredholm property of

by (Y, m) := 0p 0p, (aw)(y,n) : B, @ K7 (Ry) — F, @ KS7HT7H(Ry)  (3.1.6)

for every (y,n) € T*Y \ 0.

For general X a similar result holds up to stabilisation. By that we mean an
elliptic symbol B N
(2, € SW(T*X \0;E® E,F & E)

for some E € Vect(X) such that

sex ®idgs E.

a(#) (ZL”, €)|S*X = Q(y) (:UJ 6)
Here S* X is the unit sphere bundle induced by 7*X.

Theorem 3.1.4 For a given elliptic a(,)(z,§) € SW(T*X \ 0; E, F) there is an
Ee Vect(X) such that for a suitable choice of the map op.,, v € R,

b (Y, m) = 0a(op, (@) (W, m) : (ESE), @K (Ry) = (FOE), @K M7 H(R,)

is Fredholm for every (y,n) € T*Y \ 0.
A proof of Theorem 3.1.3 and Theorem 3.1.4 will be given in Section 3.3 below.

Remark 3.1.5 If a, is elliptic, the operator (3.1.6) is Fredholm for any s = so €
R and n # 0 if and only if the principal conormal symbol

om0 0P, (a)(y,2) : By — F),

is a family of isomorphisms for ally € Y, Rez = % — . In that case b,)(y,n) is
Fredholm for all s € R, ker b, (y,n) is independent of s and a finite—dimensional
subspace of B, © S7(Ry ).

Moreover, there is a finite-dimensional subspace of F,@S"~# (R} ). that is direct
to imb,(y,n) and spans together with imb,(y,n) the space F, @ K™*77H(Ry)

for all s € R. This is true for ally € Y, Rez = % - 7.
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3.2 Ellipticity of boundary value problems with projection
data

Let b (y,n) € S(T*Y \ 0,g; E', F'). be an element such that
by (y,m) : By @ K7 (Ry) — F @ K*7H77H(Ry.) (3.2.1)

is Fredholm for every s € R and (y,n) € T*Y \ 0, cf. Theorem 3.1.3. Because of
the homogeneity b, (y, An) = A Kxb,) (v, 7))/<;;1 for all A € R, it is often sufficient
to consider b(,) on the unit cosphere bundle S*Y. Let us denote that restriction
simply again by b(,). We then have an index element

iIldS*y b(u) € K(S*Y)

Ifg(u) € SW(T*Y\0,g; E', F'). is another choice such that oy, (g(u)) = a(w |1z x\05
relation (3.1.5) gives us

by — b € S(M“lG(T*Y \0,g; E', F')..

E(u) (y,n) is not necessarily a Fredholm family in the sense of (3.2.1). Moreover, if
this is the case, it may happen that

inds*y b(l»b) 7é inds*yg(u).

Now let A € LH(X,g;v). be an SL-elliptic operator, v = (E,F;J_,Jy),
and let A € L*(X,g;E,F). be the upper left corner of A. Setting o(4) =
(04 (A),05(A)) =: (a(u),b()) we then have a Fredholm family (3.2.1) where

ind oy (A) = [r7J,] — [75 7], (3.2.2)

m : S*Y — Y. Thus, like in the calculus of boundary value problems with the
transmission property, we have

indoy(A) € T K(Y), (3.2.3)

cf. relation (0.0.7).

Given an elliptic symbol a(,) € SW(T*X \ 0; E, F) we may ask, whether to a
given weight v € R there is an SL—elliptic A € £L#(X, g;v). for a suitable choice of
bundles J1 € Vect(Y) such that a(,) = oy (A).

Theorem 3.2.1 Let a(,) € SW(T*X \ 0; E, F) be elliptic, let v € R, and let A :=
op, (au)) be chosen in such a way that (3.1.6) is a family of Fredholm operators.
Then the following conditions are equivalent:

(i) There exists an SL—elliptic A € LM(X,g;v). forv = (E,F;J_,J}) for suit-
able J_, J € Vect(Y') such that a,) = oy (A).
(ii) o5(A) has the property (3.2.3).

Proof. After the discussion before it remains to show (ii)=-(i). Relation (3.2.3)
implies the existence of elements Jy € Vect(Y') such that (3.2.2) holds. Similarly

to Corollary 1.3.4 there exists a g(,)(y,n) € Sé”) (T*Y \ 0,g; E', F'). such that (in
the notation of (3.1.6))

ker(b(,) + 9(u))(y,m) = J1y,  coker(b) + g(un)(y,n) = J-y
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for all (y,n) € T*Y \ 0, independent of the specific s. Now the construction of
the isomorphism (1.3.3) in Lemma 1.3.3 allows us to fill up the family of Fredholm
operators (b, + g(u))(y,n) to a family of isomorphisms

E, @ K" (Ry) F, @K™ #(Ry)
) (y,m) : ® — @ ,

<b(u) + 90 ke
J—vy J+,y

Clu) 0

first for all (y,n) € S*Y and then, by homogeneity of order p (according to a rela-
tion of the kind (1.2.9)) for all (y,n) € T*Y \ 0. In this construction we may easily
achieve smoothness in the variables (y,n) when we repeat the arguments in the
proof of Lemma 1.3.3 for C*° operator functions and a parameter space M that is
a C'* manifold. In addition, since C§°(R; ) is dense in K%7(Ry ) for every s,v € R,
the potential part k(,)(y, ) can be chosen as amap k) : 75-J . — 73 F'@C°(Ry ),
while ¢(,,)(y,n) may be represented by an element in 7§, (J © (E')* @ C5°(Ry))
such that the map c(,)(y,7) is defined by an integration fooo (e (y, m(t), ult))Ey dt,
where (-,-)p; denotes the pairing between E and its dual (£;)". Let us now re-
strict g(.), K(u), ¢u) to a coordinate neighbourhood U]’. on Y and interpret the
variables y as local coordinates in 2 C R? with respect to a chart U]’. — . Then,
if x(n) is an excision function, we get operator—valued symbols

9(,m) = x(Mg( (y,m) € SHQ x RS L7 (R, C*), LT H(Ry,CY)),
k(y,m) = X(Mk (y,m) € SH(Q x R T, K7 #(Ry., C*)),
c(y,n) = x(Meqy (y,m) € SHQ x R K27 (R, CF), T+,

for all s € R, where k£ and ji are the fibre dimensions of the bundles E, F' and
J+, respectively. Let Gy,;, Ky, and Cy, denote the pull-backs of Op(g), Op(k)
and Op(c) from €2 to U; with respect to the charts and the trivialisations of the
involved bundles. Then, similarly to (2.3.4) we can pass to an operator

G K L = pjo 0 G : K : w& 0
<C 0) —Z%( 0 goj) (CZJ_ OU) ( ; wj) (3.2.4)

and set A := (Opv(“g)”g 10() which belongs to the space £#(X,g;v). for v =
(E,F;J_,J}) where (3.2.4) equals 05(A) and a(,) = oy (op, (a(,) + G). O

Remark 3.2.2 It can also be proved that there is an SL—elliptic A, € LM(X,g;v1)-
such that A = op. (a(y)) equals the upper left corner of Ay, wherevy = (E; F;J -1, J4 1)
for a suitable choice of Jii € Vect(Y). It suffices to set J_ 3 = CN- for a

sufficiently large N_ and to choose some homogeneous potential symbol k() :
7y CN- = 7L F' @ KS~#7~#(Ry.) such that

E @ K5(R, )
(b k) sy (C% = T F @ KSR (R, (3.2.5)

is surjective. For sufficiently large N_ this is possible, and then ker (b(ﬂ) k(u),l) €
Vect(Y') can be taken as a copy of Jy 1. Finally, (3.2.5) can be filled up by a second
row (C(N)71 Q(/,L),l) to a block matriz isomorphism that plays the role of o5(A;).
Then we can pass to a corresponding operator A; by a similar scheme as in the
proof of Theorem 3.2.1.
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Proposition 3.2.3 Let op, : SW(T*X \ 0;E,F) — L*(X,g;E,F). be another
choice of an operator convention in the sense of (3.1.1), let a(,) € S(T*X \
0; E,F) be elliptic, set A = op,(a(), A= op,(a(), and assume that both
oo(A) and os(A) are families of Fredholm operators E, @ K7 (Ry) — F, ®
Ks—r—#(Ry), (y,m) € T*Y \ 0. Then we have inds-y 0s(A) € 77 K(Y) if and
only if indg-y o5(A) € K (Y).

Proof. 05(A4)(y,n) can be written

oa(A)(y,n) = aalay)(y,n) +oa(m + g)(y,n),

where og(ay) is of the form (2.3.12), g5(m) of the form (2.3.11), and os(g) €
SU(T*Y \ 0,g; E', F').. Similarly, we have

oa(A)(y,n) = oa(ay)(y,n) +oa(m +g)(y,n).

By virtue of os(ay) — oa(ay) € S](\ZLL_G(T*Y \0,g; E', F'")., without loss of gener-
ality we may assume o5 (ay) = 05(ay). In addition, since elements of Sé“ ) (T*Y\
0,g9; E', F"). represent families of compact operators, the property of ind o5(A) or
indoy(A) to belong to 7} K(Y) is not affected by a Green summand. Therefore,
05(g) and o5(g) may be ignored.

There exists an N_ € N and an injective homomorphism

kg 1 miCN= = i F @ KS™H7 (R, ),
(y,m) € S*Y (point-wise mapping to F, @ C5°(R; )) such that both

E' @ K> (Ry)
(oold) ko) emi | e ST @KTHR,)  (3.26)

and

B E' @K (Ry)
(o0(D) ki) o7 ® LA @ CTRTMRL) (3.2.7)
(CN,

are surjective (as usual, the choice of s is unessential).

Set b,y == (00(A) k() and E(N) = (aa(ﬁ) k(u))' Observe that the prop-
erty indgs-y 09(A) € 77 K(Y') is equivalent to the fact that for sufficiently large N_
the bundle L, := kerb(,) € Vect(S*Y) may be represented by a system of triviali-
sations where the transition isomorphisms only depend on y, not on the covariable
7. Clearly, we have inds-y 09(A4) € n{K(Y) & inds+y b,) € 7 K(Y), and the
same for the operator families with tilde. B

Let b(_ul) (y,n) denote a right inverse of o5(A)(y,n); it can be calculated within
our class of boundary symbols. Then we have b, (y, n)bful) (y,m)—1=:08(n)(y,n)+
(o) (9,m) € Sie(T*Y\O, (v =,y = ) F', F')c] s+, where n(y, ) is a smoothing
Mellin family of a similar form as (2.3.11) (for p = 0) and l)(y,n) € Sé?) (T*Y"\
0,(y =,y — ) F', F')e|s+y. We have

inds«y (1+0a(n) + o)) = inds-y (1 + 0g5(n)) € i K(Y),
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because L takes values in compact operators and os(n)(y,n) is independent of
7 on S*Y. From

inds*y(b(“)) = inds*y(b(ﬂ)) - inds*y(l + l(o))
we then immediately get the assertion. O
Proposition 3.2.4 Letv,7 € R, and let op; : SW(T*X\0; E,F) - L*(X,q; E,F)z
for g = (7,7 — u), be similarly defined as (3.1.1) for v (with arbitrary €, > 0).

Let a(,) € SW(T*X \ 0; E, F) be elliptic, set Ay == op,(ag), A5 = ops(a()),
and assume that

oo(A,)(y,m) : By @ K*7(Ry) — Fjy @ K47 #(Ry )

and
oo(A5)(y,n) : B, @ K7 (Ry) = Fy @ K777 H(Ry)
are families of Fredholm operators, (y,n) € T*Y'\0. Then we have indg-y 05(A+) €
T K(Y) if and only if inds+y 0p(A5) € ] K(Y).
Proof. Starting from our operators

A WHY(X,E) = WYX, F), Ay W T (X, E) —» WX F)

that are continuous for all s we pass to Zn, = (R}fﬁ)’lAqR%fx’ € LMX,g;E,F).,
using the operators from Theorem 2.3.8. We then have o, (A4,) = oy (Zn,) = a,
and hence, setting A := A, A= fL, the boundary symbols o5(A) and Ua(g)
satisfy the assumptions of Proposition 3.2.3. To complete the proof it suffices

to note that relation inds+y 05(A4,) € m{ K(Y) is equivalent to inds-y 05(A5) €
T (Y). O

We now pass to boundary value problems with global projection conditions.
Let us fix v:=(E,F;L_,Ly) for E,F € Vect(X) and L := (Py,Jy,Ly), cf.
Section 1.2, (ii).

Definition 3.2.5 The space TH(X,g;v). for g = (v,v— ), 7,0 € R, € >0, is
defined to be the space of all operators

WX, E) - WX, F)
A: ® — & , (3.2.8)
PS(Y,L,) PS?H(Y7L+)
s € R, such that
(i) A:==u.l.c.cAe L*(X,g;E,F)., cf. Section 3.2,
(i) (3.2.8) can be written as a composition

A=P AR (3.2.9)

for an A € L¥(X,g;b)., b= (E,F;J_, J3),

where the operators Py and R_ have the same meaning as in Section 1.2 above.
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Let Ty;, (X, g;v): (T4 (X, g;v):) denote the subspace of all A € TH#(X,g;v).

auch that 4 € Lhiia(X,g;v). (LE(X,g;v).) in the representation (3.2.9). More-

over, let TH(X,g;E,F)., Ty;,o(X,g;E,F). and T5(X,g;E, F). be the spaces

of upper left corners in the respective classes of 2 x 2-block matrices. Finally,

T (X, g;v). will denote the set of all operators (3.2.9) where A € L;*°(X, g;b)-,

and we write T, (X, g; E, F). for the corresponding space of upper left corners.
The principal symbolic structure of 7#(X,g;v). consists of pairs

a(A) := (o4 (A),00(A)),

where 0y (A) 1= 0y4(A) for A := u.l.c. A is the standard homogeneous principal
symbol of the upper left corner

oy(A) :nxE = nx F, (3.2.10)
mx : T*X \ 0 — X, while 05(A) is the homogeneous principal boundary symbol

Ty B @ Ko7 (Ry)  7wpF' @ K5 m7 1 (Ry)
oa(A) : ® — ©® (3.2.11)
L_ L.

7wy : T*Y \ 0 = Y, given as the composition

oo = (o 0 Yoo (5, 0 ),

where Ua(fT) is the boundary symbol of A, cf. formula (3.2.9), p+(y,n) is the
homogeneous principal symbol of Py and r(y,n) : L_ (., — (73J )y the
canonical embedding.

Proposition 3.2.6 Let A € TH(X,g;v). and 0(A) = 0. Then we have A €
TH=1(X,g;v)-, and A as an operator (3.2.8) is compact for every s € R.

Proof. Let us write A in the form (3.2.9) for an A € £/(X, g;b).. If we set

~ 1 0 ~(1 0
Ao = A
’ <0 p+> (0 p—)
we also have A = Py AyR_, and o(A) = 0 implies o(Ay) = 0; the latter sym-
bol refers to £#(X,g;b).. This gives us Ay € £¢71(X,g;b)., and hence A €

TH=1(X,g;v).. The compactness of (3.2.8) follows from the compactness of A in
the usual Sobolev spaces. O

For g = (v, — p) we define inductively
T (X, g;0): = {A € T U (X, g;0). : 0(A) = 0},

j=1,2,--- where o(-) in the latter notation indicates the pair of principal symbols
of order pn — (j — 1).
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Proposition 3.2.7 Let g = (v,7 — p), and let A; € TFI(X,g;v)., j €N, be an
arbitrary sequence. Then there exists an A € TH(X, g;v). unique mod7; > (X, g;v).,
such that A ~ Z?io Aj, ie.,

N
A=) A eTHNHI(X, giv).

Jj=0

for every N € N,

The proof is an easy consequence of a corresponding result for the space £#(X, g; b)..

Consider any A € TH(X,g;v). for v =(E,F;L_,L,) in the notation of Defi-
nition 3.2.5 and an operator B € TH(X,g;w). forw:= (V,W; M_, M), V,W €
Vect(X), triples M1 = (Q+,Gx, My) with G4 € Vect(Y), My € Vect(T*Y \ 0),
and projections Q@+ € LY%(Y; Gy, G 1) that have corresponding principal symbols.
There is then a direct sum

AeBeTHX,g;vdw).,

defined in a canonical way, where v bw :=(E®V,FoW;L_e& M_,L, ® M)
for
L.eM_=P.-oQ_,J_dG_,L_dM.)

and, similarly, Ly & M. Then

WX, EaeV)  WoHRTHX, F o W)
Ao B: e — @
PS(Y,L_&M_) P #(Y,L,®My)

is continuous for all s € R.

Theorem 3.2.8 A € TH(X,g;v). forg = (y—v,v—(u+v)), v = (Ey, F; Lo, L),
and B € TY(X,h;w)z for h = (y,7 —v), w = (E,Ey; L_, Ly) implies AB €
TN+V(X7gOh;U Ow)min(s,g) fOT’gOh = (777_ (,LL+I/)), Vow = (EaF;L—7L+)7
and we have

7(AB) = o(A)o(B)

with componentwise multiplication. If A or B belongs to the subspace with subscript
M + G (G), then the same is true of the composition.

Proof. The assertion is an immediate consequence of Theorem 2.3.4 and of Defi-
nition 3.2.5. O

Definition 3.2.9 An operator A € TH(X,g;v): forg = (v,v—u),v=(E,F;L_,L,),
e >0, is called elliptic, if both (3.2.10) and (3.2.11) are isomorphisms.

Remark 3.2.10 The condition that (3.2.11) is an isomorphism is independent of
s. If it is satisfied for an s = sg € R then so is for all s € R.

Theorem 3.2.11 Let a(,) € SW(T*X \ 0; E, F) be an arbitrary elliptic element.
Then for every v € R there ewist triples Ly = (Py,Ji,Ly), Ly = Li(y),
and an elliptic operator A € TH(X,g;v). for some e > 0, g = (7,7 — 1),
v=(E,F;L_,Ly), such that oy (A) = a(,).
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Proof. According to Theorem 3.1.3 we choose an operator A, = op, (a(,)) €
L*(X,g; E, F). for some & > 0 such that b, (y,n) := 0a(A,)(y,n) represents a
family of Fredholm operators (3.1.6).

Choose elements Ly € Vect(S*Y') such that [Ly] —[L_] = inds«y (b(,)). Then,
similarly to the proof of Theorem 3.2.1 we find a family of isomorphisms

E,@K*(Ry) F,® K1 H(Ry)
> (y,m) : D — D (3.2.12)

(b(m + 9w ke
L—,(y,n) L+,(ym)

C(u) 0

where g(,,) € Sé”) (T*Y'\0,g; E', F'"). is a suitably chosen Green boundary symbol
such that
Ly = ker(bg) + g(u), L_ = coker(b,) + g(u))-

while k(,,) and c(,) are smooth families that are (y,n)-wise of the type of potential
and trace symbols, where

ke (y, An) = XNexke) (y,m), cuy (s An) = Meeg (y,m)ry "

for all A € Ry, (y,n) € T*Y \ 0. For convenience, bundles Ly on S*Y will be
identified with their pull-backs to 7*Y \ 0 under the canonical projection (y,n) —
(y,n/In]); we hope that this does not cause confusions. Choose arbitrary bundles
J+ € Vect(Y) such that Ly are subbundles of 7} J+. From (3.2.12) we can pass to
a homomorphism

. E' ®K*(R,) F' @ Ks—mr—n(R, )
<b(u)~+ 9w k(u)) - o S o
Clu) 0 J_ Jy

(3.2.13)
by extending k,) to E(“) by zero on a complementary bundle Lt to L_ in 7. J_,
while ¢(,,) is defined by composing c(,,) with the embedding L} — 73 J;..

As in the proof of Theorem 3.2.1 we can form an operator A € LM(X,g;b).
for b = (E,F;J_,J;) that has (3.2.13) as its principal boundary symbol. In
addition, the projections 73 J+ — Ly along complementary bundles Lt of Ly in
my J+ can be interpreted as principal symbols of projections Pi € Lgl(Y; Ji, Jy).
Then, forming A by formula (3.2.12), where the operators Py, R_ are as Section
1.2, we get an elliptic element A € TH(X,g;v). for v = (E,F;L_,Ly) Ly =
(Ps,Jx, Ly), where, in particular, oy (A) = a(,). O

Theorem 3.2.12 For every elliptic operator A € TH(X,g;v):, g = (7,7 — 1),
v = (E,F;L_,L.), there exists an elliptic operator B € TH(X,g;w). for w =
(F,E; M _, M ) with suitable triples M+ = (Q+,CN , M) with projections Q- €
LY(Y;CN,CN) and My € Vect(S*Y), such that A& B € L*(X,g;b). for b =
(E@F,F ® E;CN,CN) is SL-elliptic.

Proof. Let A := u.l.c. A which belongs to L#(X,g; E, F). and form the formal
adjoint A* that is an element in LM(X,g*; F,E). for g* = (—y + p,—7). The
definition of A* is based on the relation

(Au, v)wo.o(x,1) = (u, A"V) oo (x,p)
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forallu € C§°(int X, E), v € C§°(int X, F') which is compatible with the (y,n)—wise
formal adjoint on the level of principal boundary symbols

(0a(A) (Y, f, D ooy cr) = (f,00(A") (Y, M) koo ®y,c4)>

where o9(A*)(y,n) defines a bundle homomorphism
oo(A*) iy F @ KOV TH(Ry) = np B @ KS7H77(Ry)
that is Fredholm for every s € R where
inds*y UB(A*) = — inds*y UB(A).
Choosing any N such that Ly € Vect(S*Y) have complementary bundles M. €
Vect(S*Y) in CV  ie., Ly & My = CV, we have
indg«y 09(A") = [M4] — [M_].
From Theorem 2.3.8 we have order and weight reducing isomorphisms
R WX, B) 5 W (X, )
and ‘
Ry WX F) —» WOTRP (X F).
Let us pass from A* to the operator B := Ry *7A*(R%*7)"! € L*(X,g;F, E).
that has the property
indg-y 09(B) = indg~y o5(A").

As in the proof of Theorem 3.2.11 we find an element g(,,) € Sé”) (T*Y'\0,g; F,E).
such that

My =ker(oa(B) + g(), M_ = coker(os(B) + gu))-

and we can form triples M+ = (Q+,CN, ML) with a choice of projections Q1 €
L% (Y;CN, My) having the projections CV — My along Ly as principal symbols.
The constructions of the proof of Theorem 3.2.11 then give us an elliptic operator
B € TH(X,g;w). with the desired properties. O

Remark 3.2.13 Setting A = A® B we have
A=PyAR_  and  B=PrAR:

where Py = diag(1,Py) and R_ = diag(1,R_) are as in (3.2.7), while P{ =
diag(1,Q.), R+ = diag(1, RY), with R: being the canonical embedding P*(Y, M ) —
H:(Y,CM).

Definition 3.2.14 Let A € TH(X,g;v)e, g = (7,y— ), v = (E F;L_ , +), >

0. An operator P € T~#(X,g~ v ")z forg™" = (vy—p,7), v~ = (F,E; Ly, L),
€ >0, is called a parametriz of A, if the operators

C=T—-PA and  C,:=I1—-AP (3.2.14)

I )min(e,8) and TG (X7 gr; U’r‘)min(s,s ’ respectz'vely, fOT’ g, =

belong to TG (X,g;5v1)
E;L_,L_)andg, = (y—p,y—n), vr = (F,F;Ly,Ly).

(v,7), vi = (E,
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Theorem 3.2.15 Every elliptic operator A € TH(X,g;v): has a parametriz P €
TH(X,g7 v Yz, (¢f the notation in Definition 3.2.9 and 3.2.14.)

Proof. Let us apply Theorem 3.2.12 to A and form A = A® B € £*(X,g;b).
with some complementary elliptic operator B. By virtue of Theorem 2.3.6 we have
a parametrix P € L7*(X,g~ ;b ')z where o(P) = 0~ (A). Let us set

Py = diag(1, P_)P diag(1, Ry ),

where Ry : P*~#(Y,Ly) — H* #(Y,Jy) is the canonical embedding and P_ €
LY (Y; J_,L_) the projection involved in L_. Then we have

PoA = diag(1, P_)P diag(1, P4 ).A diag(1, R_).

It follows that for & = Z — Py A € T°(X,g,;v/)z we have o(&) = 0, ie.,
& € T HX,g,;v))z, cf. Proposition 3.2.6. Applying Proposition 3.2.7 we find an
operator D; € T~1(X,g;;v1)z, such that (Z+D;)(Z—&) = Z mod T (X, g;;v1)z
it suffices to form the asymptotic sum D; := Z]Oil Elj . This yields (Z + Dy)Po A =
Imod 75 (X, g;;v1)z, and hence Py := Z 4+ DyPy € T H(X,g" ;v 1)z is a left
parametrix of A. In a similar manner we find a right parametrix; thus we may take

P =P (|
Theorem 3.2.16 Let A € TH(X,g;v). be elliptic. Then

W (X,E) W R #(X, F)
A: @ o ® (3.2.15)
PS(Y,L_) PS_H(Y7L+)

is a Fredholm operator for every s € R. The parametriz P in Theorem 3.2.15 can
be chosen in such a way that the smoothing remainders are projections of finite
rank, where C; projects to ker A and C, to a complement of im A for every fized s;
ker A is independent of s as well as dim coker A, i.e., ind A is independent of s.

Proof. The Fredholm property of 3.2.15 is a direct consequence of the fact that the
remainders & and &, in relation 3.2.14 are compact operators, cf. also Proposition
3.2.7. The second part of Theorem 3.2.16 is a consequence on generalities on elliptic
operators that are always fulfilled when we have elliptic regularity in the respective
scales of spaces.

O

3.3 Operators of order zero

In this section we study operators A € L°(X, (0,0); E, F). and associated boundary
symbols in more detail. Setting Ay = R."""AR,” we get an isomorphism

LM(X, (v,y — p); E,F). — L°(X,(0,0); E, F).,

cf. Theorem 2.3.8.
Set Sy X = S*X|y and

SON(Sy X, B F') = {a

spx: a€ SOT"X\0;E,F)}.
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Given any A € L°(X, (0,0); E, F). such that o (A4) € S©(T*X\0; E, F) is elliptic,
we form a := oy (A)|s; x and ask the Fredholm property of

op™(a)(y,n) =rtaly,n,Dy)e’ : B, © L*(Ry) = F, ® L*(R;.) (3.3.1)

for (y,n) € S*Y. In contrast to (3.1.3) we now prefer L2-spaces, because in the
case of (possibly) violated transmission property the standard Sobolev spaces or
Schwartz spaces with smoothness up to the boundary are not always respected
under the operation. Define = := S§ X U N, where N is the trivial [-1,+1]-
bundle on Y induced by the conormal bundle to Y, i.e., the fibres are intervals
{r: —1 <7 < 1} connecting the south pole ((n,7) = (0,—1)) with the north pole
((m,7) =(0,1)) of S; X,y €Y.
Let us recall a criterion for the Fredholm property of (3.3.1) in terms of

g7 (2) == (1 —eT2m5) 71, (3.3.2)

cf. Eskin [7]. The functions g*(z) are meromorphic in z € C with simple poles at
the real integers. Thus the lines I's = {z € C: Rez =} do not contain poles for
B ¢ Z. Choose a diffeomorphism ¢ : (=1,1) — ['1 with ¢(r) - £oo for 7 — F1.
Then, setting

a*(y) = aly,0,%1),

the family of homomorphisms
aly,7) = a"(y)g* (C(r) +a”(y)g~ (((7)) : E, — F, (3.3.3)
is well-defined for —1 < 7 < 1, since g7 (2) + g~ (2) = 1, and g*|r, strongly tends
2

to 1 for Imz — Foo. More precisely, (3.3.3) is the convex combination of the
homomorphisms a*(y) : E, — F.

Proposition 3.3.1 The operators (3.3.1) are Fredholm for all (y,n) € S*Y if and

only if
~ 3.3.3 forn=0,-1<71<1,
ty.n.m) = { &5 . (33.4)
oy(A)|szx  for |y, 7| = 1.
is a family of isomorphisms
a(y,m,7) 1 E, = F, (3.3.5)

for all (y,n,7) € =Z.

Proposition 3.3.1 is known from the theory of singular integral operators, cf.
the framework of Eskin [7]. An explicit proof of the necessity of the isomorphism
(3.3.5) for the Fredholm property of (3.3.3) may be found in Rempel and Schulze
[12].

Recall that when op™(a) stems from a symbol oy (A) with the transmission
property, we have a™(y) = a~(y), and hence the criterion of Proposition 3.3.1 is
automatically fulfilled as soon as o, (A) is elliptic.

In general, each family of isomorphisms (3.3.5) represents an element o(a) €
K(B,Z) in the relative K—group of the pair (B,Z) for B := B*X|y, where B*X
is the unit ball bundle induced by T*X.

By virtue of K(B,Z) = K(R?> x S*Y) there is an isomorphism

L K(B,E) > K(S*Y)

via Bott periodicity.
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*

Proposition 3.3.2 Let o (A) be elliptic (of order zero), assume that oy (A)|s
extends to = as a family of isomorphisms (3.3.5), and let o(a) € K(B,Z) be the
associated element. Then we have

inds-y op™ (a) = 1(c(a))

for a(y,§) = Uw(A)|T;X\o-

For symbols with the transmission property Proposition 3.3.2 is known by
Boutet de Monvel [4]; a related statement for symbols of elliptic differential opera-
tors is due to Atiyah and Bott [1]. The general case (not requiring the transmission
property) is treated in Rempel and Schulze [12].

Clearly, any other extension a of oy (A4)|sz x to Z as a family of isomorphisms

a: By~ F), (3.3.6)

(y,n,7) € E, also represents an element o(a) € K(B,Z) and hence a certain
t(o(a)) € K(S*Y). ~

It is not obvious at first glance how t(o(a)) can be interpreted as indg«y b for
some family

b(y,n) : By ® L*(Ry) — Fy ® L*(Ry)

of Fredholm operators, parametrised by (y,n) € S*Y. But the pointwise analytic
information from Eskin [7] combined with that on the structure of pseudodifferen-
tial boundary value problems not requiring the transmission property from Rem-
pel and Schulze [12] and [18] gives us the following scenario: Let §(E', F') denote
the set of all families of homomorphisms E; — [}, continuously parametrised by
(y,m,7) € =, that vanish on S5 X. Every element of (E’, F') can be canonically
identified with a continuous family of homomorphisms parametrised by (y,7) €
N =Y x [-1,1], vanishing on Y U {1} U {+1}. We then have (a='a)(y,n,7) =
1+ fo(y,7) for some fo(y,7) € 6(E', E'), or

5(:%”777-) = 6(.%77:7)(1 + fO(yaT))
=a(y,n,7) + fily,7)

for an fi(y,7) € (E',F'). It suffices to consider elements 5(y,n,7) of the above
kind such that f;(y,(~!(z)) is a Schwartz function with respect toz € I';. In fact,

we can obviously construct such @ from an arbitrary family a a1 of 1som0rphlsms
satisfying a —a; € 6(E, F") by a small change of a1y near YU{-1}U{+1} within
the homotopy class of fam11~1es of isomorphisms represented by a;. We then have
o(ay) = o(a) and hence to(a1) = vo(a).

For our purposes it is even sufficient to assume a smaller class of functions on
['y. For every p € R we define M[(T). to be the subspace of all h(z) € A({z :
f—e <Rez < f+e}) with hlp; € S¥(T5) for all § € (B — ¢, + ¢), uniformly in
d €[B—¢',B+¢] for arbitrary 0 < &' < e. Also the space M/5(I'g). is Fréchet,
and we set M*(Tg) = .59 MpH(Tp)e. An analogous definition makes sense for
Hom(E', F")-valued functions, E', F' € Vect(Y). The corresponding spaces will be
denoted by M% (Y xT'g; E', F'). and M*(Y x Ig; E', F'), defined to be the union
of these spaces over € > 0.

In the sequel w(t),w(t), ... are cut—off functions on Ry . The following assertion
is a generalisation of Propositions 3.3.1 and 3.3.2.
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Proposition 3.3.3 Let oy (A) be elliptic (of order zero), a(y,§) = oy(A)|r: x\0
(¢f. the notation of Proposition 3.3.1), and let [(y,z) € M~>°(Y x F%;E’,F’) be
an element such that

f(yac(T)) fOTTIZO, _]-STS]v

3.3.7
oo(Dlssx for | =1 (3:5.7)

ay,n,7) = {
for f(y,z) :==a™(y)gT(z) +a (y)g (2) + Uy, 2) defines a family of isomorphisms
(3.3.6) for all (y,n,7) € Z. Then, if w(t), W(t) are arbitrary cut—off functions,

r(y,m) = op™ (a)(y,n) + w(t|n]) opp (B(tI]) = By ® L*(Ry) — Fy @ L*(R+.)
(3.3.8)
is a family of Fredholm operators parametrised by (y,n) € T*Y \ 0, and for its
restriction to S*Y we have

indg-y (r) = 1o(a). (3.3.9)
The Fredholm property (3.3.8) is shown in [7] (in a slightly modified form
without @; the present formulation is given in [18] and relation (3.3.9) in [12], [11]).
Remark 3.3.4 We have r(y,\n) = kar(y,n)ky" for all X > 0 for (kau)(t) =
Azu(At).
Let

SI(Q x (R7\ {0});g,v)  for g = (7,0), v = (k, L;j_,jy) (3.3.10)

denote the space of all g(,)(y,n) induced by Green symbols g(y,n). This space can
equivalently be defined by similar mapping properties of g, (y,7) and gfu) (y,m) as
of g(y,n) itself, now with C*° dependence on (y,n) € Qx(R?\{0}) and homogeneity
in n # 0. Let, in particular, Q@ C R? be open, regarded as a local patch of Y, and
interpret k, [ and j_, j+ as the fibre dimensions of bundles E’, F' and J_, Jy on
Y. Then the spaces (3.3.10) behave invariantly under substitution of the transition
maps to the pull-backs of the bundles under 7y : 7*Y \ 0 — Y, and we get global
spaces

SU(T*Y \ 0;9,b")  for g = (v,0), b' = (E',F';J_,J,). (3.3.11)

Elements g(,)(y,n) in the latter space can be written as 2 x 2-block matrices.
Define the space

SOy \ 0;b')
= {(6 9)+g(y,n) : r(y,n) is an operator family of the form (3.3.8) for
some a(y,&) € SO(T*X \ 0; E, F)

7y x\0, Ly, 2) €
M~®(V x T ', F'), and (o) (4,1) € S5 (7Y \ 05 0,0),5) }.
(3.3.12)

Here, we suppose the bundles E’, F' € Vect(Y") to be restrictions of corresponding
E,F € Vect(X) to Y.

Proposition 3.3.5 We have
SOy \ 0;0') = {os(A) : A€ L(X,(0,0);b). for some e >0},
forb=(E,F;J_,Jy).



2 OPERATORS WITH GLOBAL PROJECTION CONDITIONS 36

For p € S(O(T*Y \ 0;b), given by an expression on the right of (3.3.12), we set

U;{;(p)(yag) = a(yaf)a UM(p)(ya Z) = m(y,z)

Proof. If we are given an element A € L°(X;(0,0);b)., the boundary symbol
o5(A) belongs to (3.3.12) as a consequence of the definitions. Conversely, given
an element in S (T*Y \ 0;0') we want to show to that there is an associated
operator. The part for the Green symbols is trivial, because Green operators are
classical pseudo—differential operators with the respective homogeneous principal
symbols. Thus it suffices to consider upper left corners. In other words, we consider
an operator family r(y,n) + g(y,n) where r(y,n) has the form (3.3.8), and a(y,n) is
the restriction of an element a(z,¢) € S(O(T*X \ 0; E, F) to the boundary. As we
know from [21] the operator family op™(a)(y,n) equals the boundary symbol of an
element 4y € L°(X, (0,0); E, F). modulo an operator family m(y,n) € R}, (2 x
R?,(0,0); E', F"). (in local coordinates (y, t) near the boundary). The operator Ag
may be defined as Ay = r*Aet for an A € LY%(2X;2E,2F), where 2X is the double
of X, and 2E,2F € Vect(2X) are bundles such that 2E|x = E, 2F|x = F. Thus
it remains to observe that the elements of S(°)(T*Y \ 0; E', F') that are locally in
R?VHG(Q x R?,(0,0); E', F'). are boundary symbols of associated operators. For
the Green part this has been discussed before, while for the smoothing Mellin part
we replace in the cut—off functions |n| by [n] and thus obtain local operator—valued
symbols. The operators themselves are then obtained by the standard operator
convention with the Fourier transform in y—variables and passing to a sum, using
a system of charts near the boundary and a partition of unity. [l

Remark 3.3.6 p(y,7) € SO(T*Y \ 0;b'), b' = (Eo, F;Jo, Jy), and p(y,n) €
SOT*Y\0;¢'), ¢ = (B, Eo; J-, Jo), implies (pp)(y,n) € SO (T*Y \ ;6" o¢') for
cocd =(EF;J_,J;), and we have

oy, (0P) (4, &) = o (D) (¥, )0 (P) (4, €),
om (pP) (Y, 2) = om (p) (Y, 2)om (P)(y, 2).

Proof of Theorem 3.1.3. It suffices to consider the case p = v = 0. In fact, the
reduction to order and weight zero as in the beginning of Section 3.3 can also be
done on the level of interior and boundary symbols. In other words, we can first
pass to a symbol of order zero by setting a(yy = oy (R™"#)a(, 0y (RE"), carry
out our construction, that yields an element b(g)(y,n) that is a Fredholm family as
asserted in (3.1.6), where it suffices to consider

boy (y,1m) + By ® L*(Ry) = Fy @ L*(Ry.).

Then we may set

by (ysm) = oo (R ") (y, by (y, noa(Ry).

By virtue of Proposition 3.3.5 for the case of upper left corners (i.e., when the fibre
dimensions of Ji are zero) it suffices to show that a()(z,§)|s; x for an elliptic
principal symbol a()(z,§) : 7x E — 7% F' admits an extension to an isomorphism

a:mEE — 7L F, 22— Y. (3.3.13)

In fact, knowing this, an approximation argument as explained before yields an ele-
ment [(y,z) € M~°(Y x F%;E’, F') such that a given by (3.3.7) for ag(,&)|sz x
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instead of oy (A)|s; x is also an extension of a(g)(, &)
= (that is homotopic to @ through isomorphisms).

By hypothesis there is a non—vanishing vector field v(y) on Y. Without loss of
generality we assume |v(y)| = 1 for all y. Applying an isomorphism 7Y — T*Y
that induces a diffeomorphism « : SY — S*Y between the respective unit cosphere
bundles we get a map aov : Y — S*Y. For every y € Y there is a unique half-circle
Ny on S;X containing the points a o v(y) and (y,0,0,+1) (north and south pole

of the sphere.) This yields a trivial bundle N on Y with fibre Z\ny over y. There
is a projection of S3 X to the conormal bundle N, given by (y,0,n,7) = (y,7),

sy x to an isomorphism to

which induces an isomorphism v : N = N (as fibre bundles in the set—up of
homeomorphisms between fibres).
To get an extension of a(g)|s; x to an isomorphism (3.3.13) it suffices to set

a(y,7) == a()(y,0,n,7), for v, (,7) =T, vy : Ny = Ny, y €Y. O

Proof of Theorem 3.1.4. Similarly to the preceding proof it suffices to consider
~v =0 and any fixed order p# € R. In the present case it is convenient to set p = 1.
Let a(y) € S(l)(T*X \ 0; E, F') be elliptic, and let a’(l) = a(1)|y which belongs to
SUW(Tg X \0; E', F"). By the standard difference construction we have an element
[aly)] € K(TyX) = K(T"Y xR). Every element in K(7™Y x R) can be represented
by a homomorphism

b(y,n) +ir:V =V (3.3.14)

for a vector bundle V on Y x R, where b: 73 V' — 7} V' is a self-adjoint elliptic
symbol of order 1 on Y, cf. Atiyah, Patodi and Singer [2, III]. Since b(y, n) is elliptic,
(3.3.14) is an isomorphism between corresponding fibres for 7 = 0. Moreover, since
b is self-adjoint, there are only real eigenvalues. Thus (3.3.14) is an isomorphism
for all 7 € R. Passing to stabilisations both of a’(l) and (3.3.14) we see that for a
suitable M € N the homomorphism a'(l) ®idea between pull-backs of E' ©CM and
F'&CM to Sy X has an extension to an isomorphism @ : 74 (E' & CM) — n%(F' @
CM). Similarly to the preceding proof we find an element [(y,z) € M ~>®(Y x
Ly B ®CM  F'®CM) such that (3.3.7) for a’(l) @®idem |5 x instead of oy (A)]s; x
defines an extension of a’(l) @ idem |s; x to an isomorphism to 2, homotopic to a

through isomorphisms. In analogy to (3.3.8) we now form

r(y,m) :=op™ (ag))(y,n) + tw(tn]) opp (1D (t|n])

(B, o CM) e KYORy) = (F, & CM) ® L*(Ry). (3.3.15)
Then to complete the proof, we apply a reduction of order and weight by a similar
scheme as in the proof of Theorem 3.1.3. (|
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