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A. Shlapunov and N. Tarkhanov

Abstract

Let A be a determined or overdetermined elliptic differential oper-
ator on a smooth compact manifold X. Write S4(D) for the space of
solutions to the system Au = 0 in a domain D € X. Using reproducing
kernels related to various Hilbert structures on subspaces of Ss(D) we
show explicit identifications of the dual spaces. To prove the “regular-
ity” of reproducing kernels up to the boundary of D we specify them as
resolution operators of abstract Neumann problems. The matter thus
reduces to a regularity theorem for the Neumann problem, a well-known
example being the 0-Neumann problem. The duality itself takes place
only for those domains D which possess certain convexity properties
with respect to A.
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4 A. Shlapunov and N. Tarkhanov

1 Introduction

The present work continues our paper [NST98] and grows out of a desire to
highlight the link of duality theorems for solutions of elliptic equations to basic
problems of partial differential equations, such as the existence and regularity
of solutions.

Let

vo Ly oyt
ve S

be two continuous mappings of Fréchet spaces, such that ST = I on a closed
subspace U° of V. In other words, the identity mapping of U° factors through
T, hence the restriction of T' to U° is one-to-one and the image of U® under T’
is a closed subspace of V1.
Obviously, S maps TU® to U°. If F is a continuous linear functional on
U then
(F, u)y =(S'"F, Tu)

for any u € U°, where S is the transpose of S : TU® — U°. Moreover, S'F = 0
implies F = 0. We thus obtain an one-to-one mapping (U°)" — (TU°)" given
by F — S'F. The problem of identifying the dual of U° reduces to the
description of the range of S’.

We restrict our attention to the case where both V® and V! are function
spaces and U" is a space of solutions to some elliptic equation Au = 0. Even for
explicitly given S the range of S’ cannot be described by mere tools of partial
differential equations. The crucial fact is that by the uniqueness theorem C'*
functions with compact support are not dense in U°, and so the functionals
of (U%) cannot be specified within distributions. To handle S’ one therefore
needs much more refined analysis. For a deeper discussion we refer the reader
to [Kha66] and Ch. 3 in [Tar97].

It is usually the case for hypoelliptic equations that UY is in fact a nuclear
space. By the Schwartz kernel theorem, the mapping S : TU® — U° has a
kernel Kg € U'®,(TU°) (cf. 1.4.1 in [Tar95a]). We call K a reproducing
kernel, for

u(z) = (Kg(z, ), Tu) (1.1)

for all  in the domain of u € U°.

The advantage of using reproducing kernels lies in the fact that it enables us
to write S'F = (F, Kg(-,y)). The right-hand side here is called the indicatriz
of the functional F.

This concept was first studied in the particular cases of holomorphic and
harmonic functions on certain explicitly given domains, cf. [Mar63, Aiz66,
Zna79]. However, representing analytic functionals as analytic functions on
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domains in C" requires specific tools of the general theory of partial differential
equations, cf. [Zor82, St095].

Our main result consists of the following. The correspondence F +— S'F
maps the dual space of U° to the space of solutions to Av = 0 in the same
domain, which grow near the boundary in a sense dual to the growth of solu-
tions in U°. This mapping is always one-to-one but not necessarily onto. Its
surjectivity is equivalent to the regularity of certain projection onto the space
of solutions.

We evaluate the projection through the resolution operator of a generalised
Neumann problem related to A. The desired regularity of the projection just
amounts to that of the solution to the Neumann problem. We thus bring
together two different areas of analysis in which the problem of regularity
turns out to be of key importance.

2 A general scheme

2.1 Spaces of solutions to elliptic systems

Let X be a C'*° manifold of dimension n with a smooth boundary 0X. The
case 0X = () is also included. We tacitly assume that X is embedded into a
smooth closed manifold X of the same dimension.

For any smooth C-vector bundles E and F over X, we write Diff"™ (X; E, F')
for the space of all linear partial differential operators of order < m between
sections of £ and F'.

Denote by E* the conjugate bundle of E. Any Hermitean metric (-, ), on
E gives rise to a sesquilinear bundle isomorphism *xz: 2 — E* by the equality
(xpv, u), = (u,v), for all sections u and v of E.

We pick a volume form dz on X, thus identifying the dual and conjugate
bundles. For A € Dift"™(X; E, F'), denote by A’ € Diff"*(X; F*, E*) the trans-
posed operator and by A* € Diff"(X; F, E) the formal adjoint operator. We
obviously have

A* = *E.lAI*F,

cf. [Tar95b, 4.1.4] and elsewhere.

Write 0™ (A) for the principal homogeneous symbol of order m of the op-
erator A, 0™ (A) living on the cotangent bundle 7*X of X. From now on we
assume that 0™(A) is injective away from the zero section of 7*X. Hence it
follows that the Laplacian A = A*A is an elliptic differential operator of order
2m on X. .

Given any open set U in X, the interior of X, let S4(U) stand for the
space of solutions to the equation Au = 0 in U with the topology of uniform
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convergence on compact subsets of U. It is known that S4(U) is a Fréchet-
Schwartz space.

Denote by S4(U)' the dual space of S4(U), i.e., the space of all continuous
linear functionals on S4(U). As usual, we give S4(U)’ the strong topology,
i.e., the topology of uniform convergence of functionals on bounded subsets of
Sa(U).

Throughout this paper we assume that the Laplacian A possesses the fol-
lowing Unique Continuation Property:

(U)s Given any domain D C )o(, if u € SA(D) vanishes on a nonempty open
subset of D then u =0 in D.

This property implies in particular the existence of a two-sided fundamental
solution for A in the interior of X.

Natural domains for solutions to Au = 0 are certainly open subsets of the
interior of X. However, some problems require to consider solutions on sets o
in X which are not open. Here we are interested not simply in restrictions of
solutions to the given set, but also in the local solutions of the system Au =0
on ¢. By these we mean solutions to the system on various neighbourhoods of
o depending on the solution.

If o is a closed subset of X, then S4(0) stands for the space of (equivalence
classes of) local solutions to Au = 0 on ¢. Two such solutions are equivalent if
there is a neighbourhood of o where they are equal. In S4(0), a sequence {u,}
is said to converge if there exists a neighbourhood A of o such that all the
solutions are defined at least in A" and converge uniformly on compact subsets
of \V.

Alternatively the space Sa(o) can be described as the inductive limit of
spaces Sa(U,), where {U,} is any decreasing sequence of open sets containing
o, such that each neighbourhood of o contains some U,, and such that each
connected component of each U, intersects o. This latter condition guarantees
that the mappings Sa(U,) — Sa(o) are one-to-one. Then S4(0) is necessarily
a Hausdorff space.

For an open set U C X, we denote by L?(U, E) the Hilbert space of all
square integrable sections of E over U with scalar product

(u,v) L2, B) :/(u,v)xdaj.
U

More generally, write H*(U, E), s € Z, for the Sobolev space of sections of F
over U, whose weak derivatives up to order s belong to L*(U, E). We define
H*(U, E) with s = —1, -2, ... to be the dual space for H=*(U, E') with respect
to the L?(U, E) -pairing.

We also denote by SS)(U), with any integer s, the closed subspace of
H*(U, E) consisting of all weak solutions to Au = 0 in U. It is well known
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that Sif)(U ) is a separable Hilbert space with reproducing kernel, cf [Tar95al
and elsewhere.

The union of the spaces SS)(U) over all s € Z is perhaps of particular
interest. For regular U it consists of all solutions to Au = 0 in U, which are of
finite order of growth near the boundary of U. This means that wu fulfills an
estimate o

@)l s F e
for all x € U, with N and C' constants depending on u.

Write 85{) (U) for the space of solutions to Au = 0 in U which have a finite
order of growth near OU. By the above, we can give Sﬁlf )(U ) the inductive
limit topology of the sequence Sg_s)(U), seN.

Since the Dirichlet problem for the Laplacian A = A*A in U is uniquely
solvable, the topology of S(Af) (U) can be equivalently described in the following
way. Pick a Dirichlet system u + ¢(u) of order m — 1 on the boundary of U,
provided the latter is smooth. By [ST95], for each u € S(Af)(U) the Dirichlet
data t(u) are well defined in

m—1
&b D'(oU, F;),
j=0
F; being some vector bundles in a neighbourhood of oU.

Lemma 2.1 A sequence {u,} converges to u in S(Af)(U) if and only if
t(uy) — t(u) in &' D'(OU, F;).

Proof. Cf. Theorem 2.32.

2.2 Duality

Let ¥; be a vector subspace of S4(U) endowed with topology 7 which is not
weaker then the Fréchet-Schwartz topology of S4(U). Denote by ¥} the dual
space of .

Suppose V' is a separable Hilbert space of functions in a domain U with
a scalar product h(-,-). Let moreover there be a topological vector space Yo,
continuous linear mappings

and a sesquilinear pairing

such that
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1) h(-,-) is separately continuous;
2)  h(iyu,v) = h(u,iyv) for all u € V and v € s.

Under these assumptions the pairing A(-,-) induces a continuous mapping
J: Xy — X by

(T0) () = Fl)
= h(-,v) (2.1)

for any v € 3.

Lemma 2.2 If i5: X9 — V is one-to-one then the mapping J given by
(2.1) is one-to-one.

Proof. If F,(-) is identically zero then

Fy (i1iav) = h(igv,isv)
= 0.

As h(-,-) is a scalar product on V' we conclude that iov = 0. Hence v = 0 if 4y
is one-to-one.
O
By a priori estimates for solutions of elliptic systems it is easy to see that
the inclusion
1=11: V-)SA(U) =3

is continuous if and only if all the evaluation functionals x — u(z), x € U, are
continuous on V. This latter just amounts to saying that the Hilbert space V'
has a reproducing kernel K(z,y) € V' ® V, i.e., any u € V represents by the
formula

u(z) = h(u, K(z,-))

for all x € U, cf. [Aro50].
Define xy: V' — V' by (xyv,u) = h(u,v) for all w € V. By the theorem of
Riesz, - is a sesquilinear isomorphism of V" onto V.

Theorem 2.3 Let V' be a Hilbert space with reproducing kernel K(-,-).
Suppose iy is one-to-one. Then the mapping J given by (2.1) is onto if and

only if
1) i199(X) is dense in Xy;
2) for every F € X, the section x — ;' (F,i1 K (x,-)) belongs to ia(3y).
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Note that
h(u(y), svw(z) @ v(y)) = h(u, v) w(z)
for each x € U and u,v,w € V, as is easy to check.

Proof.

Necessity. Let F be a continuous linear functional on ¥; vanishing on
i172(32). By the Hahn-Banach Theorem, we will prove that iyiy(2s) is dense
in >; once we show that F = 0.

By assumption, there is an element v € ¥, such that F, = F. It follows
that

Folirigv) = h(igv,igv)
= 0,

and so v = 0. Hence F = 0, as desired.
Further, an easy calculation shows that

(F,i1K(x,-))y = h(i1K(x,-),v)
= h(K(z,-),iw)
= xyh (iyv, K(z,-))
= sy (igv) (2)
€ xyin(Xs),

the fourth equality being due to the fact that K(-,-) is a reproducing kernel of
V. This proves the necessity.

Sufficiency. Let conditions 1) and 2) of the theorem hold. The task is now
to show that the mapping J: 3y — X} is onto.

Lemma 2.4 Let u € ¥,. Then the formula
u(x) =h (u,iytii K(z,-)) . (2.2)
s valid for all x € U.

Proof. Indeed, by a priori estimates for elliptic systems all evaluation
functionals 0, (u) = u(x), x € U, are continuous on ¥;. The condition 2) then
implies that

(00, 0 K (y,-)) = i1x)! K(y, o)
- ZIK('Z‘Jy)
€ E®iy(Xs)

for every fixed z € U. It follows that the pairing h (u,i;lilK(x, )) is well
defined.
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Pick a sequence {u,} in ¥y such that {i;i5u, } approximates u in ;. Since
K(-,-) is a reproducing kernel we see that

(iaw) (x) = h (igws, K (z,))

whence
(t1iouy) (x) = h (2w, d2iy i1 . K (2, )
= b (ivigu,, iy i1 . K (2, ) (2.3)
forallz € U and v = 1,2,.... Since the pairing iL(, -) is separately continuous,

the passage to the limit in (2.3), when v — oo, yields (2.2). The lemma is
proved.
O
We are now in a position to complete the proof of Theorem 2.3. Suppose
F € ¥). Then by Lemma 2.4 we see that

P = F (ki K(.))

= h(u,v)
where
vo= ZZ_I <?711K(7y)>
= iy w (F, K (y, )
€ Y.

The last reasoning is an immediate consequence of condition 2), thus show-

ing the theorem.
O

Corollary 2.5 If ¥, is a closed subspace of SA(U) then the condition 2)
of Theorem 2.3 is equivalent to the following one:

2')  for each fived y € U, the section iy, " K(-,y) belongs to is(32) ® E,.

Proof. That 2) implies 2') we have already established in the proof of
Lemma 2.4. It remains to show the implication 2') = 2).

Pick a continuous linear functional F on ;. Since ¥ is a closed subspace
of Cie(U, E), the space of continuous sections of E over U, this functional
extends, by the Hahn-Banach Theorem, to an E*-valued measure m with a
compact support in U. For any x € U,

W F K (2,) = / iy +0" K (@), dm(y)),
€ iy(X9),
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since 77 is continuous and suppm is a compact subset of U. This completes
the proof.
O

Corollary 2.6 Let iy be one-to-one. Suppose the Closed Graph Theorem
is valid for mappings between Yo and X|. Then the mapping J : Lo — X}
defined by (2.1) is a topological isomorphism between these spaces if and only
if the conditions 1) and 2) of Theorem 2.3 hold.

Proof. This follows from the continuity of the mapping J and the Closed
Graph Theorem.
O
Let &, G5 and U be closed subspaces of the spaces ¥, ¥ and V', respec-
tively. We thus get a commutative diagram
S SV oAy
U U U (2.4)

i1

S, & U 6

Once again the pairing A(-,-) induces the mapping J: &y — &) which
is to certain extent the restriction of J to G,. We tacitly assume that the
continuous mappings under study are characterised in terms of convergent
sequences and that the Closed Graph Theorem is valid for mappings between
22 and Ell

Write m: V' — % for the corresponding orthogonal projection.

Corollary 2.7 Let iy be one-to-one. Suppose J s a topological isomor-
phism of ¥y onto X|. Then the mapping J is a topological isomorphism of Sy
onto &} if and only if

1) 019965 is dense in &q;
2) the projection m maps iz(X3) continuously into is(Ss).

Proof. Since i, is one-to-one, so is the restriction of i5 to &5, too. Hence
the mapping J is one-to-one, by Lemma 2.2. It remains to prove that conditions
1) and 2) of Theorem 2.3, if applied to &;, &, and Y, are equivalent to
conditions 1) and 2) of the present corollary. Of course, the conditions labelled
by 1) coincide. Thus, we restrict our attention to the conditions labelled by
2).

Necessity. Pick a sequence {v,} converging in ¥y to a limit v. Then the
corresponding sequence of functionals F,, converges to JF, in 3. Clearly, the
restrictions of F,, to G; converge in turn to the restriction of F, to &; in the
dual space &). If the mapping J is a topological isomorphism of &, onto &
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then there exists a sequence v, € G, converging to a limit v in this space, such
that

Fo, () = h(uv,),
Fo(w) = h(uv)

h
for all u € G;. In particular, for all u € U we get

h(u, migv,) = h(mu,isv,)
= h(u,iyv,)

= h(iju,v,)

= F, (1)

= h(ilu, Uy)
= h(ua Z'201/)7

i.e., wiyu, = iy0, and the projection m maps is(X2) continuously into iy (&,),
as desired.

Sufficiency. Conversely, let conditions 1) and 2) of Corollary 2.7 hold. Pick
an orthonormal basis {b,} in U. It is well known that the reproducing kernel
of ¥ is given in the form

R(z,y) = Z 50, () @ b, (y).

v

As every orthonormal basis in U can be extended to an orthonormal basis in
V' we see that
R(z,y) = myK(z,y)

for all z and y. By Theorem 2.3, the section x + ;' (F, i, K (7, -)) belongs to
i2(Xy) for all F € . By the Hahn-Banach Theorem every functional § € &/
actually extends continuously to a functional F € X|. Hence condition 2)
yields

s (S ke, 0) = = (F akr,))
= 7y x (F, i1 K(x,-))
S i2(62)7

the latter inclusion being due to the commutative diagram (2.4). We thus

conclude that the condition 2) of Theorem 2.3 is fulfilled for J, and that this

mapping is onto. The topological arguments now follow from the Closed Graph
Theorem.

O

Note that if dim ¥, < oo then conditions 1) and 2) of Theorem 2.3 imply

that i1i(X2) = X7 and dimY; = dimY,. Conversely, suppose these latter
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conditions i1ip(X2) = ¥; and dim¥; = dim 3, are fulfilled. Hence it follows
that iy(29) is a closed subspace of V. When replacing V' by i5(22) and i; by
its restriction to ip(Xs), we still have the same mapping 7. The reproducing
kernel K (-,-) is given by

dim ¥,

K(z,y)= ) (i2b)" (2) ® (i2b,) (9)

v=1

where {b,} is a basis in X with the property that {izb,} is an orthonormal
basis in i5(X5). Given any F € X}, we get

dim ¥,

sy (FoiK(z,-)) = Y Fliiahy) (izh) (x)
€ i;(Eg).

Similar considerations apply to the commutative diagram (2.4). In this
setting the projection 7 always maps V' continuously into iy(Ss).

How can we derive the necessary information on the projection 7w under
general assumptions? In many cases it can be obtained from a Neumann
problem.

2.3 Neumann problem

In our applications U is usually a Hilbert space of solutions to the equation
Au =0 in a domain U C X.
Let the operator A be included into an elliptic compatibility complex of

differential operators A® € Diff™ (X; E*, E'*1), i = 0,1,..., N, over X, with
A’ = A,
Suppose that V' < D'(X,E*), i = 0,1,..., N, are Hilbert spaces of sec-
tions of E* over X, such that
1) VinC>=(X,E") is dense in V for all i =0,1,...,N;
2) A" maps V'NC*®(X, E") to VI N C®(X, E').
Let D% be the set of all sections u € V*, for which there is a sequence {u, }
with the following properties:

1) w, € VINC®(X,EY);
2) {u,} converges to u in V*; and

3) {Au,} is a Cauchy sequence in Vi*1L,
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The mapping T : D: — Vit defined by Tu = lim Au,, where {u,} is a
sequence with properties 1)-3), is called the maximal operator generated by
A.

Note that T is well defined. Indeed, if {u}} is another sequence satisfying
1)-3), and f = lim Au/,, then for all ¢ € C*°(X, E**!*) with a compact support
in the interior of X we get

(Tu—f,9) = lim(Au, - Au,, g)
= lim(u, —ul, A'g)
= 0,

whence Tu = f.

We will think of 7" as an unbounded operator from V* to V'*!, whose
domain is D%. Since Dk contains V' N C®(X, E*) the operator T is densely
defined and closed.

From the lemma of Du Bois-Reymond and the uniqueness of a weak limit
it follows that if u € D% then Tu = Auw in the sense of distributions in the
interior of X.

Lemma 2.8 D5 C Dy and T? = 0.

Proof. Let u € D% and {u,} be a sequence with properties 1)-3). We set
f, = Au,. Then Tw = lim f,. And since Af, = 0, we obtain that Tu € Di!
and T'(Tu) = 0.
[
Thus we have the following complex of Hilbert spaces and their closed linear
mappings:
v.o—ve Dyt Ly LyN o (2.5)

The cohomology of the complex {E’, A'} evaluated by the spaces {V'} is
just the cohomology of the complex (2.5), that is

_ ker{T: D, — Vi*!}

H(V) o

We now define 7™, the adjoint of 7', as usual for unbounded operators.
Namely, let D%.. be the set of all g € V' with the property that thereisv € V¢!
satisfying (Tu, g)vi = (u,v)yi— for all u € D', We define T%: Di. — Vil
by T*g = v.

The operator T™ is well defined because the domain ’D%_l is dense in V71
It is clear that T™g is in general different from A*g in the sense of distributions
in the interior of X, for A* is formally adjoint for A in the sense of L?-spaces
on X.
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Lemma 2.9 T*D}. C Dyt and T2 = 0.

Proof. Indeed, if g € D% and u € DiT_2 then by definition and Lemma,
2.8 we get

(TUJT*g)VFl = (T(TU)Jg)VI
= 0.

Therefore T*g € Di.* and T*(T*g) = 0, which completes the proof.
[

Thus we obtain the following (chain) complex of Hilbert spaces and their
closed linear mappings:

Veroe— VO v E L E v o, (2.6)

The complex (2.6) is called the adjoint complex for (2.5), and its homology
is denoted by

_ ker{T*: Dj. -V}

H;(V™) T*Dit1
T*

Let us introduce an operator L on V* with a domain D%, which better suits
the Hilbert structure of V¢ than the formal Laplacian A = A*A + AA* of the
complex {E*, A'}. Namely, write D} for the set of all u € D} N D with the
property that Tu € Dit' and T*u € Dy '. Then the operator L: D — Vi is
defined by

Lu=T"Tu+TT"u,

cf. §4.2 in [Tar95a].
The Neumann problem for the complex {E*, A’} in the spaces V' consists
in the following:

(NP) Given a section f € V' when is there u € D} such that Lu = f, and
how does u depend on f?

The weak orthogonal decomposition is actually the first step in solving the
Neumann problem. Set

H ={ueDyNDh.: Tu=T"u=0},

for i+ = 0,1,.... Since the operators T and T* are closed, H’ is a closed
subspace of V. Denote by H:V® — H' the orthogonal projection of V* onto
He.

Lemma 2.10 u € H' if and only if u € D% and Lu = 0.
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Proof. If u € H' then obviously u € D% and Lu = 0. If Lu = 0 then
(Lu,u)yi =0, and since

(Lu, u)ye = |Tul

2 0l

we have u € H".
[l

Lemma 2.11 The operator L is selfadjoint, and (L +1)~1 exists, is boun-
ded, and is everywhere in V' defined.

Proof. Since T is a closed operator and the domain of 7" is dense, the
same is also true for 7%, and (T*)* =T.

It follows that the operators (TT*+1)~! and (T*T+1)~" exist, are bounded,
selfadjoint and defined everywhere in V', c¢f. [Yos65, p. 200].

We now easily verify that (L+1)~! exists, is bounded, is everywhere defined,
and is given by the formula

(L+1) =TT +1) '+ (T*T+1) ' —1,

cf. 4.2.4 in [Tar95a] and elsewhere.
U

Corollary 2.12 (weak orthogonal decomposition) The range of L is
orthogonal to H*, and , '
VZ - HZ @ LDZI]; (2'7)
where LD denotes the closure of LDY in V.

Proof. This follows immediately from the selfadjointness of L and Lemma
2.10.
O
In particular, if LD? is closed then we get the “strong orthogonal decom-
position”
Vi=H @ T*'TD., & TT*D;. (2.8)
Definition 2.13 Let LD: be closed and f € V?, then f = H f + Lu where
u € Db. The Neumann operator N: V' — D% is defined by Nf =u — Hu.

Note that N is well defined. Indeed, if also f = Hf + Lu' where u' € D}
then L(u — u') = 0 whence

(u—Hu)— (v — Hu') = (u—u')— H(u—1u')
= 0.
We summarize the properties of the Neumann operator. They generalise
those of the Green operator from Hodge theory, for the Neumann problem itself

stems from the desire to extend the Hodge theory to the case of manifolds with
boundary.
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Lemma 2.14 Suppose LD is closed. Then the Neumann operator N has
the following properties:

1) N is bounded, selfadjoint, HN = NH = 0, and we have the orthogonal
decomposition

f=Hf+T'TNf+TT*Nf (2.9)

for all f € V2.

2) If f €Dy and Tf =0 then TN f =0. If moreover LD is closed then
TNf=NTf.

3) If f € Di. and T*f = 0 then T*Nf = 0. If moreover LD\™" is closed
then T*N f = NT*f.

Proof.

1) The equalities HN = NH = 0 and formula (2.9) follow immediately
from the definition of N.

Further, by the Closed Graph Theorem there exists a constant ¢ > 0 such
that if u € D¢ is orthogonal to H' then we have ||Lu|| > c||u||. Applying this
to N f, we obtain

1
INAIL < 2 ENT]

1
= |- H]

1
~ 11l

IN

Hence N is bounded.
Finally, the selfadjointness of N follows immediately from Lemma 2.11
because

(Nf,g)vi = (Nf,Hg+ LNg)y:
Nf,LNg)y:
LNf,Ng)y:

f7 ]\[g)Vz

2) Let f € Di. Then from (2.9) and Lemma 2.8 we get T*T'N f € D}, and
Tf =0 implies TT*T'N f = 0. Hence it easily follows that TN f = 0.

If also LD: is closed then for any f € D% we have Tf = TT*T'Nf on
the one hand, and T'f = TT*NT f on the other hand. Hence it follows that
L(TNf— NTf) =0, and since TN f — NT'f is orthogonal to H*"! we deduce
that TN f — NT f = 0, as required.

3) The proof is analogous to that of part 2).

(
(
(
(
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If L' is a hypoelliptic pseudodifferential operator in the interior of X then
the harmonic space H® consists of C™ sections in the interior of X, and the
Neumann operator N preserves the interior regularity. Such is the case, in
particular, if V' are Sobolev spaces.

Beginning with its classical forms, the Dirichlet norm has been an impor-
tant technical tool in studying the Neumann problem.

Given any u,v € DLNDL., the Dirichlet inner product of u and v is defined
by

D(u,v) = (Tu, Tv)yit1 + (T"u, T*0)yi-1 + (u, v)y,
and the Dirichlet norm is D(u) = y/D(u, u).

The space D NDi. with the Dirichlet norm is a complete (Hilbert) space.

It is denoted by D"

Since D(u) > |Jul|y: for all u € D' there exists only one selfadjoint operator
S with a domain D% C DY, such that if u € DY and v € D' then

D(u,v) = (Su,v)yi. (2.10)

The following lemma gives a useful description of the operator L because
our estimates will be in the norm D(u).

Lemma 2.15 D} =Dy and L = S — 1, where the operator S is defined by
(2.10).

Proof. If u € D% and v € DY, then D(u,v) = ((L + 1)u,v)y is fulfilled.
Hence by the uniqueness of S, we have S = L + 1.

U

Let || - ||y and || - ||2 be two norms on a vector space V. We will say that the
norm || - ||; is completely continuous with respect to the norm || - ||5 if every
sequence which is bounded in the norm || - ||; has a convergent subsequence in

the norm || - |2

Lemma 2.16 If the norm D on D! is completely continuous with respect
to || - ||y: then H' is finite dimensional.

Proof. Observe that if u,v € H* then D(u,v) = (u,v)y:. Suppose that
the dimension of H' is infinite. Then there exists an infinite sequence {u,}
of orthonormal elements in H'. Since D(u,) = |luy||y+ = 1 the sequence {u,}
contains a convergent subsequence. But this is at variance with the fact that

if v # p then |lu, — uy,lly: = V2.

U

Lemma 2.17 If the norm D on D' is completely continuous with respect
to || - |lv+ then there exists a constant ¢ > 0 such that for all u € D' orthogonal
to H', we have

1Tl s + 1Tl s > el
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Proof. Consider the Hilbert space V¢! x Vi~ which is equipped with the
norm

A0 = (1N + flol2e) 2

Let 9: D' — Vil x Vi1 be the mapping defined by 9Mu = {Tu, T*u}. We
note that 91 is a closed operator.

We will prove that the range of 9 is closed. Suppose that 9D’ is not
closed. Then there exists a sequence {u,} in D’, such that lim9Mu, = {f, v}
and {f,v} & MMD".

Set u!, = u, — Hu,, then v/, are orthogonal to H* and lim Mu!, = {f,v}. If
||ul ||y are bounded then

D(w,) = (190 | + [l [3:) "/

are bounded, too. Then by hypothesis {u/} has a convergent subsequence
with a limit u, and since 9 is closed then Mu = {f, v} which contradicts the
assumption that {f,v} ¢ 9MD’. Thus by choosing a subsequence, if necessary,
we may assume that lim ||u, ||, = oco.

Now set U, = ul,/||u},||yi. Then lim [|9NU, || = 0 and D(U,) are bounded.
Therefore {U,} has a convergent subsequence {U,, } such that

limU, = U,
limdMmuU,, = {0,0}.

Hence MU = 0 so that U € H’. Since U, is orthogonal to H® we have U = 0,
but ||U, ||y« = 1. This contradiction proves that the range 9D’ is closed in
Vi+1 X Vz'fl.

Let R be the restriction of 9 to the orthogonal complement of H* in D.
Then R is one-to-one and has a closed range. By the Closed Graph Theorem,
the inverse R™! is bounded. Hence there is ¢ > 0 such that ||Rul|? > ¢||u||?..

This proves the lemma.
O

Theorem 2.18 If the norm D on D' is completely continuous with respect
to the norm || - ||y, then LD" is closed.

Proof. By Lemma 2.17 there exists ¢ > 0 with the property that for all
u € D% which are orthogonal to H' we have

(L, w)y: > clullys,

so that || Lu||y: > ¢|jul|y:-
Set f = limLu,. We may assume that u, are orthogonal to H’, and
then [|u,||y: are uniformly bounded. Therefore, {u,} has a subsequence whose
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arithmetic means converge !. Denoting this limit by u, we get f = Lu, which
completes the proof.

U
The question of when the norm D on D' is completely continuous with
respect to the norm || - ||y, is very difficult in the general case and it requires

special consideration. We present some consequences here.

Corollary 2.19 Suppose the norm D on D' is completely continuous with
respect to the norm ||-||vi. Then for the complex { E*, A*} the Neumann problem
is solvable at step i in the sense that there exist operators H and N in V' with
properties 1)-83) of Lemma 2.14.

Proof. This follows immediately from Lemma 2.14 and Theorem 2.18.
O
For compact manifolds with boundary X the subspace H° is usually infini-
te-dimensional. So by Lemma 2.16 the Dirichlet norm D may not be com-
pletely continuous with respect to the norm || - ||yo on DY. But the following
result holds.

Theorem 2.20 If the norm D on D' is completely continuous with respect
to the norm || - ||y then LDY is closed.

Proof. It suffices to prove that there exists a constant ¢ > 0 such that
|Lf|lvo > c||f|lvo for all f € DY which are orthogonal to H°.
First, if u € D? then Tu € D! and Tu L H!'. Thus by Lemma 2.17 we
obtain
1T Tullfo = || Lullio
> c|Tullt.
Further, since f L H° then by the weak orthogonal decomposition (2.7)

f € LDY. Hence, for each € > 0 there exists u € DY such that || f — Lu||yo < e.
Thus,

I£Io < (Lu, flvo+e I fllvo
< [ Tullv ITfllve + 2 Ml fllve

1
< ClZufvellLfllve + e[ flve

1 1
< Sl flvn + 2 (Z IS lvo + 17l )

I This actually puts some restrictions on the spaces V' under study.
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Since € can be made arbitrarily small by choosing Lu close enough to f we
obtain ||Lf||yo > ¢||f||vo, which concludes the proof.
O
The next result follows from Lemma 2.14 and Theorem 2.18. Recall that
H = ker T°.

Corollary 2.21 Suppose the norm D on D' is completely continuous with
respect to the norm || - |y1. Then f = Hf + T*NTf for any section f € DY,
where H: V° — HO is the orthogonal projection.

By assumption, the differential operator A° = A has injective symbol. It
follows that A° is hypoelliptic in the interior of X whence

H={ueV'NCE(X,E%: Au =0},

i.e., the operator H is a generalisation of the Bergman projector from complex
analysis. Corollary 2.21 gives

7 = HP°
= | —-T*NT.

As mentioned, a priori estimates for solutions of elliptic equations imply
that for each interior point = of X the “evaluation functional” d,(u) = u(x) is
bounded on H°. Therefore, H° is a Hilbert space with reproducing kernel, cf.
[Aro50)].

Let {e,},-12... be some complete orthonormal system in H°. If u € H° then
this section decomposes into the Fourier series u = ) ¢, e, which converges in
the norm of the space V°, and hence uniformly along with all derivatives on
compact subsets of the interior of X. In the interior of X x X we consider the
series

K(l‘,y) = KH(xay)

= Z*Eey(x)@)el,(y). (2.11)

v=0

Theorem 2.22 Series (2.11) converges uniformly along with all deriva-
tives on compact subsets of the interior of X x X, so that

KyeCX(X x X,E*RE).

If v € X is fized, then this series actually converges in the norm of the space
Er @V,
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Proof. To shorten notation, we will restrict the discussion to the case
where X is a closed domain in R".
Let
ev1(x)
ey () =
ey ()
be representations of the sections e,, where k is the rank of E. Pick compact
sets K1 and K in the interior of X. If z € K is a fixed point, then in view of
the orthonormality of the system {e,} we obtain for j =1,...k

N 2 N 2
(Y lews@P) < | Y es@enla)
v=0 v=0
N 2
< o Yas@aw)|
v=0
N
= Cl Z|ella](l‘)|27
v=0
the constant ¢; > 0 depending on A and K only. Hence
N
D levi@) < e (2.12)
v=0

for all x € K.
Therefore, denoting by ¢, the constant obtained by analogy for the set Ko,
we get for (z,y) € Ki X Ko

N N

Yo lrpea@eal = ) la)le )

v=0 v=0
S k\/clcQ.
This proves the absolute and uniform convergence of the series (2.11) on
compact subsets of the interior of X x X.

Finally, (2.12) implies that for fixed z € X, the equality (2.11) gives the
expansion of K(z,y) in the complete orthonormal system {e,}. To finish the
proof, it is sufficient to observe that x and y enter into K (x,y) in a symmetric
way.

[

Theorem 2.23 (Bergman formula) If u € H° then
u(w) = (u, K(2,))yeo

for alla:E)O(.
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Proof. Let u =) c,e,. Then by the previous theorem we get for fixed x
in the interior of X

(U, K(l’, '))Vo - Z Cu (eua eu)VO €V(£L')
= ) a (e e)poen(x)

v

= u(x),

and the proof is complete. O

Thus, in order to discover the properties of 71 = H we might study the
Neumann operator N'. However, “good” properties of N' is not what we
can generally expect. It is rather an instrument to produce examples for the
general scheme.

2.4 Hodge theory on manifolds with boundary

Given a vector space V' with norm || - ||, we write C(V/ || - ||) for the completion
of V' under the norm || - ||.

In this section we describe the Hodge theory of the Dirichlet problem for
the Laplacian A = A*A in the class of generalised sections of E on X. In order
to define what is meant by the “solution” of the boundary value problem, we
employ negative norms. This idea is certainly not new and goes back at least
as far as [Sch60] and [Roi96].

Pick a Dirichlet system Bj;, 7 = 0,1,...,m — 1, of order m — 1 on the
boundary of X. More precisely, B; is a differential operator of type £ — Fj
and order m; < m — 1 in a neighbourhood U of dX. Moreover, the orders
m; are pairwise different and the symbols o(B,), if restricted to the conormal
bundle of X, have ranks equal to the dimensions of Fj.

We actually assume that the dimensions of F} are the same and equal to
that of E.

Let Cj, j = 0,1,...,m — 1, be the adjoint system for {B,} with respect
to Green’s formula, cf. [Tar95b]. Thus, Cj; is a differential operator of type
F* — F} and order m —m; —1 in a smaller neighbourhood U of 0X. We now
set

m—1

tu) = €@ Bju,
7=0
m—1

n(f) = *;“jlcj*F
7=0

for u € O (U, E) and f € C™ (U, F).

loc loc
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Lemma 2.24 (Green’s formula) For each u,v € H*™(X,E), the fol-
lowing formula holds:

/ax ((t(U),n(Av))x - (n(Au);t(v))x> ds = / ((Au,v)x — (u, Av)x> de.

X

Proof. Cf. Corollary 9.2.12 in [Tar95b).

O
Given F', we consider the boundary value problem
Au = F in X,
{t(u) = 0 on 0X, (2.13)

which is an obvious generalisation of the classical Dirichlet problem, cf. 9.2.4
in [Tar95b).

Suppose s > 0. For sections u € C*°(X, E) we define two types of negative
norms

lull-s = sup :
vEC™®(X,E) ||U||s
|U'|—s _ sup |(U,U |7
veco ) [|v]]s
t(v)=0

where (-, -) is the scalar product in L?(X, F). We denote the completions of
C*°(X, E) with respect to these norms by H (X, E) and C(C*®(X, E), |-|_),
respectively. They are obviously Banach spaces and satisfy

HiS(X, E) — C(COO(Xa E)? | ) |*5)7

for [Jull s > Ju]

We can define (u,v) for u € H™*(X, E) and v € C®(X, E) as follows. By
definition, there is a sequence {u,} in C*°(X, E) such that ||u, —u||_s — 0 as
v — 0o. Then

|(uy =, 0)| < [y = wl[=slv]ls

— 0

as p,v — 00. Set (u,v) = lim(u,,v). Clearly, this limit does not depend on
the particular sequence {u,}, for if ||u,||_s — 0 then |(u,,v)| < ||lu,||-s||v||s
tends to zero, too. From the definition it follows that for all u € H *(X, E)
and v € C*(X, E) we get

|(w, 0)| < | —s[lv]]s- (2.14)
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In a similar way we can define the pairing (u, v) for u € C(C*(X, E), |-|_5)
and v € C*(X, F) with t(v) = 0. Corresponding to (2.14) we have obviously
|(w, 0)| < fuls[[o]ls-

Let F' be in C(C®(X, E),| - |-s—2m), where s > 0. We shall say that
u e H*(X,E) is a strong solution of (2.13) if there is a sequence of sections
u, € C*(X, E) with t(u,) = 0, such that

luy, —ul|l—s — 0,

Au, — F| 5 om — 0 (2.15)

as v — 0.

Denote by H(X) the set of all u € C*°(X, E) that satisfy Au = 0 in the
interior of X and ¢(u) = 0 on 0X. Since (2.13) is an elliptic boundary value
problem, #(X) is finite dimensional. Moreover, for any u € H(X) we actually
obtain

0 = (Au,u)
(Au, Au)

whence Au = 0 in X. Therefore, the space H(X) consists of all u € SA()%)
which are C'*° up to the boundary of X and which vanish up to the infinite
order on 0X.

Lemma 2.25 Let s > 0. If F € C(C®(X,E), || s-2m) and F L H(X),
then there is a strong solution u € H™5(X, E) of (2.13) satisfying u L H(X)
and

||U'||—s S c |F|—s—2m; (216)

where the constant ¢ does not depend on F and u.

Proof. Cf. [Sch60].
U
The definition (2.15) of a strong solution to (2.13) obviously corresponds
to an appropriate closure L: D — C(C®(X, E), | |-s—2m) of the Laplacian
A = A*A, cf. Chapter 2 in [Dez80]. Namely, we denote by Dy, the set of all
sections u € H~*(X, E), for which there is a sequence {u,} with the following
properties:

1) w, € C*(X, E) satisfies t(u,) = 0;

2) {u,} converges to u in H *(X, E); and
3) {Au,} is a Cauchy sequence in C(C®(X, E), |+ |-s—2m)-
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The closed densely defined operator L : D, — C(C®(X, E),| - |-s—2m)
given by Lu = lim Au,,, where {u,} is any sequence with properties 1)-3), is
called the strong extension of A under the boundary conditions ¢(u) = 0. It is
clear that u € H *(X, E) is a strong solution to problem (2.13) if and only if
Lu = F.

It is worth pointing out that the case 90X = () is formally permitted in the
following theorem.

Theorem 2.26 Suppose s > 0. There are bounded linear operators

H: C(COO(XJE)7|'|—S—2m) - %(X),
G: C(C®(X,E),||_som) — D

such that

1) H has the kernel Ky(x,y) =Y, hy(x) ® *gh,(y) where {h,} is an or-
thonormal basis of H(X);

2) AH=0and GH =HG =0;

3)
GLu = w—Hu forall ue Dy,
LGF = F—HF foral FeC(C®X,E),| | _s—2m)-

Proof. This follows by the same method as in Theorem 3.3 of [SST00],
with Lemma 3.2 therefrom replaced by Lemma 2.25.

[

The operators H and G are actually independent of s since they are unique
extensions by continuity of these operators on the dense subspace C*(X, E)
of C(C®(X,E), | |—s—om)-

When restricted to L*(X, F), the operator G is selfadjoint. Indeed, given
any F,v € L*(X,E), we may invoke the elliptic regularity of the Dirichlet
problem (2.13) to conclude that both GF and Gv belong to H*™(X, E) and
satisfy the boundary condition ¢(-) = 0. It follows that LGF = AGF and
LGv = AGv whence

(GF,v) = (GF,Hv+ LGv)
(GF, A*AGv)
(A*AGF,Gv)
(F,Gv),
which is due to Theorem 2.26. Hence the Schwartz kernel of G is Hermitean,
ie., Kg(z,y)" = Kg(y,x) for all (z,y) away from the diagonal of X x X.
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Corollary 2.27 If, in addition, F € H=*>"(X, E), then there is a se-
quence of sections u, € C*(X, E) with t(u,) = 0, such that

|lu, —ul|-s — 0,

1Aw — F|| 4 om — 0 (2.17)

as v — OQ.

From Lemma 2.24 we deduce that when u is smooth enough, it fulfills
t(u) = 0if and only if (Au, v) = (u, Av) for all v satisfying ¢t(v) = 0. This gives
rise to the concept of a weak extension of A under the boundary conditions
t(u) = 0, cf. Chapter 2 in [Dez80]. Given an F' € C(C*(X, E),| " |-s—am), &
section u is said to be a weak solution of (2.13) if it is in H*' (X, F) for some
s" >0 and

(u, Av) = (F,v) (2.18)

for all v € C*(X, E) satistying t(v) = 0.

Lemma 2.28 Suppose that F' € C(C*(X,E),|- | s_om) where s > 0. If
uw € H™*' (X, E) is a weak solution of (2.13), then actually u € H=*(X, E) and
it is a strong solution of (2.13). Moreover, there is a constant ¢ not depending
on F' or u, such that

[ull s < e (|1F]-s—am =+ llull ) -

Proof. Cf. [Sch60].
U
To study the Dirichlet problem with nonzero boundary data ¢(u) = uy we
need a result of [Roi96]. Denote by H *B(X, E) the completion of C®(X, F)
with respect to the norm

[ull s, := llull s + [[t(w)]] ) +lin(Au)]]

. 11 .
@H_S_2m+m]+2 (8X,Fj)

(2.19)

1
®H™ "7 2 (0X,F;

The advantage of using these spaces is that for each v € H *P(X, F)
there is a sequence {u,} in C*(X,E), such that u, — wu in H *(X, E),
and {t(u,)}, {n(Au,)} are Cauchy sequences in EBH_S_"‘J‘_%(OX,F}) and
@ H—s=2mtm;+s (0X, F}), respectively. Moreover, {Au,} is a Cauchy sequence
in H*"?"(X, E), which follows by manipulations of Green’s formula. Hence to
any element u € H *P(X, E) we can assign both ¢(u), n(Au) and Au defined
in the above strong sense.
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Lemma 2.29 For each pair

m—1
u € @ H ™ :(0X,F)),
=0
m—1
w e @ H i (OX, ),
=0
there is a section v € H=5P(X E) with the property that t(u) = uy and
n(Au) = uy. Moreover, the mapping (ug, uy) — U is continuous in the relevant
norms.

Proof. See Lemma 6.1.2 in [R0i96].

OJ
Given any
F € C(Coo(Xa El)) | : |*572m)7
Ug € D H_s_mj_g(aXa Fj)a
we now consider the inhomogeneous Dirichlet problem
Ay = F in X,
{ t(u) = wy on 0X. (2.20)

A section u is said to be a weak solution of (2.20) if it is in H*' (X, F) for
some s’ > 0 and

(1, Av) = (F.v) — / (g, n(Av))ds (2.21)

0X

for all v € C*(X, E) satistying t(v) = 0.

Theorem 2.30 Supposes > 0. If ' L H(X), then there is a weak solution
we€ H™(X,E) to (2.20) with u L H(X). Moreover, u € H*(X, E) satisfies
(2.20) in a strong sense, and there is a constant ¢ independent of F, uy and
u, such that

(2.22)

lull—s < ¢ (1 sam + ol ey 3 o)

Proof. Using Lemma 2.29 we reduce (2.21) to (2.18) with a suitable right
side F. To this end we choose U € H *B(X, E) such that ¢{(U) = uy and
n(AU) = uy, u; being arbitrary. By the above, there is a sequence {u,} in
C*(X, E) such that

w, — U in H™(X,E),
tu,) — up in ®H * ™ 2(dX,F)),
n(Au,) — wy in @ Hs~2mHmits (9X F))
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and Au, — F' in H*7?"(X, E).
By Green’s formula, we get

(uy, Av) = (Au,,v) — /ax (t(uy),n(Av)), ds

for all v € C®(X, E) satisfying ¢(v) = 0. Letting v — oo in this equality
yields
(U, Av) = (F',v) —/ (ug, n(Av)), ds. (2.23)

OX
Subtracting (2.23) from (2.21) we obtain

(u—U,Av) = (F — F',v)

for all v € C®(X, E) satisfying t(v) = 0, i.e., u — U is a weak solution of the
Dirichlet problem (2.13) with F replaced by F' — F’. Moreover, it follows from
(2.23) that

(F',v)=0

for all v € H(X). Combining Lemmas 2.28 and 2.25 thus results in the desired
assertion. U
We now derive a Poisson formula for solutions of the inhomogeneous Dirich-
let problem.
To this end, we choose a Green operator G 4(+,-) for A on X, cf. 9.2.1 in
[Tar95b]. Given an oriented hypersurface S C X, we denote by [S]* the kernel
on X x X defined by

(5198 )y = [ Galow

for all g € C*(X, F*) and u € C*°(X, E) whose supports meet each other in
a compact set.

In particular, the kernel [0X]4 is obviously supported on the diagonal of
0X x 0X.

For a section u € C*(X, E), we set

(Mu)(z) = —GA* ([0X]"u)
- _/ GA(KGA*(xa')au)
X
when z € )O(, Kga- being the Schwartz kernel of GA*. The integral on the

right-hand side is well defined, for Kg4- is a C* section of E' X F™* outside of
the diagonal of X x X.
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Corollary 2.31 As defined above, M induces a continuous mapping P of
® H~*""72(0X, Fj) to H*(X, E) such that Pt(u) = Mu. Moreover, for each
weak solution u of (2.20) it follows that

u = Hu+ GAu + Pt(u). (2.24)

Proof. Let u € H=* (X, F) be a weak solution to (2.20). From Theorem
2.30 we deduce that u € H *(X, F) satisfies (2.20) in a strong sense. More
precisely, there exists a sequence u, € C°(X,E) which approximates u in
H*(X, E), such that t(u,) — t(u) and Au, — Aw in the relevant norms. We
now set

Puy = Vlg{.lo <Uu — Hu, -G (Auu))

the limit existing in H~°(X, E') by Theorem 2.26. Moreover, it is independent
of the particular choice of v with a well-defined Au and t(u) = ug, which is
again due to Theorem 2.26.

Obviously, ug — Pug is a continuous mapping of @H’S*mf*%(aX, F;) to
H~*(X, E), and it remains to prove that it agrees with —GA* ([0X]*u) in the
interior of X.

If v € C®(X,E) has a compact support in the interior of X then by
Theorem 2.26 we get

(Pug,v) = (u,v)— (u, Hv) — (Au, Gv)

— (w0 — Ho— A(Gv)) — / (t(u), n(AGW)), ds

0X

= [ (ttwnace)), s

for t(Gv) = 0. The right-hand side here just amounts to (—GA* ([0X]"u) ,v),
provided that u is smooth enough.
U
From (2.25) it follows that Pug is the unique solution to the Dirichlet
problem

Ay = 0 in X,
t(u) = wy on 0X,

which is orthogonal to H(X). We call Puy the Poisson integral of uy. By
Theorem 2.30,

[ Puol|—s < ¢ [Juoll (2.26)

1
H™*"™i~2(8X,F})

with ¢ a constant independent of uy.
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Theorem 2.32 The quotient space S(Af) ()O()/’H(X) is topologically isomor-
phic to &' D'(0X, Fy).

Proof. Given any u € S(Af) (X), the Cauchy data t(u) and n(Au), being
first defined near 0X, have weak limit values uy and u; on dX belonging to
@Tz})lD’(aX, F;), cf. [Tar95b, 9.4]. Pick a regularisation of u on 0X, i.e.,
any section U € H~* (X, F) which coincides with v in the interior of X, cf.
[Tar95b, 9.3.6].

Using the parametrix G of A given by Theorem 2.26, we get by Green’s
formula

M@—HW@:—/

(0, n(AKG(,2)))y — (w1, UK (-, 2))y ) ds
oxX

for # € X. Since t(K(-,x)) = 0 for all € X, it follows that u = HU + Pug,
the section HU € H(X) being independent of the particular choice of the
regularisation U.

We have thus proved that any solution u € S(Af) (X ) is representable through
the weak limit values ¢(u) on 0X by the Poisson formula (2.24). Furthermore,
@' D'(0X, F;) is the inductive limit of the sequence @;71:51]{—5—”‘1—% (0X, F}),
s € N, for the boundary of X is a compact closed C'*° manifold. Combining
this with (2.26) we deduce that the mapping u +— ¢(u) gives the desired iso-
morphism.

U
Since Sﬁlf) (X) is obviously a closed subspace of S(Af) (X), the mapping

SYW) L
HX) — jEPOD(aX,Fj)

given by u +— t(u) identifies the quotient space with a closed subspace of
O, D' (90X, Fy).

2.5 Hardy spaces

Suppose U CC X is a domain with C boundary. Fix a Dirichlet system
B = {B; ;Zf of order m — 1 on OU, each B; being a differential operator of
order m; and type E — F} in a neighbourhood N of oU. For a section u of E
near OU we set

m—1
t(u) = 690 BjU|3U,
]:

if defined.
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Since A = A*A satisfies the condition (U)s in the interior of X, the
sesquilinear form

h(u,v) = /aU(t(u),t(v))wds (2.27)

defines a scalar product on S (U)NC>®(U, E). Denote by H(AB) (U) the comple-
tion of SA(U)NC*®(U, E) in the norm u — /h(u, u). These spaces are called
the Hardy spaces, by analogy to the classical Hardy spaces of harmonic func-
tions. Alternatively H(AB)(U) can be described as the space of all u € SA(U)
of finite order of growth, for which the weak boundary values of ¢(u) belong
to @7y L (U, F).

Lemma 2.33 H(AB)(U) 15 a separable Hilbert space with a reproducing ker-
nel.

Proof. By the very definition, HgB)(U) can be identified as a closed sub-
space in @ L*(0U, Fj). In particular, H(AB)(U) is a separable Hilbert space
because @ L?(dU, Fy) is.

Theorem 2.32 implies that each element uy € H(AB)(U) can be actually

thought of as a solution from S(Af)(U). To make this more precise we invoke
Theorem 2.30, with U in place of X. Since H(U) is trivial in this case, and
L*(0U, Fy) < H ™ (U, F;) for j = 0,1,...,m — 1, there is a unique section
u € H'?(U, E) satisfying Au = 0 and t(u) = uo in a strong sense. Moreover,
we have

||U||H1/2(U,E) <c ||u0||eaH_mj(8U,F]—)
with ¢ a constant independent of uy.

By (2.24), we get u = Pyuy where Py is the Poisson integral related to
the domain U. This gives us the desired identification of H(AB)(U ) within
S(Af)(U), for Py is a topological isomorphism of EB;?‘:_OID’(OU, F;) onto S(Af)(U),
cf. Theorem 2.32.

Using this fact we easily conclude that for any x € U all the evaluation
functionals u — 69y = u;(z), j = 1,...,k, are continuous on HgB)(U).
Moreover, a stronger property than the continuity holds. Namely, for each
compact set K C U there is a constant Ck such that ||59(c])|| < Ck for all
x € K. Hence, HgB)(U) is a Hilbert space with a reproducing kernel, cf.
[Aro50)].

U

Obviously, S4(U) C Sa(U) holds. Denote by HﬁlB)(U) the Hardy space for
A in U, i.e., the subspace of H(AB)(U) consisting of all solutions to Au = 0 in
U.

Lemma 2.34 HﬁlB)(U) 15 a separable Hilbert space with a reproducing ker-

nel.
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Proof. The statement will follow from Lemma 2.33 once we prove that
HﬁlB) (U) is a closed subspace in H(AB) (U). This latter assertion is a consequence
of the Poisson formula (2.24) which shows that the original topology of H(AB) (U)
is finer than that induced from C2.(U, E).

U

As mentioned, the Dirichlet problem for A in U is uniquely solvable, and

its Hodge parametrix Gy is, in fact, a Green function of U, i.e., Hy = 0.

Lemma 2.35 Let K(-,-) be the reproducing kernel of H(AB)(U). Then for
all (z,y) € U x U we have

K(x,y) = /8U (n(AKg, (7)), n(AKe, (-, y))), ds. (2.28)

Moreover, for every fized v € U, the columns of the matriz K(x,-) belong to
SA(U)NCE (U, E).

Proof. Note that the integral on the right-hand side of (2.28) is well
defined for all (z,y) € U x U, and it belongs to EX ® Sa(U) in y, for every
fixed # € U. By the elliptic regularity, it is actually in E* ® C2(U, E), as
claimed.

Let u € H(AB)(U). Combining the Poisson formula (2.24) and the Bergman

formula of Theorem 2.23, we get

0= [ ((tw)n( ARG, (). + (1), 1 ). ) s

for all + € U. Hence it follows that t(K(z,-)) = —n(AKg, (-, z)) on oU, for
each x € U. We thus have

{ AK(z,-) = 0 in U, (2.29)

HK(x,) = —n(AKg, () on U
for every fixed x € U. Once again using the Poisson formula we arrive at

(2.28), as desired.
U

It is obvious that
(/3U (n(AKGU (', :L')), n(AKGU(-, y)))z ds) *
= /aU (n(AKeg, (-, y)),n(AKg, (-, 2))), ds,

which recovers the equality K (z,y)* = K(y, ).
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3 Duality for solutions of finite order of growth

In this section we describe the dual space of Sﬁlf ) (U) by using various pairings
in Hilbert spaces of solutions to the system Au =0 in U.

3.1 Pairing in Hardy spaces

According to the general scheme we will study in this and the next subsection
the case

v, = s,

Yo = SA(U)nC>=(U,E).

Let V = H(AB)(U). The Poisson formula implies that each element of
H(AB)(U) belongs to S(Af)(U). Write

i 7wy - s,
iy @ SaU)NC=(U,E) — HP(WU)

for the canonical embeddings.

The mappings 4, and i, are always injective. As mentioned, the Poisson
formula (2.24) implies the continuity of i;. The mapping iy is continuous
because the topology of & C*°(9U, F;) is stronger than that of & L*(9U, F;).
Moreover, it follows from Theorem 2.32 that SA(U) N C*®°(U, E) is dense in
S(f)(U)

A .

The task is now to extend the sesquilinear pairing h(-,-), cf. (2.27), from
HP () x HP(U) to T; x T,

Choose a smooth real-valued function o(z) on X with the property that
U={reX: po(x) <0} and Vp(x) # 0 on OU. Set

U.={z e X: olx) <e},

then U_, € U € U, for all sufficiently small £ > 0, and U, is as smooth as
oU.

Lemma 3.1 Given any solutions u € SY)(U) and v € SA(U)NC>(U, E),

exists. The corresponding pairing h:¥ x Yy — C s separately continuous,
and its restriction to H(AB)(U) X H(AB)(U) coincides with h.

Proof. We first note that the limit (3.1) is none other than the definition of
weak boundary values ¢(u). Therefore, its existence and the separate continuity
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of the corresponding pairing h is a direct consequence of this definition. The
second part of the lemma follows immediately from the definition of Hardy
space HgB)(U).

O

Theorem 3.2 The mapping J : Sa(U)NC>®(U,E) — S(Af)(U)’ induced
by (3.1) is a topological isomorphism of these spaces.

Proof. Since the natural inclusion iy is one-to-one, the mapping J is
one-to-one, too, cf. Lemma 2.2.

In this concrete situation we can easily prove the surjectivity of the mapping
J directly, i.e., without using Theorem 2.3.

Indeed, Theorem 2.32 states that the mapping ¢ : S(Af)(U) — @ D'(0U, Fj)
is a topological isomorphism, with ¢! given by the Poisson integral Py, cf.
(2.24). Let F be a continuous linear functional on S(Af)(U). Then the com-
position F o Py is a continuous linear functional on @ D'(0U, Fj). Since
®©D(0U, F}) is a reflexive space, there is an element vy € @ D(0U, F}) such
that

<f0 PU,U0> = (Uo,'l}0>
for all uy € @ D'(0U, F}).

Set
_ -1
v= Py *ar; V0,

then v € Sa(U) N C®(U, E), which is due to the properties of the Poisson
integral. If u € S(Af)(U) then

Fu) = (F, Pot(w)
— (FoPrt(w)
(¢, )
= |ttt as

= h(u,v),

i.e., Jv = F. This proves that [J is surjective.

We have thus proved that the mapping J is an isomorphism of the vector
spaces Sa(U) N C=(U, E) and S(Af)(U)’. Moreover, both 7 and J ! are con-
tinuous, which is clear from the explicit construction of J. This completes the
proof.

O
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Corollary 3.3 The mapping J' : S(Af)(U) — (Sa(U)nC>(U, E))/ in-
duced by (3.1) is a topological isomorphism of these spaces.

Proof. According to Theorem 2.32 the space S(Af)(U) is reflexive, i.e.,
under the natural pairing, we have
! top.

(sVwy) = sPw,

where both S(Af)(U)’ and (S(Af)(U)’)’ are endowed with the strong topology of
the dual space. Thus, the desired statement follows immediately from Theorem
3.2.

O

Since we have a commutative diagram

SaUync=T,E) & P W) & sP(W)
U U U

SuU)nc=T,B) & HPW) & sP)
the pairing iL(, -) induces a continuous mapping
J: SA(U)NC®(TU,E) - SPU)

which is the restriction of 7.
Write 7 for the Szeg6 projection

o H(AB)(U) — HEXB)(U).

Corollary 3.4 The mapping J is a topological isomorphism of the space
SA(U)NC>(U, E) onto Sﬁlf)(U)’ if and only if

1) S.(U)NC>(U,E) is dense in S{(U);
2) 7w maps SA(U) NC>®(U, E) continuously into Sy(U) N C®(U, E).

Proof. Set

6 = Sﬁlf)(U)a .
S, = Su(U)NnC=(U,E),
v = 1)

and apply Corollary 2.7.
O

Example 3.5 Let X = R", n > 3, and let U be a ball. Consider a Dirac
operator A in R", i.e., a homogeneous first order differential operator with
constant coefficients, such that —A*A is a diagonal matrix with the usual
Laplace operator on the diagonal.

It is proved in [Sh196] that there are systems {b,} and {c,} of (C* -valued)
homogeneous harmonic polynomials, such that
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a) {b,} is an orthogonal basis in all the spaces SS)(U), s € Z, simultane-
ously, and an orthonormal basis in HEXB)(U )

b) {b,} U {c,} is an orthogonal basis in all the spaces S(As)(U), s € Ly,
simultaneously, and an orthonormal basis in H(AB)(U).

Property a) implies, in particular, that condition 1) of Corollary 3.4 is
fulfilled. Moreover, the projection =, if restricted to SX)(U ), coincides with

the H*(U, E) -orthogonal projection SX) (U) — Sif) U). It follows that = maps

(U).
SA(U)NC>®(U, E) continuously into S4(U) NC>(U, E). The isomorphism of
Corollary 3.4 holds for A.

Example 3.6 Let A be a determined elliptic operator such that both A
and A* possess the Unique Continuation Property. Then condition 1) of Corol-
lary 3.4 holds true.

Write HES)(U) for the closed subspace of the Hardy space HE&)*(U) con-
sisting of all solutions to A*g = 0 in U. We consider the extension of A to an

operator
T: HPW) - B W),

whose domain Dy consists of all u € H(AB)(U) with the property that there is
a sequence {u,} in SA(U) NC*®(U, E), such that

1) u, = uin H(AB)(U);
2) Au, is a Cauchy sequence in H'S (U).

Using the existence of a two-sided fundamental solution ® for A, one easily
verifies that 1" is a densely defined closed operator.
Let Py denote the Poisson integral of the Dirichlet problem for A*A in U.
Then the adjoint
* (B)
is given by
T"g = Pyn(APyn(g))

for every g € Sa-(U) N C®(U, F). Indeed, by the elliptic regularity of the
Dirichlet problem we deduce that Pyn(APyn(g)) € Sa(U) N C®(U, E) for
each g € S4-(U)NC>(U, F). Then

/aU(t(u),t(PUn(APUn(g))))Ids = aUGA(*FAPUn(g),u)

- GA*(*EPU n(g),Au)
oU

= /OU(R(AU),t(PUn(g)))wdS
_ /OU(n(Au),n(g))de
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for all w € Dy. In particular, this means that 7™ is a closed densely defined
operator.

Further, the existence of a fundamental solution implies that the range of
T is closed and equals to H'Y(U). Hence T* and L' = TT* are one-to-one
operators with closed range.

It is clear that TT* = (APy n)z. To identify the operator N! = (TT*)fl,
we denote by P the Poisson integral of the Dirichlet problem for AA* in U.
Then we have

(APyn)'g = PLt(®yg)

for all g € HES)(U ). Indeed, by the properties of the Poisson integral we see
that

n(Pit(Pug)) = t(Pug),
Pyt (®pg) = Pug,
APyt (Qug) = g

because A*A®yg = A*g=01in U.

Finally, since ® has the transmission property with respect to 0U and
the Dirichlet problem is elliptic we conclude that (APy n)™" maps C*(U, F)
to itself. Therefore, the projection m maps Sa(U) N C*®(U, E) continuously
into SA(U) N C>®(U, E), cf. Section 2.3. By Corollary 3.4, J is a topological
isomorphism of

SA(U)nCc=U,E) S sPwy.

Example 3.7 Suppose A is included into an elliptic compatibility complex
of differential operators A* € Diff™ (X; E*, E**'), i = 0,1,..., N, over X, with
A% = A. As usual we introduce the Laplace operators A’ = A A 4 A=1 A1 1+
for every 7. They are not elliptic in general, for the orders m; may be pairwise
different.

However, any A’ admit a well-posed Dirichlet problem, cf. Section 2.4.
Namely, denote by B® the boundary system consisting of the Cauchy data
with respect to A* and the Cauchy data with respect to A*~'* on OU. In the
notation of [Tar95a], these are ¢(u) and n(u), respectively. It is easy to verify
that if Alu = 0 in U and t(u) = 0, n(u) = 0 on OU then u actually satisfies
Ay =0 and A" "y =0 in U. Since the complex is elliptic we deduce that u
is a C' section of E* with a support in U.

Suppose any Laplacian AZ has the property (U)s in X. Then we can
introduce Hardy spaces H(]?l)(U) as in Section 2.5. Since AA = AA, the
differential A preserves the elements of H (I?z)(U ) that are sufficiently smooth

up to the boundary. Hence {E*, A} gives rise to a complex of closed operators
in Hilbert spaces

0— 2P W) S e 0) S S EED

v (U) —0, (3.2)
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cf. Section 2.3.
The complex (3.3) has a distinguished subcomplex corresponding to the

subspaces of H(Aljl)(U) with t(u) = 0. Factorising (3.3) by this subcomplex
leads to the so-called tangential complez on OU. More precisely, the spaces
of the tangential complex are those subspaces of H(AL?)(U ) which consist of
sections with n(u) = 0, while its differential 7} is a quotient of 7". By the
unique solvability of the Dirichlet problem for A’ in U, these latter subspaces
can be specified as spaces of L?-sections of certain vector bundles E! over
the boundary of U. In particular, E) = EBT;OIFJ- lar. In fact, the tangential
complex corresponds to a complex {E}, A:} of differential operators on OU, cf.
[Tar95a, 3.1.5]. We get

0 — L2(U, EY) 2% L2(0U, E}) 2 ... 25 L2(0U, EN ') — 0,  (3.3)

so that H?(U) = {u € L2(0U, EY) : Tyu = 0}.

If the domain U CC X is strictly pseudoconvex relative to the Levi form of
{E*, A%} at step 1, then the Neumann problem for this complex in U is solvable
at step 1. Moreover, the Neumann operator N preserves C'* sections of F' up
to the boundary, cf. [Tar95a, 4.1.5]. Hence the operator I — T N7, i.e., the
orthogonal projection from L?(U, EY) to ker T, maps C*(U, E) continuously
to itself. As L?(dU, E?) = H®)(U) we see that the projection 7 has the same
property.

The question on the density of S4(U) N C®(U, E) in ng)(U) requires a
separate discussion, cf. for instance [Tar95b]. We only mention that this is
the case if A is a differential operator with constant coefficients in R® and
U CC R” is convex.

Thus, we can invoke Corollary 3.4 to see that the mapping J is a topological
isomorphism of S, (U)NC*®(U, E) onto 85{) (U)'". By reflexivity, the transpose
J' gives a topological isomorphism of the dual of S4(U) N C*(U, E) onto
s{(w).

3.2 Pairing in Lebesgue spaces

As before, we consider
X = S(Af)(U)a
Yy = SA(U)NC>=(U,E).
Let V = Sg))(U). Again the Poisson formula shows that each element of
Sg))(U) belongs to S(Af)(U). Write

S%)’(U),
SO(U)

i sSVw)y —
iy © SA(U)NC®U,E) —
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for the natural inclusions.

The mappings ¢; and iy are always injective. As is already mentioned,
the Poisson formula (2.24) implies the continuity of i;. The mapping is is
continuous, too, because the topology of C°°(U, E) is finer than the topology
of L2(U, E).

Moreover, it follows from Theorem 2.32 that Sx(U) N C*®(U, E) is dense
in SV (V).

Our next task is to extend the natural sesquilinear pairing h(-,-) from
SVU) x SV () to £, x .

Lemma 3.8 For each u € S(Af)(U) and v € SA(U)NC>®(U, E) there exists
a limit
h(u,v) := lim (u,v), dx. (3.4)

e—0+ U
—€

The corresponding pairing B(,) 15 separately continuous on i X Yo and
h(u,v) = h(u,v) for all u,v € S(AQ)(U).

Proof. Using Lemma 2.25 we see that there exists a unique w € C*°(U, E)
satisfying
Aw = v in U,
{ t(w) = 0 on OU.

Then
h(u,v) = Elg& . (u,v), dx
= — lim Ga(xpw,u)
e—0+ oU_.

= lim ( /8 L (t(u),n(Aw)), ds . — /8 . (n(Au), t(w)), dse>

_ /W (t(u), n(Aw)), ds,

the last equality being due to the existence of weak boundary values ¢(u) and
n(Au) on oU, cf. [ST95]. )

The separate continuity of the pairing A(:, -) follows from (3.5) and Lemma
2.25.

Finally, the restriction of i(u, v) to u € Sg))(U) and v € SA(U)NC>®(U, E)
coincides with h(u,v) since the Lebesgue integral is a continuous function of

measurable sets.
O



Duality by Reproducing Kernels 41

It is well known that Sg)) (U) is a separable Hilbert space with a reproducing
kernel (see, for instance, [Tar95a).

As the Unique Continuation Property holds for A in a neighbourhood of
U, the Dirichlet problems for both A and A? in U are uniquely solvable and
their Hodge parametrices Gy and G a2 are, in fact, Green functions.

Lemma 3.9 Let K(-,-) be the reproducing kernel of Sg))(U). Then for all
(z,y) € U x U we have

K(r.y)= =8y | (n(AKe, (), 68K, (9) ds. (35)
Moreover, for every fized x € U, the columns of the matriz K(x,-) belong to

SA(U)NC=(T, E).

Proof. Given any fixed # € U, we solve the Dirichlet problem for A% with
data

A?V(z,) = 0 in U,
t(V(z,:)) = 0 on OU, (3.6)
n(AV(z,-)) = —n(AKg,(-,x)) on OU.
By the Poisson formula (2.24), for every solution u € Sg))(U) and each

x € U we have
ue) = = [ (t(w.n(4xg, (), 0
= [ GabaViaw
- - [ wavie ),

whence

OZ/U(U, AV(@, ) + K(x, ), dy.

Since the columns of AV (z,-) + K(z,-) belong to Sg))(U) we deduce readily
that
AyV(l‘, y) = _K(l‘a y)

for all z,y € U. Representing V (z,y) in y € U by the Poisson formula for A?
and using (3.6), we arrive at (3.5).

For each z,y € U, the integral on the right-hand side of (3.5) is well defined,
and it belongs to SA(U) in y for every fixed x € U. By the elliptic regularity,
it is actually in B ® (Sa(U) NC*>(U, E)), as desired.

U
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Theorem 3.10 The mapping J : SA(U)NC®(U,E) — S(Af)(U)’ induced
by (3.4) is a topological isomorphism of these spaces.

Proof. Since the natural inclusion 4, is injective the mapping J is injective,
too (see Lemma 2.2).

By Theorem 2.3, to prove the surjectivity of the mapping J we need to
show that the reproducing kernel K(-,-) of the space Sg)) (U) has the following

property:

for every F G_S(Af)(U)’, the section z +— *,'(F, K(z,-)) belongs to
SA(U)NC>(U,E).

Fix any F € S(Af)(U)’. Since the space S(Af)(U) is the inductive limit of the
sequence S(A*s)(U), s € N, it can be specified as a subspace of ’D’ﬁ(X, E). By

the Hahn-Banach Theorem, there is a section v € C*°(U, E) with the property
that

Flw = [ o)y

for all u € S (U). In particular, we get
GUE K@) = 5 [ (K0, dy
= [ wx@,a
~ [ a6k,
~ | Gaeuk(e )G
= | @AGu) (K ),

ifrel.
Obviously, the integral on the right-hand side of this formula lies in SA(U).
As v € C*®(U, E) we see that n(AGyv) belongs to EB;?‘:_OICOO((?U,F}). From
Lemma 3.9 and the regularity properties of the Poisson kernels K¢, (-, ) and
Ka,, (-, -) it follows that the section *-(F, K(z,-)) is C*® up to the boundary
of U, as desired.
[

Since we have a commutative diagram

SaUync=>U,B) & sPw) & sPw)
U U U

SiU)ync=T,E) & sOw) & s
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the pairing iL(, -) induces a continuous mapping
J: Su(U)nC=(U,E) - sP WY

which is the restriction of 7.
Write 7 for the Bergman projection

7 SOU) = sV().

Corollary 3.11 The mapping J is a topological isomorphism of the space
SA(U)NC>(U, E) onto ng)(U)’ if and only if

1) S4(U)NC>=(U,E) is dense in Sﬁlf)(U);
2) 7w maps SA(U) NC>®(U, E) continuously into Sy(U) N C®(U, E).

Proof. According to the general scheme we put

61 = Silf)(U)a .
S, = Su(U)NnC=(U,E),
¥y = SQOwW).

Then the statement follows from Corollary 2.7.
O

Example 3.12 Let A be a determined elliptic operator. In this case the
complex {E*, A’} has only one nonzero operator, which is A = A. It is easy
to check that the Neumann problem for this complex, cf. Section 2.3, is just
the Dirichlet problem in L?(U, F') for the Laplacian AA* with the Dirichlet
data n(-) instead of ¢(-).

Suppose the Unique Continuation Property holds for the formal adjoint A*.
Then the Neumann operator N is the Green function G 44+ of the Dirichlet
problem.

The elliptic regularity of the Dirichlet problem now implies that N maps
C*>(U, F) continuously to C*(U, F'). Therefore, 7 = I —A* N A is a continuous
mapping of C*®(U, E) to itself.

Further, by the Runge theorem for determined elliptic operators, cf. [Tar97,
4.1.9], SA(U) N C*®(U, E) is dense in Sﬁlf)(U).

Hence, according to Corollary 3.11, the mapping J is a topological iso-
morphism of S,(U) N C*(U, E) onto SE{)(U)’. By reflexivity, the transposed
mapping J' is a topological isomorphism of the dual to S,(U)NC>®(U, E) onto
sV .
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Example 3.13 Let A be a column of scalar differential operators with con-
stant coefficients in R”. Then A can be included into a Hilbert compatibility
complex of differential operators with constant coefficients { £, A'}. Under fa-
miliar hypotheses on A the compatibility complex is simply a so-called Koszul
complex, cf. [Tar95a, 1.2.8].

If U CcC R” is a strictly convex domain with smooth boundary then the
Neumann problem for V* = L?(U, E') is solvable at step 1. Moreover, the
Neumann operator N preserves sections from C*(U, F), cf. ibid.

For any convex domain U CC R", the space S4(U) N C>®(U, E) is known

to be dense in Silf)(U). By Corollary 3.11, the mapping J is a topological
isomorphism of S4(U) NC>(U, E) onto SE{)(U)’. The transposed mapping J'
then gives a topological isomorphism of the dual to S4(U) N C*(U, E) onto

s w).

3.3 Grothendieck duality

Suppose U is an open subset of X with 0 boundary, such that 0X NU =0
or 0X NU =0X. Set

g, -~ W
H(X)
o _ {ueSsE\D)NCX(X\UE): tu) =0 on 0X nT}

H(X)
and _
H"((U,0X),E)={ue H"(U,E) : t(u) =0on 0X NU}.
For u € H™(U, E), we define

o

Eo(u) € H™X,E)
— H™((X,0X),E)

Eu(u) = u in U,
AgU(U) =0 in X \U,
t(Ey(u)) = t(u) on OU.

Since A possesses the Unique Continuation Property in X the section Eu(u)
is uniquely determined for every u € H™((U,0X), E).

Write H for the Hodge projection onto #(X), c¢f. Theorem 2.26. It was
proved in [SSTO00] that the Hermitean form

hU(u,U):/X(AgU(u),AEU(U))de‘—F/X(HEU(U),HEU(U))xd.Z‘ (3.7)
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is a scalar product on H™((U,0X), E') which induces a topology equivalent to
the original one.
Obviously, H(X) is a closed subspace of

SU(X\T,0X) := Sx(X \T) n H™(X \ T, 0X), E),

and we put B
V=8 (X\T,0X) e H(X),

“©” meaning the orthogonal complement with respect to the scalar product
hX\U(': )

Lemma 3.14 As defined above, V' is a Hilbert space with reproducing ker-
nel. If H(X) = 0 then this kernel is given by

K(z,-) =&y *El Kg(x,-)

for every x € X\U, where G is the Hodge parametriz for the Dirichlet problem
in X.

Proof. The space under study is a closed subspace of ng) (X \ U), hence
it is a Hilbert space with reproducing kernel.

If, in addition, #(XX) = 0 then G is a two-sided fundamental solution of A
in the interior of X. It follows that A&y K¢(+, x) = 0 away from OU, for every
fixed 2 € X \ U.

By the definition of a reproducing kernel, we get

u(@) = hy\g(u, K(z,-)) (3-8)

in X \ U for all w € V. On the other hand, if z € X \ U then by Stokes’
formula we have

u(r) = - Ga(Ke(z,-),u)

- /aU (), n(A #5" Ko(z,1)), ds _/ (n(Au), t(+3' Ka(z, ), ds

ou
= hyolw, v x5 Kalz,-),

which gives the desired conclusion when combined with (3.8).
U
Define the mapping i : ¥ — V' in the following way. Pick an element
[u] € X9, [u] being the equivalence class of any u € S(AOO)(X \ U) satisfying
t(u) = 0 on X NU. Obviously, u € S(Am) (X \U,0X). We set iy[u] to be the
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orthogonal projection of u to V. It is easy to check that iy: 39 — V' is well
defined and continuous.

Further, for v € V we set 7;u to be the equivalence class in X; of the
restriction of Ex\z(u) to U.

Our next task is to extend the scalar product hy\(,-) from V' x V' to
Yy x Xy Let [u] € ¥; and [v] € Ey. For any representative u € [u], the Cauchy
data t(u) and n(Au) have weak boundary values on the boundary of U, cf.
[ST95]. We set

by (W) = = [ Galssn) 3.9
where v € [v].

Lemma 3.15 The pairing (3.9) does not depend on the particular choice
of the representatives u € [u| and v € [v]. Moreover, it is separately continuous
and

h (i, [v]) = hyg (4, 2[v])
for allu eV and [v] € Es.

Proof. By Stokes’ formula, we get

/8 UGA(*Eu,u) = /U (Au, v) do — /U (u, Av)yda
= 0

for v € H(X). Similarly

_ / GA(*EU, u) = / (Au, U)xdl" — / (u, Av)xdgj
ou x\U X\T
=0

for any w € H(X). This shows that i:LX\ﬁ(', -) is independent of the choice of
u € [u] and v € [v].

By the above, the convergence of a sequence {u,} in S(Af)(U) implies the
convergence of both {t(u,)} and {n(Au,)} in @75'D'(dU, F;). Therefore,
Bx\g(-, -) is separately continuous provided the spaces ¥; and ¥, are endowed
with the quotient topology.

Since the solutions of V' have finite order of growth close to OU it follows
that

hx\o (tyu,[v]) = _/(9UGA (*E’U,(‘:X\UU|U>

- / ((n(A8 g o), 10))y = (HExygn ), n(Av)), ) ds
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_ /8 ) (n(A€xguln), t(SX\Uv))y ds — /8 (), v(Av), ds
= h,X\U(U,,U)—/X<H€X\UU,HEX\UU)xd.Z‘

= h’X\ﬁ(U’J U),

the last equality being a consequence of the fact that w is orthogonal to H(X)
with respect to hx\ﬁ(', -).  The right-hand side here is obviously equal to
hx\(u, i2[v]), which completes the proof.
O
This lemma gives rise to a mapping J : ¥y — 3} induced by the pairing
hX\U(': )

Theorem 3.16 The mapping

J

sSOX\T,0x)  (sPW)\
HX) O\ HX)

induced by (3.9) is a topological isomorphism of these spaces.

Proof. By the very construction, the mapping i, is one-to-one. Lemma
2.2 shows that J is one-to-one, too.

Let us prove the surjectivity of J. To this end, pick a continuous linear
functional F on X;. Since H(X) is finite dimensional, F can be specified to

a continuous linear functional on S(Af)(U ) vanishing on #(X). By Theorem
3.10, there is a section w € SA(U) N C*(U, E) orthogonal to H(X), with the
property that

(F,[u]) = /U (u,w), dzx (3.10)

for all [u] € ¥y, u being a representative of [u].
Set

v(y) = *EI/U(Kg(-,y),w)xdaj
= G (xvw)(y)

for y € )0(, where xy is the characteristic function of U. By Theorem 2.26 we
deduce that v € H*™(X, E).

Further, G is a Hodge parametrix whence t(v) = 0 on 0X. We assert that
Av = 0 away from U in the interior of X.
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Indeed, let u € C*°(X, E') have compact support in X \ U. Then

| @u,dy = [ (@), dy
X\U X
= /(GAu,w)wdx
U

_ /U (u, w), di — /U (Hu,w), da
— 0,

for u=0in U and w is orthogonal to H(X).

Since G has the transmission property with respect to OU, we see that
v € C®(U,E) whence t(v) € &j-'C=(0U, F;). The elliptic regularity of
the Dirichlet problem now yields v € C*°(X \ U, E), and so u determines an
equivalence class [v] € X,.

If u € S (U) then

u(z) = — lim Ga(Kg(z,+),u) + lim H (XU,EU) ()
e—0+ oU_. e—0+

for all x € U. Hence it follows that

Ell) = [ (), de

= — sl—i>%l+ - Ga(xgv,u) + sl—i>%l+ ; (H (xv_.u),w) dx
= — i

Ay, Gatrme )
= E’X\ﬁ(uv U)

because w is orthogonal to H(X).
Finally, the topological arguments are the same as in Theorem 3.2, which

completes the proof.
O

3.4 Pairing in Sobolev spaces

Set
g, ~ S2O)
HX)
Sa(U) N C>=(U,E)
22 -
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and
vV =8U(U) e HX),

“S” meaning the orthogonal complement with respect to the scalar product
hi (-, -). When equipped with the scalar product hy (-, -), the space V' is obvi-
ously Hilbert.

For [u] € ¥, we set

Ey ([u]) = [Ev(u) [x\0),

the right-hand side being an equivalence class in S(AOO) (X\U,0X)/H(X). This
class is independent of which representative u of [u] we choose to define it. In-
deed, from the Unique Continuation Property for A and the elliptic regularity
of the Dirichlet Problem it follows that &, induces a topological isomorphism
of SA(U) N C=(U, E) onto S(AOO) (X \U,0X). In particular, if u € H(X) then
Ey(u) = u in the complement of U. This gives us the desired independence,
hence Ey is well defined.

Since the space H(X) is finite dimensional we immediately obtain the fol-
lowing lemma.

Lemma 3.17 The mapping Ey is a topological isomorphism

Sa(U)NC=(T,E) ~ SN(X\T,0X)
H(X) TR

Combining Lemma 3.17 and Theorem 3.16 we see that 3, and X} are
topologically isomorphic. However, we want to recover this result within the
general scheme of Section 2.

To this end, we write i;: V' — ¥; and 25: X9 — V for the natural embed-
dings. They are obviously injective and continuous. We define an extension

hr(-, ) of hu(-,-) by

ho ([u], [v]) = bz ([u], Bu([0])) - (3.11)

Lemma 3.18 As defined by (3.11), the pairing hy (-, -) does not depend on
the choice of u € [u] and v € [v]. Moreover, it is separately continuous and
satisfies

iLU (ilu, [’U]) = h'U (U, ’LQ[U])
for allu € V' and [v] € X,.

Proof. The pairing is independent of the choice of u € [u] and v € [v]
because so are the pairing hx\ﬁ and the mapping Ey .
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Furthermore, from the definition of &y it follows that 5X\ﬁgU = &y on
SU(U). Hence, by Lemma 3.15 we get

b (i, [0]) = Py (€ p€0(w), Bu([v))
= hyg (Exglu(w), 2By ()
= hy (u,iz[v]),
as desired. =

Theorem 3.19 The mapping

Sa(U) N C>(T, E) sO@)\
H(X) T HE

J

induced by (3.11) is a topological isomorphism of these spaces.

Proof. As mentioned, this assertion follows from Lemma 3.17 and Theo-
rem 3.16.

O
As we have a commutative diagram
Sa(U)NC®U,E) i oim) 0 SY )
S\ (U X
U U U
SAU)YNC®U,E) i om) 0 SYU)
S, (U X
the pairing hy (-, -) induces a continuous mapping
. SanexU.E) _ (sPW) (312)
H(X) H(X) '

which is the restriction of J.
Write 7 for the hy -orthogonal projection

7 S(U) e H(X) = ST (U) 6 H(X).

Corollary 3.20 The mapping J s a topological isomorphism of the spaces
(3.12) if and only if

1) S4(U)NC®(U,E) is dense in 8¢ (U);
2) 7w maps SA(U) NC>=(U, E) continuously into Sy(U) N C>=(U, E).
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Proof. According to the general scheme we put

sPw)
o= )
s, _ Sa)nC=(U,E)
2 — H(X) )

¥ = SMU) e HX).

Then the statement follows from Corollary 2.7.
O

We thus see that Corollary 3.20 is formulated in just the same way as
Corollary 3.11, the only difference being in the pairing & and corresponding
orthogonal projection .

Note that the projection m can be described as the limit of iterations of
double layer potentials, cf. [NS96, SST00]. We next make use of this descrip-
tion in order to find several cases where the conditions 1) and 2) of Corollary
3.20 are fulfilled.

Example 3.21 Let A be a determined elliptic homogeneous operator of
order m < n/2 with constant coefficients in X = R". Then the Laplacian
A = A*A has a two-sided fundamental solution of convolution type vanishing
at infinity (see for instance [Tar95b]). By the Liouville Theorem we deduce
that H(X) = {0}.

Since A is formally selfadjoint, there is a formally selfadjoint fundamental
solution of convolution type, say G. It was proved in [SST00] that

7= lim MY
N—oo

where

(M) (z) = / GalKox(o=-).u)

for all w € H™(U, E), the limit being in the strong operator topology of
H™U, E).

We can certainly assume that G is of the form G = ad A(D)ad A*(D)g
where ad A(D) is the inverse array of A(D), and ¢g a fundamental solution of
the (scalar) operator det A(D) = | det A(D)|?. Tt is easy to verify that in this
particular case the kernel Kga-(z — y) gives a two-sided fundamental solution
for A. Hence M? = M and m = M.

Finally, as GA* has the transmission property with respect to any smooth
hypersurface in R* we conclude that M maps C*(U, E) continuously into

SA(U) N C>(T, EB).
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Example 3.22 Let A be a determined elliptic operator as in Example
3.12, and let A* possess the Unique Continuation Property in the interior of
X. Then the condition 1) of Corollary 3.20 is fulfilled.

We are going to invoke the Neumann operator for the short complex con-
sisting of Ay = A only, cf. Section 2.3, in order to prove that the condition 2)
of Corollary 3.20 also holds.

Consider the continuous operator T: H™(U, E) — L*(U, F) induced by A,
i.e., Tu = Au. According to Theorem 6.2 from [SSTO00] the adjoint T of T
with respect to hy(-,-) is given by Ty f = GA* (xuf) where A* is the formal
adjoint of A.

As we are interested in the projection to ng) (U)oH(X) we need to identify
the adjoint of the restriction of 7' to H™ (U, E) ©H(X). Obviously, this adjoint
is equal to (1 — 7yx))T™ where 7y(x) is the orthogonal projection onto H(X)
with respect to hy (-, -).

We have 7y vy = HEy where H is the L*(X, E) -orthogonal projection to
H(X). Since A (T f) = A* (xuv f) in the sense of distributions in the interior
of X, we get £y Iy =Ty on all of X. It follows that

The Laplacian L' = TT* is a bounded selfadjoint operator in L?(U, F).
Let us show that it is injective.

Indeed, L' f = 0 if and only if Ty f = 0, for T* = Ty;. Moreover, if Ty f =0
in U then Ty f = EyTyf =01in X, and so A (Ty f) = A* (xvf) =0 in X. As
A* possesses the Unique Continuation Property in a neighbourhood of U we
see that xyf =0in U.

Since L' is selfadjoint we conclude that the range of TTy is dense in
L*(U, F).

Moreover, the range of T is equal to L?(U, F'), and so the range of Ty = T*
is closed in H™(U, E), too. It follows that

H™U,E) =ker T ® Ty L*(U, F),

hence the range of L' coincides with that of 7. We have thus proved that L' is
an isomorphism of L?(U, F'). In fact, L' = 1 in the case considered in Example
3.21.

We next show that Ty, (L') ~*T maps C*(U, E) continuously to C*(U, E),
and hence 7 does so. For this purpose, pick g € L?*(U, F)). Then there exists
f € L*(U, F) satisfying TTy f = g in U.

Note that ATy f is defined on all of X and belongs to L*(X, F'). Therefore,
g can be extended to a section g € L*(X, F) in such a way that ATy f = g in
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X. It follows from Theorem 2.26 that

A*G = AATyf
= (1-H)A" (xuf)
= A" (xvf), (3.13)

in H™(X, E), for HA* = 0.
This formula implies, in particular, that AA*§ = 0 away from U in the
interior of X, and thus ¢ is C'*° on this set.

Since A* (as well as A) possesses the Unique Continuation Property in X,
there exists a two-sided fundamental solution to this operator, say ®4- in a
neighbourhood O of U. Applying it to both sides of formula (3.13) yields for
each v € U

() 9@ =3+ | Ga (Koo (2.),9). (3.14)
It is well known that the kernel of ®4- is smooth outside of the diagonal
{z = y}. Therefore, the boundary integral in (3.14) is a C*° section of F' near
U.

We thus deduce that the inverse (Ll)f1 preserves the C'™° sections of F'
over U.

Finally, if u € C*(U, E) then (L*)'Au € C>(U, F), and so Ty (L*)~" Au
belongs to C*(U, E) because the Green operator G has the transmission prop-
erty with respect to OU. The continuity of 7 now follows from the equality
m =1 —Ty (L") ' T modulo the smoothing operator H Ty (L') ' T. Thus,
conditions 1) and 2) of Corollary 3.20 hold for A.

Example 3.23 Let A be included to an elliptic complex of differential
operators A* € Diff™(X; E*, E'™) of the same order on X, so that A° = A.
We formulate a particular Neumann problem, cf. Section 2.3, corresponding
to our situation.

We have a continuous operator A: H™(U, E)6H(X) — L*(U, F). Arguing
as in Example 3.22 we see that the adjoint A* of A with respect to hy (-, ) is
given by Ty f = GA* (xu f).

Let n4» represent the Cauchy data with respect the formal adjoint of A?
and

H (U, E?) = {ue€ H™(U,E?) : na(u) =0}

on OU. Obviously, it is a closed subspace of H™(U, E?).

For z € U, pick a cut-off function w, at x, i.e., any C* function with a
compact support in U, equal to 1 near x and vanishing outside of a larger
neighbourhood of x. The difference 1 — w, is equal to 1 close to OU, hence for
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every w € H™ (U, E®) we get

Ty (A *w = G(wp+ (1 —wy)) A (xv A" w)
= (Gu,) A*AYw + (G(1 — w,)) A*AY (xyw)

=0
at x.
Consider the complex
m Ty 2 1, A m 2
0 «— H™U,FE) «— L*(U,E") & H, (U E") +— ..., (3.15)

the fragments indicated by dots being unimportant in the sequel.

Under our assumptions on {£*, A’}, the Laplacians A? = A" AT+ AT 1A 1+
are elliptic operators of order 2m.

Let B® be the block operator

A L2(U, Ei—l—l)
B = ( i1 ) . H™(U,E") — P
L2(U, Eifl)

whose Laplacian is B*B' = A’. As A’ are elliptic differential operators, the
same is true for B
We endow the space H™(U, E?) with the scalar product

B (f.g) = /X (BEL(S), BEX()), d + /X (HEX(f), HEX(g)), du

constructed for B? in the same way as the scalar product hyy = hY, on H™(U, E)
was constructed for A.

Write G? for the Hodge parametrix of the Dirichlet problem corresponding
to A% in X, and T((JQ’Z) for the composition G2A'yy;. Then the adjoint complex
to (3.15) is given by:

(2,2)

0 — H™U,E) -5 [2U,EY) "5 H™(U,E) — ...  (3.16)

where p: H™(U, E®) — H]" (U, E?) is the orthogonal projection with respect
to h¥(-,-). Indeed, by Theorem 6.2 of [SST00] the adjoint B** to B? with
respect to h¥ (-, ) is given by
T;f = G*°B” (xuvf)
= (G2A2*(XUf); GQAI(XUf))
_ (7Y, T2)

where B?* is the formal adjoint of B2.
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It follows that (A'*)* = 7" is the adjoint to A!* in the sense of Hilbert

spaces if A'* is considered as a bounded operator from H™(U, E?) to L*(U, E").

Obviously, p T((JZ’Q) is the adjoint in the sense of Hilbert spaces for the restriction

of A™ to HJ (U, E*). Hence the Laplacian of (3.16) at step 1 is the bounded
selfadjoint operator

Lt = AYp T + ATy
on L*(U, F).

From now on we assume that H?(X) = 0. Let us show that under this
assumption the null-space of pT,(JQ’z) just amounts to SgT)(U). Denote by G%
the Green function of the Dirichlet problem for A? in U. Then for every
f € H™(U, E?) we have

f=Myf+GyA*f
by the Poisson formula (2.24). As £2(g) = 0in X \ U for any g € Iflm(U, E?)
we conclude that

WL (M2 S, G A ) = / (B2M2f, B*GL A ) dx
U

= / (A2MZ f, G2 A% f)pda — / Gpo- (xp2GE A f, B ML f)
U 0

U
=0
because A*MEf =0in U and GEA*f € I—OIm(U, E?*). We thus deduce that the

Poisson formula gives an orthogonal decomposition with respect to h#(-,-) if
H*(X) = 0. Since
H™(U, E?) — H (U, E?)
we actually see that
(H™ (U, E*)*" < (I;[m(U EQ))L
na\“» )
= SW(w).

Thus, pT((JM)f = 0 implies A2T5’2f = 0in U. On the other hand, in X we
have

NTFf = A (wf) = H*A' (xuf)
= A (xv f)
because H2A! = 0. In particular this means that A'f = 0 in U if and only if
AT f =0 in U.
Conversely, if A'f =0 in U then A2T[(]2’2)f =01in U, and

T8 f (x) = | G (Kea(e,),08 1)
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for all x € U, the last equality being a consequence of Stokes’ formula. More-
over, for all g € H?" (U, E*) we have

hty (Tz(f2’2)f, g) E / (BQT?’Q)f, 32559) dz
X T
== / GB2 (O@*Elf,g)
oUu

== GAI* (*Elfag)
oU

= 0,

the last equality being due to jump theorems for a single layer potential and
the fact that na(€%(g)) = na(g) = 0 on OU. Hence A'f = 0 in U implies
pT((]2’2)f =0 1in U, as desired.

Let us describe the null-space of L'. Note that L'f = 0 if and only if both
Ty f and pTL(,2’2)f vanish, for the operator

H™ (U, E?)
(2a2) n ’
(p?f )  UF) - e
u H™(U, B)

is adjoint to the differential operator B'*.
Hence ker L' = ker Ty 05201) (U). It was proved in [SST00] (see Lemma 8.4)
that

ker Ty NSu(U) ={f € L*(U,F): A*f =0, A'f =0, n(f) =0 on oU}.

This is the so-called “harmonic space” at step 1 for the differential complex
{E', A"} in U. One usually realises it as the null-space for the Neumann
problem in the L?-setting for {E’, A'}.

As the Laplacian L' is defined everywhere on L*(U, F') the Neumann prob-
lem for the complex (3.16) at step 1 reads as follows: given any f € L*(U, F),
find g € L*(U, F) satisfying L'g = f. If the range of L' is closed, then so is the
range of A: H™(U, E) — L*(U, F), too. For the Dolbeault complex this latter
fails to be the case even for the small balls U of C". Hence for the Dolbeault
complex the Neumann problem in the present setting can not highlight any
properties of the projection .

The last observation in Example 3.23 leads us to another choice of function
spaces, which could be H™(U, E*).

Example 3.24 Let X =R"*, n > 3, U C R” a ball, and A a Dirac operator
in R”, c¢f. Example 3.5.

It is proved in [Sh196] that there are systems {b,} and {c,} of (C* -valued)
homogeneous harmonic polynomials, such that
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a) {b,} is an orthogonal basis in all the spaces SS)(U), s € Z, simultane-
ously, and an orthonormal basis in Sﬁlm)(U ) with respect to hy (-, -);
b) {b,} U {c,} is an orthogonal basis in all the spaces SV, s € z,,

simultaneously, and an orthonormal basis in S(Am)(U) with respect to
hy (-, -).

Property a) implies, in particular, that condition 1) of Corollary 3.20 is
fulfilled. Moreover, the projection 7, if restricted to S(As)(U), coincides with
the hy (-, -) -orthogonal projection S(AS)(U) — SS)(U). It follows that 7 maps
SA(U)NC*>(U, E) continuously into S4(U)NC>(U, E). Hence Corollary 3.20
holds for A.

4 Duality for solutions of arbitrary order of
growth

In this section we will describe the dual space of S4(U) by using various pair-
ings in Hilbert spaces of solutions to the system Au = 0 in U. We assume that
both X and A are real analytic.

4.1 Duality in Hardy spaces

Let U CC X be a domain with real analytic boundary. In this and the next

section we restrict ourselves to the case ¥; = Sa(U) and Xy = Sa(U). Let
vV =HP(U) and

i H@(g) — Sa(U),
in: Sal) — HP W)

be natural inclusions.

The mapping 2; is always one-to-one, and the mapping i is one-to-one
because of the Unique Continuation Property (U)s. As mentioned, the Poisson
formula (2.24) implies the continuity of ¢;. The mapping is is continuous by a
priori estimates for solutions of elliptic equations.

From the Runge theorem for solutions of elliptic systems (see for instance
Theorem 4.1.26 in [Tar97]) it follows that Sa(U) is dense in Sa(U).

Our next goal is to extend the sesquilinear pairing h(-,-), cf. (2.27), from
HP ) x HP(U) to &1 x 5.

Note that the analyticity of OU implies that also 0D, is real analytic for
each sufficiently small ¢ > 0.

Theorem 4.1 Let 0 < 57 < m —1 and let 6 > 0 be small enough. Then
there exist a compact set K C U, €9 > 0 and C' > 0 depending on j, §, K and
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g0, such that for all u € SA(U), v € SA(Us) N C*™(Us, E), and ¢ € (0, ] we
have

[ BB, ds | < Clullewn lomgeer 64D

Proof. Let .
n(f) = @0 *5, Cj *p f
]:

be the Dirichlet system adjoint to the system ¢ with respect to the Green
formula for A. Given any sufficiently small £ > 0, we consider the Cauchy
problem

A*Av; . = 0 near 0U_.,
t(vj—e) = 0 on 0OU_,, (4.2)
n(Av;_.) = (0,...,0,Bv,0,...,0) on 0U_.

in a neighbourhood of U_.. The following statement is a consequence of the
Cauchy-Kovalevskaya Theorem.

Lemma 4.2 Given any 6 > 0 small enough, there are g > 0 and Co > 0
such that for all € € (0,e9] the sections vj _. belong to SA(U_cyr \ U_2z,) with
some r > 0 independent of ¢, and satisfy

||Uj,*€||C2m(ﬁ,5+T\U,2EO,E) < Co ||U||C2m(ﬁ(;,E)'

Proof. First we note that there exists a neighbourhood O of U and
sections W; ., real analytic near O, such that

tW,_e) =0 on OU .,
n(AW;_.) = (0,...,0,B;v,0,...,0) on 0U_,

and
1Wj—cllczm@ ) < Co 0]l c2m @y, )- (4.3)

For instance, if m; = j we can take

(o(x) +2)*!

m— ~1
Wo—e(z) = @m 1] (02 1(*F0 Co *p A)(x, Vo(x ))) Byv(z),
T + 6 2m—2 B B _
Wi (x) = (Q((Q)m )) (0®™ 2 (x5, C1 %5 A)(z, Vo(z))) 1Blv(:v) —
and so on.
Hence v; _. = W, _.+w, _. where w; _. is a solution of the following Cauchy
problem
A*Aw; . = —A"AW;_. near 0U_.,
t(wj—.) = 0 on OU_.,

n(Aw;_.) = 0 on OU._..
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As the Dirichlet system {t,no A} represents the Cauchy data for the Lapla-
cian A we see that
A*Aw; . = —A"AW; . near 0U_,,
W« vanishes up to order 2m —1 on 0U_..

Since the hypersurfaces OU_. are real analytic and compact we can argue
locally. Fix a point 2° € OU. Then after a suitable bianalytic change of
variables # = §(y) in a neighbourhood of z° we obtain the following Cauchy
problem

A: wj—=(0(y)) = —AAW;_.(6(y)) if y, < —e,
(;) wj—(6(y)) vanishes for j =0,1,...,2m —1 if y, = —¢,
Yn
(4.4)

where A is a differential operator of order 2m with real analytic coefficients.
Obviously, A* inherits the ellipticity from A.
Finally, complexifying problem (4.4) and using (4.3) and Theorem 9.4.5
from [Hoe83| we arrive at the assertion of the lemma.
O
Further, let Go be a Green operator for A. Then using Lemma 4.2 and
Stokes’ formula we get

| BB, s = [ .n(an ), ds = [ a0, i

U, € U* € U* €

= Ga (¥gvj_c, u)
oU_.

= Ga (%pvj—c, u)
oU_<,

forall 0 < e < gy.
Since Gal(+, ) is a bidifferential operator of order 2m —1 on QU we conclude
that

‘ / (Bju, Bjv), ds_.
aU_.

S C ||u||02m_1(8U—50aE) ||’Uj,_5||02m—1(3U_507E), (45)

the constant C' depending on the coefficients of A and {B;} only. By Lemma
4.2, there is a constant Cy > 0 such that

[vj,—ellczm-10v_.,.m) < Co |Vl com @y, 1) (4.6)

for all v € Sa(Us) N C?*™(Us, E). Finally, by a priori estimates for solutions of
elliptic systems there exists a constant C; > 0 such that for all u € SA(U) we
get

lullczm—r@voy.y < Cr llulle@_, 0 (4.7)

€0
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Combining now inequalities (4.5), (4.6) and (4.7) we obtain (4.1), as de-
sired.

O

In the case where A is the usual Laplace operator in R”, Stout [Sto95]

proved that 0D should be necessarily real analytic for the estimate (4.1) to
hold.

Corollary 4.3 For every u € SA(U) and v € SA(U), the limit

h(u,v) = lim (t(u),t(v)), ds_.. (4.8)

exists. The pairing h(-,-) is separately continuous on Sx(U) x Sa(U), and
h(u,v) = h(u,v) for all u € H(AB)(U) and v € SA(U).

Proof. By the assumption, there exists a 6 > 0 with the property that
v e SA(U(;) N C2m(U(5, E)

Given any € € (0,9, €9 being from Theorem 4.1, we define a continuous
functional F, _. on SA(U) by

Fora() = / . t0)), ds

for u € Sa(D). According to Theorem 4.1 there is a constant C' > 0 indepen-
dent of ¢, such that

| Fo—e (W) < C lulle@,, . p)

for all 0 < e < g.
Let 3 be the subset of SA(U) consisting of all solutions u with the property

that
1

||u||C(ﬁEO/2,E) < ol

This means that for each ¢ € (0, ] the functional F, _. belongs to the polar
of ¥, i.e.,
Y ={FeSalU): |Fu)|<lforallueX }.

By a familiar theorem of Alaoglu and Banach, this polar is weak* compact.
Since the space Sa(U) is separable, this polar is metrisable in the weak* topol-
ogy. By compactness, there are limit points for the net {F, _.}o<.<c,. Let Fy
be such a limit point. Thus, for some sequence ¢4, € (0, £¢] converging to 0, we
have

lim fvy_gk = fo(ﬂ:)
k—o0

for all u € SaA(U).
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It is easy to see that for any u € H(AB)(U) we have

Fo(u) = lim F, . (u)

k—o0

= h(u,v).

Hence, each weak® limit point of the net {F, _.}o<.<., agrees on H(AB)(U) with
u— h(u,v).

As SA(U) is dense in Sa(U), the space H(AB)(U) is dense there, too. This
implies the existence of a limit

lim fm,g == fo
e—=0+
which defines an element of Sx(U)'.
Finally, the separate continuity of the pairing h(-,-) follows immediately
from (4.1).
0

Theorem 4.4 The mapping J : Sa(U) — Sa(U)' induced by (4.8) is a
topological isomorphism of these spaces.

Proof. Since the natural inclusion i is one-to-one, the mapping J is
one-to-one, too (see Lemma 2.2).

According to Corollary 2.5 to prove the surjectivity of the mapping we
have to show that the reproducing kernel K (-,-) of the space H(AB)(U) has the
following property.

Lemma 4.5 For every fized x € U, the Szegi kernel K(z,-) belongs to

E:®Sa(U).

Proof. Since X, 0D, A and {B,} are real analytic Theorem A of [MN57]
implies that any solution u of the Dirichlet problem (2.20) actually satisfies
Au = 0 in a neighbourhood of U if the data @g":_oluj are real analytic, cf. for
instance Lemma 4.4 in [NST98]|. This means, in particular, that Gy (z,-) is
real analytic in a neighbourhood of OU. Hence, we deduce from (2.29) that
K(z,-) € E, ® SA(U) for every fixed x € U, as desired.

U

We have thus proved that the mapping J is an isomorphism of vector

spaces
SA(U) = Sa(U)'.

We are now going to invoke an operator-theoretic argument to conclude
that this algebraic isomorphism is in fact a topological one. To this end, we

note that the spaces Sa(U) and Sa(U)" are both spaces of type DFS. For
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Sa(U), see the proof of Theorem 1.5.5 in Morimoto [Mor93, p.13]. As the
Closed Graph Theorem is correct for linear mappings between spaces of type
DFS (see Corollary A.6.4 in [Mor93, p.254]), to see that v — F, is a topological
isomorphism, it suffices to show that it is continuous. The latter conclusion,
however, follows from Theorem 4.1 and the explicit construction of F,. This

completes the proof.
O

Recently Stout [Sto95] proved Theorem 4.4 for the usual Laplace operator
A in R,
As we have a commutative diagram

S & HPW) & sa)
U U U

§:(0) & HPWU) S Sa0)
the pairing iL(, -) induces a continuous mapping
J: SA(U) — SA(U)I

which is the restriction of 7.
Write 7 for the Szeg6 projection

o H(AB)(U) — HEXB)(U).

Corollary 4.6 The mapping J is a topological isomorphism of the space
Sa(U) onto SA(U)" if and only if

1) Sa(U) is dense in S4(U);
2) 7w maps SA(U) continuously into Ss(U).

Proof. According to the general scheme we have

61 = SA(Q)J
S, = Su(U),
v = HP(U),

hence the statement follows from Corollary 2.7.
O
Stout [Sto95] proved this theorem for the overdetermined Cauchy-Riemann
operator A =0 in C", n > 1.
In [Sh100] it is proved that conditions 1) and 2) of Corollary 4.6 hold for a
Dirac operator A in a ball of X = R", cf. Example 3.5.
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Example 4.7 Let A be a determined elliptic operator with real analytic
coefficients on X. Then both A and A* possess the Unique Continuation
Property in the interior of X. Again condition 1) of Corollary 4.6 is fulfilled.

As in Example 3.6 we consider the extension of A to an operator

T: HPWU) - B W)

where HES)(U) is the closed subspace of the Hardy space HE&)*(U) consisting
of all solutions to A*g =0 in U.
As is proved in Example 3.6, for any ¢ € Hﬁg)(U) we have

(APyn)~" g = Pit(®ug)

where P/ the Poisson integral of the Dirichlet problem for AA* in U.

Let u € Sa(U). Then Au € S84-(U) and hence it is real analytic in a
neighbourhood of U. By Stokes’ formula,

By(Aw) (2) = u(a) + [ GalKale, )0
oU
forall z € U. _
If u € Sa(Us) N C*™(Us, E) with 6 > 0 sufficiently small, then by the
Cauchy-Kovalevskaya Theorem there exist a neighbourhood O of U and a
section v € C™(0, E) such that

Av = 0 in O,
t(v) t(u) on OU.

By Stokes’ formula,

By (Au) (2) = ulz) — v(z) + / Ga(Kolz,),v) (4.9)
aonU
forallz e ONU.
By the definition of v, the right-hand side of the last equality uniquely
extends to a solution of Au =0 in O. It follows that ®y(Au) € SA(OUU).
Arguing as in the proof of Lemma 4.2 we see that the neighbourhood O

does not depend on u but does on ¢ and dU. Moreover, for every solution
u € SA(Us) NC™(Us, E) we get

[v]lemo,m) < Cllullom@,,r)

with C' > 0 a constant independent of u. Hence ®p(Au) maps Sa(U) contin-

uously into SA(U).
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Further, since X, OU, AA* and {B,} are real analytic, Theorem A of
[MN57] implies that the Poisson integral P} ®;(Au) is real analytic in a neigh-
bourhood of AU, provided that u € Sa(U). Therefore, 7u is real analytic in a
neighbourhood of OU, too.

If {u, converges to u € Sa(U) then ®y(Au,) converges to ®yu by (4.9),
and PL®y(Au,) converges to Pi®y(Au) by [NST98] (see the proof of Lemma

4.4). Hence m maps Sa(U) continuously into S4(U), cf. Section 2.3.
Summarising we conclude that the mapping J is a topological isomorphism

of S4(U) onto Sa(U)".

Example 4.8 Suppose A is an overdetermined elliptic differential operator
with constant coefficients in R", as in Example 3.7. If U CC R" is a strictly
convex domain with real analytic boundary then under reasonable assumptions
on A the Neumann problem for the tangential complex is solvable at step 1,
see Example 3.7 for more details.

Moreover, the Neumann operator N! possesses the analytic hypoellipticity
property, cf. [Tar95a]. Hence the operator I — T NT,, i.e., the orthogonal
projection from L?(0U, E?) to ker TP, maps Sa(U) continuously to S4(U). As
LU, E®) = HP(U) and ker TP = H\”)(U) we see that the projection 7 has
the same property.

As the domain U is strictly convex we see that Sy(U) is dense in Sy(U).
By Corollary 3.11, the mapping J is a topological isomorphism of S4(U) onto
S4(U)'. By reflexivity, the transpose J' gives us a topological isomorphism

between the spaces Sa4(U)" and S4(U).

4.2 Duality in Lebesgue spaces

We will now study the case

S o= SaU),
Yo = Sa(U),
Vo= s{W)
and
i SOWU) = SaU),
iy SAU) — SV

are natural inclusions.

The mapping 7; is always one-to-one and the mapping i is one-to-one be-
cause of the Unique Continuation Property (U),. By a priori elliptic estimates,
the mappings 4; and i, are continuous. As mentioned, Sg])(U) is a separable
Hilbert space with reproducing kernel. To proceed we thus need to extend the
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pairing
h(u,v) :/ (u,v), dx
U
from L?(U, E) x L*(U,E) to ¥, X 2.

Corollary 4.9 Let § > 0 be small enough. Then there are a compact set
K CU, e >0 and C > 0 depending on 0, K and €y, such that for all
u € SA(U) and v € Sa(Us) N C?*™(Us, E) we have

[ o, ds| < Clulleuca el s (4.10)

whenever € € (0, o).

Proof. Let gy be the number from Theorem 4.1. Since QU is sufficiently
smooth there exists 0 < &’ < gy such that for 0 < ¢ < &’ we have

/ (u,v), dx:/ (u,v), dm+/ dr/ (u,v),ds_,
—e U_ € oU_,

whence

| [ (o), de| < meas@) lulloqr_ 1o+ su

relee’]

/ (u,v),ds_,|.
aU_,

Now the statement of the corollary follows from Theorem 4.1 with By = I,
as desired.
O
In case A is the usual Laplace operator in R”, Zorn [Zor82] proved that the
boundary of U should be necessarily real analytic in order that the estimate
(4.10) may hold.

Corollary 4.10 For every solutions u € Sa(U) and v € Sa(U) there exists

a limit
h(u,v) = sl—1>%l+ - (u,v), dx. (4.11)
The corresponding pairing h(-,-) is separately continuous on Sa(U) x Sa(U),

and h(u,v) = h(u,v) for all u € Sg))(U) and v € SA(U).

Proof. The proof is similar to the proof of Corollary 4.3.
O

Theorem 4.11 The mapping J : Sa(U) — Sa(U) induced by (4.11) is
a topological isomorphism of these spaces.
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Proof. Since the natural inclusion iy is one-to-one, the mapping J is
one-to-one, too (see Lemma 2.2).

By Corollary 2.5, to prove the surjectivity of the mapping we have to
show that the reproducing kernel K (-, ) of the space Sg)) (U) has the following

property.

Lemma 4.12 For every fized x € U, the Bergman kernel K(z,-) belongs

to B2 @ Sa(U).

Proof. In the proof of Lemma 3.9 we derived the formula

in U, for any fixed = € U, where V (z,-) is a solution of the Dirichlet problem
(3.6) for the operator A% Since all the objects X, 0U, A and {B;} are real
analytic we deduce by Theorem A of [MN57] that V(z,-) € E* ® Sa2(U) for
every fixed z € U (see for instance Lemma 4.4 in [NST98]). Hence the lemma
follows, as desired.
U
We have proved that the mapping J is an isomorphism of vector spaces
SA(U) and SA(U)'. The topological arguments are actually the same as those
in the proof of Theorem 4.4.
U

Since we have a commutative diagram

Sal) & SOW) & 8aU)
U U

S:0) & SPW) & Saw)
the pairing A(-,-) induces a continuous mapping
32 SA(U) — SA(U)I

which is the restriction of 7.
Write 7 for the Bergman projection

7 SOU) = sV().

Corollary 4.13 In order that the mapping J be a topological isomorphism

of the space S4(U) onto SA(U)" it is necessary and sufficient that

1) Sa(U) be dense in Sa(U);
2) 7 would map Sa(U) continuously into Sx(U).
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Proof. According to the general scheme we have

61 - SA(Q):
Sy, = Sa(U),
v = sYW),

and so the statement follows from Corollary 2.7.
O
Zorn [Zor82] proved that the conditions of Corollary 4.13 hold for the
Cauchy-Riemann operator A = 0 in any strictly pseudoconvex domain U of
C" with real analytic boundary.

Example 4.14 Let A be a determined elliptic operator as in Example
3.12. Since X, 0U, AA* and n(-) are real analytic Theorem A of [MN57]
implies that NAu is real analytic in a neighbourhood of OU if u € SA(U).
Therefore mu = u — A*N Au is real analytic in a neighbourhood of OU, too.
Furthermore, if {u,} converges to u € Sa(U) then Nu, converges to Nu,
cf. the proof of Lemma 4.4 in [NST98]. Hence 7 maps Sa(U) continuously
onto S4(U). Finally, by the Runge theorem for determined elliptic operators,
cf. [Tar97, 4.1.9], S4(U) is dense in S4(U). Hence, according to Corollary

4.13, the mapping J is a topological isomorphism of S4(U) onto Sa(U)". By

reflexivity, the transposed mapping J' is a topological isomorphism of S4(U)’
onto S4(U).

Example 4.15 Assume that A is a column of first order scalar partial
differential operators with constant coefficients in R*. Under familiar assump-
tions on A, the compatibility complex of A is simply a Koszul complex, cf.
[Tar95a, 1.2.8]. Let U CC R™ be a strictly convex domain with real analytic
boundary. Then the Neumann problem for the compatibility complex in U is
solvable at step 1, and the Neumann operator /N preserves real analytic sec-
tions in a neighbourhood of U. The latter remains still valid with “convex”
replaced by “pseudoconvex” in an appropriate sense, cf. [Tar95a, 4.1.5]. As

the domain U is strictly convex, the subspace S(U) is dense in Sa(D). By

Corollary 4.13, the mapping J arranges a topological isomorphism of S, (U)
onto Sa(U)'.

Example 4.16 Let X = R", n > 3, U C R" a ball, and A a Dirac operator
in R”, c¢f. Example 3.5. It is proved in [Sh196] that there are systems {b, } and
{cu} of (CF -valued) homogeneous harmonic polynomials, such that

a) {b,} is an orthogonal basis in all spaces SS))(Ug), e € R, simultaneously;

b) {b,}U{c,} is an orthogonal basis in all spaces Sg])(Ug), e € R, simulta-
neously.
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Property a) implies that condition 1) of Corollary 3.11 is satisfied. Moreover,
the projection 7 restricted to Sg])(Ug), e > 0, coincides with the orthogonal
projection

s (U:) = 8 (1),
It follows that 7 maps Sa(U) continuously into S4(U). Hence Corollary 3.20
holds for A.

4.3 Grothendieck duality

Suppose U is an open subset of X with 0 boundary, such that 0X NU =0
or 0X NU =0X. Set

Y, = SA(U)
b))
v {u€ SA(X\U): t(u) =0o0n 00X}

H(X)

and B
V=8 (X\T,0X) e H(X),

“S” meaning the orthogonal complement with respect to the scalar product
hX\U(': )

For each [u] € Xy, we set

iz[v] = p(v)

where v is a representative of the class [v] and p(v) the orthogonal projection
of v to V in S(Am)(X\U, 0X). If v1,vy € [v] then v; — vy € H(X) whence
p(vy — vy) = 0. It follows that the mapping iy : Yo — V is well defined and
continuous, as is easy to check.

Further, for u € V' we set

hu = [5)(\?(“)] ’

i.e., the equivalence class in ¥; corresponding to the restriction of SX\ﬁ(u) to
U.

We are now in a position to extend the sesquilinear pairing hX\U(-, -) from
V XV to X1 X 3y. Namely, if [v] € 3y then there exists a domain O CC U
with smooth boundary 0O, such that v € SA(X \ O) for all v € [v]. Given any
[u] € £, and [v] € Xy, we set

hmﬂMﬁmz—AJh@wm) (4.12)

where u € [u] and v € [v].
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Lemma 4.17 As defined by (4.12), the pairing Bx\g(-, -) does not depend
on the choice of O and u € [ul], v € [v]. Moreover, it is separately continuous,
and

hxvo(ivu, [0]) = hx\p(u, io[v])
for allu € V' and [v] € X,.

Proof. By Stokes’ formula, we get

Ga (xgv,u) = /O(Au,v)wdx—/(u,Av)Idx
0

00 o

for all v € H(X). Similarly,

- / Ga (xpv,u) = / (Au,v), dor — / (u, Av), dx
90 x\0 x\0
= 0

for all u € H(X). This means that lNLX\U(-, -) does not depend on the choice of
u € [u] and v € [v].

Let O' CC U be another domain with smooth boundary, such that Av = 0
near X \ O for all v € [v]. Without loss of generality we can assume that
O CC O'. Then by Stokes* formula we get

G (rpvsu) — | Ga(rpvu) = / Ga (10, )
80’ 80 0(0"\0)

= 0, (4.13)

for both u and v belong to Sa(0'\ O). Thus, BX\U('? -) is independent of the
particular choice of O.

Obviously, h/X\ﬁ(', -) is separately continuous if the spaces ¥; and 3, are
endowed with canonical quotient topology.

Since any solution u € V' has finite order of growth near oU it follows from
(4.13) that

b o) = = [ Ga (sev.Expn)
- /8 Ga (v, Exro)
= = [ (g ntan), - (n(A8x ). 10)) ds
= [ (A, ¢ xpo))s = (tw).n(dv) ) ds
— hyg(u,v) — /X (HE o\gt, HE )

= h’X\ﬁ(uv U),
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the last equality being a consequence of the fact that v L H(X) with respect

to hX\ﬁ('a )
Finally, we obtain

h’X\ﬁ(UJU) = h’X\ﬁ(p(u)vv)
= hx\p(u,p(v))
hooo (4, i2[v])

showing the lemma.
O
We thus conclude that there is a mapping J : Yo — X} induced by the

pairing hy\g (-, ).
Theorem 4.18 The mapping

: {u € SA(X\U): t(u)=0 ondX } . <SA(U)>'

J H(X) H(X)

induced by (4.12) is a topological isomorphism of these spaces.

Proof. As p(u) = 0 implies u € H(X) we see that i, is one-to-one. Then
J is one-to-one, too (see Lemma 2.2).

Let us prove the surjectivity of 7. To this end we pick a continuous linear
functional F on ¥;. Then F can be thought of as a functional on SA(U)
vanishing on H(X).

Since Sx(U) is a subspace of Ci(U, E), the space of continuous sections
of E over U, this functional can be extended, by the Hahn-Banach Theorem,
to an E* -valued measure m with compact support in U orthogonal to H(X).

Take a domain O' CC U containing the support of m. Then for every
u € Sa(U) and 2 € O' we have

u(w) =~ [ GalKole.).u) + H (xom) (2

where GG is the Hodge parametrix for the Dirichlet problem in X, cf. Section
2.4.
Hence

(F, [u]) = - » Gal*pv,u) (4.14)

with an element v € [u], and

U(y) = *E‘l<dm7KG('7y)>
= G(*Eldm) (v)
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for y away from the support of m.
Since G is a Hodge parametrix we see that t(v) = 0 on 0X. Moreover, we
get

Av = *Eldm —H (*El}")

_ -l
= x5, dm,

for F vanishes on H(X). It follows that Av = 0 in a neighbourhood of X \ O',
i.e., v determines an equivalence class [v] in ¥5. Obviously, we have J[v] = F,
which proves the surjectivity of 7.

Finally, the topological arguments are actually the same as those in Theo-
rem 4.4.

O

4.4 Duality in Sobolev spaces

From now on we will assume that the manifold X, the bundles F, F' and the
coefficients of the operator A are real analytic.

Let U CC X be a domain with real analytic boundary. We introduce the
spaces of solutions

_ 8al)
R TT5 ok
N
2T ()

and
V=8 (U)o H(X),

‘O’ meaning the orthogonal complement in S(Am)(U) with respect to the scalar
product hy (-, -). We endow V' with the scalar product Ay (-, -), thus making it
a Hilbert space.
For [u] € o, we set
Eylv] = [€u(u)]

with u a representative of [u]. Let us check that this definition does not depend
on the particular choice of u € [u]. Indeed, it was proved in [NST98] (see the
proof of Corollary 4.1) that the mapping

Eu: SA(U) 5 {ueSA(X\U): t(u)=0o0n0X }

is a topological isomorphism of the spaces. Therefore, we conclude that Ey(u)
belongs to SA(X \ U) and satisfies ¢(Ey(u)) = 0 on 0X. In particular, if
u € H(X) then Ey(u) = u and this gives us the independence on the choice of
u € [u], as desired.
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As the space H(X) is finite dimensional we immediately obtain the follow-
ing lemma.

Lemma 4.19 The mapping

SA(U) . {u € SA(X\U): t(u)=0 ondX }

Bus ox H(X)

~—

15 a topological isomorphism of the spaces.

Of course, Lemma 4.19 and Theorem 4.18 already imply that the spaces X,
and X are topologically isomorphic. However, we want to derive an explicit
construction of this duality.

To this end, we set

iw Vo = 21,
g : 29 — V
to be the natural inclusions. They are obviously one-to-one and continuous.
We define an extension hy (-, ) of hy(,-) as follows:

ho([ul, [v]) = hyg ([u], Bulv])., (4.15)

of. (3.11).

Lemma 4.20 As defined by (4.15), the pairing hy (-, ) does not depend on
the choice of u € [u] and v € [v]. Moreover, it is separately continuous and
satisfies

hy (ivu, [v]) = hy (u, is[v])
for allu € V and [v] € Xy.

Proof. The pairing is independent of the choice of u € [u] and v € [v]
because so are the pairing hx\ﬁ and the mapping Ey .

Moreover, from the definition of & it follows that £x\ 7€y = 1 on S(Am)(U).
Hence, by Lemma 4.17 we get

hy (v, [o) = by (iExpéou), Bu(lo])
=y (Evpu(n) (o))
= hy (u,iy[v]),

as desired. O
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Theorem 4.21 The mapping

) SA(U) SA(U) /
T3S _><H(X)>

induced by (4.15) is a topological isomorphism of these spaces.

Proof. This follows from Lemma 4.19 and Theorem 4.18.

O
As we have a commutative diagram
SA(U) 12 (m) 11 SA(U)
Sy\(U X
U U U
S, U X
the pairing }NLU(-, -) induces a continuous mapping
. Sa0) (SA(U)>,
: 4.16
Vo (419

which is the restriction of 7.
Denote by 7 the orthogonal projection

—~

7 S(U) e H(X) = ST (U) 6 H(X).

Corollary 4.22 The mapping J s a topological isomorphism of the spaces
(4.16) if and only if

1) Sa(U) is dense in S4(U);
2) 7w maps SA(U) continuously into Sy(U).

Proof. According to the general scheme we have

_SaU)
o= Iy
Sa(0)
RTh5)
v = S{(U)eHX),

hence the statement follows from Corollary 2.7.
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Example 4.23 Assume that A is a homogeneous determined elliptic op-
erator with constant coefficients of order m in X = R*, with n > 2m, cf.
Example 3.12. As we have already seen in the latter example, the projection
7 is given by

(Mu)(w) == | Ga(Ke(r—=-),u)

for any u € H™(U, E), where ® is a fundamental solution of convolution type
for A.

If u € SA(U.) NC™U.,, E) with € > 0 small enough, then by the Cauchy-
Kovalevskaya Theorem there exist a neighbourhood O of U and a section
v € C™(0, E), such that

Av = 0 in O,
t(v) = t(u) on OU.

By the definition of M, we get Mu = Mwv in U. Then Stokes’ formula

yields
Mu(x):v(x)—/ Ga(Ke(x —-),v)
(90)NU

for all z € ONU. The right-hand side of the latter equality uniquely extends
to a solution of Au = 0 in O. Hence we deduce that Mu € S4(U U O).

Arguing as in the proof of Lemma 4.2 we see that O is actually independent
of u, but it depends on € and OU. Moreover, for every u € SA(U.)NC™(U., E)
we have

[v]lem@,m) < C lullenw. p

with C' > 0 a constant independent of u. Hence M maps Sa(U) continuously

into SA(U)

Example 4.24 Let A be a determined elliptic operator, as in Example
3.22. Then the condition 1) of Corollary 4.22 is fulfilled. Assume for simplicity
that H(X) = 0.

As we have seen in Example 3.22, m# = [ —T}, (ATy) "' A where the operator
(ATy) " is given by (3.14).

It is well known that the kernel of ® 4+ is real analytic outside of the diagonal
{z = y}. Recall that ®4- stands for a two-sided fundamental solution to the
operator A* near U. Hence it follows that the boundary integral in (3.14) is
real analytic in a neighbourhood O of U.

We thus conclude that (ATy) 1 f is real analytic in O if f has the same
property.

If u € SA(U)NC*™(U., E) with sufficiently small € > 0, such that U, CC O,
then (ATy) ! Au is real analytic in a neighbourhood of U..
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Let us see that Ty f is real analytic in a neighbourhood of U if f is real
analytic in U,.

By the Cauchy-Kovalevskaya Theorem there exist a neighbourhood O’ of
OU and a section v € C™ (0, E), such that

Av = f in O,
t(v) = 0 on OU.

Then Stokes’ formula yields

Tf (a) = Toorf (@) + o) = [ G (K (s.7),0)
(d0"NU
forallz € O'NU.

By the definition of v, the right-hand side of the last equality uniquely
extends to O' as a real analytic section. Therefore, the same conclusion is
valid for 1y f.

Finally, arguing as in the proof of Lemma 4.2 one obtains that the neigh-
bourhood O’ does not depend on f but does on € and OU. Moreover, for every
f € C™(U,, E) real analytic in U., we get

lollon s ) < C 1 lomw..r)
with C' > 0 a constant independent of f. Hence, the continuity of 7 follows

from the continuity of the operators A, Ty, H, ® 4« and formula (3.14).

Example 4.25 Let X = R", n > 3, U be a ball in R”, and A a Dirac
operator in R” (cf. Example 3.5). In [Sh196] it is proved that there are systems
{b,} and {c,} of homogeneous harmonic polynomials with values in C*, such
that

a) {b,} is an orthogonal basis in all spaces SS)(Ug), where ¢ € R, simulta-

neously;
b) {b,}U{c,} is an orthogonal basis in all spaces S(Al)(UE), ¢ € R, simulta-
neously.

Property a) implies that condition 1) of Corollary 4.22 is satisfied. Moreover,
the projection 7 restricted to S(Al)(UE), e > 0, coincides with the orthogonal
projection

SN (U:) = 84 ().

It follows that 7 maps Sa(U) continuously into S4(U). Hence Corollary 4.22
is valid for A.
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