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B. Prenov and N. Tarkhanov

Abstract

Function spaces with asymptotics is a usual tool in the analysis on
manifolds with singularities. The asymptotics are singular ingredients
of the kernels of pseudodifferential operators in the calculus. They cor-
respond to potentials supported by the singularities of the manifold,
and in this form asymptotics can be treated already on smooth config-
urations. This paper is aimed at describing refined asymtotics in the
Dirichlet problem in a ball. The beauty of explicit formulas actually
highlights the structure of asymptotic expansions in the calculi on sin-
gular varieties.
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Introduction

Let B be the unit ball in R® with centre at the origin, and y, be a fixed point
on the boundary of B. Consider the Dirichlet problem of finding a harmonic
function u in B with prescribed limit values uy on 0B = S. Were y, a singular
point of S, one had to take care of interpreting the equality u = uy at y,. In
the analysis on manifolds with singularities one copes with this problem in an
evident and soft way, cf. [Kon67, Sch98]. Namely, one requires the condition
u = wuy away from the point gy, on the sphere. This results in an infinite
dimensional null-space of the problem, which consists of all harmonic functions
in B vanishing on S\ {yo}. From the structure theorem for distributions with
a point support it follows that every such harmonic function is a finite linear
combination of the derivatives of the Poisson kernel p(x,y) for B. One can
thus control the null-space by considering solutions in weighted spaces with
weight functions being powers of the distance |x —y,|. The data of the problem
are forced to be in weighted functions spaces, too, which makes difficult the
use of the Poisson kernel. To apply this latter, the Dirichlet data should be
regularised at yy to define a distribution on 0B coinciding with u outside
of yp. In fact the regularisation consists of subtracting a finite number of
terms of the Taylor expansion of p(z,y) at y = yy. Hence the cokernel of the
problem is also spanned by harmonic functions in B which vanish on S\ {yo}.
Summarising we deduce that the variation of the index of the Dirichlet problem
in weighted spaces under changing the weight exponent is easily evaluated from
the structure theorem for harmonic functions in B vanishing outside yy on S.
The purpose of this paper is to derive a canonical representation for harmonic
functions in B vanishing on S\ {yo}. It can be thought of as an analogue of the
Laurent series for harmonic functions, cf. [Tar91], although the construction
of the latter is much easier.

1 Soft expansions

Suppose wu is a harmonic function in B of finite order of growth near the
boundary S. Then u has weak limit values uy € D'(S) on the sphere in the
sense that

lim [ u((1 —e)y)v(y)do = (ug,v)

e—0 S

for each v € C(S), where do is the Lebesgue measure on S. Moreover, u
can be reconstructed from its weak boundary values by the Poisson formula
u(x) = (ug, p(x,-)) for x € B. This formula shows in particular that the
behaviour of u close to a boundary point y € S in B is completely determined
by the behaviour of uy near y on S. Conversely, given any distribution uy on
S, the function u(z) = (uy, p(z,-)), € B, is harmonic in B and its weak limit
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values on S coincide with uy. For these and more general results we refer the
reader to [Roi71].

What happens when wu, fails to be a distribution near a compact set K
of zero measure on S? Consider the simplest case where K = {yy} is a fixed
point of S and uy(y) = |y — yo|?, with Rz < —(n —1). This function uy can be
extended to a distribution on all of S in many ways. Pick e.g. a local chart U
around yo on S with coordinates y' = (yi,...,y,-1) and a function y € C*(S)
supported in U, which is equal to 1 near yy. If N is a natural number with
Rz + N > —(n—1), then

85/”(90)
!

(o, 0) = (o, X (0() = 3 (' = 0)”)) + (o, (1= X))

IBI<N

is well defined for all v € C*°(S). Hence ugy y is a distribution on S which is
equal to ug outside of yy. By the above, the function uy(x) = (uo N, p(z,-)),
x € B, is harmonic in B and its weak boundary values on S are ugn. In
particular, uy coincides with ug on S\ {yo}. Were u another harmonic function
in B of finite order of growth near S, such that u = ug on S\ {y}, then the
weak boundary values of u would have the form uon + > 55 s 85,6y0(y')

whence
u(z) = un(x) + Y cs(=0y) oz, y0)
|8|1<B
for all z € B.

For any 8 € Z" ', the potential (—9,)?p(z,yp) is a harmonic functions
in B vanishing on S\ {y}. Using hyperfunctions allows one to get rid of the
condition of finite order of growth near S. Recall that any harmonic function
u in B has boundary values uy on S which is a hyperfunction. Moreover, u
can be restored from ug by the Poisson formula u(x) = (ug, p(z,-)) for x € B.
Conversely, given any hyperfunction ug on S, the function u(x) = (uo, p(z,-)),

x € B, is harmonic in B and its limit values on the sphere S coincide with uy,
cf. [SKKT73|.

Lemma 1.1 Let ugy be a hyperfunction on S\ {yo}, and ug g any estension
of ug to a hyperfunction on all of S. Any harmonic function u in B equal to
up on S\ {yo} has the form

u(x) = <U’0,R= p(xv )> + Z Cp (—33/)6@(33; yO)J z € B, (1'1)

-1
BeL™

where (Cﬂ)ﬁezi—l is a sequence of complex numbers with lim '/|Blcg| = 0.

8|00

We mention that any hyperfunction ug on S\ {yo} can be extended to a
hyperfunction on S, for the sheaf of hyperfunctions is flabby.
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Proof. By assumption, the limit values of u on S differ from ug by a
hyperfunction supported at yy. From the structure theorem for hyperfunctions
with a point support [SKK73] it follows that the boundary values of u on S

have the form
Uo,r + E : Cp 85’ (51110 (yl)v
pez !

with (cg) pezn-! @ sequence of complex numbers satisfying

lim '{/|Bles| = 0. (1.2)
|8|—o00
Applying this decomposition to the Poisson kernel p(z,-) for a fixed z € B
completes the proof.
0
Note that the condition (1.2) on the coefficients guarantees that the series
on the right-hand side of (1.1) converges uniformly in x on compact subsets
of B. This follows from the real analyticity of the Poisson kernel p(x,y) in
(z,y) e BxU.

Lemma 1.2 For each 8 € Z"", the function (—0,)°p(z,yo) is harmonic
in v € B and vanishes on S\ {yo}.

Proof. Indeed, since the Poisson kernel p(x,1q) is harmonic in = € B we
get

A(Dy) ((=0y)0) (@,50) = ((=0y)’A(Da)p) (x, yo)

for all x € B. Moreover, since p(z, ) vanishes for x € S\ {yo}, the lemma

follows.
O

2 Harmonic extension

The following lemma seems to be a classical result, although the authors have
not been able to provide any proper reference.

Lemma 2.1 Every function u harmonic in a ball B and vanishing on a
non-empty open subset O of S = 0B extends harmonically across O to R™ \ B.

Proof. Denote by Ku the Kelvin transtorm of u, i.e., the harmonic function
on R" \ B given by
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for |z| > 2. Set
B u(z) if r€eBUO,
Ulw) = { —Ku(z) if ze€R\B.

This function is continuous away from the closed set S\ O in R because u
vanishes on O. Moreover,

0 "z 0 1 x
9 Ru@) = _ﬂ_<—u<_>>
o @ = 27 o\

2—n ( T ) 1 Ou ( T )
= ’Lll J—
j*=t e e O] \ Jal?
for any |z| > 2. Hence it follows that the derivatives of v and —Ku in the
outward normal vector to S coincide on O. By Theorem 3.2 of [Tar91] we

conclude that U(z) is a harmonic function on BUOU (R™ \ B), which completes
the proof.

O

Given any harmonic function v in B vanishing on S\ {y}, Lemma 2.1
shows that u extends to a harmonic function U on R" \ {yp}, which is given
by

u(z) for z € B\ {y},
Ule) = { —Ku(z) for zeR" \% (2.1)

Recall that the Poisson kernel for the ball B is

11— |z

o v =y’

oz, y) =

where o, is the area of the unit sphere in R". It is actually defined away from
the diagonal in R" x R". Lemma 1.1 prompts that p(x,yg) survives under the
transformation (2.1).

Lemma 2.2 Given any € Zi‘l, the equality
—K((—Oy,)ﬁp) (z,90) = (—ayr)ﬁp(:r,yo)

holds for all z € R* \ B.

Proof. Since K is applied in = one can assume without restriction of
generality that 8 = 0. In this particular case the verification is fairly straight-
forward.

O
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3 Auxiliary results

Expansion (1.1) is not invariant because it contains the derivatives (—d,/)? in
local coordinates near y, on S. To get rid of the non-invariance we can express
the local derivatives on S through the derivatives in the coordinates of the
surrounding space R". Assume, e.g., that yg lies in the upper half-space x,, > 0.
Then S near y is the graph of y,, = /1 — |¢/|> where v’ = (y1,...,yn_1), hence
we may take ¢ as local coordinates on S. For j = 1,...,n—1, the full derivative
in y; is 0; — (y;/yn)O0n. The tangential space to S is also spanned by the system

of vector fields
0 Yj 0

ay;  lyl oLyl
j=1,...,n, although these latter are not independent. Substituting this into
(1.1) leads to

u(x) = <u0,R7 p(.ﬁb’, )> + (Z w> p(l‘a y0)7 v € B, (31)

Yo |2j

where h;(z) are homogeneous polynomials of degree j whose coefficients satisfy
growth estimates

lim V% (D) hy (2)] = 0, (3.2)

j—ro0
cf. Corollary 8.11 in [Tar91].

Lemma 3.1 Let h(z) be a homogeneous polynomial of degree j on R™. In
order that
h(z — yo)

mp(x; Yo)

be harmonic in x € B it is necessary and sufficient that
(1 — [z[*) Ah(z — yo) — 4(Vh(z — o), yo) = 0. (3.3)
Proof. Indeed, a trivial verification shows that

h(x_yo)p(:r,y )> 1 (1—|z|>)Ah(z—yo) — 4(Vh(z—yo), yo)

|z —yo|%

On |x_y0|n+2j

A (

for all « # yy. Since the numerator on the right-hand side is a polynomial in
x, it vanishes for all x € B if and only if it vanishes identically on R™. Hence
the lemma follows.

O

Replacing © — yo by z in (3.3) yields

(12" + 2(z, y0)) Ah(2) + 4 (Vh(2), 30) = 0
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for all z € R*. As the left-hand side is the sum of two homogeneous polyno-
mials of orders j and j — 1, respectively, we readily conclude that the identity
(3.3) is equivalent to

{ 2> Ah(2) = 0,
(Ah(z) z+2Vh(2),y0) = 0,

or

Ah(z) = 0,

{ (Vh(z),30) = O (3:4)

for all z € R".
Our next goal is to show that the terms of (3.1) are invariant under the
transformation (2.1).

Lemma 3.2 Given any j € Z, the equality

_K <MQ($,%)> = Mp(fr,yo)

| = yol* |z = yol*
holds for all z € R" \ B.

Proof. By Lemma 2.2 it suffices to show that

b (# B yo> _ hj(z —yo)

25

B |fL" - yo|2j

for all z € R* \ B. This equality easily reduces to

hi(w = |z*yo) = hj(x — yo)- (3:5)

To prove this latter we observe that the polynomial on the left-hand side is
harmonic, which is a consequence of (3.4). The polynomial on the right-hand
side of (3.5) is harmonic, too. These polynomials coincide on the unit sphere
S, hence they are equal on all of R, as desired.

O

4 Formulas for coefficients

Suppose u is a harmonic function in B vanishing on S\ {yp}. By Lemma 2.1, u
extends to a harmonic function U on R™ \ {yy}. The harmonic continuation U
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is given by (2.1). Combining (3.1) and Lemma 3.2 we deduce that U represents

by the formula
(Z et ) o(z, ) (+1)

Yo|?

for all z € R™ \ {yo}. Here h;(z) are homogeneous polynomials of degree j
satisfying (3.2) and (3.4). The first of these two conditions implies that series
(4.1) converges uniformly in = on compact subsets of R" \ {yo}. Since the
summands are harmonic functions the series actually converges in the space
C®(R"\ {yo}). Hence we may integrate it termwise over each cycle away from
Yo in R™.

Let Ga (g, u) stand for the standard Green operator of the Laplace operator
in R", i.e

_gz _U’Z klagd[k]

where dz[k] is the wedge product of the differentials dzy,...,dz, excepting
d:rk.

Lemma 4.1 Let D be a bounded domain with smooth boundary, such that
Yo € D, and F a harmonic function on D. For any sufficiently small € > 0
holds

- —2(n+2j)/
GA(FU) = —————22 | F(yo+¢e2)h;(2)dz
 CaBU) = 2= T |l eah()
yon J/F(yg+sz)h (2) do
— oped Js
7=0
= 2(n + 27)
+ ZWAF(y0+€Z)<Z,yO>hJ(Z) do.
j=0 "

(4.2)

Proof. Choose any £ > 0 with the property that the ball B(yy,¢) lies in
D, i.e., ¢ < dist(yy,0D). Since U is harmonic outside of yy the Stokes formula
gives

GA(F.U) = / Ga(F.U)
oD 6B(y0,)

=GP B et m).

J=0
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An easy computation shows that the integrands, if restricted to the sphere
0B(yo,¢€), are equal to

hi(x — yo)

’ |z — yo|¥

= e Y (P gy (0) — 5 F (@) ) el

k=1

Ga(F() ola, )

n+2j
- WF@?)QJ@?) do

where g;(x) = (1 — [o]2)h;(z — yo).

We now apply Stokes’ formula for B(yy,<) to the first term on the right-
hand side. Since F' is harmonic and h;(z — yp) satisfies (3.3) the exterior
derivative is

1 —2(n + 2)
pupres F(x) Agj(z) dr = oo F(x)h;(z — yo) dx.
It follows that

0.9}

—2(n + 2j) /
GA(F U) = E — F(x)h;(x —yo) dx
/87) A( ) 7=0 O—'”/gn+2'7 B(yo,&) ( ) ]( 0)

= n+2j / )
- el F(z)(1 = |z|?)hi(z — yo) do.
Zo O T2+l 9B(yo.¢) ’

Changing the variables by x = yy+¢z, with z € B, and taking into account
the homogeneity of h;(z) we arrive at (4.2), as desired.
O

The equations (3.4) make it obvious that
A((zy00h;(2) = (2,90 Ahy(2) +2(Vh;(2), y0)
= 07
i.e., (z,y0)h;(z) is a homogeneous harmonic polynomial of degree j + 1 for all
J.

Lemma 4.2 Let D be a bounded domain with smooth boundary, such that
yo € D. Then for every homogeneous harmonic polynomial H(z) of degree k
we have

/a GalH(e = ). Ula)
(n+ 2k —2)

_ %ﬁ/g[—[(z)hk(z) do+ 2 /SH(z)(z,y0>hk_1(z) do.

(4.3)

On
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Proof. Let us apply (4.2) for F(z) = H(x — 15). Then

/BF(yganz)hj(z)dz - /H

= sk/ Tk+j+”_1dr/H(z)hj(z) do
0 S

k

g
o e
and
/ Flyo+e2)hy(z)do = & / H(2)hy(2) do
S S
/ Flyo+22) (2, yo)hy () do = < / H(2) (2, yo) by (2) do
S S
for all j = 0,1,.... As the homogeneous harmonic polynomials of different

degrees are orthogonal under integration over the sphere S, the equality (4.3)
follows from (4.2).
O
Formula (4.3) uniquely determines the polynomials h;(z) through the func-
tion w in B.

5 Laurent series

Let (Y;.(2)) be a set of homogeneous harmonic polynomials in R* whose re-
strictions to S form an orthonormal basis in L*(S) (spherical harmonics). Here
k is the degree of Y}, and, given any k € Z,, the index [ varies from 1 to
o(n, k). For example,

(n+2k — 2)(n+ k — 3)!

o(n,k) = Ki(n — 2)!

if n > 2, cf. [SWT1, Sob74].
For k = 0 the only homogeneous harmonic polynomial of degree k and of
L*(S)-norm 1is Yy, = 1/,/0,,. Hence

hoz/aDGA<ni2,U(x)). (5.1)

We now proceed by induction. Given any k > 1, suppose hg, hy, ..., hr 1
have already been defined. Write

a(n,k)
z) = Z ki Yra(2),
=1
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then the coefficients ¢, are uniquely determined from (4.3). More precisely,
we get

= [ Ga(or G Tl =l U@) =2 [ Tl s () do
(5.2)
fori=1,...,0(n,k).
We are now in a position to formulate the main result of this paper. It
specifies Laurent series expansions for harmonic functions in B vanishing on

OB\ {yo}, cf. [Tar91].

Theorem 5.1 Let ug be a hyperfunction on S\{yo}, and ug g any extension
of ug to a hyperfunction on all of S. FEvery harmonic function u in B equal to

up on S\ {yo} has the form

u(x) = (ug,r, p(z,)) + Z % o(r,y), = €B, (5.3)

Jj=0

where (h;j(2))j=0,,.. is a sequence of homogeneous harmonic polynomials of
degree j in R", which are uniquely determined by formulas (5.1) and (5.2)
with v — (ug g, p(z,-)) in place of w.

Proof. The theorem follows from Lemma 1.1 completed by the recurrence
relation (5.2). What is left is to show that the polynomials h; are actually
independent of the particular choice of the system (Y;;). To this end we

assume that
(z — w) o
Z |$ y0|2j ?JO) - 0

for all x € B. Since p(z, yo) # 0 in B it follows that the series

—?Jo
> e

Yol?

vanishes in B. A familiar homogeneity argument now shows that all the h; are

identically zero, as desired.
O

6 Expansion of the Poisson kernel

In this section we sketch a direct approach to formula (5.3), which is based on
the expansion of the Poisson kernel p(z,y) in spherical harmonics. A similar
expansion for the standard fundamental solution of the Laplace operator goes
back as far as [Den49].
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Lemma 6.1 In the cone Cy, = {(z,y) € R" x R" : |z —yo| > |y — vo|}
the equality holds

o(n,k)

- On 7)/]”(3? yO)
Yk,l(y_yO) o 12k p( yO)
ZO —~ (Iy—yo|>2 |2 —yo[*
| =0

where the series converges absolutely together with all derivatives uniformly on
compact subsets of Cy,.

Proof. Setting z —yy = w and y —yy = 2 and cancelling the factor 1 — |z |*
on both sides of the equality, we reduce the expansion to

a(n,k)
Vi (w) 1
Ykl( ) T (6.1)
|w—Z|” Z ; 1 - |Z|/| w]F - fw]
for all w,z € R* with |w| > |z].

Let z € B be fixed. We represent |w — z|™ by the Fourier series in L*(S).
Namely,

ooo’nk‘

w—z|” Z Z ck1(2) Vi (w

k=0 (=1
where ¢ () are the Fourier coefficients of |w—z|™" with respect to the system

(}/k,l)a Le
Ckl / |w _ Z|n k,l )

These integrals can be easily evaluated by the Poisson formula, for Y}, ;(w)
are harmonic. Namely, we get

Un
cri(z) = 72/@(2710) Yii(w) do
L=z Js
On
= Y,
1— |22 k,l(z)
whence
1 o0 U(n:k) o
— = " V.. (2)Y,

the series converging in the norm of L*(S) uniformly in z on compact subsets
of B.
The harmonic extension with respect to w leads us to the equality

w 2
1 1 ‘W — | | oo o(n,k)
o w2 | W Z Via () Ve (w
n W - Z k=0 =1
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for all w € B, where the series converges absolutely and uniformly with respect
to w and z on compact subsets of B. Applying to this the Kelvin transformation
in w yields

fs Via(w) 1
TEER ZZ TP ) T T

which proves (6.1).
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