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Abstract

We introduce the Volterra calculus of pseudodifferential operators with an
anisotropic analytic parameter based on “twisted” operator-valued Volterra
symbols. We establish the properties of the symbolic and operational calculi,
and we give and make use of explicit oscillatory integral formulas on the
symbolic side. In particular, we investigate the kernel cut-off operator via
direct oscillatory integral techniques purely on symbolic level.

We discuss the notion of parabolicity for the calculus of Volterra opera-
tors, and construct Volterra parametrices for parabolic operators within the
calculus.

Mathematics Subject Classification (2000): 35505 (Primary)
35515, 35K40, 35K50, 35K65 (Secondary)

Contents

Introduction 2

1 Basic notation and general conventions 5
1.1 Sets of real and complex numbers . . . . .. ... ... ... ... 5
1.2 Multi-index notation . . . . .. ... ... Lo oL )
1.3 Functional analysis and basic function spaces . . . . .. ... ... 6
1.4 Tempered distributions and the Fourier transform . . . .. . . .. 6

2 General parameter-dependent symbols 7
2.1 Asymptotic expansion . . . . . ... ..o 9
2.2 Homogeneity and classical symbols . . . .. . ... ... ... ... 12

!Supported by the Deutsche Forschungsgemeinschaft



2 Thomas Krainer

3 Symbols with an analytic parameter 15
3.1 Kernel cut-off and asymptotic expansion . . . . . . ... ... ... 16
3.2 The translation operator in holomorphic symbols . . . . . . . ... 27

4 The calculus of pseudodifferential operators 30
4.1 Elements of the calculus . . . . ... ... ... . 0L 31
4.2 The formal adjoint operator . . . . . .. .. ... ... 36
4.3 Sobolev spaces and continuity . . . . ... ... oo 37
4.4 Coordinate invariance . . . . . .. ... .o oo 39

5 Ellipticity and parabolicity 43
5.1 Ellipticity in the general calculus . . . . .. .. ... .. ... ... 43
5.2 Parabolicity in the calculus with an analytic parameter . . . . . . 45

References 47

Introduction

The present article contributes to the axiomatic framework of pseudodifferential
analysis of degenerate partial differential equations, e. g., partial differential equa-
tions on manifolds with singularities.

Substantial progress has been achieved in recent years, in particular, in the the-
ory of degenerate elliptic equations. The general concept is to embed the natural
systems of elliptic partial differential equations into a suitable calculus of pseu-
dodifferential operators that admits the construction of parametrices of elliptic
elements within, and to study the qualitative properties of the equations such as
regularity and asymptotics of solutions and the Fredholm property via algebraic
methods on side of the operator algebra, see, e. g., Schulze [37], [39], [40].

Recently, this concept has been further developed also in the study of parabolic
equations, see, e. g., Buchholz and Schulze [6], and Krainer [23], Krainer and
Schulze [25], [26]. More precisely, the natural systems of parabolic partial differen-
tial equations are embedded in a suitable calculus of pseudodifferential operators
that admits the construction of inverses of parabolic elements. In particular, in ad-
dition to the elliptic theory, the existence and uniqueness of solutions follow, and,
via analyzing the operator and symbolic structure of the calculus, insights about
the qualitative properties of the equations and the structure of solution operators
are obtained.

A typical feature of the parabolic theory is that the pseudodifferential operators
have the so-called Volterra property with respect to time, i. e., the (anisotropic)
symbols extend holomorphically in the time covariable to a complex half-plane,
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including the symbol estimates. The classical calculus of such operators was intro-
duced by Piriou [29], [30] in the study of parabolic pseudodifferential equations on
a finite time interval, and a closed (compact) spatial manifold.

The analysis of parabolic equations, as well as heat equation methods related to
spectral problems, is characterized by parameter-dependent approaches, i. e., the
time covariable is considered as a (spectral) parameter for the operators acting
in space, and the resulting parameter-dependent behaviour is studied first. Af-
terwards, in a second step, the analysis and quantization with respect to time is
performed built upon these structures. In particular, investigations of parameter-
dependent theories with an anisotropic and analytic parameter constitute a nec-
essary step in the investigation of parabolic problems. More information about
this classical approach in various contexts is to be found, e. g., in Agranovich
and Vishik [1], Seeley [41], [42], Melrose [28], Gilkey [15], Shubin [45], Grubb [16],
Grubb and Seeley [17], or Gil [13].

The (pseudodifferential) analysis of (degenerate) partial differential equations on
manifolds with singularities and boundary value problems encompasses, in par-
ticular, the crucial task to describe the behaviour of the equations close to the
singular sets and the boundary, where, typically, extra conditions of trace and po-
tential type are involved that are associated with the operators in a natural way.
In this context, the abstract theory of pseudodifferential calculus with “twisted”
operator-valued symbols was introduced by Schulze (see, e. g., [36], [37]) in order
to describe the general structure of these conditions, as well as the structure of the
operators and the singular Green remainders as they have to be (re)formulated
with respect to a given splitting of coordinates on and transversal to wedges or
boundaries.

Several authors have contributed since to the pseudodifferential calculus with
operator-valued symbols for it provides a general axiomatic framework for the
pseudodifferential analysis of degenerate partial differential equations and bound-
ary value problems, i. e., in concrete situations such as the calculus on manifolds
with conical singularities, edges, and corners, many functional analytic properties
can be traced back to the calculus of operators with operator-valued symbols;
see, e. g., Behm [2], Dorschfeldt [8], Dorschfeldt, Grieme, and Schulze [9], Krainer
[23], and Seiler [44]. Material about pseudodifferential calculus with anisotropic
operator-valued symbols can be found in Buchholz and Schulze [6], Gil [13], and
Krainer [23], and the theory of operators with operator-valued Volterra symbols
has so far been considered in Buchholz [4], Buchholz and Schulze [6], and Krainer
[23], [24].

The purpose of the present paper is to give a unified approach to the calculus of
pseudodifferential operators with operator-valued symbols and an anisotropic an-
alytic parameter (Volterra calculus) in order to provide necessary fundamentals in
the axiomatic framework of pseudodifferential analysis of parabolic equations and
boundary value problems on manifolds with singularities. To this end, we employ
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explicit oscillatory integral formulas and symbols that satisfy global estimates in
the variables (“Kumano-go’s technique”). This direct approach via oscillatory in-
tegral techniques enables us to establish the symbolic and operational calculi in a
transparent form, where, in particular, manipulations on both sides are considered
separated from each other.

The text is organized as follows: In Section 1 we give an account on the basic
notation and general conventions that are freely used throughout this work.

Sections 2 and 3 are concerned with the symbolic calculus of the classes of general
and Volterra operator-valued symbols. We recall the basic definitions and prop-
erties of general anisotropic symbols as well as the concept of homogeneity and
classical symbols in Section 2. The analyticity in the parameter represents the
major difficulty in the Volterra symbolic calculus that is discussed in Section 3,
because arguments involving excision functions cannot be employed. Usually, exci-
sion functions are used, e. g., to establish the asymptotic completeness, i. e., that it
is possible to find symbols having a prescribed asymptotic expansion, as well as to
prove that the principal symbol sequence is exact; both aspects are important for
the construction of (parameter-dependent) parametrices of parabolic elements (see
Section 5). The analysis of the translation operator in Volterra symbols, and the
kernel cut-off operator (see Section 3.1), provide the appropriate tools to overcome
these difficulties.

We give a definition of the kernel cut-off operator on symbolic level via a direct
oscillatory integral formula that enables us to present its functional analytic prop-
erties in a transparent form. Note that kernel cut-off is a necessary and widely
applied technique in the pseudodifferential analysis of degenerate partial differen-
tial equations, see, e. g., Schulze [37], [39], and our approach within the axiomatic
framework provides the fundamentals for various generalizations, in particular,
more complicated singularities.

In Section 4 we study the operational calculi of pseudodifferential operators that
are built upon operator-valued parameter-dependent (Volterra) symbols, and we
analyze how the manipulations on side of the operators are reflected on the sym-
bolic side.

Finally, in Section 5, we recall the notion of parameter-dependent ellipticity and
discuss the notion of parabolicity for the Volterra symbol class, and we give a
proof of the existence of parameter-dependent (Volterra) parametrices within the
calculi. The parametrix construction is performed via symbolic inversion and the
classical formal Neumann series argument, and the algebraic properties and results
from the preceding sections are used, in particular, in the discussion of symbolic
invertibility and asymptotic expansions.

Acknowledgement: The author expresses his gratitude to Professor B.-—W. Schulze
from the University of Potsdam for numerous scientific discussions, and for his
encouragement to prepare the present article.
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1 Basic notation and general conventions

1.1 Sets of real and complex numbers

e We denote:
C the complex numbers,
R the reals,
Ry, R the positive (negative) reals,
Ri,R_ the non-negative (non-positive) reals,
/ the integers,
N the positive integers,
Np the non-negative integers.

e Let CV and RV denote the complex N-space, respectively the Euclidean N-
space, in the variables (z1,...,2y) € CN or (z1,...,7x) € RV, respectively.
In general, we allow N to be zero, and in this case these spaces degenerate
to the set containing a single point only.

e The upper half-plane in C will be denoted as
H := {z € C; Im(z) > 0}.

1

N 1
e The Euclidean norm of z = (z1,...,zn) € RY is denoted as |z| = (E x?) °

1
Moreover, let (z) = (14 |z]*)? be the standard regularized distance in RV

N
The inner product in RY is denoted as (z,&) = z€ = Y x,¢&;.

i=1
1.2 Multi-index notation
We employ the standard multi-index notation.
For multi-indices a = (ay,...,an),8 = (B1,...,8~n) € N)' we denote

() i w-ge

We write @ < 3 if the inequality holds componentwise. Moreover, (normalized)
partial derivatives with respect to the variables x = (z1,...,2y) € RY are written
as

- Hlel

ToOpr ... 08N

D3 = (=)o,
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In case a function f(x,\) depends on the group of complex variables A € CM we
also use the notations

o181 )
0Rf = o ! D= (=09,
W
o181 ]
08f =g —gmd  Dxf=(0VLS
oo

Q1

Forz = (z1,...,2n) € CN and a = (a1, ..., an) € NYY wewrite 2® = 2. .. 23~

1.3 Functional analysis and basic function spaces

Unless stated explicitly otherwise, the spaces in this work are always assumed
to be complex. For topological vector spaces E and F' we denote the space of
continuous linear operators E — F as L(E, F'). Moreover, the topological dual
of E is denoted as E'. We write EQF for the algebraical tensor product of E and
F'. The projective topology on E®F is indicated by the subscript E®,F', while
E®.F denotes the completion. We employ the notation (-, YE,F, or just (-, -), when
we deal with a duality ExF — C. The inner product in a Hilbert space E is also
denoted as (-, -}, or simply as (-, -).

Moreover, we have the following spaces of E-valued functions on M (where M and
E are appropriate):

LP(M,E) measurable functions v with [ [|u()||%, dz < 0o
M

(with respect to Lebesgue measure, 1 < p < 00),
C(M,E) continuous functions,
A(M,E) analytic functions,
Ck(M,E) k-times continuously differentiable functions,
C*(M, E) smooth functions,
C (M, E) smooth functions with compact support,
C* (M, E) smooth functions with bounded derivatives,
S(M,E) rapidly decreasing functions,

D'(M, E) = L(Cg° (M), E)
&'(M,E) = L(C™(M), E)
S'"(M, E) = L(S(M), E)

distributions,
distributions with compact support,
tempered distributions.

If E = C we drop it from the notation.

1.4 Tempered distributions and the Fourier transform

Let E be a Hilbert space. Partial derivatives of a distribution u € S'(R", E) are
defined as (0%u, ) = (—1)1*(u, 8%¢), while multiplication with a function 1 of
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tempered growth is given as (Yu, ) = (u, ). A distribution v € S'(R"*, E) is
called regular, if u is a Bochner measurable function, and there exists V € Ny with
[(2)~N|lu(z)||p dz < co. Note that we identify regular distributions with their

Rn

densities. In this sense we in particular have LP(R", E) — S'(R", E).

We employ the normalized Fourier transform F : S(R”) — S(R"), i. e.,
F© = 20 [e ) ds,

R’n
(Ftu)(x) = (2n) / ei"u(€) de,
R’n

for v € S(R™). For Fréchet spaces E the Fourier transform extends to an iso-
morphism S(R*,E) — S(R*,E) via F = F&,idy, noting that S(R*, E) =
S(R*)&®,E. If E is a Hilbert space we have F : S'(R*,E) — S'(R",E) via
(Fu, ) = (u, Fp).

In oscillatory integral formulas, however, we shall follow the tradition and employ
the normalized measure d¢ = (27r) “"d¢ on the side of the covariables.

2 General parameter-dependent symbols

2.1 Definition. Let ¢ € N be a given anisotropy.
a) For (£,\) € R* x R? define
€ X]e = (€ + A1) =,
(6N = (L4 [l +AP) =,
where | - | denotes the Euclidean norm.
b) For a multi-index 8 = (a, ') € Ny let
1Ble :=lal + £+ o],
where |-| denotes the usual length of a multi-index as the sum of its components.

2.2 Lemma. There exists a constant ¢ > 0 such that for all s € R and &,& €
R™, A1, A2 € R? the following inequality is fulfilled (Peetre’s inequality):

(€1 + &2, M+ Xa)s < el (E, AT (2, Mo) (2.)

Moreover, we can compare the regularized “anisotropic distance” (-,-), with the
“isotropic distance”, i. e., there exist constants cy,cs > 0 such that

e1 (€, N < (6N) < 2 (€, N5 (2:ii)



8 Thomas Krainer

2.3 Definition. Let E be a Hilbert space. A strongly continuous group-action on
E is a strongly continuous group-representation

k:(Ry,:) — L(E). (2.iii)
From the uniform boundedness principle we obtain the existence of constants
¢, M > 0 such that

1, m )
[5ollc(m) < emax{e, E} forp € Ry. (2.iv)
By the trivial group-action we mean the trivial representation, i. e., k, = Idg for
all o € Ry.

2.4 Definition. Let E and E be Hilbert spaces endowed with strongly continuous
group-actions {«,} and {&,}, respectively. For p € R we define

SHER™ x R ELE) :={a € C®(R" x RY, L(E, E)); for all k € N :

— =—1 gf —n+|Ble
pr(a) = sup K Oe ya(& A ) ke, 3P < 00}
( ) (E7)ER™ xR H €N, %eEN ( ) (& A)ZH ( >€ }
[Ble<k

This is a Fréchet space with the topology induced by the seminorm-system {py; k €
No }. Define
ST°(R* x R; E, E) := (] S“/(R" x R'; E, E).
neR

By (2.ii) and Definition 2.3 this space does not depend on ¢ € N and the group-
actions involved on F and E, and we have S™°(R" x R?; E,E) = S(R* x
R?, L(E, E)). Moreover, for i € R the spaces of - (resp. #'-) and («, #')-dependent
symbols are defined as

SR x RY x RE; B, ) = C3°(R", SUU(R" x RY; B, 1)),
SEER" x R* x R" x RY; E, E) := C3°(R" x R*, SHY(R™ x RY; E, E)).

Analogously, we obtain the spaces of order —oco. If E = E = C with the trivial
group-action involved we suppress the Hilbert spaces from the notation.

More generally, let {E;}en and {Ej}jeN be scales of Hilbert spaces such that
E; < Ej1 and E;j1, < Ej for j € N. Moreover, let {x,} and {%,} be defined on
the unions of the {£;} and {E;}, respectively, such that the restrictions on each
E; and Ej are strongly continuous group-actions. Define

SHER™ x R‘J;injde-%]im Ej, proj-lim Ey) == .ﬂ SHER™ x RY; By, Ey)
J,keN
with the natural Fréchet topologies induced. The spaces of order —oco are defined in
an analogous manner, as well as the symbol spaces with dependence on z,z’ € R™.
With this notion the case of single Hilbert spaces E and E corresponds to the
constant scales.
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2.5 Notation. Let {E;} and {E;} be scales of Hilbert spaces with group-actions
{Kko} and {&,}, respectively, in the sense of Definition 2.4. For short, we set

€ := ind-lim E; d & :=proj-imE;.
lnjeNlm j an pr(}]ENIm j

2.6 Lemma. Let E, F and E be Hilbert-spaces with strongly continuous group-
actions {k,}, {k,} and {k,}.

a) For p >y the embedding S*3¢(R* x RY; E,E) — SH{(R" x RY; E, E) is
well-defined and continuous.

b) The embeddings S*‘(R® x R?;E,E) — Sf+M+M;€(]R§” x RY;E,E) and
SEERY xR, E, E) < SPHMAMLR x Re; F, E) are well-defined and continu-
ous, where the subscript 1 indicates that the trivial group-actions are involved

on the spaces E and E. Here M and M are the constants in the estimates for
the operator-norms of the group-actions from (2.iv).

¢) For B € NJ™¢ the operator of differentiation 8{2 N SHERY x RY; E,E) —
SH=Blst (R x RY; E, E) is continuous.

d) For p,p' € R pointwise multiplication (composition of operators) induces a
continuous bilinear mapping

S‘“Z(R” % ]R{q;ENv,EA) x Su;f(]Rn x ]R{q;E,E) N Suﬂbl?f(]R” X Rq;E,E').

2.1 Asymptotic expansion

2.7 Definition. Let £ and £ be associated to scales of Hilbert spaces according
to Notation 2.5.

Let (ur) € R be a sequence of reals such that puyg k—> —oo and 71 := MaX [l
—00 S

Moreover, let aj, € S#*{(R* xR xR?; £, E). A symbol a € SHE(R" xR* xR?; £, )
is called the asymptotic expansion of the ay, if for every R € R there is a kg € N
such that for k > kg

k
a—Y a; € SHR" x R" x R;€,E).
j=1
The symbol a is uniquely determined modulo S™*(R" x R* x R?; &, & )-

(oo}
For short we write a ~ )~ aj.
i=1
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2.8 Lemma. Let {E;} and {E;} be scales of Hilbert spaces with group-actions

{Kko} and {&,}, respectively, and £ and £ as in Notation 2.5. Let (u) C R such

that p > fr41 k—> —oo. Furthermore, for each k € N let (Ay;)jen C Sreit (R x
— 00

R?; E,€) be a countable system of bounded sets. Let x € C*®(R" x R?) be a 0-
excision function. Then there is a sequence (¢;) C Ry with ¢; < ¢;41 — 00 such
(2

— 00
that for each k € N

Z sup p( (d d,;) (&N) < (2.v)

aEA

for all continuous seminorms p on S**¢(R* x ]Rq;é',g') and every j € N, and for
all sequences (d;) C Ry with d; > ¢;.

Proof. The proof of this lemma is a variant of the standard Borel argument. Note
first that the set

(5 2); 0 € 1,000} € 59" x B) 0

is bounded. To see this, assume that

0 for|&\¢ < c
JA) =
X&) {1 for ¢, A, > L

for a sufficiently small 0 < ¢ < 1. Consequently, we see for all 0 # 5 € Ngﬂ that
8 (S A (a8 & Aol
a(é,x)x(o’eé) = (Oe X )(0 94)9 ‘#0
at most for ¢|¢, Al¢ < 8 < 1|¢, Al which gives the boundedness of (1).

Now let 1 € R and A C S#¢(R™* x R?; £, €) be bounded. Then we get from Lemma
2.6 that the set

{x(0 0!) (&,X); 0 €[1,00), a € A} C SH(R™ x RY; €, E)
is also bounded. Let g’ > p. Then, given ¢ > 0, we see that for (£, )\)2"_“ >1
(ENEl <ege Ny TV pengt,

and consequently, by the defintion of the symbol spaces,

sup p(x (g 91) &N) = (2)

acA
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for all continuous seminorms p on S”’?Z(R” x Re; E,€).

For the proof of the assertion we may assume without loss of generality that
Ap; C Ag,,, holds for the bounded sets (otherwise we pass to unions). For each
k € N let p¥ < ph < ... be a fundamental system of seminorms for the topology of
Sreit(Rr x R?; €, E). From (2) we get a sequence (cf )ien € Ry with ¢} < ¢l —

1— 00
oo such that

A .
sup{p! (0(5, 3 )6 V); a € Ay, 83 cl} <27

for i > 1. Iterating the argument, we obtain a system of sequences (c¥);en € Ry
such that (cF) is a subsequence of (c¥) and

A .
sup{pi'c (X(g: 07)(1(5,)\)); a€ A, 0> Cf} <o

for each k € N and i > k. Set ¢; := ci. Let k € N be given and p a continuous
seminorm on S**¢(R™ x RY; £, E). Moreover, let j € N be fixed. Since {pF; i e N}
is an increasing fundamental system of seminorms for the topology of S#i¢(R™ x
R?; E,€) we find 49 € N and C > 0 such that p < Cp¥ for i > iy. For i > j we
have A;; C A;,. Note that by construction ¢; > c¥ holds for i > k. Thus, for i
sufficiently large,

A
Sup{p(x(g, y)a(&k)); a€ A}
(L
A
< Coup{pk (x($, 77 )l V); o € Ay, 0> )
<C27!
whenever (d;) C Ry is a sequence with d; > ¢;. This proves the lemma. O

2.9 Theorem. Let £ and € associated to scales of Hilbert spaces as in Notation

2.5. Let (ur) € R such that uy, P and i := WAX . Moreover, let a;, €
—00 S

SHst(R? x R* x RY;E,E). Then there exists a € SFE(R® x R" x RY; &, E) such

that a ~ ) aj, and a is uniquely determined modulo S~ *°(R" x R® x Re;E,€).
j=1

Proof. Without loss of generality we may assume that pg > pr+1 k—) —o0. For
— 00

k,j € Nlet
Ay, = {0%ay(2); © € B, Ja] < j}.

Then Ay, C SH3¢(R" xR?; €, &) is bounded. Let xy € C*(R™ x R?) be a 0-excision
function. Now we may apply Lemma 2.8. With a suitable sequence (¢;) C Ry



12 Thomas Krainer

formula (2.v) becomes
Zsup{p (£, 2) @2ai@)En): v e ', Jal <7} < oo

for all continuous seminorms p on S#**(R* x R?; €, £ ), which shows that for every
keN

o0

ZX(C'Z’ tf)

i=k G

is unconditionally convergent in S##¢(R* x R* x R?; &, ). Now define

a:= ;X(c_ g)a € SMLRT x R* x RY; &, &),

We thus see
- . k . -
=Yam 3 Az e XAt
Ci C; ‘ Ci C:
i=k+1 ? i=1 i
where
k . ~
S (-x (C : Z))al € S ®(R" x R" x RY; &, &),
i=1 v
This yields the desired result, since the uniqueness assertion is clear. |

2.2 Homogeneity and classical symbols

2.10 Definition. Let £ and E be Hilbert spaces with group-actions {x,} and
{Ro}, respectively. A function f : (R* xR?)\ {0} — L(E, E) is called (anisotropic)
homogeneous of degree p € R, if for (£,\) € (R x R?) \ {0} and o >0

F(0€, 0°N) = 0" Ro f(&, Nk, (2.vi)

A function f : R* x RY — L(E, E) is called (anisotropic) homogeneous of degree
i € R for large (£, ), if relation (2.vi) holds for (£,\) € R® x R? with |(£, A)]
sufficiently large and ¢ > 1.

In this work, homogeneity always is meant in this anisotropic sense.

2.11 Lemma. Let a € C*(R"* x R?, L(E E)) be homogeneous of degree u € R
for large (€,\). Then a € SH¢(R™ x ]R{q E E).
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Proof. By differentiating relation (2.vi) we see, that for 8 € Ng” the function
8& N @ is homogeneous of degree p — |5, for large (&, A). Thus it suffices to show
that ||m €N, a(&, Ny, | = O N)y) for [(€,A)] = oo. Extension by homogene-
ity shows that there is a homogeneous function f of degree u such that a = f for
large (&, A)]. Note that f is continuous on (R™ x R?)\ {0} with values in £, (E, E)
for the group-actions are strongly continuous. In particular, f maps compact sets
to bounded sets in L(E, E) by the uniform boundedness principle. Employing the
identity

i Vsten, = Ry, (16 g 716 Mgy ) e

_ £ A
— H
= 16 AR 7 e S (|€ e’ Ie, Alf) N (20

for (¢, A) # 0 yields that ||/?;_1 F& ke, |l = O(E N)Y) for [(§,A)] — oo. This
proves the lemma. O

2.12 Corollary. For p € R the function (-, )} belongs to SH(R"* x R?).

Proof. Induction over the length |3] of 3 € NJ™¢ shows

18]
8(65)\) (&N = Zpg,k(f, N (&, )\)7*2“

with suitable polynomials pg j that are (anisotropic) homogeneous of degree 2kl —
|8)¢- From Lemma 2.11 we obtain the assertion. O

2.13 Definition. Let F and E be Hilbert spaces with group-actions {x,} and
{R,}, respectively. For u € R define

o0
SEYR x RY; B, ) = {a € SHUR x RY E, E); a~ Zxa(u,k)}
k=0
where xy € C®°(R* x R?) is a 0-excision function, and a(,_x) € C*((R* x R?)\
{0}, L(E, E)) are (anisotropic) homogeneous functions of degree y—k, the so called
homogeneous components of a.

2.14 Remark. By Lemma 2.11 the space SZ;Z(R" x RY; E, E) is well-defined.
The homogeneous components of a € S fl;e(]R{” xR?; E, E) are uniquely determined
by a. They can iteratively be recovered from the relation

k—1

e (a6, 0N = Y g (06,60 e =3 aGun (€N (i)

=0
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with convergence in £(E, E), which holds locally uniformly for 0 # (£, )) € R* x
RY.

Note that SZ;Z(R” x R?; E, E) is a Fréchet space with respect to the projective

topology of the mappings

k—1 ~
. N - _y € ShRHRY x RYEE
SR x RY B, B) 50 {7 2 X0 ( )

agu-ry € C((R" x R?)\ {0}, L(E, E))

for k e Np.

The spaces of z- (resp. z'-) and (z, z')-dependent classical symbols are defined as

SR x R" x R B, B) = C5° (R, S5/ (R" x RY; E, ),
SEER x R* x R" x RY; B, E) := C°(R" x R, SYE(R™ x RY; E, E)).

From the definition of the topology on classical symbols we see, that the analogue
of Lemma 2.8 holds within classical symbols where the sequence (ux)gen, now is
given as py := p — k. This implies that also the analogue of Theorem 2.9 is valid:

Let © € R and a# 7 € Sfl*j;l(]R” x R* x R?; E, E) for j € Ny. Then there is
. 0 )
a symbol a € SYY(R* x R* x RY; E,E) such that a ~ Y. a#~. In fact, the
i=0
homogeneous components of a are given by

A(u—k) = Z aé:jk)

J<k
for k e Np.

Analogously, we define the spaces of classical symbols when we start from scales
of Hilbert spaces {E;} and {E;} instead of single spaces.

Proof. Because of its importance we prove relation (2.vii):

Note first, that for (£,)) € K € (R® x R?) \ {0} we have x (o, o‘A) = 1 for suffi-
ciently large p since y is a 0-excision function. Therefore, we see for g sufficiently
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large on K:
1 k—1
H QN_k ’%51 (a(Q£7 Ql/\) - ZO A(p—7) (967 Ql/\))h:g — Q(u—k) (67 /\) H
]:
1 k
= H = =R, ( (o€, o JZ::oX &, 0" N)ag,—j (o€, ng))mQH
k—1
< Const - |71 ge.on), |+ [%gug 0ty Qu —— (0, 0"\,
1 p—k—1
< Const, - = <Q§, g%\)e Q:))() 0
uniformly for (£, \) € K. O

2.15 Remark. The considerations about general anisotropic symbols carry over
to the case where the parameter-space R? is replaced by a conical subset § Z A C
R? which is the closure of its interior. There only arise notational modifications. In
this work, we will mainly make use of symbols and operators with either A = R?,
or with the (upper) half-plane A = H C C = R2.

3 Symbols with an analytic parameter

3.1 Remark. Let
H:={2€C Im(2) >0} CC=R?

be the upper half-plane in C. We shall employ anisotropic symbols with parameter-
space H, where in addition to the symbol estimates we require the analyticity in the
interior of H. Due to the connection to the pseudodifferential theory of parabolic
equations such symbols are called Volterra symbols, or symbols with the Volterra
property, see also Buchholz and Schulze [6], Krainer [24], Krainer and Schulze [26],
Piriou [29], [30].

3.2 Definition. Let E and E be Hilbert spaces endowed with strongly continuous
group-actions {k,} and {&,}, respectively. For u € R we define

St (R x B B, E) = SIS (R" x H; B, B) 0 A(H, C®(R", L(E, E)),

which is a closed subspace of S( ) (R* x H; E, E). Analogously, we define

Sy®(R" x BB, E) == (| SF'(R" x H; E, E),
ER
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as well as the spaces of z- (resp. z'-) and (z,z')-dependent symbols
it . 7Y . ¢ . o
S‘Ij(cl)(]Rn x ]Rn X H’E’E) T CI?O(RTL7S€;(C[)(]RTL X HaEaE))a

Sty (R x R* x R x B; E, E) := C°(R* x R*, Sl (R x H, E, E)).

These symbols are called symbols with the Volterra property — or simply Volterra
symbols — which is indicated by the subscript V.

This notion also applies to the case of scales of Hilbert spaces involved instead of
the single spaces only, and we shall employ the same conventions as in the case
without the extra analyticity condition, cf. Definition 2.4.

From the definition we obtain, that the properties in Lemma 2.6 apply to symbols
with the Volterra property, i. e., the analyticity condition remains preserved.

3.3 Proposition. a) The restriction of the parameter to the real line induces a

continuous embedding S"j;(ecl) (R* x H; E, E) — Sé‘cf) (R* x R; E, E).

b) The homogeneous components of a symbol a € S“j;il(]R” xH; E, E) are analytic
in HL.

Proof. The first assertion is immediate. Note that the homogeneous components

of the “restricted” symbol in the classical case originate from the restrictions of

the homogeneous components to the real line. The second assertion follows by

induction from relation (2.vii) in Remark 2.14 together with the Weierstrass ap-
proximation theorem. O

3.1 Kernel cut-off and asymptotic expansion

3.4 Definition. Let {E£;} and {E;} be scales of Hilbert spaces with group-actions
{Ko} and {R,}, respectively, and let £ and £ as in Notation 2.5.

Let (ur) € R be a sequence of reals such that puyg T T and 71 := WAX [
—00 €
Moreover, let aj, € S"j’“;e(]Rn XR* x H; £, ). A symbol a € S"j;e(]Rn xR* x H; £, E)

is called the asymptotic expansion of the ay, if for every R € R there is a ky € N
such that for & > kg

k
a—> a; € SP(R" x R" x HE,&).
j=1

The symbol a is uniquely determined modulo Sj,*(R* x R* x H; &, £).

o)

For short we write a ~ >~ a;.
v =
Jj=1
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3.5 Remark. Note that the notion of asymptotic expansion for Volterra symbols
from Definition 3.4 is more refined than that for general symbols in Definition 2.7.
If a Volterra symbol a has an asymptotic expansion in the sense just defined, then
it has of course also this asymptotic expansion in the sense of general symbols.

What makes things more complicated is the analyticity condition. In particular,
the arguments used to prove the existence of symbols having a prescribed asymp-
totic expansion from Lemma 2.8 (and Theorem 2.9) cannot be applied to obtain
corresponding existence results for Volterra symbols, since they involve excision
functions in the parameter which destroy the analyticity. We shall prove in Propo-
sition 3.14 a substitute for Lemma 2.8 using kernel cut-off techniques.

3.6 Definition. Let E and E be Hilbert spaces endowed with strongly contin-
uous group-actions {«,} and {&,}, respectively. Moreover, let ¢ € C;°(R). On
SHl(R" x R; E, E) define the kernel cut-off operator H () by means of the follow-
ing oscillatory integral:

(H((p)a) & A) = // e*itTgo(t)a(f,/\ —T)dtdr (3.0)
R R

for a € S (R* x R; E, E).

Note that the integrand ¢(t)a(&, A—7) may be regarded as a smooth function in the
variables (£,\) taking values in the £(E, E)-valued amplitude functions in (t,7).
This follows from the symbol estimates for a, keeping in mind the inequalities (2.1),
(2.i) and (2.iv) (see also Lemma 2.6). Consequently, H(p)a is well-defined as a
function belonging to C™(R" x R, L(E, E)).

3.7 Theorem. Let {E;} and {E,} be scales of Hilbert spaces with group-actions
{Ko} and {&,}, respectively, and let £ and £ as in Notation 2.5. Then the mapping
H : (p,a) — H(p)a is bilinear and continuous in the spaces

(cl)

Ce(R)x SME (R x H;E,E) — SHE (R* x H; &, €).

o {CgO(R)xSW (R X R;€,E) — S5 (R" X R E,E)
V(el)

V(el)

The following asymptotic expansion holds for H(p)a in terms of ¢ and a:

o~ (=1)F .
H(p)a (r‘\;) kz_%( i Df(p(())) -8’§a (3.ii)

where 9 denotes the complex derivative with respect to A € H in case of Volterra
symbols.

Proof. For the proof we may without loss of generality restrict ourselves to the
case of single Hilbert spaces 2 and E. We only have to check the following:
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i) H: CPRxSH R x RE,E) —» SHR" x R, E,E) is well-defined and
continuous.

ii) For ¢ € C;°(R) we have H(p)(Si(R* x H, E, E)) C SiY(R* x I, E, E).

iii) The validity of the asymptotic expansion (3.ii).

If this is proven, the complete assertions about the continuity of H in the corre-
sponding spaces follows from the closed graph theorem. Recall that since we deal
with Fréchet spaces the continuity of H is equivalent to separate continuity.

Note that for a € S%*(R* x H; E, E) the definition (3.i) of H(y)a does not only
make sense for A € R, but also for A € H, which consequently provides an extension
to the half-plane. Let Ampl(Rx R, £(E, E)) denote the £(E, E)-valued amplitude
functions in the variables (¢, 7) € RxR. For the mapping (¢, a) — @(t)a(§,A—T)
is continuous in the spaces

O (R)x SR x R E, E) —C>®(R" x R, Ampl(Rx R, L(E, E))),
C°(R)x S (R™ x H; E, E) —C>®(R" x H, Ampl(Rx R, L(E, E)))

N A(H, C=(R*, Ampl(Rx R, £(E, E)))),

and for the oscillatory integral acts as a continuous linear mapping between
Ampl(RxR, L(E,E)) — L(E, E), we only have to check for the proof of i)
and ii) that for each ¢ € Cg°(R) and each a € S (R* x R;E,E), respec-
tively a € S“j;e(]R” x H; E, E), we have H(p)a € SH¢(R" x R; E, E), respectively
H(p)a € S**(R* x H; E, E). Then the closed graph theorem gives the continuity
in the corresponding spaces (in case of Volterra symbols the analyticity in the
interior of H is already obtained).

First observe that 8& )\)H(go)a = H((p)(aé )\)a) for 3 € NJ**. Thus for i) and ii)
it remains to show

1, H(9)a€ Ve, lloimmy = OUENE) for [(€,)] = oo,

For M, € Ny sufficiently large we regularize the oscillatory integral (H (¢)a) (&, A)
as

[[ (00" ew) 1= a) [ a6 A~ )] avar

(%)
(%) is a linear combination of the terms { (8% () ~2M1) (8%a) (€, \—7); 0 < j, k < 2}
Let M and M be the constants from the norm estimates for the group-actions in
(2.iv). In view of (2.i) we have with a suitable constant C' > 0 for all £\, 7
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e amry e tlle < G and flmge s _ryore lle) < Cr)Y. Conse-
quently, we obtain for each of the terms (8; (T)’ZMI) (8’)fa) EA=7)(0<j,k<2)
the following estimate in the norm:
1R, (BLr) 220 (8ka) (€A = Py, | S 1022 |- 1R ey s -
||’<5 (EA—T) (8)\‘1) (&A= T)kEr—n), Il - ||’<5(57)\7¢)e—1(57)\)2”
< Const <T>M+M Hlul+26-200 (e b

Hence also (x) satisfies this estimate. If we now choose M; > w

get the desired assertion.

we

It remains to show the asymptotic expansion (3.ii). Carrying out a Taylor expan-
sion in ¢t = 0 we obtain for each N € N

Z k,a,!%p 0)t* + w ,/ )N 1 (8N ) (16) d.
0

1

The function ¢y : R 3 ¢t = [(1—0)N (0N ¢)(t0) df belongs to C;°(R). Now
0

we obtain using integration by parts in the oscillatory integrals:

N-1

H(p)a(¢, ) = Z(k,afgo ) [[ e tritaten -y avar

- m // e TN Y (Ha(€, N = 1) dt dr

0))]/ e " (0%a) (6, A — 1) dtd‘i

= (a’iav) (&)
™D // e Ty (8) (08 a) (§,A = 7) dthl
= H(P )(6)\ a)(§, )

From the already proven results about the kernel cut-off operator we now conclude
that the asymptotic expansion (3.ii) holds. This finishes the proof of the theorem.
O

—1

_ (<—

k=0

3.8 Corollary. Let ¢ € C§°(R) with ¢ = 1 near t = 0. Then the operator
I — H(yp) is coninuous in the spaces

SHER® X R E,E) —
SEYRY x HLE,E) —

“X(R" x R;E,E),

S
S, (R x H; €, E).
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Proof. Since (I — H(p))a = H(1 — ¢)a we obtain the assertion from Theorem
3.7, for 1 — ¢ vanishes to infinite order at ¢t = 0. d

3.9 Notation. Let {E;} and {E;} be scales of Hilbert spaces with group-actions
{Kko} and {R,}, respectively, and £ and & as in Notation 2.5.

Moreover, let z = A +i7 € C be the splitting of z € C in real and imaginary part.
For p € R define the Fréchet spaces

Sty B X G E,E) = A(C, S (R €,€)) N C® (R, Sl (R x Ry; €, E)),

SVt R XC E,€) 1= Siy (R" x GE,£) NSy (R x B E,€)

with the induced topologies.

These holomorphic symbol spaces play a substantial role in the calculus of Mellin
pseudodifferential operators, or, more generally, in the analysis of (degenerate)
parabolic partial differential equations and boundary value problems with pseu-
dodifferential methods, see, e. g., Krainer [24], Krainer and Schulze [26]. In this
work, they are just used to describe the target spaces of the kernel cut-off operator
when restricted to C§°(R), see Theorem 3.10 below.

3.10 Theorem. The kernel cut-off operator H restricts to continuous bilinear
mappings

(el) i0(cl)

C&(R)x Sl (R x H; E,E) — Skt (R*XC; €, E).

- {ch(R)xs“;‘ (R x R;E,E) — ML (R x G E,€)
(cl)

V,i0(cl)

Given ¢ € C3°(R) and a € SHY{(R"® x R; &, g), the following asymptotic expansion
holds for (H(p)a)(-+it) € SMY{R™ x R; £, E) in terms of ¢ and a for every T € R:
. —/(=1)* ;
(@) +im) ~ (D 7 p0) o) - B4

k=0

Proof. Without loss of generality we may restrict to single Hilbert spaces E and
E. According to Theorem 3.7 and the closed graph theorem we only have to check
for the first claim that the image of H restricted to the corresponding spaces is
indeed as asserted. More precisely, it suffices to show that H(p)a € SzHO;e(cl) (R™ x

G E,E) for ¢ € C°(R) and a € Sé‘c;f)(]R{” xR E,E).

For (£,)\) € R® x R we may rewrite H(¢)a(§, \) as

H(p)a(§,A) = H(e™"p(t))a(€,0).

Observe that pointwise multiplication of functions acts bilinear and continuous in
C*®(R) x Cg°(R) = Cg°(R). The function C 3 z — {R > ¢t — e "**} belongs
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to A(C,C* (R)). Consequently, for ¢ € C§°(R) the function C 3 z = {R >
t = e ()} belongs to A(C, Cp° (R)). From Theorem 3.7 we now obtain, that
the function C 3> 2z — H(e #*p(t))a belongs to A(C, S(”c;ll) (R* x R; E, E)). This
implies that C 3 z = H (e "*p(t))a(-,0) provides an analytic function with values
in S#(R"; E, E) which coincides with H(p)a on the real line (via the obvious
identifications). Writing z = A +i7 we see H(e~%#%p(t))a(£,0) = H(e!"o(t))a(E, N)
which depends smoothly on 7 € R with values in Sébc;ll) (R* xR; E, E). Summing up
we now obtain the first assertion of the theorem. The claim about the asymptotic
expansion follows from (3.ii) in view of (H(p)a)(- +it) = H(e!"p(t))a for 7 € R.

]

3.11 Remark. For ¢ € C°(R) and a € SM(R* x R;£,€) with p € R suffi-
ciently negative we can rewrite the kernel cut-off operator H(p)a as H(p)a =
FisapF ;—1»“ with the Fourier transform F. The latter identity in fact motivates
the name “kernel cut-off operator”. To explain this assume n = 0 and ¢ = 1. Then
the associated pseudodifferential operator to a may be viewed as convolution op-
erator with convolution kernel given by the conormal distribution k(a) := F; ., a.
Consequently, on the level of kernels, kernel cut-off with a function ¢ € C§°(R),
(¢ = 1l near t = 0, corresponds to localizing the kernel close to the origin, i. e., close
to the singular support of k(a). Kernel cut-off operators in that sense were intro-
duced by Schulze in order to deal with meromorphic Mellin symbols and Mellin
operator conventions in pseudodifferential calculi adapted to degenerate opera-
tors, which arise naturally in the investigation of non-smooth geometries such as
manifolds with conical singularities, edges, corners etc. (see [37], [38], [39]).

3.12 Lemma. Let 8 € Ny and ¢ € C3°(R). Moreover, let E and E be Hilbert
spaces and a € A(H, L(E, B)) 1 O (H, L(E, E)) such that sup [[\***a(\)]| < o.
Let p. € C§°(R) be defined as . (t) := ¢( AeH
Then we have for H(DPp.)a = (FiA(D2p.)Fy L )a:

—t

ct) for c € [1,00).

1
sup|| (H (DJe)a) V)| < k(8,9) - - - {sup [IN**2a(V)]| + sup [A"+a(N)|}
AEH c AEH AEH

for ¢ € [1,00) with a constant k(3,¢) > 0 depending neither on E and E nor on
a, but only on 8 and .

Proof. First we shall prove the following auxiliary estimates:

{[ 1 +2amr i} < vr. {sup IV F2a)l + s I a0
R

{/ 02|20 A} s

CESY @)
R

C
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with a constant C(f3, ) > 0 depending only on 8 and ¢.
Let us prove (1):

/ 17542 | dr = / sz 1+ ) el dr

- / 5z [l 0ol + 7)) dr
R

< { (sup I 2a)1) + (sup a0l )

. 2
< {sup |NTF2a()] + sup A Pa(V)I}
AeH AeH

A

This shows (1). Now let us prove (2):

P t5+1
/|t| (DL O G

“ar< [0 olewe |

. 2
:/(1+2|t|2+|t| ).‘(Dfsoc)(t)tﬁ+1
/‘ ()5
B+i
25{2/‘ (DZ)(ct) tﬁﬂ‘ dt} —2625{2/‘ (Dle)(et) Ctg+1 ‘25‘”}
1 L2
2025{Zm/‘(l)g@)(t)tﬂﬂ‘ dt}

< {2 Z/‘ (D2 ) (¢ t‘”]‘ dt}

]lR

dt

dt+2/‘ (D2 p.)(t)t?+?

dt+/‘(D% )(t)t5+3‘2dt

(8, ¢)"
This shows the estimate (2).

By assumption we have F~'a € C°*2(R,£(E,E)) and F'a = 0 on R, due to

Cauchy’s theorem. Employing a Taylor expansion in ¢ = 0 up to order g + 1 we
see

0/ g)F+1 at)ﬁﬂ(ffla)] (61) da} . %
— {2 [a o pera) enas} -
0
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for all t € R. Now let e € E be arbitrary. Then we may write

sup||(H(ngoC)a)()\)e||E < {% / #dt}% {/H(Dfnpc) ” dt}

— 00

< (oot (gt (oo oevamoman]

<{ / I1—0|2“*+“d9}§{_/ (0?02 o0 (s

(@l ]

1l o savaonf il - ()

A Tt () 1 e 00 amoolnar )
—(Wﬁ#—n{ /° ez () 1 0 sy o
<{f e ;":i (I oo,

/ o2 () a7 o)

< (f C(6,9)) s I A o) + 55 NP0 Wlleq, ) } - el
(1),(2)_/_, A€H

This finishes the proof of the lemma. O

3.13 Lemma. Let N,M;, M, € Ny and ¢ € C§°(R). Moreover, let E and E be
Hilbert spaces and a € A(H,C>®(R*, L(E, E))) N C®(H,C>® (R"*, L(E, E))) such
that

sup  (AMFHEM 020 a(€, V)] < oo
(6,\)ER™ xH
|a]+]B|<N

Let ¢, € C§°(R) be defined as ¢.(t) := @(ct) for ¢ € [1,00). Then we have for
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H(p.)a = (.7-}4)\4,00]:}\__1”)(1:

sup  (A)MH(€)M2 0307 (H (pe)a) (€N
(g,A)eR”xH
|a]+[B|<N

~ 1
<E(Myp)-=-  sup  (WMFHEM (030 a(E, M|
C (g,\)ER"xH
|a|+|B|<N

for ¢ € [1,00) with a constant k(My,p) > 0 depending neither on E and E nor on
a, but only on M; and .

Proof. First observe the following simple relationships for the kernel cut-off op-
erator H(p.):

0%0F (H(pe)a)(€,0) = H(p.) (9507 a) (€, N) (1)
M M _ '
N (H(po)a) (6, 0) = 3 ( : )H(D;%)(AM%) €N @)
j=0

Employing Lemma 3.12 we thus may write for every 0 < M < M; and |a| + 8] <
N:
sup (€)™ [AY 030 (H(¢e)a) (6, M)
(&,N)ER™ XH

= sup
(6,A)ER" X H

- w3 (M>(H(Diwc)[AM-f<s>M2-afa?a])@,x)u

(e:nermxully=5 \ J

M
M . 1
< <.>k(17¢)~—~{ sup
: J c (&,\)ER™xH

Jj=0

IV (H (o) [0 - 030¢a] ) (6,

|2\ 02a(e, M) |

+ sup (MM o5 ofate V)| }

(§,N)ER™XH

< (2 k(i) = sup  (0EME 05 02a(e M)
J=0 C  (&,A\)ER"XH

M My M, M, My M ;
We have (A\)M < (v2) ™" (L+|A)) 7 = (v2) 77 X (%) A Consequently, the
Jj=0
assertion is fulfilled with the constant k(My,p) := (2 S -Ir%lg( k(j,(p)). O
]:

3.14 Proposition. Let {E;} and {E;} be scales of Hilbert spaces with group-

actions {k,} and {F,}, respectively, and £ and £ as in Notation 2.5. Let (u;) C R

such that p, > pgs1 k—) —oo. Furthermore, for each k € N let (Ay;)jen C
— 00
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SEEYRY x H; £,€) be a countable system of bounded sets. Let ¢ € Cg°(R), and

for c € [1,00) let ¢, € C3°(R) be defined as in Lemma 3.12 and Lemma 3.13. Then

there is a sequence (c¢;) C [1,00) with ¢; < ¢j+1 — 00 such that for each k € N
1— 00

o0

Z sup p(H (pq;)a) < oo (3.iii)
i=k @€ 445

for all continuous seminorms p on S‘*}’“;Z(R" x H; &, c‘f) and every j € N, and for all
sequences (d;) C Ry with d; > ¢;.

Proof. First consider the case of single Hilbert spaces E and E. Without loss of
generality we may assume (uy) C R_ and that A, C Ay, holds for the bounded
sets (otherwise we pass to unions). Define a system of seminorms ¢; < g2 < ... via

w(a)=sup (&N TR 0200 a(e, N sy, ooy
tlal+18]<v (€x, A ’
(6,\)ER™ xH

Let M and ~]\;I be the constants from the norm estimates (2.iv) for the group-actions
on E and E, respectively. Employing Peetre’s inequality (2.1) we see

R
[

1 (§, X)) <(OFNT < e (g, N7

for every R > 0 and all ({,\) € R* x H with suitable constants ¢;,co > 0
(depending on R). Thus, given v € N, we see that for all i € N such that
pi < —2¢(entier(—p,) + 2(entier(M) + entier(M)) + v + 9) using Lemma 3.13:

0 (H(pc)a) < (Const) -

* i) (1)

for a € SHH(R™ x H; E, E) and ¢ € [1,00).

By induction we construct for v € N sequences (¢, )ien C [1,00) as follows: Em-

ploying (1) we find a sequence (c1;) C [1,00) with ¢;; < ¢1,,, — 00, such that
11— 00

for all i € N satisfying p; < —2¢(entier(—p) + 2(entier(M) + entier(M)) + 10)

we have sup ¢ (H(pg)a) < 27° for all (d;) C Ry with d; > ¢;,. Assume
a€A;

that for somell/ € N we have constructed the sequence (c,,). Employing (1) we

find a subsequence (c¢,+1,) of (c,;) having the property that for all i € N sat-

isfying p; < —2¢(entier(—fu,+1) + 2(entier(M) + entier(M)) + v + 10) we have

sup  qut1(H (pa,)a) < 270 for all (d;) C Ry with d; > ¢y, .

a€di, 4y

Now define ¢; := ¢;; for i € N. Then we have (¢;) C [1,00) with ¢; < ¢j41 —
1— 00
satisfying ¢; > ¢,, for ¢ > v by construction. Let j,k € N be arbitrary and p a



26 Thomas Krainer

continuous seminorm on S‘*}’“;Z(R" x H; E, E). There exists vy € N such that for
almost all i € N the restriction of p to S“}“Z(]Rn x H; E, E) is dominated by v,
with a universal constant not depending on i, and we also have 4;; C A;, for
almost all ¢ € N. Thus we conclude, using Theorem 3.7, that the series (3.iii) is
convergent for every sequence (d;) C Ry satisfying d; > ¢; with the given data
J,k € N and p. This shows the assertion in the case of single Hilbert spaces E and
E.

Now consider the general case. For every v € N we may apply the assertion for
single Hilbert spaces to the pair E, and F,. This gives a system of sequences
(¢v;)ien C [1,00) with (cy41,) as a subsequence of (c,,) such that the series (3.iii)
is convergent for every k,j € N and every continuous seminorm p on S“}’“;e(]R{” X
H; E,, E,), for all sequences (d;) C Ry with d; > ¢,,. Consequently we obtain the
desired result if we pass to the diagonal sequence c¢; := ¢;; . |

3.15 Remark. Proposition 3.14 together with the properties of the kernel cut-
off operator from Theorem 3.7 and Corollary 3.8 now provides the tool to obtain
existence results of Volterra symbols having a prescribed asymptotic expansion in
the same spirit as Lemma 2.8 is used to achieve corresponding existence results in
the case without the Volterra property (see Theorem 2.9). In order to do this we
choose in Proposition 3.14 a function ¢ € C§°(R) such that ¢ = 1 near t = 0, see
the proof of Theorem 3.16 below.

3.16 Theorem. Let {F;} and {E;} be scales of Hilbert spaces with group-actions
{Kko} and {&,}, respectively, and £ and £ as in Notation 2.5. Let (u;) C R such
that puy wdiaies and i := max fiy. Moreover, let ay € SE*“(R" x R x H; &, ).
—00 €
Then there exists a € S‘ﬁ/;e(]R{” xR x H; £, ) such that a > >~ a;. The asymptotic
i=1

sum a is uniquely determined modulo S;;*(R" x R* x H; £, £).

If the sequence (ug)ken, is given as p, = g—k and ay, € S‘H,;lk;[(]R” xR*xH €, E),
then also a € ST, (R* x R* x H; &, E).

Proof. For the proof we may without loss of generality assume that p, >
M+1 k—) —oo. For k,7 € N let
—00

Ap, = {0%ar(z); z € R", |a| < j}.
Then A, C S“}’“;Z(]R” x H; €,€) is bounded. Let ¢ € C$°(R) such that ¢ = 1 near

t = 0. Now we may apply Proposition 3.14. With a suitable sequence (¢;) C [1,00)
formula (3.iii) becomes

Zsup{p(H(tpci)(Gg‘ai(:v))); z€R", |a] <j} < o0
i=k
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for all continuous seminorms p on S‘*}’“;Z(R” xH; &, (‘f), which shows that the series
> H(p,;)a; is unconditionally convergent in S“}’“;Z(]R{n x R* x H; &,€) for every
i=k

k € N. Now define

a = ZH(QOCI)G% € S‘ljl;e(]Rn x R" x H,g,g)

i=1
We thus see
k o) k
a=Y a;= Y H(pe)ai—y (I -Hpe))a
i=1 i=k-+1 i=1
where
k ~
> (I = H(pe))ai € Sy™(R" x R" x H;€,€)
i=1

in view of Corollary 3.8. This yields the desired result, since the uniqueness asser-
tion is clear. That asymptotic expansions can be carried out within classical sym-
bols now follows from the corresponding results in the case without the Volterra
property (see Remark 2.14). d

3.2 The translation operator in holomorphic symbols

3.17 Definition. For z =it € iR C C, 7 > 0, define the translation operator T;;
on SEHRY x HL E,E) via

(Tira) (&, N) == a(& A +iT).

3.18 Proposition. For every 7 > 0 the translation operator T;, acts linear and
continuous in the spaces

Tir : Sﬁ{cl) (R* x H;E,&) — Sg;(‘cl) (R x H; £, €).

Moreover, T;:a has the following asymptotic expansion in terms of T and a:

o (i7)*
. ~ . k
TlTa v Z k' 6}\@.
k=0
In particular, the operator I — T;; is continuous in the spaces

I =Ty : SP (R X HE,E) — Sy (R x HE,E).
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Proof. Without loss of generality we may restrict to single Hilbert spaces E and
E. For T;, acts continuously in A(H, C= (R, £L(E, E))) N C®°(R* x H, L(E, F))
we only have to check that Tj,a € S"j;e(]Rn x H; E,E) for a € S"j;e(]Rn x H, E, E),
which is trivially fulfilled in view of (2.i)) and (2.iv), as well as the asymptotic
expansion of T;;a in terms of 7 and a. Then the closed graph theorem implies the
remaining assertions.

Carrying out a Taylor expansion in 7 = 0 implies that for each N € N we may
write

2

a(E, A\ +ir) = '

1
N
-OKa(E, ) + / )N~ (0 a) (€, A + if7) db.
0

For the integrand in the remainder may be regarded as a continuous function in
6 € [0,1] with values in S“j_NM(]Rn x H; E, E') we obtain the desired asymptotic
expansion for T;,a. O

3.19 Notation. Let E and E be Hilbert spaces endowed with group-actions as
before. For p € R let S8 ((R* x H) \ {0}; E, E) denote the closed subspace of

C®((R* x H) \ {0}, L(E, E)) consisting of all anisotropic homogeneous functions
of degree p. Moreover, let

SUO (R xH) \{0}; B, B):= S0 (R xH) \{0}; B, B)NA(H, C*(R", £(E, B))),
which is a closed subspace of S0 ((R" x H) \ {0}; E, E)

3.20 Theorem. For every 7 > 0 the mapping T;; : a(&,\) — a(&,\ + iT) Is
continuous in the spaces

Ty - SYY ((R™ x H) \ {0}; E, E) — SU%(R* x H; E, E).

Moreover, for every 0-excision function y € C*°(R" x H), the following asymptotic
expansion holds for T;;a:

iT
Tira ~ E ( k') -X(afa).

k=0

This shows in particular, that for the homogeneous component of order p we have
the identity (T;ra) w =G

In other words, the “principal symbol sequence” for Volterra symbols is topologi-
cally exact and splits:

0 —Sk FYRY x H; B, E) — Si4 (R x i E,E) —
SUO (R x H) \ {0}; E, E) —> 0.
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The operator T;, provides a splitting of this sequence. Analogous assertions hold
in case of scales of Hilbert spaces involved.

Proof. For T;; acts continuously from Sg/”;l) ((]R” X ]HI) \{0}; E, E) into the space

C>(R" xH, L(E, E))NA(H,C>®(R", L(E, E))) we only have to check that Tj,a €
S e(]R{” x H; E, E) in view of the closed graph theorem, as well as the asymptotic
expansion for T;,a. For the assertion concerning the principal symbol sequence
recall that the homogeneous components of a Volterra symbol are analytic in the
interior of H according to Proposition 3.3.

Let o/, € Ny, a := o' + ", and f € N}. For every N € N we have for |¢, Al
sufficiently large using Taylor expansion

N-—

(03 +35)™ (5 — 05)° 0F [a(e, A + i) - X(E.X) (9a) (6.V)]

N—1 )k
_agaﬁ[ (€N +i7) — Z - ()€ /\)]
k=0

1
N
o / )N (0N 0 a) (&, A + iTb) df.
0

The function (8;\\“'0‘8?(1) is anisotropic homogeneous of degree u— (N + ) —|3|.
Consequently we are done if we show that for a smooth anisotropic homogeneous
function a of degree p € R which is analytic in the interior of H we have

1feny, @(6, A + im0)kie ny, | = O((E, A))

for |&,\|¢ — oo uniformly for # € [0,1]. Let M and M be the constants in the
norm estimates for the group-actions from (2.iv). Then we conclude using (2.1) for

(&) #0:
17 e ey, A& A + im0y, Il < Const(r)M+M

L . I3 ) A+iTh
: H’@(;th)ﬂ(@: A +it8), (& A+ 17'9) 7>) (€ A+iT0),

(A +ir0),” ™’ (€A

£ A+iTh ) H
+i70)," (€, X + iTb),
¢ A+rd )H
+ir0),” (€, A + iT6)}

= Const(T9>M+M (€A +ird)y Ha( &N

< Const(rg)MHT+lul (¢ )b H (5 n

Observe that for |{, Al > 1 and € € [0,1] we have using (2.i)) with a suitable
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constant ¢ > 0

13 A+l 1

- , = - . ,>\+7/T0
(& X+ 17'9) (€N + iTH)ﬁ ‘4 (& A +ith), < |e
1
>c- e N +ithlp =c- — e, N+ iT6)|,
(&), (16) >\> (r6) (141, A126) > (16)
Se. L JENe > 27 F ()L = E > 0.

(2-16,A3) % - (76)
Summing up we thus obtain for ¢, A|, > 1 for all § € [0, 1]

Ry, a6 A+ irf)ien, || < (Const- (MM supla(€, D) - (6, V5 -

This finishes the proof of the theorem. (|

4 The calculus of pseudodifferential operators

4.1 Definition. Let £ and E be Hilbert spaces with group-actions {x,} and
{k,}, respectively. Let p € R. With a double-symbol a € SH‘(R* x R x
R x RY; E, E) we associate a family of pseudodifferential operators op,(a)(\) €
L(S(R*, E),S(R", E)) for A € R? by means of the following oscillatory integral:

v, (@Wu)(e) i = [ [ aa, o', € Nula') de’ de
RrRn
= // e ez, w + o & Nu(w + 2') da' dé
RrR®
where as usually d¢ := (27)7"d¢ (Kohn—Nirenberg quantization).

Note that in view of Definition 2.3 (2.iv) and (2.i) the integrand is indeed a E-
valued amplitude function. Regularizing the integral yields the asserted continuity
of op,(a)(A) in the spaces of rapidly decreasing functions. The space of these
operators is denoted by
¢
Liay
Moreover, the space of Volterra pseudodifferential operators, respectively operators
with the Volterra property, is defined as

(R*;RY; B, £) = {op,(a)(\); a € S5/ (R* x R" x R* x R; E, £)}.

LY, (R H; B, E) := {op,(a)(N); a € S, (R x R* x R* x H, E, E)}
C Ly (R*; H; E, E).
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In the case of E = E = C with trivial group-actions the Hilbert spaces are sup-
pressed from the notation.

4.2 Remark. From (2.i) and (2.iv) we see that for each fixed parameter A €
R?, H the operator op,(a)(A) belongs to the space of pseudodifferential operators
L’l‘+M+M(]R”;E,E‘) with global symbols and trivial group-actions. In the scalar
case these operators are discussed, e. g., in Kumano-go [27], see also Cordes [7],
Shubin [45]. The theory of pseudodifferential operators with global operator-valued
symbols without parameters is worked out to some extent also in Dorschfeldt,
Grieme, and Schulze [9], and Seiler [43]. We therefore are able to make use of the
theory of these operators to obtain the desired results for the parameter-dependent
pseudodifferential (Volterra) calculus.

4.1 Elements of the calculus

4.3 Theorem. Let a € S*!(R* x R* x R* x R?; E, E). Then there exist unique
left- and right-symbols ar(z,€, ), ar(z',€,\) € SHYR® x R* x R?; E, E) such
that op,(a)(\) = op,(ar)(A) = op,(ar)(A\) as operators on S(R"™, E).

These symbols are given by means of the following oscillatory integrals:

an(@,6,)) = / / e Wa(e,y + 7,6 +m,A) dy dn,
ane' €)= / / (! 4y o€ —n, N dy di.

The mappings a — ay, and a — apr are continuous. Moreover, we have the asymp-
totic expansions

1
ag(,6,A) ~ Y L% Daalz, 2! & N)|er=a,
aeNg

1
aR(xlagaA) ~ Z J(_l)la‘anga(xaxlafa>\)|z:x’-

aeNy

If a is classical, so are ar and ag, and the mappings a — ar and a — ag are
continuous with respect to the (stronger) topology of classical symbols.

Ifa € S"j{cl) (R* x R* x R* x H; E, E), then the unique left- and right-symbol
associated to the operator op,(a)(\) € L"‘,;fcl) (R";H; E, E) are Volterra symbols,

i e, ap(z,&N),ar(x’,E,N) € S{?(lcl)(]R” x R* x H; E,E), and the asymptotic
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expansions for a;, and ag in terms of a are valid in the Volterra sense:

1
U/L(CU,f,/\) "\; Z J ng’a(wawlafa/\”w':m

aeNy

1
an(@',6,0) ~ D —(=)I0gD3a(z, 2’ € )le=sr.

aeNg

Proof. For A € A = R? H fixed, we apply the corresponding result about the
existence of unique left- and right-symbols for pseudodifferential operators with
global symbols in R" (see, e. g., Kumano-go [27]). This gives the asserted oscillatory
integral-formulas for ay, and ar, and at once yields the uniqueness assertion of the
theorem. Differentiation under the integral sign and plugglng in the group-actions
show, that the so obtained functions belong to S“’ )(]R” x R" x A; E, E), where
we employ the symbol estimates for a and Peetre’s 1nequality (2.1). Moreover, this
yields the continuity of the mappings a — ar and a — ag.

The assertions about the asymptotic expansions for a;, and ag are obtained anal-
ogously to the case without parameters. We shortly sketch the proof for the left-
symbol ar:

Employing a Taylor expansion in 77 = 0 we may write for each N € N

1
a(x7y+$7£+n7>‘) = Z aaga(xay +x7£7>‘)na

|al<N

1
1 _0 N—-1
[ ggatey + e+ g0 0.
0

la]=N

The terms of the Taylor polynomial are amplitude functions in the variables (y, 7).
Moreover, from (2.i) and (2.ii) we conclude that the integrand in the Taylor re-
mainder can be viewed as a continuous function of § € [0,1] with values in the
amplitude functions in (y,7n). Integrating by parts in the oscillatory integral for-
mula for a;, and interchanging integrals of the remainder gives

1
G/L(wafa/\) = Z Ja? g’a(wawlafa/\”w’:x +7'L7N($7£7A)7

la|<N

where

_ N1
ron(z, &, A)=N Z /17// —iyn 80‘ wa)(z,y+a,E+0n, X) dy dn db.

la]=N 7§
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Now we see
1 s |
—0EDYa(e, 2 & Vo= € iR x R x A; B, B,

ron(@,62) € SV (R X R x ASE, B),

which yields the desired asymptotic expansion.

These expansions imply that ar and ar are classical symbols if a is a classical
symbol. The continuity of ¢ — ar and a — agr with respect to the topology of
classical symbols follows from the closed graph theorem. |

4.4 Remark. From Theorem 4.3 we obtain, that the mapping op, provides an
isomorphism between the space of z-dependent symbols (“left-symbols”) and pseu-
dodifferential operators:

4

il . n ; LTRY - [
Sé‘cl) (R* x R* x R?; E| E) op Lf‘cl) (R*;RY; E,E)

H 2 n o~ H LT o
S“j(d) (R* xR* x H E, E) L“L/(cl) (R*;H; E, E).

Via op, we carry over the topologies, which turns the spaces of operators into
Fréchet spaces.

Moreover, we have the spaces of parameter-dependent operators of order —oo
which is independent of £ € N and the group-actions:

L™>*(R";R%; E,E) = [ | L"*(R";R*; E, E) = S(R") &L= (R"; E, E)
neR
{op,(a)(A); a € S™(R" x R" x R; E, E)},
Ly® (R H; B, B) = (] L (R H; B, E) = F(So(R-)) ®, L™ (R"; E, E)
pER
= {op,(a)(\); a € S;™(R" x R" x H, E, E)}.

Note that So(R-) denotes the space of rapidly decreasing functions on R supported
by R_, and F is the Fourier transform (Paley—Wiener theorem, see, e. g., Eskin

12)).
From Proposition 3.3 we see that the restriction of the parameter to the real line
induces a continuous embedding
it : 5 it . 2
L‘(/(d)(]R” xH; E,FE) — Lf”cl)(]R” xR, E,E).

4.5 Definition. Let A(A) = op,(a)(A) € L?‘;f)cl(]R”;A; E,E), where a €
S(”‘;,Z)CZ(R” x R* x A; E,E) (A = RY,H). By Theorem 4.3 the symbol a is uniquely
determined by A()), and so are the homogeneous components of a by (2.vii).
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We define U/\;Z(A) (7,&,A) == auy(z,&,A) as the homogeneous component of high-
est order and call 0#*¢(A) the parameter-dependent homogeneous principal (edge)
symbol of A(\) or simply principal symbol. The mapping A(X) — Uﬁ;l(A) is con-
tinuous.

In case of E = CV- and E = CN+ with trivial group-actions we write as usual
UZ;Z(A) instead of o/¢(A4).

4.6 Theorem. Let E, E, and E be Hilbert spaces with group-actions {k,},

{ko}, and {&,}, respectively. Let A(\) = op,(a)()\) € Lff)(]R” R%; E, E) and

B(\) = op,(b)(\) € LY (R RS E, E) with a € S/ (R* x R* x RI; E, E) and
be S“’;l(]R” x R" x R%; E, E). Then the composition as operators on S(R", E)
belongs to Lf‘*;‘ ‘“(Rn;RY; E, E). More precisely, we have A(\)B(A) = C(\) =

op,(a#b)(A\) with the symbol a#b € S‘H” “(R* x R x R?; E, E) given by the
oscillatory integral formula

(e 63) = [[eMae g+ 1 b + .60 dy . (4)
Moreover, the following asymptotic expansion holds for a#b:
1 [e]3 o .
a#tb ~ Z a(ag a)(Dgb). (4.ii)
aeNg

The mapping (a,b) — a#b is bilinear and continuous. The symbol a#tb is called
the Leibniz-product of a and b.
Ifevena € S”’ p(R* xR xH, E,E) and b € S” it H(R* xR xH; E ,E), then the

Le1bn1z—product a#b belongs to S"ﬁc‘l‘) YR x ]Rn x H; E, E), and the asymptotic
expansion

]' [e]3 [e]3
agtb ~ %:,n —(02a)(DZD) (4.iii)

holds in the sense of Volterra symbols.

From the asymptotic expansions (4.ii) and (4.iii) we see that in the classical case
the following relation holds for the principal symbol of the composition:

ok (AB) = ol (A)ok  (B). (4iv)

Proof. We associate to the operator B(A) the right-symbol bgr(z', £, \) accord-
ing to Theorem 4.3. Then the composition A(A)B(A) has the double-symbol

clz, @', &) = a(z, &, \br(z',&N) € S”V*)“Cf(w x R* x R" x A; E, E), where
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A = R?,H. Employing again Theorem 4.3, we obtain a#b as the corresponding
left-symbol associated to c. This also implies the continuity of the bilinear mapping
(a,b) — a#b. The oscillatory integral formula (4.1) for the Leibniz-product apriori
holds within the symbol classes with trivial group-actions (without parameters)
and necessarily restricts to the preceding situations. The asymptotic expansions
(4.ii), (4.iii) follow from (4.i) via Taylor expansion analogously to the proof of
Theorem 4.3. ]

4.7 Proposition. Let A = R?,H, and let A()\) € Lé‘{f) (R*; A; E, E) be given by
A(N) = op,(a)(\) with a double-symbol a(x,z',&,\) € sg@‘)(w x R x R* x
A; E, E), such that a(z, 2, €, A) =0 for [z — 2| < e for a sufficiently small ¢ > 0.
Then A(\) € L% (R A E, ).

Proof. We associate to A(A) the left-symbol ar according to Theorem 4.3. All
ingredients in the asymptotic expansion for az, in terms of @ vanish by assumption,

from which we conclude that ar, € S(’V")"(R" x R* x A; E, E). O

4.8 Corollary. Let A(\) € Lf{f)(]R”;A;E,E), where A = RY,H. Moreover,
let ¢, € Cp°(R"™) such that dist(suppy,suppy) > 0. Then pA(N)Y €
Ly (R; A E, E). The mapping L7\ (R A E,E) 3 A(\) — ANy €

L(VO)O (R"; A; E, E) is continuous.

Proof. Let a(x,&, \) be the left-symbol for A(A). Then the operator ¢ A(\)y is
given by the double-symbol ¢(z)a(x, &, A\)1(x"), which vanishes identically for |z —
z'| < e when € > 0 is sufficiently small. Consequently, 9 A(A)y € L(_VO;’(]R" ;N E E)

by Proposition 4.7. The continuity of Lé‘{f) (R*;A;E E) 3 A(\) — pA\Y €
L(’VO)O(R”;A; E, E) follows from Theorem 4.6 and the closed graph theorem. O
4.9 Remark. Proposition 4.7 and Corollary 4.8 yield the result of pseudolocality
of the calculi of parameter-dependent pseudodifferential operators.

4.10 Theorem. Let E and E be Hilbert spaces with group-actions {r,} and
{R,}, respectively. For every u € R the principal symbol sequence in Volterra
pseudodifferential operators is topologically exact and splits:

H4

0 —Li HURY L B, B) -5 L5 (R B, B) 25

The translation operator Ty, for T > 0 gives rise to a splitting of this sequence.

Proof. This follows from Theorem 3.20. O
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4.2 The formal adjoint operator

4.11 Definition. A triple {Ey, E, E1; k} is called a Hilbert triple, if the following
conditions are fulfilled:

a) There exists a Hausdorff topological vector space X such that Ey, E and E;
are embedded in X.

b) k: (Ry,-) = L£(X) is a representation, which restricts to strongly continuous
group-actions on Ey, E and E;. On E the action is assumed to be unitary.

c) ENENE; is dense in Ey, E and E;.

d) The inner product on E induces a non-degenerate sesquilinear pairing (-, ) :
Ey x E; — C, that provides antilinear isomorphisms Ej, = F; and E{ = Ej.

4.12 Remark. Let {Ey, E, E1;k} and {EO,E, Ey; %} be Hilbert triples.

a) The scalar product on L?(R", E) induces a non-degenerate sesquilinear pairing

() : S(R", Ey) x S(R™, ;) — C.

b) To each A € L(Ey, Ey) there is a unique operator Ar € L(Ey, E;) such that
(Aeg,€1); = (eo, A*é1)g for all eg € Ey and €; € E;. The mapping A — A*
provides an antilinear isomorphism £(Ey, Ey) — L(E,, Ey).

¢) The mapping * from b) induces an antilinear isomorphism

Su;l

[0 (R x R X R" x RY; By, By) — S (R” x R" x R* x RY; By, Ey)

defined as a*(z,z', &, A) := (a(z', z,&, A))*. Note in particular, that left-symbols
are mapped to right-symbols and vice versa.

4.13 Theorem. Let {Ey,E,FE\;x} and {Ey,E,E\;%} be Hilbert triples and
AN = op,(a)(N) € L (R RY; Eo, Eg) with a € Sliy (R" x R" x RY; Eo, Ey).

Then the formal adjoint operator belongs to Lf‘c;f) (]Rn;]R{q;El,El). More pre-

cisely, for u € S(R",Ey) and v € S(R",E,) we have (AN V) pomn )y =
(u, AN 0) L2 (gn ) with AN)™) = op,(a™)(N), where a*) € S5 (R" x R" x
RY; E,, E,) is given by means of the oscillatory integral

a™ (z, &) = //e_iy”a*(:v +y,&+n,A) dydn, (4.v)
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and the following asymptotic expansion is valid:

* 1 a o x .
a™ ~ Z aag DZa*. (4.vi)

aeNg

The mapping a — a®) is antilinear and continuous. The symbol a*) is called the
adjoint symbol to a.

From the asymptotic expansion (4.v) we see that in the classical case the following
relation holds for the principal symbol of the formal adjoint operator:

oAM= ght(4)*. (4.vii)

Proof. The assertion follows from Theorem 4.3, noting that a* is the right-symbol
for A(A)). O

4.3 Sobolev spaces and continuity

4.14 Definition. Let E be a Hilbert space with group-action {k,}. For s € R
define the space W?(R", E) to consist of all u € S'(R", E) such that Fu is a
regular distribution and

by = ( [ €% I Fu(©) )" < o
R~

If the group-action is trivial we write H*(R", E). In case of E = C and trivial
group-action the space is suppressed from the notation.

4.15 Remark. Let E be a Hilbert space with group-action {x,}.

a) W#(R"™, E) is a Hilbert space with respect to the inner product
(o)t = [ (€ @) ki Fo(©)
R’".
b) The embedding S(R", E) — W?*(R", E) is continuous and dense.

¢) If E < E and the restriction of the group-action {%,} of E on E equals {x,},
then the embedding W* (R, E) « W* (R*, E) is well-defined and continuous
for s > s'.

d) Let M be the constant in the norm-estimate (2.iv) of the group-action from
Definition 2.3. Then

H ™ (R" E) = W*(R",E) — H* M(R",E).
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For proofs of these assertions see, e. g., Hirschmann [18], and Schulze [37].

4.16 Theorem. Let a € S%(R* x R* x A;E,E). Then op,(a)(\) extends
for A\ € A = R?Y,H by continuity to a continuous operator op,(a)(A) €
LOVY(R™, E), W°(R", E)). More precisely, there exists a constant ¢ > 0 inde-
pendent of a, such that with

m(a) () = sup{[|F ¢} (02 0F a) (&, &, Mgy s @, € € R, @ < (1., 1),
B<(M+1,...,M+1)},

where M € Ny corresponds to {k,} via (2.iv), the following norm-estimate holds:
llop, (a)(>\)||L(W0(R’"—’E)’WO(RW.7E~‘)) < em(a)(N).

Proof. The assertion follows from the boundedness result of pseudodifferential
operators with operator-valued symbols in Seiler [44]. ]

4.17 Theorem. Let E and E be Hilbert spaces with group-actions {Kko} and
{R,}, respectively. Moreover, let M and M be the constants in the norm-estimates
for {k,} and {&,} from (2.iv). Let a € SM‘(R* x R* x RY; E,E) and s,v € R
where v > p. Then op,(a)(A) extends for X € R? by continuity to an operator

op,(a)(A) € LOW*(R™,E),W* ¥(R", E)), and we have the following estimate for
the norm:

CopN) 5 w2
op,(a)(A o(Rn —vn By S ' . 7 - 4.viii
llop..(a)( )Hz(w (R, E),Ws—v (R, E)) = {CM(/\)# +M+ Nt V<0, ( )
where Cs, > 0 is a constant depending on s,v and a, which may be chosen
uniformly for a in bounded subsets of S**(R* x R* x RY; E, E) More precisely,
this induces a continuous embedding

p+M+M ~
, ~ S, ¢ (RGWERY,E), W (R, E >0 .
LR RGE E) =7 GV BRI ED) w20y

IR (R, Wi (R B), WV (R, B)) v < 0

into the space of operator-valued symbols with the trivial group-action involved
on the Sobolev spaces (which is indicated by the subscript 1).

Moreover, for Volterra symbols, we find the embedding

pt M+ M -
. - S [4 H S ]Rn E S—v ]Rn E >0
L (R H E, E) — K_ly+M+§V,’W( EL W R E) vz (4.x)

Svl ‘ (H;WS(RH7E)JW87V(RHJE)) VSO

into the space of operator-valued Volterra symbols.
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Proof. First consider the case u = v = 0: Then, if A is a bounded sub-
set of SU%YR" x R* x RY;E,E), we get from (2.iv) and (2.) that the set
A= {\N) """ a(,-A); a€ A, A €R{}is bounded in SO(R" x R"; E, E), and
consequently, also the set (§)*I;#A#(€)~*Ip is bounded in SO(R" x R"; E, E).
Now we get from Theorem 4.16 that the pseudodifferential operators with sym-
bols in the latter set are bounded in L(W°(R", E), W°(R", E)), which implies that

op,(A) C LW* (R, E), W?*(R", E)) is bounded. This gives (4.viii) for p = v = 0.

Now consider the general case: For u/ € R let (Dx,)\)fl € LW4(R";RY; E, E)
denote the operator with symbol (¢,\)} Ij. For a € SHE(R™ x R* x RY; E, E) we
may write

0P, (a)(A) = (D, Ay - (D, A, " 0p,()(N)),
€ L%(R";R%; E, E)

and thus

lop. (@) (Ml ows @n,5), we—r@n. By < 1H{Das Vil cowe @n,5) we—v (e )"
[ (De, /\>4_N Opx(a)(/\)||L(WS(R"7E)7W5(R",E‘))'

The first part of the proof allows us to reduce the general case to the operator
(D, N)g -

With the definition

"/}uﬂ/(/\) ‘= sup (fa/\>z (67" (< o0)

we have [| (Dg, M) llcows,we—v) < ¥ (A) (note that v > p by assumption). If
v > 0 and g > 0 we obtain 1, ,(\) < C(\)7 from Peetre’s inequality (2.i). If
v > 0and p < 0 we see (£,\)) < (\)7 which gives the desired estimate for
Yuw(A). For v < 0 the estimate (€)™ < C (£, A), " holds. By virtue of v > p we
conclude (¢, )} ™" < (\)"7" which implies the assertion (4.viii).

From (4.viii) we now obtain, that the embeddings in (4.ix), (4.x) is well-defined,
and moreover that bounded subsets are mapped into bounded subsets. But since
we deal with Fréchet spaces (in particular with bornological spaces) this already
gives the asserted continuity (see Schaefer [33], IL.8). O

4.4 Coordinate invariance

4.18 Definition. Let U C R be an open set. Then A(\) € L*(R";A; E, E),
where A = R?, H, is said to be compactly supported in U, if for some ¢,9 € C5°(U)
we have A()\) = ¢B(\)¢ with B(\) € L%Y(R*; A E, E).
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In other words: A(\) is compactly supported in U if and only if there is a compact
set i C UxU such that

suppK () € K for all A € A (4.xi)

where K 4(5) € S'(R" xR*, L(E, E)) denotes the operator-valued Schwartz kernel
of the operator A(A).

For each compact set K C UxU the space of compactly supported (Volterra)

operators A(\) € Lf“;f)(cl) (R™; A; E, E) satisfying (4.xi) is a closed subspace of

LY oy (R A B, B).

H4
Let Lsomp (V) (el

dent pseudodifferential (Volterra) operators that are compactly supported in U.
We endow this space with the inductive limit topology of the subspaces of operators
with Schwartz kernels satisfying (4.xi) (taken over all compact sets K C UxU).
Thus it becomes a strict countable inductive limit of Fréchet spaces.

Note that A(\) = op,(a)(A) € L*“* (U A E, E) acts as a family of continuous

comp
operators A(A) : C°(U,E) — C§°(U, E), and its symbol a(z,&, A) is uniquely
determined by this action.

)(U;A;E,E) denote the space of all (classical) parameter-depen-

4.19 Theorem. Let U, V C R"™ be open subsets and x : U — V a diffeomor-
phism. Then the operator pull-back x*A()) defined as

(X" AN)u = X" (AA) (x»w)) (4.xii)
for u € C§°(U,E) and A(N\) € ngfnp(v)(V§A5E:E); with the pull-back x*
and push-forward x, for C§°-functions, defines a topological isomorphism x* :
ij;f;lp(v)(d)(v; A E,E) - Lg;fup(v)(d)(U; A EE).
Moreover, given A(\) = op,(a)(A) € L?;f;p(v)(cl)(V;A;E,E), then x*A(\) =

op,(b)(\) with a symbol b € Sél‘}l)(cl) (R* x R* x A;E,E) having the following
asymptotic expansion in terms of a and x:
b, &) 3 2 (OFa)(x(@), [Dx(@) '€ Nea(@,€) (4.xii)

aeNy

with polynomials ¢, (x, &) in € of degree less or equal to Lol and wo = 1, that are

2
given completely in terms of the diffeomorphism x.

Note that the symbol a vanishes identically outside a compact set in V' which gives
this asymptotic expansion a meaning.

In particular, we obtain b(z,&,\) — a(x(z), [Dx(z) 1]t N) € Sél‘f)l;l(]R” x R™ x

A E, E) This yields in the classical case to the following relation for the principal

symbols:
RO A) (w6, 0) = ok (A) (x(w), [Dx(@) 16, ). (4dv)
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Proof. First consider the case of trivial group-actions. Then the proof makes use
of the corresponding results for pseudodifferential operators with global symbols
(without parameters) in the operator-valued case. As in the proof of Theorem 4.3
we may apply these results for any fixed A € A. Following the outlines of the proofs
of coordinate-invariance, e. g., in Kumano-go [27], or Schulze [10], Shubin [45], we
get the assertion of the theorem in this case.

Now consider the general case. Following Lemma 2.6 we then first apply the result
in the case of trivial group-actions, since the symbol space with non-trivial group-
actions embeds into a symbol space with trivial group-actions and enlarged order.
The terms in the asymptotic expansion for the symbol b in (4.xiii) are operator-
valued (Volterra) symbols in the spaces with non-trivial group-actions. For these
symbol classes are asymptotically complete, i. e., asymptotic expansions can be
carried out within these classes, we see that b in fact belongs to the space with
non-trivial group-actions and order p — recall that the spaces of order —oo are
independent of the group-actions. d

4.20 Remark. Theorem 4.19 and the pseudolocality properties from Proposition
4.7 and Corollary 4.8 provide the tools to define the calculus of pseudodifferential
operators with anisotropic (analytic) parameter and operator-valued symbols on
manifolds.

More precisely, let M be an n-dimensional manifold with empty boundary, and E
and E be Hilbert spaces with group-actions {x,} and {&,}, respectively, and let
either denote A = R? or A = H as before.

We define
L™>*(M;\;E,E) := S(A, L™ (M; E, E)),
Ly® (M5 H; E, E) := L~ (M; H; B, B)NA(H, L~ (M; B, B)),

where L™ (M E, E) denotes the Fréchet space of all operators C : C°(M, E) —
C*>* (M, E) that are locally given as integral operators with smooth L(E, E)-valued
integral kernels.

A family of operators A(\) : C3°(M, E) — C®(M, E) for A € A belongs to the
space Lf{f)(d) (M; A; E, E) if and only if the following is fulfilled:

e For all p,1 € C°° (M) with disjoint supports we have
PANY € LY (M A; E,E).

e For all ¢,7p € C§°(M) that are supported in the same coordinate chart
(U, x) €M we have

X (PANY) € L vy oy XU A B E).
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Notice that some ambiguity in the notation is involved, i. e., if we specialize to
the case M = R we do not recover the spaces of operators with global symbol
estimates as they are discussed earlier in this section.

For classical operators A()\) € L i¢ (M; A; E, E) the homogeneous principal sym-

(V)el
bol o (A)(x,&,A) is well-defined on (T*MxA) \ 0 according to (4.xiv), and it
satisfies the homogeneity relation

oK (A) (@, 06, 0'N) = "Rk (A) (&, & Ny

for o > 0 in the fibres. For classical Volterra operators the homogeneous principal
symbol is analytic in the interior of the half-plane H.

From the material in this section one easily deduces that the parameter-dependent
calculi on the manifold M are well-behaved with respect to the algebraic opera-
tions, e. g., compositions can be carried out within the class (if one of the factors
is properly supported), and an operator A(\) € L*¢(M; A; E, E) acts continuously
in the spaces

ANt WE

comp

(M, E) — W (M, E).

loc

More precisely, if M and M denote the constants in the norm-estimates for {x,}
and {&,} from (2.iv), we have for s,v € R and v > p the embedding

p+M+M .
. - St (AWe L (M, E), WY (M, E >0
L?\Y/l) (M; A, B E) < (;K)V+M+EZ “ p( ) locsfy ))N v =
vy - (Wi, (M E), Wi Y (ML E)) v <0,

(4.xv)
which follows from Theorem 4.17.

Notice that the spaces of compactly supported and local W?*-distributions are well-
defined on the manifold M in an evident way, and they provide typical examples
for spaces that are represented as countable inductive limits (W¢,,,,-spaces) and
projective limits (Wg -spaces) of Hilbert spaces, in this case endowed with the
trivial group-action, such as considered in Definition 2.4 (see also Notation 2.5,
and subsequent considerations). Furthermore, the spaces of invariantly defined
parameter-dependent pseudodifferential operators serve as typical examples for

operator-valued symbols according to (4.xv).

5 Ellipticity and parabolicity

5.1 Ellipticity in the general calculus

5.1 Definition. Let F and E be Hilbert spaces with group-actions {r,} and
{R,}, respectively. A symbol a € S¥*(R* x R* x RY; E, E) is called parameter-
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dependent elliptic, if there is a symbol b € S~#¢(R* x R"* x R?; E, E) such that

ab—1€ SSYR" x R* x RY; E, E),
ba—1€S R xR* x RY; E, E)

for some £ > 0. In particular, the condition of parameter-dependent ellipticity is
not affected by perturbations of lower-order terms.

An operator A(\) = op,(a)(\) € L%{(R™; RY; E, E) is called parameter-dependent
elliptic, if a is parameter-dependent elliptic.

5.2 Lemma. a) Leta € S¥!(R" xR" xRY; E, E). Then a is parameter-dependent
elliptic if and only if for some R > 0 there exists (a(z,&,\)) ™t € L(E, E) for
all z € R*, (,\) € R* x R? with |, Al > R, and

sup{lligly, (a(e, & 0) e, 166N/ @ € B, €M) > R} < oo,

Ifa € Sfl;l(]R” x R* x RY; E, E), then a is parameter-dependent elliptic if
and only if the homogeneous principal component a(,)(z,§,A) € L(E, E) is
invertible for all x € R™ and 0 # (£, A) € R* x R?, and

sup{l(agu) (2,6 )7l z € R, [€ Al =1} < oo

b) Let a € Sé‘l;e(]R{” x R" x RY; E, E). Then a is parameter-dependent elliptic if
and only if there exists b € Sc_l“;e(]R{” x R* x RY; E, E) such that ab—1 €
S5 (R x R* x RY; B, E) and ba — 1 € S, (R* x R x R; E, E).

Proof. Note first that in view of Definition 5.1 the conditions in a) are clearly
necessary for parameter-dependent ellipticity. To prove the sufficiency let y €
C*®(R™ x R?) such that x =0 for [, < R+ 1and x =1 for |§,A\]¢ > R+ 2.
For (z,£,A) € R* x R* x R? define

x(& M) (a(z, &)t in the general case

b(z,§,A) = {X(f: A (ag) (2, €, A)~! in the classical case.

Thus we see that b € S(_Cl‘;;e(]Rn xR xR?; E, E), and moreover ab—1 € S(_Cll);e(]R{” X

R" x R%; E,E) and ba —1 € S(;;" (R* x R* x R?; E, E). This proves a) and b). O

5.3 Theorem. Let A(\) € L%Y(R"; RY; E, E). Then the following are equivalent:

a) A()) is parameter-dependent elliptic.

b) There exists an operator P(\) € L™H(R"; RY; E,E), such that A\)P(\)—1 €
L=5¢(R"; RY; E, E) and P(\NA()\) — 1 € L==4(R*; RY; B, E) for some & > 0.
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¢) There exists an operator P(\) € L™*(R"; RY; E,E), such that A\)P(\)—1 €
L~(R";R¢; B, E) and P(\)A(\) — 1 € L~°(R"; RY; E, E).

If A(N) € Lgl;e(]R{”;]Rq;E, E) is parameter-dependent elliptic, then every P()\) sat-
isfying c¢) belongs to L;”;Z(R”;]R‘J;E,E). Every P()) € L(*C%;Z(R”;RQ;E,E) satis-
fying c) is called a (parameter-dependent) parametrix of A(A).

Proof. Assume that a) holds. Let A(\) = op,(a)(\) with a € S/(R" x R" x
R?; E,E). Let b € STHY(R" x R* x RY; B, E) satisfying the condition of Definition
5.1. The asymptotic expansion (4.ii) of the Leibniz-product in Theorem 4.6 implies
that b#ta—1 € S~(R* xR* xR?; E, E) and a#b—1 € S~5¢(R* xR* xR?; E, E)
for some ¢ > 0 which implies b). If a € S%“(R"* x R* x RY; E, E) we choose
be S;l‘“l(]Rn x R* x R?; E, E) satisfying condition b) of Lemma 5.2. We then even
obtain b#a—1 € SV (R* xR xR?; E, E) and a#b—1 € S, (R* xR* xR?; E, E).
Now assume that b) is fulfilled. Let P(\) = op,(b)(\) and A(N)P(N) = 1 —

op,(r)(A) with 7 € S~5¢(R" x R* x R?; E, E). From Theorem 2.9 and Theorem
4.6 we see that there is a symbol ¢ € S™5¢(R" x R® x R?; E, E) such that

CNZT‘#...#T‘.

j=1 j-times

Now define P(g)(\) := op,(b#(1 + ¢))(A). Then we have A(A)Pgy(\) — 1 €
L=°°(R";RY; E, E) as desired. Analogously, we obtain a parametrix Piry(A) from
the left. But both the left- and the right-parametrix differ only by a term

in L=°°(R";R?; E, E) which immediately follows from considering the product
P(L) ()\)A()\)P(R) ()\) This implies C).

Note that if we had started with the case e = 1 and P()\) as well as the remainder
being classical, we would have obtained also a classical parametrix which proves
the second assertion of the theorem (see also Remark 2.14).

¢) implies a) follows at once from Theorem 4.6. O
5.4 Remark. Clearly, the considerations about parameter-dependent ellipticity
carry over to the case where the parameter-space R? is replaced by a conical

subset ) Z A C R? which is the closure of its interior. There only arise notational
modifications.

5.2 Parabolicity in the calculus with an analytic parameter

5.5 Remark. In this section we study the parabolicity of Volterra operators which
is defined by requiring the parameter-dependent ellipticity of the symbols. The
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main point here is that we are in need to construct a parametrix which itself
has again the Volterra property. The latter cannot be obtained from Theorem 5.3
(or its proof) because there are arguments with excision functions involved, which
destroy the analyticity in the interior of the half-plane (see, in particular, the char-
acterization of parameter-dependent ellipticity from Lemma 5.2). The asymptotic
expansion result from Theorem 3.16, which makes use of kernel cut-off techniques,
and the translation operator from Definition 3.17 and its analysis in Volterra sym-
bol spaces from Proposition 3.18 and Theorem 3.20 provide the tools to handle
these difficulties, and we are in the position to construct Volterra parametrices via
symbolic inversion and the formal Neumann series argument.

5.6 Definition. Let E and E be Hilbert spaces with group-actions {#,} and
{Ro}, respectively. A symbol a € S"j;e(]R” x R* x H; E, E) is called parabolic, if it
is parameter-dependent elliptic as an element in S**(R" x R* x H; E, E)

An operator A(A) = op,(a)(A) € L“‘,;K(R”;H;E,E) is called parabolic, if a is
parabolic.

5.7 Proposition. Let a € S{?él) (R* x R* x H; E, E). Then a is parabolic if and

only if there exists an element b € S;éf; (R* x R* x H; E, E) such that

ab—1e€ s;(l;f)(w x R" x H; E, E),

ba—1€ S, (R xR" xH E,E).

Proof. We only have to prove the necessity of the condition, for the sufficiency
follows immediately from the definition of parabolicity as parameter-dependent
ellipticity (see Definition 5.1, or Lemma 5.2). Assume that a € S{?él) (R™ x R™ x
H; E,E ) is parabolic. Employing Lemma 5.2 we see that for some sufficiently large
R > 0 there exists (a(x,&, )" € L(E,E) for all z € R, (£,\) € R* x H with
|€, Ale > R, and

sup{lli gy, (a(e, €, 0) e, 166N @ € BT, €M) > R} < oo,

Consequently, if we choose 7 € Ry sufficiently large, we conclude that for all
z € R* and all ({,\) € R* x H there exists ((Tira)(:n,f,/\))f1 € L(E,E) with

_ —-1._ n n
Sup{||m<;}\>£((Tira)(xagaA)) K’(E,)\)ZH <£7>‘>2La z€eR ) (£7>‘) € R" x H} < o0

for the symbol Tj;a € S"j;(ecl) (R* x R" x H; E, E) (see Proposition 3.18). Recall
that a — Tjra € S{jffl;)l(]R” x R* x H; E, E). Consequently we see, using Theorem

3.20, that the function

(Tira)(, &, )\))71 in the general case

T;r (a(“))fl(w, &, A\) in the classical case

b(z, &, N) = {
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belongs to S;élcll; (R* x R* x H; E, E), and satisfies the asserted condition. O

5.8 Theorem. Let A(\) € L*‘L}Z(R”;]HI; E,E). Then the following are equivalent:

a) A(X) is parabolic.

b) There exists an operator P(\) € Ly***(R"; H; E, E), such that A\)P(\) -1 €
LySY(RY H; E, E) and P(\)A(N) — 1 € Ly5Y(RY; H; E, E) for some & > 0.

¢) There exists an operator P(\) € Ly***(R"; H; E, E), such that A\)P(\) -1 €
Ly (R H; E, E) and POA)A(N) — 1 € Ly™ (R H; B, E).

If A(\) € L’(}‘;l (]NR{”;H;E,E) is parabolic then every P(\) satisfying c) belongs
to Ly (R*; 1 E, E). Every P(X) € Ly{i) (R"; H; E, E) satisfying c) is called a
Volterra parametrix of A(X).

Proof. In view of Definition 5.6 of parabolicity for Volterra pseudodifferential
operators and Theorem 5.3 it suffices to show that a) implies b), and b) implies

c).

Assume that a) holds. Let A(\) = op,(a)(\) with a € S¥“(R* x R* x H, E, E).
Let b € S;’“Z(R” x R" x H; E/, E) satisfying the condition in Proposition 5.7. Now
the asymptotic expansion (4.iii) in the Volterra sense of the Leibniz-product in
Theorem 4.6 implies that b#a — 1 € S;M(]R” xR* x H; E,E) and a#b—1 €
Sy YR x R™ x H; E, E) which yields b).

Now assume that b) is fulfilled. Let P(A) = op,(b)(A) and A(\)P(\) = 1 —
op, (r)(A) with r € S;;5(R* x R" x H; E, E). From Theorem 3.16 and Theorem
4.6 we see that there is a symbol ¢ € S;E;Z(R” x R* x H; E, E) such that

0
Cr~ TH .. T
Vzli,i
]:

j-times
Now define P(g)(\) := op,(b#(1 + ¢))(A). Then we have A(A)Pgy(\) — 1 €

L‘joo(R”;H;E,E) as desired. Analogously, we obtain a Volterra parametrix
Pry(A) from the left. But both the left- and the right-parametrix differ only

by a term in L‘_,OO(R”;H;E,E) which follows from considering the product
Pry(M)AN) P(ry(A). This implies c). O
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