Toeplitz Operators and Division
Theorems in Anisotropic Spaces of

Holomorphic Functions in the Polydisc

A.V.Harutyunyan'
Yerewan State University

Abstract. This work is an introduction to anisotropic spaces, which have an w-
weight of analytic functions and are generalizations of Lipshitz classes in the poly-
disc. We prove that these classes form an algebra and are invariant with respect to
monomial multiplication. These classes are described in terms of derivatives. It is
established that Toeplitz operators are bounded in these (Lipshitz and Djrbashian)
spaces. As an application, we show a theorem about the division by good-inner
functions in the mentioned classes is proved.

Key words and phrases: Toeplitz operators, anisotropic spaces, polydisc, good-
inner function

2000 Mathematics Subject Classification: 35J40, 47G30, 58J32.

!SuPPORTED BY THE DEUTSCHER AKADEMISCHER AUSTAUSCHDIENST (DAAD)



Contents

1

2

Introduction

The classes A(wi,... ,w,) and basic constructions
Main results

Toeplitz Operators in classes K(wl, cee,Wp)

Linear Continuous Functionals on HP(w) 0 <p <1 and Ap-
plications

9

14

17



1 Introduction

The significance of factorization into outer and inner functions in the theory
of Hardy classes and their applications is well known. As was shown in
1971 by Korenblum [1], V. P. Khavin [2] and F. A. Shamoian [3], such a
factorization can also be successfully used to investigate several classes of
functions which are holomorphic in the disk and smooth up to its boundary.
Their results were based on the invariance of most such classes under the
action of Toeplitz operators of the form T}, (f) = Py(f - h), where h is an
arbitrary bounded, holomorphic function in the disk, and P, is the Riesz’
projector.

These operators play important role not only for investigated questions
of factorization but also in investigations of closed ideals in algebras of ana-
lytic functions, questions of the best approximation with rational functions
etc.(see [4],[5]).

This paper focuses an anisotropic classes of Lipshitz type. It is verified
that these classes are invariant with respect to multiplication by monomials,
they make an algebra in differ to early known polymetric Lipshitz classes.
The investigation of Toeplitz operators in the polydisc is of special interest.
The polydisc is a product of n discs in the one dimensional complex plane,
and one would expect that natural generalizations of results from the one-
dimensional setting would be valid here. But research has shown, that this
is not so. The case of a polydisc is different from the n = 1 case and the
case of an n— dimensional sphere. For example, let’s consider the classical
theorem of Privalov: If f € Lip «, then K f € Lip «, where K f is a Cauchy
type integral. It is known that the analogue of this theorem for known
multidimensional Lipshitz classes is not true ([6]), even though the analogue
of this theorem for a sphere is valid ([7]). Since the polydisc is the natural
generalization of a circle, the analogue of this theorem should also hold for
a polydisc, but in a new generalization of Lipshitz classes. That had yet to
be identified. Related to this generalization was also the description of the
multidimensional analogues of M. Djrbashian classes. In a 1993 work [8],
new Lipshitc classes were introduced for both the noninteger and integer
indices; these newly introduced classes allowed one to answer the above
questions.

In Shamoians work [9] Djrbashian classes were a generalized for an w-
weight, as well as the forms of the linearly continuous functions in those
classes were given. The description of the conjugate of weighted classes
HP (w) in terms of smooth functions (as it was done by introducing new
Lipshitz classes in [8]) raised a new problem. The current work is related to
the problem of introducing w- weighted Lipshitz classes and their properties.

In Sektion 1 these classes are defined and two lemmas are proved, which
are then used for proving the main theorems. In Section 2 theorems are
proved that describe the properties of the introduced Lipshitz classes: in



particular the description of these classes in terms of derivatives, their form-
ing an algebra, and their invariance with respect to monomial multiplication.
We would like to mention that the previously known classes do not have the
last two properties. In Section 3 we consider Toeplitz operators in these
classes and discuss their boundedness . Here a theorem is also proved about
the division by suitable (good-inner) functions in these new and Djbaschian
classes.

Acknowledgement: The author would like to thank DAAD (Deutscher
Akademischer Austauschdienst) for financial support and the opportunity
of conducting research in Germany.

Special thanks go to Prof. B.- W. Schulze ( Universitidt Potsdam, Institut
fiir Mathematik) for helpful comments, suggestions and the opportunity of
working in his group and participating in research seminars.

2 The classes A(wy, . .. ,w,) and basic constructions

Denote by U* = {z = (z1,... ,2,) € C", |2j| <1, 1 <j < n} the unit poly-
disk in the n-dimensional complex plane C", by T" = {z = (21,... ,2p) €
C", |zi) =1, 1 <4 < n} its torus, and by H(U") the set of holomorphic
functions in U", by H>(U") the set of bounded holomorphic functions in
U". In what follows we write Zﬁ for the set of vectors, whose components
are natural numbers and R’j_ for the set of vectors with positive components.

Let w; > 0, wj(t) = 0(t — 0), 1 < j < n be a nonegative measurable
function on (0,1), such that w;(t) - t* increases on (0, a] for some o < 1 and
w;(t)/t? decreases on [a, 1) for some B < 1 and for a € (0, 1).

Denote by €2 the class of functions w with this property.

Let f(¢), ¢ = ((1,... ,C(n) € T™ be a measurable bounded function, and

w = (wWi,...,wy), where w; € Q. Then w;(t) = O(tY), 0 < v; < 1, for
t— 40, 0<j<n.
Definition 2.1 A function f is said to be in A(w), if for all
(k) = (11, i), 1<k <n, 1<i4;<n, 1 <j<mn,
h = (h1,...,h,) € R" satisfies
Apy oo niy J Q)| < Ciy (Hwiy (i) - - - wiy ([, ]),

where

Ahila“';hik = Ahzl ( nt (Ahzk))

The smallest constant C(f) satisfying the last inequality is
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|Ahik,---hi1 f(eiﬂla N 7eiﬂn)|
sup

(O1... 9n) EQ™ W([Riy ) - - - w(lhig |
(|h’i1 |a a|h'ik |)6Ri

= Cy (f) < 400,

We set

1 1R () = jmax . max. Ciy(f) + 1 f o -

Note that the classes K“(w), for w;(t) = tjo-‘j,j =1,...,n;(i1,... ,ig) =
(1,...,n) were first introduced by S. M. Nikol’skii (see [10]).

Corollary 2.2 Lety; > 1, (1 <j < n) be noninteger. We set
mj = [y, 1<j<n,
and J— )
. . e ... ebn
F(e,-.. ) = 3fg(ml...39mn )

Then A%(w) consists of all f, for which F € A%(w/t™).

For a description of these classes in terms of derivatives, we must first
prove the following lemma which in the case of w(t) = t“ is a consequence
of the Hardy-Littlewood theorem (see [11]).

Lemma 2.3 Let |[f'(z)] < A-w(l—|z])- (1 —|2])7}, 2 €U, then
lf(z+h) — f(2)| <5-Aa)-w(h]), z, z+h €.
And conversely, if f € H(U) and |f(z 4+ h) — f(2)| < B -w(|h]|), then
()] < Bw(l — [2))(1 — [z~
Proof. It suffices to prove the lemma for the case h > 0. We have

£ _ e 7hf,(eit)deit: [+f+]
J A

where I; is the segment 1 > r > 1 — h of the line argz = 0; Iy is arc
z=(1-h)e", 6§ <t<0+h,and I3 is the segment 1 —h < r < 1 of the
line arg z = 0 + h. We now estimate every integral separately.

The estimate of fh :
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1 wl(u) - u®
< A{/uladt +/ (uozﬂ dt}
0 [
<d/a+w(h) <24 -w(h).

We use the fact that w(h)/h® increases for some « > 0.
The estimate of [ :

0+h 0+h b
et =| [ ra-menaee| < [ S0 o).
[ [

I 1, can be estimated similarily to J;, - Finally,
| (e?F") = f(e?)] < BA()w(h).

Conversely, as f € H, then
_ 1 [fQ
1) = g [ £
T

where z = re'®.
Differentiating, we obtain

, B 1 f(C) B i f(eiﬂ)eiﬂ
16 =t | == i | @ e
T

T
i0Y 0 —ig i0y ,i0—ip

S (R G L J)eT " 4

2 | e2i0(ei0—9) — )2 2r ) (e?¥—1 —r)2

T

_ ei¢/ F (et i) Lt

2mi Jp (et —r)?

for t= 06— ¢.
As

1 1
i =
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it follows that

fz¢ f zt+z¢ )
7 / ezt_r de'

21

Ay f (e 1 [7 t

< — MCZW < _/ Mdm'
27r T let —r|? 2 ) . et —r|?

We have
; 2
le —r|? = (1 —r)? +4rsin®t/2, sint > =t; —1/2 <t < /2.
s

From this we get

1 w(thdt [ w(tat
/|e“t—7“|2 - / (1 —17)2 +4rt2/n? _2./(1—7")2-I—47“t2/7r2
0

1-r T
/ N / w(t)dt

1—7" +4rt2/7r2 (1—r)2+4rt2/m2 [
0 1

Since w(t) - t* increases, then for the first integral we obtain

1—r 1—

r t)tedt w(l—r)
1-— (1—
1—r +4rt2/7r2 < ol ) / 1—r
0 0

(< 1).

Let us now estimate the second integral. Setting ¢t = (1 — r)u , we get
J1—
/ (1 =r)u)(1 —r)du
1+ 47"u2/7r2
T/1—

/ dp
1 / w((1 - r)u)du

1—r 1 + 4ru?/m?
1

_ L[ w@ =@ —nw®
T 1—7r 1/ (14 4ru?/m? )((1—7“)U)ﬂd

+
< 1 wl—r)(1—-1r)8 /
l1—r (1—r)8 1—|—4ru2/7r)




Here we have used the property that w(t)/t® decreases on [a, 1]. Outside
the Interval (0,1) we consider the periode extension of wj, 1 < j < n.

The integral
+oo

/ du
uB (1 + 4ru?/m2)
1

converges for 8 < 1, hence we get the desired estimate.

O
The following lemma will be used in the proof of our theorem.
Lemma 2.4 If h € H(U), then
L hQ) e
i o (C_Z)de—O, |z| <1
Proof. As h, € H(U)(h, () = h((1 — 2()~2), we get
L[ WO ol [ RO e
2t Jy C= 2% T amiy - T
_ ! MOK o2 L[ _MOC_ e _
") @0 T 2 e TP T
O

In case some -y, are integral we obtain analogs of Zigmund classes. This
case is breated in much the same way as the case of nonintegral ;. So,
restrict ourselves to the definition of these classes and formulation of the
corresponding theorem (see [8]).

Let 7; be equal to =1 for 1 < j < n.

Definition 2.5 A function [ is said to be in K*(w), if for all

it fulfils
‘A?‘my---yhikf(é“)\ < Cuiy (Hwiy (1hiy 1) - - wi (i ), (1)
where
iy ey, = B0, (- (A)
and
A?ij(e”)zf e eiﬂf‘l,eiwi‘*hi),ewﬁl, : u?n>
_9 f(e““, ’ewn>+f<eml, Ceiim1 @05=hs) gt wn)



We set

I Re ) = o 02, Ol (F) + [l

where C()(f) is the smallest constant from (1).

3 Main results

Theorem 3.1 If f € H® (U"), then f € A*(w) if and only if

0" f(2)

0%y - - %
11 123 j=1

k
R NN | -y @

1—|z%|

where 1 <14 <n, 1 <k <n.
Proof. Let (2) be fulfilled. Denoting

o1 f(2)

Fla) = 0z, ... 07,

we get

P (zi,)] < C - Cipo (f) - wiy (1 — |z )

1- |z11|

In view of Lemma (2.3)we obtain F' € Lip(w;, ), i.e.,
|Ap, F(pC1)| < 3C (2, . .. ig)wi (|hi, ])-
Repeating these arguments we obtain
| An oy £ (PO < 3C k) (fwi, (i) - - - wiy ([hi ])-
Letting p — 1, we get

By (O] < 8C (Nwia (i) - wi (11, ) (3)

Conversely, for the simplicity let us consider the case n = 2. Our goal is
to estabilish estimates

of () wi (1 —|z1])
o | ST )
of(z) wa(l — [22])
02 | ST ) (5)



wi (1 — [z1])w2(1 — |22])
SO T mha—Tm) (©)

Estimate (4): Using transformations of Lemma 2.3, we get:
of(z) e Ay, f (el gitatits) ity gits
0z (2m)2 /(@2 (eftt — 11)2(eit2 — ry)

Hence it follows that

af(z) _ e~ lib1 {/ (Atlf(€i¢1,€i¢2+it2) _ Atlf(ei¢1,ei¢2))eit1 elt2
Q?

0z (2m)? (ettr —rp)2(ett2 — ry)

A ip1 Lid2 ’Ltl ito
+ / (e )R
2

9*f(2)
821822

dtidts.

dtidty

(B’Ltl _ Tl)?(eltz _r )

= 6_i¢1 / Atltzf(ei¢1 ? ei¢2 )eitl 6it2 dtldtQ
2m)2 | Joge  (eftt —ri)2(eit2 —ry)

A ip1 Lid2 ) it1 Lita
+/ t.lf(e 2 © .)6 ¢ dt1dts .
2

(B’Ltl _ Tl)?(eltz _ ’f’2)

Then using also Lemma 2.3 we obtain:

< C // w1 tl w2 tg dtldtg

0Z1 et —ry[?]e’ — |
/ w1 tl dtl < C . w1(1 — |Zl|)
ettt — > [ 7 1—l|z| ’

where 1 = |z1|, 9 = |22].
Here we made use of

1 dz -1 /7r w2(t2)dt1

= p— < const. (7)

211 TC—Z

Repeating the arguments of Lemma 2.3 yields the desired assertion. Anal-
ogously we can obtain estimates (5) and (6).
O
From (2) and (3)-(5) we have

Corollary 3.2 There exist positive constants C1 and Co depending only
on w, such that

¢ <
Vmax { max - sup {lg(2)| + 1o} <

10



~ <
£y < Co pmax {_ max _ sup {lo(2)| + 11}

where

k Wi, — |Zg; k z
g(z):H J(l |]|) 9" f(z)

=1 1-— |Zz]| 8»% PN 8sz '

Theorem 3.3 Suppose f € H®(U"). Then f € A%(w) if and only if

(=) rwiy (1= 23,
072 ...z |~ f)'gm (8)

where 1 <14 <n, 1 <k <n.

Theorem 3.4 [ € K“(w) if and only if z; - f € K“(w), for some
1<j<n.

Proof. Let j =1 and z;- f € /NX“(w). We need an estimate

IR )
1 — |2

Jj=1

0" f(2)

In the case i1 # 1 it is evident.
Otherwise we have
Ffz) 1 (f(x)-21) 1 *(f(2)-21)

= . - — . 10
8»% ce &Zik Z1 Bzil PN &Zik Z12 8Zi2 PN 8sz ( )

Since 7, - f € A*(w), we obtain

0" (f(2)t1)
8t1 ce 2y,

i (L= lnl) pp (= ley )

=2
Integrating in ¢; € [0, z1] alond the radius, we obtain

OF1f(2) wi; (1 = |z5;])
< G H|z1|1—|zz)

0%y ... 2,

For |z1] > 1/2 we have

"1 f(2)

82i2 - R

wj Zi
S Ci2 Zk H Z] | L |)

j=2 |ZZ’

11



On the other hand, the latter estimate for |z1| < 1/2 is a consequence of
the modules modules maximum principle. Talking into account (10) we get
9).

Conversely, let f € A%(w). We have for i; #1, j=1,... ,n

<O -TI @i (L= i)

i 1 — |z

0" (f(2)z1)
0z, ... %,

Suppose i3 = 1. We have

o"(f(2)z1) 0" f(2) "1 (2)

0z, ... %, - Zl@zil e 2, + 0z, . .. 2,
and
O Lf(2) £ wi (1= z,1)
< Ciyi . : .
‘8ZZ2ZM - Z2Zk(f) ]HZ 1_|Zij|
This implies
‘3k(f(Z)Z1) H wi; (1 —Jz])
0%y - .- 2y, |z1| (1-— |zZ )

]

Note that the classes of S. M. Nikol’skii A(«y,... ,a,) do not possess

property of /NX“(w), proved in Theorem 3.4.This can be checked by taking

f(z) = ¢(z1) + ¥(z2), where ¢ and ¢ belong to H*. For ¢ and 1) and

for ap,9 > 0 we have f € A%y, az). But it is clear that the inclusion
z129f € A%, a) is not true for all possible ¢ and .

Theorem 3.5 A function f belongs to Kﬁ(w) if and only zfz?f € Kﬁ(w),
for some 1 < j <n.

Theorem 3.6 f € A%w) if and only if D™ f € A(&), @;(t) = w;(t)/t™, m =
(m1,...,my), mj being nonnegativ integer, 1 < j < n.

Before giving the proof, we show several lemmas.

Lemma 3.7 Let o = (o, ... ,ay), where aj, 1 < j < n are some non-
negative integers. Then

1 0%(f(2)z%)

al 0z%

DYf(z) = s 2= (21, y2n), Al =aq!. .. ap!

See [12] for a proof.

12



Lemma 3.8 Let h € H(U") and |h(z)| < wi(l —|z1]) ... wi(1 —|24])
1 <3< n. Then

8k1+-..+kjh(z)

k1 kj
ozt ... Z;

wi(1 = |z1]) .- wi(1 = |2])
B L (S P L

<j<n.

Proof. Let
T ={¢, ¢ =2 +n(l—|z)e}, j=1,...,n

Using the Cauchy formula for TI =T, x ... x Tj, we obtain

8k1+...+k]‘h(z) B 1 / h(Cla ,Cj),Z’)dCl CJ
7 (

9zt zf’ - (2mi)! C1—z)ftl (G — 2kt

!/
for 2" = (zj41,... ,2n)-
Hence,

GF1t-tk; h(z)

wi(1—[z1]) ... wj(1 = [2])
doy...do;
(27i)d / / (1 —1z]) kl. (1—|z]|) ! J

8z’f1 . zf’
_wi(l- |Z1|)---wj( —12l)
(L =laD? .. (L= |z
and the lemma follows. N N O
Proof of Theorem. Let f € A*(w). Then 2™ f € A%(w) and
*(f(2)2™) | o win (L= 2 ]) - wi, (1= |23, )
(11)
0z, ... 0%, (I =z ) oo (1 =2, )

From Lemma 3.6 it follows that

8m5f(z)z nzk < wi, (1 —n|1zzl+|2 coowi (1= |ZZ£I)+1- (12)
8zi1 8sz (1_|Zi1|) iy "'(1_|Zik|) i

Therefore, from Lemma 3.5 yields D™ f € A%(&).

Conversely, let D™ f € A%(@).

Then the estimation (12) holds. Integrating in ¢1,... ,%; as in Theorem
3.4, we arrive at (11). O

Theorem 3.9 f € A%w) if and only if D2 f € AY(&), ©;(t) = w;(t)/t"F2, m =
(m1,... ,my), where m; (1 < j < n) is nonnegativ integer.

Theorem 3.10 The classe A(w) forms an algebra.

13



Proof. Let f, g € K“(w).N
We prove that f-g € A%(w). We have

(-9  ~ Of(2) & 1g(2)

(9Zi1 PN (92% =0 8»% ce 8Zil 8zil+1 PN (92%

Hence, we get by Theorem 2.1,

9'f(2) L wi (1= |2
< C J J
8Zi1 . 8zil - (k’l)(f) ]l—Il 1-— |Zl]|
and
8k_lg(z) k wl(l — |Z7,)
| < Cuy)lg —
8Zil+1 . 8zik (k’l)( )jlgi:—l 1-— |Zz']- |
It follows easily that
o (f()g(2) o wiy (1= |z,
< C J J
8ZZ'1 . 8Zik - (k)(fg) ]];{ 1-— |Zz']-|

Using Theorem 2.1 once again, we get f-g € K“(w).
The remaining algebra properties are . 0

4 Toeplitz Operators in classes A(wi, ... ,wy)

Definition 4.1 The Toeplitz operator with a symbol h € L' (T™) is the
integral operator

1,06 = o [ B g
1 J(C1ye v Cu)h(Cay e Go)dCy - - - dGy
(2m8)™ Jon (€1 —21) - (Cn — 2n) ’

z2=(21,...,2p) € U".

Recall that a function f is called a multiplicator of the space X, if f-g €
X for any g € X.

Theorem 4.2 Let f € ZNX“(w) and let h = hi + ho, where hy is a holo-
morphic multiplicator of A*(w) (w = (w1,... ,wn), wj €Q, 1 <5< n), and
he € H> (U"). N

Then Th(f) € A%w).

14



Proof. Obviously,

1,06 = o [ g
(2 1 f(©)ha(S)
= FEh () + o [ H

= f(2)h(z) + T;(f)(2).

Furthermore, f - hy € A%w) since h; is a multiplicator of A%(w). There-
fore it suffices to prove an estimate of the form

Ty (f)(2) b w(l — |z))
782%1 — 8zik < C(f7 h2)JH1 1_ |Z—Zji7) .

Without loss of generality we can assume that (i1,...,ix) = (1,...,k).

Then a simple transformation gives

PN 1 / F e (e det?
0z -+ Oz, (2m)™ Jon ﬁ (e _,r.jeiiﬂj)2 ﬁ (ei —rjeti)
7j=1 J=k+1

- (2m)n ko n )
(2m) H (eiti —r;)2 [I (¢ —r))
7=1

j=k+1

e ¥, / F (PO )y (eile+0))eit dt
g

wheret = (t1,... ,tn), t; =0;—pj, O} = (P1,... ,pr), et =¢eilt .. eiln,

Applying Lemma 2.4 we obtain the equalities

BkTg(f)(z) B e~ 1%k / fle i(@H))Weitdt
1 k (2m)"™ Jon H (eiti — )2 I (et —r)

j=k+1
ek f( ier eiPatth) )y (eilo+t) ettt
~ (2n)n no
FE L ) T )
j=k+1

i / A, f( io1 ei(Phtty) )y (eile ) eitdt
(27 . . '
(2m) Qn H ( it )2 1T (eltj —’I“j)

j=k+1

For the first k& variables we have
ko il . o "
9 Th2(f)(z) _ € WP / Atk tlf(ezwk’ael((pk+l+tk+l)) W@itdtu
Qr

Oa O 20 H (eiti —r;)° l_n[ (et —ry)
j=k+1

15



where (70%4_1 = ((‘Pk+17 s a‘Pn) at;gl+1 = (tk+17 s atn)
Repeating the same argument gives

T (f)(2) ek / Ay, .t f(€99)hy (o) et
Oz1---0z,  (2m)" n )
1 k (2m)"™ Jon II ( ity _ )2' 11 (ezg ——rj)

j=k+1
" o {/ Agyo 0y [(Phr1, ot i) py (eilot) et di
2m)n A , - v
( 71-) Qo H (eltj _ 7"]')2 | 1_[ (eltj B ,,,,])
7= j=k+1
+ / Dy yy .t f (€902, € Phea tliws) Y g (ello D)) et
8 g i 2 .
H €Zt‘j — Ty H eltj —
jzl( 2 j:k+1( )
+ “ e + / Atn—l...tlf(ei@)meitdt}
k — _
Q” .Hl(eitj —rj)* l;[ 1(eitj — ;)
7= j=k+

To transform the terms in figure brackets we denote first of them by

\71 k“ = ,f“, where the lower index means the lower index of A and

the upper one is the number of free variables in f(e?k+1, ¢{(Pk+21%+2)) . Then
it is clear that

k41 _ k41 k+2 k+2 _ 7k+2 k+2
TE = JE - JE 4 JE = gk, 4 g,
Repeating the same argument we get
T = Tiewizrm + Ttz + oo+ Tome

Similar representations are true for the remaining terms in brackets. On
the other hand, it is clear that

Dty oty F€9)] < G ([t ]) - (| and [ha(e+0)] < const.

Thus, for obtaining the desired estimate one has to evaluate the integral

(|t1] t *wi (|tis
r=c, [ - / w([f) “WH”“““ww~wm

H ‘elt] — 7y ‘ ‘ezt] — ‘

where [[* = Hk<z'j§m’ m < n. Using Lemma 2.3 and (7) we get

<o amfips)

j=1

16



where |z;| =7, 1 < j <n. Hence we come to the following estimate which
proves our theorem

T () (2)

<C-C (fh)ﬁw](l_ |ZJ|)
0z1--- 0z | — b '

i LAl

0

5 Linear Continuous Functionals on H(w)
0 < p <1 and Applications
We denote by S the class of nonpositive measurable functions w on (0, 1),

for which there are positive numbers M, my, q., (Mmw,q, € (0,1)) exist,
such that for all r € (0,1), A € [qu, 1]

We set
o, = logmy,/log q,, B, =logM,/log(1/qy).

The properties of function from S have been studied in [12]. From [12]
and [9] we have = S provided that M, <1.

Let w = (w1, -+ ,wy), wherew; € S, 1 < j < n. We denote by HP (w1, ... ,wy)
the class of functions f holomorphic in U", satisfying

[ 18 Gl T a1 = G Ddman() < 26,
j=1

where 0 < p < 1 and mg,(¢) is the 2n-dimensional Lebesgue measure in
U™ (see [10]). These spaces are multidimensional generalisations of the well-
known classes of M. M. Djrbashian for n =1, w(t) = t%, a > —1 (see[13]).
Let wje S, j=1,...,n, and 0 < p < 1. A function g € H(U") is said to
be in AL, = Af,hm’wn, if

1|2V
= D>t L <+
||g“Ag ngé)n{| g(z)| (1 _ |Z|)a+272/p}

for all a; > (@, +2)/p, 15 <n) (2] 10, 1 <5 <n).

The class Al arises in describing continuous linear functionals in the
spaces of holomorphic functions with P metric (see [9], [14], [15]).

To characterize the dual space (HP(.))* in terms of A%(.), we first find a
relation between the spaces A%(.) and AP(.).

For f € AP(a) and mj — 1 > (aw,; +2)/p(1 < j < n) we have
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m (w(l = |z])*7
|[D™g(z)| < c- TETEeT

Then, 2™ - g € A(®), @(t) = w"/P(t)t2/?.
By Theorem 3.4 we get g € A%(w). It follows from Lemma 1.4 that

mi, +...4+m; k mi+1—
oG < o g [ Ll
mll mzk = Af, H ] _ ] 1/]2
07" 0z o (@il =1z)))
Hence
k 1/ m;, +...+m;
(wi(1l—1z p | g ta(z
H ] ,LLJJF)l) 2/p mzl m;qk( ) < Cl”f”Aﬁ
]:1 (1 —lz])™ 0z ' 0z
and

Cllgllaz = l19/1za )
Now we estabilish the converse inequality.

Let g € A%(@). Then 2™ - g € A%(&). We have

o~ Tl 2
D < C Na (3 )
| (f(2)z )| < 2||9||A (w)jl_ll (wj(l _ |zj|))1/p

Therefore

w; (1 —|z|)/P
(g <

< Collgllze )

We have proved the following
Theorem 5.1 A function g € H(U™) belongs to AP(w) if and only if
g € A*(@) where &(t) = w'/P(t)t2/?.

*

Now, using Theorem 6 from [11], we can describe the dual space (HP ())
in terms of A%(w).

Theorem 5.2 Let ® be a continuous linear functional on HP (w),
(wj €Q,1<5<n), and let g(z) = D((1 — 2w) 1)
(z, we U"). Then:

(i) (a) g€ A%@), @(t) =w'/P(t)?/7.
(b) The functional ® is representable in the form

B(1) = limy o [ 000 ), (13)

p—1-0 (27
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moreover, for some positive constants C1(w) and Cs(w) we have
CPIO] < llglze ) < Colp) @] (14

(ii) Conwversely, any function g € IA\:a(')q, vy Yn) induces by (13) a continu-
ous linear functional on HP (w), which satisfies (14).

Now we turn to some applications of our results to division theorems
in spaces HP (o, ... ,a,) and A%(wi,... ,wy). To this end, we need the
following well-known definitions.

Definition 5.3 A function g € H>®(U") is called an inner function, if
its radial boundary values satisfy |g* (w)| = 1 almost everywhere on T".

Definition 5.4 An inner function g € H>®(U") is said to be good, if
ulg] = 0, where ulg| is the least n-harmonic majorant of log |g| in U™ ([10]).

Definition 5.5 A function h summable in T™ is said to be of the class
RL, if its Fourier coefficients vanish outside the set 2"} U (—Z'").

In [16] the following theorem is proved.

Theorem 5.6 Let h € RL, 0 < p < 1. Then the following statements
are equivalent:

(i) Th(HP(aq,...,0p)) CHP (... ,ap),

(ii)h = hy + ha, where hy € H®(U") and hy € (HP (av,... ,an))".

Theorem 5.7 Let v = (aq,... ,ap), w = (wi,...,w,) (o > =1, 1<

J<n,w; €Q, j=1,...,n, and let X means olse of the classes HP (a1, ... , o)

and K“(wl,... ywp). Further, let f € X, J be a good inner function, let
F e H*(U"), and let f =F - J. Then F € X.

Proof. It is evident that

F(Q)d¢

T(f) () = 1 fQOIC . 1 f()d¢ 1 /n

7 @) S -z T @ ST O —7) @iy

On the other hand, since F' is holomorphic it is representable by the Cauchy
formula . Hence F' € X by Theorems 3.2 and 4.2. Thus, the quotient of
f € X and a good inner function belongs to X. O
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