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Abstract

We introduce the calculus of Mellin pseudodifferential operators with pa-
rameters based on “twisted” operator-valued Volterra symbols as well as the
abstract Mellin calculus with holomorphic symbols. We establish the prop-
erties of the symbolic and operational calculi, and we give and make use
of explicit oscillatory integral formulas on the symbolic side, e. g., for the
Leibniz-product, kernel cut-off, and Mellin quantization.

Moreover, we introduce the notion of parabolicity for the calculi of
Volterra Mellin operators, and construct Volterra parametrices for parabolic
operators within the calculi.
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Introduction

The present article contributes to the axiomatic framework of the analysis of degen-
erate partial differential equations, e. g., of PDEs on manifolds with singularities,
with pseudodifferential methods.

Substantial progress has been achieved in recent years, in particular, in the the-
ory of degenerate elliptic equations. The general concept is to embed the natural
systems of elliptic partial differential equations into a suitable calculus of pseu-
dodifferential operators that admits the construction of parametrices of elliptic
elements within, and to study the qualitative properties of the equations such as
regularity and asymptotics of solutions and the Fredholm property via algebraic
methods on side of the operator algebra, see, e. g., Schulze [40], [43], [44].

Just recently, this concept has been further developed also in the study of parabolic
equations, see, e. g., Buchholz and Schulze [6], and Krainer [24], Krainer and
Schulze [25], [26]. More precisely, the natural systems of parabolic partial differen-
tial equations are embedded in a suitable calculus of pseudodifferential operators
that admits the construction of inverses of parabolic elements. In particular, in ad-
dition to the elliptic theory, the existence and uniqueness of solutions follow, and,
via analyzing the operator and symbolic structure of the calculus, insights about
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the qualitative properties of the equations and the structure of solution operators
are obtained.

A typical feature of the parabolic theory is that the pseudodifferential operators
have the so-called Volterra property with respect to time, i. e., the (anisotropic)
symbols extend holomorphically in the time covariable to a complex half-plane,
including the symbol estimates. The classical calculus of such operators was intro-
duced by Piriou [30], [31] in the study of parabolic pseudodifferential equations on
a finite time interval, and a closed (compact) spatial manifold.

The (pseudodifferential) analysis of (degenerate) partial differential equations on
manifolds with singularities and boundary value problems encompasses, in par-
ticular, the crucial task to describe the behaviour of the equations close to the
singular sets and the boundary, where, typically, extra conditions of trace and po-
tential type are involved that are associated with the operators in a natural way.
In this context, the abstract theory of pseudodifferential calculus with “twisted”
operator-valued symbols was introduced by Schulze (see, e. g., [38], [40]) in order
to describe the general structure of these conditions, as well as the structure of the
operators and the singular Green remainders as they have to be (re)formulated
with respect to a given splitting of coordinates on and transversal to wedges or
boundaries.

Several authors have contributed since to the pseudodifferential calculus with
operator-valued symbols for it provides a general axiomatic framework for the
pseudodifferential analysis of degenerate partial differential equations and bound-
ary value problems, i. e., in concrete situations such as the calculus on manifolds
with conical singularities, edges, and corners, many functional analytic properties
can be traced back to the calculus of operators with operator-valued symbols;
see, e. g., Behm [2], Dorschfeldt [7], Dorschfeldt, Grieme, and Schulze [8], Krainer
[24], and Seiler [47]. Material about pseudodifferential calculus with anisotropic
operator-valued symbols can be found in Buchholz and Schulze [6], Gil [13], and
Krainer [24], and the theory of operators with operator-valued Volterra symbols
has so far been considered in Buchholz [4], Buchholz and Schulze [6], and Krainer
[23], [24].

The calculus of Mellin operators occurs, in particular, in the study of operators
near conical points, or, more generally, corner singularities (see, e. g., Schulze [39],
[40], [41]). The operators are formulated as Mellin operators with respect to the
distance variable (and covariable) to the corner point, where the singularity is
located at the origin. In order to handle the functional analytic structures for
higher corners, there have been also investigations about abstract Mellin calculus
with operator-valued symbols, see, e. g., Dorschfeldt [7], Dorschfeldt and Schulze
[9]. Up to now, however, any considerations in the direction of Volterra Mellin
operators seemed to be unnecessary.

Recently, in the pseudodifferential analysis of parabolic partial differential equa-
tions on an infinite time interval a connection has been drawn to the pseudodif-
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ferential analysis on manifolds with singularities via interpreting ¢ = oo as an
anisotropic conical or corner point for the infinite space—time configuration, and
it has been shown that this interpretation in combination with the Volterra calcu-
lus furnishes the appropriate idea to study (degenerate) parabolic equations and
their qualitative properties in infinite space-time, see Krainer [24], Krainer and
Schulze [25], [26]. In this context, considerations about Mellin pseudodifferential
calculus built upon operator-valued Volterra symbols are a necessary and natural
step, and they provide the functional analytic background that is crucial to handle
these problems.

The purpose of the present paper is twofold: On the one hand, the main results
about Mellin operators with operator-valued symbols that are available in the lit-
erature so far are collected and extended in order to give a unified and efficient
approach to the theory. To this end, we employ explicit oscillatory integral tech-
niques and symbols that satisfy global estimates in the variables (“Kumano-go’s
technique”), and we formulate the theory with an extra (anisotropic) parameter
¢ € R™ that represents, heuristically, the presence of an n-dimensional covariable
transversal to the Mellin covariable, which is the general setting in applications.
On the other hand, we introduce the holomorphic Mellin calculus with operator-
valued symbols, as well as the subcalculi of Volterra Mellin operators. The direct
approach via oscillatory integral techniques enables us to establish the symbolic
and operational calculi in a transparent form, where, in particular, manipulations
on both sides are considered separated from each other.

The text is organized as follows: In Section 1 we give an account on the basic
notation and general conventions that are freely used throughout this work, while
Section 2 is devoted to recall the definition and some elementary properties of the
vector-valued (weighted) Mellin transform and associated function spaces.

Section 3 deals with the symbolic calculus of the classes of operator-valued
(Volterra) symbols. We briefly recall the basic definitions and properties of general
anisotropic symbols as well as the concept of homogeneity and classical symbols
in Sections 3.1 and 3.2 before we enter the discussion of Volterra symbols and
holomorphic (Volterra) symbols. The analyticity in the covariable represents the
major difficulty in the symbolic calculus because arguments involving excision
functions cannot be employed. Usually, excision functions are used, e. g., to estab-
lish the asymptotic completeness, i. e., that it is possible to find symbols having
a prescribed asymptotic expansion, as well as to prove that the principal symbol
sequence is exact; both aspects are important for the construction of parametri-
ces. The analysis of the translation operator in Volterra symbols, and the kernel
cut-off operator (see Section 5.1), provide the appropriate tools to overcome these
difficulties.

In Section 4 we study the operational calculi of Mellin operators that are built
upon operator-valued (Volterra) symbols, and we analyze how the manipulations
on side of the operators are reflected on the symbolic side. The approach via direct
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oscillatory integral techniques furnishes explicit formulas that are used to give easy
proofs that the calculus of Volterra operators and the holomorphic subcalculi are
indeed closed with respect to the relevant operations, e. g., taking compositions.

Traditionally, the calculus of Mellin pseudodifferential operators has been used,
e. g., in the boundary symbolic calculus, and, more generally, edge symbolic cal-
culus (see Eskin [12], Schulze [40], [42], Gil, Schulze, and Seiler [14], [15]). More
precisely, (Kohn—Nirenberg quantized) pseudodifferential operators with degener-
ate symbols are reformulated as Mellin operators modulo smoothing remainders
in order to analyze the behaviour of the operators in weighted function spaces
adapted to the singular structures. This reformulation is also known as Mellin
quantization, and several authors have contributed to the task of constructing
such operator conventions. We give in Section 5 (more precisely in Section 5.2)
a direct Mellin quantization in terms of an oscillatory integral formula purely on
symbolic level, and prove the isomorphism between Kohn-Nirenberg quantized
pseudodifferential operators with degenerate operator-valued (Volterra) symbols
and holomorphic (Volterra) Mellin pseudodifferential operators up to smoothing
(Volterra) remainders. Moreover, in Section 5.1 we give an extended definition of
the Mellin kernel cut-off operator in terms of a direct oscillatory integral formula
and summarize the resulting properties. The kernel cut-off technique is an appro-
priate tool to prove the asymptotic completeness of the operator-valued Volterra
symbol classes, see also Buchholz and Schulze [6]; a detailed discussion of the ker-
nel cut-off technique (based on the Fourier transform) in operator-valued symbols
can be found, e. g., in Krainer [23].

Finally, in Section 6, we recall the notion of ellipticity and introduce the notion of
parabolicity for the Volterra symbol classes, and we give a proof of the existence
of (Volterra) parametrices within the Mellin calculi. The parametrix construction
is performed via symbolic inversion and the classical formal Neumann series ar-
gument, and the algebraic properties and results from the preceding sections are
used, in particular, in the discussion of symbolic invertibility and asymptotic ex-
pansions.

Acknowledgement: The author expresses his gratitude to Professor B.-W. Schulze
from the University of Potsdam for numerous scientific discussions, and for his
encouragement to prepare the present article.

1 Basic notation and general conventions

1.1 Sets of real and complex numbers
o We denote:

C the complex numbers,
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R the reals,

Ry, R the positive (negative) reals,

Ri,R_ the non-negative (non-positive) reals,
/ the integers,

N the positive integers,

Np the non-negative integers.

e Let CN and RV denote the complex N-space, respectively the Euclidean N-
space, in the variables (21,...,2y) € CN or (21,...,7x) € RV, respectively.
In general, we allow N to be zero, and in this case these spaces degenerate
to the set containing a single point only.

e The upper and lower half-plane in C will be denoted as

H:={z € C; Im(z) > 0},
H_ :={z € C; Im(z) <0},

respectively. Moreover, for 5 € R let

'z :={z € C; Re(z) =},
Hs := {z € C, Re(z) > 5}.

We refer to I'g also as a weight line. With the splitting z = 3 + i1 into real
and imaginary part we shall identify I's with Rvial'g 2 2z = f+iTt < 7 € R

Analogously, we have an identification of Hg with the right half-plane Hy
viaHg 32 =0+« ( € Hy, i. e., Hg originates from Hy via translation,
and we shall also employ the identification of Hg with the upper half-plane
H via H 3 ¢ <+ 8 —i¢ € Hg.

N 1
e The Euclidean norm of z = (1, ...,2n) € RY is denoted as |z| = (Z x?) °
i=1
1
Moreover, let (z) = (14 |z]*)* be the standard regularized distance in RV
N
The inner product in RV is denoted as (z,&) =z = Y x;¢&;.
j=1

1.2 Multi-index notation

We employ the standard multi-index notation.

For multi-indices a = (ay,...,an),8 = (B1,.-.,8~n) € N) we denote

() i w-ge
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We write @ < 3 if the inequality holds componentwise. Moreover, (normalized)

partial derivatives with respect to the variables x = (z1,...,2y) € RY are written
as
0% — 6‘04 Do = . \a|aa
© = m e = (=)0

In case a function f(x,\) depends on the group of complex variables A € CM we
also use the notations

BIE]
9% f = DB = (—pIBlgs ,
BIC
B _ B _ NEP
Ri=gr ! D=0
o5 ... 05"
For z = (21,...,2n) € CN and a = (a1,...,ay) € NI we write 2% = 2{- ... 23~

1.3 Functional analysis and basic function spaces

Unless stated explicitly otherwise, the spaces in this work are always assumed
to be complex. For topological vector spaces E and F' we denote the space of
continuous linear operators E — F as L(E, F'). Moreover, the topological dual
of E is denoted as E'. We write EQF for the algebraical tensor product of E and
F'. The projective topology on E®F is indicated by the subscript E®,F', while
E®, F denotes the completion. We employ the notation (-, B, F,or just (-, -), when
we deal with a duality ExF — C. The inner product in a Hilbert space E is also
denoted as (-, ) g, or simply as (-, -).

Moreover, we have the following spaces of E-valued functions on M (where M and
E are appropriate):

LP(M,E) measurable functions v with [ [Ju(z)||; dz < oo
M

(with respect to Lebesgue measure, 1 < p < 00),
C(M,E) continuous functions,
A(M,E) analytic functions,
C*k(M,E) k-times continuously differentiable functions,
C>*(M,E) smooth functions,
C (M, E) smooth functions with compact support,
Cy° (M, E) smooth functions with bounded derivatives,
S(M,E) rapidly decreasing functions,

D'(M,E) = L(C§°(M),E) distributions,
E'(M,E) = L(C>®(M),E) distributions with compact support,
S'(M,E)=L(S(M),E) tempered distributions.
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Let E be a Fréchet space. Define

CF (R)1, B) := {u € CF((R)", B); ((—rd)*u) (Ry)") C B
is bounded for all k € N} },

endowed with the Fréchet topology of uniform convergence of (—r9,)*u on (R )?
for every k € NJ. Here we use the notation (—rd,)* := (—r10,,)* ... (=r,0,, )k
forr = (ry,...,7y) € (Ry)? and k = (k1,...,k;) € NG

Moreover, let C5 ((R4)7, E) := CF ((Ry)?, E)NCFP((Ry)?, E) be the subspace of

all functions that extend smoothly to (R )?.
If E = C we drop it from the notation.

1.4 Tempered distributions and the Fourier transform

Let E be a Hilbert space. Partial derivatives of a distribution v € §'(R"*, E) are
defined as (0%u, ) = (—1)1*(u, 8%¢), while multiplication with a function 1 of
tempered growth is given as (Yu, ) = (u,vp). A distribution v € S'(R*, E) is
called regular, if u is a Bochner measurable function, and there exists V € Ny with

[ (z)"N||u(z)||p dz < oo. Note that we identify regular distributions with their
R"
densities. In this sense we in particular have LP(R", E) — S'(R", E).

We employ the normalized Fourier transform F : S(R*) — S(R"), i. e.,

(Fu)(€) = (2m) } / e #Eu(z) de,

J
(Ftu)(x) = (2m) / ei"Eu(£) d,
J

for u € S(R™). For Fréchet spaces E the Fourier transform extends to an iso-
morphism S(R*,E) — S(R*,E) via F = F&,idg, noting that S(R*, E) =
S(R")&®,E. If E is a Hilbert space we have F : S'(R*,E) — S'(R*,E) via
(Fu, ) = (u, Fp).

In oscillatory integral formulas, however, we shall follow the tradition and employ
the normalized measure d€ = (27r) “"d¢ on the side of the covariables.

2 Preliminaries on function spaces and the Mellin
transform

Let FE be a Fréchet space.



Volterra Mellin pseudodifferential operators with operator—valued symbols 9

e For y € R let

T,(Ry, B) := {u € C®(Ry, E); (r2 "(log(r))™ (=10,)"u) (R ) C E
is bounded for all k,m € Ny }.

This space is endowed with the Fréchet topology of uniform convergence of
r2=7(log(r))™ (=rd,)*u on R, for every k,m € Ny.

Note that for every § € R the operator of multiplication with the function
r° induces a topological isomorphism r : T, (Ry, E) — T,+5(R:, E).

e For v € R define the operator
Sy s u(r) — e Dty(et) (2.1)

and its inverse

S;l tu(t) — r’Y_%u(—logr). (2.ii)
The operator (2.i) is well-defined as a topological isomorphism

S, : D'(Ry) = D'(R)

and restricts to topological isomorphisms on various subspaces, €. g.

5, {cg%&) — C5°(R)

T, (Ry) — S(R).

This shows, in particular, that 7,(R;) is a nuclear Fréchet space with
C§°(Ry) as a dense subspace, and we have a canonical isomorphism

To(Re, B) = TRy )@ E.
e The (weighted) Mellin transform (defined on C§°(Ry))

d
(Myu)(z) = /rzu(r) 77“
R
for z € I‘%ﬂ with its inverse
1
1 L _
(M u)(r) = 3 r~*u(z)dz
r

-7

[V

extends via M. = M. ®,idp to a topological isomorphism
My TRy, E) — STy, E).
For u € T,(R, , E) we have
My ((=rdr)u)(2) = 2My(u)(2), My ((logrju)(z) = Dr M, (u)(2),

Maps(rPu)(z) = M, (u)(z + 0).
(2.iii)
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e For u € C§°(Ry, E) the Mellin transform Mu extends to an entire function
such that Mu|p, L= M u, and the mapping
1o

Ry MyueSTy_,, E)

is a C*°-function taking values in the rapidly decreasing functions.

2.1 A Paley—Wiener type theorem

Let E be a Fréchet space. For rp € Ry and v € R let
T5,0((0,70), E) := {u € T,(Ry., E); supp(u) € (0,70]},

and let

Eiro) := {f €C®(Hy _,,E)NA(H,_,, E);
[Hi_,3z=ry"f(z) € E] € S(Hy_,, E)}.

A(H,

37

The latter is a Fréchet space with the projective topology with respect to the

mapping
A(H,

L Eiro) 3 fr—rg 7 f(z) € S(Hy_,, E).

o

Then the weighted Mellin transform M, : T, (R, E) — S(I'y
a topological isomorphism

My Ty0((0,70), B) — A(H, ., E; 7o)
for every ro € Ry and every v € R.

_» E) restricts to

2.2 The Mellin transform in distributions

Let FE be a Hilbert space.

e For v € R the space T(Ry, E) consists of all continuous linear functionals
T-+(Ry) — E. Consequently, we have 7J(Ry,E) C D'(Ry, E) in view of
the density of C§°(Ry) in 7_,(R;).

e A distribution u € TJ(Ry, E) is called regular if
o0

() = / W) dr, o€ To(Ry),

0

for some Bochner measurable function @ such that r—(zt7) (logr) N a(r) €
L'(Ry, E) for some N € Ny. In particular, we have 7 (R, E) C T)(Ry, E),
and more generally even L*7(Ry, E) := r"L*(Ry, E) C T(Ry, E) as regu-
lar distributions.
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e For every § € R the product with functions ¢y € C*(R;) such that
r=9(=rd,)"9(r) is majorized by some power of (logr), uniformly on Ry for
every v € Ny, provides an operator 7/(Ry., E) — 77, 5(Ry, E). Recall that
(Yu, o) = (u, ) for ¢ € T_(145)(Ry).

e The totally characteristic derivative (—r9,) : D' (R} ) — D'(R4, E) re-
stricts to TJ(Ry., E), i. e. (=r8,)(T}(Ry., E)) € 7;( E).

e The isomorphism S, : D'(Ry,E) — D'(Ry,E) from (2.i) restricts to
an isomorphism S, : TJ(Ry,E) — S'(R,E). Note that we may write
(Syu, ) = (u,S=3p) for ¢ € S(R).

e The weighted Mellin transform M., extends to 7/(Ry, E) by means of the

identity
(My) (3 =7 +i7) = (VERFS,u) (), (2.v)
which provides an isomorphism M, : T/(Ry,E) — S'(I'y_,, E). It re-
stricts to an isomorphism
M, L2V (Ry, E) — L*(Ts ., B), (2.v)
and we have Parseval’s identity
(1,01 ) = 5 Myt M),y (2.vi)

The relations in (2.iii) hold in the distributional sense.

3 The calculus of Volterra symbols

3.1 General anisotropic parameter-dependent symbols
3.1 Definition. Let ¢ € N be a given anisotropy.
a) For (£,\) € R® x R? define
1
1€ Mo s= (1€ + (A1),
L
(€A = (L€ + AP) =,
where | - | denotes the Euclidean norm.
b) For a multi-index 8 = (a, ') € Ny let
|Ble == lal + £ o],

where |-| denotes the usual length of a multi-index as the sum of its components.
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3.2 Lemma. There exists a constant ¢ > 0 such that for all s € R and &,&; €
R™, A1, Ay € R? the following inequality is fulfilled (Peetre’s inequality):

(6 + &0, M+ Ao)s < (e, Al (60, Ma)S (3.1)

Morover, we can compare the regularized “anisotropic distance” (-,-), with the
“isotropic distance”, i. e., there exist constants cy,cs > 0 such that

1 (€, N < (6,N) < 2 (€, N5 (3.ii)

3.3 Definition. Let E be a Hilbert space. A strongly continuous group-action on
E is a strongly continuous group-representation

k:(Ry,) — L(E). (3.4id)

From the uniform boundedness principle we obtain the existence of constants
¢, M > 0 such that

1,m )
Kol c(my < CmaX{Q; E} for o € Ry. (3.iv)

By the trivial group-action we mean the trivial representation, i. e., k, = Idg for
all p € Ry

3.4 Definition. Let E and E be Hilbert spaces endowed with strongly continuous
group-actions {«,} and {&,}, respectively. For p € R we define

SHER™ x R, ELE) := {a € C®°(R" x RY, L(E, E)); for all k € N :

- g —p+|Ble
pr(a) : sup ||&, P a(&, Nk, || (€ A) HHIBle o oo
ENeR xR G (6N (&N, ; }
|Ble<k

This is a Fréchet space with the topology induced by the seminorm-system {py; k €
No }. Define
ST®(R" x RY; E, E) := (] $“/(R" x RY; E, E).
HER

By (3.ii) and Definition 3.3 this space does not depend on ¢ € N and the group-
actions involved on E and E, and we have S~°(R" x R; E,E) = S(R* x
R?, L(E,E)). If E = E = C with the trivial group-action involved we suppress the
Hilbert spaces from the notation.

More generally, let {E;};en and {Ej}jeN be scales of Hilbert spaces such that
E; < Ej1 and E;j 1, < Ej for j € N. Moreover, let {x,} and {%,} be defined on
the unions of the {E£;} and {E;}, respectively, such that the restrictions on each
E; and Ej are strongly continuous group-actions. Define

SHER® x RY;ind-lim Bj, proj-lim Ey) := ] S"(R" x RY; Ej, Ey)
JjEN keN kEN
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with the natural Fréchet topologies induced. The spaces of order —oo are defined
in an analogous manner. With this notion the case of single Hilbert spaces E and
E corresponds to the constant scales.

3.5 Notation. Let {E;} and {E;} be scales of Hilbert spaces with group-actions
{Kko} and {&,}, respectively, in the sense of Definition 3.4. For short, we set

€ := ind-lim E; d & :=proj-imE;.
lnjeNlm j an pr(}]ENIm j

3.6 Lemma. Let E, E and E be Hilbert-spaces with strongly continuous group-
actions {k,}, {Ro}, and {k,}.

a) For p >y the embedding S*¢(R* x RY; E,E) < SH{(R" x RY; E, E) is
well-defined and continuous.

b) The embeddings S*‘(R" x RY;E,E) < SEFMEMG e« Re; B, E) and
SHHRM X RY; B, E) s SHHMAMiE(Rr  RY: B E) are well-defined and continu-
ous, where the subscript 1 indicates that the trivial group-actions are involved
on the spaces E and E. Here M and M are the constants in the estimates for
the operator-norms of the group-actions from (3.iv).

c) For B € NJ™¢ the operator of differentiation 6& NS SR x R E,E) —
SH=Blst (R x RY; E, E) is continuous.

d) For p,p' € R pointwise multiplication (composition of operators) induces a
continuous bilinear mapping

SHLR® x RY; B, E) x SUYR® x RY; E, E) = S*THYR™ x R%; B, E).

3.1.1 Asymptotic expansion

3.7 Definition. Let £ and £ be associated to scales of Hilbert spaces according
to Notation 3.5.

Let (ur) € R be a sequence of reals such that uy — —oo and 7 := max py.
k—o00 keN

Moreover, let aj € S#{(R* x R?; £, E). A symbol a € SFE(R™ x R; €, €) is called
the asymptotic expansion of the ay, if for every R € R there is a ky € N such that
for k > kg

k
a— Zaj € SEYR™ x R:;E,E).
j=1

The symbol @ is uniquely determined modulo S~ (R"* x R?; E, §).

o0
For short, we write a ~ ) a;.
Jj=1
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3.8 Remark. Given a sequence of symbols a; according to Definition 3.7, there
o ]

exists a symbol a such that a ~ ) a;. The proof relies on a Borel argument, and it
i=1

can be found in the standard monographs about pseudodifferential operators (see,

e. g., Shubin [48]). More precisely, the symbol a is given as a convergent series

e = Yx(E 2 )arten,
j J

Jj=1

where x € C®°(R" xR?) is a 0-excision function, i. e., x = 0 near 0 and y = 1 near
infinity, and (¢;) C Ry such that ¢; — 0o as j — oo sufficiently fast.

This argument extends to a variety of more general symbol classes, in particular,
when an additional dependence of variables is involved. However, it breaks down
for holomorphic symbols, for the analyticity in the covariables is not preserved.

3.2 Homogeneity and classical symbols

3.9 Definition. Let E and E be Hilbert spaces with group-actions {#,} and
{&,}, respectively. A function f : (R* x R?)\ {0} — L(E, E) is called (anisotropic)
homogeneous of degree p € R, if for (§,)) € (R x R?) \ {0} and o > 0

F(0€, 0°N) = 0" Ro f(&, Nk, (3.v)
A function f : R* x RY — L(E, E) is called (anisotropic) homogeneous of degree
p € R for large (€, A), if for (&,A) € R* x R? with |(¢, A)| sufficiently large and
021

F(0€, 0°N) = 0" Ro f(&, Nk, (3.vi)

In this work, homogeneity always is meant in this anisotropic sense.

E)) be homogeneous of degree i € R

3.10 Lemma. Let a € C*(R" x R?, L(E, ]
JE).

for large (£,\). Then a € SH¢(R™ x RY;

Proof. By differentiating relation (3.vi) we see, that for 3 € Nj™ the function
8& @ is homogeneous of degree  — |B|¢ for large (&, A). Thus it suffices to show

that ||F;<2A>ea(§, NEgen, Il = O((E N)y) for [(§,A)| = oo. Extension by homogene-
ity shows that there is a homogeneous function f of degree u such that a = f for
large |(&, A)]. Note that f is continuous on (R* x R?)\ {0} with values in £, (E, E)
for the group-actions are strongly continuous. In particular, f maps compact sets

to bounded sets in £(E, E) by the uniform boundedness principle. Employing the
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identity

P == A
/<;<5}>\>ef(f; AEEny, = /<;<;>\>ef(|§, Ale

) e

_ S A
— H -
= 1€ Ale ”(e,wlw\ef ( 1€, A\le” 1€, ALY ) Fle A7 e,

£

TRYRIERL

for (£, A) # 0 yields that ||/%g)\>£f(£,)\)m<57)\>l|| = O((&,\)}) for |(&, )| = oc. This
proves the lemma. |

3.11 Corollary. For p € R the function (-,-)} belongs to SH(R"* x R?).

Proof. Induction over the length |3] of 3 € NJ™¢ shows

18]
e ny N =D pa a6 ) (&N

k=0

with suitable polynomials pg  that are (anisotropic) homogeneous of degree 2kl —
|8)¢- From Lemma 3.10 we obtain the assertion. O

3.12 Definition. Let £ and E be Hilbert spaces with group-actions {x,} and
{Ry}, respectively. Let p € R. We define

o0
SEYRY x R B, B) = {a € SHUR" x R B, E); a ~ Zxa(u,k)}
k=0
where x € C*°(R* x R?) is a O-excision function and a(,_x) € C*((R* x R?) \
{0}, L(E, E)) are (anisotropic) homogeneous functions of degree yu—k, the so called
homogeneous components of a.

3.13 Remark. By Lemma 3.10 the space SZ;Z(R" x RY; E, E) is well-defined.
The homogeneous components of a € S é‘l;e(]R” x RY; E, E) are uniquely determined
by a. They can iteratively be recovered from the relation

k—1

Ryt (a(gfa o)) — Z a(u—j) (0§, gl,\))ng S k) (£, 0) (3.vii)
=0

1
otk

with convergence in £(E, E), which holds locally uniformly for 0 # (£, \) € R* x
R?.
Note that SZ;Z(R" x R?; E, E) is a Fréchet space with respect to the projective
topology of the mappings
k—1 .
. . - _) ESHEY(R* xRY;E,E
SEURY x RGE, B) 3 ar—s { Eo XHu=9) ( )
A(p—k) € COO((]Rn X ]Rq) \ {0}7£(E7E))
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for k e Np.

The space of classical symbols is closed with respect to taking asymptotic expan-

sions. More precisely, let p € R and a* ™7 € Sé‘l_];e(]R” x R EVE) for j € Np.

Then there is a symbol a € Sfl;l(]R” x RY; E, E) such that a ~ > a#77. In fact,
j=0

the homogeneous components of a are given by

A(u—k) = Z aé:jk)
i<k
for k e Np.

Analogously, we define the spaces of classical symbols when we start from scales
of Hilbert spaces {E;} and {E;} instead of single spaces.

Proof. Because of its importance we prove relation (3.vii):

Note first, that for (£,)) € K € (R* x R?) \ {0} we have (o€, 0‘A) = 1 for suffi-
ciently large p since y is a 0-excision function. Therefore, we see for g sufficiently
large on K:

k—1
1
H Q” ( 967 ]z:%a w—j) 9679 /\))HQ _a(u—k)(fa/\)H
1 k
= HW 2 ( (o€, o ;X &, 0'N)a u—j)(@f:@e/\))’%
k—1

< Const - [[Fg-1 (e, efN), I ||H(QE7Q At g” : g“ =k (o€, 0" >H
< Const, - 1 <Q§,g /\>” AN 0

oH— 0—00

uniformly for (¢, A) € K. O

3.14 Remark. The considerations about general anisotropic symbols carry over
to the case, where the space R? is replaced by a conical subset ) # A C RY,
which is the closure of its interior. There only arise notational modifications. In
this work, we will mainly make use of symbols and operators with either A = R
(more precisely, a vertical line A = I'g in C parallel to the imaginary axis), or with
the right half-plane A = Hy C C = R?.

3.3 Parameter-dependent Volterra symbols

Let
Hy := {2z € C; Re(z) > 0} C C =R
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be the right half-plane in C. The significant property of Volterra symbols is, that
in addition to the symbol estimates we employ the analyticity in the interior of

Hp .

3.15 Definition. Let F and E be Hilbert spaces endowed with strongly contin-
uous group-actions {k,} and {%,}, respectively. For u € R we define
(R" x Hy; E, E) N A(Ho, C®(R", L(E, E))),

Sty (R* x Ho; E, E) := St}

which is a closed subspace of S(”cll) (R* x Hy; E, E). Analogously, we define

Sy (R" x Ho; B, E) := (] S{F“(R" x Ho; E, E).
neR

These symbols are called symbols with the Volterra property, or simply Volterra
symbols, which is indicated by the subscript V. Of course, this notion also applies
to the case of scales of Hilbert spaces involved instead of single spaces, and we
shall employ the same conventions as in the case without the extra analyticity
condition, see Definition 3.4.

From the definition we obtain that the properties in Lemma 3.6 apply to symbols
with the Volterra property, i. e., the analyticity condition remains preserved.

3.16 Proposition. a) The restriction of the parameter to the imaginary axis
induces a continuous embedding S{?(lcl) (R* xHy; E,E) S(”c;ll) (R* xTo; E, E).
Notice that we identify I'y = R.

b) The homogeneous components of a symbol a € S“?ﬁl(]R” xHy; E, E) are analytic
in the interior of Hy.

Proof. The first assertion is immediate. Note that the homogeneous components
of the “restricted” symbol in the classical case originate from the restrictions of
the homogeneous components to the real line. The second assertion follows by
induction from relation (3.vii) in Remark 3.13 together with the Weierstrass ap-
proximation theorem. O

3.17 Definition. Let € and & be scales of Hilbert spaces with group-actions {s,}
and {&,}, respectively, as in Notation 3.5. Let (ux) € R be a sequence of reals

such that pur — —o0, and & := max ug. Moreover, let aj € S“}’“;K(JR{” X IHIO;S,SN).
k—oo keN

A symbol a € S‘H,;Z(R” x Hy; &, €) is called the asymptotic expansion of the ay, if
for every R € R there is a kg € N such that for k£ > kg

k
a—Zaj € STHR™ x Hy; €, E).

Jj=1
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The symbol a is uniquely determined modulo S;,*(R* x Hp; &, §).

o0
For short, we write a > > aj.
i=1

3.18 Remark. Note that the notion of asymptotic expansion for Volterra symbols
from Definition 3.17 is more refined than that of Definition 3.7. We distinguish
here between the notions of asymptotic expansions for symbols with and without
the Volterra property, i. e., for symbols with and without the extra analyticity
condition in the half-plane.

In particular, the proof of the existence of a Volterra symbol having a prescribed
asymptotic expansion is more complicated than in the standard setting of general
symbols (see Remark 3.8), but the result holds true also in this case. A suitable way
to achieve it makes use of a Borel argument, where kernel cut-off techniques are
used to replace the excision function in the covariables, such that the analyticity
in the half-plane remains preserved; see, e. g., Krainer [23], [24], and Section 5.1
— especially Remark 5.4 — below.

3.3.1 The translation operator in Volterra symbols

3.19 Definition. Let £ and € be scales of Hilbert spaces according to Notation
3.5. For 7 > 0 define the translation operator T on S“};K(IR{” x Hy; E,&) via

(Tra)(&,N) == a(E, N+ 7).

3.20 Proposition. For every 7 > 0 the translation operator T, acts linear and
continuous in the spaces

Ty : S, (R x Ho; €,€) — SE( (R x Ho; €,E).

Moreover, T-a has the following asymptotic expansion in terms of T and a:
Tra > Z o Oya.
k=0
In particular, the operator I — T, is continuous in the spaces

I =T, : SPG, (R x Ho; €,€) — Sy (RY x Ho; &, ).

Proof. Without loss of generality we may restrict to single Hilbert spaces £ and
E. For T, acts continuously in A(Hy, C=(R", L(E, E))) N C>®°(R* x Hy, L(E, E))

we only have to check that Tra € S‘*};Z(R” xHy; E,E) for a € S‘*};Z(R” xHy; E, E),
which is trivially fulfilled in view of (3.i) and (3.iv), as well as the asymptotic
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expansion of T;a in terms of 7 and a. Then the closed graph theorem implies the
remaining assertions.

Carrying out a Taylor expansion in 7 = 0 implies that for each N € N we may
write

1
al&,\+71)= T—]: a(§,A) + ,/ 6)N— 16)\a)(£)\+97)d0
0

2

k!
k

I
=)

For the integrand in the remainder may be regarded as a continuous function in
6 € [0, 1] with values in S“j_NM(]R{n x Hy; E, E), we obtain the desired asymptotic
expansion for T;a. O

3.21 Notation. Let F and E be Hilbert spaces endowed with group-actions as
before. For 1 € R let SWif) ((R* x Hy) \ {0}; E, E) denote the closed subspace of

C*((R™ x Hp) \ {0}, L(E, E)) consisting of all anisotropic homogeneous functions
of degree p. Moreover, let

SUO (R x Hy) \ {0}; E, E) := ™9 ((R* x Hy) \ {0}; E, E)
N A(Ho, C®(R", L(E, E))),
which is a closed subspace of S8 ((R* x Hy) \ {0}; E, E).

3.22 Theorem. For every 7 > 0 the mapping T: : a(§, A) — a(&, A + 7) is con-
tinuous in the spaces

T, : SV ((R* x Hy) \ {0}; E, E) — SI' (R” x Hy; E, E).

Moreover, for every 0-excision function x € C*°(R" xHy) the following asymptotic
expansion holds for Tra:

Tawzk' (0%a).

This shows, in particular, that for the homogeneous component of order . we have
the identity (TTa) () = &

In other words, the “principal symbol sequence” for Volterra symbols is topologi-
cally exact and splits:

0 —SE 4R x Hy; B, E) — SiL(R™ x Ho; B, E) —
S (R x Bo) \ {0}; B, B) — 0.

The operator T, provides a splitting of this sequence. Analogous assertions hold
in case of scales of Hilbert spaces involved.
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Proof. For T acts continuously from Sg/“;e) ((]R” X ]HIO) \{0}; E, E) into the space

C>®(R"* x Hy, L(E,E)) N A(Hy, C>®°(R", L(E, E))), we only have to check that
T.a € Sfl;l(]R” x Hy; E, E) in view of the closed graph theorem, as well as the
asymptotic expansion for 7Ta. For the assertion concerning the principal symbol
sequence recall that the homogeneous components of a Volterra symbol are analytic
in the interior of Hy according to Proposition 3.16.

Let o/, € Ny, a := o' + ", and f € N}. For every N € N we have for |£, A|,
sufficiently large, using Taylor expansion,

, N— 17_Ic
(0x+05)" (01 = 03)" 9 [al€ A +7) = D T2 X&) (05a) (€ V)]
N T k=0

=929 [ EN+T) — Zk— (8%a) u)]

1
|/ )N (0N 0 a) (&, A + 70) db.
0

The function (95 +“6§ a) is anisotropic homogeneous of degree u—¢(N +a) —|B].
Consequently, we are done if we show that for a smooth anisotropic homogeneous
function a of degree 4 € R which is analytic in the interior of Hy we have

||F;(‘;A>Za(§, A+ 10)ke | = O(E,N)Y)

for |€,\|; — oo, uniformly for 6 € [0,1]. Let M and M be the constants in the
norm estimates for the group-actions from (3.iv). Then we conclude, using (3.i),

for (£,\) #0

ey, a6, A+ T0)ke ), [l < Comst(re) M+

H Fieairn), (5,\+79) m,@,Awwﬁ)%wm
= Const(rd) " (&, 1+ 70); 5,Af—r9> 51179 )l
< Const(rf)M+M+ul ( (&N H ( 3 /\i79> £>:\-:TT€9 )H

Observe that for |{,Al; > 1 and 6 € [0,1] we have, using (3.1), with a suitable
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constant ¢ > 0

13 A+ 716 1
1 , = &, A+ 76
<£7>‘+T0>[ <£,)\+7-0>5‘f <£7>‘+T0>l | |l
1 1
> G+ Tl = T & A+ 70l
(€& A), (76) (141 A20) > (16)
1 .
> e &N >c-272 (7)) =& > 0.

(2- 16, A% - (76)

Summing up, we thus obtain for |£, Al > 1 for all 6 € [0, 1]

i a6 A+ 78mie, | < (Const- (AL sup a6 ) -6,

Ale<

K

This finishes the proof of the theorem. O

3.4 Holomorphic Volterra symbols

3.23 Notation. For an interval § # I C R we shall use the notation
[;:={2€C Re(z) e I}
for the strip in the complex plane over I.

3.24 Definition. Let F and E be Hilbert spaces with group-actions {x,} and
{R,}, respectively. Moreover, let z = 3 + it € C be the splitting of z € C in real
and imaginary part. For y € R define the Fréchet spaces

Sty (R* x G E, E) := A(C,S" (R"; E, E)) N C*(Rg, S (R x T'5; E, E)),

SYiown (R'XG E, E) := S&(, (R* x G E,E) N S}, (R* x Hy; E, E)
with the induced topologies. Analogously, we define the corresponding symbol
spaces when we deal with scales of Hilbert spaces.

3.25 Proposition. Let ) # 1 C R be an open interval and p € R. Let
e,OCA(C,)( E):={a € A(L'1, S*(R"; E, E)); ar, € Sggf) (R x T'5; E, E)
locally uniformly for € I},

C® A" (B, E) :={a € AL, S*(R*; E,E)); a € C=(Iz, 5"

(cl) (o) (R* x Tg; B, E))}

endowed with their natural Fréchet topologies. Observe that for I = R we recover

Sty (R xC; B, E) = C® A%} (E, ).
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a) The embedding ¢ : C“A?Cf) (E,E) < (2,

isomorphism between these spaces.

A(Cl) (E,E) is onto and provides an
b) The complex derivative is a linear and continuous operator in the spaces 0, :
60
IOCA(Cl)( ) - g?gcAélcl) (E E)

¢) Givena € {
in terms of a|r, for every By, 8 € I which depends smoothly on (By,3) € IxI:

IOCA(Cl) (E, E), we have the following asymptotic expansion for alrg,

o0

_ k
alty ~ 3 P k),

k=0

d) For arbitrary 8 € R we have Svo(cl) (R*xC; E,E) — S"j’( ) (R* xHg; E, E).
Ifa € Svo(d)(]R”x(C;E,E), then we have alg, € SV’(Cl)(]R”ng;E,E) as a

smooth function of f € R, and the asymptotic expansion

ali, Vz(ﬂo k'ﬂ) (0 a) s,

k=0
is valid, which depends smoothly on (89, 3) € RxR.
e) For B € I and p > ' the identity

(s AU (B, E)YNSE S (R x T B, B) = 675,41 (E, B)

holds algebraically and topologically.
f) For B € R and p > p' the identity

SR XC; B, E)NSY L) (R" x Hy; B, B) = St (R"xC; E, E)

holds a]gebrawal]y and topologically.

From the expansions in ¢) and d) we see, that in the classical cases the homogeneous
principal symbols of the restrictions do not depend on the particular weight line
or half-plane.

Proof. Let a € ElocAf‘gf) (E,E). Carrying out a Taylor expansion we may write
for 8,80 € I and 7 € R, for every N € N:

e
a(fo +it) = Z %(afa) (B +ir)

k=0

60_ ],V/ )N (0Na) (B +6(Bo — B) +iT)db . @)

~ v

N(/BOJ/BJT)
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Observe that 0,a = D-a, and thus for N = 2 equation (1) gives

a(Bo +i7) — a(B + i)
Bo—

— (aza) (B +ir)

= (Bo—B) | (1—0)(D2a)(B+6(Bo —B) +ir)do. ()

(O\H

>l

v

(%)
By assumption (x) remains bounded in Sé‘cf) (R* x R,; E,E) for o — 8, and
consequently we see that there exists (9za)(8 + i) = (8:a)(B8 +4-) for B € I in
Sébc;ll) (R* x 'g; E,E). For 0.a = D,a € ffg’cAég)l;[(E,E) we obtain by induction
the assertions a) and b) of the proposition in view of the closed graph theorem.

If a € Sﬁjé(RnxC;E,EN), then alm, € S (R™ xHy; E, E) locally uniformly for
B € R with continuous embedding. This follows at once from (3.i) and (3.iv), see
also Proposition 3.20. For 7 € H_ and , Sy € R we conclude from formula (1) and
(2) with the same reasoning as above that alm, € S“j;f(]Rn xHg; E, E) as a smooth
function of g € R.

Let us now show the claim about the asymptotic expansion in ¢) and d). From the
already proven part of the proposition we conclude that for N € N the function
(0N a) (B + 0(Bo — B) + i) may be regarded as a continuous function of 8 € [0, 1]
taking values in the space C™(Ig,xI5,S*~N6{R® x R,; E,E)), and thus the
remainder ry (5o, 8,7) in (1) is a smooth function of (8y, ) € IxI taking values
in S#=NGYRM x R, ; E, E). This shows the validity of the asymptotic expansion
in c¢). The expansion in d) follows analogously, but now we deal with Volterra
symbols with respect to the variable 7 € H_ . From this we also obtain the missing
part of d) in the classical case.

The assertions in e) and f) follow from the expansions in ¢) and d). This finishes
the proof of the proposition. d

3.26 Remark. Assume that we are given symbols a; € S(”‘ﬁ;)lo(]R” xC,E,E), as
well as a € S(H‘}f)O(R”X(C;E,E), where (pur) C R with p, = —o0 as k — oo, and

o0
= 2%%])5 pr- Moreover, assume that for some 3 € R we have a|r, ~ kz_:o ak|r,, or

(o]
alm, ~ kzo ak|m, , in the sense of Definition 3.7 or Definition 3.17, respectively.

o0
Then Proposition 3.25 implies that a N) > ap in the sense of holomorphic
k=0
(Volterra) symbols, i. e., the remainders already belong to the class of holomor-
phic (Volterra) symbols. In particular, for holomorphic symbols there is no proper

refinement of the notion of asymptotic expansion.
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4 The calculus of Volterra Mellin operators

4.1 General Volterra Mellin operators

4.1 Definition. Let F and E be Hilbert spaces endowed with strongly continuous
group-actions {k,} and {&,}, respectively. We define for p1 € R the spaces of (r, r')-
resp. r-dependent (classical) parameter-dependent Mellin symbols with respect to
the weight v € R and parameter-space R" as
it n . 7\ - (190 i n . f
M, SE) (R )" x R x Ty B, B) := OF (R+)", Sy (R* x Ts_; B, E))

for ¢ = 1,2. Correspondingly, the spaces of (classical) Volterra Mellin symbols of
order p with respect to the weight v € R are defined as

M, S (R x R x Hy 3 B, E) := CF((Ry)?, S, (R x Hy

Vi(el) (el) E, E))

i
for ¢ = 1,2. Analogously, we obtain the spaces of order —oco with respect to the
weight v € R. All these spaces carry Fréchet topologies in a canonical way. With
the same conventions as in Definition 3.4 we also have the (Volterra) Mellin symbol
spaces when we deal with scales of Hilbert spaces instead of single Hilbert spaces
only.

From Proposition 3.16 we see that the operator of restriction of the half-plane
]HhE _, to the weight line F%Jr induces continuous embeddings

E,E) < M,S{i{ (R, x R* x T,

wit n
My Sy oy (R x R* x Hy ()

e E,E).

- -

4.2 Definition. Let E and F be Hilbert spaces with group-actions {x,} and
{R,}, respectively, and let 4 € R. With a Mellin double-symbol a € M., S*¢(R x
Ry x R™ x F%—v; E, E) we associate a family of Mellin pseudodifferential operators

op),(a)(€) € L(T,(Ry, E), T, (R, E)) for € € R* by means of the following Mellin

oscillatory integral:
1 —% dr'
5 / /(%) a(r,r’, & 2)u(r') T—tdz

F%77R+

—
]
=)
EQ
—
S
=
—
o
~
<
=
—
<
~
Il

Lo 1 dr'
//7“'é i a(r,rr’,§,§ — v +im)u(rr’) —7: dr.

r
RE,

Taking into account the operator S, and its inverse from (2.i) and (2.ii) we see
that we may write

opa;(a) () = ST opy(as)(€)S, (4.)
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as operators on 7, (Ry, E), where the (Fourier) double-symbol a, € Cp°(R x
R, ¥ (R* x R; E, E)) is given as

/ 1
G’V(tat,Jf;T) = a(€7t767t 767 5 _’7+i7');

and op;(a,)(€) : S(R, E) — S(R, E) is a usual pseudodifferential operator based
on the Fourier transform (Kohn—Nirenberg quantization). From (4.1) we thus see
that the theory of Mellin pseudodifferential operators can be carried over to some
extent from the setting of operators based on the Fourier transform, and vice versa.
4.3 Theorem. Let a € MVSFC;f)(]R{jL x Ry x R x F%_,Y;E,E). Then there exist
unique Mellin left- and right-symbols ay(r, €, z), ar(r', €, z) € MVS(”J) (Ry x R™ x
Féfw;E,E) such that op},(a)(&) = opy,(ar)(§) = opy,(ar)() as operators on
T (R, E).

These symbols are given by the following Mellin oscillatory integrals:

w69 = [ [smatr,srgzv i T an,

RE,
; d
an(r',6,2) = [ [ a6z = in)
RR,

The mappings a — ay, and a — apr are continuous. Moreover, we have the asymp-
totic expansions

a'L(rafaz) ~

K
==

D’ﬁ(—r’@rz)ka(r, rla 67 Z)|T"=T’7

k=0

aR(’I"’,f,Z) ~

NE
==

(_1)kD,TC(_rar)ka(ra & 2) |r=r.

=~
Il

0

it . B it
Ifa € My Sy (1R+ xRy xR* xHy ;s E, E) then also ar, ag € MySy ) Ry x
R™ x H%JV;E,E), and the mappings a — ay and a — ap are continuous with

respect to the topology of the Volterra Mellin symbol spaces. In this case we have
the asymptotic expansions

NE
|

G/L(rafaz) "\; af(_rlar’)ka(ra r’7£72)|r’=1‘7

k=0

NE
|

aR(Tlafaz) "\; .(—l)kaf(—ra,,)ka(r, r17£72)|7‘:7"

=~
i
o

in the Volterra sense.
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Proof. In view of (4.i) the assertions of the theorem in the non-Volterra case con-
cerning the existence of unique Mellin left- and right-symbols, as well as their oscil-
latory integral formulas and the asymptotic expansions, follow from the calculus of
standard pseudodifferential operators with symbols that satisfy global estimates,
see, e. g., Kumano-go [27], Shubin [48] (in the scalar case), or Dorschfeldt, Grieme,
and Schulze [8] (in case of operator-valued symbols). In the framework of Mellin
operators notice, in particular, the work of Lewis and Parenti [28], and in case of
operator-valued symbols the works of Dorschfeldt [7], Dorschfeldt and Schulze [9],
and Seiler [46], [47].

What remains to show are the assertions in the Volterra case. In order to do so,
we only need to prove that the left- and right-symbols, which we obtain from the
first part of the theorem, are Volterra symbols (more precisely that they originate
from Volterra symbols via restriction to the weight line), and that the asymptotic
expansions hold in the Volterra sense. From these expansions we then see that the
class of classical Volterra symbols remains preserved, and the asserted continuities
follow from the closed graph theorem. We carry out the proof for the left-symbol
only, because the proof for the right-symbol is analogous.

Let a € MVS"j;Z(]RjL xRy x R* x Hy_; E, E) be a Mellin double-symbol, and

L(r, & z) // "arsrf,z+m)—d‘n, (1)

RR,

z € F%Jr, the associated left-symbol to a|r, L Note first that the oscillatory
1o

—y
which provides an extension of ay(r,§,z) from the weight line to the half-plane.
More precisely, the function a(r, sr, €, z+1in) may be regarded as a smooth function
of (r,€,2z) € Ry xR™ x H%*V which is analytic in the interior of Hlﬁi,y, taking values
in the operator-valued Mellin amplitude functions in the variables (s,77) € Ry X R,
since the symbol a is a Volterra Mellin double-symbol by assumption. This shows
that ar(r, €, z) is a smooth function of (r, €, z) € Ry x R™ x ]HI1 -, which is analytic
in the interior of Hy _,. We need to prove that the symbol estlmates for ar,(r, &, 2)
extend to the half- plane

integral formula (1) does not only make sense for z € ['1_, but also for z € Hi

First observe that we may interchange the differentiation with respect to £ € R™
and z € Hy _ with the oscillatory integral in (1). Thus for « € N} and § € Ny we
obtain

(g 8'3(1L) (r,&,2) // (8¢ d%a ) (7,87, €, 2 + i) d—d‘n,

RR,

where 9¢0%a € M, Sy I R, x Ry x R* x Hy _; B, E), i. ., 9¢0%ay, is the
associated left-symbol to 8?85(1. Consequently, we simply have to prove that for
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all k € Ny we have

1
||R’(_§%C>e(_7‘67‘)kal/ (Ta f: 5 -7 + C)K“(ﬁ,Cn || = O(<£7 <>?)

for (£,¢) € R* x Hy as |, (|¢ = oo, uniformly for r € Ry .
For k € Ny we have according to (1)

(=rd,)ar(r,, 5 T Q)= // s"(—rd,) a(r, 1 &, 5t ¢ +in) ?S dn,
RR4
where we may write

1
(_rar)ka’(r: S’I",f, 5 -7 + ( + “7) =
k

k . : 1 .
}j()U—ﬁm%—ﬂmﬁﬁﬂ&wn&§—v+c+m»
=0

Consequently, the proof reduces to consider the case k = 0. Regularizing the

oscillatory integral (1) yields
1 ; 1 d .
ar(r &5 =7 +0) = //8%(7“, s1,§, 5 =7+ ¢+ i) ?S di = //8“7(10g8>_2
RRy RR,

(1= ) [ (1= (r00)"a) s 5 v Cim)] T

v

N~

(%)

where v € Ny is chosen sufficiently large. () is a linear combination of terms of
the form

(D;(n)d”) . ((1 - (—r'arr)z)uﬁga) (r, sr,f,% — v+ +in)

for 0 < 4,57 < 2. For a is a Volterra Mellin double-symbol by assumption we
conclude, using (3.1) and the constants M, M of the norm estimates for the group-
actions from (3.iv), that

L Vai 1 . N
HK@}Oe ((1 - (_Tlar’)2) 5éa) (r,s1,€, 5 y+(+ ”7)“(57()2” < ||’9(57g+in)e(g,g>;1”
; 1
~—1 2\ V .
||K<§7C+in)e ((]‘ - (_TIaT') ) aéa) (Ta ST, f: 5 -7+ C + Z”))K<E7C+in)l ||

M+ M M+ M+|p]

1 e coimy e, 11 < Comstin) "7 (&, ¢+ i)y ™" < Comst(m) ™ (£,Q)f

Now we see that if we choose v > %f‘”‘ + 1 the desired estimates indeed
hold for ay. Summing up, we have shown that ar is a Volterra Mellin symbol. It
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remains to prove the validity of the asymptotic expansion for ay, in terms of a in
the Volterra sense.

Employing a Taylor expansion in 77 = 0 we may write for each N € N

N-1

a(r,sr,€,z +in) = Z ki(ak )(r,sr,ﬁ,z)(in)k

k=0
b1 _ g\N-1
(m)N/%(85_%)(7“,87",5,,2—}—1'077) de.

The terms of the Taylor polynomial are Mellin amplitude functions in the vari-
ables (s,n). Moreover, the integrand in the Taylor remainder can be viewed as a
continuous function of 6 € [0, 1] with values in the Mellin amplitude functions in
(s,n). Integrating by parts in the Mellin oscillatory integral formula (1) for a;, and
interchanging integrals of the remainder gives

2

an(r,62) = 30 (10 alr, ! € Dl + 71w (1,6, 2),

0

=~
Il

where
1

N 1 ds
ri,N(r, &, 2) / // 8N 7"8) )(r,sr,f,z—l—i@n)?dnd&

0

v

(+)
Similar arguments as above show that (xx) may be viewed as a continuous function

of € [0, 1] taking values in the Volterra Mellin symbols, and thus we have

—ke;l N I
Eé)f( o) ka(r,r' €, 2)|er € M, SE N R, x R? x Hy_;E, E),

rin (€, 2) € MySY VO Ry x R x Hy_; B, E),
which yields the desired asymptotic expansion. |

4.4 Definition. For v € R define

M, LY (R R B, E) = {op},(a)(€); a € M, S5 (R, x R* xTy_; B, B)},

M, L (R ;R B, E) := {op},(a)(€); a € M Sé{l)(& x R" x Hy _.; E, E)}.
In view of Theorem 4.3 we conclude that op},(+)(§) provides an isomorphism be-
tween these spaces and the corresponding (left-) symbol spaces. Via that isomor-

phism we carry over the topologies which turns the operator spaces into Fréchet
spaces.
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4.5 Theorem. Let E, E, and E be Hilbert spaces with group-actions {r,},
{ko}, and {k,}, respectively. Let a € M,YS@K)(]KL x R" x F%_V;E‘,E) and
b € MVSELC’;)Z(]R_F x R x I‘%fw;E,E). Then the composition as operators on

T, (R4, E) may be written as
opyy (a)(€) © opy, (b)(§) = opy, (a#b)(€)

with the Leibniz-product a#b € MVS(”C;F)“’;[(]KL xR'xI'y_; E, E). More precisely,

the Leibniz-product is given by the Mellin oscillatory integral formula

attbr,62) = [ [ salr .z +imbirs,€.2) S (L)

RR,

and the following asymptotic expansion holds for a#tb:

o0

attb~ S %(D’ﬁa)((—r@r)kb). (4.i)
k=0

The mapping (a,b) — a#b is bilinear and continuous.

Ifa € M, Sy, (Ry xR xHy _; B, E) and b € M, S} (Ry xR" xHy _.; E, E),
then also a#tb € MWS“jU;);Z(]R_F xR* x Hi_,; E,E), and the oscillatory integral
formula (4.ii) is valid for z € Hy _.,, and the asymptotic expansion (4.iii) holds in
the Volterra sense, i. e.,

o0

1 .
a#b ~ Z E(@fa)((—r&«)kb). (4.iv)

k=0

In this case the mapping (a,b) — a#b is bilinear and continuous within the
Volterra Mellin symbol spaces.

In the classical case we conclude from the asymptotic expansions (4.iii), (4.iv) the
identity (a#b) (u+u') = a(u)b(u) for the principal symbol of the composition.

Proof. The assertion follows from Theorem 4.3. Note that a(r, £, 2)br(r', €, 2) is
a double-symbol for the composition, and the Leibniz-product is the associated
left-symbol. This also implies the continuity of (a, b) — a#b.

The oscillatory integral formula (4.ii) necessarily holds in the preceding situation,
for it holds in the non-Volterra case without parameters and trivial group-actions,
and by uniqueness of analytic continuation the formula is valid within the half-

plane HIE_,Y.

The asymptotic expansions (4.iii) and (4.iv) follow from (4.ii) via Taylor expansion
as in the proof of Theorem 4.3. O
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4.6 Proposition. Let a(r,r',&,2) € M, SRy x Ry x R x F%_W;E,E), such
that a(r,r',§,A\) = 0 for |5 — 1| < ¢ for a sufficiently small ¢ > 0. Then
opj(@)(€) = opj(€)(€) with a symbol ¢ € M, S™ (R x R" xT'1_; E, E).

If even a € MVS“};K(KL x Ry x R™ x H%_W;E,E), then also ¢ € M,S;,*(Ry x
R x H%,W;E,E).

Proof. We obtain ¢ as the associated left-symbol to a from Theorem 4.3. All
ingredients in the asymptotic expansion of ¢ in terms of a vanish by assumption
which implies the assertion. |

4.7 Corollary. Let a(r,&,z) € M,SHY Ry x R* x F%_V;E,E‘), and @, €
CF (Ry) such that dist(suppy, suppy) > 0. Then ¢ op,,(a)(§) ¥ = opys(ag,u)(§)
with a symbol a,y € MyS™°(Ry x R* x 'y ; E, ). The mapping a — a,,y
is continuous.

Ifeven a(r,&,z) € MVS"?Z(]KL xR xHy_.; E, E), then also a, 5 € M, Sy (R; x

R*xHy_ ; E, E) In this case the mapping a — a,  is continuous with respect
2
to the Volterra Mellin symbol spaces.

Proof. Note that ¢(r)a(r, &, z)¥(r'") is a double-symbol associated with the opera-
tor wop},(a)(§) 1. Consequently, we obtain a, , as the left-symbol from Theorem
4.3. From Proposition 4.6 we conclude that a, y is of order —oco. The continuity
of the mapping a — a, 4 follows from the closed graph theorem. O

4.8 Remark. From Proposition 4.6 and Corollary 4.7 it follows, in particular,
that the calculus of Volterra Mellin pseudodifferential operators (with parameters)
is “well-behaved” what pseudolocality is concerned, i. e., localization is possible
up to remainder terms of order —oo within the Volterra calculus.

4.9 Theorem. Leta € M, S (R, xR" x Hy ; B, E). Then op),(a)(€) restricts

.
for every ro € Ry to a family of continuous operators

0Py (a)(€) = T,0((0,70), E) — T.0((0, 70), E).

Proof. Without loss of generality assume n = 0. We may write
(OpX/I (a)u) (T‘) = (M;}ZHT,(I(T, Z)M%r’ﬂzu) |r’:r (1)

for u € T,(Ry, E). Now let u € 7,,0((0,79), E) be given and r € Ry fixed. In
view of the Paley—~Wiener theorem from 2.1 we have that M. u € A(Hlﬁ_,y, E;ro).
For a is a Volterra symbol by assumption we see that a(r,z) (Mn,u) (z) may be

regarded as an element of A(H% E;rg), i. e., a acts as a “multiplier” in the

—
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spaces A(]HI%_V, -;70). Employing again the Paley—Wiener theorem from 2.1 we
now conclude that ./\/l;lz%r,a(r,z)./\/l%rz%zu € T,0((0,79), E), where the sub-
script 7’ indicates that we consider the latter function space in the variable r'.
In particular, evaluation at ' = r yields that (1) necessarily vanishes for r > rg

which finishes the proof of the theorem. O

4.10 Remark. Theorem 4.9 provides the motivation for the name “Volterra”
symbols respectively operators:
If we regard the Mellin pseudodifferential operators as

opj;(@)(€) : C5°(Ry) — C*(Ry, L(E, E)),

then we obtain for every ro € R} that (op},(a)(€)u)(r) = 0 for r > ro, for all
functions u € C§°(Ry) such that v = 0 for r > ro. In other words, the operator-

valued Schwartz kernel K,,7 (4)e) € D'(Ry x Ry, L(E, E)) satisfies

SuppKopX,I(a)(g) - {(T‘, rl) ERy xRy;r< rl}
for all £ € R™. This gives the link to (classical) Volterra integral equations where

the kernel is supported on one side of the diagonal only.

4.11 Remark. A triple {Ey, E, E1;k} is called a Hilbert triple, if the following
conditions are fulfilled:

a) There exists a Hausdorff topological vector space X such that Ey, E and E;
are embedded in X.

b) k: (Ry,-) — L£L(X) is a representation, which restricts to strongly continuous
group-actions on Ey, E and E;. On E the action is assumed to be unitary.

c) EoNENE; is dense in Ey, E and E;.

d) The inner product on E induces a non-degenerate sesquilinear pairing (-, ) :
Ey x E; — C, that provides antilinear isomorphisms Ej = F; and E| = Ej.

Notice, in particular, that for each § € R the scalar product on L2 (R, , E) induces
a non-degenerate sesquilinear pairing

<'7'> : 7:5+’Y(]R+7E0) X %—V(R—FaEl) - C
for every v € R.

Let {Eo, E, Ei;k} and {Ey, E, Ey; &} be Hilbert triples. To each A € L(Ey, E)
there exists a unique (formal) adjoint operator A* € L(E,,E;) such that
(Aeg,é1)p = (eg, A*é1)p for all eg € Ep and é; € E,. The mapping A — A*
provides an antilinear isomorphism £(Ey, Eo) — L(E, Ey).
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The framework of Hilbert triples provides the appropriate setting to study the
behaviour of pseudodifferential operators with operator-valued symbols under tak-
ing formal adjoints, see Theorem 4.12 below. However, Volterra operators are not
closed with respect to this operation, as is also obvious in view of Remark 4.10
above.

4.12 Theorem. Let {EO,E E\;k} and {Eo, E,E\; &} be Hilbert triples. More-

over, let a(r,&,z) € Sé‘f)(& x R™ x I‘%_,Y;EO,E‘O), and A(&) == opj,(a)(€) :

T, (Ry, Bo) — T, (Ry, Ey).

For every § € R the formal adjoint operator A% (&) with respect to the
L?9—inner product, which is determined by the identity (A(f)u,v)L”(RJﬁE) =
(u, A*9) (&)v) 25, k) for u € Ty (Ry, Ep) and v € Tos—(Ry, Ey), is well-defined
as a continuous operator A9 (&) : Tos o (Ry, Ey) — Tas_~(Ry, Ey).

More prec1se]y, we have A9 (¢) = opﬁg Y(a*9)(€) with the formal adjoint sym-

bol a9 (r,€,2) € Mas_, (cl)(]R+ xR" xT'y 2(5Jr7,E1,E1) which is given as the
left-symbol

AN r,6,2) = (alr',,1-20-2)), = [ [ sMaor, 1-28-z4in) iy (4v)

RR,

according to Theorem 4.3. In particular, the following asymptotic expansion of
a™9 in terms of a is valid:

9 (r, €, 2) Z k'D’“ —rd,)Fa(r,€,1 — 26 — 7)*. (4.vi)

The mapping a — a*%) is antilinear and continuous.

In the classical case we conclude from the asymptotic expansion (4.vi) the identity

aE:)‘s) = a(u) for the principal symbol of the formal adjoint.

4.2 Continuity in Mellin Sobolev spaces

4.13 Definition. Let E be a Hilbert space with group-action {x,}. For 5,7 € R
define the space V*7(Ry, E) to consist of all u € TJ(R;, E) such that M,u is a
regular distribution in S’(F%_,Y, E), and

1

1 . 3
N /(Im( D2l oy M) [ dz) < oo

r

[[ul

-

[N
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If the group-action is trivial we write H®7 (R4, E). In case of E = C and trivial
group-action the space is suppressed from the notation.

The following properties of these spaces are evident (see also Dorschfeldt [7],
Hirschmann [17]):

i) V¥7(R;, E) is a Hilbert space with respect to the inner product

1 ey B
(U, V)ysr (R y,E) = 33 (Im(z))? (”(IL(Z))MVU(Z):“(I:H(z))MvU(Z»E dz.
r

-7

[V

ii) The embedding 7, (R, E) — V*?(R;, E) is continuous and dense.

iii) If E < E and the restriction of the group-action {%,} of E on E equals

{k,}, then the embedding V*7(Ry, E) < V*"7(Ry,E) is well-defined and
continuous for s > s'.

iv) Let M be the constant in the norm-estimate (3.iv) of the group-action from
Definition 3.3. Then

HAMY(Ry, E) < VOV (R, E) <= H M7 (R, E).

For § € R the operator of multiplication with the function r° provides an isomor-
phism V7 (R, , E) — V* (R, E).

For ro € Ry we define the space V"7 ((0,7], E) to consist of all u € V*7(Ry, E)
such that supp(u) C (0,7o]. This is a closed subspace of V*7(R;, E) and equals
the closure of 75 0((0,79), E) in V*"(R;, E).

4.14 Theorem. Let E and E be Hilbert spaces with group-actions {,} and {#,},
respectively. Moreover, let M and M be the constants in the norm-estimates for
{ro} and {R,} from (3.iv). Let a € My S*“(Ry x R* x Ty ;E,E) and s,v € R
where v > &. Then opy,(a)(§) extends for & € R" by continuity to an operator

opl,(a)(€) € LV* (Ry, E),V* "7 (R, , E)), which induces a continuous embed-
ding

SV (R Ve (R B), Vo (R, )
v>0
SETVHM(RY V(R B), VT Ry, E))
v<0
(4.vii)
into the space of operator-valued symbols with the trivial group-action involved
on the Sobolev spaces (which is indicated by the subscript 1).

M, LMY R, ;R B, E) —
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Moreover, restriction of Volterra pseudodifferential operators to the V37 -spaces
provides continuous mappings

SEFMEE R V3 (0, ro), B), Vi ((0, 7o), B)
v>0

SUT MM (R YT (0, 0], B), VS (0, 70], B))
r<0

M, LS (R R B, E) —

for each ro € Ry

Proof. The boundedness of the operators, as well as (4.vii), are easily deduced
from the general continuity result for pseudodifferential operators with operator-
valued symbols given in Seiler [47], see also [23]. Thereby, the isomorphism S, and
relation (4.1) reduces the considerations to the case of Kohn—Nirenberg quantized
operators in abstract edge Sobolev spaces instead of the Mellin operators, see
also Schulze [40]. The second assertion concerning Volterra operators follows from
(4.vii) and Theorem 4.9. O

4.3 Volterra Mellin operators with analytic symbols

4.15 Proposition. a) Let ) # 1 C R be an open interval. Moreover, let a €
C¥(Ry, 02 A%(E,E)) (cf. Proposition 3.25). Then for v,7' € R such that

Ioc

=73 —7" €I we have op},;(a)(§) = op;’\,l[(a)(f) as operators on C§°(Ry , E).

b) Let v,6 € R and a € M,S*‘(Ry x R* x I'y_;E,E). Then we have
2
op), (@) (&)’ = r9op) T’ (T_sa)(€) as operators acting in T,_s(Ry,E) —

T, (Ry, E), where T_sa € M.,_sS"*(Ry x R* x F%_VH;E,E‘) is defined as
(dea) (T',f, % -7 + d + ZT) = a(nf: % -7 + ZT)

Proof. For the proof of a) note that we may write for u € C§°(Ry., E)

P @ @) = 5 [ 1 Caln & O(Mu)(©) de.

r
P

By Cauchy’s theorem we may change the line of integration from F%_,Y to F%_
which shows a).

,.Yr

We have to prove the asserted identity in b) only as operators on C§°(Ry, E) in
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view of the density. We may write for u € C§°(Ry, E)

L@@ (W) = 5 [ 7 Calr & O(Mu)(C +8)dC

= 2%” / r—(¢=9) (T,(;a) (r,&,¢) (Mu) (¢)d¢
Ty

=1 (op]; *(T_sa)(E)u) (7).
(I
4.16 Definition. Let F and E be Hilbert spaces endowed with strongly contin-
uous group-actions {k,} and {&,}, respectively. We define for p € R the spaces

of (r,r')- resp. r-dependent (classical) parameter-dependent holomorphic Mellin
symbols with parameter-space R" as

M5y (Re)" x R* x G E, E) = CF (R+)", S5,y (R" x G E, E))

for ¢ = 1, 2. Correspondingly, the spaces of (classical) holomorphic Volterra Mellin
symbols of order p with parameter-space R are defined as

M6 (Re)! xR x G E,E) := CF (R4)", Syi6y o) (R* x G E, E))

for ¢ = 1,2. Analogously, we obtain the spaces of order —oco. All these spaces carry
Fréchet topologies in a canonical way. With the same conventions as in Definition
3.4 we also have the (Volterra) Mellin symbol spaces when we deal with scales of
Hilbert spaces instead of single Hilbert spaces only.

For every v € R the embeddings
MSEL (Ry)T X R* x G E, B) < M, S/ (R.)" x R* x Ty __;E, ),
M S} (Ry)! X R" x G E, E) = M,Sii, (Ry)! x R* x Hy _; E, E)

are well-defined and continuous for ¢ = 1, 2.

4.17 Definition. Let (1) C R be a sequence of reals such that gy P
—00
and I := Iax fig. Moreover, let ap € MSE“T)ZO(@+ x R* x G, E,E). A symbol
e k)

a € MS(E‘;,Z)O(@+ xR* x C F, E’) is called the asymptotic expansion of the ay, if
for every R € R there is a kg € N such that for k£ > kg

k
Rl X ~
a—Y a;€ MS Ry x R* x G B, E).

Jj=1
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The symbol a is uniquely determined modulo MS(_VC’;)O Ry xR* xC;E,E). We

o0
shall employ the notation a ~ > a;.
(V) j=1

Recall that due to Remark 3.26 this definition is not a proper refinement of the
notion of asymptotic expansion of (Volterra) symbols.

4.18 Theorem. Let vy € R and a € MS(V)O(Cl)(R+ xRy x R* x CG;E, E). Then
the Mellin left- and right-symbols ay (1, €, z), ar(r', &, z) associated to the operator
op};(a)(§) from Theorem 4.3 belong to MS(”‘%)O(CD (Ry xR* xG; E, E) and do not
depend on the particular weight v € R. The oscillatory integral formulas for ar,
and ap in terms of a from Theorem 4.3 hold for z € C, and the mappings a + ay,
and a — ap are continuous.

Moreover, we have the asymptotic expansions in the sense of Definition 4.17:

= 1

ar(r,&z) ~ Z—,65(—T’arr)ka(r7r',f,z)|r,:m
) k=0 k!
=1

CLR(T'I,f,Z) Z ki( ) ak( r@r)ka(r,r’,f,z)h,:w‘

Proof. We carry out the proof for the left-symbol only, because the proof for the
right-symbol is analogous. In view of Theorem 4.3 the left-symbol ay, is given by
the following Mellin oscillatory integral formula:

L(r, & z) // ’"arsr f,z+m)—d‘n, (1)

RR,

which apriori holds for z € F%7V in the non-Volterra case, and for z € ]HI%JV in

the Volterra case. Note that formula (1) does also make sense for z € C, which

provides an analytic extension to the whole complex plane. More precisely, we

see that ay(r, €, 2)|r, X is the left-symbol associated to a(r,r', &, 2)|r, i for every
27 27

v € R, and we have

M S“e y(Ry x R x IHI1 —wE E) in the Volterra case

(r€.2) {M Sébc’l) (Ry xR" xT1_;E ,E)  in the non-Volterra case
r ?
as a smooth function of v € R, i. e.,

(r.€.2) C¥ (R4, Sg;(lcl) (R*xC; E,E))  in the non-Volterra case
’ C¥ Ry, Sy (R <G E ,E)) in the Volterra case.
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For « € Nj and f € Ny we see that 8“85aL is the associated left-symbol to
8“85a € MS(“V)‘gl Cllﬂ\f e(]R x Ry x R* x G, E,E). Consequently, it remains
to show that the derivatives with respect to r € Ry in (1) remain bounded in

S(“VK)O(CZ) (R*xC; E, E) for r € R,

We prove by induction the following formula:

O kar(r, €, 2) = ()// I (B )k—d ](r,sr,ﬁ,z—(k—j)-l—in)%d‘n.

(2)
Note that T x_;)(9,) (0, )"V a € MSE; i¢ VI0(e l)(]R{+ xRy xR xC, E,E) for j € Ny
in view of Proposition 3.25, where T’ denotes the translation operator for functions
in the complex plane. Consequently, formula (2) may be rewritten as

k

O a2 =3 (f) (T-5) (@Y (0)a) 3)

=0

and from the already proven part of the theorem we obtain the boundedness of
(0r)kay, for r € Ry as desired.

For k = 0 formula (2) precisely becomes (1). Let us consider the case k = 1 first.
Regularizing the Mellin oscillatory integral (1) yields

z)://si" a(r, sr, f,z+m :—// (logs) 2

RR4 ToRy

1+a)[(5=a) (¢~ <—r’aw>2)”a) (rosriz+ 0] 2,

where v € Ny is chosen sufficiently large. For s € Ry we may write

81‘%7_”: / s$(1+ 92) [(ﬁ)u ((2 - (—r'&,r)Z)Va) (rysr &,z + ()] d¢

o

211 s$ (14 87) [(#)%(2 - (—r'ar,)z)”(ara))(r, s, &,z + C)] d¢

o

t 35 [ 04 (52a) (o 2= (2 0) o2 0]

To
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Due to Cauchy’s theorem the second integral equals

%/Sc(lmg)[(ﬁ)"(aﬂ@—( F9)?)"a) (rsm, 6,2 — 14 0)] dC
To

- 271ri /84(1 +;) [(2 - (gl— 1)2)V
1)
(@=(=r"0) = 1*)" (00a) ) (r, 57,6, 2 = 1+ O] d.

Summing up, the derivative d,ar(r,§, z) is given as

2m// (ogs) > (1+32) [ (5 (2) (2~ (+'8.))" (0,a))

F0R+

s 0] 2 [ o209 (geeys)

F0R+

((2 —((=r'0p) — 1)2)"(6,@))(7« sr,,z—1+ C)} —d¢ =

27m// (0ra)( rsrﬁ,z-l—()—d(-l—

F0R+

tom [ [ @ea)msngz—1+0 T

F0R+

i. e., formula (2) holds for k¥ = 1. Now assume that (2), (3) holds for some k € Ny .
We may apply the above considerations involving one derivative only to the terms
in the summation in (3). This at once implies the validity of (2), (3) in case of k+1
derivatives, i. e., these formulas hold for all £ € Ny by induction. The continuity
of the mappings a — ar and a — ag follow from the closed graph theorem.

The asymptotic expansion formulas for a;, and ag in terms of a follow with the
above considerations analogously to the proof of Theorem 4.3 via Taylor expansion
in the Mellin oscillatory integral formulas. d

4.19 Definition. Define
MOL”’ (]R+ R*; E E) = {opy,(a)(§); a € MS‘”Z (@+ xR*xCFE E)},

MyoLl) (Ry ;R B, B) = {op}(a)(€); a € MSEL ., By xR x G E,E)}.

In view of Theorem 4.18 op},(-)(£) provides an isomorphism between the operator
spaces and the corresponding (left-) symbol spaces. Via that isomorphism we carry
over the topologies which turns the operator spaces into Fréchet spaces.
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We do not refer to the particular weight v € R which is on the one hand justified
by Theorem 4.18, and on the other hand by Proposition 4.15.

4.20 Theorem. Let E, E, and E be Hilbert spaces with group-actions {Ko}s
{ko}, and {Rk,}, respectively. Let a € MS(“\;/K)O(CZ) Ry x R* x GE,E) and
b e M55Q§0(cz)(ﬁ+ x R" x C;E,E). Then the Leibniz-product a#b belongs to
MS(”‘;T)“O;(ZCZ) (Ry x R* X C; E, E) and is independent of the particular weight v € R.
The oscillatory integral formula (4.ii) for a#b in terms of a and b from Theorem
4.5 holds for z € C, and the mapping (a,b) — a#b is bilinear and continuous.

The following asymptotic expansion holds for a#b in the sense of Definition 4.17:

o0

a#tb ~ Z%(@fa)((—r&,)kb). (4.viii)

V)=

Moreover, we have the following formula for the derivatives of the Leibniz-product:

k

ok (a#t) = 3 (’;) (T ;)da)#(35-7), (4.x)

Jj=0

where T' denotes the translation operator for functions in the complex plane.

Proof. The assertions follow analogously to the proof of Theorem 4.5 from The-
orem 4.18. Formula (4.ix) for the higher derivatives of the Leibniz-product follows
as in the proof of formula (2), (3) in the proof of Theorem 4.18 via investigating
the oscillatory integral formula for the Leibniz-product (4.ii). O

4.21 Definition. Let op},(a)(€) € MoL*‘(R,;R*; E, E). For k € Ny we define
the conormal symbol of order -k via

- 1
o3 (03 (a)(€)) (€ 2) i= — (0Fa) (0., 2). (4)
The conormal symbol of order 0 is also called conormal symbol simply.

Let op},(b)(€) € Mo L#*(Ry; R*; E, E). Then we obtain from (4.ix) the following
formula for the conormal symbols of the composition

o3t (0P3(a#b)(€) = Y Tyopf (0P (@)(€) oy (003, (B)(E)),  (4xi)
pta=k

where T' denotes the translation operator for functions in the complex plane.

4.22 Proposition. Leta(r,r',§,z) € MS(“;,K)O(@+ xRy xR xC; E, E), such that
a(r,r',&,A) =0 for |5 — 1| < ¢ for a sufficiently small ¢ > 0. Then op},(a)(§) =

op;(c)(§) with a symbol ¢ € MS(_V‘?;’O(E+ xR* x C;E, E).
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4.23 Corollary. Leta(r,&,2) € S(”",)O(]RJF xR"* XC;E;E); and p,1 € CF (Ry)

such that dist(suppy,suppy) > 0. Then pop),(a)(§) ¥ = opy,(ae,y)(§) with a
symbol a,, y € MS(V)O(]RJr xR"xC; E, E). The mapping a — a, .y Is continuous.

4.24 Theorem. Let {Ey,E,FEi;k} and {Ey, E, E\; &} be Hilbert triples, and let

a(r,€,z) € MSS,) (R x R* x C; Eo, Ey).

For each § € R the formal adjoint symbol a*%) (r, ¢, 2) from Theorem 4.12 belongs
to MSé‘)(el) (Ry x R* x C; Ey, Ey), and it is independent of the particular weight
v € R. The identity (4.v) is valid for all z € C, and the mapping a + a*?) is
antilinear and continuous.

(*,0)

Moreover, the following asymptotic expansion of a in terms of a holds in the

sense of Definition 4.17:

a9 (r €, z) Z k,ak —rd)*a(r,£,1 - 20 —2)*. (4.xii)

5 Kernel cut-off and Mellin quantization

5.1 The Mellin kernel cut-off operator

5.1 Definition. Let E and E be Hilbert spaces with group-actions {#,} and
{R,}, respectively. Define the Mellin kernel cut-off operator with respect to the
weight v € R by means of the Mellin oscillatory integral

(1, (000) 6.2 = [ [rmotale.z —in) T dr (5
R O

for (§,z) e R* xI'y_, and p € CF(Ry), a € SHE(R™ x Iy
notions apply in case of scales of Hilbert spaces involved.

: E, E). Analogous

-y

5.2 Remark. We may rewrite (5.1) as

(Hy(@)a) (6,5 — 7 +i7) = (H(Sy¢)as) (€,7)

with the Fourier kernel cut-off operator

(H()b)(&,7) = / / e~ p(B)b(E, T — ) dt AN,
R R
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where Sy : CF(Ry) — Cp°(R) is as in (2.1), and a,(¢,7) := a(§, 3 —7 +i7).

Therefore, the properties of the Mellin kernel cut-off operator can be traced back
to those of the Fourier kernel cut-off operator, which is rigorously discussed, e. g.,
in Krainer [23], [24]. In particular, the following theorem that summarizes some of
the relevant functional analytic properties is a consequence of this relation.

5.3 Theorem. Let {E;} and {E;} be scales of Hilbert spaces with group-actions
{Kko} and {R,}, respectively, as in Definition 3.4. We again use the abbreviations
& and & from Notation 3.5.

The Mellin kernel cut-off operator with respect to the weight v € R is a continuous
bilinear mapping in the spaces
0 4 n . G 4 n

Hy: Cp Ry ) xSy (R x Ty 5E,6) — S (R* x Ty _

o4

:€,6).

o)

It restricts to continuous bilinear mappings in the spaces

O3 (Ry )X SY(p) (R x Hy
H, i S Cgo(Ry ) xSpiy (R* x Ty s

C5° (Ry ) xSy (R x Hy

4 n . G
66— 8L (R xHy i€, 6)

£,€) — SEL (R X GE,E)

:£,8) —>5M (R* x C;&,€).

-1 V,0(cl)

:€,€) in

The following asymptotic expansion holds for H.,(¢)a € SH¢(R™ x Iy

terms of p € C%¥(Ry) and a € SHY(R™ x F%JV;E,EN'):

(r0,) p(r)|p1 - D

M8
==

Hv(‘P)a ~
k

I
=)

In case of Volterra symbols we obtain
- 1
Z k_ |r 1 6 a.

Ifp € C°(Ry) and a € SH*(R™ X1 &,€) we have for every § € R the following

asymptotic expansion of H7(<p)a|r%_7_5 € SH(RM x Ty s £,€) in terms of ¢

and a:

(o]

1 _

H, (¢ a|F1 s ~> k_ Y*¥r=0p(r)|,=1 - D¥a.
k=0

If ¢ € C§°(Ry) such that p = 1 near r = 1, then the operator I — H.(v) is
continuous in the spaces

SHER xT1_;€,€) — SR xT1_;€,€)
S”(]Ranxﬂl £,8)— S

37

I- Hv(d’) {
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5.4 Remark. The Mellin kernel cut-off operator can be used to give a proof for
the existence of Volterra symbols having a prescribed asymptotic expansion.

More precisely, let a; € S“jj;l(]R{” x Hy_;€, §), where £ and € are as in Notation

3.5, and pj — —oo as j — oo. To construct a symbol a € S‘E/;Z(R” X ]HhE £,6),

s
o0

where 7 = max{u;; j € N}, with a o >~ aj, we may define the following uncon-
i=1

ditionally convergent sum

a:=Y H,((r))a;,
j=1

where ¢ € C°(Ry) with » = 1 near r = 1, and (¢j)jen € Ry with ¢; = o0 as
j — oo sufficiently fast. To establish the convergence of this series makes use of
the analyticity of Volterra symbols and a related Paley—Wiener effect in the Mellin
preimage. Once this is achieved the desired assertion follows, using Theorem 5.3.
Moreover, by replacing a by H,(1)a, we can even construct a as a holomorphic
Volterra Mellin symbol, which provides a proof for the existence of holomorphic
Volterra Mellin symbols with a prescribed asymptotic expansion.

A rigorous discussion based on the Fourier kernel cut-off operator can be found in
[23], [24] (see also Remark 5.2 above).

5.2 Degenerate symbols and Mellin quantization

5.5 Lemma. Define M : Ry x Ry — R via
{log(r)—lc:g(r') if r # "

M(r,r') = rer
(r,r) = ifr=r'.

Then M € C*(Ry x Ry), and M is strictly positive.

Proof. That M is strictly positive is evident from the definition. For r # ' such
that |r — /| <7’ we may write

!

1 r—r > (=1)* (r — ")k
n __ —
M(r,r)—r_r,log(l‘F r! )_Zk+1’r'kT
k=0

This shows that M is a smooth function as asserted. O

5.6 Definition. Let F and E be Hilbert spaces with group-actions {s,} and
{&,}, respectively. For ¢ € C°(R,) and a € S¥*(R" x R; E, E) define

Qp.a)(€,2) = / / e~ iMeiMs o (s)a(€, ) ds dn (5.i)
R R
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for (¢,2) e R* x C.

Moreover, for every v € R we define for ¢ € C{°(Ry) and a € SHY(R™ x
Uy B E)

=7
Q4 (¥, a) (¢, 2) =L //sce"(“”zw(s)a(f,c)%dg (5.iii)
0

for (§,2) e R* x C.

If p = 1near r = 1, and ¢ = 1 near r = 1, we simply write Q(¢,a) = Q(a) and
Q~(¥,a) = Q~(a), respectively. The mapping @ is called Mellin quantization, Q-
is called inverse Mellin quantization with respect to the weight v € R.

5.7 Theorem. Let {E;} and {E;} be scales of Hilbert spaces with group-actions
{k,} and {#,}, respectively, and & and & as in Notation 3.5.

a) The operator ) from (5.ii) provides continuous bilinear mappings

Q :

(cl) ) (cl) )
C5° (Ry )X Sy () (R X B E,€) — SHis ) (R XC €, E).

{030(&)xs” (R* x R;E,E) — SEE (R*XC;E,E)
V,0(el)

Moreover, there are universal coefficients (cg,j(,7)) depending neither on a

nor on the Hilbert spaces, but only on {(0%¢)(1); v € No} and v € R, such

that the following asymptotic expansion holds for Q(¢,a)|r, i respectively
1o

Qp,a)|u, o in terms of a:
1-

1 ) > & N
Q((pa a) (f: 5 -7 + ZT) ("\;) <p(1)a(§, _T) + Z Z Ck,j (907 7)(_7-)] (67176-1-] a) (57 _T)
k=1j=0
(5.iv)
for T € R, respectively T € H_.
b) The operator Qn, from (5.iii) provides continuous bilinear mappings
o, 030(R+)><s@§ (R® x F%w5575)~—> S;g’f(%) (R xC; €, ) )
CSO(RF)XS‘@’(CZ)(]R” X H%Jr;g,c‘:) — S(}:io(cl)(R”xC;E,E).
The spaces in the image are given by means of the isomorphism
Sthiogen B X G E,E) 3 al(€, 2) — al, —iz) € S o) (R X G E, E).

Moreover, there are universal coefficients (dy,;(1,)) depending neither on
a nor on the Hilbert spaces, but only on {(82¢)(1); v € No} and v € R,
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such that the following asymptotic expansion holds for QW(’I/J, a)|gr, respectively
Q~(¥,a)|m, in terms of a:

~ 1 .
Qy(¥,a)(&;7) & pMa(§, 5 —v —i7)

2
oo k
#3036, (—im (95 a) (6, 3~ —i7)
k=1 j=0
’ (5.v)

for T € R, respectively 7 € H.

¢) For ¢,7p € C§°(R}) such that ¢ =1 and ¢ = 1 near r = 1 we have

i S—OO(R”XF%,V;E/‘:S)
Q(Q’y(a)) —ac€ {SVOO(R”X]I'H%W;E;E%
_ 7O°(RHX]R;57£)
@+(Qa)) —a € {SVOO(R”XH;g,g)-

Proof. We may restrict ourselves to the case of single Hilbert spaces E and E. For
the proof of the continuity of ) and Qn, in a) and b) we simply have to show that
the corresponding spaces are mapped into each other as asserted. The (separate)
continuity then follows from the closed graph theorem. From the asymptotic ex-
pansions in a) and b) we obtain that classical symbols are mapped to classical sym-
bols, hence it suffices to consider general symbols and to show the validity of the
expansions (see also Proposition 3.25). Let us first prove a). Clearly, Q (¢, a)(&, z)
depends holomorphically on z € C. Moreover, we may write

Qp,a)(&, 0 +ir) = Q(r°p(r),a)(&,iT).

For the family {r—%¢p(r)} C C§°(Ry) is locally uniformly bounded for § € R, the
proof reduces to show, using Proposition 3.25, that

0 . OF Re)xSHR" x B B, B) — S!(R" xTo; E, E)
T O (R ) x SHHRY x H; E, E) — SI4(R" xHy; E, E)
as continuous bilinear mappings, i. e., the spaces are mapped into each other, as

well as the asymptotic expansion. With the function M from Lemma 5.5 we may
rewrite Q(p, a) as

Q. = [ [ o6t (s, Dale M D +0) Tdn ()
R O
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for either 7 € R or 7 € H_ in the Volterra case. Note that ¢ has compact support
in Ry. Regularizing the oscillatory integral reveals that @(p,a) belongs to the
corresponding spaces as asserted.

Let us now prove the asymptotic expansion. Carrying out a Taylor expansion in
1 = 0 shows that we may write for each N € N:

N—1 _1\k o0 ) s
Qp.aein = > S [ [smfots)snrs, 1/ (@ka) (€ ~MGs,0m) 2ty
k=0 R D
()
+rn(&,i7),

where

1 _ N_1 [e%e} .
ry(&,iT) ::/%(_1)N //smnN@(s)sM(S,l)NJrl
0

R O
(07a) (6, ~M (s, 1)(r + 0n)) = ay o
Now we see that

SH=NEYR® xTo; E, E)

e e {S\‘jNu(R”XHo;E,E);

while () equals

r=1

5~ )
- o) e 15 (0ka) (6, ~M(r, D7) |
k=0

which proves the asymptotic expansion.

The proof of b) is analogous, noting that we may rewrite Q. (1, a) as

QW a)(€,7) = / / e =01 g s )
(2)

a(g, % — v — M(s,1)7 (it + in)) ds dn.

Recall that ¢ € C3°(R}) by assumption.

Now let us prove c¢). Due to the compact support of ¢ and ¢ we conclude, that



46 Thomas Krainer

the compositions Q(Q-(a)) and Q. (Q(a)) are given as
Q(Q4(a))(&, % —y+ir) = // 5" (o) (%)a(& % — v +ir —in) % i,
R 0
Qe = [ / e () (=5 + 1)a(e, 7 — ) ds
R

i. e., the first composition equals the Mellin kernel cut-off operator with respect
to the weight v € R and the function (cpz/;) (%) (cf. Definition 5.1), while the
second one equals the Fourier kernel cut-off operator with respect to the function
(1) (=r 4+ 1) (cf. Krainer [23], [24], and Remark 5.2). Now we obtain the desired
assertion from Theorem 5.3, noting that ¢y = 1 near r = 1. d

5.8 Remark. Let ¢,¢ € C§°(Ry) such that ¢ = 1 and ¢ = 1 near r = 1.
Then by Theorem 5.7 the mappings Q : a — Q(a) and Q., : a — Q. (a) provide
isomorphisms

[ SELR X RE,E)/ST(R x R;E,E)
— S R XC E,€)/S5™ (R xC; €, )
Q: Sl (Y x HLE 5)/5 (]R” x H; €, E)
\ — Stipey R XC E,€) /Sy (R xT;€,E),
[ SESRY X Ty _i8,6)/S (R x Ty _;&,8)
5. — Sl R XCE,E)[S,5° (R xC,€, )
v S{j{d)( R" x Hy_;€, £)/Sy>(R" xHy ;& &)
\ S (B G E,6)/8, 55 (R X, ).

On the level of quotient spaces, () and Qv are independent of ¢ and 1, respectively,
and we have Q. = Q! (cf. part ¢) of Theorem 5.7).

5.9 Theorem. Let E and E be Hilbert spaces with group-actions {x,} and {,},
respectively. Let ¢, € C§°(Ry) be fixed such that ¢ =1 and ) =1 near r = 1.

a) Let @ € C®°(Ry,SHYR" x R; E, E)), and define a(r,&,7) := a(r,&,r7). Then
we have for every v € R

!

op, (a)(€) — opl, (Q(@))(€) = op, (1 — ) (=) a) (&)

r

as operators in C§°(Ry, E) — C®(Ry, E).
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b) Leta € C™(Ry, S (R* xT1_; B, E)), and define a(r, &,7) := Q. (a)(r, &, 7).
Then we have

,,_I

op3(@)(€) — op,(a)(€) = opy, (1 = ¥)(=)a)(¢)

r

as operators in C§°(Ry , E) — C®(Ry, E).

Proof. Let us first prove a). In view of the analyticity of Q(a) we conclude from
Proposition 4.15 that we only have to consider the case v = % We write

!

a(r,&,7) = p(Da(r,&,7) + (1 - )(D)alr &, 7).

Consequently, for the proof of a) we have to show

!

op,(p()a) (€) = o}, (Q(@) (¢

as operators in C°(Ry, E) — C®°(R,,E). For u € C°(R,, E) we have with
the function M from Lemma 5.5

(Opr(sﬁ(: // (=7 o (= alr, €, Tyu(r') dr' dr

RR,

:/7 MG e (Dalr, € MOt O ar

1
The latter Mellin oscillatory integral equals (op3;(g)(&)u)(r) w1th the parameter—

dependent) Mellin symbol g(r,r',&,ir) := r'M(r,r" )¢ (% )a(r r')7). For
1
the parameter-dependent Mellin operator 0 p2(g)(§) is operly supported (see,
l
e. g., Schulze [40], [42], [43]), we have opM( )(€) = op3;(h)(€) with the Mellin
symbol

h(r,&,ir) =" (0p2 () ()r' ) (r)

o0
; d
= [ [ smatrosmgitn + 1) T an
R O

Inserting the definition of ¢ and formula (1) in the proof of Theorem 5.7 yields
that h = Q(¢,a) = Q(a) as asserted. This proves a).
The proof of b) is similar. First we decompose @ as

! !

(.65 — 7 +im) = 6(5)alr & 5 — 7 +in) + (L= (56, 5 — 7+ i)

r
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which reduces the proof to show that

!

op} (¥ (%) @)(€) = op, ()(€)

as operators in C°(Ry, E) — C®(R,, E). With the function M from Lemma
5.5 we may write for u € C° (R}, E)

ok Gaenm = [ [(5) G wGag it D ar
R O
://ei(r—"’)fir,M(lr,r,)(;)%_”w(%’)a(r,g,—M(r,r’)_lir)u(r')dr’ dr,

RR,

i. e., we have a representation of the Mellin operator by means of a pseudodif-
ferential operator based on the Fourier transform with the parameter-dependent

o N .
SymbOI g(r, T",f,T) = W(%)2 Ww(%)a(r,f,—M(r, TJ) LLT)‘ For Opr(g)(é-)
is properly supported we obtain that op,.(g)(§) = op,.(h)(€) with h given as

h(r,&,7) = e~ (op,(9)()e™ 7) (r)
= //eii(rrfl)"g(r, rr',ﬁ,g +7) dr' dn,
RR,
i. e, from the definition of g and formula (2) in the proof of Theorem 5.7 we see

that h = a as asserted. O

5.10 Remark. Theorem 5.9 motivates the name “Mellin quantization” for the
operator @ and “inverse Mellin quantization” for Q. Together with Theorem 5.7
it follows, that modulo “smoothing” (Volterra) operators we obtain isomorphisms
between Fourier pseudodifferential operators with degenerate (Volterra) symbols
on the half-axis and (Volterra) Mellin pseudodifferential operators.

Notice, in particular, that if in a) or b) the dependence of the symbol G on r € Ry
is CF (R4, ), then so is also the dependence of Q(a@) or Q(a), respectively.

The technique to express Mellin quantization via explicit Mellin oscillatory integral

formulas was used first in concrete situations, especially edge symbolic calculus,
by Gil, Seiler, and Schulze [14], [15], see also Seiler [46].

6 Parabolicity and Volterra parametrices

6.1 Ellipticity and parabolicity on symbolic level

6.1 Remark. In the present section we recall the notion of ellipticity for general
and holomorphic operator-valued Mellin symbols, and we introduce the notion of
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parabolicity for Volterra symbols. In particular, we focus on the study of symbolic
invertibility within the corresponding classes up to lower order terms, which is the
starting point for the construction of parametrices in the next section.

Notice, in particular, that the study of parabolicity requires a more subtle treat-
ment on the side of the covariables than the study of ellipticity for there is the
additional analyticity condition involved. Techniques involving excision functions
have to be replaced; the translation operator in Volterra symbols provides the
appropriate tool to overcome these difficulties.

6.2 Definition. Let F and E be Hilbert spaces with group-actions {s,} and
{R,}, respectively.

a) A symbol a(r,f,% —y+it) € M, SH{ Ry x R* xT1_; E, E) is called elliptic

1
if there exists R > 0 such that for (¢,7) € R*xR with |(¢,7)|, > R and all
r € Ry there exists a(r,&,3 — v +i7)~! € L(E,E), and

SU-p{“I’/”'(_;-,—)Z (a(ragaé -7+ Z'T)il)’%(ﬁ,‘r)en <£7T>?) re ]R-I—a |(£7T)|€ > R} < 00.
(6.)

b) A symbol a(r,&, 3 —v+() € MVS‘*};Z(KL xR x Hy_ 5 E,E) is called parabolic
if there exists R > 0 such that for (£,() € R*xHy with |(&,()[¢ > R and all
r € Ry there exists a(r, &, 3 — v+ ()7! € L(E, E), and

sup{llsgle, (a0 & 5 7+ 0o, 16 QL5 r € Ry, 16,0l > B < oo
(6.ii)

6.3 Proposition. Let a(r,&,z) € M, SH (R x R* x F%JV;E,EN'). The following
are equivalent:

a) a(r,&, z) is elliptic.

b) There exists b € M,S™"! Ry x R" x I'y_,;E,E) such that ab — 1 €
M, S~ Ry x R* x Ty s B, E) and ba—1 € M, S~ (R x R* x'y__; E, E)
for some ¢ > 0. (It is possible to choose € = 1.)

In case of a classical symbol a(r,&, z), a) and b) are equivalent to the following:

¢) The principal symbol a,)(r, &, % — v+ i7) is invertible for (¢,7) € (]R” XR) \ O
and all r € Ry, and we have

1 N
supllag) (r, €5 =7 +7) ez 7 € R, |67l =1} <oo. (6.
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d) There exists b € MWS;“;Z(RF x R* x F%_V;E,E) such that ab — 1 €
M, S5 (Ry xR x Ty 3 B, E) andba—1 € M,S; Ry xR xT'y__; B, E).

Moreover, if a(r, €, z) € M,YS“};K(]KL x R* x Hy
alent:

_; B, E), the following are equiv-

i) a(r,&, z) is parabolic.

ii) There exists b € M,S,"* (R, x R" x H%JV;E,E) such that ab — 1 €
M,SyT (R, xR xHy _; B, E) and ba—1 € M, Sy % (Ry xR" xHy _.; E, E)
for some ¢ > 0. (It is possible to choose € = 1.)

In case of a classical Volterra symbol a(r,&, z), i) and ii) are equivalent to the
following:

iii) The principal symbol a(,)(r, &, % —v+() is invertible for (£, () € (]R” XHO) \O
and all r € Ry, and we have

1 _ .
supllag (€5 =7+ O ey 7 € Ry [ Cle =1} < oo, (6i)

iv) There exists b € M,S,% (R, x R" x Hy_;E,E) such that ab — 1 €

L
M,Sy b (Ry xR xHy _; B, B) andba—1 € M, S (Ry xR xHy _; E, E).

The ellipticity and parabolicity conditions are invariant with respect to additive
perturbations of (Volterra) Mellin symbols of lower order.

Proof. Note that in view of Definition 6.2 the conditions in b) and ii) are clearly
sufficient for the ellipticity or parabolicity of the symbol a, respectively. Moreover,
the implications d) to c¢), b), as well as iv) to iii), ii) are evident.

The implications a) to ¢) and i) to iii) in the classical case are due to the fact that
the invertibility conditions (6.i), (6.ii) in Definition 6.2 are easily seen to be invari-
ant with respect to additive perturbations of lower order. To make the argument
more precise, this invariance reduces to require the invertibility for xa,) instead
of the full symbol a, where x is a smooth 0-excision function in the covariables
(&, 1) € R*xR or (§,() € R*xHy, respectively. In view of the homogeneity of the
principal component a,) the conditions (6.i), (6.ii) then reduce to (6.iii), (6.iv),
respectively.

What remains to show are the implications a) to b), ¢) to d), as well as i) to ii),
and iii) to iv).
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Let us assume that a) or ¢) holds for the Mellin symbol a, and let x € C*°(R" x R)
be a 0-excision function with x = 0 for |{,7| < R+ 1 and x = 1 for |, 7], >
R + 2, where R > 0 is chosen from the ellipticity condition in Definition 6.2. For
(r,& 5 —7+i7) € Ry x R* x I'y_ define

1 . ) oL —y4ir)! in the general case
b(T‘,f, 5 _'7+ZT) = X(f T)(G(T f 2 17 T)) . ‘Il gen I‘
2 X&) (ag(r, & 5 — v +1iT)) in the classical case.

Thus we see that b € M, S “Z(]R+ xR x 'y _ ;E‘,E), and moreover ab — 1 €
4 —1;¢ n

MWS(C;) (R x R™ x F%_,Y,E,E) and ba — 1 € MA,S(C;) Ry x R™ x F%_,Y;E,E)

as desired.

Now assume that i) or iii) holds for the Volterra Mellin symbol a, and let R > 0
be chosen according to the parabolicity condition in Definition 6.2. For (r,¢&, % —
7+ () € Ry xR x Hy ., where ¢ € Ho, define

1 a(r,&,1 —y+ R+¢)™"  in the general case
b(r,§,5 =7+ = (al y 1 ) -1 .

2 (agy(r, &5 —7+1+()) in the classical case.
From the investigations on the translatlon operator in Proposition 3.20 and The-
orem 3.22 we conclude that b € M, S|, ”’ (M x R" x Hy 5 E, E), and moreover

ab—1 € M,Sy (i (Ry x R x Hy EE) and ba — 1 eMS;(lcf)(lR+ x R x

Hy_.;E,E). O

6.4 Definition. Let E and E be Hilbert spaces with group-actions {#,} and
{R,}, respectively.

a) A symbol a(r, &, z) € MSg“Z(KJr x R" x C; E, E) is called elliptic if there exists
v € R as well as R > 0 such that for ({,7) € R* xR with |({,7)]¢ > R and all
r € Ry there exists a(r, &, 3 — v +i7)~" € L(E, E), and

&) reRy, [(§7)]e > R} < 0.
(6.v)

- 1 N1y
sup{||/<a<;T>e (a(r, &, 37 +i7) 1)/<;<£,T>e|

b) A symbol a(r,&,z) € MS{; (]R{+ x R x C; E,E) is called parabolic if there
exists v € R as well as R > 0 Such that for (¢ ,() € R"xHy with [(£,()]e > R
and all r € Ry there exists a(r, ¢, s —7+() teL(EE),and

Sup{HKJ(E%Oe (a(ragaé -7+ C)_l)k(fﬁ)en <£7C>?) re R-ﬁ-: |(£7C)|€ Z R} < 0.
(6.vi)
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6.5 Remark. The ellipticity and parabolicity condition for a holomorphic (Vol-
terra) Mellin symbol a(r, &, z) means that its restriction in the covariable z € C
to a weight line or half plane is required to be elliptic or parabolic in the sense
of Definition 6.2, where the invertibility is additionally assumed to hold up to the
origin r = 0.

As in Proposition 6.3, it is easy to see that in case of a classical symbol a(r, £, z) the
ellipticity condition (6.v) is equivalent to require the invertibility of the principal
symbol a,(r, &, % —y+ir) for 0 # ({,7) € R* x R and all r € Ry with

1 L = .
sup{llagy(r, &5 =7 +i7) Mgy 7€ B, 67l =1} < oo (6viD)

Analogously, the parabolicity condition (6.vi) for a classical holomorphic Volterra
Mellin symbol is equivalent to require the invertibility of the principal symbol
ag(r,é&, T =7+ for 0#£(£¢) € R" x Hy and all r € Ry with

1 _ —
supllag) (&5 = 7+0 ez 7€ By 16 =1} <o (6vii)

From the investigations on holomorphic (Volterra) symbols in Section 3.4, espe-
cially Proposition 3.25, we conclude that the ellipticity and parabolicity condition
in Definition 6.4 are in fact independent of the choice of the particular weight line
of half-plane, i. e., once they are fulfilled for some v € R they hold for all v € R.
This is due to the fact that all restrictions to weight lines or half-planes coincide
up to lower order terms.

The following theorem establishes the equivalence of ellipticity and parabolicity
for holomorphic (Volterra) Mellin symbols to the corresponding invertibility result
within the appropriate symbol classes up to lower order terms.

6.6 Theorem. Let a(r,&,2) € MS"*

o(el) (Ry x R* x (C;E,E). The following are

equivalent:
a) a(r,€,z) is elliptic.

b) There exists b € MSy/) (R, x R" x C; E, E) such that ab—1 € MSq ) (R x

R" x G E,E) and ba — 1 € MSy, 5} (Ry x R" x G E, E).
Moreover, for a(r, &, z) € MS{?ZO(C[) (R xR"xC; E, E) the following are equivalent:

i) a(r,&, z) is parabolic.

Ry x R* x G E,E) such that ab — 1 €
(Ry xR* x G, E,E).

ii) There exists b € MSVO( l)(

M85 Ry x R x G E, E) and ba — 1 € MS, 5
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Proof. Clearly, the existence of the symbol b(r, £, z) is sufficient for the ellipticity
or parabolicity of a(r,&, z), respectively.

Now assume that a(r, €, z) is elliptic or parabolic, respectively. Following the lines
of the proof of Proposition 6.3 it is easy to see that for some fixed v € R there
exists

b £.2) O%(Ry, S l“)e(]R xTy_ i E,E)) under assumption a)
r ? - . .
Cy Ry, Syt Viel )(]R{ X ]Hh 4B, E)) under assumption i)
such that
(alr, )b—1€CFR:, S (R" xTy_; E,E
. . 1t rom under assumption a),
blalr, ) — 1€ OF (s, S (R x Ty ;B E

(alz, )b—1€CF Ry, Sy (R xHy_; B, E
.o o= Lt under assumption i).
b(a|H%_7) -1eC3 (]R+,SV( l)(

According to the properties of the Mellin kernel cut-off operator H, given in
Theorem 5.3, we may replace b in the above identities by b := H,(p)b, where
v € C§°(Ry) with ¢ = 1 near r = 1; notice, in particular, that b — b is of order
—oo with respect to the weight line F%—v or half-plane HIE_,Y, respectively, and we
have b € MS(V)O( )(]R{+ x R" x C; E/, E). Using Proposition 3.25 we now conclude
that b fulfills the assertion in b) or ii), respectively. O

6.2 The parametrix construction

6.7 Remark. Using the algebraic properties of the (Volterra) Mellin calculus,
i. e., the analysis of compositions from Theorem 4.5 and Theorem 4.20, as well
as the analysis of ellipticity and parabolicity on symbolic level from the preceding
section, we are now in the position to establish the existence of (Volterra) paramet-
rices within the calculus for elliptic and parabolic Mellin operators. The possibility
to carry out asymptotic expansions within all symbol classes under consideration,
see, e. g., Remark 3.8 (for general symbols) and Remark 5.4 (for Volterra and holo-
morphic (Volterra) symbols), enables us to employ the classical formal Neumann
series argument in the construction of the parametrices.

6.8 Theorem. Let E and E be Hilbert spaces with group-actions {x,} and {,},
respectively, and let

6.7) M, SIS (R xR x Ty B, E)
’ MShL Ry xR X G E, E).

The following are equivalent:
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a) a(r, &, z) is elliptic.

b) There exists

M,S "Ry xR* xT1__;E E
br.g,2) € {0 By X REXTy o B, B)
MS, (R, x R" x C,E, E)
such that
a#tb—1¢€ {MWS_OO(KL xR X F%—VEE’E)

MS;®([Ry x R* x C; E,E),

M,S57*= R*xT:_;EE
bffa—1¢€ 77 (_RF % XLy  E)
MS;*(Ry xR* x G E, E).

In particular, we have

M,L= R E,FE
oD}y @)(E)op} (1)) ~ 1 € {M; E b

v v M,L™>°(R;R"; B, E)
opyr(b)(§)opy,(a)(§) — 1 € {MOL—OO(M;RT‘;E,E)-

Moreover, let

il n . .
ar,,2) € § 1SV (e X B By i B, )
MSG o Ry x R x G E, E).

Then the following are equivalent:

i) a(r,&, z) is parabolic.

ii) There exists

—pit n =
bir. 6, 2) € | Sl (Be X B xCHy i B, )
Msv,g(cz) (Ry xR* xG E,E)
such that
a#b—1¢ MVS_‘7°°(_R+ xR xH,_; B, E)
MSV’%O(R+ x ]Rn X (C)E;E)a

o _
bfta—1c¢ MFYS_V (_]R“L x R* x Hy _y; E, E)
MSy SRy xR x G E, E).
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In particular, we have

M, Ly (Ry ;B B, E)

Par(@)(E)op3 () ~ 1 € {MV,OL—OO(M;W;E,E),

M, L™ (Ry ;B B, E)

op}s (D) (€)op}s(a)(€) ~ 1 € {MVOLOO(MM.E 5.

Proof. Assume first that we are given a symbol b(r, &, z) satisfying b) or ii),
respectively. In view of the asymptotic expansion of the Leibniz-product from
Theorem 4.5 and Theorem 4.20 we see that a#b = ab and b#a = ba up to terms
of order —1, and, consequently, ab — 1 and ba — 1 are of order —1, which implies
the ellipticity or parabolicity of the symbol a(r, &, z), respectively, according to
Proposition 6.3 and Theorem 6.6.

Now assume that a(r,&, z) is elliptic or parabolic. From Proposition 6.3 and The-
orem 6.6 we conclude that there exists a symbol

—pil LI
MVS(CZ“) (Ry x R™® x Féfw,E,E)

o= - in the cases a),
B MS(;(”C’D(]RJr xR"xC E,E)
b(r,¢,2) € e . X

MySy oy Ry x R* xHy 5 B, E)

C

MS, 5 (Ry x R* x G E, E)

in the cases i),

such that ab — 1 and ba — 1 are of order —1 in the corresponding symbol classes,
and thus the same holds true for a#b—1 and b#a—1 by the asymptotic expansion
of the Leibniz-product.

Now assume, for instance, that a#b = 1 — r with the corresponding remainder
term r of order —1, and let 7 be any symbol of order —1 within the same class
having the asymptotic expansion

o0
r o I;r#....#r.
k—times
At this stage of the proof it is important to having achieved the result about
asymptotic completeness of all symbol classes involved, i. e., that it is always pos-
sible to find symbols within the classes having a prescribed asymptotic expansion;
see Remark 3.8 and Remark 5.4.

It is evident from the asymptotic expansion that (1—7)#(1+7)—1 is of order —oo,
and, consequently, a# (b#(1 + 7)) — 1 is of order —co. Hence we have constructed
a symbol b(g) = b# (1 + ) that fulfills the assertions in b) and ii) with respect to
the Leibniz-product from the right. Analogously, we can construct a parametrix
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bry from the left, but bg) and by differ only by a term of order —oo, which
follows immediately from considering the product b(r)#a#bg), keeping in mind
the ideal property of the symbol classes of order —oo. Thus we may choose either
b:= bz or b:= b(g), and the desired assertion in b) or ii) follows. O

6.9 Remark. Asusual, a (Volterra) Mellin operator op},(a)(§) within the general
or holomorphic calculus is called elliptic or parabolic if its symbol a(r,&, z) has
this property.

From the considerations about Mellin quantization in Section 5.2 we see, how-
ever, that modulo smoothing (Volterra) operators the operator op},(a)(§) has a
representation as a standard (Kohn—Nirenberg quantized) pseudodifferential op-
erator on the half-axis with a degenerate operator-valued (Volterra) symbol (see
Theorem 5.9). More precisely, we have op},(a)(&) = op,.(b)(§) modulo smoothing
parameter-dependent (Volterra) operators, where b(r, £, 7) = a(r, &, r7) with

) C=(Ry, SH (R xR; E, E))
a(r,6,7) €4 o I A
C=(Ry, Sy, (R xH; B, E)).

Moreover, in case of classical symbols a(r, £, z), the identity

1 i N 1
a(N) (T', 67 5 -7 ZT) = a’(u) (’I", 67 T) = b(N) (’I", 67 ;T)

is valid for the principal symbols. In particular, using Proposition 6.3 and Theorem
6.6, this induces the notions of ellipticity and parabolicity for degenerate symbols
b(r,&,7), and Theorem 6.8 may be interpreted also as a result about the existence
of (Volterra) parametrices to elliptic and parabolic standard pseudodifferential
operators on the half-axis built upon degenerate operator-valued symbols.
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