Reduction of Orders in Boundary Value Problems
without the Transmission Property '
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Abstract. Given an algebra of pseudo-differential operators on a manifold, an elliptic
element is said to be a reduction of orders, if it induces isomorphisms of Sobolev
spaces with a corresponding shift of smoothness. Reductions of orders on a manifold
with boundary refer to boundary value problems. We consider smooth symbols and
ellipticity without additional boundary conditions which is the relevant case on a
manifold with boundary. Starting from a class of symbols that has been investigated
before for integer orders in boundary value problems with the transmission property
we study operators of arbitrary real orders that play a similar role for operators
without the transmission property. Moreover, we show that order reducing symbols
have the Volterra property and are parabolic of anisotropy 1; analogous relations are
formulated for arbitrary anisotropies.

We finally investigate parameter-dependent operators, apply a kernel cut-off con-
struction with respect to the parameter and show that corresponding holomorphic
operator-valued Mellin symbols reduce orders in weighted Sobolev spaces on a cone
with boundary.
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Introduction

Reductions of orders in problems for elliptic partial differential equations are
useful for many purposes, e.g., for constructing parametrices, or in the index
theory. The case of operators on a closed compact C°° manifold is standard
and particularly simple. To reduce orders on a compact C°° manifold X
with boundary Y, we have to take into account the specific influence of Y
to the operations and to the choice of Sobolev spaces on X that we wish to
reduce to L?(X). For pseudo-differential operators of integer order with the
transmission property at the boundary there are order reducing operators
that refer to the scale H°(X) of standard Sobolev spaces on X, cf. Boutet
de Monvel [1], or Grubb [7] for specific constructions. Other variants of
reductions have been used by numerous authors, in particular, by Eskin [4],
or Schulze and Seiler [17]. While the construction in [4] as well as that in
[7] reduces smoothness of standard Sobolev spaces to zero, the choice of [17]
also works in Sobolev spaces with arbitrary weights at the boundary.

In the first part of the present paper we show that the analogues of sym-
bols from [7] of arbitrary order 1 € R give rise to operators that reduce
the smoothness of standard Sobolev spaces by p. In addition, we show that
the order reducing symbols have the Volterra property and are parabolic of
anisotropy 1, cf. Piriou [11], or Krainer [10]. Moreover, using a result of
Burenkov, Schulze, and Tarkhanov [2] we establish a relation to operator-
valued symbols on the boundary in the framework of twisted homogeneity, cf.
[16]. Our investigations are motivated by the problem to express parametri-
ces of general elliptic mixed problems within a complete pseudo-differential
calculus.

In the second part we apply our order reducing operators in parameter-
dependent form and obtain order reductions in weighted cone Sobolev spaces,
based on the Mellin transform in axial direction. In addition, we apply the
kernel cut-off construction from [15] and show that such reductions are pos-
sible in terms of holomorphic operator-valued Mellin symbols.

The authors thank Thomas Krainer (University of Potsdam) for valuable
remarks on the manuscript.

1 Local constructions

1.1 Order reducing symbols

Let U C R™ be an open set, and let S*(U x R™) denote the space of
Hormander’s symbols of order i € R, i.e., the set of all a(z, &) € C®°(U xR™)
such that

D3 Dga(@,€)| < e(@)* (1)
for all (z,¢) € K x R" for arbitrary K CC U and multi-indices « € N, g €
N, with constants ¢ = ¢(«, 5, K) > 0; here, as usual, (¢) := (1 + |£|2)%



Moreover, let %, (U xR") denote the subspace of all classical symbols of order
{1, i.e., there are functions a(,_; (7, &) € C*°(U x (R*\{0})), a(u—j)(z,A) =
AP— Ja( iz, &) for all (z,§) € U x (R* \ {0}) and all A € Ry, j € N, such
that

N
Zau _j)(w,8) € SHT (NED(U x R™)
7=0

for all N € N. Here, x(£) is an arbitrary ezcision function, i.e., any x(§) €
C*®(R™) that equals 0 in a neighbourhood of ¢ = 0 and 1 for |{| > R for
some R > 0. If a notation or a result is true both in the classical and the
general case, we write “(cl)” as subscript.

We are interested in this section in a particular class of symbols of order
w1 that may be used for ;4 € Z in the calculus of pseudo-differential boundary
value problems with the transmission property, cf. Boutet de Monvel [1],
Rempel and Schulze [12], or Grubb [8]. We take, in particular, symbols from
[7] of the following form. Set z = (y,t) fory = (y1,...,yn_1) ER* L t e R
with covariables & = (7, 7). Choose an element ¢ € S(R), such that ¢(0) =1
and supp F~'o C R_ (where F is the Fourier transform on R). It is easy to
see that such functions ¢ exist. We now set

r (n,7) == (w (c@») (n) - iT) y 2)

i € R for any constant C' > 0. For our purposes we need the following

properties:
Proposition 1.1 (i) r(n,7) € S4(R"),

(ii) 7" (n,7) is elliptic of order u € R for a sufficiently large choice of
C > 0 and extends with respect to T to the upper complex half-plane
T 410, 0 > 0, as a holomorphic function that is C*° for 8 > 0, such
that

2 (n, 7 +i0)] < (1 + [nf + ||+ 0)" (3)
for all (n,7,0) € R*~! x R x Ry for a constant ¢ > 0.

(iii) The constant C > 0 in (ii) can be chosen in such a way that
rf(n, 7 +i0)] = ¢(1 + n| + || + 0)" (4)
for all (n,7,0) € R*! x R x Ry for a constant ¢ > 0.

Proof. (i) Let us set p(¢) := (§)~'r_(&). By virtue of r_ (&) € S4(R?), cf. [13]
or [16] we have p(¢) € S (R™). Moreover, the symbol p(¢) is elliptic of order
zero, and we have p(§) # 0 for all £ € R, cf. the arguments for assertions
(ii), (iii) below. To show that r* () is classical we write r* (&) = (&)#pH(€).



Because of (£)* € S4(R") it suffices to show that p#(¢) € SY(R™). For every
fixed ¢ € R" we have by Cauchy’s theorem

R ®)
PO =5 57—
2mi Jp, (A = p(£))
for any curve L in the complex plane, where A — p(¢) does not vanish for all
€ € R (such a curve always exists as we see from relation (6) below). Note
that A — (A — p(&)) ! represents a continuous map L — S9(R"). Formula
(5) easily yields p#(¢) € SY(R™). In fact, the integral can be written as a
limit of finite integral sums of the form Z;yzl(%ri)_l)\;‘,]\,()\j,]\r —p(€)7 "~
with points A\j y € L belonging to the i-th interval of the corresponding
partition of the curve, where max{|d; n|,7 =1,...,N} = 0as N — co. We
then get convergence in the Fréchet space S9(R").
(ii), (iii) For the case pu = 1 we first write

T ”9) / O irrin)Cm) -t
= e "\ P(t)dt
S”<c<n> . (®)

for ¢(t) € S(R), suppy C R_, fEOO'L/J(t)dt = 1. This shows that r_(n,7)
extends to a holomorphic function in 7 + 6, 8 > 0. Moreover, we have

T+7;0)‘
<c¢ for all (n,7) € R, 0 >0,
o ()| <= )

for some constant ¢; > 0. This yields
[r—(n, 7 +i0)] < c2(1 + || + |7| +6) (6)

for all (n,7) € R*, 8 > 0, for some ¢ > 0. In the proof below, cf. relation
(7), we will show that r_(n,7 + if) # 0 for all (n,7) € R*, § > 0. Thus
log(r_(n, 7 + 1)) is well-defined as a holomorphic function in 7 + 76 for
0@ > 0 by the branch of the logarithm that is real for positive arguments.
This gives us an extension of r* (£) in 7 + i, § > 0, by

(0,7 +i6) = etog(r—(n,7+1i0))

Now relation (6) immediately implies estimate (3) for g > 0 for a suitable
constant ¢ > 0 and estimate (4) for u < 0 for a suitable constant ¢ > 0.

We now show that r* (n,7) is elliptic for a sufficiently large C' > 0. To
this end, it suffices to consider the case p = 1. We have

r_(n,T) B ‘P(ﬁ) —¢(0) B ‘P(czm) - ¢(0) T B N
(n) —ir = () —ar () =1+ CZI) C((n) —ir) =l+q

T

o( el )—(0)
0(Tn>

that o] < %(|g0’(0)| + ¢) for

where |a| < & . For fixed ¢ > 0 there exists a d(¢) > 0 such

T

(m

< d(e) and |af < %% for




Now it follows easily that |«| < ¢ for a constant ¢ < 1 for all (n,7) € R”,
when C > 0 is sufficiently large. We thus obtain

[r—(mn,7)| = (1 — @) |(n) —i7] = e3(8) (7)

for some ¢3 > 0. This yields estimate (3) for 4 < 0 and # = 0 and estimate
(4) for 1 > 0 and 0 = 0. Analogous calculations go through for 7+1i6, 6 > 0,
where |7| in the estimates is to be replaced by || + 6. O

Remark 1.2 Let us set

Ti (n,7) == r (n,7) (8)

(the complex conjugate) for every u € R. We then have an analogue of
Proposition 1.1 with the only exception that extensions with respect to T
concern the lower complex half-plane.

Proposition 1.3 For p € Z the symbols r:’;(f) have the transmission
property at t = 0.

Proof. First recall that a symbol a(¢) € S4(R™) of integer order p (here,
with constant coefficients) is said to have the transmission property at t = 0
if
a(n, (n)7) € SHRY N@H, for &= (n,7),
where H, := Ht @ H- @ H', H* := {F(e*u) : u € S(R+)}, with H' being
the space of all polynomials in 7. In the present case the symbol
T

1

p — )\ Ty _,

(. () = ()" (o (5) — i)
belongs to S%(R~!)®.(H~ ® H') which is an immediate consequence of
(o(§) —ir)* € H @ H' for any p € Z. O
1.2 Actions in Sobolev spaces

We now turn to pseudo-differential actions between Sobolev spaces in the
half-space H*(R}) := H*(R")|gz, where R} := {(y,t) € R" : ¢t € Ry.}.
Furthermore, we set H{(R}) = {u € H*(R") : suppu C R} }. We use the
fact, that for every s € R there is a continuous extension operator

e+ HY(RL) — H'(RY)

such that rtoef = id on the space H*(R%); here, 1 f := flrn - I p(z,2',§) €
SEU x U x R"), U CR" open, is any symbol, we set

Op(p)u(z) := / / ey (a, of Yu(a!)da'dE, dE = (2m) "

first for u € C§°(U), and then extended to Sobolev spaces.
The following lemma is standard:



Lemma 1.4 Let u € S(R"), such that suppu C R". Then the Fourier
transform Fu(n,T) extends with respect to T to a holomorphic function in
T4+ 140 for 8 > 0 that is C* for 0 > 0, and for every N € N there is a
constant cy > 0, such that

(L4 [n] + |7+ )N Fu(n, 7 +1i6)| < en. (9)
Lemma 1.5 The operators Op(rfy), u € R, induce continuous operators
Op(rh) : H§(RY) — Hy "(RY)
for all s € R

Proof. First, as a consequence of Proposition 1.1 and Remark 1.2, rf}

are standard symbols of order y; then the operators Op(rf) : H*(R") —
H* H(R"™) are continuous for all s € R. Thus it remains to show that
suppu C @1 implies supp Op(r)u C Ei. Let us consider, for instance,
minus symbols; the plus-case is analogous and will be dropped. The argu-
ments are, in fact, the same as in Eskin’s book, but for completeness we
shall recall the main steps here. Because S(R") := S(R")|z» is dense in

H{(R"), it suffices to assume u € S(R"). By virtue of Proposition 1.1 and

Lemma 1.4 the function r* (n, 7 + i0) Fu(n, T + i6) is holomorphic in § > 0
and continuous for 6 > 0. Applying Cauchy’s Theorem we can write

Op(r*)u(y,t) = (27r)_”/ VT Ol () 7 4 i0) Fu(n, T + if)dndr

n

for every 6 > 0. Using (3) and (9) we obtain

|Op(rt)u(y, )] < c/ e (Lt [nl + I7| + [0)" [Fu(n, 7+ i6)|dndr < ce~**(10)
R?’L

for some constants ¢, ¢ > 0. It follows that Op(r” )u(y,t) = 0 for t > 0 when

we pass in (10) to the limit & — +o0. O

Proposition 1.6 The operators Ri,s = riOp(ri)egt, p € R induce
isomorphisms
RE, « HP(RL) — H* *(RY) (11)
for all s € R (they do not depend on the choice of the extension operator
el), and we have (R ,) ' = riOp(r;”)eiu.
Proof. Let consider R 55 the case of plus-operators is analogous and will be
omitted.
Let ef : H*(R} ) — H*(R") be any continuous extension operator. Then
the continuity of
R H*(RY) — H* M(RY)



+

for every s € R is evident. Let us show that R:f;_ , for any choice of e/,

is a right inverse of R” .. In fact, we have for u € H* #(R})

R RT!( u= (12)

1 Op(rt el 1 Op(rZ)ei_,u = 1+ Op(r* ) Op(r=)ei_u + r* Op(r v,

where v = (efrt — 1)Op(r *)el ,u € H{(R"). By Lemma 1.5 we have
supp Op(r*)v € R", i.e., rTOp(r*)v = 0. The first summand on the right
hand side of (12) equals re;” pU = u. In an analogous manner we can show
that R” _ has a left inverse, i.e., we have calculated the inverse (R” ,)~! as
asserted. Finally, the action

7 Op(rf)ef : H*(R}) — H* *(RY})
is independent of the choice of e’ , since for any other choice &l we have

rtOp(r?) (el — & )u =rTOp(r*)v =0

for v = (ef — &l )u € HY(R"). O
Let us define a linear map

et . H(RY) —» S'(R")
for s > —% by setting

oiay= { J0 o SR o=, T € R,

This allows us to apply Op(ri) in R” to et f in the distributional sense.
In the following we use the fact that operators e : H*(R%) — H*(R")
(extensions by zero) are a possible choice of ef for all s € R, —% <s< %

Proposition 1.7 The operators Ri = riOp(ri)ei, u € R induce iso-
morphisms
R H(RY) — H*M(RY) (13)
forall s e R, s > —%,fmd we have (RE)™! = riOp(r;”)eiu for s —pu <
_%7 (Ri)_l = FjEOP(T;“)ejE for s —p > —%.

Proof. As noted before, by virtue of Proposition 1.6, it suffices to consider
the case s > % Let us discuss the case of R"; the plus-case is completely
analogous. For s — p < —1 we have for u € H*#(R%)

r+Op(rﬁ)e+r+Op(r:“)ej_Mu = r+Op(rﬁ)ejr+Op(r:“)ej_uu
+ 1tOp(r*) (et — ej)rJ“Op(r:“)e;uu.



Because of s > § we have v := r*Op(r_*)ej_,u € H°(R?) and hence
etv € HY(R"), efv € H(R") C HO(R"), i.e., (et —el)v € HY(R"). This
gives us rtOp(r” ) (e™ —ef)v = 0, and we see from the proof Proposition 1.6
that r™Op(rZ")e/_, is a right inverse of R”. Moreover, for f € H*(R") we
have

7

rtOp(r!)ef f
rtOp(r)(e™ —ef) /.

rtOp(r #)el xTOp(rf)etf = r*Op(r_")e
+ 17 Op(r e

+
Cs—pt
+
S

,u
Because of (et —ef)f € H)(R") we have as before r*Op(r") (et —ef)f =0,
ie. r+Op( el p 1s a left inverse of R" . Tt remains to consider the case

— 11> L because for 1 5 > 8 — p > —5 we may replace e by e/_ , Anyway.
We have for u € HHRY)

r+0p(rﬁ) +Op( )e+u = r+Op( )e+r+Op(r:“)est U

I
because r+Op(r:“)(es+,u —et)u = 0 by the same arguments as before.
Moreover, v := r+Op(r_*)e/ _uu € H°(RY), s > 1, and we have again

rTOp(r )(e+ —et)v=0.1It follows altogether
rTOp(r*)eTrTop(r~")etu = rTOp(r* et Op(r—*)el JU = U

Thus the operator r™Op(r_*)e™ is a right inverse of rtop(r" )e™. It is also a
left inverse, because the consideration is now symmetric, due to s > %, S
n> g O

Remark 1.8 We will employ below symbols in parameter-dependent form,
e., where n € R*1 s replaced by (n, ) € R*~! x R for some l. Accord-
1ng to Propositions 1.6 and 1.7 we then have parameter-dependent operators
RE ((\) and RE(X) that define isomorphisms (11) and (13), respectively, for
every X € R,

1.3 A relation to classical Volterra symbols

If U C C is an open set and E a Fréchet space, A(U, E) denotes the space
of all holomorphic functions in U with values in E (the space A(U, F) is
endowed with the Fréchet topology that is immediate by the definition).

Definition 1.9 Let us set Hy :={7+i0 € C: 7 € R0 € Ry }. We then
define Sﬁ:l)(Q xR* 1 xHy) for p € R, Q C R* ! open, to be the space of all

elements h(y,n, 7 +1i6) € C®°(Q x R* 1 x H) with the following properties:

(i) h(y,n,7+i0) € A(Hy,C=(Q x Ry~

9



(ii) h(y,n,7+10) € Sﬁzl)(Q xR xR, xRy g), i.e., his a classical symbol
of order u in the covariables (n,7,0) for (n,0) varying in R* and 0 in
R..

The set

SEOQxRY) . = {p(y,n,7) = h(y,n,7 +i6)]p—o :
h(y,n, 7 +i0) € SH(Q x R"™! xHy)}  (14)

coincides with corresponding spaces of Volterra (for the case H_) and anti-
Volterra (for the case H ) symbols of anisotropy 1 and order p € R, cf.
Piriou [11], or Krainer [9]. Recall (to motivate the notation) that the inverse
(i + |£]?)~" of the anisotropic homogeneous principal symbol of the heat
operator —A + 9y (which is of anisotropy 2 and order 2) is Volterra in the
classical sense; in particular, it extends to R x H_.

Let S¥(R"™! xHy) (S%(R")+) denote the subspace of elements of S/ (£2x
R x Hy) (S4(Q2 x R) ) that are independent of y.

The following theorem is valid for arbitrary u € R.

Theorem 1.10 (i) We have

rit(n, 7 +1i0) € SHR" T x Hy).
(i) rt(n,T+10) is elliptic of order u with respect to the covariables (n, ,0),
i.e., for the homogeneous principal symbols

o r)007.0) = o ( T2 i), 0u(0)(07.0) = 5o 7,0

of . of order p in (n,7,0) € R L x Hy \ {0} we have
oy (rl)(n,7,0) # 0.
Proof. (i) Let us consider, for instance, the minus-case. First we verify that
i (n, T +10) € :S'M(IR,’;_1 x R, x Ry)

(the space on the right of the latter relation is to be interpreted as a symbol
space in the variables (n,7,0) € R"™! x R x R, ignoring the aspect of
holomorphy). It suffices to consider the case y = 1 for similar reasons as in
the proof of Proposition 1.1 (here we use, in particular, that r* (n, 7+16) # 0
for all (n,7,0) € R* x R, and for all p, cf. Proposition 1.1 (iii). Because of
—iT + 6 € S1(R® x R,) it suffices to prove that

T+ 10
C{n)

p(,7,0) = () ( ) e SH(R" x Ey).

10



Since we have ¢ = Ff for a function f € § (R) supported in R_, we get
@ (LCW) € S °(RxR;) by Lemma 1.4 for the case n = 1. From Proposition
2.2.1 of [17] the map

p(n,7,0) = p(n, (m,(n)0)

induces isomorphisms

Stel)

for all 4 € R, both for classical and general symbols.
In the present case we obviously have

R xRxRy) — St (R”*l)@bﬂsf‘d)(R x Ry)

bl )7, (000) = (i) (5 ) € S )0,8H(R X B

(ii) For the proof that 7 (n, 7 +40) is elliptic of order p it suffices again
to consider the case y = 1. From Proposition 1.1 we know that there is a
constant ¢ > 0 such that

(.7 +i0)] = c(L + [n| + |7] + 0)"

for all (n,7,0) € R* x R,. Together with assertion (i) we conclude that
r (n, T+ i0) is elliptic of order p in the sense of symbols in S, (R" x Ry). O

Remark 1.11 The considerations so far have a direct generalisation to
anisotropic symbols of arbitrary anisotropy | € N\ {0}. Setting, for instance,

= (o (G ) ' —ir)

we get a corresponding version of Proposition 1.1 when we replace |n| by
In|' in the estimates (3) and (4), respectively. The analogous plus-symbols
rff_(n,T)l are then parabolic of order p and anisotropy | in the sense of the
work of Krainer [10]. Note that Piriou [11] required | to be an even number.

1.4 Interpretation as operator-valued symbols

Given a symbol a(z,€) € SH(U xR"), U C R" open, U := QxR > (y,t), we
can carry out the pseudo-differential action in ¢ (with the covariable 7) and
then obtain a family of operators Op(a)(y,n) : C§°(R) — C*°(R). Let us
assume that a(y,t,n,7) is independent of ¢ for |¢| > ¢ for a constant ¢ > 0.
Then op(a)(y,n) extends to a family of continuous operators

Op(a)(y,n) : H*(R) — H*"*(R) (15)

for every s € R, (y,n) € 2 x R*~!. We now employ operator-valued symbols
in the following sense:

11



Let E be a Hilbert space and {xs}scr, be a strongly continuous group
of isomorphisms k5 : E — FE, k5K, = kg, for all ,p € Ry, In particular, for
E = H*(R), we set

(ksu)(t) = 62u(dt), § € Ry,

for arbitrary s € R.

If (E,{ks}ser,), (E,{Rs}ser,) are Hilbert spaces with strongly contin-
uous group actions in that sense, S#(Q x R?; F, E) for 4 € R, Q C RP open,
denotes the set of all a(y,n) € C>*(Q2 x R?, L(E, E)) such that

g DS DEaly, m) bl < et~
for all (y,n) € K x R? for arbitrary K CC Q and multi-indices o € N, § €
N?, with constants ¢ = ¢(«, 8, K) > 0.

Further, let St (Q x (RT\ {0}); E, E) denote the set of all f(y,n) €
C>*(22 x (R?7\ {0}), L(E, E)) such that

fly, on) = 0" s f(y, n)ry*

for all § € Ry, (y,n) € Q x (R?\ {0}). Finally, S4(Q x R; E,E) (the
space of classical symbols) is defined to be the subspace of all a(y,n) €
SH(Q x R?%; B, E) such that there are elements a(, ;(y,n) € S=9) (2 x

(R?\ {0}); E, E) such that

N
a(y,n) — x(n) Y _ agu—j(y.n) € S~V (Q x R, B, E)
=0

for all N € N. The subclass of elements of Sé‘cl)(Q x RY; E, E) that are

independent of y will be denoted by Sf;, (R?; E, E).
Example 1.12 Let E := H*(R), E := H*(R,), both endowed with the

groups kg : u(t) — 5%u(5t), d > 0. Then we have for the restriction operator
1t H5(R) — H*(Ry) the homogeneity v+ = kgrtw; ' for all § > 0, and
hence, tt € SY(R*~1; H5(R), H* (R, )).

Proposition 1.13 ([16]) Let a(z,&) € S*(2 x R x R") be independent
of t for |t| > ¢ for some ¢ > 0. Then we have Op(a)(y,n) € S*(2 x
R~ L H*(R), H* *(R)) for all s € R. In addition, if a is independent of
t, op(a)(y,n) is classical.

To apply such an observation analogously to R, we need a specific
choice of our extension operators efst that are compatible with the group

12



action {r, }ser, . To this end we employ a result of [2] that says that el can
be chosen in such a way that

ngsi = egtng (16)

for all § € Ry ; the action of kg on H*(Ry) is also defined by ksu(t) =
1
d2u(dt).

Theorem 1.14 If ef is an extension operator with the property (16),
for every p(y,n,7) € SL(Q x R™) we have

T Op(p)(y, mef € SHQ x R*™H HY (R, ), HH(Ry))

for every s,p € R. For s > —% and p(y,n,7) € SL(Q x R")_ we have an
analogous relation when we replace ef by e*.

Proof. The symbol r*Op(p)(y,n)es is a composition of the operator-valued
symbols e € S (R H*(Ry ), H5(R)), cf. relation (16), Op(p)(y,n) €
SH(Q xR HS(R), H* #(R)), cf. Proposition 1.13, and the restriction r*
may be interpreted as rt € SY(R"™!; H57#(R), H**(R})), cf. Example
1.12. The second assertion follows similarly to the proof of Proposition 1.7.
[l

Remark 1.15 The pseudo-differential operator &f := Op,(ef) : H*(R?})
— H*(R"™) is an extension operator in R, i.e., r7&f =id on H*(RY), and
for p(y,n,7) € SL(Q x R™) we have

Op, (" Op,(p)(y,n)el) =r*Op, ,(p)e; .

1.5 Further elements of the local calculus
We now apply Definition 1.9 and notation (14) in the variants

Sl (2 % R 1+ H.) and Sy (2 x R4,

i.e., where the covariable € R"~! is replaced by (n,\) € R*~ '+, In par-
ticular, we have the (n, A)- dependent versions %} (n, A, 7) of the symbols (2)
and (8), respectively.

Example 1.16 Let J(y) € C®°(Q)QR*" 1 @R" ! be an (n—1) x (n—1)-
matriz function on Q with real-valued entries. Then we have

pa(y,m A7) = (I (W), A, 7) € SH(Q x R

Theorem 1.17 ([9]) Let p;(y,n,7,\) € S’il_)j(ﬂ x Rt L 5 €N, be an

(
arbitrary sequence. Then there is a p(y,n, 7,\) € SF. (2 x R*) L such that

(c)
N

p— Zp:] c SV‘*(N+1) (Q % Rn+l)j:7
j=0

13



for every N € N, and p is unique modulo a symbol in the £ -class of order
—00.

Example 1.18 Let x : Q — Q be a diffeomorphism. Then the asymp-
totic summation for the symbol push-forward (belonging to the push- forward
of associated pseudo-differential operators) can be carried out in S%(Q x
R*) L. In fact, according to the standard formula in coordinate substitu-
tions for pseudo-differential operators, the sum has the form

U 1., _ _
PG gy ~ D 109 )p(y," dx ()i, A7) @a(y, 1),
aeNn—1

where @q(y, ) = D=7, for §(y, 2) = x(2) = x(y) —dx(y)(z ~y) are
polynomials in 7 of degree < %

Remark 1.19 Let x : @ — Q be a diffeomorphism, and assume that
detdx(y) = 1 for all y € Q. Then, applying the symbol push-forward of
Ezample 1.18 to p(y,n, \,7) := " (n,\,7) (in the y- independent case) we
have

P77, A7) =" (7, A, 7) mod SHH(Q x R _.

Let L=>°(Q x Ry )_ denote the space of all integral operators
oo
Cutyst) = [ [~ el Outy/ ity
QJ—o0

u € C§°(22 x R), the kernel of which belongs to C*°(2 x R x  x R), where
c(y,t,y',t') has the Volterra property, i.e., ¢(y,t,vy',t') = 0 whenever t < ¢
The space of these operators is Fréchet in a natural way, and we can form
L™®Q x R;RY = SR, L™ (2 x Ry) ). We now define the space

LE(Q@ xRy RY)_ = {Op(p) +C: ply,t,7) € SHQ x R*)_,
CeL QxR ;R)_L

In an analogous manner we can define L/ (€ x Ry;R'),. Note that the
elements of L (Q x R, ; RN+ correspond to parameter-dependent Volterra
and anti-Volterra operators that are (modulo smoothing operators) transla-
tion invariant with respect to t. We could have defined analogous operators
with smooth dependence on ¢ also in general; more details may be found in
Krainer [9].

Definition 1.20 (i) Let Hl"’;)c(y)(Q xR), s € R, defined to be the set of

all u € D'(Q x R) such that pu € H*(R™) for every ¢ € C§(Q).
Moreover, let HS (2 x R), s € R denote the subspace of all

comp(y)

HS (y)(Q x R) such that u(y,t) =0 for all y € (Q\ K) x R for some

loc

K cc .

14



(ii) Set

HG ey (§2 % Ry):={uc€ Hiye () (2 X R) : suppu C 2 X R},

0,comp comp

Moreover, let

Hige () (2 X Re) := Hyo(,) (2 X R)|oxry »
Hs (y)(QXRi):Hs (y)(QXRHQXR:{:'

comp comp

For every p(y,n,7,A) € S5(Q x R"*") we have families of continuous
operators

Op(p)(A) : Hipp(y) (2 X R) = HE (2 x R)

comp loc(y)

for all s € R. There are canonical embeddings

H oo (2 X R) 5 HO(RY), Hio (2 x Ry ) < H(RL).

comp comp

Thus, to u € H Csomp(y)(Q x Ry ) we may apply extension operators &F. In
particular, we get well-defined families of continuous operators

s € R, for every p € S(’fl(Q x R**!), Similar mappings can be considered for
the opposide side.

As before, we mainly consider minus-symbols. The plus-case will be
analogous.

Proposition 1.21 Let p € S4(Q2 x R*™)_; then the operator (17) is
independent of the specific choice of the extension operator €] .

The arguments are completely analogous to those in Proposition 1.6.

Remark 1.22 Applying Theorem 1.14 to a symbol p(y,n, T, ) € S4(Qx
R we get an operator-valued symbol

rFop(p)(y,m, Ae € Sh(Q x R HA (R, ), HY #(Ry)).
Forp(y,n,7,A) € SHQAxR)_ and s > —% we have an analogous relation,

when we replace el by et the corresponding extensions by zero. This is a
parameter-dependent analogue of Theorem 1.14.
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2 Operators on a manifold with boundary

2.1 Global reduction of orders

Let X be an oriented compact C*° manifold with boundary Y, and let 2X
denote the double of X, obtained by gluing together two copies X, X_ of
X along their common boundary Y (we then identify X with X ). Choose
a collar neighbourhood V of Y in X with a global splitting of variables into
(y,t) for y € Y, t € [0,1), and fix a system of charts

xj:Uj =Ry, j=1,...,L, (18)
xj: U =R, j=L+1,...,N (19)

on X with coordinate neighbourhoods U; on X, such that U; NY # 0 for
j=1,...;L,and U;NY =D for j = L+1,...,N, where U; = U; x[0,1),j =
1,...,L, for an open covering {U7,...,U;} of Y by coordinate neighbour-
hoods. Assume for convenience that the functions §(y,t) and #(y,t) in the
transition diffeomorphisms ijlzl : @1 — @i, (y,t) — (§(y,t),t(y,t)), are
independent of ¢ for small ¢ for j = 1, ..., L. Moreover, without loss of gener-
ality, we assume that the transition diffeomorphisms X; X;c L. g1 5 Rt
induced by the charts x} := x;jlv;ny : Uj = R*~! for j,k = 1,...,L have
Jacobians of determinant 1. We now consider local parameter-dependent
symbols
(€, N) = (g, )@ D (g, = ®)

on R", where w(t) is a cut-off function (i.e., w € C°(R;), w = 1 near t = 0).
Here, R” is regarded as the double of R, 4 in connection with charts (18).
Moreover, for the charts (19) we take symbols (&, A)*.

Let {¢1,...,¢n} be a partition of unity on X, subordinate to {Uy,...,Un},
and let {41,...,9n} be a system of functions ¢; € C§°(U;) that equal 1
on supp ;. The charts (18) near the boundary will be chosen as restric-
tions of charts y; : U — R” for the double U] =2U; toUj,j =1,...,L.
Then the sets Ul, .. UL cover a tubular nelghbourhood of Y of the form
Y x (=1,1); let X denote the union of X with that tubular neighbour-
hood. Moreover, let ¢; € C[‘]’O(Uj) be functions such that ¢;|y;, = ¢; for
j=1,...,L, and let 1%- € C’go(ﬁj) be functions that equal 1 on supp ¢;,
and satisfy 1,Zj|Uj =, 5 = 1,..., L. In addition we assume the functions
¢; and ¢, to be independent of ¢ for |t| < ¢ for some ¢ > 0. We now form
global parameter-dependent pseudo-differential operators on X by

L

Z X Ny + Z i (x;)-Op((&, A"y, (20)
Jj=1 j=L+1

The operator family (20) (extended by zero to 2X \ X) then belongs to

LE(2X; R'). Concerning terminology, in particular, for the space LY (M; RY)
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of classical parameter-dependent pseudo-differential operators of order u € R
on a C'*° manifold M, we refer to [16].

If M is a closed compact C°° manifold, H*(M) denotes the standard
Sobolev space on M of smoothness s € R. Set H*(X) := rt* H*(2X) with
r* being the restriction to int X, and let e : H*(X) — H®*(2X) denote
any continuous extension operator (i.e., r* oel = id on the space H*(X)).
Moreover, for s > —% we define e to be the extension from int X to 2X by
zero.

The operator

R*(N\) := rTR*(\)ef : H¥(X) —» H*#(X) (21)

is continuous for all s € R (and every fixed ) and does not depend on
the choice of el. Moreover, because of Proposition 1.7 we have RF()\) =
rTRE(N)et for s > —1.

Theorem 2.1 There exists a constant ¢ > 0 such that operator (21)
induces isomorphisms for all |A\| > ¢, s € R

Proof. Because of our assumptions on the charts and the localising functions
@; and ¢, in (20) we may apply Remark 1.19; then the operators of the
family R*(\) have the following properties: For j = 1,..., L the operators

A = ()B4 i RE

have the form
R;-‘()\)u =10p(r®)(Nefu + T;(N\)u

on functions u € H*(R"} ) that vanish for (y,¢) ¢ K x (0,¢) for some K CC
R*~! and e > 0 sufficiently small, where Tj(\) € L (2 x R.;R)_ is a
parameter-dependent family of order p — 1. Moreover, R;-‘ (A) == (xj)«RM(N)
for arbitrary j = 1,...,N acts on functions u € H*(R"}) for j = 1,...,L
and on u € H¥(R") for j = L+ 1,..., N with compact support as standard
classical parameter-dependent elliptic operators of the class Lébl(RfLF ;R and
Lé‘l(R";Rl), respectively. We now define the system of Leibniz inverses of
the local parameter-dependent symbols of the operators R;‘ (M) and pass to
associated operators Pf” (A) in R} or R™, according to the cases 1 < j < L
and L+1 < j < N, respectively. For 1 < j < L we can choose P;()) in such
a way that

P Nu = rFOp(r ") (Nes , + Si(Mu
on functions v € H*~#(R" ) with support in K x [0,¢) for some K CC R*~!
and & > 0 sufficiently small, and an element S;(\) € L* ' (Q x Ry ;RY) .
Globally, we form the operator family

N
P = 0i(x; )P (N
=1
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and obtain
PTHNRA(N) =1 - Ci(N), (22)
RENPTH(N) =1 - Cr(N), (23)
where C;(\) and C,()\) are operator families in S(R!, L(H*(X),C*®(X)))
for all s € R. To see the invertibility of R*(\) for large |A| we consider, for
instance, relation (22). We have

NCUM e ms (x),me(x)) < b)Y

for every N € N, where b = b(IN) > 0 is a suitable constant. We then
conclude by a Neumann series argument that

RO\ : HY(X) — H* "(X) (24)

has a left inverse for |A| > ¢;. Analogously, using relation (23), we also
have a right inverse of (24) for |A\| > co. Thus (24) is invertible for |A\| >
¢ = max(cy, ¢3). Moreover, a simple argument in terms of elliptic regularity
shows that ker R#()\) and coker R¥(\) are independent of the choice of s.
Thus, the constant ¢ is independent of s. O

2.2 Holomorphic families of order reducing operators

We now turn to a construction that is of importance for the analysis of
boundary value problems (with or without the transmission property) on
a manifold with conical singularities. We consider order reducing symbols
r# (¢, \) with parameter A € R'.

Definition 2.2 Let Sf;, (U x R x C), u € R U CR™ open, denote

the set of all a(z,&,2) € .A((Cl,Séle)(U x R™)) such that

a(z, €A +if) € S{y, (U x Ry

for every B € R, uniformly in B € K for every K CC R\, By Séﬁ:l) (R* x C')

we denote the subspace of elements that are independent of x.

Here we use the natural Fréchet topologies in the spaces Séi 1)(U x R").

The symbol spaces Sé‘c 1)(U x R" x C') have many properties as they are
known in analogous form from the spaces Séi y (U X R+,

We now recall a kernel cut-off construction for symbols a(z,£,\) €
Séf: l)S(U x R"*!) which we specify below for our order reducing symbols.
et

k(a)(z,&,C) = /6i<Aa($,f,>\)d)\;

here, the correspondence a(z, &, \) — k(a)(z, &, ¢) is first considered for fixed
(z,¢) as a map S’ (R') — S'(R).
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Theorem 2.3 Let a(z,&, ) € S&l)(U X jol), p € R, and let p(¢) €
Cgo(RlC). Then the expression

H(p)a(z, €, ) = / e p(C)(a) (i, £, ), (25)

(1,6,2) € U x R* x C' defines an element in Sé‘cl)(U x R* x ), and the

corresponding map ¢ — H(p)a for fized a represents a continuous operator

H(-): CP(RY — Sty (U x R ).

In particular, if ¥(¢) € CSO(RlC) is a cut-off function (i.e., v = 1 in a
neighbourhood of { = 0) we have

a($7§7>‘) = H(w)a(x7§72)|1mz:0 mod SiOO(U X Rn+l).

A proof of this result may be found in [15], see also [16], or Dorschfeldt [3];
alternative arguments are given in Gil, Schulze, Seiler [6].

Notice that the kernel cut-off operators H(y) only act on the covari-
ables A € R!, while the other variables remain untouched. An inspection of
the proof of Theorem 2.3 shows that H(p) preserves specific subspaces of
symbols. In particular, we have the following result:

Proposition 2.4 Let a(y,n, A\, 7+ i) € Sé‘cl)(Q x R4 Hy) for p €
R, Q@ C R* ! open, and let o() € CSO(RZC). Then we have

H(p)a(y,n,z,1m +1i0) € Séf:l)(Q x R x € x Hy)

(where the symbol space in the latter relation is defined in a similar manner
as that in Definition 2.2), and ¢ — H(p)a is continuous as a map

CE(R) = S{y (2 x R*H x € x Hy).
Ify(¢) € CgO(RlC) is a cut-off function, we have

a(y,n, N\, 7+i0) = H(¢)a(y,n, z, 7+i0)|1mz—0 mod ,S'foo(QXR"*1 XRlXﬁi).

Remark 2.5 The kernel cut-off operators can alternatively be applied to

symbols a(y,n,\, 7) € S&l)(g x Ry then H(p)a(y,n, z,T) again belongs

to ey (2 x R x ).

Remark 2.6 As is known in connection with the proof of Theorem 2.3,
the operator H (1)) for a cut-off function 1 preserves ellipticity also in the
variable z € C', i.e., ellipticity in the variables (£,)\) € Rt implies elliptic-
ity in (&, 2) € R* xC', uniformly in Im z in compact subsets of R'. The same
is true of symbols in S&l)(g x R Hy ). In particular, for a(y,n,\,7) =
rt (n, X\, 7) the symbol H(y)r" (n,z,7) is elliptic in that sense. More pre-
cisely, to every K CC R there is a C > 0 such that H({)r" (n, z, 7 4 0) is
invertible for all (n,z,7 +i0) € R x R x K x H; and fulfills estimates
similarly to those in Proposition 1.1.
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2.3 Operators on manifolds with conical singularities

Another consequence of the kernel cut-off construction is that we can apply
H(p), ¢ € C§°(RL), to operator families a()\) € Lﬁ:l)(M;RlA)’ where M is a
closed compact C° manifold. It suffices to apply H(p) to the corresponding
local amplitude functions, cf. [14], [16]. This gives us holomorphic functions
h(z) € A((Cl,L’(LCl)(M)), where h(X + i) € L‘(Lcl)(M; RL) for every B € R,
uniformly in € K for any K CC R!. Recall that such constructions be-
long to the Mellin quantisation procedures for pseudo-differential operators
on (closed) manifolds with conical singularities without boundary. In the
present section we want to apply our order reducing results for analogous
constructions on manifolds with conical singularities where the base is a
compact C*° manifold X with boundary.

Consider an operator family
R'(X, ), (26)

where the operators R*(\,A) for (A, ) € Rt are constructed in an analo-
gous manner as the order reducing elements of Theorem 2.1 that are of the
form (21) (with A replaced by (A, A)). Then, as a corollary of Theorem 2.1
we see that

RA (M) H¥(X) — HM(X)

consists of isomorphisms for all s € R and all A € R, when the absolute
value of A € R is sufficiently large.

Theorem 2.7 ([14]) For every K CC R there exists a C = C(K) > 0
such that y y
h¥(z, A) := H () RF(z, M)

(with H(v) acting on the variable A € R' as before) is a holomorphic (in
z=X+iB € C) family of continuous operators

(A +iB,A) : H(X) — HH(X),

that consists of isomorphisms for all s € R, for all z = X +14f for arbitrary
B € K, provided |\| > C.

We now apply this result for the case [ = 1. A slight modification of the
constructions allows us to interpret A € R as Im 2z for z € C, running on a
line

I'g:={2z€C:Rez=p}

for some § € R. There is then a simple modification of Theorem 2.7 with
holomorphy in the variable z = §+14\. Instead of the compact set K we now
take an interval d < Rez < d' for some given d < d'. Choosing the above
C sufficiently large, we find a family h#(z, A) that is holomorphic in z € C
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and parameter-dependent with parameter (z, 5\) €l'g x R for every 3 € R,
such that

R (z,A) - HY(X) — HH(X) (27)
is a family of isomorphisms for all z € C such that d < g < d', provided
|A| > C for sufficiently large C' = C(d, d') > 0. Let us now insert § = oty
for n = dim X.

Definition 2.8 The space H5Y(X") for s,y € R and X" :== R, x X is
defined to be the completion of C§°(Ry., C*®(X)) with respect to the norm
1
3

1 ~
L / 11 (2, 2) (M) ()] 2 =
FLH,

21

for some fized \ € Ri, Al > C.

Remark 2.9 The space H*7(X") is independent of the specific A and of
the other involved data such as the cut-off function ¢ or the other ingredients
of the family R*(X,\) from Section 2.1.

Now, as in the operator calculus for conical singularities on an open
stretched cone X, here for a base X that is a smooth compact manifold
with boundary, we have reductions of orders in terms of Mellin pseudo-
differential operators as follows: Set

3 () (X)) : 2m/rl / e ) 2,

d € R, first on u € C°(Ry,C>®(X)), and then extended to our Sobolev
spaces. We then have the following result:

Theorem 2.10 For every p € R and every d < d' there is an operator
family h*(z, ) with the above-mentioned properties such that

,E
2

(WM)(N) : HEYV (X)) = HERT (XD (28)

is a family of isomorphisms for all || > C = C(d,d"), for all s € R and for
all v € R in the interval [2E — d', 2L —q].

Proof. By construction, the operators h*(z, 5\) define isomorphisms (27) for
all z in a sufficiently wide strip d < 8 < d' for any given d < d’, provided
|A| is sufficiently large. At the same time, h#(z,\) is an operator-valued
Mellin symbol of order x4 with constant coefficients, acting between Sobolev
spaces on X. This shows that op’]{/;g(h“)(j\) = 772 0pY, (hE)(\)r~7F% for
hE (2, \) == ht(z —y + 5 )) defines an invertible family of operators (28) for
all y such that d < Re(z — v+ %) < d'. The Mellin operator op%/f refers to
r 1= {z:Rez= %} and hence we get isomorphisms for all weights «y in the

interval [”T‘H - d, ”T‘H —d]. O
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