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Summary 
Plants are the primary producers of biomass and thereby the basis of all life. Many 

varieties are cultivated, mainly to produce food, but to an increasing amount as a 

source of renewable energy. Because of the limited acreage available, further 

improvements of cultivated species both with respect to yield and composition are 

inevitable. One approach to further progress in developing improved plant cultivars is 

a systems biology oriented approach. 

This work aimed to investigate the primary metabolism of the model plant A.thaliana 

and its relation to plant growth using quantitative genetics methods. A special focus 

was set on the characterization of heterosis, the deviation of hybrids from their 

parental means for certain traits, on a metabolic level. More than 2000 samples of 

recombinant inbred lines (RILs) and introgression lines (ILs) developed from the two 

accessions Col-0 and C24 were analyzed for 181 metabolic traces using gas-

chromatography/ mass-spectrometry (GC-MS). The observed variance allowed the 

detection of 157 metabolic quantitative trait loci (mQTL), genetic regions carrying 

genes, which are relevant for metabolite abundance. By analyzing several hundred 

test crosses of RILs and ILs it was further possible to identify 385 heterotic metabolic 

QTL (hmQTL). 

Within the scope of this work a robust method for large scale GC-MS analyses was 

developed. A highly significant canonical correlation between biomass and metabolic 

profiles (r = 0.73) was found. A comparable analysis of the results of the two 

independent experiments using RILs and ILs showed a large agreement. The 

confirmation rate for RIL QTL in ILs was 56 % and 23 % for mQTL and hmQTL 

respectively. Candidate genes from available databases could be identified for 67 % 

of the mQTL. To validate some of these candidates, eight genes were re-sequenced 

and in total 23 polymorphisms could be found. In the hybrids, heterosis is small for 

most metabolites (< 20%). Heterotic QTL gave rise to less candidate genes and a 

lower overlap between both populations than was determined for mQTL. This hints 

that regulatory loci and epistatic effects contribute to metabolite heterosis. 

The data described in this thesis present a rich source for further investigation and 

annotation of relevant genes and may pave the way towards a better understanding 

of plant biology on a system level. 
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1 Introduction 

1.1 Metabolomics 
The metabolome is the entirety of small molecules present in an organism and can 

be regarded as the ultimate expression of its genotype in response to environmental 

changes. Since the term was coined in 1998 (Oliver et al., 1998), the technology to 

qualify and quantify an ever increasing part of the metabolome was developed 

rapidly along with the complementary 'omics' approaches measuring transcript 

(transcriptomics) and protein (proteomics) abundances. Compared to the latter, 

information obtained in metabolomics analyses is regarded to closer mirror the 

biological endpoint (Lindon et al., 2004) and, as such, is perhaps more relevant to 

our understanding of how a plant exists, functions and responds within its own 

environment (Hall, 2006). 

While single metabolites have been measured by spectrophotometric assays or sim-

ple chromatographic separation for a long time (Fernie et al., 2004), the analysis of 

several hundreds to thousands of compounds only started to become feasible with 

the hyphenation of separation methods to various detection systems. The separation 

methods which are commonly applied include gas chromatography (GC), liquid 

chromatography (LC) and capillary electrophoresis (CE). Different types of mass 

spectrometry (MS), nuclear magnetic resonance (NMR) and ultraviolet light spectros-

copy (UV/VIS) devices are utilized for detection. Fourier transform ion cyclotron 

resonance mass spectrometry (FT-ICR-MS) as a special case is often used in direct 

infusion (DI) mode, as its high mass accuracy allows a separation solely based on 

this parameter. All available methods exhibit various advantages and disadvantages 

and the method of choice highly depends on the biological question to be answered. 

NMR surpasses other methods if the determination of metabolite structures for highly 

abundant compounds in a non-destructive way is required. However, compared to 

mass spectrometry, NMR systems have a low sensitivity and are cost intensive. 

Mass spectrometry based methods are very suitable for plant metabolomics due to 

their robustness and high sensitivity, which is necessary given the complexity of 

samples and the dynamic range of metabolite concentrations. 

Liquid chromatography if compared to gas chromatography allows the analysis of a 

broader range of metabolites from plant extracts including secondary metabolites. 

Still, problems with ion suppression effects for the often utilized electron spray ioniza-
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tion (ESI), a low chromatographic reproducibility and the lack of reference databases 

have to be considered. 

Gas chromatography, by principle, is limited to the fraction of small molecules which 

are volatile or can be rendered volatile through chemical derivatization. This includes 

most of the metabolites involved in primary metabolism, such as - but not limited to - 

hydroxy- and amino acids, sugars, sugar alcohols, organic monophosphates, 

(poly)amines, sterols and fatty acids (Fiehn et al., 2000a). 

The biochemical diversity in the plant kingdom is estimated to well exceed 100,000 

distinct compounds (Weckwerth, 2003) and 4,000 to 20,000 metabolites per species 

seem likely (Fernie et al., 2004). None of the above mentioned methods is capable of 

measuring all the metabolites that can be expected to be present in a plant sample. 

The chemical complexity and range of concentrations render a comprehensive 

analysis impossible. Published studies reported on identifying from 76 up to more 

than 2,000 metabolites or metabolic mass traces with several hundreds of samples 

per experiment (Keurentjes et al., 2006; Meyer et al., 2007a; Schauer et al., 2006), 

demonstrating recent technological advances. A variety of software tools aiding in the 

unbiased or reference based evaluation of metabolomics experiments are developed 

to keep up with that progress (Fiehn et al., 2005; Luedemann et al., 2008; Smith et 

al., 2006; Styczynski et al., 2007; Vos et al., 2007). 

Principal strategies in metabolomics include (i) fingerprinting approaches, where a 

high number of metabolic traces of known and unknown structure are evaluated and 

used for sample classification; (ii) metabolic profiling, which aims to annotate and 

possibly quantify as many metabolites as possible and (iii) targeted analysis, which 

include a rather limited number of metabolites chosen on prior knowledge (Fiehn, 

2002; Hall, 2006). 

1.2 The use of immortal populations and natural variation in plant 
quantitative genetics 

The observed phenotype of any organism can be assumed to be the product of its 

genetic disposition and the influence of its environment. Likewise, the observed 

variation (VP) of any phenotypic trait within a population of organisms can be parti-

tioned into the variance components attributable to genotype (VG), environment (VE) 

and their interaction (VG × VE). Quantitative genetics provides a mathematical foun-
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dation which allows to elucidate the mechanisms underlying VG by extending the 

principles of Mendelian genetics to quantitative traits and populations. 

Quantitative traits are determined on a genetic level by two to potentially hundreds of 

loci. Single contributions are therefore small and can not be identified by their segre-

gation in individual lines but rather due to gene frequencies in populations. Recombi-

nant inbred lines (RILs) and introgression lines (ILs) also termed near isogenic lines 

(NILs) are two population types which are frequently used to investigate these traits 

and the underlying genes. (Salvi and Tuberosa, 2005) Both are developed from a 

cross (F1) of two parental accessions (P1, P2) which are preferably homozygous and 

genetically distinct to ensure alternate alleles at loci potentially influencing the trait of 

interest. 

Measuring genetic diversity can be achieved by classical methods like pedigree 

analysis and morphological, physiological or cytological markers (Melchinger, 1999). 

With the advent of modern screening technologies restriction fragment length poly-

morphisms (RFLPs) and simple sequence repeats (SSRs or microsatellites) allowed 

to increase the number of markers accessible and ensured an evenly distribution 

over the genome. Today, single nucleotide polymorphisms (SNPs) became the 

method of choice due to the ease of genotyping (Wang et al., 1998) and their low 

mutation rates (Kruglyak, 2008). The HapMap project, which aims to identify all 

polymorphisms present in humans, was for instance able to identify more than 3 

million SNPs (International HapMap Consortium, 2007). In Arabidopsis a 

resequencing effort led to the prediction of over 1 million SNPs (Clark et al., 2007). 

The progress in SNP detection technologies facilitated the generation and 

genotyping of large RIL and IL populations. 

RILs are generated from a cross (F1) through repeated selfing. The number of selfing 

steps determines the degree of inbreeding and is usually continued until a homozy-

gous state is reached. Since each line is the progeny of an individual initial hybrid, 

different sections of the parental genomes are fixed during the inbreeding process, 

so that all lines, on average, bear half of the genetic information from each parent but 

are otherwise genetically diverse. Consequently, each allele for genes where both 

parents differed (and each marker) will be represented in the resulting RIL population 

with a frequency of 0.5. If such a population is cultivated under equal conditions and 

analyzed for a certain trait, a significant difference may be found between two 
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subpopulations that can be formed based on any of these markers. It can then be 

concluded that this marker is linked to one or several genes causing this difference. 

Introgression lines (ILs) are generated by repeated backcrossing of the initial hybrid 

with one of its parents (e.g. P1). The number of backcrossing steps determines the 

amount of the genetic information from the other parent (P2) still present in the 

introgression line. A final selfing step produces a homozygous line, carrying one or 

several short fragments of a donor genotype (here P2) in the background of a recipi-

ent (here P1). A useful IL population for genome wide analysis would comprise two 

reciprocal populations of distinct lines which inherit introgression that together cover 

the full genome. If any of these ILs are grown together with the corresponding parent, 

thus minimizing environmental influences, observed significant differences can be 

contributed to the introgressed fragment alone. 

Because RILs and ILs are 'immortal' and seeds can be produced easily by selfing 

they are well suited for replicated experiments under different environmental condi-

tions or analyzing different traits of interest. Backcrosses (BC) or testcrosses (TC) 

between any RILi or ILi with both of its parents and the parent hybrid can be gener-

ated. These experimental designs are known as North Carolina Design III (Comstock 

and Robinson, 1952) when only backcrosses with both parents are produced, and 

triple testcross design (TTC) (Kearsey and Jinks, 1968), when an additional 

backcross to the parent hybrid is generated. They allow to estimate additive, 

dominant and, in case of TTC, epistatic variation. 

RIL and IL populations are available for several plant species like tomato, rice, maize 

and Arabidopsis (Alonso-Blanco et al., 1998c; Burr et al., 1988; Eshed and Zamir, 

1995; Li et al., 1995) and have been widely examined to investigate quantitative traits 

(cf. 1.3). 

An alternative with respect to genome wide analyses is association mapping, which 

is based on linkage disequilibrium (LD) in wild strains. In Arabidopsis LD decays 

rapidly (<10kb) in a sample of accessions selected for maximum genetic diversity 

possibly allowing near-gene-level resolution in mapping approaches (Kim et al., 

2007). However, spurious associations which can arise due to an underlying 

population structure have to be taken into account. 
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1.3 Quantitative trait analyses 
A particular case which renders the aforementioned populations of recombinant in-

bred lines and introgression lines useful is the investigation of quantitative traits 

which are genetically determined by multiple loci (quantitative trait loci, QTL). As was 

pointed out in the previous paragraph it is a straight forward approach to identify a 

chromosomal fragment influencing a trait of interest in ILs. The quantitative nucleo-

tide (QTN) which is causing the observed difference can be confirmed by comple-

mentation tests or positional cloning once the size of the fragment has been nar-

rowed down to a few kb using subILs generated from the initial candidate line. 

In RIL populations QTL mapping was classically carried out as single marker 

analysis, testing the association between each marker and a trait, assuming linkage 

of this marker to a gene influencing this trait if association was confirmed in a test 

statistic. Interval mapping (IM) based on maximum likelihood (Lander and Botstein, 

1989) or multiple regression (Haley and Knott, 1992) allowed estimating QTL 

positions and effects in continuous intervals throughout the whole genome, taking the 

distance and expected recombination frequencies between markers into account. 

Composite interval mapping (CIM) (Zeng, 1994) further increased precision of 

estimates by incorporating determined QTL as cofactors into the calculations. 

Multiple interval mapping (MIM) (Kao et al., 1999) was introduced to analyze all 

potential QTL in a full model hereby allowing to include epistatic effects between loci. 

Permutation tests as suggested by Churchill and Doerge (1994) are widely used to 

compute significance thresholds and a variety of computational tools to carry out the 

actual calculations is publicly available (MAPMAKER/QTL (Lincoln et al., 1992), QTL 

Cartographer (Basten et al., 1994), PLABQTL (Utz and Melchinger, 1996), R/QTL 

(Broman et al., 2003)). 

Some inherent limitations of QTL analyses using RILs exist. Confidence intervals 

reported in literature rarely drop below ~10 cM (equivalent to ~300 kbp in 

Arabidopsis), that is they contain hundreds of genes. Effects are likely to be 

overestimated, since only significant effects are retained in the model (Kearsey and 

Farquhar, 1998). Gene clustering of several loci influencing a trait, a situation which 

is known for genes controlling e.g. floral traits (Bernacchi and Tanksley, 1997), 

hampers the mapping process in two ways: If genes act synergistically several small 

effects may appear as a single, strong QTL but if they bear opposing effects, no QTL 

at all may be detectable. Another concern is that detected QTL could be caused by 
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environmental interactions and thus impede their confirmation at different conditions. 

It is still a debate to which extent QTL detected in one population can be confirmed in 

a second or, even more severe, in a different species, a feature that would be 

necessary to allow general conclusions. 

The most important factors determining the success in QTL analyses are the 

heritability of the trait, the number of genes involved, their individual contribution and 

the size of the mapping population. 

The number of genes identified based on QTL studies is steadily increasing 

(Korstanje and Paigen, 2002), with focus on single trait analyses like disease 

predisposition, plant yield and yield related traits. With the advent of multi parallel 

techniques, gene expression, protein and metabolite abundances started to become 

accessible for QTL analyses. 

1.4 Heterosis 
The injurious effects of self fertilization are well known (Darwin, 1876). The reverse 

phenomenon of an increased fitness of a hybrid cross compared to its homozygous 

parents was described by Shull in 1908 and later termed heterosis. The observed 

fitness often refers to increased biomass, size, yield, fertility, speed of development 

and stress resistance. It is described for animals and throughout the plant kingdom 

with maize being the most prominent example ever since East and Hayes (1912) 

suggested to use hybrid vigor in crop breeding. Some maize hybrids exhibit a more 

than 100% increase in grain yield (Becker, 1993) over the better parent (better parent 

heterosis, BPH), highlighting the agronomical importance of the biological 

phenomenon. More formally, every deviation of a hybrid trait value from the average 

of its parents for this trait can be regarded as heterosis (mid parent heterosis, MPH). 

Two classic quantitative genetic explanations have been derived (Crow, 1948). 

(i) The dominance theory (Bruce, 1910; Davenport, 1908), builds on the concept 

that deleterious alleles which are present in both parents are expressed in the 

hybrid to a lesser extend due to complementation. If true, this should in principle 

allow to combine the proposed superior alleles in inbred lines. Therefore, a part 

of the heterotic effect would be fixed and the absolute amount of heterosis 

should decline. However, this is not observed. While inbred lines have been 

improved steadily the amount of heterosis has slightly increased (Duvick, 1999). 

Further, for each individual gene the dominance theory can explain only hybrid 



 

 
8 

values to increase up to the better parent level. Consequently, cumulative action 

of many genes is thought to result in best parent heterosis. 

(ii) The second classic explanation postulates the heterozygous state to be 

beneficial per se. Overdominance (Crow, 1948; Hull, 1945) (and dominance) 

with respect to the quantitative genetic meaning refer to a non-additive 

expression in the hybrid, where overdominance leads to values lying outside the 

parental range. This is thought to be caused by allelic interactions at one locus, 

still, it can not be distinguished from the situation if two contributing loci are 

linked in repulsion (e.g. as dominant and recessive alleles on opposite 

homologues) which was termed pseudo-overdominance. 

Finally, the epistasis theory (Powers, 1944; Williams, 1959) attributes heterosis to the 

interactions between non-allelic genes at two or more loci in hybrids. 

The methods and tools described in chapters 1.1 to 1.3 and further developments 

permitted to investigate heterosis on a molecular level. On the way to identify the 

causal genes Stuber et al (1992) analyzed QTL for grain yield and 5 other traits using 

264 F3 lines developed from a cross between the two maize elite lines B73 and 

Mo17 which were backcrossed to both parents and had been genotyped with a high 

number of markers (76). Based on the finding that phenotypic traits in hybrids are 

higher if compared to the better parent for most QTL the authors suggested 

overdominance (or pseudo-overdominance) as the mode of action. A re-evaluation of 

the same experimental data using novel methods Cockerham and Zheng 

(Cockerham and Zeng, 1996) provided evidence for epistatic effects between linked 

QTL. 

Similar studies investigating backcrosses of RILs or ILs to elucidate QTL, mostly for 

growth related traits were conducted for rice (Li et al., 2001; Luo et al., 2001; Mei et 

al., 2005; Xiao et al., 1995; Yu et al., 1997), tomato (Monforte and Tanksley, 2000; 

Semel et al., 2006), soybean (Lark et al., 1995), maize (Frascaroli et al., 2007; Lu et 

al., 2003; Yan et al., 2006) and Arabidopsis (Kusterer et al., 2007; Melchinger et al., 

2007a; Syed and Chen, 2005). All studies differ with respect to the organism, 

developmental stage, evaluated traits, experimental design and the conclusions 

drawn regarding the predominant mechanism underlying heterosis. 

Several groups investigated heterotic effects in physiological processes like water 

use efficiency in Ipomopsis (Campbell et al., 2005), leaf morphology and CO2 

exchange rate in maize (Ahmadzadeh et al., 2004; Tollenaar et al., 2004) or the 
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contents of adenine nucleotides and nicotinamide coenzymes in fiber flax (Titok et 

al., 2005). 

Since the analyses of gene expression for single genes and whole genomes became 

feasible, techniques like RT-PCR and microarrays have been widely applied to study 

heterosis on different levels. Some studies on genome organization strengthened the 

view that complementation may contribute to the particularly high levels of heterosis 

in maize (Brunner et al., 2005; Fu and Dooner, 2002; Song and Messing, 2003). 

Evaluation of gene expression for selected genes (Brunner et al., 2005; Meyer et al., 

2007b) and on the full genome (Guo et al., 2003; Stupar and Springer, 2006; 

Swanson-Wagner et al., 2006) identified numerous heterotic loci in maize but neither 

a consensus gene set nor a consensus trend with respect to the amount of additive 

and non-additive behavior was revealed. Vuylsteke et al (2005) found approximately 

9% of all analyzed genes to be expressed in a heterotic manner in a particular 

Arabidopsis hybrid. Huang et al (2006) could identify only 2.4% of 5771 expressed 

sequence tags in rice to show heterosis. However, there are arguments raised by 

Bancroft in a recently filed patent (Bancroft et al., 2007) that transcript abundance 

changes in hybrids, two-fold or greater, may not be related to heterosis but to hybrid 

formation itself. 

On the way to characterize the action at single loci Wittkopp et al. (2004) started to 

investigate allele specific gene expression. This approach was in the following 

applied to maize hybrids, where allele specific expression could be shown to exist in 

response to abiotic stresses and being predominantly cis-regulated (Guo et al., 2004; 

Stupar and Springer, 2006). 

The amount of heterosis can be predicted to a certain extent for crosses between 

related lines based on the genetic distance of both parents. However, this does not 

hold true for inter-group crosses between parents from genetically diverse heterotic 

groups (Melchinger, 1999) which are of highest interest to breeders due to the high 

level of heterosis often found. 

1.5 Aim of the Thesis 
To broaden our knowledge of plant primary metabolism and its relation to biomass 

using quantitative genetics a robust method for metabolic profiling of large sample 

populations was established. RIL and IL populations developed based on the cross 

of the two Arabidopsis thaliana accessions C24 and Col-0 and test crosses thereof 
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were analyzed for the abundance of 181 metabolic traces. This data allowed to 

explore the primary metabolism of Arabidopsis by means of a comprehensive 

quantitative trait locus analysis, mapping metabolic and heterotic metabolic loci. 

These loci were further characterized according to their distribution and co-location 

with each other, with biomass QTL and with a set of possible candidate genes 

retrieved from the AraCyc database (http://www.arabidopsis.org). 

The parallel examination of the corresponding biomass for all samples was related to 

the metabolic profiles by multivariate statistics. Methods seeking to predict biomass 

or biomass heterosis based on metabolite measurements were applied. 
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2 Gas chromatography mass spectrometry-based 
metabolite profiling in plants 
Jan Lisec1,*,§, Nicolas Schauer1,*, Joachim Kopka1, Lothar Willmitzer1 and Alisdair 
R Fernie1 

 1 Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Golm, Germany 
 *  These authors contributed equally to this work. 
 § JL contributed to method development and preparation of the manuscript 

2.1 Abstract 
The concept of metabolite profiling has been around for decades, but technical 

innovations are now enabling it to be carried out on a large scale with respect to the 

number of both metabolites measured and experiments carried out. Here we provide 

a detailed protocol for gas chromatography mass spectrometry (GC-MS)-based 

metabolite profiling that offers a good balance of sensitivity and reliability, being 

considerably more sensitive than NMR and more robust than liquid chromatography–

linked mass spectrometry. We summarize all steps from collecting plant material and 

sample handling to derivatization procedures, instrumentation settings and evaluating 

the resultant chromatograms. We also define the contribution of GC-MS–based 

metabolite profiling to the fields of diagnostics, gene annotation and systems biology. 

Using the protocol described here facilitates routine determination of the relative 

levels of 300–500 analytes of polar and nonpolar extracts in ~400 experimental 

samples per week per machine. 

2.2 Introduction 
Although metabolite measurements have been carried out for decades owing to the 

fundamental regulatory importance of these molecules as components of metabolic 

pathways, the importance of some metabolites in the human diet and their use as 

diagnostic markers for a wide range of biological conditions, including disease and 

response to chemical treatment, is only now being recognized (Fernie et al., 2004). 

Historically, the measurement of metabolites was achieved either by 

spectrophotometric assays capable of detecting single metabolites or by simple 

chromatographic separation of mixtures of low complexity. Over the past decade, 

however, several methods offering both high accuracy and sensitivity for the analysis 

of highly complex mixtures of compounds have been established (Fiehn et al., 

2000a; Harrigan and Goodacre, 2003; Hirai and Saito, 2004; Kopka et al., 2004; 

Roessner et al., 2001a; Soga et al., 2003; Sumner et al., 2003). These methods 



 

 
12 

include GC-MS, liquid chromatography mass spectrometry (LC-MS), capillary 

electrophoresis mass spectrometry (CE-MS) and Fourier transform ion cyclotron 

resonance mass spectrometry (FT-ICR-MS). In addition, chromatographically 

coupled NMR technologies have found great utility in addressing specific issues, 

particularly in the medical field (Lindon, 2003; Wasim et al., 2003) and perhaps most 

importantly with respect to the unequivocal determination of metabolite structures 

(Meiler and Will, 2002). Nevertheless, NMR shows relatively low sensitivity and thus 

can be used for highly abundant metabolites when profiling complex mixtures. 

GC-MS facilitates the identification and robust quantification of a few hundred 

metabolites in a single plant extract (Fiehn et al., 2000a; Halket and Zaikin, 2003; 

Roessner et al., 2001a), resulting in fairly comprehensive coverage of the central 

pathways of primary metabolism. The main advantages of this technology are that it 

has long been used for metabolite profiling and thus there are therefore stable 

protocols for machine setup and maintenance, and chromatogram evaluation and 

interpretation. Although no single analytical system can cover the whole metabolome, 

GC-MS has a relatively broad coverage of compound classes (Sumner et al., 2003), 

including organic and amino acids, sugars, sugar alcohols, phosphorylated 

intermediates and lipophilic compounds. Recovery experiments of all measurable 

classes of compounds have been done during method validation. For unknown 

compounds, recovery rates can be determined by recombination experiments in 

which extracts of two plant species are evaluated both independently and after 

mixing (Roessner-Tunali et al., 2003a; Roessner et al., 2000). 

Although liquid chromatography–based methods offer distinct advantages, such as 

the broader range of metabolites detectable (Aharoni et al., 2002; Kopka et al., 2004; 

Plumb et al., 2003; Swart et al., 1993), they suffer from the lower reproducibility of 

retention times in liquid chromatography; in addition, owing to the predominant use of 

electron spray ionization, they are more susceptible to ion suppression effects, which 

render accurate quantification more difficult. Two alternative mass spectrometry 

technologies, FT-ICR-MS and CE-MS, are worth mentioning. FT-ICR-MS has 

unrivalled mass accuracy, thereby enabling the researcher to obtain directly a good 

idea about the chemical composition of the respective compound; however, a robust 

documentation of the validity of this technology, specifically with respect to 

quantification, is lacking for broad metabolite profiling. More data are available for 

CE-MS, a technology that detects low-abundance metabolites and affords good 
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chromatographic separation. Despite robust validation of this procedure (6), however, 

only a few reports document its use (Sato et al., 2004; Unger et al., 2004). 

Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) technology has 

been developed (Saito et al., 2006; Taylor et al., 2002; Wagner et al., 2003) and 

offers several advantages over the previously used quadrupole technology (GC-

quad-MS)—notably fast scan times, which give rise to either improved deconvolution 

or reduced run times for complex mixtures and higher mass accuracy. For these 

reasons, the protocol described here is based on GC-TOF-MS technology; however, 

GC-quad-MS could be alternatively used in combination with published mass 

spectral alignment tools such as XCMS (Smith et al., 2006), MSFACTs (Duran et al., 

2003), MetAlign (http://www.metalign.nl), AnalyzerPro(http://www.spectralworks.com) 

and BinBase (http://fiehnlab.ucdavis.edu). A detailed protocol for GC-quad-MS can 

be obtained by contacting the authors. 

This protocol uses a MDN-35 or equivalent column with fatty acid methylesters 

(FAMEs) as retention time standards and was chosen because of the relative ease of 

application and fast chromatographic times (Kaplan et al., 2004; Weckwerth et al., 

2004). N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) and methoxyamine 

hydrochloride are used as derivatization reagents because initial studies indicated 

that these compounds were the most appropriate for profiling of plant metabolites 

(Fiehn et al., 2000b; Roessner et al., 2000). Despite this, it has been shown that 

derivatization time and temperature influence the outcome of the results (Gullberg et 

al., 2004). Derivatization of compounds often results in more than one peak for a 

metabolite of interest, owing to either partial silylation or isomerization in the case of 

methoxyaminated compounds such as sugars. In this protocol we identify all peaks of 

one compound, calculate their response independently, and pick the more reliable 

one using the statistical methods described here, but other methods such as 

summation of the peaks of one compound could be used as an alternative strategy. 

Further developments are ongoing and deal with this issue, in addition to degradation 

and partial silylation effects (J.K. and N.S., unpublished data). 

2.2.1 Application of metabolite profiling 

Improvements in metabolite profiling have rendered it an important tool for 

addressing biological problems. Previously, its main applications have been in the 

areas of diagnostics and descriptive analysis of metabolic response to various 
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experimental perturbations, but increasingly examples of its use in gene function 

annotation and systems biology are being reported. Metabolite profiles have been 

widely used in conjunction with statistical tools for diagnosis: they have been used to 

infer the mode of action of various herbicides on barley seedlings (Sauter et al., 

1991), and to discriminate Arabidopsis, potato and tomato genotypes (Fiehn et al., 

2000a; Roessner et al., 2001a), various tissues of Lotus japonicus (Desbrosses et 

al., 2005) and different stages of tomato fruit ripening (Roessner-Tunali et al., 

2003a). 

In combination with a second round of experimental perturbation, diagnostic tools 

have been used to identify the principle metabolic change leading to metabolic shifts 

apparent after genetic perturbation (Junker et al., 2004; Roessner et al., 2001b). 

Metabolite profiling has also been used in the process of testing whether genetically 

modified plants are substantially equivalent to conventional crops (Catchpole et al., 

2005; Defernez et al., 2004) and in understanding the complex shifts in metabolism 

that occur under nutrient limitation (Hirai et al., 2004a; Nikiforova et al., 2005; 

Urbanczyk-Wochniak and Fernie, 2005) and biotic stress (Broeckling et al., 2005; 

Schnee et al., 2006). Taken together, these examples show that metabolite profiling 

has important applications in the diagnostic characterization of different genetic and 

environmental conditions and can also aid in understanding the complex changes 

apparent under such circumstances. 

In addition to its above-mentioned utility in diagnostics, metabolic profiling provides 

direct functional information on metabolic phenotypes and indirect information on a 

range of phenotypes that are determined by small molecules, such as stress 

tolerance or disease manifestations (Fernie et al., 2004). Given this, there is great 

potential for metabolite profiling as a tool for functional genomics. Indeed, gain-of-

function analysis by the transgenomic expression of every gene of the Escherichia 

coli and yeast genomes independently in Arabidopsis thaliana both confirmed 

expected functions and facilitated the assignment of gene function to unannotated 

open reading frames (Fernie et al., 2004). This experiment was reliant on the fact 

that metabolite profiling can be used in a high-throughput format. Indeed, of all of the 

genomics technologies, it offers one of the best combinations of practical 

performance and cost per sample. 

Metabolite profiling has also been used to demonstrate gene function by comparison 

of profiles derived form knockout mutants of Arabidopsis to their respective wild-type 
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ecotypes, facilitating the annotation of genes associated with isoflavonoid, 

triterpenoid, pyridine alkaloid glucosinolate, flavonoid and sterol metabolism 

(Goossens et al., 2003; Hirai et al., 2005; Morikawa et al., 2006; Suzuki et al., 2005; 

Tohge et al., 2005). The approach of focusing on individual genes can be extended 

to exploring the phenotypic relevance of genomic regions (Schauer et al., 2006; 

Tagashira et al., 2005). A GC-MS profiling study of breeding populations of tomato, 

wherein genomic sequences from the wild tomato species Solanum pennellii were 

introgressed into the elite cultivated species Solanum lycopersicum, identified nearly 

900 quantitative trait loci for fruit metabolite accumulation and ultimately, through the 

study of progressively smaller recombinant introgressions, should facilitate the 

identification of genes that regulate metabolite content in a species of nutritional 

significance (Schauer et al., 2006). Similarly, the integration of metabolite and 

transcript profiling data has proved effective for identifying candidate genes for 

biotechnology (Askenazi et al., 2003; Urbanczyk-Wochniak et al., 2003). 

In all technologies for metabolite profiling, the main limitation is the number of 

metabolites that can be detected and quantified. As ~200,000 metabolites are 

estimated to exist in the plant kingdom, it is clear that we are a long way from 

detecting the complement of plant small molecules. The availability of a full 

complement of isotopically labeled standards could greatly aid metabolite 

quantification, and further progress is undoubtedly required in determining the 

chemical identity of the peaks that can be resolved by current metabolite profiling 

methods. The use of metabolic profiling as a diagnostic tool is largely independent of 

the abovementioned limitations, but its application to gene function analysis and 

systems biology depends largely on technological improvements. The fact that the 

phenotype of any biological system is largely dependent on its metabolite 

composition (Fernie et al., 2004), however, gives ample reason to invest resources in 

attaining this goal. Although the protocol described here was developed for the 

analysis of Arabidopsis leaf samples, its use has been validated for plant 

heterotrophic tissues, highlighting its broad utility. 

2.2.2 Considerations for the procedure 

Metabolite profiling, like any technique concerned with measuring metabolites, 

requires the immediate inactivation of metabolism because the turnover of 

metabolites, as compared with proteins and DNA or RNA, is extremely rapid. 

Quenching of metabolism is generally achieved by rapidly freezing samples (at a 
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constant temperature of –60 °C or less). In addition, the whole procedure critically 

requires materials of the highest purity to prevent contamination, which can easily 

influence the outcome of the experiment. Given this hazard, it is necessary to run 

quality control samples frequently alongside each experiment. Basic requirements for 

an experiment should be considered a priori for a generalized standard design 

(Jenkins et al., 2004). The following details are critically important. Given that 

experiments generally comprise sets of samples of interest and their respective 

controls, it is a prerequisite that these samples are comparable to one another. For 

large sample sets it is imperative that there are a sufficient number of control 

samples, particularly because it is sometimes not possible to measure all samples in 

a single GC-MS run. Alongside each experiment, blank samples should be run for to 

identify contaminants. Blank samples should be derivatized alongside the other 

samples—the only difference is that this sample vial contains no metabolite extract. 

Another important detail is the reproduction of biological data—a minimum number of 

six biological replicates is sufficient (Roessner et al., 2001a), but where possible the 

number of replicates should be even higher, especially if in-depth statistical analysis 

of the data sets emerging from the analysis is intended (Scholz et al., 2004; Scholz et 

al., 2005; Steuer et al., 2003). Indeed, consideration of elementary statistic suggests 

that the sample number requirements can be determined by power analysis 

determined from the degree of variance within populations. 

2.2.3 Sampling and extraction 

Before beginning the sampling process, the time point for sampling must be carefully 

considered. As a general rule, we harvest photosynthetic leaf tissue in the middle of 

the light period because experiments in our own laboratory have indicated that 

almost all metabolites that we can detect and quantify are subject to strong diurnal 

rhythms (Urbanczyk-Wochniak et al., 2005). We also tend to take samples from 

plants before emergence of the first inflorescence, always harvesting from the same 

internode and using fully developed, nonsenescent leaves. Experience dictates that 

these factors are crucial (Desbrosses et al., 2005; Ishizaki et al., 2005; Ishizaki et al., 

2006), as is the rapidity of the process because many metabolites show turnover 

times of a fraction of a second (Stitt and Fernie, 2003). Although those metabolites 

that can be readily detected by GCMS methods generally turnover less quickly, rapid 

quenching is still critical (Kopka et al., 2004). 
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Cut samples should be rapidly weighed and then immediately frozen to quench 

metabolism. Before homogenization of the sample, all laboratory material to be used 

should be cooled down to prevent thawing of the biological sample. The amount of 

tissue (100 mg) used in this protocol differs from those used by other groups, but the 

solvent-to-tissue ratio is conserved (Gullberg et al., 2004). The main reason for 

taking samples of relatively high mass is that lesser amounts are more difficult to 

handle and small errors in weighing can propagate to produce large changes in the 

final evaluation. If the user chooses to use less tissue, however, the extraction 

volume can be readily adapted. The first three steps of the extraction procedure (Fig. 

1) are particularly crucial in terms of avoiding thawing and its associated problems. 

Figure 1 (a) Sampling, 
weighting and snap-
freezing. (b) Homogeni-
zation in a ball mill for 
2 min at 20 Hz. Keep the 

temperature 
below -60 °C. (c) 
Enzyme inactivation. 
Add 1.4 ml of 100 % 
methanol, vortex 
sample, add 60 µl of 
Ribitol, and vortex sam-
ple. (d) Shake samples 
for 10 min at 70 °C in a 
thermomixer at 

950 r.p.m. (e) Centrifuge sample for 10 min at 11,000 g. (f) Transfer supernatant to a glass vial. 
(g) Add 750 µl of chloroform and 1,400 µl of dH2O to the sample, and vortex. (h) Centrifuge 
sample for 15 min at 2,200 g. (i) Transfer 150 µl of supernatant into a 1.5-ml reaction tube. (j) 
Dry the extract in a vacuum container. (k) Store the tube at -80 °C or proceed to derivatization. 
(l) If storing the tube, dry the sample in a vacuum concentrator for 30 min after removing from 
the freezer. (m) Add 40 µl of methoxyamination reagent (see REAGENT SETUP) to sample and 
shake at 37 °C for 2 h. (n) Add 70 µl MSTFA reagent and time standards (such as FAMEs or 
alkanes) to sample, and shake at 37 °C for 30 min. (o) Transfer aliquot to a GC-MS glass vial 
and analyze by GC-MS. 

This protocol is suitable for both polar and apolar extraction of metabolites. Although 

there is considerable experience in the analysis of polar metabolites, far less is 

known about apolar compounds, owing, at least in part, to carryover and 

contamination effects, which require more sophisticated knowledge, equipment and 
   17
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methodology. For this reason, here we concentrate on only the polar phase. Although 

we supply precise information pertaining to the instrumentation used, it should be 

noted that this protocol is broadly applicable to all machines of this type. 

2.3 Materials 
2.3.1 Reagents 

• Argon 5.0 (Messer-Griesheim) 

• Chloroform for liquid chromatography (Merck, cat. no. 67-66-3) 

Caution Chloroform is toxic and should be handled under a fume hood 

• Helium 5.0 carrier gas (Air Liquide) 

• Methanol, gradient grade for liquid chromatography (Merck, cat. no. 67-56-1) 

• N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA reagent; Macherey-

Nagel, cat. no. 24589-78-4); prepared in 1-ml vials and stored at 4 °C. 

Caution Reagent is extremely toxic and should be handled under the 
fume hood 

• Orange silica gel, no. 77.1 (Carl Roth) 

• Ribitol (Sigma, cat. no. 488-81-3) 

2.3.2 Equipment 

• Autosampler and software (CTC Combi PAL and PAL cycle composer 

software version 1.5.0; CTC Analytics); the configuration comprises an 

agitator-incubator oven, a 98-sample tray for 2.0-ml vials, a 32-sample tray for 

10–20-ml vials, three 100-ml solvent reservoirs (i.e. a syringe wash station 

and a liquid version 25-µl syringe kit mounted on the robotic autosampler arm) 

• Conical single taper split/splitless liner (Agilent) 

• Gas chromatograph, 6890N, split/splitless injector with electronic pressure 

control up to 150 psi (Agilent) 

• GL14 glass vials (Schott) 

• MDN-35 capillary column, 30 m length, 0.32 mm inner diameter, 0.25 µm film 

thickness (e.g. Macherey-Nagel or equivalent (Schad et al., 2005)) 

• Micro-vials: 1.5-ml, safe-lock, tapered bottom, and 2.0-ml, screw-cap, round 

bottom (Eppendorf) 

• Oscillating ball mill, MM200 (Retsch) 

• Pegasus III time-of-flight mass spectrometer (Leco Instruments) 

• Steel balls, VA5mm (Th. Geyer Berlin) 
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• Screw caps for GL14 glass vials (Schott, cat. no. 29 990 12 04) 

• Teflon adaptor for 1.5–2.0-ml micro-vials (Retsch) 

• Automated mass spectral deconvolution and identification system (AMDIS; 

National Institute of Standards and Technology) 

• ChromaTOF chromatography processing and mass spectral deconvolution 

software, version 1.00 or higher, driver 1.61 or higher (LECO Instrumente), 

running on a state-of-the-art computer with a minimum of 512-MB RAM and 

an 1.0G-Hz Pentium IV processor or equivalent 

• R: a Language and Environment for Statistical Computing (R Foundation for 

Statistical Computing) 

2.3.3 Reagent Setup 

Methoxyamination reagent Dissolve methoxyamine hydrochloride (Sigma, cat. no. 

593-56-6) at 20 mg ml-1 in pure pyridine (Merck, cat. no. 110-86-1) at 20–25 °C. This 

reagent needs to be prepared freshly before the experiment. 

Caution Reagents are extremely toxic and should be handled under the fume 
hood. 

Retention time index standard mixture Dissolve FAMEs in chloroform at a final 

concentration of 0.4 ml ml-1 or 0.8 mg ml-1 for liquid or solid standards. Reagent can 

be stored at -4 °C. Esters included are methylcaprylate (Sigma, cat. no. 111-11-5), 

methyl pelargonate (Sigma, cat. no. 1731-84-6), methylcaprate (Sigma, cat. no. 110-

42-9), methyllaurate (Sigma, cat. no. 111-82-0), methylmyristate (Sigma, cat. no. 

124-10-7), methylpalmitate (Sigma, cat. no. 112-39-0), methylstearate (Sigma, cat. 

no. 112-61-8), methyleicosanoate (Sigma, cat. no. 1120-28-1), methyldocosanoate 

(Sigma, cat. no. 929-77-1), lignoceric acid methylester (Sigma, cat. no. 2442-49-1), 

methylhexacosanoate (Sigma, cat. no. 5802-82-4), methyloctacosanoate (Sigma, 

cat. no. 55682-92-3), and triacontanoic acid methylester (Weckwerth et al., 2004) 

(Sigma, cat. no. 629-83-4). Alternatively, alkanes (Roessner-Tunali et al., 2003a) or 

fatty acids (Roessner et al., 2001a) have been, and can be, used. 

2.3.4 Equipment Setup 

Standardization As a rule, metabolite profiling studies compare two or more states of 

a given biological system; thus, absolute quantification is not necessary and relative 

quantifications of the level of metabolites of interest per tissue mass (i.e. per gram of 

fresh weight) is sufficient. In such instances, the challenge of quantification is 
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reduced to comparison between one or many samples, which essentially transforms 

the problem of quantification into a problem of standardization. Any standardization 

has to correct for the following. 

(i) Experimental errors during sample preparation (determination of the sample 

amount and subsequent liquid handling): this is corrected for by the critical 

inclusion of a compound not present in biological samples (i.e. Ribitol or 13C 

Sorbitol), directly after homogenization of the sample. For normalization with 

Ribitol, the unique mass m/z 319 is used, whereas for 13C Sorbitol m/z 323 is 

used. 

(ii) Overall machine sensitivity. 

(iii) Changes in sensitivity towards specific compounds owing to differences in the 

matrix. Although this aspect in the form of ion suppression is a major problem in 

any mass spectrometry technique relying on electrospray ionization, as a rule it 

is a lesser problem in GC-coupled mass spectrometers. 

Machine sensitivity Given the variability in the overall machine, sensitivity is most 

probably the crucial factor to correct for during quantification procedures. In principle, 

the following standardization protocols can be applied to correct for machine 

sensitivity. 

(i) The expression of every identifier mass trace used for quantification as a 

proportion of the total ion intensity of all identified compounds of that sample. In 

our experience this is only a very gross correction for machine performance and 

not overly reliable. 

(ii) The evaluation of a large number of controls (~20 % of the total samples) in a 

random order between experimental samples is highly preferable. This control 

should be as similar as possible with respect to chemical complexity to the 

experimental samples. In practice, this means that one need only to prepare a 

large batch of pooled extracts from, for example, leaves of a given species and 

aliquot these for subsequent use as machine sensitivity controls. This 

quantification is the most reliable; however, it requires a large number of control 

samples to be run and thus leads to increased costs and reduced throughput. 

An alternative that is used in experiments where absolute quantification is a 

prerequisite, such as analyses of metabolic fluxes (Roessner-Tunali et al., 2004; 

Tieman et al., 2006), is the evaluation of calibration curves of authentic 

standards. Such standards are analyzed in replicate over a dilution series after 
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derivatization and handling in the exact same way as described above. This 

approach is also cost- and labor-intensive but offers the advantage of facilitating 

comparison with published metabolite data obtained with other analytic 

techniques (Roessner-Tunali et al., 2003b). 

(iii) Given that machine sensitivity is generally sufficiently stable over a day, the 

median of distribution of each metabolite across the samples measured in a day 

can be calculated and the content of each metabolite can be subsequently 

expressed in comparison to its daily median. This is a very cost-effective 

approach because it does not require as many controls to be run as in the 

previous approach. In addition, it allows a metabolite-by-metabolite correction 

for machine sensitivity. An example of this approach is given in Figure 2: 

measurement of glycine over five independent days shows some variance; 

when samples are related to the daily median, however, the variance between 

biological replicates is comparable between measurement days. It is important 

to note that this approach is valid only when the chemical composition is very 

similar and the distributions of concentration in the different samples are similar 

in the samples measured on different days. If these prerequisites are fulfilled, 

this approach is both a robust and reliable one. 

Figure 2 Although we convert the data 
from each sample individually from 
retention time to RI, there is still daily 
variation over long measurement periods. 
Detector sensitivity is another factor that 
we have to take into account to enable us 
to perform large-scale experiments. (a) 

Glycine (m/z = 248) measured on five different days: intensity is clearly dependent on the day 
of measurement (samples came from the same experiment and were completely randomized). 
(b) Log fold-change of the ion intensity per measurement day with respect to day median: if we 
normalize our results on the median value for a specific metabolite per measurement day, the 
distribution of the samples is comparable. 

2.4 Procedure 
2.4.1 Sampling and Extraction 

1. Sample leaf material in 2-ml, screw cap, round bottom tubes. Define the exact 

mass of plant sample (~100 mg of fresh weight) and rapidly freeze the 
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sample-containing vial using liquid nitrogen or an equivalent low-temperature 

liquid. 

2. To homogenize the tissue, place steels balls into the sample tubes and insert 

samples into precooled Teflon adaptors. Homogenize in ball mill for 2 min at 

20 Hz. 

Pause Point Frozen homogenate can be stored at -80 °C for up to 3 months. 

3. Add 1,400 µl of 100 % methanol (pre-cooled at -20 °C) and vortex for 10 s. 

4. Add 60 µl of Ribitol (0.2 mg ml-1 stock in dH2O) as an internal quantitative 

standard and vortex for 10 s. 

5. Shake for 10 min at 70 °C in a thermomixer at 950 r.p.m. 

6. Centrifuge for 10 min at 11,000 g. 

7. Transfer supernatant to a Schott GL14 glass vial. 

8. Add 750 µl of chloroform (-20 °C). 

9. Add 1,500 µl dH2O (4 °C) and vortex for 10 s. 

10. Centrifuge 15 min at 2,200 g. 

11. Transfer 150 µl from the upper phase (polar phase) into a fresh 1.5-ml tube. 

12. As a backup (in case you lose a sample), take a second aliquot into a new 

1.5-ml tube. 

13. Dry in a vacuum concentrator without heating. 

14. Before freezing the aliquots at -80 °C, fill the tubes with argon gas and place 

them inside a plastic bag containing silica bead desiccant. Argon-filled sample 

vials prevent the extract from oxidization and degradation by reactions through 

components of atmospheric air. CAUTION Halogenic reagents and solutions 

should be disposed with halogenic waste. 

Pause Point Samples can be stored at -80 °C for up to 3 months. 

2.4.2 Derivatisation 

Critical step Steps 15–22 have been shown to be very critical. In this 
protocol we use derivatization reagent in supersaturated concentrations to 
ensure completion of derivatization. 

15. Place samples stored at -80 °C in a vacuum concentrator for 30 min before 

derivatization. 
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16. Add 40 µl of methoxyamination reagent (see REAGENT SETUP) to the 

aliquots. CAUTION Derivatization reagents are extremely toxic. Handle with 

absolute care. Work with gloves and under the fume hood. 

Critical step In the process of derivatization, condensation of reagents 
appears on the wall and lid of the reaction tubes; therefore, centrifugation 
of the reaction mixture is essential after every incubation step. 

17. Also prepare one derivatization reaction using an empty reaction tube as a 

control. 

18. Shake for 2 h at 37 °C. 

19. Prepare MSTFA reagent with 20 µl ml-1 of retention time index standard 

mixture (see REAGENT SETUP). 

20. Add 70 µl of the solution prepared in Step 19 to the sample aliquots. 

21. Shake for 30 min at 37 °C. 

22. Transfer into glass vials suitable for GC-MS analysis. 

2.4.3 GC-TOF/MS metabolite profiling 

23. Injection parameters Inject 1 µl of sample at 230 °C in splitless mode with 

helium carrier gas flow set to 2 ml min-1 by using the autosampler setup (see 

EQUIPMENT) The flow rate is kept constant with electronic pressure control 

enabled. Optionally, but especially recommended in cases of high metabolite 

concentrations, injection can be done in split mode with the split ratio adjusted 

to 1:25. 

24. Chromatography parameters Perform chromatography with a 30 m MDN-35 

capillary column. The temperature program should be isothermal for 2 min at 

80 °C, followed by a 15 °C per min ramp to 330 °C, and holding at this 

temperature for 6 min. Cooling should be as rapid as instrument specifications 

allow. Set the transfer line temperature to 250 °C and match ion source 

conditions (Schad et al., 2005). 

25. Mass Spectrometer parameters Set the ion source to maximum instrument 

specifications, 250 °C. The recorded mass range should be m/z 70 to m/z 600 

at 20 scans per s. Proceed the remaining monitored chromatography time with 

a 170 s solvent delay with filaments turned off. Manual mass defect should be 

set to 0, filament bias current should be -70 V, and detector voltage should be 



 

~1700–1850 V. Automatically tune the instrument according to the 

manufacturer's instructions. 

2.5 Anticipated Results 
Figure 3 visualizes the estimated amount of time from collecting 50 biological 

samples to final results. Sampling, extraction and derivatization takes less than 50% 

of the time, but more effort and time, approximately between 2 and 5 days, is needed 

for the comprehensive data analysis. 

Figure 3 Timeline of standard operating 
procedure. Note that five days are 
assigned to final results despite the use 
of an instantaneous algorithm, because 
manual inspection of chromatograms is a 

highly advisable quality control. 

2.5.1 Deconvolution 

Following the general philosophy of metabolic profiling, the extraction procedure 

used should introduce as little bias as possible with respect to the complexity of the 

compounds extracted from the biological sample. Thus, metabolic profiling leads to 

complex chromatograms characterized by coeluting compounds and vast differences 

in the relative abundance of the different compounds. Although problematic, these 

issues can be partially resolved by deconvolution of the chromatograms. The 

machine supplier’s software, e.g. ChromaTOF, offers a build-in deconvolution 

algorithm. Deconvoluted spectra can be exported as plain text files for further 

processing. We suggest the following parameters for the deconvolution process (with 

acceptable range in parentheses). In all instances we used the machine 

manufacturer’s recommended approaches, which we have found to be highly 

appropriate. 

• Baseline offset = 1 (0.5–1) 

• Smoothing = 5 data points (3–7) 

• Peak width = 3 s (3–4 s) 

• S/N (signal-to-noise ratio) = 10 (2–15) 

2.5.2 Retention time index 

Retention time index (RI) is probably the most important parameter for peak 

assignment. In our experience it is absolutely crucial that each chromatogram is 
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corrected for retention times separately, as even within a day absolute retention 

times show variance that, combined with the fact that the complex mixtures apparent 

in plant extracts result in highly complex chromatograms, can lead to false peak 

annotations (see Figure 4 for an example of the variation of retention times of the 

FAME retention time standards). To minimize this problem, we apply an algorithm (R-

Script 1; available from J.L.) comprising the following steps: 

(i) Identification of the retention time for each of the internal markers (see 

‘REAGENT SETUP for internal retention time standards) and assign a ‘fixed RI’ 

to the respective peaks. 

(ii) Calculation of the RI for all compounds eluting between two standards using a 

linear interpolation. 

(iii) Extension of the linear correction for all compounds eluting prior to the first or 

after the last standard. 

To be able to narrow considerably the time window to search for a certain compound, 

each file needs to be corrected independently. Although this can be theoretically 

achieved by the original software, it is highly impractical on a high throughput scale. 

Figure 4 (a,b) General variation of 
retention time of RI standards within a 
day. Generally we observe stronger 
variation (up to 6 s) for early eluting 
standards (a), whereas later standards 
are robust (b). (c,d) Outlier behavior at 
early elution times. Outliers may occur in 
the early elution phase, showing 
differences of up to 12 s if compared with 
other files from the same day, but lining 
up with those during the 
chromatographic run. Intensities of 
specific FAMEs of the retention index 
standards within a batch of 

chromatograms are shown. Selected files of an authentic data set are used for illustrative 
purposes. Different colors represent different exemplary data sets. 

2.5.3 Peak annotation 

The R-script 1 algorithm developed in our laboratories facilitates annotation of a 

given peak to a compound (with known or unknown chemical structure), a process 

that is reliant on two known factors, namely the RI and the mass spectrum. 
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2.5.4 Unique masses as identifiers 

In principle, it should be possible to annotate each compound based on its unique 

mass spectrum and RI (Kopka et al., 2005; Schauer et al., 2005; Wagner et al., 

2003). 

In metabolite profiling, however, the presence of coeluting compounds present in 

high dynamic range (Sumner et al., 2003) can mean that reliance on these 

parameters proves to be difficult. This is even more pronounced when the coeluting 

compounds have one or more masses in common. Many commercial and publicly 

available mass spectral evaluation tools exist. These tools are largely similar in 

function, if not execution, and offer distinct advantages and disadvantages. Because 

a broad comparison of these various algorithms is currently lacking, we do not 

discuss them in detail here, but rather concentrate on an algorithm developed 

specifically for the metabolite profiling method that we describe. For this purpose, we 

decided to use a combination of a very precise relative retention time as described 

above and one or more mass traces unique within this retention time window for the 

assignment of a given peak to a compound (R-Script 1). The RI-corrected spectra 

are processed by a second bespoke R-Script (R-Script 2, available from J.L. 

according to a prepared reference list using an algorithm that achieves the following: 

(i) All peaks within the specified time window are evaluated. 

(ii) The peak showing the maximum intensity for the predefined unique ion is 

chosen. 

The reference list—containing name, expected RI, allowed RI variation and unique 

mass for a number of metabolites—can be initially prepared by evaluating the 

GC-MS spectra resulting from the evaluation of a mixed sample pooled from aliquots 

of the whole measurement set in conjunction with available and constantly expanding 

GC-MS library sets (Kopka et al., 2005; Schauer et al., 2005; Wagner et al., 2003), 

when necessary following the troubleshooting procedure to ensure authenticity of 

peak identification (see TROUBLESHOOTING). 

2.5.5 Identification of novel compounds and contaminants 

Compound identification is essentially performed by running authentic standards and 

determining RI and specific masses. In many cases, however, specifically in the case 

of unknown metabolites for which some mass spectral properties are clear, it is 

highly desirable to obtain a mass spectrum as an aid for their further identification. 



 Nat. Protoc. 1, 387-396 (2006) 

   27

Median spectra (as used for error correction) may be computed from a number of 

samples and can be exported in NIST format for comparison to external databases. 

Given that many such databases report data for nonderivatized metabolites, the 

derivatization and subsequent analysis of authentic standards represents one way to 

identify unknown peaks via GC-MS. Other ways to tackle this difficult problem are 

largely reliant on analytical techniques such as LC-MS (Tolstikov and Fiehn, 2002) 

and NMR; the exceedingly high mass accuracy of FT-ICR-MS make it this 

technology seem likely that this technology, when coupled to chromatography, will 

have a considerable role in the future development of plant metabolomics. 

The direct experimental output from this protocol is a list of metabolite contents of the 

experimental conditions in comparison to the control. The number of compounds 

detected in polar leaf extracts depends on the RI and mass spectral information 

annotated by the experimenter. In general, taking mass spectral tag information from 

publicly available libraries (Kopka et al., 2005; Schauer et al., 2005; Wagner et al., 

2003) into account, this should lead to ~150–500 compounds of known and unknown 

origin; however this number varies on the species and tissue type. The direct output 

described above can be subsequently evaluated with respect to the biological 

question of the research either in a metabolite-by-metabolite manner or by using one 

of the many available statistical packages for multivariate analysis. The former 

analysis would be suggested in studies of metabolic regulation, for example 

coordinated metabolic responses to nutrient deprivation and for gene annotation, 

whereas the later retains great utility in diagnostics-based approaches. As a general 

rule, only 40 % of the compounds are annotated to a specific metabolite, so if a 

particularly interesting trend in an unannotated metabolite is found in an experiment, 

it is recommended that a second analytical technique is used to determine the 

chemical structure of this unknown metabolite. A note of caution is necessary here, 

however, because this is generally a far from trivial task. 

2.5.6 TROUBLESHOOTING 

Deconvolution. Using the manufacturer’s deconvolution software we have, in a few 

instances, encountered errors that can be defined either as errors of multiple 

deconvolution of a single peak, or as errors in which deconvoluted spectra contain 

the wrong ion intensities (Fig. 5). Although these errors occur infrequently, their 

frequency is high enough to preclude over-reliance on the machine manufacturer’s 

own software. For this reason, we recommend that correction of these errors be 



 

carried out by collection all data files of a sample set (generally 40–50 samples) and 

processing these files together in the framework of the open source software 

package R using the designed scripts (available from J.L.). 
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ble. 

Figure 5 (a) Unique mass and two high-
abundance ion intensities from a 
coeluting peak. (b) Raw data (Caliper, the 
triangular visible at the base of a, 
indicates a single data point on the 
timescale, in this instance, identical to the 
time point of the deconvoluted peak) and 
deconvoluted data (Peak true) at peak 
position; ions from a are boxed. (c) 
Spectrum representation of raw and 
deconvoluted data at peak position. Note 
that deconvoluted data obviously do not 
always represent actual values. Spectral 
comparison would fail to identify this 

peak because it will be highly variable owing to deconvolution errors. Nevertheless, intensity 
values for the unique mass are sensi

Annotation. Within a given matrix (e.g. Arabidopsis leaf or root, potato tuber, tomato 

pericarp tissue, Lotus japonicus nodule), the above procedure for compound 

annotation is highly reliable. When a new matrix is analyzed or when a given matrix 

is analyzed where the organism was exposed to widely different environmental 

condition or a genetic variant shows a marked visual phenotype, however, we 

strongly suggest a manual inspection of chromatograms to avoid the erroneous use 

of a unique mass for compound identification owing to the appearance of a novel 

compound with the same mass trace in the same retention time window. Manual 

inspection is a highly time-consuming and laborious process. To speed up the 

process of error identification, however, a graphical overview of all analyzed spectra 

for a specified metabolite per data set can be used, as exemplified in Figure 6. Such 

a display can indicate dubiously annotated spectra. The box-plot spectra (Fig. 6b), 

represents the statistical comparison of the samples of a given set of chromatograms 

to the median standard spectra (Fig. 6a). 
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Figure 6 These plots are regularly used 
to check the quality of search results 
quickly. Here glycine was searched for 
with the following reference conditions 
and data set: RI, 325,000; time window, 
1,500 RI units ( 1.5 s); unique mass, 248; 
data set, measurement day 182, 43 
samples, no missing values. (a) Median 
value for each ion calculated from all 43 
relative spectra chosen. It should be 
close to the recorded library spectrum 

for this metabolite. (b) Box-plot of the candidate spectra, indicating by color minimum, 10% 
quantile, median, 90% quantile and maximum of all extracted values. In this example, one could 
observe the biggest (but negligible) variation for the ion of mass 86. Only if this box-plot 
spectrum reveals strong variation between the chosen spectra do we calculate the mean 
squared difference for all single spectra from the median spectrum, thus quickly identifying the 
outliers, plotting them as an overview plot (see Fig. 5) and then re-evaluating the 
chromatogram where necessary. 

Where variance is great across the chromatograms, additional plotting possibilities 

enable the user to trace back to the offending samples or peaks, thus facilitating a 

rapid verification or falsification of peak annotation and an acceleration of the process 

of manual correction. Only when the data are validated either algorithmically or 

manually are they deemed acceptable for publication and/or storage in publicly 

accessible databases. An overview of the complete process is outlined in Figure 7. 
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Figure 7 After comparing the median spectrum with a library, outliers (indicated by the box-
plot) are visually checked by comparative plotting (a,b). Checking back in the original software 
(c,d) shows that although both spectra look dubious they represent the correct metabolite. 
Nevertheless, only in the first case the calculated value may be used (intensity of 
m/z273 = 68,388), whereas the second one seems to be too high and would need to be annotated 
manually. 
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3.1 Abstract 
The decline of available fossil fuel reserves has triggered worldwide efforts to 

develop alternative energy sources based on plant biomass. Detailed knowledge of 

the relations of metabolism and biomass accumulation can be expected to yield 

powerful novel tools to accelerate and enhance energy plant breeding programs. We 

used metabolic profiling in the model Arabidopsis to study the relation between 

biomass and metabolic composition using a recombinant inbred line (RIL) population. 

A highly significant canonical correlation (0.73) was observed, revealing a close link 

between biomass and a specific combination of metabolites. Dividing the entire data 

set into training and test sets resulted in a median correlation between predicted and 

true biomass of 0.58. The demonstrated high predictive power of metabolic 

composition for biomass features this composite measure as an excellent biomarker 

and opens new opportunities to enhance plant breeding specifically in the context of 

renewable resources. 

3.2 Introduction 
Multicellular organisms have to optimize the use of available resources to fit their 

needs in terms of energy, biosynthetic building blocks, and reserves. Green plants 

unlike animals produce their own organic compounds. Their ability to grow thus 

solely depends on their own photosynthetic and metabolic capacity. Biomass 

accumulation in the vegetative growth phase of a plant can therefore be regarded as 

the ultimate expression of its metabolic performance. Plants function as integrated 

systems, in which metabolic and developmental pathways draw on common resource 

pools and respond to changes in environmental energy and resource supplies 

(Tonsor et al., 2005). The distribution of metabolites between growth, production of 

defense compounds and storage compounds therefore has to be very tightly 
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regulated. Growth and the concomitant drain of metabolites into cellular components 

has to be adjusted to the metabolic capacity of the system, i.e., the ability to supply 

sufficient amounts of organic compounds. This regulation is demonstrated by several 

observations of growth depression upon reduction of primary metabolism such as 

sucrose synthesis (Chen et al., 2005; Fernie et al., 2002). Growth ceases upon 

severe starvation caused by an extended dark period and is reinitiated only after a 

lag period of several hours after relief from the starvation by reillumination (Gibon et 

al., 2004). Recent observations of the roles of the DELLA proteins in plants indicate 

that plant growth is limited to a submaximum level to enable plants to cope with 

unfavorable conditions (Achard et al., 2006). Thus, growth rate has to be adjusted to 

the metabolic status of a plant that needs to be translated into an appropriate 

response. This interaction between metabolism and the growth regulatory 

mechanisms may operate in two ways: either a high supply of metabolites triggers 

growth, or growth drains metabolites to a minimum tolerable level upon which growth 

is restricted. Metabolites may exert control on growth either by acting as substrates 

for the synthesis of cellular components, that become limiting under conditions of 

maximum tolerable growth, or by acting as signals that are sensed leading to 

subsequent changes in growth. Sugars such as glucose and sucrose have been 

shown to act as metabolic signals and to be involved in the control of plant growth 

and development (Gibson et al., 2004). Trehalose-6-phosphate has recently been 

shown to be involved in signaling of the plant sugar status and in control of growth 

and development (Kolbe et al., 2005; Schluepmann et al., 2003). 

Metabolic profiling is a mass-spectrometry (MS)- or NMR-based technology for an 

unbiased analysis of the metabolome of a given biological system with a high 

diagnostic power (Fernie et al., 2004). Thus, in case of e.g. yeast or plants, metabolic 

analysis allows to distinguish between different genotypes, developmental status or 

environmental conditions (Allen et al., 2003; Keurentjes et al., 2006; Tarpley et al., 

2005). In the case of humans, metabolomic approaches allow us to predict the 

response of individuals to drugs opening aspects of personalized drug treatments 

(Clayton et al., 2006). In addition, single or a small number of metabolites can be 

extracted from metabolic profiling studies that have the potential to be developed into 

rapidly accessible biomarkers (Lindon et al., 2004). 

Based on the above considerations between the metabolic status of a plant system 

and growth and the proven high diagnostic power of metabolic profiling approaches, 
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we decided to test whether biomass of a plant is correlated with and can thus be 

predicted by its metabolic composition. To this end we took advantage of a 

recombinant inbred line (RIL) population of Arabidopsis thaliana derived from a cross 

between the Arabidopsis lines Col-0 and C24 (Törjék et al., 2006), which in previous 

studies showed strong transgressive segregation for biomass (Meyer et al., 2004). 

RILs represent permanent segregating populations of homozygous lines, which allow 

to reduce the environmental variance in replicated experiments (Alonso-Blanco et al., 

1998b). The extensive biochemical variation in Arabidopsis is largely under genetic 

control (Keurentjes et al., 2006). Therefore, the use of such a population for an 

exploratory analysis of relations between growth and metabolite levels is particularly 

advantageous (over e.g., using environmental perturbations to modulate growth and 

metabolism) as it offers the opportunity to identify the genetic determinants of all 

studied traits in addition to the determination of correlations. 

As shown below, when applying multivariate analysis to the combined data sets of 

biomasses and metabolic profiles, a statistically highly significant correlation between 

metabolic composition and biomass was obtained. We believe this result to be of 

high relevance for our basic understanding of plant growth and metabolism and to 

have obvious implications for breeding of high plant biomass producers, an aspect 

which in recent years has become of increasing importance regarding renewable 

resources as energy supply (Schubert, 2006; Somerville, 2006). It furthermore 

provides precedence for the utility of molecular profiling data to extract biomarkers 

with high predictive power for a complex trait. 

3.3 Results 
3.3.1 Biomass and Metabolite Profile Determination of Col-0/C24 RILs 

The combined analysis of biomass and metabolic profile was performed on a total of 

1,144 genotypes. Of these lines, 429 genotypes were derived from a RIL population 

from the reciprocal crosses Col-0×C24 (228 lines) and C24×Col-0 (201 lines) and 

715 lines were derived from crosses of the RILs to parents Col-0 and C24. All plants 

were grown under controlled conditions in six replicated experiments. Plants were 

harvested 15 days after sowing and used for shoot biomass determination or were 

pooled and frozen for metabolite profiling by gas-chromatography/ mass-

spectrometry (GC-MS). The distribution of mean biomass within the population 

clearly shows transgressive segregation (Fig. 8). We detected no significant 



 

differences in biomass (t test, P = 0.238) between the two subpopulations, and 

therefore treated the RILs as one population in subsequent analyses. 
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Figure 8 Distribution of shoot biomass in the 
recombinant inbred line (RIL) population. 
Shown is the mean biomass (milligrams per 
plant) estimated by REML. The arrow 
indicates the biomass determined for the 
parental lines C24 (1.265 mg per plant) and 
Col-0 (1.254 mg per plant). The histogram of 
the shoot biomass of the RIL crosses to the 
parents is show

From the metabolic profiling data we took 

only those metabolites into account, 

which were detected reproducibly in at 

least 85 % of the samples analyzed. Major groups among these metabolites are 

organic acids, sugars, sugar phosphates, polyols, amines and amino acids. 

Concentrations could be determined for a set of 181 compounds, 84 of which were 

assigned a chemical structure by comparison with a library (Kopka et al., 2005; 

Schauer et al., 2005). The remaining compounds were classified into chemical 

groups by using representative masses. 

3.3.2 Canonical Correlation Reveals a Close Link Between Biomass and a 
Specific Combination of Metabolites. 

In a first approach distributions of single metabolites were queried for their predictive 

power with respect to the biomass distribution by calculating pairwise correlations 

between all 181 measured metabolite levels and biomass (Supplemental Table 1). 

Because a normal distribution cannot be assumed for all variables rank correlation 

was used as a robust estimation of the correlation coefficient. The highest absolute 

correlation found was for a carbohydrate, which yielded a value of 0.266. Although 

the correlation is statistically highly significant (P value of 5.17·10-20), it can only 

explain 7.07 % of the variance. Other significantly correlated compounds are 

ethanolamine (0.238; P = 3.87·10-16), fructose-6-phosphate (-0.177; P = 1.65·10-9, 

glutamine (-0.177, P = 1.81·10-9), glucose-6-phosphate (-0.175; P = 2.44·10-9 and 

citric acid (-0.175; P = 2.80·10-9). Their individual contribution to the explained 

variance is smaller than 5.64 %. 

http://www.pnas.org/cgi/content/full/0609709104/DC1#T2
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In the second approach we applied multivariate tools to analyze the relationships 

between the two large groups of metabolite and biomass variables. Canonical 

correlation analysis (CCA) is a multivariate technique often used in psychological, 

climate and ecological studies to quantify the associations between two separate 

data sets measured on the same experimental units (Gittins, 1985; Hotelling and 

Gittins, 1935; Laudadio et al., 2005). In contrast to the aforementioned pairwise 

correlation analysis, CCA yielded a much stronger correlation of 0.73. This value 

corresponds to 53.29 % of variance explained by the linear combination of 

metabolites, almost 10 times more than explained by any individual metabolite. To 

test the significance of this result, the biomass vector was permutated 50,000 times. 

At this point the maximum correlation did not increase significantly with additional 

permutations. This maximum value is 0.46. The distance between the median of the 

random correlations and the estimated value amounts to 17 standard deviations (Fig. 

9A), which for normal distributions corresponds to a P value of 4.1·10-65 strongly 

suggesting that the model is statistically highly significant. 

Figure 9 Significance (A) and predictive power (B) of 
the multiplicative model. (A) Histogram of canonical 
correlations between the metabolite matrix and random 
permutations of the biomass vector. The vertical line 
on the right corresponds to the canonical correlation 
between the actual biomass vector (DW) and the 
metabolite matrix (X). The distance to the median of the 
random correlations amounts to 17 standard 
deviations. (B) Prediction of the biomass by the 
metabolite matrix. Shown is one representative 
example of 20 repeats in the cross-validation. Size of 
the training set was 1,086, the 58 data points of the test 
set are displayed. The straight line represents the exact 
prediction. 

 

3.3.3 Predictive Power of Metabolic Composition for Biomass 

In a final step we wanted to test the predictive power of metabolite composition for 

biomass. To this end, we decided to apply the partial least square (PLS) approach, 

because CCA yields the maximum correlation and thus an upper limit for the true 
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correlation, but is notoriously inferior to other methods, especially PLS, for cross-

validation (Frank and Friedman, 1993). (compare also Supplemental Text). Thus, the 

metabolite matrix and biomass vector were divided into training and test sets. The 

PLS coefficients estimated in the training set explaining 90 % of the variance of the 

training data were used to predict the biomass in the test set. This procedure was 

repeated 20 times. For a size of the training set of 1086 genotypes we obtained a 

median correlation between predicted and true biomass of 0.58 in the remaining 58 

genotypes (representing the test set) confirming a strong predictive power of 

metabolic composition for biomass (Fig. 9B). To evaluate the significance the same 

permutation as for CCA was applied. For each of the 500 permutations a cross-

validation was performed. The median of the corresponding correlations was -

0.001 ± 0.052, thus, using the same assumption as above, we estimate a P value of 

3.4·10-29. 

Figure 10 
Representation of the 
most important 
metabolites known by 
structure according to 
CCA on biochemical 
pathways. This 
representation of 
metabolism indicates all 
known metabolites we 
analyzed by using 
GC/MS that could be 
annotated in MapMan 
(28). Red color 
visualizes metabolites 
which are high ranked in 
CCA (positions 1–44), 

with ranking according to the color-coded scale bar. 

3.3.4 Metabolites Most Relevant for Biomass Accumulation 

As a next step in our analysis we extracted the metabolites most relevant for biomass 

accumulation by their correlation to the canonical variate (Razavi et al., 2005). The 

first 44 metabolites with significant correlations are listed in Table 1 and displayed on 

biochemical pathways (Thimm et al., 2004) in Fig. 10. Strongly represented are 
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central metabolism derived compounds such as glucose-6-phosphate and fructose-6-

phosphate, members of the tricarboxylic acid (TCA) cycle such as succinate, citrate 

and malate, members of the membrane/ phospholipid biosynthesis such as glycerol-

3-phosphate, ethanolamine and sinapine, or sucrose. A list of all relevant metabolites 

is given in Supplemental Table 2. 

Table 1 List of top 44 signature metabolites 
ranked according to the strength of the 
canonical correlation. Given are correlation 
(COR) and corresponding P value (PV). * 
MassSpectrum indicates following chemical 
classes for these unknown compounds: 038, 
sugar; 035, glucopyranoside; 086, lactobionic 
acid; 078, pyranoside; 061, polyol; 071, sugar 
phosphate. 

METABOLITE COR PV 
Unknown_038* 0.3688 0.00E+00 
Unknown_035* 0.311 0.00E+00 
Ethanolamine 0.296 0.00E+00 
Unknown_086* -0.2738 1.51E-24 
Fructose 6-phosphate -0.2449 3.66E-16 
Citric acid -0.2373 6.12E-18 
Unknown_078* 0.237 1.01E-12 
Unknown_061* 0.2241 4.52E-13 
Glutamine -0.2227 1.68E-12 
Glycerol-3-phosphate -0.2222 1.82E-13 
Sinapic acid (cis) -0.205 3.29E-10 
Raffinose -0.1964 7.04E-08 
Glucose 6-phosphate -0.192 4.92E-14 
Putrescine 0.1918 1.49E-12 
Ornithine 0.1905 2.85E-13 
Unknown_074 0.1875 9.58E-08 
Sucrose -0.1857 7.01E-10 
Unknown_051 0.1851 4.81E-08 
Unknown_048 -0.1835 8.13E-09 
Spermidine (major) 0.175 7.15E-10 
Sinapic acid (trans) -0.1737 7.09E-07 
Citramalic acid -0.1699 1.06E-10 
Ascorbic acid -0.1656 4.50E-07 
Tyrosine -0.1585 1.29E-03 
Unknown_062 -0.1544 1.67E-08 
Unknown_071* -0.1497 1.25E-06 
Succinic acid -0.1472 5.00E-05 
Trehalose 0.1418 3.44E-05 
Malic acid -0.1402 2.08E-10 
Unknown_091 0.1377 2.20E-06 
Unknown_060 0.1335 3.06E-07 
Unknown_063 0.1301 6.77E-06 
Unknown_033 0.1284 5.46E-06 
Unknown_054 -0.1264 2.25E-06 
Nicotinic acid 0.1235 2.58E-06 
Unknown_043 0.1188 3.51E-05 
Propanoic acid -0.1159 5.97E-04 
Maleic acid -0.1154 1.71E-06 
Unknown_079 0.1154 4.21E-05 
Unknown_011 0.114 4.34E-03 
Unknown_021 -0.1132 7.28E-06 
Phenylalanine -0.1105 2.16E-04 
Unknown_084 0.1103 1.35E-04 
Unknown_056 0.1099 9.45E-05 
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3.4 Discussion 
We took advantage of an Arabidopsis thaliana RIL population for a parallel and 

integrative analysis of vegetative biomass accumulation and metabolic composition 

to answer the question whether or not biomass can be described as a function of 

metabolic composition. 

As outlined in the Results section, pairwise correlation analysis of biomass and single 

metabolites could explain a maximum of 7 % of the total variance observed in 

biomass. These data strongly suggest that there is no single ‘‘magic’’ compound 

detectable, which could explain the biomass variance in a satisfying way. In contrast, 

canonical correlation analysis yielded a highly significant (the estimated P value 

based on permutations is lower than 10-64) canonical correlation of 0.73 (compare 

Fig. 9A). Furthermore, in cross-validations a median correlation of 0.58 between the 

predicted and the observed biomass was observed (compare Fig. 9B). 

This result demonstrates that a combination of the levels of a large number of 

metabolites rather than few individual metabolites show a close correlation with 

growth. It indicates that variation in growth coincides with characteristic combinatorial 

changes of metabolite levels, whereas individual metabolites may fluctuate largely 

independently of alterations in growth. To exclude the possibility that the strong 

correlation between biomass and metabolic composition is simply due to coincidental 

overlap of quantitative trait loci (QTL) for biomass and metabolites, we performed a 

QTL analysis on the RIL data set (429 lines) and detected a total of 157 QTL for 84 

metabolites and six QTL for biomass (data not shown). Of the latter only two co-

locate with significantly more metabolite QTL than expected by random, thus making 

this explanation highly unlikely. 

Inspection of the metabolites highly ranked in CCA and thus representing the main 

drivers of the correlation shows that central metabolism derived metabolites are 

strongly represented. Of high relevance are the three metabolic intermediates of the 

hexose phosphate pool, fructose-6-phosphate, glucose-6-phosphate, and glucose-1-

phosphate, which link carbon flow from photosynthesis and starch and sucrose 

metabolism with cell wall formation, the oxidative pentose phosphate pathway (it 

provides substrates for nucleic acid synthesis and for lignin, polyphenol and amino 

acid synthesis) and glycolysis. Members of the TCA cycle such as succinate, citrate, 

and malate are highly ranked. This finding underpins the central importance of this 

pathway which together with reactions of the glycolysis pathway and the oxidative 
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phosphorylation constitutes a key process delivering carbon skeletons, reduction 

equivalents, and energy for the vast majority of biochemical pathways. Also highly 

ranked is sucrose, the major transport form of carbon from source to sink tissue and 

which is central to the export from the sources and the import to the sinks. It thus 

represents the interface between carbohydrate production and utilization at the whole 

plant level Other metabolites such as glycerol-3-phosphate or ethanolamine play a 

major role in membrane/phospholipid biosynthesis. The anti-oxidant ascorbic acid 

(vitamin C) has been implicated in cell division (Liso et al., 1984) and plant growth 

regulation by means of its role as enzyme cofactor (Smirnoff, 2000). Glutamine as a 

central metabolite in nitrogen assimilation and the major primary donor of reduced 

nitrogen is also found amongst the most important metabolites. This observation is 

contrasted by the fact that nearly all other amino acids analyzed are of rather low 

contribution based on the CCA. Further highly ranking metabolites can be assigned 

to general stress metabolites such as sinapine as the major phenylpropanoid in 

Brassicaceae, ornithine, the polyamines putrescine and spermidine, and trehalose. 

Thus, a link between the metabolites ranked high in the CCA and biomass 

accumulation is plausible because central metabolism and stress response are of 

utmost importance to plant growth, and thus biomass. 

Another noteworthy observation is that the canonical variate determined by means of 

a multiplicative model resulted in closer correlations between the predicted and the 

observed biomass values than by means of an additive model (data not shown). It 

indicates that the involved metabolites act synergistically rather than additively which 

is very plausible as the aforementioned closely interlinked pathways of carbon 

metabolism are required for different cellular components that all are crucial for 

growth/biomass formation. The strong reciprocal interrelation between nitrogen and 

carbon assimilation would also strongly argue for synergistic and not additive effects 

between key metabolites representing these classes of biochemical compounds as 

observed in our case. Similar arguments can be made for e.g., ethanolamine 

synthesized via serine as a major constituent of membranes or sinapic acid as the 

major phenylpropanoid component in Arabidopsis. 

A surprising observation from our data are the occurrence of both positive and 

negative correlations between metabolites and biomass. The large majority of known 

metabolites displaying a negative correlation to the biomass vector are the 

aforementioned intermediates of central metabolic pathways including sucrose, 
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glucose- and fructose-6-phosphate, the TCA cycle members citric acid, succinate or 

malic acid, as well as the amino acids glutamine and phenylalanine. On the other 

hand, amongst the positively correlated metabolites are a large fraction of unknown 

chemical structure as well as some metabolites discussed in stress response such as 

nicotinic acid (Hageman and Stierum, 2001) or putrescine (Tkachenko et al., 2001), 

or the stress metabolite trehalose discussed in connection with drought resistance 

(Garg et al., 2002). A negative correlation suggests that pool sizes of these 

metabolites are reduced to low levels when strong growth occurs. It is conceivable 

that this process involves mostly metabolites providing the major building blocks for 

growth such as the central metabolites mentioned. In conclusion, this observation 

would suggest that growth drives metabolism and not vice versa. This finding would 

indicate that high growth rates cause a depletion of central metabolite pools rather 

than growth being enhanced through increased supply of substrates for the synthesis 

of cellular components. A similar conclusion of metabolism driven by growth has 

been derived from a study of the relationship between tomato fruit size and 

metabolites (Schauer et al., 2006). In this scenario, the positively correlated 

metabolites could play a role in plant defense against abiotic and biotic stress and it 

is comprehensible that higher concentrations of these metabolites would coincide 

with better armed plants. For both groups of substances, however, the relation with 

growth may be nonlinear. On the one hand, the reduction of central metabolite levels 

below a certain minimum necessary to sustain high flux rates may result in growth 

limitation and thus a breakdown of a linear negative relationship. Similarly, a positive 

effect on growth because of elevated stress tolerance may be achieved in a certain 

range of stress metabolite levels above which no further beneficial or even 

detrimental effects may occur. As the procedures applied here determine linear 

correlations, it is not unexpected that no tighter relationships (stronger correlations) 

were detected. A complementary hypothesis regards metabolites not primarily as 

chemicals for growth and defense but rather as signals. Under this assumption 

positively correlated metabolites are positive signals regulating plant growth and the 

contrary would be true for negatively correlated metabolites. In the context of signal 

molecules the large number of positively correlated compounds of as yet unknown 

structure is worth noting and stresses the need for identification of their chemical 

nature. They might constitute unusual products of metabolic side reactions that are 

derived from primary metabolites generated for signaling purposes and which can 
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move to sites of perception without further conversion along the major metabolic 

reactions or transport pathways. Further studies querying some testable predictions 

from such models (e.g., the presence of receptors/ sensors or the elicitation of 

specific responses in case of signaling metabolites) are needed to validate these 

models. 

3.5 Conclusion 
Using an Arabidopsis thaliana RIL population and conducting a combined analysis of 

biomass and metabolite profiles allowed the prediction of biomass as a function of 

metabolic composition providing a direct proof for the hypothesis that metabolic 

composition is related to biomass and thus growth. The observations made here 

further extend this hypothesis toward the notion that major global changes in 

metabolism are the result of variation in growth rather than vice versa. In addition to 

fostering our basic understanding, these data are of immediate potential for a number 

of applied purposes. The possibility to predict biomass on the basis of the metabolic 

signature of a plant presents a first precedence for the use of metabolite profiles as 

biomarkers with high predictive power and could potentially revolutionize the 

selection and thus breeding process for biomass producers such as trees that are 

cultivated for decades before harvest. Identification of highly productive genotypes 

already at an early growth stage would result in enormous time and cost-savings. In 

the light of reduced availability of fossil fuels and increasing reliance on bio-derived 

energy, the importance of such an opportunity can hardly be overestimated. 

3.6 Material and Methods 
3.6.1 Creation of Recombinant Inbred Line (RIL) Population 

Two reciprocal sets of RILs were developed from a cross between the two 

Arabidopsis thaliana accessions C24 and Col-0 as described elsewhere (Törjék et 

al., 2006). The population consisted of 228 Col-0×C24 F8 and 201 C24×Col-0 F8 

individual lines. 

3.6.2 Plant Cultivation 

The RILs were planted in a split plot design with 54 incomplete blocks and four 

replicates, repeated six times. Plants were grown in 1:1 mixture of GS 90 soil and 

vermiculite in 96-well-trays. Six plants of the same line were grown per well. Seeds 

were germinated in a growth chamber at 6 °C for 2 days before transfer to a long-day 
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regime (16 h fluorescent light [120 µmol·m-2·s-1] at 20 °C and 60 % relative humidity/ 

8 h dark at 18 °C and 75 % relative humidity). To avoid position effects, trays were 

rotated around the growth chamber every 2 days. 

3.6.3 Shoot Dry Biomass 

Shoot dry biomass was determined 15 days after sowing. Plants from the same well 

were harvested together and placed in a vacuum oven at 80 °C for 48 h. Dry biomass 

was recorded by using an analysis balance. Mean shoot dry biomass in mg per plant 

was estimated by using the linear mixed model (Piepho et al., 2003) G + E:E·G + 

E·GC + E·GC·T where E is experiment, G is genotype, GC is growth chamber and T 

is tray (REML procedure in Genstat). Biomass in the two subpopulations was 

compared with a two-sided t test. We detected no significant differences in biomass 

(P = 0.238) between the two subpopulations, and treated the RILs as one population 

in subsequent analyses. 

3.6.4 Metabolite Data. Sample Preparation, Measurement, and Data Processing 

Samples for the analysis of metabolic composition were collected together with the 

material for dry biomass analysis at 15 days after sowing. Harvested material (shoot 

and leaf) was cooled below -80 °C immediately and kept at this temperature until 

further processing. Derivatization, GC-MS analysis, and data processing were done 

as described elsewhere (Lisec et al., 2006). All 181 metabolic signatures that have 

been evaluated within this experiment are listed in Supplemental Table 3. The 

GC-MS spectra of evaluated metabolites that are unknown with respect to their 

actual chemical formula but can be repeatedly found in Arabidopsis are available in 

Supplemental Table 3. 

The extracted metabolite data consist of unique mass intensity values for each 

referenced compound and measurement respectively. These raw data were 

normalized and otherwise directly used for analysis. This method allows between 

sample comparisons but no quantitative statements about single metabolites. 

Normalization. Metabolite data were normalized by dividing each raw value by the 

median of all measurements of a day for one metabolite. 

Missing Value Estimation. For the canonical correlation analysis (CCA) missing value 

replacement is necessary. The 6 % missing values in the metabolite matrix were 

imputed with a selforganizing map (SOM) algorithm (Kuss and Graepel, 2003). The 

mean square error was estimated by the comparison of known values with those 

http://www.pnas.org/cgi/content/full/0609709104/DC1#T4
http://www.pnas.org/cgi/content/full/0609709104/DC1#T4
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calculated from the SOM algorithm. The coefficient of variation (root mean square 

error divided by the mean) was 0.3. 

3.6.5 Integrated Analysis of Phenotypic and Metabolite Data 

Linear models for the relation between metabolite profile and biomass. The relation 

between biomass and metabolite profile was measured by simple Spearman 

correlation between the dry biomass and relative abundances of all metabolites, and 

by a more complex multiplicative model. The first corresponds to the following model, 

referred to as model 1: 

ii xcB =  

The second model can be described by: 

∏=
i

c
i

ixB  

B denotes the biomass, x the relative metabolite abundance and c the corresponding 

constants for all i metabolites. 

Multivariate linear analysis. Canonical correlation analysis (CCA) calculates the 

highest possible correlation between linear combinations of the columns from two 

matrices with the same number of rows. If the second matrix has only one column, 

this procedure corresponds to a ordinary least square (OLS) regression. The 

correlation thus found is called canonical correlation, the corresponding linear 

combination canonical variate. The mathematical foundation is described in the 

literature (Hotelling and Gittins, 1935; Kuss and Graepel, 2003). 

The R function cancor was used to calculate the canonical correlation between 

metabolites and biomass. For crossvalidation a partial least square (PLS) regression 

was performed. This method (Wold, 1975) seeks to maximize the covariance instead 

of the correlation between the matrices. To carry out the procedure the R function 

plsr was used. These functions are publicly available (www.r-project.org). All 

procedures were applied after missing value estimation followed by normalization of 

the metabolic matrix. To test the robustness of the selection of the signature 

metabolites, we applied the following procedure: with 90 % of the 1,144 genotypes 

chosen at random the canonical variate was calculated and the important metabolites 

selected as described above. Selected metabolites, which were not in the original list 

of 44 metabolites, were regarded as false. This procedure was repeated 100 times. 

We obtained a median ‘‘false positive rate’’ of 0.048 (± 0.034). 
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4.1 Abstract 
Plant growth and development are tightly linked to primary metabolism and are 

subject to natural variation. In order to obtain an insight into the genetic factors 

controlling biomass and primary metabolism and to determine their relationships, two 

Arabidopsis thaliana populations [429 recombinant inbred lines (RIL) and 97 

introgression lines (IL), derived from accessions Col-0 and C24] were analyzed with 

respect to biomass and metabolic composition using a mass spectrometry-based 

metabolic profiling approach. Six and 157 quantitative trait loci (QTL) were identified 

for biomass and metabolic content, respectively. Two biomass QTL coincide with 

significantly more metabolic QTL (mQTL) than statistically expected, supporting the 

notion that the metabolic profile and biomass accumulation of a plant are linked. On 

the same basis, three out the six biomass QTL can be simulated purely on the basis 

of metabolic composition. QTL based on analysis of the introgression lines were in 

substantial agreement with the RIL-based results: five of six biomass QTL and 55% 

of the mQTL found in the RIL population were also found in the IL population at a 

significance level of P ≤ 0.05, with >80% agreement on the allele effects. Some of the 

differences could be attributed to epistatic interactions. Depending on the search 

conditions, metabolic pathway-derived candidate genes were found for 24–67% of all 

tested mQTL in the database AraCyc 3.5. This dataset thus provides a 

comprehensive basis for the detection of functionally relevant variation in known 

genes with metabolic function and for identification of genes with hitherto unknown 

roles in the control of metabolism. 
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4.2 Introduction 
The phenotype displayed by an organism is the result of interaction between its 

genotype and the environment. Natural genetic variation is usually due to effects of 

multiple genes detectable as quantitative trait loci (QTL), and the expression of 

complex traits is the result of the contribution and interaction of numerous genes. 

One particular example of this is the growth of multicellular organisms, which has 

been shown to be governed by many genes that each contribute a small portion to 

the overall phenotype, for example in mouse (Rocha et al., 2004), chicken 

(Jacobsson et al., 2005), Arabidopsis (El-Lithy et al., 2004) or rice (Li et al., 2006). 

In plants, numerous transgenic single-gene-driven attempts have been described 

with the goal of modifying growth and/or biomass. Many of these have targeted the 

production and/or distribution of primary metabolites within various parts of the plant 

such as the source and sink organs, i.e. the growing areas and storage organs, 

respectively (Sonnewald et al., 1994). However, it is fair to say that the success rate 

has been rather limited. On the other hand, numerous transgenic approaches have 

been utilized in an attempt to improve the metabolic composition of plants to meet 

requirements with respect to human food and animal feed. In such cases, the 

success rate has varied with the pathway targeted. Transgenic approaches have 

shown an impressively high success rate when applied to secondary metabolites 

such as carotenoids or flavonoids, or when applied to polymer quality (Lorberth et al., 

1998; Mann et al., 2000; Muir et al., 2001). As a rule, the intended biochemical 

changes were achieved and were not accompanied by any major pleiotropic effects 

concerning growth and development. In contrast, when attempting to modify primary 

metabolism, such as sucrose biosynthesis or the tricarboxylic acid (TCA) cycle, major 

and mostly negative effects at the whole-plant level, specifically impaired growth and 

development, were observed in many cases (Trethewey et al., 1998). 

Variation of growth and metabolic traits has been detected for a series of natural 

accessions and recombinant inbred lines (Cross et al., 2006; Meyer et al., 2007a). 

Correlation analyses showed weak relationships between growth and the levels of 

individual metabolites, but a close and highly significant link between biomass and a 

specific combination of metabolites has been shown (Meyer et al., 2007a). The 

observation of positive correlations of rosette weight with several enzyme activities 

indicated the importance of the catalytic activity of enzymes in central carbon and 

nitrogen metabolism and their effects on metabolic fluxes (Cross et al., 2006). 
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Taken together, these data indicate that primary metabolism, in contrast to 

secondary metabolism, is a network that is closely linked to plant growth and 

development, and that major perturbation of this network has strong detrimental 

effects on plant performance. 

In order to obtain further insight into the genetic factors that control growth and 

metabolic traits and to elucidate their relationships, we performed a parallel QTL 

analysis for biomass and metabolic composition. To this end, metabolic profiling 

using GC-TOF mass spectrometry was applied to recombinant inbred line (RIL) and 

introgression line (IL) populations of Arabidopsis thaliana according to the concept of 

genetical genomics (Jansen and Nap, 2001). All plants were derived from a cross 

between the Arabidopsis thaliana accessions Col-0 and C24 (Törjék et al., 2006). 

Using the data obtained with regard to growth and metabolite composition, we 

addressed the following questions: 

(i) Is the heritable variation in these populations and its genetic basis sufficient to 

allow identification of biomass QTL and metabolic QTL? 

(ii) Are metabolic QTL randomly distributed over the genome? 

(iii) Can links between metabolism and growth be established on the basis of a 

statistically significant co-localization of shoot biomass and metabolic QTL? 

(iv) What fraction of metabolic QTL regions contain candidate genes with related 

known or proposed metabolic function, and how many of these candidate genes 

show sequence variation leading to changes in the encoded protein? 

As the Arabidopsis genome is fully sequenced (Arabidopsis Genome Initiative, 2000), 

well annotated (Haas et al., 2005) and was recently very thoroughly analyzed for its 

genetic diversity across 20 accessions (Clark et al., 2007), we were able to 

investigate 39 of the 85 metabolites of known chemical nature. An analysis was also 

performed to answer the question of whether analyses of RILs and ILs lead to similar 

or different results, and thus to what extent the two approaches can be considered 

complementary or redundant. 

The results we present here demonstrate that, at least for a subset of the biomass 

QTL, there is substantial and significant overlap with metabolic QTL, suggesting a 

strong link between biomass and primary metabolism. In addition, QTL have been 

identified for multiple metabolites, and a candidate gene was identified for up to 67 % 

of them. Five biomass QTL were identified in both the RIL and IL populations, and 
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55 % of the mQTL identified in the RIL population were confirmed in the IL 

population. 

4.3 Results 
4.3.1 Analysis of the RIL population for biomass and metabolic QTL 

Description of the RIL population and QTL mapping. The analyzed RIL population 

(Törjék et al., 2006) consisted of 429 lines from the reciprocal crosses Col-0 × C24 

(n = 228) and C24 × Col-0 (n = 201) grown under controlled conditions in six 

consecutive experiments, in which each line was replicated at least three times. 

Plants harvested 15 days after sowing were used for shoot biomass determination, or 

were pooled and frozen, and subsequently subjected to metabolite profiling by GC–

MS. We did not find significant differences in marker distribution between the two 

sub-populations (association between marker matrices estimated by Mantel test, 

P < 0.001). As we could not detect a significant difference in biomass between the 

two sub-populations either (Kolmogorov–Smirnov test, P = 0.180), we treated the 

RILs as one population in subsequent analyses. 

The shoot biomass and metabolite data were used to map QTL based on a linkage 

map of 105 markers established for the Col-0/C24 RIL population (Törjék et al., 

2006) by application of the software packages PLABQTL (Utz and Melchinger, 1996) 

and QTL Cartographer (Basten et al., 1994). 

To identify the fraction of variation that is genetically determined and can potentially 

be mapped into mQTL, we estimated broad- and narrow-sense heritability for all 

metabolic traits as described in Experimental procedures. Broad-sense heritability 

was determined as H2 = 0.40, on average. Narrow-sense heritability was h2 = 0.08, 

with h2 = 0.16 for metabolites showing at least one QTL and h2 = 0.02 for the 

remaining metabolites. For biomass, h2 was determined to be 0.70. 

Six biomass QTL explain 18 % of the phenotypic variation. A complete list and 

description of QTL detected for shoot biomass is given in Supplemental Table S4. 

The explained phenotypic (denoted by R2) and genotypic variation were determined 

from the final simultaneous fit of all putative QTL using PLABQTL. For biomass, six 

QTL explain 18.5 ± 3.4 % of the phenotypic and 26.8 ± 4.9 % of the genotypic 

variation. Individual QTL contributions range from 1.5 to 6.0 % of the total variance. 

The mean R2 after cross-validation was 16.01 % in the calibration and 8.92 % in the 

validation, for a mean of six QTL. 

http://www3.interscience.wiley.com/cgi-bin/fulltext/119410765/sm002.xls


 

 

Figure 11 Distribution of metabolic and biomass QTL. Significant metabolic QTL of metabolites 
known by structure are shown as black boxes at marker positions if covered by the support 
interval. For simplicity, the QTL of metabolites of unknown structure are omitted here. 
Information on all detected QTL is given in Supplemental Table S4. Metabolites are color-coded 
according to their chemical group as shown on the right. Vertical lines indicate marker 
positions, several of which are labeled with approximate distance in cM (top). Asterisks 
indicate QTL ‘hot spots’ (as determined using 1,000 permutations at a 0.05 level). 

Identification of mQTL for 84 metabolites. Samples taken from 369 of the 429 RILs 

were analyzed for their metabolic composition. A total of 181 compounds could be 

detected in more than 85 % of all samples, and only those metabolites were taken 

into further consideration. The chemical nature is known for 85 of these compounds. 

In total, we found 157 metabolic QTL for 84 metabolites, 50 of which are of known 

chemical structure. For 42 metabolites, only one QTL was identified, but a maximum 

of six QTL was found for tyrosine. The QTL are distributed unequally over marker 

positions, indicating ‘hot spots’ and empty regions (no metabolic QTL at 10 marker 

positions). The contribution of individual QTL to the phenotypic variation varied 

between 1.7 (unknown_092) and 52.1 % (cellobiose). 
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A comparative overview of QTL for known metabolites and biomass is presented in 

Figure 11. 

Shared mQTL enriched for metabolites showing strong pairwise correlation. As a 

large fraction of the observed variation is due to genetic effects, concentrations of 

metabolites with shared QTL are expected to correlate, and with increasing numbers 

of co-located QTL the correlation may increase. Metabolite correlations may be 

caused by common genetic factors, e.g. regulatory or pathway genes. On the other 

hand, even if co-located QTL exist, the corresponding metabolites may be weakly 

correlated if their QTL show strong interaction with other loci that are different for the 

two metabolites in question. Alternatively, the metabolites may be subject to 

differential metabolic control, or may be differently affected by environmental 

influence. To test this, we plotted the number of QTL shared between two 

metabolites against the value for the Pearson correlation determined between the 

concentrations of the two metabolites measured in all RILs (Figure 12). The chance 

of sharing at least one QTL increases with stronger correlations, and overall the 

correlation increases with the number of shared QTL. However, examples of two 

deviant scenarios were found: (i) metabolite concentrations are highly correlated but 

are controlled by QTL at different positions [e.g. glucose and fructose (r = 0.849) 

show all together five individual QTL but none are shared], and (ii) metabolite 

concentrations are weakly correlated but they share common QTL (e.g. 

ethanolamine and fructose (r = 0.058) show three and four individual QTL, 

respectively, with two QTL in common). 

Figure 12 Dependency of shared QTL on data 
correlation. The number of overlapping QTL 
between two metabolites is plotted against 
the Pearson correlation value for the data 
vectors used for QTL calculation. Higher 
numbers of shared QTL are predominantly 
found for more strongly correlated traits. No 
normalization was applied with respect to the 
total number of determined QTL per trait. 
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Candidate genes involved in the biochemical pathways of the respective metabolite 

are identified for 24–67 % of the metabolic QTL. Initial analyses of detected 

metabolic QTL with respect to underlying biochemical pathways show that it is 

possible to identify candidate genes even at the rather low mapping resolution that 

can be achieved using an RIL population. For example, inspection of the available 

information on pathways involving myo-inositol suggested candidate genes for three 

of four identified QTL (Supplemental Table S4 and Figure 13). 

Figure 13 myo-inositol QTL 
analysis reveals direct 
candidate genes for three of 
four determined QTL (1/18, 4/0 
and 4/65). A LOD curve 
calculated using two 
independent programs 
(PLABQTL, red lines; QTL 
Cartographer, blue lines) is 
shown at the top. Horizontal 
lines indicate 0.05 (solid) and 
0.25 (dotted) significance 
thresholds calculated based 
on 5000 permutations. Vertical 
lines indicate marker 
positions. At the bottom, the 
three relevant reaction steps 
according to the mQTL as 
connected by arrows are 

presented (pathways from left to right are inositol oxidation, stachyose biosynthesis and 
phospholipids biosynthesis). The pictograms in the center indicate the total number and 
location of genes known per pathway. Twelve genes (from six pathways) for enzymes 
catalyzing reactions in which myo-inositol is involved directly are known. The insert shows a 
comprehensive view of all AGI codes associated with myo-inositol (red, direct; black, pathway), 
indicating mQTL support intervals (blue), approximate LOD (number) and IL confirmation 
threshold reached (asterisk). A similar plot for all known metabolites is shown in Supplemental 
Figure S1. 

The AraCyc section of the TAIR database lists only 12 loci representing enzymes 

that catalyze reactions on myo-inositol. Three of these loci co-locate with determined 

mQTL: a myo-inositol oxygenase (AT1G14520, inositol oxidation pathway), a 

phosphatidyltransferase (AT4G38570, phospholipid biosynthesis pathway) and a 
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stachyose synthase (AT4G01970, stachyose biosynthesis pathway). If all genes from 

pathways involving myo-inositol are considered, it is possible to find candidates for 

the remaining mQTL of this metabolite. 

We extended this analysis to all metabolites of known chemical structure, considering 

either (i) only the genes encoding enzymes that participate in a direct reaction with 

the respective metabolite, or (ii) all proteins assigned to pathways involving the 

metabolite. We were able to identify at least one candidate gene for 24 % (direct 

reaction) and 67 % (pathway enzymes) of all tested mQTL (Supplemental Table S4). 

In order to assess how much this coincidence of mQTL and enzyme genes relating to 

the respective metabolites deviates from the situation expected based on a random 

distribution of mQTL, we performed a permutation test in which we distributed for 

each of the 38 metabolites with assigned AGI codes all determined mQTL randomly 

over all chromosomes. We analyzed the overlap with potential candidate genes from 

AraCyc as described above, and compared the outcome with the results based on 

the measurement data. For 13 metabolites, we found more candidate genes than 

found on average in permutations, while three showed fewer genes. In most of the 

remaining cases, no candidate gene was assigned either in our experiment or in 

permutations. The number of identified candidate genes for myo-inositol, maltose 

and ethanolamine exceed the 95th perentile of the respective permutation results. 

However, although this analysis suggests that experimentally determined mQTL are 

enriched for corresponding pathway genes, the test statistic is not significant if 

multiple testing is considered. 

For 10 of 20 mQTL, at least one of the direct candidate genes contains a 

polymorphism in the protein coding region leading to an amino acid exchange, 

according to recently published data on single nucleotide polymorphisms (SNPs) 

between C24 and Col-0 (Supplemental Table S5; Clark et al. [2007]). 

Co-localization of biomass QTL with mQTL. One of the aims of this project was to 

determine the relationship between biomass QTL and mQTL, i.e. to what extent they 

co-localize. Inspection of the overlap between mQTL and biomass QTL in the RIL 

population shows that each biomass QTL coincides with several mQTL (with the 

number of mQTL per biomass QTL ranging from 5 to 12). However, due to the limited 

resolution of the QTL mapping, a considerable number of overlaps are expected to 

occur by chance. We therefore used a permutation test to identify statistically 

significant overlaps. This analysis showed that two of the six biomass QTL (1/88 and 

http://www3.interscience.wiley.com/cgi-bin/fulltext/119410765/sm002.xls
http://www3.interscience.wiley.com/cgi-bin/fulltext/119410765/sm003.xls
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4/0) co-locate with significantly more mQTL than expected by chance. Some 

metabolites (raffinose, tyrosine, serine, succinic acid) display up to two QTL co-

localized with any of the biomass QTL. However, no enrichment for single compound 

classes or certain biochemical pathways was found amongst these metabolites. 

Epistasis. Due to the nature of metabolic networks consisting of multiple 

interconnected metabolic pathways, prevalent epistatic interactions are expected to 

occur among mQTL, influencing various steps within single or among multiple 

pathways. Therefore, we conducted a full scan for all possible digenic maker 

interactions using the PLABBIC version of PLABQTL, but no significant digenic 

marker epistasis for the biomass and metabolite traits was detected. To reduce the 

multiple-testing problem inherent in this approach, we adjusted the procedure to test 

only previously determined mQTL of known metabolites against markers located 

elsewhere in the genome. From the resulting likelihood profile, we kept the maxima 

and evaluated per se mQTL and epistatic effect maxima in a final model. In this last 

step, non-significant effects were dropped according to a Bayesian information 

criterion. Following this procedure, one significant epistatic effect was detected for 

biomass (1/88 × 3/82, R2 = 2.17%) and a further 38 such interactions were identified 

for 27 of the 50 known metabolites taken into consideration. However, these effects 

are rather small if compared to per se mQTL, explaining only 2.72 % of the 

phenotypic variation on average. The strongest interaction (R2 = 4.92%) was 

determined between two tyrosine QTL (4/42 and 5/74). Other substantial effects were 

identified for glycerate (2/61, R2 = 4.43 %) and maltose (4/38, R2 = 3.69 %), which 

exhibited additive interactions with genomic positions to which no mQTL had been 

previously assigned (Supplemental Table S6). 

4.3.2 Analysis of the IL populations and comparison with the RIL-based data 

Five common biomass QTL detected in IL and RIL populations. A QTL analysis was 

also carried out using 97 lines of two corresponding reciprocal IL populations of the 

crosses Col-0×C24 and C24×Col-0 (Törjék et al., unpublished data) in order to verify 

the QTL detected in the RIL population. Biomass data were analyzed using the 

appropriate contrasts in anova. Twenty-six IL were significantly different (P < 0.05) 

from the recurrent parental line and thus identified biomass QTL. The six biomass 

QTL regions previously identified by the RIL analysis were covered by another set of 

26 ILs. The intersection of the two sets consists of 13 ILs. To compare this result to a 

random intersection, we calculated the probability of identifying 13 or more of 26 

http://www3.interscience.wiley.com/cgi-bin/fulltext/119410765/sm004.xls
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fixed ILs when 26 are drawn randomly from 97. This probability is given by the 

hypergeometric distribution. Its value of < 0.003 demonstrates the significance of the 

finding. By means of the IL analysis, five (of six) biomass QTL detected by the RIL 

analysis were verified at positions 1/88, 3/13, 3/59, 4/47 and 5/86 

(Supplemental Table S4). In addition, the IL analysis revealed a further four regions 

with an effect on biomass at positions 1/10, 2/72, 3/46 and 5/62-67. Detailed 

analyses of the individual ILs indicated complex situations, e.g. on chromosome 1 

with potentially two QTL of opposing effects located very closely to each other. 

RIL-based metabolic QTL are also detected in the introgression lines. Detection of 

changes in metabolite concentrations due to introgression of a donor genotype in the 

background was used to confirm mQTL determined in the RIL population. For 94 of 

the ILs, six replicate GC–MS measurements were carried out, and compared against 

the metabolite values determined in up to 30 measurements for the respective 

parental lines. Due to the different population size, P-values were estimated as 

described in Experimental procedures. 

At a level of P ≤ 0.05 (not multiple-testing-corrected), 55 % of the RIL mQTL are 

confirmed within the IL population. In 82 % of the cases, the positive-effect allele was 

also confirmed, i.e. if the C24 genotype in the RIL population showed an increased 

metabolite level compared to Col-0, the same was true for the respective IL. This 

high level of allele confirmation is independent of the P-value applied (see Table 2). 

Significance 
level 

Number of 
significant 
changes 

FDR 
(%) 

Number of 
confirmed 
RIL QTL 

Confirmed 
RIL QTL (%) 

Average R2 
of 
confirmed 
RIL QTL (%)

Average R2 
of non 
confirmed 
RIL QTL (%)

Confirmed 
allelic effect 

Confirmed 
allelic effect 
(%) 

0.001 177 9.61 17 11.33 11.62 6.67 16 94 

0.01 773 22 41 27.33 10.17 6.12 38 93 

0.05 2511 33.9 83 55.33 7.79 6.54 68 82 

0.1 3941 43.2 99 66 7.45 6.79 80 81 

Table 2 Estimated P-values for IL–parent comparisons. Significant results and RIL QTL 
confirmation at various threshold levels. The false dicovery rate (FDR) is defined as the 
expectation of the ratio of false positives to the sum of false and true positives. We estimated 
the FDR by (significance level × number of observations)/(number of significant changes). R2, 
phenotypic explained variance. 

RIL-based mQTL explaining a large part of the phenotypic variance were confirmed 

preferentially in the IL population. This becomes even more evident when the 

significance threshold is lowered. At P-values ≤ 0.001, differences between ILs and 

parents were detected for 177 metabolite/ IL combinations (equivalent to 177 mQTL). 

http://www3.interscience.wiley.com/cgi-bin/fulltext/119410765/sm002.xls


 

Of these, 17 had been observed previously in the RILs (11 % confirmation). The 

mean contribution to phenotypic variance of confirmed QTL is 11.6 %, compared with 

6.4 % for non-confirmed QTL. 

Figure 14 Meta-QTL analysis. Meta-QTL 
analysis using the measured biomass 
(blue line) and the canonical variate 
(predicted biomass, red line) calculated 
from the metabolic profiles as 
described by Meyer et al. (2007). 
Horizontal lines indicate 0.05 (solid) 
and 0.25 (dotted) significance 
thresholds calculated based on 5,000 
permutations. Chromosomal length is 
given in cM. 

 
 

Prediction of biomass QTL via a combination of mQTL. We are interested in 

determining the link between biomass QTL and mQTL/ metabolic composition. We 

have previously shown that, for this RIL population, a canonical combination of 

metabolites can be used to predict the biomass (Meyer et al., 2007a). We therefore 

performed a meta-QTL search using the predicted dry biomass vector (canonical 

variate) as a new trait to determine whether or not any of the biomass QTL can be 

predicted based on the metabolic composition (Figure 14). Of the six biomass QTL, 

three (1/88, 3/13 and 5/86) could be predicted by the metabolic composition, three 

were not predicted, and two new QTL appeared in the predicted pattern (1/10 and 

3/82). One of these new peaks (1/10) corresponds to a QTL that was also identified 

in ILs. 

4.4 Discussion 
Several successful studies have been conducted to date to identify novel genes 

based on QTL analysis (Kliebenstein et al., 2001; Kroymann et al., 2003; Werner et 

al., 2005; Zhang et al., 2006). However, with a few exceptions (Keurentjes et al., 

2006; Schauer et al., 2006; West et al., 2007), only a limited number of traits (usually 

less than 20) have been assessed. 

The parallel analysis of IL and RIL populations of Arabidopsis thaliana for biomass 

and 181 individual metabolites (for which the chemical structure is known for 85) 
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described here is a unique data set. Together with the available information from the 

fully sequenced and thoroughly annotated Arabidopsis genome, it provides a direct 

method for detection of functionally relevant variation in known genes with metabolic 

function and the identification of genes hitherto not assigned to metabolic functions, 

and emphasizes the link between metabolism and growth/ biomass accumulation. 

4.4.1 Comparison of ILs versus RILs 

Introgression lines are widely used to test for changes in various traits when 

compared to a parental line. Lines of an introgression population have a common 

genetic background and various short donor segments from another line, thus 

allowing focus on a specific region of the genome (Eshed and Zamir, 1995). Several 

studies have demonstrated the possibility of fine-mapping single RIL QTL in 

Arabidopsis using ILs (Alonso-Blanco et al., 1998a; Bentsink et al., 2003; Swarup et 

al., 1999). Recently Keurentjes et al. (2007a) described an exhaustive analysis on 

the overlap between QTL based on RIL and IL populations derived from the 

Arabidopsis thaliana accessions Cvi and Ler. Comparing QTL detected for six 

developmental traits analyzed in a RIL population of 167 lines and an IL population of 

92 lines, 58 % of 33 RIL QTL were confirmed. Although these authors tested up to 

116 replicas per IL in a BIN approach, allowing a stricter significance level, this figure 

is largely in agreement with our findings. Applying a P-value threshold of 0.05, 83 

metabolic QTL detected in the RIL population (equivalent to 55 %) were confirmed in 

the IL population. In 82 % of the cases, the direction of the effect was the same in 

RILs and ILs, independent of the applied threshold. 

However, not all QTL identified in the RIL population were confirmed using the ILs, 

and additional QTL were detected using the latter. The differences between RIL- and 

IL-based QTL (QTLRIL and QTLIL, respectively) can be explained to some extent by 

epistatic effects. Although no significant digenic marker epistasis was found when all 

possible marker interactions were considered, probably due to the high number of 

hypotheses to test, we did identify 38 epistatic interactions using the more targeted 

approach of testing only the previously detected QTL against the genetic 

background. With respect to epistasis and effect confirmation, four possible 

scenarios can be distinguished. 

(i) An mQTLRIL is not confirmed by an mQTLIL and shows significant epistatic 

interactions. This is the case for many of the stronger epistatic effects (e.g. 
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tyrosine 4/42 × 5/74, R2 = 4.92 %; glycerate 2/61 × 3/67, R2 = 4.43 %), and is 

consistent with the assumption that loss of the epistatic interaction prevented its 

identification in ILs. 

(ii) An mQTLRIL is confirmed by an mQTLIL and lacks epistasis (as observed for 

threonic acid 4/63 and urea 1/76). This suggests that such mQTL act as single-

effect loci independently of other genetic factors. The existence of examples for 

these two cases supports the hypothesis that epistasis is a major cause of 

differences between sets of QTLRIL and QTLIL. 

(iii) mQTLRIL that are confirmed by mQTLIL but show significant epistasis. This was 

true for three of four raffinose QTL. However, here the variance explained by the 

epistatic effects is low (R2 = 1.5–2.6 %) especially with respect to the variance 

explained by the QTL per se (R2 = 4.7–6.4 %). Furthermore, epistatic 

interactions between a C24 and Col-0 allele will be retained in ILs and hence 

contribute to effects detectable in both analyses. 

(iv) An mQTLRIL is not confirmed by an mQTLIL but no epistasis can be detected, as 

exemplified by the five serine mQTL. Here, a more complex situation such as 

multi-way interactions between several loci, which escape detection in the 

epistasis analysis, can be assumed. 

Very complex epistatic interactions may strongly interfere with QTL detection in RIL 

populations. Depending on the specific allele combination of the interacting loci 

necessary to elicit a strong effect, the uniformity of the genetic background in ILs may 

be an advantage, allowing identification of QTL that are not detectable in a RIL 

population. In addition, opposing-effect QTL present in close vicinity to each other 

may also interfere with QTL detection in RILs. Such arrangements have been shown 

to exist by Kroymann and Mitchell-Olds (2005), and may by chance be broken up 

upon creation of a particular IL through recombination between the QTL linked in 

repulsion. Events such as this will result in QTL detection in ILs but not in RILs, with 

the IL approach being favored by the fact that more replication can be afforded in IL 

analyses (due to a more limited number of individual lines), with a concomitant 

increase in the precision of the trait expression measurement. Thus, while QTL 

detected in both analyses may be preferred for follow-up studies, QTL detected in 

only one of the two populations should not be generally dismissed, and the two 

approaches may be considered complementary. Taking into account the amount of 

work that we invested in the generation and evaluation of both populations, they 
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yielded a comparable level of information. However, if it is not the genetic 

architecture of a trait that is of major interest but its modification in a more applied 

approach, ILs would be favored for use because advantageous genome segments 

may be identified in a genetic background close to an elite variety, und thus may be 

integrated into a breeding program more quickly. 

4.4.2 Number and contribution of biomass and mQTL compared with other 
studies 

As described in the Results section, the variance of both the RIL and IL populations 

allows identification of QTL for shoot biomass. Six biomass QTL explaining 18 % of 

the total variation, with individual contributions varying from 1.5 to 6 %, were 

identified in the RIL population, and nine biomass QTL were observed in the IL 

population. Five of the biomass QTL were detected in both populations. These 

results for biomass are similar to those for other Arabidopsis RIL populations used to 

detect QTL for aerial/shoot mass, with up to eight QTL detected (El-Lithy et al., 2004; 

Loudet et al., 2003; Rauh et al., 2002; Ungerer and Rieseberg, 2003). Both RIL QTL 

on chromosome 3 and two effects in ILs on chromosomes 2 and 4 overlap with 

results obtained by Loudet et al.(2003) (3/49, 2/72 and 5/62) and El-Lithy et al. 

(2004) (3/13). 

In a comparable study of biomass at an early developmental stage in Aegilops 

tauschii (ter Steege et al., 2005), only two putative QTL were detected. In seedling-

stage maize, three QTL for shoot dry weight, each explaining 11–15 % of phenotypic 

variance, were detected in a F2:F3 population of 226 families (Jompuk et al., 2005). 

Further biomass QTL analyses, e.g. of poplar (Wullschleger et al., 2005), rice 

(Hittalmani et al., 2002; Li et al., 2006) and Miscanthus sinensis (Atienza et al., 

2003), each revealed a limited number of QTL, usually with a restricted fraction of the 

phenotypic variance explained. Even in a very large QTL mapping experiment in 

maize (Schön et al., 2004), in which more than 30 growth-related QTL were 

identified, only about 50 % of the genetic variance was explained. The effects of 

individual QTL on the phenotypic variance were generally small. Thus, the individual 

contribution of shoot biomass QTL in the Arabidopsis RIL/ IL populations analyzed 

here is very similar to the situation described for other species, including crops such 

as maize. The observed heritability (0.71) of the biomass trait in the analyzed RIL 

population and the rather limited fraction of the genetic variation explained jointly or 

individually by the detected QTL indicate that biomass accumulation is probably 
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affected by a very large number of small-effect QTL. This is consistent with the 

conclusions of Kroymann and Mitchell-Olds (2005). 

In the RIL population, a total of 157 metabolic QTL were identified, with at least one 

metabolic QTL for approximately half of the compounds analyzed (181 compounds 

were analyzed, and at least one QTL was identified for 84 compounds). The 

contribution of individual QTL to the total phenotypic variance ranged from 1.7 % to 

more than 50 %. Analysis of the IL population resulted in numerous QTL, the specific 

numbers ranging from 177 for P ≤ 0.001 to 2511 for P ≤ 0.05. These numbers are in 

the same range as described in two previous reports on identification of metabolic 

QTL using RIL and IL populations. Schauer et al. (2006) identified 889 mQTL in a 

tomato population of 76 ILs, monitoring 74 metabolites at a significance level of 0.05. 

Using 2129 mass signals (with an unknown number of underlying chemical 

compounds), Keurentjes et al. (2006) identified 4213 metabolic QTL at a P-value 

threshold of 0.0001 in an Arabidopsis Cvi×Ler RIL population. In a recent QTL study 

using a Bay-0×Sha Arabidopsis RIL population, Calenge et al. (2006) detected a total 

of 39 QTL for starch, glucose, fructose and sucrose contents at 14 distinct loci, which 

co-localize with QTL for other physiological traits. 

The findings that two biomass QTL co-locate with significantly more mQTL than 

expected from a random distribution, and, furthermore, that some of the biomass 

QTL can be simulated by QTL mapping of a certain linear combination of metabolite 

levels, fit into the emerging picture that metabolic composition is related to 

growth/biomass accumulation, as also shown previously (Meyer et al., 2007a). While 

some metabolites such as ethanolamine, raffinose and tyrosine, which contributed 

strongly to the metabolic signature identified in the previous work, also show co-

localized QTL with biomass, others do not. However, this finding is not unexpected 

considering the small amount of variation that is explained by any individual 

metabolite or metabolic QTL. 

4.4.3 Derivation of metabolites sharing mQTL from either the same or widely 
divergent pathways 

A number of mQTL are shared between metabolites. Two principal classes can be 

distinguished: 

(i) Metabolites sharing a QTL are derived from the same biochemical pathway or 

from related pathways, as observed for ornithine/ proline (position 4/66; 
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common pathway: proline biosynthesis). This identifies the shared QTL as a 

candidate for a pathway QTL, which could be either a gene controlling the 

formation of a rate-limiting precursor or a higher-hierarchy controller of the entire 

pathway such as a transcription factor. 

(ii) In other cases (e.g. position 3/14), metabolites with common QTL are derived 

from widely divergent pathways, which could be due to a major controller of 

several pathways or a small molecule produced in one pathway and controlling 

the other pathway. However, it should be kept in mind that, at present, the 

limited genetic resolution does not allow exclusion of the much more trivial 

possibility of the shared genomic regions actually being composed of several 

linked genes with enzymatic functions in different pathways. 

4.4.4 mQTL cover both biosynthetic and regulatory genes 

A comprehensive overview of all mQTL observed in the RIL population for known 

metabolites, including their effect, confirmation in the IL population and the 

chromosomal localization of all associated genes is shown in Figure S1. 

The observation that a pathway-associated gene could be localized in the mQTL 

region for 24–67 % of all metabolic QTL can be exploited in a number of ways. One 

exciting possibility is the use of this dataset as a source for identifying novel 

functionally relevant polymorphisms in the genome by comparative sequencing of 

both alleles of candidate genes. In agreement with this, comparison with recently 

published data on SNPs between C24 and Col-0 (Clark et al., 2007) showed that, for 

10 out of 20 mQTL, at least one of the direct candidate genes contains a 

polymorphism in the protein coding region leading to an amino acid exchange. 

Obviously this is only a first indication, and does not prove that this amino acid 

exchange is responsible for the mQTL. Furthermore, it should be kept in mind that 

we did not observe significant enrichment of pathway genes within experimentally 

determined mQTL (see Results). This is mainly due to the fact that, for 18 of 39 

metabolites, 15 or more (up to 130) direct candidate genes are known, which appear 

to be uniformly distributed by visual inspection (Supplemental Figure S1). Due to the 

relatively large confidence intervals, random distribution of mQTL over chromosomes 

will, in such cases, always lead to successful candidate gene identification 

hampering a permutation test. If we exclude these 18 metabolites, a P-value of 0.08 

is obtained in the permutation test, indicating that mQTL are possibly enriched for 
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pathway-related genes, and that comparative analyses of the alleles would be 

worthwhile. 

A level of up to 67 % coverage of mQTL by biosynthetic candidate genes also implies 

that at least 33 % of the mQTL probably harbor genes of hitherto unknown metabolic 

functions (e.g. as regulators), a rather large and at first unexpectedly high fraction. 

Although the presence of biosynthetic genes in C24 only (and thus not in AraCyc) 

could explain some of these mQTL, the above conclusion is supported by a 

seemingly unrelated observation, i.e. the unequal distribution of mQTL over the 

genome. The chromosomal distribution of the total 157 mQTL differs in a statistically 

significant manner from a random distribution, with two significant hot spots (up to 16 

QTL at the top of chromosome 4, and 12 QTL at 5/75) and other areas lacking mQTL 

(no mQTL detected for 38 marker positions). There are two possible explanations for 

this uneven distribution: either it is a reflection of the uneven distribution of 

biosynthetic genes in the Arabidopsis genome, or a larger proportion of mQTL 

detected do not correspond to genes with known metabolic function (mostly enzyme 

genes) but represent regulatory genes of a higher hierarchical order that thus control 

more than one metabolite. To distinguish these two possibilities, we compared the 

distribution of metabolic genes in the genome with the mQTL distribution. The results 

of this analysis showed that the clustering of mQTL does not correlate significantly 

with the distribution of metabolic genes over the Arabidopsis genome, irrespective 

whether all metabolic genes or only metabolic genes from biosynthetic pathways 

covered in our analysis are taken into account (data not shown). This suggests that 

the uneven distribution of mQTL is due to the second explanation, i.e. a large 

proportion of mQTL detected identify hitherto unknown metabolic functions, most 

likely regulatory genes controlling primary metabolism and thus probably having a 

strong influence on biomass formation. The available ILs that confirmed such mQTL 

enable positional cloning of the corresponding novel metabolic function genes. 

4.5 Material and Methods 
4.5.1 Creation of recombinant inbred (RIL) and introgression line (IL) 

populations 

Two reciprocal sets of RILs were developed from a cross between the two A. thaliana 

accessions C24 and Col-0. F2 plants were propagated by controlled self-pollination 

using the single-seed descent method to the F8 generation, at which stage 
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genotyping and bulk amplification was performed. The mapping population consisted 

of 228 Col-0×C24 F8 and 201 C24×Col-0 F8 individual lines. The RIL population was 

genotyped using a set of 110 framework SNP markers (Törjék et al., 2003) as 

described previously (Törjék et al., 2006). Marker distributions per chromosome in 

the two sub-populations were compared using Mantel tests (1000 permutations) of 

the corresponding similarity matrices obtained by simple matching, using the 

statistical software package Genstat for Windows version 6.1 (Payne et al., 2002). 

As a base population for IL development, two sets of reciprocal BC3 F1 lines were 

created from the F2 of a reciprocal cross between the two A. thaliana accessions C24 

and Col-0, through three cycles of backcrossing followed by one cycle of selfing 

using the single-seed descent method (Törjék et al., 2008). The BC3 F1 lines were 

genotyped using the same set of 110 framework markers (Törjék et al., 2003). Lines 

with positive-effect segments were subjected to further cycles of backcrossing and 

selfing to produce substitutions in both the Col-0 and C24 genomic backgrounds 

using marker-assisted selection. The average introgression lengths are 17.3 and 

19.3 cM in ILs with Col-0 and C24 backgrounds, respectively. 

4.5.2 Plant cultivation 

The RIL population was cultivated in at least three experiments using a split-plot 

design. The growth room was declared as the whole plot with two factors (chamber 1 

and chamber 2). Each sub-plot contained the entire RIL population and the controls 

(C24, Col-0, C24×Col F1, Col×C24 F1). Plants were grown in a 1:1 mixture of GS 90 

soil (Gebrüder Patzer, Sinntal-Jossa, Germany) and vermiculite (Deutsche 

Vermiculite Dämmstoff-GmbH; http://www.vermiculite.de) in 96-well trays. Six plants 

of the same line were grown per well. Seeds were germinated in a growth chamber 

at 6°C for 2 days before transfer to a long-day regime [16 h fluorescent light 

(120 μmol m−2 sec−1) at 20 °C and 60 % relative humidity/ 8 h dark at 18 °C and 75 % 

relative humidity]. To avoid position effects, trays were rotated around the growth 

chamber every 2 days. 

ILs were selected to cover the QTL regions determined in the RIL experiment (26 ILs 

for the six biomass QTL, 16 for other traits), and plants were grown in two blocks with 

12 sub-plots each. Each subplot contained 42 ILs, 42 test crosses (IL TCs) to the 

recurrent parent, and the controls twice (C24, Col-0, C24×Col, Col×C24). The 

position within the sub-plot was random. In addition, ‘unselected’ ILs without IL TCs 

http://www.vermiculite.de/
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were grown in the same experiment. In this case, each sub-plot consisted of 56 ILs 

and 36 controls. Growing conditions were identical to those used for the RILs. 

4.5.3 Shoot dry biomass 

Shoot dry biomass was determined 15 days after sowing. Plants from the same well 

were harvested together and placed in a vacuum oven at 80 °C for 48 h. Dry biomass 

was measured using an analysis balance. Mean shoot dry biomass (mg per plant) 

was estimated using a linear mixed model (Piepho et al., 2003) as described by 

Meyer et al. (2007a). Biomass in the two RIL sub-populations was compared by a 

Kolmogorov–Smirnov test using Genstat for Windows version 6.1 (Payne et al., 

2002). 

4.5.4 Metabolite data 

Sample preparation, measurement and data processing. Samples for the analysis of 

metabolic composition were collected together with the material for dry biomass 

analysis at 15 days after sowing. Harvested material (shoot and leaf) was frozen 

at -80 °C immediately, and kept at this temperature until further processing. Between 

two and six plants were pooled per sample. One replicate for each RIL and six 

replicates for each IL were measured. Extraction, derivatization, GC–MS analysis 

and data processing were performed as described previously (Lisec et al., 2006). A 

targeted metabolomics approach was used, based on a reference library containing 

181 compounds. 

The resulting data consist of intensity values for each referenced compound and 

measurement, respectively. These raw data were normalized (see below) before 

QTL analysis. 

Normalization. All samples were measured in groups of 30–50, equivalent to one 

measurement day. The huge number of samples led to measurement periods of 

several weeks per experiment. It is therefore necessary to correct for variation in 

detector sensitivity over this time, which otherwise causes artificial differences in 

absolute intensity depending on the measurement day. The samples for the two 

experiments (RILs and ILs) were measured using different set-ups (see below), and 

were therefore normalized using different strategies. 

For the RIL experiment, all samples were measured over a measurement period of 

26 days. Samples from different genetic backgrounds were distributed in equal 

proportions per day and otherwise completely randomized. Hence we assumed that 
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the genetic and phenotypic variance covered by all samples of a set (approximately 

40) is comparable between days. Therefore, metabolite data were normalized by 

dividing the intensity of the metabolite i by the median of all measurements of i per 

measurement day. 

IL samples were measured in groups consisting of genotypes related to either of the 

parents [C24 and M lines (C24 with Col-0 introgressions) or Col-0 and N lines (Col-0 

with C24 introgressions)] in an attempt to reduce the technical error for our 

comparisons of interest (parent versus corresponding ILs). Six replicates per 

genotype were measured in total on 6 days, always together with the same set of 

genotypes including four to six replicates of the respective parent. Samples were 

randomized within days. 

Two normalization steps were applied to IL samples. To account for intensity 

differences, we normalized each metabolite profile (sample) by its mean trimmed 

20 % (the vector sum between the 10th and 90th percentiles, k = 0.1 n 

[n = metabolite number]). 
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This was determined to be more robust than using an internal standard (data not 

shown). However, it assumes that the same amount of material is applied to the 

column for each sample, and that the variation in total peak area of the analyzed 

metabolic subset is low. As only a low correlation (r < 0.05) between trimmed mean 

and biomass was observed for the IL data, this seems to be a fair assumption. In a 

second step, we improved normality by dividing each metabolite intensity value by 

the median of all values for this metabolite i from the same measurement set j and 

applying the logarithm: 
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Candidate gene identification. To identify possible candidate genes for mQTL, the 

AraCyc 3.5 database was downloaded from TAIR (Arabidopsis Information 

Resource, http://www.arabidopsis.org). For each mQTL, a search window was 

determined according to the presence of markers within its 1-LOD support interval 

(Supplemental Table S4). The resulting AGI codes were tested for either direct 
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association with the metabolite or association with one of the pathways in which the 

metabolite is involved. 

To compare the distribution of metabolic genes over the Arabidopsis genome against 

the mQTL distribution, we counted all genes around each marker, i.e. the interval 
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where Mk is the position of marker k (in bp). This approach was followed for the 

complete AraCyc data set and for a selection containing only information on 

pathways in which metabolites measured in this study are present. A Pearson 

correlation value was calculated between the mQTL distribution and both gene 

distributions separately. 

For permutation tests in the candidate gene approach, all QTL of a single metabolite 

were combined and randomly distributed over the five chromosomes 10,000 times. 

The total number of overlapping candidate genes was recorded in each permutation, 

and the final distribution of these values was compared against the outcome for the 

actual data. 

Estimation of heritability. Broad-sense heritability (H2) is defined as the part of 

phenotypic variation that is explained by the genotype. We used a similar approach 

to that of Keurentjes et al. (2007a), and estimated within-line variance (VP) based on 

replicate measurements of both parents and the reciprocal F1 hybrids (10 replicates 

each). To account for various measurement levels, we normalized the calculated 

variance (s2) of each genotype (Gk) using the squared mean before averaging: 
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After an equivalent transformation of the RIL values, we calculated broad-sense 

heritability as: 

RIL
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V
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To prevent over-estimation, we removed outliers more than three standard deviations 

away from the mean. In the case of negative values, we assumed the heritability to 

be zero. 

Narrow-sense heritability (h2) was estimated by parent–offspring regression 

according the method described by Falconer and Mackay (1996). Here we made use 
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of available RIL parent test crosses, which were measured together with the RIL 

samples. 

4.5.5 QTL analyses 

Recombinant inbred lines. For QTL analyses, a map containing 105 markers was 

used, on which only one representative (with fewest missing values) of very tightly 

linked markers was integrated. Two software packages implementing different 

detection algorithms [PLABQTL, multiple regression (Utz and Melchinger, 1996); 

QTL Cartographer, maximum-likelihood methods (Basten et al., 1994)] were 

combined to obtain robust QTL estimates. Composite interval mapping (CIM) was 

performed on an RIL population of 429 lines (dry biomass) or 369 lines (metabolites) 

with 1 cM increments. Co-factors were automatically selected by forward stepwise 

regression. Significant LOD thresholds were determined using 5,000 permutations. 

QTL were regarded as significant if they were detected using LOD0.05 in one 

package, and reached at least LOD0.25 in the other. QTL location and partial R2 were 

further validated using 1000 runs of the fivefold cross-validation procedure 

implemented in PLABQTL. Given a population size of 429 and a significance level of 

0.05, it can be shown (Hackett, 2002) that 99 % of all QTL that contribute more than 

5 % to the total variance and more than 50 % of those that contribute more than 1 % 

will be detected. Most of the undetected QTL will be below the 1 % line. To identify 

50 % of QTL that have a contribution of 0.5 %, we would have to double our 

population size. 

Co-localizations of QTL from different traits are expected given the high number of 

traits and the limited number of markers. The deviation from the random number of 

co-localizations was calculated as follows. The QTL of each metabolite were 

randomly distributed over the 105 marker positions. We then counted the number of 

co-localizations with each of the dry biomass QTL or with other metabolite QTL. This 

procedure was repeated 1,000 times, yielding a distribution of the maximum numbers 

of co-localizations. The 95 % quantile of the distribution for metabolite–biomass QTL 

co-localization was eight, hence eight or more QTL at one genome position are 

regarded as significantly co-localized. The corresponding 95 % quantile for the 

metabolite–metabolite QTL co-localization was ten. 

Introgression lines. To identify metabolites with a significantly altered intensity in a 

certain genotype, we compared metabolite values of ILs (six replicates, IL) against all 



 

parental line samples measured within the same set (approximately 30 replicates, P). 

To estimate a P-value empirically, we compared the true mean difference PIL xxx −=  

in k permutations (k = 10,000) with the calculated difference kPkILk xxy ,, −= , where kILx ,  

is the mean of a sample (of size six) drawn from the set union of IL and P and kPx ,  is 

the mean of the remaining values of this set union: 
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Hence, if the measured mean difference was higher than the mean differences 

calculated for 9,500 of the 10,000 permutations, we obtain a P-value estimate of 

0.05. 

4.5.6 Epistasis 

The software package PLABQTL (version 1.2BIC was used to estimate epistatic 

interactions. In an initial screening for digenic epistatic effects by two-way anova 

between all pairs of marker loci, no significant effects were determined using the 

integrated scanning function. 

In the following analysis, every mQTL of a known metabolite was tested for 

additive × additive effects against the genetic background at intervals of 2 cM. A 

range of 10 cM around the actual QTL position was blocked during this analysis. The 

resulting likelihood profiles for all mQTL of a metabolite were overlaid and inspected 

visually for maximum LOD estimates. A full model for each metabolite containing all 

per se QTL and their putative epistatic interactions was set up (one epistatic 

interaction per mQTL was usually included, none if the maximum effect coincided 

with another per se QTL, and two if equivalent interactions were present). From this 

full model, non-significant effects were omitted in a backward elimination step using a 

Bayesian information criterion (Kusterer et al., 2007) before re-estimating all 

remaining parameters simultaneously. 
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5.1 Abstract 
Two mapping populations of a cross between the Arabidopsis thaliana accessions 

Col-0 and C24 were cultivated and analyzed for the level of 181 metabolites to 

elucidate the biological phenomenon of heterosis on a metabolic level. Initially the 

metabolite profiles of 369 Recombinant Inbred Lines (RILs) and their test cross 

progeny with both parents allowed us to determine the position and effect of 147 

Quantitative Trait Loci (QTL) for metabolite Absolute Mid Parent Heterosis (AMPH). 

Furthermore we found 153 and 83 QTL for augmented additive and dominance 

effects respectively. 

In a second experiment we investigated the potential overlap of these QTL with 

significant effects determined for 41 Introgression Lines (ILs) and their test crosses 

with the respective parent. A confirmation rate of 23.3 % was reached. 

These findings as well as a candidate gene search, mode of inheritance analyses for 

IL-QTL, average degree of dominance estimations for RIL-QTL, the comparison with 

results for corresponding biomass data recorded and an attempt to predict biomass 

heterosis of a hybrid based on the metabolic profile of its parents are discussed 

within this manuscript. 

5.2 Introduction 
Despite being known, researched and applied for a hundred years, the often 

observed advantage of heterozygous offspring over its homozygous parents 

(heterosis) is still not well understood with respect to the underlying molecular 

mechanisms. As its advantageous effects are lost during the inverse process of 

inbreeding, it is well accepted that hybrid vigor is based, to some extent, on the 

combined action of heterozygous alleles. Three main theories which seek to explain 

the phenomenon on the genetic level have been developed in the past and 
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experimental evidence for all of them was published in literature (see Lippman and 

Zamir (2007) for a review). 

The Dominance hypothesis coined by Davenport as early as 1908 assumes a 

complementation mechanism where for each gene the more favorable allele inherited 

from either of the homozygous parents will be dominant within the hybrid, thus 

masking deleterious effect alleles. However, an exclusively dominant mechanism 

should in principal allow the complete fixation of beneficial effects from both parents 

into a homozygous offspring. As this is partly contradictory with observed results 

(Birchler et al., 2003; Duvick, 1999) overdominance was suggested as a mechanism 

to explain heterosis (Hull, 1945). Overdominance postulates the superiority of the 

heterozygous state due to allelic interactions which can not occur in either 

homozygous state. Thus, a number of loci inherited as heterotic Mendelian factors 

are thought to cause the observed phenotypes. 

The Epistasis theory (Powers, 1944) suggests that the highly increased number of 

possible epistatic interactions within a hybrid contributes mainly to hybrid vigor. 

Maize, tomato, rice and other crop plants are intensively studied for heterotic effects 

in plant science due to their agronomic importance and the sometimes exceptionally 

high levels of heterosis reached for yield related traits. On the other hand, 

Arabidopsis is well suited as a model organism for quantitative genetics and 

development because of a fully annotated genome (Arabidopsis Genome Initiative, 

2000), a high natural diversity (Alonso-Blanco and Koornneef, 2000) and short 

generation times allowing to perform large scale experiments under controlled 

environmental conditions. Mid parent heterosis levels of up to 161 % for biomass 

under high light conditions have been reported (Meyer et al., 2004) and recent 

improvements of molecular marker technologies facilitated the generation of several 

RIL and IL populations (Alonso-Blanco et al., 1998c; Keurentjes et al., 2007a; Törjék 

et al., 2008; Törjék et al., 2006) covering the whole genome with a high number of 

lines. 

With the advent of the metabolic profiling technology it became feasible to investigate 

the metabolome of such populations by applying a targeted analysis of several 

hundred metabolites covering predominantly the primary (GC-MS) or secondary (LC-

MS) metabolism. Several studies have followed this approach focusing on natural 

variation (Keurentjes et al., 2006), the connection between metabolism and yield 
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associated traits or biomass (Meyer et al., 2007b; Schauer et al., 2006) and the 

identification of metabolic quantitative trait loci (mQTL) (Lisec et al., 2008). 

The ability to map QTL contributing to heterosis has been shown for individual 

phenotypic traits in maize, rice and Arabidopsis (Frascaroli et al., 2007; Kusterer et 

al., 2007; Li et al., 2001; Luo et al., 2001; Melchinger et al., 2007a; Semel et al., 

2006; Stuber et al., 1992; Xiao et al., 1995). However, to unravel the genetic basis of 

heterosis the more detailed investigation of its components contributing to the 

observed phenotypes will become necessary. A step in this direction could be multi-

parallel analyses. 

A few studies embarked on tackling this problem on a genome wide scale by 

analyzing expression levels but did not yield consistent results so far (Auger et al., 

2005; Song and Messing, 2003; Swanson-Wagner et al., 2006). Only very recently 

Schauer et al. (2008) published the first QTL analysis on a metabolic level for a 

tomato IL population examining the mode of inheritance for all effects. 

While such multi-parallel studies provide excellent insight into general trends and are 

a rich source for further research, the desire to functionally annotate the causal 

genes requires additional fine-mapping approaches. A few QTL were successfully 

examined in this sense to date (Fridman et al., 2004; Konishi et al., 2006; Steinmetz 

et al., 2002), however, no individual gene involved in heterosis has hitherto been 

identified and characterized at the molecular level in plants (Hochholdinger and 

Hoecker, 2007). 

In this study we aimed to (i) identify and characterize heterotic metabolic QTL 

(hmQTL) in two mapping populations of 369 RILs and 41 ILs and (ii) searched for 

candidate genes being present within the QTL support intervals. We wanted to (iii) 

compare results between both populations and with our previous assessment of 

mQTL which are unrelated to heterosis. (iv) We tried to gain insight into the mode of 

gene action with respect to heterosis on the level of the primary metabolism and (v) 

searched for a link between the metabolic profiles of two homozygous plants and the 

amount of heterosis fixed in their hybrid expressed by the integrative trait biomass. 

5.3 Results 
5.3.1 Heterotic metabolic effects between the two parental genotypes 

To test to which extent biomass heterosis is reflected on a metabolic level we took 

advantage of the large number of replicates of the two parental accessions (C24, 



 

Col-0) and their offspring (C24×Col-0, Col-0×C24) measured during the IL 

experiment. The medians of about 50 replicates per genotype were used to calculate 

the amount of mid-parent heterosis (MPH) for each of the 181 analyzed metabolites. 

As shown in Figure 15a, most metabolites are expressed in the offspring on levels 

close to the expected parental mean. Two thirds show less than 10 % heterosis and 

only a few (24 out of 181) show heterosis values above 20 %. Maximum values 

(> 50 %) were determined in only three cases, all of which concern low abundant 

metabolites which are more likely to give rise to outliers despite the high number of 

replicates and were therefore discarded from the plot. 

 

Figure 15 Histogram of metabolite heterosis values between accessions C24 and Col 
calculated based on parental and hybrid samples from the IL experiment (a). Regression of 
metabolite heterosis values on the rank of each metabolite in a canonical correlation analysis 
linking metabolite profiles to biomass determined in the RIL experiment (b). 

Positive and negative effects are balanced; no dependencies on chemical classes – 

being predominantly positive or negative – could be verified. However, there is a 

significant correlation between the MPH value of a metabolite and its rank in a 

canonical correlation between metabolite profiles and biomass as published in a 

previous manuscript (Figure 15b). 

5.3.2 Heterotic metabolic QTL (hmQTL) 

Recombinant Inbred Lines: Using the procedure described in the Methods section of 

this manuscript we could determine 385 metabolic QTL (mQTL) for 136 out of 181 

metabolites at a 5 % threshold level (Supplemental Table 7). On average, these QTL 

explain 5 % of the phenotypic variation and their support intervals (1-LOD) are 
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approximately 10 cM wide. Using the methods suggested by Melchinger et al. 

(2007a) we partitioned the observed variation into average mid-parent heterotic 

effects for Col-0 (AMPHCol, 63 QTL in total) and C24 (AMPHC24, 86), augmented 

additive effects (ADD, 153) and augmented dominance effects (DOM, 83). A QTL 

overview for metabolites of known chemical structure is given in Figure 16. Maximum 

values of eleven and eight heterotic effects for one unknown metabolite (#074) and 

cellobiose, respectively, have to be treated with caution as these metabolites whilst 

showing very high heterosis values per se (173 % and 214 %) are generally low 

abundant. 

 

  

Figure 16 QTL for known 
metabolites. Different colors 
indicate QTL for absolute 
MPH (dark and light blue), 
augmented additive (red) or 
dominance (green) effects. 
Metabolites are ordered 
approximately to chemical 
function. 
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The distribution of these segments bearing heterotic effects follows largely the 

distribution of metabolic QTL (mQTL_RIL) as shown in Figure 17. A permutation test 

reveals three significant (P < 0.05) ‘hot spots’ at 1/75 (Chromosome 1, Position 

75 cM), 4/3 and 5/74, two of which are co-located with the hot spots previously 

determined. This is reflected as well by the fact that 36 % of the previously identified 

mQTL do overlap with at least one (and up to four) heterotic QTL for the same 

metabolite. 

 

Figure 17 Distribution of heterotic metabolic QTL (hmQTL) for absolute mid parent heterosis 
(light and dark blue), augmented additive (ADD) and augmented dominance (DOM) effects. 
Metabolic QTL determined based on RILs (black line) are shown for comparison. Asterisks 
indicate QTL hotspots which were determined to be significant (*** P < 0.001; * P < 0.05) using 
permutations. 

Introgression Lines: To confirm and potentially fine map heterotic metabolic effects 

determined within a RIL population, we conducted an independent experiment using 

an IL population which covered ~73 % of the parental genome. Depending on the 

significance threshold used up to 23.3 % of the RIL effects could be confirmed (Table 

3). This confirmation rate is approximately half of the confirmation which was 

achieved for mQTL on a comparable significance level. 

Mode of Inheritance: The mode of inheritance for effects in ILs was estimated 

according to Semel et al. (2006). To be able to detect general trends we applied the 
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decision tree to classify the QTL on all effects which were determined using a less 

stringent significance threshold (P ≤ 0.05). 

P 

Number of 
significant 

Changes 
FDR 
[%] 

Number of 
confirmed 
RIL QTL

confirmed 
RIL QTL 

[%]

average R2 of 
confirmed RIL 

QTL [%]
confirmed 

allelic effect 

confirmed 
allelic effect 

[%]
0.001 357 4.16 14 4.59 5.72 10 71
0.01 1071 13.86 49 16.07 5.34 32 65
0.05 2155 34.44 71 23.28 5.07 41 58

0.1 2966 50.04 82 26.89 4.91 50 61

Table 3 Number of IL effects and onfirmation rate of RIL QTL at different significance levels. 

The majority of QTL fall into the dominant (67 %) and additive (19 %) bin with only a 

minor proportion of QTL exhibiting over-dominant (9 %) or recessive (5 %) gene 

action (Figure 18). Interestingly the results are biased in two ways: 

(i) If a larger number of ILs is detected to be significantly different to the respective 

parent, these effects in most of the cases tend to change the metabolite level in 

the same direction, either increasing or decreasing it. This is surprising as 

theoretically we would expect a distribution of IL metabolite values around its 

parent mean and hence more balanced effects. We hypothesize that 

metabolites which show very different levels for both parents initially are prone 

to exhibit in many introgressions significant changes in metabolite level towards 

the level of the parental donor. That means, the stronger two parental 

genotypes differ for the level of any metabolite i, the more likely it is to observe a 

shift in the distribution of the levels of i in ILs derived from the respective parent. 

To test this we calculated the IL effect bias (expressed as the absolute 

difference of the sum of all positive and the sum of all negative mode of 

inheritance annotations) and the parental difference (expressed as the absolute 

value of the log2-ratio of the parental mean values) for each metabolite. A 

regression of the parent difference on the IL effect bias supports our hypothesis. 

(Supplemental Figure S2). 

(ii) If analyzed separately, ILs carrying a C24 introgression in the Col-0 background 

predominantly reveal metabolite increasing effects (Supplemental Figure S3). 

This is independent of the mode of inheritance. This finding is caused by the 

fact that the majority of the 181 metabolites analyzed in this study have higher 

values in C24 than in Col-0. Consequently, IL values for N-Lines (Col-0 

background) show predominantly increased metabolite values if compared to 

Col-0. 



 

With respect to the different chemical classes it is noteworthy that most of the amino 

acids are relatively stable with only a few ILs changing their level significantly. In 

contrast, many organic acids and sugars are changed in a high number of ILs. 

Organic acids are found to be predominantly increased if compared to the respective 

parent level while most sugars are decreased. 

 

 

Figure 18 Mode of inheritance distribution for known metabolites. Colors encode for 
overdominant (black), dominant (red), additive (orange) and recessive (yellow) gene action. 
Positive effects represent an increased metabolite level in the IL or IL-hybrid compared to the 
respective parent. Negative effects represent an equivalent decrease. The size of the bars 
indicate the number of ILs being significantly different. 

Per se heterosis in relation to population effects: The amount of individual metabolite 

heterosis between P1 and P2 (expressed by the levels in F1-a and F1-b) should be 

reflected in the number and significance of individual effects calculated using RILs or 

ILs. To test this we grouped metabolites into bins according to the absolute value of 

their heterosis. We then plotted for each of the resulting groups the median number 

of significant effects (RILs and ILs), the minimal P-value determined (for ILs) and the 

maximum explained phenotypic variation (for RILs) (Figure 19). As expected, the 

number of determined significant effects is increased for metabolites showing higher 

per se heterosis. They tend to explain more of the phenotypic variation of the trait 

and give rise to more significant P-values. Interestingly this holds true for both 

experiments (RILs and ILs) although heterosis values were estimated based solely 

on the IL experiment data. 

Candidate Genes: For all RIL QTL we tried to identify candidate genes catalyzing 

known chemical reactions of this metabolite or being annotated within pathways 

where the metabolite is involved. For 18 % and 55 % of all QTL which could be 

tested (that is, where at least some information was available within the public 
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database AraCyc4.0) we found direct and pathway candidate genes, respectively 

(Supplemental Figure S4). Contrary to our previous experiment (Lisec et al., 2008) 

we could not confirm this to be a significant increase over a similar search using 

randomly positioned QTL (being equal in number and size to the observed data). 

Figure 19 Parameter dependency 
of QTL analyses from metabolite 
heterosis. Metabolites were 
grouped according to per se 
heterosis calculated based on the 
measurements of C24, Col-0 and 
their hybrids (see Figure 15). For 
each bin the median value with 
respect to number of determined 
QTL and minimal P value (ILs) or 
number of determined QTL and 
highest explained phenotypic 
variance (RILs) is plotted. 
Numbers indicated the number of 
metabolites within each bin. 

 

Comparison with heterotic biomass QTL: In our companion study focusing on 

biomass as the trait of interest we found four QTL for biomass heterosis and further 

seven QTL for the linear transformations Z1 and Z2, the augmented additive and 

dominance effects (Meyer, unpublished data). 

The strongest heterotic effect was mapped on position 4/4 explaining 15.75 % of the 

phenotypic variation. It co-locates not only with two further effects of Z1 and Z2 for 

biomass but also with a cluster of 37 mQTL. All other biomass effects which explain 

individually less than 8 % of phenotypic variation do not co-locate with further mQTL 

hot spots except for one augmented dominance effect on chromosome five (5/74). 

5.3.3 Average degree of dominance: 

The average degree of dominance D  was calculated according to Kearsey and 

Pooni (1996). It is a weighted mean of the level of dominance over all segregating 

loci and can be obtained as the ratio of the estimated variance components VD and 

VA (see Material and Methods). Surprisingly, all of our metabolites lie within a range 

of 1 to 1.5 thus classified exclusively as dominant (if lower than 1.2) and 
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overdominant (if higher than 1.2) according to Stuber and Wendel (1987). This is at 

least partly in line with the mode of inheritance estimations for IL effects being to a 

large extend classified as dominant as well. 

5.3.4 Heterosis Prediction 

Similar to the previously identified relation of a metabolic profile and its 

corresponding biomass (Meyer et al., 2007a) we aimed to connect the metabolic 

profiles of two parental lines (C24 or Col-0 and RILi) and the biomass heterosis value 

of their progeny (TC-C24i or TC-Coli). Hence, we formed a metabolite profile matrix 

dividing each RILi profile by either an averaged C24 or Col-0 profile and associated 

this matrix with the vector of biomass heterosis values of the corresponding TCis. 

The correlation between the canonical variate and the observed data was 0.64. 

However, as a permutation test (n = 10,000) yielded on average correlation values of 

0.52 we conclude that, although the relation between parental metabolic profiles and 

biomass heterosis of their progeny is clearly non-random, we can not meaningfully 

predict heterosis using this approach (Supplemental Figure S5). 

5.4 Discussion 
In our previous work we were able to show that the variation in the metabolite levels 

of both our genetic populations, RILs and ILs, is sufficient to map metabolic QTL with 

broad sense heritability being on average 0.40 (Lisec et al., 2008). Furthermore we 

found heterosis for biomass (Meyer et al., 2004) and a metabolic signature related to 

high plant growth (Meyer et al., 2007a). In this study we successfully analyzed RIL 

and IL populations of a cross between the two Arabidopsis thaliana accessions Col-0 

and C24 for heterotic QTL on a metabolic level. The generally modest metabolite 

heterosis (median value of 6.54%) was sufficient to map a high number of significant 

effects within both approaches. 

Regarding the fact that we partitioned the observed metabolite variation into four 

linear transformations per metabolite, we observed a comparable number of 

metabolic QTL in both populations. 

The moderate overlap (36%) of previously detected effects and particularly the co-

localization of hot spots from both experiments hint that loci which contribute to 

differences between the two parental genotypes are also involved in heterosis for the 

respective traits. This is in agreement with the observation that mQTL which overlap 

with heterotic effects do not differ from non-overlapping mQTL with respect to their 
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independent confirmation via ILs but differ significantly (P < 0.05) in their phenotypic 

explained variance which is higher for the group of overlapping mQTL. 

Candidate Gene Approach: An interesting finding is that the search for candidate 

genes from metabolic pathways which are annotated within the QTL support intervals 

did not yield a statistical significant increase of positive hits for the observed QTL 

data compared with a set of randomly distributed QTL of similar size. This is an 

important hint towards the nature of genes involved in heterosis. As pointed out by 

Milborrow (1998): a large increase in plant size (or biomass) in F1 hybrids will derive 

from much smaller percentage increases in relative growth rate or duration of growth, 

which can be further partitioned in even smaller differences between the components 

of growth. Consequently, for our analysis of metabolism it would be a surprise to map 

predominantly enzyme encoding genes contributing to heterotic effects. It seems 

more likely that the observed deviation from the parental mean is caused by 

differences in regulatory elements. 

Along this line goes the enrichment of pathway related genes which we detected in 

our previous study for non-heterotic mQTL. While in some cases differences between 

two parental genotypes fixed in a RIL population can be caused by enzyme encoding 

genes this can not be confirmed for such differences representing heterotic behavior. 

The idea of picturing heterosis as a lessening of the tight regulation of growth 

(Milborrow, 1998) is also supported by the mainly negative correlations of metabolite 

levels and biomass for those metabolites which were highly ranked in a canonical 

correlation between metabolic profiles and biomass (Meyer et al., 2007a). 

Mode of inheritance: On the level of gene action our results for the IL population 

show, that only a minor fraction of the determined effects (9 %) were categorized as 

over-dominant. This ratio is similar to the results of Schauer et al. (2008) for a tomato 

IL population where only 5 % of all QTL were over-dominant and further in 

agreement with the moderate levels of metabolite heterosis determined in the F1 

hybrids. A likely explanation could be that metabolites are not as closely related to 

reproduction as the traits usually under study in heterosis research. In that sense, 

Semel et al. (2006) found an enrichment for overdominant mode of inheritance only 

for traits related to reproductive fitness. Interestingly, Schauer et al. (2008) observed 

a similar bias towards increasing metabolite content, as was determined in our study 

for Col-0 related ILs. This bias is caused by lower levels in Col-0 compared with C24 

for the majority of the metabolites. As a similar amount of sample was used for 
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extraction and derivatization a possible explanation could be that C24 has higher 

levels of primary metabolites – which we predominantly detect with our method – 

while the Col-0 samples contain a higher fraction of secondary metabolites. While 

this idea has to be proven in a further study it has no impact on the differences 

between parental lines and ILs observed in this work. The bias indicates the 

polygenic nature of metabolic traits because for strong parental differences many 

introgressed segments bear alleles which lead to significantly different metabolic 

levels in ILs and IL-hybrids. 

Contradictory to this IL-QTL classification, the average degree of dominance which 

was estimated based on the RIL population reveals that overdominance is the major 

contributor of the explained variation. However, this estimation using the variance 

components based on the test crosses has to be treated with some caution 

(Melchinger et al., 2007b). 

 Epistasis: Using comparable significance thresholds the confirmation rate of 

heterotic RIL-QTL in the IL population is approximately 50 % of what we found for 

non-heterotic effects. This could indicate that epistatic effects play an important role 

in heterosis. 

Epistatic effects can be expected to be broken up to a large extent in ILs. While 

mQTL, which were found using the RIL population, seemed to be robust enough to 

allow their confirmation in ILs heterotic mQTL appear to be much more dependent on 

epistatic interactions. A possible explanation would be the prevalence of trans-

regulated genes among heterotic loci. However, for biomass all heterotic QTL could 

be confirmed in ILs. 

Biomass: Taken the results of our companion study on biomass into account we 

clearly determined the top of chromosome four to be of highest interest for heterosis. 

For biomass three out of eleven QTL are mapped to this location including the QTL 

bearing the strongest effect. For metabolites, not only a high number (52 mQTL from 

4/0–4/15 with 37 mQTL at 4/4) of significant effects was determined, but the 

explained variances of these QTL are significantly higher than for the remaining 

effects if compared in a t-test (P < 0.001). We therefore currently undergo the 

process of sub-IL generation and hope to investigate this striking result in more detail 

in the near future. 

Heterosis prediction: Regarding the promising results from our previous work (Meyer 

et al., 2007a), where we could identify a metabolic signature to be strongly linked to 
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the integrative trait biomass we thought it an exciting possibility to predict biomass 

heterosis based on the metabolic profiles of two homozygous parents. This would 

potentially allow the use of cost and time efficient GC-MS technique to screen a wide 

range of homozygous elite lines and facilitate the selection of potential crosses to be 

validated for heterotic effects in field trials. However, our current approach is limited 

to a single RIL population and only a rather low improvement of our observed data if 

compared to permuted data sets was found (Supplemental Figure S5). The approach 

may be improved using a higher number of lines and different mathematical 

strategies. It seems clear to us that GC-MS along with the other -omics technologies 

due to their broad coverage of parameters promises successful application in 

predicting heterosis and thus breeding. 

5.5 Material and Methods 
5.5.1 Plant cultivation and metabolite analysis 

Plant materials: All plant materials analyzed in this study were established as 

progeny of the two Arabidopsis thaliana accessions C24 and Col-0 (P1 and P2). The 

generation of the two homozygous mapping populations of (i) 422 Recombinant 

Inbred Lines (RILs) and (ii) 97 Introgression Lines (ILs) is described in more detail 

elsewhere (Törjék et al., 2008; Törjék et al., 2006). Both mapping populations were 

genotyped with a set of 110 framework SNP markers (Törjék et al., 2003) as 

described elsewhere (Törjék et al., 2006). 

To allow analyses for heterotic effects backcrosses with testers P1 and P2 were 

produced for 41 ILs (20 IL-TCP1 and 21 IL-TCP2) and 369 RILs (368 RIL-TCP1 and 

363 RIL-TCP2). The average introgression length is 19.3 and 17.3 cM in ILs with C24 

and Col-0 backgrounds, respectively. ILs were chosen based on previously 

determined biomass QTL and cover ~73 % of the parental genome. 

Experimental design: We used the North Carolina Design III as proposed by 

Comstock and Robinson (1952). 

Plant cultivation: All plants were grown in 1:1 mixture of GS 90 soil and vermiculite in 

96-well-trays under a long-day regime (16 hours fluorescent light [120 µmol m-2 s-1] 

at 20°C and 60% relative humidity / 8 hours dark at 18°C and 75% relative humidity). 

Six plants of the same line were grown per well. To avoid position effects, trays were 

rotated around the growth chamber every two days. 



 

Within the first experiment all RILs and RIL-TCs were cultivated together with both 

parents (P1 and P2) and their reciprocal hybrids C24×Col-0 and Col-0×C24 (F1-a and 

F1-b) in a split plot design. Although at least three replicates per line were grown, 

these replicates were pooled into one sample due to a limited number of 

measurements feasible. Controls (P1, P2, F1-a and F1-b) were measured in 10-12 

replicates originating from different pooled plant samples grown together with the 

RILs. 

The second experiment contained the 41 ILs and their IL-TCs in two blocks and six 

subplots per block. The position within the subplot was random. For metabolomics 

analyses we pooled six times two subplots (three samples per block). All controls (P1, 

P2, F1-a and F1-b) were grown together with the ILs but in higher replicate numbers. 

Metabolite analysis: Harvested plant material was processed as described elsewhere 

(Lisec et al., 2006) and analyzed using Gas-Chromatography Time of Flight Mass-

Spectrometry (GC-ToF-MS). Within the first experiment, metabolite profiles were 

recorded for P1, P2, F1-a, F1-b (10 to 12 replicates each), 369 RILs and 731 distinct 

RIL-TCs with P1 or P2 (single measurements). 

Within the second experiment, metabolite profiles were recorded for P1, P2, F1-a, F1-b 

(47 to 57 replicates each), 41 ILs and 41 IL-TCs with either P1 or P2 (six replicates 

each). 

Each metabolite profile consists of 181 intensity values which represent the levels of 

82 known (with respect to comparison to a reference) and further 98 unknown 

chemical compounds. 

The data was normalized as described previously (Lisec et al., 2008). 

5.5.2 QTL analysis and statistical methods 

Statistical analyses: Mid-parent heterosis (MPH) for metabolites was calculated 

based on the median values of all Pi and Fi measurements (approx. 50 samples per 

genotype) conducted during the IL experiment using the formula: 

( ) PPFMPH −⋅= 1100 , where ( ) 2111 ba FFF −− +=  and ( ) 221 PPP +=  

QTL analysis: QTL analyses were performed using the software tool QTL 

Cartographer (Basten et al. 1994). From the normalized metabolite data we 

calculated for each metabolite absolute mid parent heterosis of the RIL-TCs with C24 

as ( )1, 5.0
11

PRILTCAMPH iiPP +−=  and Col-0 as ( )2, 5.0
22

PRILTCAMPH iiPP +−= . 

 
80 



 Genetics (in preparation) 

Furthermore we used the transformations iPiP TCTCADD ,, 21
+=  and 

 to characterize additive and dominant effects (Frascaroli et al., 

2007). Composite Interval Mapping (CIM) was conducted for each of the four above 

mentioned variables using automatic co-factor selection by forward stepwise 

regression. Significant LOD thresholds (for P < 0.05) were determined by 1,000 

permutations for each trait individually. Support intervals were calculated using the 1-

LOD method. 

iPiP TCTCDOM ,, 21
−=

Hotspots in the QTL distribution were computed by permutations as described in 

Lisec et al. (2008). 

Candidate Gene Search: To search for candidate genes which are annotated in 

AraCyc 4.0 and co-locate with determined QTL, we followed exactly the procedure 

described in Lisec et al. (Lisec et al., 2008) with the exception that we used the 

updated version of the database. 

Mode of inheritance: The mode of inheritance for significant effects in ILs was 

determined with a decision tree as described in Semel et al. (2006). 

DAverage degree of dominance: The average degree of dominance  was calculated 

as AD VVD 2=  according to Kearsey and Pooni (1996). The variance components 

VA and VD were estimated as the variance of ADD and DOM (see above). 

Canonical correlation analysis: Canonical correlation analysis was performed using 

the function cancor built in the statistical software package R (http://www.R-

project.org). By permuting the MPH vector we computed the distribution of canonical 

correlations for random datasets. 
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6 Discussion and Outlook 
As each chapter has a discussion focusing on the achievement and the impact for 

the research contained within it, this final chapter will primarily extend the 

aforementioned points regarding thesis integrity and detail its findings in a broader 

context. In addition it will give an outlook of ongoing and future research planned 

using the work described herein as its foundation. 

6.1 Discussion 
6.1.1 Metabolomics on a large scale 

Despite the fact that the first approaches in metabolomics were conducted less than 

ten years ago, GC-MS can be considered as a mature technique. However, when 

this work began, no metabolite profiling approach of comparable scale was 

published. Thus, we had to answer the questions: Is it feasible to perform 

metabolomics on a large scale and which results can be expected? 

We conducted GC-MS based metabolomics by analyzing the levels of 181 

metabolites in more than 2000 Arabidopsis samples. A higher number of compounds 

can be expected if a broader natural diversity is under research or if stress conditions 

are applied. For such diverse sample sets a fraction of detectable compounds are 

likely to occur only in a few samples requiring non-targeted analytical tools to be 

applied, in contrast to the reference based methods used throughout this work. Such 

tools are currently under development and will prove useful in the future (Fiehn et al., 

2005; Luedemann et al., 2008; Smith et al., 2006; Styczynski et al., 2007; Vos et al., 

2007). However, a number of issues should be considered. 

(i) Quantification. Although it is in principle possible to conduct an absolute 

quantification, metabolite analysis on this scale rather aims to compare 

compound levels in different samples. Problems which render absolute 

quantification difficult are the occurrence of multiple peaks per metabolite as 

derivatization artifacts, the fragmentation of the metabolite molecule into a mass 

spectrum and the huge amount of necessary standard curves which are 

impossible to establish for the fraction of unknown metabolites which 

nonetheless can be reliably measured. Those issues may be solved if a full 

complement of isotopically labeled metabolites of known concentrations is 

added to each sample (Fernie et al., 2004). 
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(ii) Variation. Only changes exceeding the measurement variation can be observed. 

While this statement is trivial and generally true for every method it should not 

be overlooked in metabolomics. The technical variation is found to be ~10 to 

15 % for most of the metabolites (Fiehn et al., 2000a; Strelkov, 2004). However, 

a thousand samples in GC-MS usually require several thousand plants to be 

sawn, cultivated, harvested and analyzed. Hence, some environmental variation 

can be expected even if protocols are followed most carefully. Statistical 

methods and an appropriate experimental design will help to separate this 

additional variation from the changes which correspond to the effect under study 

but it limits the expectations put on metabolomics if pathways and metabolic 

networks are investigated. 

(iii) Comprehensiveness. Based on the estimated number of metabolites in 

biological samples metabolomics is still far from accessing the full metabolome 

and the annotation of detected peaks heavily depends on available reference 

databases. Improvements in available tools and the application of promising 

techniques like two dimensional gas chromatography (GC×GC-MS) and FT-

ICR-MS (Aharoni et al., 2002; Blumberg et al., 2008; Hirai et al., 2004b) will 

enlarge the fraction of small molecules which are possible to investigate 

simultaneously in the future. 

Apart from the issues mentioned above several robust metabolomics techniques 

exist today which are well capable of processing large data sets from time course 

experiments or segregating populations at moderate costs and with high throughput. 

How can the results obtained in metabolomics experiments be used? As was pointed 

out by Hall (2006), metabolomics is a particularly suitable initial approach as a 

hypothesis generator to use to provide early leads for future research. This reflects 

exactly what was achieved in this study. The path to verify some of these leads, such 

as QTL, using forward genetics approaches is quite clear and has been successfully 

applied in a number of cases (Fridman et al., 2004; Konishi et al., 2006; Steinmetz et 

al., 2002). Metabolomics is already used in diagnostics and gene-function analysis 

(Fernie et al., 2004), can provide a more global picture of the molecular organization 

of multicellular organisms and help to investigate a part of the still unexploited 

biodiversity (Hall, 2006). 

Large scale metabolite profiling most certainly will complement proteomics and 

genomics approaches. Especially the determination of gene expression has been 
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used to answer similar questions, as this work, with respect to the identification of 

QTL (Keurentjes et al., 2007b; Kliebenstein et al., 2006; West et al., 2007) and the 

elucidation of the basis of heterosis (Swanson-Wagner et al., 2006). However, as 

genes and gene expressions are the cause of changes which propagate via proteins 

to metabolites and ultimately growth, a future target will be to apply the ‘omics’ 

approaches in an integrative way (Hirai et al., 2004b; Tohge et al., 2005). 

6.1.2 Comparing results of RIL and IL populations 

Mapping approaches based on segregating populations of immortalized homozygous 

genotypes have been used for many years and numerous RIL and IL populations are 

available for divergent species such as tomato, rice, maize, and Arabidopsis (Alonso-

Blanco et al., 1998c; Burr et al., 1988; Eshed and Zamir, 1995; Li et al., 1995). While 

ILs have been used to fine map QTL detected in RIL populations in some cases, this 

study is amongst the first to explore two of such populations which cover the full 

Arabidopsis genome in parallel. Therefore we could ask the question whether or not 

RILs and ILs fulfill the expectations with respect to observed differences and 

overlaps. Although being conceptually quite similar, a few properties which 

distinguish RILs and ILs influence the anticipated results. 

(i) QTL detected in composite interval mapping with RILs can be assigned precise 

estimates for the genetic position and effect. For ILs, the QTL position is defined 

by the boundaries of the introgression alone. Only in case that some overlap 

exists between one or several ILs the interval bearing the QTL may be narrowed 

down applying a binning approach (Schauer et al., 2006). Further, each 

substitute chromosome segment may harbor more than one QTL hampering the 

estimation of the QTL effect. If two or more QTL are in coupling phase the 

chance of detection and the effects significance will be increased. If neighboring 

QTL within an introgression are in repulsion phase no significant difference to 

the recurrent parent may be detectable anymore. 

(ii) Epistatic interactions between any two genes in a parental genome will be 

masked in an IL progeny if one of these genes is substituted with a donor 

segment of another genotype. New interactions may occur. While all epistatic 

interactions can be theoretically mapped in a RIL population (given a sufficient 

number of individuals) estimates for these effects will be different in an IL 

analysis. 
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(iii) RIL populations have a lower power than IL populations to detect small effect 

QTL due to segregation of multiple QTL in the genetic background (Keurentjes 

et al., 2007a). 

Further differences are related to multiple testing corrections – which depend on the 

number of markers for RILs and the number of lines for ILs – and the number of 

measurements necessary to detect a QTL. 

The only two other studies which aimed to compare RILs and ILs in Arabidopsis 

investigated developmental traits and determined an overlap of approximately 50 % 

(Keurentjes et al., 2007a; Kusterer et al., 2007; Melchinger et al., 2007a). We found a 

comparable confirmation rate (55 %) for RIL-QTL in ILs with respect to metabolic 

QTL per se. However, the confirmation rate was much lower (23 %) in the analysis of 

heterotic effects, indicating the contribution of epistasis to heterosis. 

Is any of the populations preferred for metabolite profiling? Both population types are 

accessible for metabolite profiling but an appropriate experimental design has to be 

carefully considered. The amount of samples to be processed requires long 

measurement periods for the complete dataset. Thus, a well established and robust 

protocol is essential, as is a sufficient amount of controls (~10 %) to be measured 

along with the samples. Metabolite profiling of ILs has the advantage that parental 

samples can efficiently serve as a control for machine performance in parallel, thus, 

reducing the total number of samples to process. Furthermore, the statistical power 

in RIL analyses is increased with the number of lines investigated implying that the 

focus is on analyzing more lines rather than several replicates of each genotype. In 

contrast, the statistical power in IL analyses increases with the number of replicates 

measured per line. The results obtained by Keurentjes et al. (2007a) indicated that 

the strongest gain in power is reached until up to 6 replicates are processed while 

additional replicates allowed only moderate improvements in QTL detection. 

However, in GC-MS analyses these replicates can serve to investigate machine 

variance and reveal possible flaws. We conclude that while it is possible to detect 

numerous difference in both types of populations on the metabolomics level, ILs are 

preferable because they allow for additional control and provide excellent material to 

narrow down observed QTL through the generation of subILs. With respect to QTL 

mapping in general both population types can be regarded as complementary. 

Association mapping will be a future alternative to RILs and ILs in QTL mapping 

approaches. Recently, the decrease in costs for haplotyping based on SNPs allowed 
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the prediction of more than 1 million non-redundant SNPs in 20 Arabidopsis 

accessions (Clark et al., 2007). This paves the way to use the natural genetic 

variation in whole genome mapping approaches. Clear advantages are the easy 

access to large sample populations not limited to a particular cross and potentially 

high power and resolution in QTL detection (Buckler and Thornsberry, 2002). 

Association mapping has been successfully used in human genetics (Eerdewegh et 

al., 2002; Ozaki et al., 2002) and is currently adopted to plant genetics (Aranzana et 

al., 2005; Wilson et al., 2004). 

6.1.3 Heterosis for metabolic traits 

One goal of this study was to shed some light on the molecular processes underlying 

heterosis. To this end, hundreds of QTL for most of the evaluated metabolites have 

been determined and further characterized. This is an interesting finding per se as 

heterosis is most often associated with increased fitness related to biomass, stress 

resistance, fertility and likewise traits. To confirm the presence of heterosis down to 

the metabolic level may encourage conducting pathway and systems oriented 

approaches in the future. The present data allow drawing some conclusions already. 

Heterotic effects in primary metabolism are unequally distributed over the 

Arabidopsis genome and a hotspot on top of chromosome 4 is co-located with 

heterotic QTL mapped for biomass. Further, there is no evidence that pathway 

related genes are a major contributor to hmQTL. These findings indicate that a 

substantial amount of hybrid vigor detectable on the metabolic level is attributed by a 

small number of loci which are likely to be involved in regulatory processes. We have 

to be cautious, however, to extend this reasoning to other plants or phenotypic traits. 

Hochholdinger and Hoecker (2007) showed in their review of heterosis related gene 

expression studies conducted in maize, rice and Arabidopsis, that detected global 

trends – favoring dominance, overdominance or epistasis – are controversy and may 

depend on developmental stage, genetic background, analyzed tissue or the 

technical method applied. 

Given the beauty and lucidity of the Mendelian laws it is tempting to hope that 

heterosis might be explainable by an equally simple mechanism. Current results, 

however, hint that the advantage of a heterozygous state operates in many ways. 

With respect to the primary metabolism in Arabidopsis cultivated under controlled 

conditions we detected predominantly dominant effects. 
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That said, one exciting question remains to be addressed: Will it be possible to 

predict heterosis based on any measure obtained from the two homozygous 

parents? Current approaches mainly focus on the genetic distance between the 

parents which is accessed based on genomic markers (Cho et al., 2004; Schrag et 

al., 2007; Yu et al., 2005) but are still rather of academic interest and not yet applied 

by breeders (JC Reif, personal communication). As became apparent from our 

analysis of biomass and metabolic profiles, a multivariate approach could be more 

appropriate to predict an integrative trait. Promising results of transcript abundance 

correlating with heterosis in Arabidopsis encouraged Bancroft and colleges to file a 

patent (WO/2007/113532). In their approach a linear regression of the number of 

genes which were remodeled within a hybrid at a 1.5-fold change level on the 

magnitude of heterosis observed revealed a positive correlation of r = 0.738. 

Clearly, gene expression values, protein content and metabolite levels are the likely 

candidates to be used as a multivariate measure. The metabolic state of a plant as 

the ultimate expression of its genotype and interaction with the environment could be 

closest related to heterosis. We already found a strong relation between metabolism 

and biomass and a less exposed connection to biomass heterosis. We hope to 

extend this approach in the future. 

No individual gene involved in heterosis has hitherto been identified and 

characterized at the molecular level in plants (Hochholdinger and Hoecker, 2007). 

Can we expect to find any Mendelian locus exhibiting an effect strong enough to be 

detected? If at all, this should be the case for less integrative traits than are usually 

under study. Bancroft’s results point in the direction that for highly integrative traits 

like biomass a rather large amount of small effects could be responsible on the level 

of gene expression. Therefore, it will be difficult to map any single locus effect and 

metabolomics might aid in elucidating the first heterotic gene. 

6.2 Outlook 
6.2.1 Resequencing of eight mQTL candidate genes 

One of the objectives of this study was the characterization of metabolic QTL. 

Ultimately this means to disclose the underlying genes. As our results indicated that 

a large part of these genes may encode for enzymes from pathways where the 

metabolite is involved we decided to investigate possible polymorphisms between 

both parents. Here, we sequenced the coding region of accession C24 for eight of 
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our candidate genes. The candidate genes were chosen according to the following 

criteria: 

• LOD value in RIL analysis (preferably high) 

• Confirmation of the effect in ILs (preferably low P-value) 

• Total number of genes associated with this metabolite in AraCyc (preferably 

low) 

• Catalysed reaction (preferably directly acting on the metabolite) 

Primers were designed according to the complementary Col-0 sequence within 

200 bp up- and downstream of the promoter and the stop codon respectively. 

According to the Perlegen data published by Clark et al. (2007) for three of these 

candidate genes substitutions were predicted. In total the authors annotated three 

substitutions and further six synonymous polymorphisms. However, as these 

annotations were based on hybridization efficiency applying a moderate false 

discovery rate (FDR) we expected to find additional changes. Altogether, five out of 

nine predicted polymorphisms were confirmed by resequencing of the respective 

genes. Additionally we found 23 polymorphisms to a large extent in intron regions 

(14) but also four of them causing substitutions which were not predicted beforehand 

(Table 4). 

AGI Substi 
tution 

Syno 
nymus Intron bp Metabolite Gene function LODRIL PIL 

AT1G14520 3 6 7 2169 Inositol MIOX1 (myo-inositol oxygenase) 6.5 0.047

AT5G53970 1 1 0 2240 Tyrosine tyrosine aminotransferase 9.6 0.054

AT1G43710 0 1 1 2064 Ethanolamine glutamate decarboxylase 8.7 0.000

AT3G44740 1 0 0 1446 Glycine glycyl-tRNA synthetase 8.0 0.015

AT4G15210 0 0 4 3132 Maltose beta-amylase activity 9.9  -  

AT2G38400 0 0 2 2660 4-Aminobutyric acid glyoxylate aminotransferase 3.6 0.004

AT4G05632 0 0 4 747 Glucose 1-phosphate unknown (G3P DH) 10.7 0.013

AT5G15600 1 0 0 891 Nicotinic acid unknown (Nitrilase) 13.2 0.013

Table 4 Polymorphisms between Col-0 and C24 identified in candidate genes of metabolic QTL 
by resequencing of C24. Length of the gene sequence (bp) and annotated function is given. 
Additionally the QTL LOD (RIL experiment) and the P value of the best confirming IL is shown. 

Thus, for four of eight candidate genes determined by a comparison of the positions 

of metabolic QTL and present knowledge about metabolic pathways we found in total 

six polymorphisms changing the amino acid chain of the encoded protein. One of the 

remaining genes (AT4G15210, maltose) showed a significantly different expression 

profile between C24 and Col-0 at four days after sowing in a different experiment, 
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suggesting that a polymorphism might be located in the regulatory region. For 

candidate AT2G38400 (4-aminobutyric acid) a rather low LOD compared to the other 

testers was found in the RIL experiment. The genes AT1G43710 and AT4G05632 

did exhibit one polymorphism per gene both located within intron regions and were 

otherwise not differentially expressed. 

We are currently investigating possible changes in the tertiary structure of the 

enzymes caused by the determined substitutions. Furthermore, forward genetics 

approaches will be conducted. As we determined polymorphisms in all of the eight 

candidate genes under consideration, it seems promising to measure allele specific 

expression following the approach described by Wittkop et al. (2004). 

Taking the rapid development in sequencing technology during recent years into 

account, the methods applied in this study will clearly not serve as a tool to reveal 

new polymorphisms, but rather aid in the functional characterization of present 

natural variation. 

6.2.2 Metabolite flux analysis as a complement to investigate heterosis 

A full understanding of the molecular mechanisms underlying the biological 

phenomenon heterosis has not been obtained so far. As this may be attributable to 

its complex nature a successful experimental strategy needs to approach the 

problem from different sides. 

A possible criticism of the strategy followed throughout this work could be that plant 

material was sampled only at a single time point, thus, neglecting developmental 

changes as well as differences in metabolic fluxes. 

The first point could be problematic in case that heterosis effects cause differences 

between homozygous and heterozygous plants before (or after) the sampling point. 

Hence, metabolite profiling might analyze only a subset of the responsible effects 

characteristic for a single developmental stage. It could even solely detect the 

differences in growth caused by heterosis without monitoring the initial processes 

leading to these differences. 

The second point would hamper detection of heterotic effects in case that these 

effects purely influence metabolic fluxes. Increased fluxes may lead to increased 

biomass without changing the metabolite levels detectable by GC-MS per se. 

With respect to the first point, it is clear that no time series data can be generated for 

large RIL or IL populations due to the necessary experimental effort. We chose 
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15 days after sowing (DAS) as a harvesting point to allow a substantial fixation of 

heterotic effects in biomass while differences in relative growth rate (biomass 

heterosis) still are detectable. In previous experiments it was shown that heterosis 

can be found as early as 10 DAS and until 15 DAS for low to intermediate light 

intensities as used in our study (Meyer et al., 2004). Differences in the contribution to 

heterosis due to developmental changes are investigated in parallel in our group. 

To account for the importance of metabolic fluxes, preliminary experiments using 

both parental accessions and their reciprocal hybrids were performed. We employed 

inverse 13CO2-isotope dilution experiments (Huege et al., 2007) harvesting at four 

time points within intervals of two hours during the light period 15 DAS. Prior to this, 

we investigated the number of carbon atoms (and hence the expected mass shifts) of 

all unique masses from our reference. We monitored the enrichment for 67 

compounds and found significant differences between the genotypes for 14 

metabolites (data not shown). We intend to use these data to narrow down the 

number of mQTL to be included in future investigations. Furthermore, we believe that 

such a 'fluxomics' approach will be a necessary complement in the exploration of 

heterosis. 

6.2.3 Analysis of metabolite heterosis in Zea mais 

It was pointed out earlier (Chapter 5) that Arabidopsis is an excellent model organism 

to investigate the molecular mechanisms underlying heterosis. It is clear however, 

that more applied approaches would focus on crop plants due to their agronomic 

importance. To account for that we currently investigate a maize root dataset using 

the methods developed within this work. Significant heterosis in primary root length 

was detected as early as three days after germination (DAG) in six out of twelve 

hybrids developed from maize inbred lines UH002, UH005, UH250 and UH301 

(Hoecker et al., 2006). We analyzed metabolite profiles of these well characterized 

crosses and could confirm MPH of up to 250% for e.g. leucine in samples harvested 

at 3.5 DAG (data not shown). Therefore, root metabolism may be used as an early 

indicator for heterosis and could be linked in a similar fashion as described in 

Chapter 5. 

6.2.4 An extended metabolite GC-MS library based on KEGG 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a well known and widely 

used online database resource for biological systems (Kanehisa and Goto, 2000). If 
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compared to the Arabidopsis specific AraCyc database which was used to identify 

candidate genes for metabolic QTL (Chapter 4 and 5) it covers a broader range of 

species and consequently pathways and metabolites. 

As became apparent during the study, many interesting effects – mQTL and 

explained variation of biomass – are contributed by metabolites of unknown chemical 

structure. Although it is in principle possible to elucidate the structure of some of 

these compounds by MS-MS experiments or NMR, a continuous extension of the 

available mass spectral libraries used in metabolomics experiments seems favorable. 

In a collaborative approach in the Max-Planck-Institute of Molecular Plant Physiology 

more than 1,000 compounds were purchased and evaluated in single measurements 

and as mixtures (n=20) using the established GC-MS technique. The decision which 

compounds to include was based mainly on the annotation in KEGG. Hereby, a 

biological importance was ensured. 

The R-Scripts developed for mass evaluation of metabolomics data (Chapter 2) were 

– with some slight adjustments – of great help in evaluating this dataset in an 

automatic fashion. A spectral library with automatically suggested reference spectra 

could be provided in a short time (two weeks). However, a manual inspection of a 

data subset revealed that the error rate of the automatic approach may be as high as 

5 to 10 %. Thus a manual validation was initiated based on the present data to 

ensure a high quality final result. 

It is intended to include this resource into the Golm Metabolome Database (Kopka et 

al., 2005) to provide an open access for the scientific community in the future. A 

publication is currently in preparation. 

6.3 Conclusion 
The work presented in this thesis is the first large scale metabolite profiling analysis 

to integrate RIL and IL populations of Arabidopsis thaliana. The development of a 

robust method (Chapter 2) was a prerequisite for a stable annotation of 181 

metabolite levels in more than 2000 measured samples. Within these data a 

metabolic signature related to plant biomass (Chapter 3) was found. 

A large number of metabolite QTL (in total 157; Chapter 4) and heterotic metabolite 

QTL (in total 385; Chapter 5) were identified using quantitative genetics methods. 

These QTL were characterized with respect to their distribution, effect size, position 

and the co-localization with possible candidate genes based on present knowledge. 
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Primary efforts have been made to detect the underlying polymorphisms by 

comparative sequencing. 

Moderate heterosis was found on a metabolic level and attributed mainly to 

dominance effects. The results further indicate that pathway related genes do not 

play a major role in hybrid vigor. 

All together, the obtained results will serve as a rich data source for the identification 

of novel functional polymorphisms. 
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Supplemental Information 
The supplemental information can be accessed online using the following links for 

Chapter 3 (http://www.pnas.org/cgi/content/full/0609709104/DC1) and Chapter 4 

(http://www3.interscience.wiley.com/journal/119410765/suppinfo). 

Sup.Tab.S1 List of significantly correlated metabolites resulting from pairwise 

correlations (ordered by correlation) 

Sup.Tab.S2 List of all relevant metabolites determined by the correlation between 

them and the canonical variate (ordered by absolute correlation) 

Sup.Tab.S3 List of all 181 metabolic signatures that have been evaluated within this 

experiment 

Sup.Tab.S4 QTL analysis results for biomass and metabolic traits 

Sup.Tab.S5 SNP positions and resulting amino acid changes for mQTL candidate 

genes according to data published by Clark et al. (2007) 

Sup.Tab.S6 Epistatic interactions (additive×additive) for mQTL of 50 known 

metabolites 

As Chapter 5 is not yet published the intended supplemental information will be 

included here instead of an online source. 

http://www.pnas.org/cgi/content/full/0609709104/DC1
http://www3.interscience.wiley.com/journal/119410765/suppinfo


 

 

Supplemental Figure S 1 Comprehensive mQTL overview for known metabolites 
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Supplemental Information 

 

Supplemental Figure S 2 Regression of the parental difference on the effect bias for mode of 
inheritance classifications (a). Simplification of this plot using a binning approach (b). For 
clearity only M-Lines are included in the plot to prevent any counfounding with the second bias 
only present in N-Lines (Supplemental Figure S3) 

 
Supplemental Figure S 3 Mode of inheritance. Depicted are the different branches of the 
decision tree according to Semel et al. (2006). Small letters indicate the classification of the 
QTL to be recessive (r), additive (a), dominant (d) or over-dominant (o) with ILs being 
significantly lower (-) or higher (+) than the respective parent. Results are separated by the 
subpopulationns of M-Lines (C24 with Col-0 introgression) and N-Lines (Col-0 with C24 
introgression). A clear bias towards positive effects for N-Lines is present. 
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Supplemental Figure S 4 Candidate gene search for heterotic metabolic QTL. 
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Supplemental Figure S 5 Canonical Correlation for 10,000 permuted data sets (Histogram) and 
Observed Data (Single Line). 
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Deutsche Zusammenfassung 

Pflanzen sind die Primärproduzenten von Biomasse und damit Grundlage allen 

Lebens. Sie werden nicht nur zur Gewinnung von Nahrungsmitteln, sondern 

zunehmend auch als Quelle erneuerbarer Energien kultiviert. Aufgrund der 

Begrenztheit der weltweit zu Verfügung stehenden Anbaufläche ist eine 

zielgerichtete Selektion und Verbesserung der verwendeten Sorten unabdingbar. Um 

solch eine kontinuierliche Verbesserung zu gewährleisten, ist ein grundlegendes 

Verständnis des biologischen Systems Pflanze nötig. 

Diese Arbeit hatte zum Ziel, den Primärmetabolismus der Modellpflanze A. thaliana 

mit Methoden der quantitativen Genetik zu untersuchen und in Beziehung zu 

Wachstum und Biomasse zu stellen. Insbesondere sollte Heterosis, die Abweichung 

von Hybriden in ihren Merkmalen vom Mittelwert der Eltern, auf Stoffwechselebene 

charakterisiert werden. Mit Hilfe der Gas Chromatographie/ Massen Spektrometrie 

(GC-MS) wurden über 2000 Proben von rekombinanten Inzucht Linien (RIL) und 

Introgressions Linien (IL) der Akzessionen Col-0 und C24 bezüglich des 

Vorkommens von 181 Metaboliten untersucht. Die beobachtete Varianz erlaubte die 

Bestimmung von 157 metabolischen QTL (mQTL), genetischen Regionen, die für die 

Metabolitkonzentrationen relevante Gene enthalten. Durch die Untersuchung von 

Testkreuzungen der RILs und ILs konnten weiterhin 385 heterotische metabolische 

QTL (hmQTL) identifiziert werden. 

Im Rahmen dieser Arbeit wurde eine robuste Methode zur Auswertung von GC-MS 

Analysen entwickelt. Es wurde eine hoch signifikante kanonische Korrelation (r=0.73) 

zwischen Biomasse und Metabolitprofilen gefunden. Die unterschiedlichen Ansätze 

zur QTL Analyse, RILs und ILs, wurden verglichen. Dabei konnte gezeigt werden, 

daß die Methoden komplementär sind, da mit RILs gefundene mQTL zu 56% und 

hmQTL zu 23% in ILs bestätigt wurden. Durch den Vergleich mit Datenbanken 

wurden für 67% der mQTL Kandidatengene identifiziert. Um diese zu überprüfen 

wurden acht dieser Gene resequenziert und insgesamt 23 Polymorphismen darin 

bestimmt. Die Heterosis in den Hybriden ist für die meisten Metabolite gering 

(<20%). Für hmQTL konnten weniger Kandidatengene als für mQTL bestimmt 

werden und sie zeigten eine geringere Übereinstimmung in den beiden Populationen. 

Dies deutet darauf hin, daß regulatorische Loci und epistatische Effekte einen 

wichtigen Beitrag zur Heterosis besteuern. 
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Die gewonnenen Daten stellen eine reiche Quelle für die weitergehende 

Untersuchung und Annotation relevanter Gene dar und ebnen den Weg für ein 

besseres Verständnis des Systems Pflanze. 
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