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1 Introduction

This paper is mainly devoted to a typical problem in integral geometry: to reconstruct a
function in a domain D knowing its integrals over a family of subdomains in D. A peculiarity of
the present work is that we consider bounded domains D with boundary dD. The statement of
the problem under consideration and the results we obtain turn out to be intimately connected
with both local and global properties of dD. Roughly speaking, given a connected bounded
domain D C R?, let D, be a system of subdomains in D, parameterized by points ¢ € dD. To
any function f inD we associate the integrals

/fda — h(q), qe€oD. (1)
Dy

In connection with this equality, the above-mentioned problem in integral geometry can be for-
mulated in the following way (see [1]): for which spaces of functions f and h is the map f — h
one-to-one, and which functions h(g) can be represented by the integral (1)7

In this paper we investigate the situation in which D is a curvilinear plane triangle. In the
framework of a class of function spaces we give an exhaustive answer to the above questions.
With each of these function spaces we associate a noncommutative semigroup of maps in 9D.
This semigroup naturally generates a dynamical system with a set O of orbits in dD. As we will
show the solvability of equation (1) and the uniqueness of a solution depend only on whether the
set O contains cyclic orbits of a special type. Every such cycle plays the role of an obstruction
when constructing a solution of equation (1).

The results we obtain turn out to be immediately applicable in Partial Differential Equations.
In particular, we show in Sec. 7 that, generically, a unique solution of an arbitrary 3rd order
strictly hyperbolic differential equation with constant coefficients in a bounded plane domain D
can be reconstructed knowing its value on the whole boundary 0D. And this is contrary to a
common belief that all the boundary problems for hyperbolic equations with data on the whole
boundary of a bounded domain are not well-posed.

In the course of obtaining the main results we transform equation (1) to an equivalent func-
tional equation on the boundary 0D. The solvability of such an equation turns out to be closely
connected with the structure of a special semigroup of maps in dD. We establish the neces-
sary and sufficient condition for the existence of a unique solution of the equation in question. In
particular, the corresponding proof includes a new maximum principle for similar functional equa-
tions. We note that the functional equations under consideration have never been investigated
before, and they are interesting by themselves.

Some preliminary results are contained in the author’s papers [2,3].



2 Statement of the problem and definitions.

2.1 Let 1} and 13 be smooth nonsingular transversal vector fields in a disk B C R?. Introduce a
curvilinear triangle D = O A1 A whose sides OA; and O A, are trajectories of vector fields 1; and
I5, respectively. As to the side I' = A; A5 it is assumed to be an arbitrary smooth curve without
singularities which is transversal to OA; and OAs'. In addition the closure D of a domain D is
supposed to satisfy the following hypotheses.

1° For any point p € D a trajectory of 1; passing through p meets OA, k,j = 1,2, k # j at
a point m;p.

2° The set D is l; - convex, j = 1,2. This means that given points p € D and ¢ € D on any
trajectory «y; of the field 1; all the points r € y; between p and ¢ belong to D.

Given an arbitrary point g € I' let D, be a curvilinear parallelogram gq;Ogo, where ¢; = m;q,
j =1,2. The above conditions 1° and 2° guarantee an inclusion Eq CDforallgel.

In this work we study a solvability of an integral equation of the following form:

/fdazh(q), qel. (2)
Dyq

Here do is a measure in B, h(q) € C(I') is a given function and f € C'(D) is an unknown function.
The analogy of problem (2) with the famous Radon problem is obvious. It is immediately verified
(with the help of equality (22) below, for instance) that the range of the operator

B:fEC(ﬁ)%/fdaEO(F)
Dy

is (a part of) a linear space
H(L) = (C? N Co)(D)

of all twice continuously differentiable in I' functions vanishing on the boundary of I'. Therefore
the best possible solution of the problem as it is formulated in Introduction consists in description

of spaces F(D) C C(D) such that the map
B:F(D)— H(T)

is one-to-one. Among various candidates for the role of F (D) we have chosen a wide class of
subspaces in C'(D) which naturally appear in the theory of boundary problems for PDE.
Definition Given a smooth nonsingular vector field 1 in B we denote by C(l) (D) the set of

all functions in C'(D) which remain constant along any trajectory of the field L.
It is not difficult to describe the space C<1>(D) directly. Let

1={\i(z), \e(x)}, z=(z1,29) € B

be a coordinate form of the vector field 1. Denote by w(z) a smooth function without critical
points which solves the first order differential equation

A (z)(0/0x1)w + Ao()(0/0x2)w = 0. (3)
Then the space C<l>(D) consists of all functions
f(z) = F ow(x)

where F' is an arbitrary continuous function on the range of w.

2.2 Let 1 be a smooth nonsingular vector field in B such that

!See Fig. 1 on page 3.



(i) 1is transversal to I" and to both fields 1; and lo;

(ii) for any point p € D a trajectory of 1 passing through p meets the curve T
at a point 2

In virtue of hypothesis (ii) we are able to introduce the two maps in T’

Clz’/TlO’/Tl and CQZ’/TIO’/TQ

which play a crucial role when formulating the main results of the work. These maps generate a
noncommutative semigroup ®.. The elements of ®; are maps in I' of the form

s =¢j,0...0Cj

where J = (j1,...,/jn) is an arbitrary multi-index with all j; equal 1 or 2. The semigroup ®,
naturally generates a dynamic system. In what follows we use the following geometric terminology.
1) Given a map (s € ®¢ an ordered set (qi,... ,qn+1) of points in I is called a J - orbit if

qk+1 = Gjqr for 1<k <n < oo. (4)

A set of all J-orbits will be denoted by O.

2) If ¢1 = qn41 or, equivalently, if (;¢1 = q1, then the orbit (qi,... ,qn+1) is called cyclic or
in short, cycle.

Introduce the critical sets

T, ={q€l| (g e T,()}, j=1,2,

where T;(I') stands for the tangent space of the curve I' at the point q. Let 7¢ = T¢, UTg,.
3) If all the points of a J-orbit belong to the set 7; then this orbit is called critical.
4) A J - orbit (qi,... ,qn+1) is said to be T¢-proper if in (4)

Cjk; = CQ when qr € 721 and Cjk; = Cl when qr € 722.

From the point of view of the dynamical system generated by the semigroup ®., in moving along
any 7T¢- proper orbit we leave each point g; € 7¢ along a trajectory transversal to L.

On this figure families of trajectories of
the vector fields l;,ls and 1 are repre-
sented. The point ¢ € I is in 7¢,. There-
fore the orbit (g, ¢1) is proper whereas the
orbit (g, ¢2) is not.

Figure 1

Definition We denote by 91 the set of all critical 7¢-proper cycles in I'.

3 The main results

We are now able to formulate the main results of this work. The first one treats the constant
vector fields 1. Under small restrictions on the domain D this result solves the problem of the
existence of the inverse operator

B~ H(T) — Cy, (D).



Theorem 1 Let 1; and 1y be constant vector fields in R?>. Let D be a domain as defined in
Subsec.2.1 and at least one of the sets T¢;, j = 1,2, is finite. Take an arbitrary constant vector
field 1 = M1y + Aoly with positive A1 and Xa. Then given an arbitrary function h € H(T') there
ezists a unique solution f € C’<1>(D) of equation (2) if and only if

N = 0. (5)
The inverse operator B~ : h +— f is continuous: H(I') — C<1>(D).

To illustrate this result let us consider the following two figures.

Figure 2 Figure 3

On both figures p is the only point in I' belonging to 7¢, and ¢ is the only point in I
belonging to 7¢,. Therefore the only orbit consisting of the points p and ¢ may belong
to 9¢. On Fig. 2 a unique T¢-proper orbit beginning at the point p (g, respectively)
contains as a second one the point po € T¢ (q1 & T¢, respectively). Thus ¢ = @, and
problem (2) is uniquely solvable in the triangle O A; As for all functions h € H(T').

On Fig.3 M¢ # O as the J-orbit (p,q,p) with J = (1,2) is obviously in . In view
of Theorem 2 (see relation (42) below) the equation Bf = h is not solvable if

dsh(p) + Osh(q) # 0.

Our subsequent results relate to nonconstant vector fields 1. At first we formulate rather
general conditions on 1 under which the hypothesis (5) guarantees the existence of the above
operator B~! and its continuity. From the technical point of view this is the central and the most
difficult part of the work.

Theorem 2 Assume that in addition to hypotheses in Theorem 1 related to 11,1 and D o vector
field 1= ()\1(33), Ag(x)) satisfies the following conditions:
10

81()\1/)\2) Z 0, 82()\2/)\1) Z 0 in D; (6)

2°  there is a solution w of equation (3) such that for j = 1,2
8jw832-w <0 in D. (7)

If Me = O, then equation (2) has a unique solution f € C<1>(D) for an arbitrary function

h € H(T). The inverse operator B~ is continuous.

Although hypothesis (7) has an implicit nature the obtained result can be used in searching
of various classes of desirable vector fields 1. In particular, the sufficiency of condition (5) in
Theorem 1 (the most essential part of this Theorem) is a direct consequence of Theorem 2 as any
constant vector field 1 satisfies both hypotheses (6) and (7).

One more class of vector fields 1 which guarantee the existence of a corresponding operator
B! can be easily found with the help of Theorem 2.



Theorem 3 Let 1,15 and D be the same as in Theorem 1. Assume that a vector field 1 satisfies
the following condition: there are positive functions u(zs) and v(x1) such that

(i) Ai/Ae = p(x2)/v(x1); (i) Oop <0, O <O0.
Then the conclusions of Theorem 2 remain valid provided that ¢ = o.

All these assertions will be proved in the subsequent sections.

We do not discuss here an application of the formulated results to boundary problems for
partial differential equations (PDE) (see concluding Theorem 13). This requires a familiarity
with a special terminology in PDE. This is why we postpone the corresponding discussion to
Sec. 7 devoted exceptionally to boundary problems.

4 Proof of Theorem 2

The proof of Theorem 2 is long and consists of three parts. At first we reduce problem (1)
in equivalent manner to two different functional-integral equations on the curve I'. For the first
one we obtain a maximum principle from which the uniqueness of a solution to problem (2) (i.e.
the equality dimker B = 0) follows immediately. As to the second equation on I' we prove that
the spectral radius of the corresponding linear operator in C'(T") is less then one. This makes it
possible to apply the F.Riesz-Schauder theory and to establish that the index of this operator
equals zero. Therefore ind B = 0. Combining this result with the uniqueness already proved
completes the proof of Theorem 2.

4.1 Reduction of problem (2) to functional - integral equations

Without loss of generality we can restrict ourselves to unique vector fields 1; and 1o parallel
to coordinate z1- and xo- axis, respectively. This makes it possible to consider the domain D as
a curvilinear triangle whose sides are intervals 0 < z; <1 and 0 < x3 < 1 of z;- and xo- axis,
respectively, and a curve

I'={(z1,22) | 1 = a1(2), z2 =ao(2); z€lz}.

Here
I;={2]-1<2z<1}

and aq(z), az(z) are smooth functions such that
@ () + b () =1, z€ Iz (8)

We note that

and
a point (oq (20), ag(zo)) € I belongs to the critical set 7¢;, j = 1,2, if and only if
i (z) = 0.

Introduce a notation
a(z) = (a1(2),0(2)) 2z € Iz.

It is convenient to treat o as a map

a:Izoz—a(z)el



which is invertible due to (8). We observe also that in virtue of our assumptions about the domain
D (see 1° and 2° in Subsec. 2.1) the inequalities

ai(z) >0 and oh(2) <0, z€ly (10)

hold. (This fact is precisely what makes it possible to translate an invariant geometric description
of the above domain D into an analytic language). We will prove these inequalities (which are
not quite trivial) in Appendix.

Let w = w(x) be an (arbitrary) fixed solution of equation (3) such that gradw # 0 in D. As
A1 > 0 and Ay > 0 it follows from (3) that (wy,ws,)(z) < 0 in D. Therefore one can assume
(multiplying w by —1 if it is necessary) that

wg, () >0, wy,(r) <0 in D. (11)
Introduce notation

v- = infw, Y4 = Supw,
D D

and let It = {t | v~ <t < v4+}. Denote by wr the restriction of the function w to I'. We will
prove now that the map wr : I' — I is surjective and invertible. To this end consider a map

QO=woa:I; — Ir.

Differentiating function Q(z) = w(a(z)) and using inequalities (8),(10) and (11) we arrive at
inequality
(z) >0, z € Iy. (12)

This results in invertibility of 2. But w o & = wr o « and by virtue of invertibility of « the same
is true with respect to the map wr. To prove the surjectiveness of wr take a point p_ € D such
that w(p_) = y—. Then a trajectory of the vector field 1 passing through p_ meet I' at a point
g— (see hypothesis (ii) in Sec. 2). Therefore wp(g—) = y—. In just the same way we determine a
point g4 € I' such that wr(gy) = 4. Thus

v_ =minwr and y; = maxuwr,

and this completes the proof of the assertion.
Return now to definitions in Sec. 2 and note that

7T1($) =T, 7T2($) = X9
for any point £ = (21, 22) in I'. By the definition of w and {; we have
w(z1,0) =w(((z)) and w(0,z2) = w((a(z)).

Denote
wi(z) = w(r1,0), ws(z) =w(0,z2).
Then
wjla(z)) =w((joalz)) j=1,2. (13)

We now introduce smooth maps in Ip
d; :wjoaonl, j=12.

which play an important role in the following. Recalling that 2 = w o & and using (13) we find
that
§j=wro(jowr’, j=1,2 (14)

and
wjoa:5po. (15)

All the needed properties of the maps d; are collected in the following lemma.



Lemma 4 (i) Both maps 0; in It are nondecreasing functions. In addition 01 maps It onto
[70,v+] and 02 maps Ir onto [y—, o], where vy = w(0,0).
(ii) For all values t, y— <t < vy, the inequalities

52(t) <t <oy (t) (16)

hold. Besides 01(y+) = v+ and da(y—) = y—.
(iii) For any t € It
81 (t) + 85(t) >0 (17)

Proof: (i) We note first of all that

(d/dz)w;(a(z)) = wa;(mj(a(2))) o aj(2).

Combining (10) and (11) results in inequality (d/dz)(w; o a)(z) > 0. This together with (12) and
(15) leads to the monotonicity of §;. Furthermore, in order to describe the images of §; it suffices
to note that in virtue of (12)

Q) =-1, Qi) =1
and to verify directly that
wioa(l)=v4, wroa(-1)=7_, and wioa(—1)=wroa(l) =7

(ii) Inequalities
wroa(z) <woa(z) <wpoa(z)
hold due to (11). Substituting Q271(¢) for z results in (16).
(iii) Differentiating (15) we find that

wa, (75 0 a(2)) el (2) = (05 0 Q)(2) (2), (18)

and it remains to use inequalities (11), (12) and (8).

Analogously to Sec. 2 one can construct a semigroup ®s of maps in It of a form d; =
dj, 0...006;5, with J = (j1,...,4n) and all j; equal to 1 or 2. Each map J; generates a set of
J-orbits in I consisting of points (¢1,%9,... ,tp+1) in I7, n > 1, where

thyr = O te, k> 1. (19)

The union of such J-orbits over all multi-indices J we denote by Oy.
In virtue of (14) we find that for an arbitrary multi-index J

5J:wpo§]ow1:1. (20)

Let 75, = {t € Ir | §;/(t) = 0}, j = 1,2, be a set of critical points of the function d; and let
Ts = T5, UTs,. A J-orbit (t1,t,... ,tn41) in I7 is called Ts-proper if in (20)

0j, =02 when ¢, €75 and Jj =01 when ¢t €T;,.

As in Sec. 2 we introduce a set s of all critical Ts-proper cyclic orbits in Ip. The following
assertion allows to reformulate hypothesis (5) in Theorem 2 in a coordinate form.

Lemma 5 The w-image of any ( critical T¢-proper) J-orbit in O¢ is a ( critical Ts-proper) J-
orbit in Os and conversely, any ( critical Ts-proper) J-orbit in Os is an w-image of a ( critical
Tc-proper) J-orbit in O¢. In particular the sets N¢ and Ns can be empty only simultaneously.



Proof: Let (j(q) = ¢ for some j. In other words the sequence (g, ¢) is a j-orbit in I". Then
w(q) = wo (j(q) = 6 ow(q) due to (14), and consequently (w(q),w(q)) is a j-orbit in Ip. If
§;(t) = t, then wy't = ¢j(wp(t)), so that (¢,7) is the w-image of a j—orbit (wp'(t),wp'(£)) in T.
Furthermore, due to (18) for any point zy = «(z9) we have

ai(z0) =0 <= 05(w(zo)) = 0. (21)
and hence the w-image of an arbitrary point zg € 7¢; belongs to 75, and vice versa. Consequently
(M, ...,z e N, = (wzD, ... wz™) e Ny.

In particular

Ne=0 = N5 = 0.

This completes the proof of the lemma. .
Turn now to equation (2). Assuming do = dz and denoting h(a(z)) by h(z) we rewrite it in
a coordinate form:

a1(z) az(z)

(BF)(z) := / / Fow(zy, x0)dradz, = h(z), ze€ly. (22)
0 0

 In virtue of (9) BF € H(I') for all functions F € C(D). It follows that for any function
h € H(Iz) equation (22) is equivalent to each of the two equations

(d/dz)BF = (d/dz)h, z€ Iz, (23)

and
(d%/dz*)BF = (d?/dz*)h, =z € I. (24)

In a detailed notation the first of them has a form

az(2) a1(2) -
a'l(z)/0 F(w(ou(2), 22))dzs + 04'2(2')/0 F(w(z1, a9(2)))dzy = h'(z). (25)

Introduce a function

G(t) = /Ot F(s)ds, telrp,

and substitute G' for F in (25). Integrating by parts reduces the equation obtained to a functional
- integral equation

(@1/we, 0 @+ b fwy, 0 @)G(w o a)(z) = () /wr, (1, 0))G (w1 0 a)(2)

— (o fwny (0,02))Gl(ws 0 @) (2) — KG(2) = W(2), =€ Iz, (26)

with the additional condition G(0) = 0. Here K is a nonpositive operator from C(Iz) to C(Ir)
that is
G>0«< KG<O. (27)

The latter follows from the explicit form of K

as(z)
KG(z) = Oéﬁ(z)/o (G ow)(ar(2), z2) (1/we, (a1(2), £2)) e, dv

a1(z)
+ a'z(z)/o (G o w)(w1, 2(2))(1/wa, (€1, 1(2)))2y dy



if to take into account inequalities (10), (11) and (7). Substituting Q!(¢) for z in (26) we arrive
immediately at the equation

G(t) — p1(t)(G 0 01)(t) — pa(t)(G o 02)(2)

- 28
= K1GQ7Y)+ (W o Q™ Y(t), telr. (28)
Here K| = (a}/wy, + ah/wy,) 1K is nonnegative operator from C(Iz) to C(Ir) and
i(t) = k()G (Q7H (1), =12 (29)
where )
Wy, Wy, (0 Q71 (1)
ki(t) = L2 0
M= o 0 or, o 0 o, o) @ D)
(30)
ka(t) = Wiy (@0 Q 1)({) <0.

Wy (07 O‘2)(0/1(")I1 o+ O‘,2(")I2 o a) (Qil)(t)

Remark. If 1is a constant vector field then w can be chosen as a linear function. But then
K1 = 0 and (28) becomes a pure functional equation. To the best of the author’s knowledge,
functional equations of such kind have not yet been investigated, except when d; and J, are linear
functions.

From the definition, it follows that

t€Ts, < p;(t) =0, j=1,2 (31)

4.2 The uniqueness of a solution of equation (2)

The required uniqueness is a direct consequence of the following assertion which is interesting
all by itself.

Lemma 6 (Maximum principle for a functional equation) If My = O and a critical set
Ts, (Ts,, respectively) is finite, then any solution G of the homogeneous equation (28) takes its
mazimum at the point v4 (y—, respectively).

Proof: We assume for definiteness that the set 75, is finite. Take an arbitrary solution G of
homogeneous equation (28) and introduce a function

Gm(t) =G(t) — M, where M = max G.
T
Denote
M= {telr|G(t)=M}.

As any constant solves the homogeneous equation (28) (what can be verified directly), the same
is true with respect to the function Gpq. Let ¢, € M and ¢; # v4. Applying equality (28) with
h' =0 to function G4 and substituting #; for ¢ we arrive at the equality

—1(t1) G 0 01(t1) — pa(t1) G 0 Ga(t1) = LG (27 (1)) (32)
Due to (8), (10), (29) and (30) the inequalities
p1 =0, p2=>0

hold. As Gaq < 0 in Iy the right hand side in (32) is nonpositive whereas the left hand side is
nonnegative. Consequently

p1(t1)Gam o 01(t1) + pa(t1)Ga o 02(t1) = 0.



In virtue of (31) if t; & 75, then

Gp o (51(t1) =Gpmo0 (52(t1) =0,
or, equivalently,

(51(t1) €M and (52(t1) € M.
But if t; € 75, (t1 € Ts,, respectively), then in virtue of (17)

da(t1) € M (61(t1) € M, respectively).

As 4, and J, are maps in I we can apply this argument to the points to = §1(¢1) and to = do(1)
and arrive at a new point t3 = 0,,(t2) also belonging to M. It is clear that continuing this
procedure we obtain a set of all Ts-proper orbits (¢1,%2,... ,t,,...) € Oy completely lying in 9.
To prove Lemma 6 it remains to verify that if My = O, then given any point t; € Iy there ezists
a Ts -proper orbit O = (t1,ts,...) which converges to v, i.e. nl;n;o tn = Yy
Remark If 75 = O i.e. the curve I' has no points with a tangent line parallel to zs-axis, then
one can complete the proof in several words. Indeed, in this situation for any point ¢; € Ip
the orbit (£1,01(¢1),...,07(¢1),...) is Ts-proper. Furthermore, in virtue of inequality (16) the
sequence 07 (¢1) increases when n — oo. Denote lim,_,o, 07 (1) = v. It is clear that 0;(v) = v.
But this means that v = ;.

The general case is more difficult as any Ts-proper orbit (¢1,%9,... ,ty,...) containing points
tr from both sets T5, and Ts, does not increase due to the same inequality (16).

We begin with several assertions.

Proposition 7 Ift # vy and (t1,t), (t2,t) are two Ts-proper orbits, then t; = to.
Proof: Assume that t; # t2 and
t =0 (t1), t = 0j,(t2).

In virtue of Lemma 1(i) j; = jo. Denote a common value of these indices by j. As 5;- > 0it
follows from the equality d;(t1) = d;(t2) that §3(t) = 0 for all values ¢, t; <t < t5. But then
t1 € Ts;, whence j1 # j as the orbit (¢1,1) is T5-proper.

Remark From a geometrical point of view the latter proposition asserts that two different 7g-
proper orbits can not enter at the same point (although such orbits can leave the same point ¢ if

tZTs).
Proposition 8 If a cyclic orbit S is a part of a Ts-proper orbit O = (t1,te,...), then t; € S.
Proof: 1If t; & S we let t;,q > 2, be the first point in O, belonging to .S, so that
S=(tgs--- rtgin),  totn =tq

But then ¢, # t44+n—1, and applying Proposition 7 leads to a contradiction.
Let
A=sup{t|teTs}

Proposition 9 If A < v, then there is an integer v such that the inequality
oy (t) > A (33)

holds for all t € Ip.

10



Proof: As the function ¢;(¢) increases when ¢ > X the inequality in question holds with an
arbitrary v > 1 for all points ¢ > A. To find a required v for ¢ < A we let

A= I%i/r\l((ﬁ (t) —1t).

Then §;(t) > t+ A for ¢t < X so that §;(y-) >~v- + A, A > 0. It follows that if
A=7)A+1>v>(A—v-)/A,

then
o (y=) >v-+vA> X

As 87 > 0 we arrive at inequality (33) for all ¢, v~ < ¢ < A. This completes the proof of
Proposition 9.

The ending of the proof of Lemma 6. We say that a Ts-proper orbit (¢1,to,...) is d1-oriented
if forall k >1
t & Toy = tht1 = 01(tk)-

It is obvious that any point t; € I defines uniquely a ;-oriented orbit. We first note that due to
hypotheses the number A\ does not equal to 4 and hence inequality (33) holds with a constant
v. If t; > A, then the orbit O = (t1,01(t1),... ,07(t1),...) is d;-oriented and, as was shown (see
Remark), nlingoé?(tl) = v4+. Let t; < A If a d;-oriented orbit O = (¢;,...) does not lead to the

point ¢;, then it does not contain any cyclic suborbit due to Proposition 8. In this case as s,
is a finite set, there exists a number m such that all the points ¢,, 11, tm42,... of the orbit O lie
outside of Ts,. But then ¢,,, = 07 (¢n) > A, and as above ¢, — v+ when k — oo.

Consider a concluding situation: t, = t; for a number m. Then the cyclic suborbit § =
(t1,... ,tm) of O can not be critical due to the hypothesis 95 = @. Consequently S contains a
point 4, 1 < ¢ <m — 1, which is not from 75. Then we introduce a new point %\q_H = 02(tq) (in
contrast to the point t,; = 6;(¢,) € S). Consider now a d;-oriented orbit O; = (%:1+1,%\q+2, c)e
Bemg Ts-proper this orbit has no common points Wlth S. Indeed if tp is the first such point and
tp =1t,, 1 <r < m, then in virtue of Pr0p0s1t10n 7 t _1 = t,_1. But the latter is not possible. Due
to Proposition 8 the Ts-proper orbit tq,tq+1,tq+2, ... does not contain cyclic suborbits. Hence,
as above, all the points %:1+p+m, m > 1, of the orbit O; starting with some number p have the
form

tgiprm = 07 (Lgap)-

This means that the orbit O; converges to v, and so does the the sewing orbit

O == (tl,... ,tq,tq+1,... 7tq+p7tq+p+17"')'

This completes the proof of the Maximum Principle.

To prove the uniqueness of a solution of equation (22) turn to the homogeneous equation (22)
and prove that the solution F' is zero. Indeed, by definition F'(t) = G(t) with G a solution of the
homogeneous equation (28). In view of the above maximum principle we have

max G =G(y;) (or max G=G(y.)).
[v—7+] [v—»7+]

As equation (28) is linear replacing G by —G we find that

min G =G(v4) (or min G = G(y_), respectively).
[v—7+] [v—7+]

Thus G =const and hence F' = 0. This completes the proof of the uniqueness in Theorem 2.
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4.3 The existence of a solution of equation (2)

As we know the equation in question is equivalent to both equation (23) and (24). Having
prove the uniqueness of a solution of equation (23) in Subsec. 4.2 we established at the same time
the uniqueness theorem for equation (24). Consequently the required existence follows if we will
prove that the linear operator (d?/dz?)B in C(Iz) is Fredholm one and its index equals zero. It
is worth mentioning that the operator d?/dz? is an isomorphism between the spaces H(Iz) =
(C? N Cy)(Iz) and C(Iz). To represent equation (24) in an expanded form we differentiate
equation (25). Changing h"(z) for H(z) we arrive after some identical transformations at a
functional-integral equation

/ 2(2,) wxz (Oé(Z

+2aa ]Fow
wz, (a(z)) 105

— 2 (2) (0 (), OF o w(on(2),0) ~ a %)gﬂ&a(»Fom0w(»
as(2) 2 g T
= a'12(z)/0 Fow(ai(z),x2) (—Z(cn(z),a@))m2 dzs
a1(z) W B
+ a/22(z)/0 Fow(z1,as(z)) <wzz (xl,aQ(z))> dxy + H(z).
Substituting Q1(t) for z yields
F(t) — p1(t)F o d1(t) — p2(t)F o da(t) = NF(t) + H(t), telp, (34)
where N is an integral operator
2 a(t) Wy,
N:Fw—df (t)/o Fow(al(t),xg) <ww. (al(t),x2)> dzo
a1 (1) o " )
+ a/22(t)/0 Fo w(wl,aQ(t)) (w—;(xl, ag(t))> dxy + H(t),

H(t) stands for the function H(Q~'(t)) and

o *(2) Mo (2),0) ‘
o' (2)A o a(z) + ab®(2)(1/N) o a(z) — 20,y (2) 12 = OLt)

ah*(2) (1/A)(0, as(2)) |
o2 ()N o0 al2) + ah2(2) (1/A) o alz) — 2ajah(z) 12 =271 ()
with A(z) = (As/A\1)(2) (See (3)).

p1(t) =

p2(t) =

Remark If the vector field 1 is proportional to a constant one, then N = 0 and (34) becomes

purely functional equation
F—piFod —psFody=H

with respect to an unknown function F' € C(Ir).
The integral operator N, as it follows from the classical Arzela criterion, is a compact operator
in C'(Iy). As to the coefficients p1(t) and ps(t) what is important is the following properties:

(1) p1()p2(t) 20, t€Ir;

(ii) 0 < p1(t) + p2(t) <1 for all t € I and
pu(t) + pa(t) < 1 for t & T;

(i) pj()=0<=>t€T;, j=1,2

12



The first inequality in (ii) follows from (8),(10) and (6), and the second one is based on (6).
The implication (iii) is a consequence of (21).
Introduce a linear operator L in C'(Ir)

L:Fl—)plFoél—l-ngO(SQ.

In virtue of (ii) the norm of this operator ||L|| does not exceed 1.2 If ||L|| < 1 then the operator
E — L in the left hand side of (34) (with E the identical operator in C'(Ir)) is invertible. In this
case the required Fredholm property as well as the equality ind(d?/dz?)B = 0 follows from the
well known

Proposition 10 If R is an invertible operator in a Banach space B and N is a compact operator
in B, then the operator R — N in B is Fredholm one and ind(R — N') = 0.

The following Proposition relating to the case ||L|| > 1 is also well known.

Proposition 11 If L is a linear operator in B and |L™| < 1 for some integer m, then the
operator E — L is invertible.

For the completeness both Propositions are proved in Appendix.

From what has been said above it follows that the required existence of a solution to equation
(34) (and consequently to equation (2)) is a direct consequence of the following assertion which
can be considered therefore as a main result of this subsection.

Lemma 12 If N5 = O and at least one of the critical sets Ts, and T, is finite then there is an
integer m such that ||L™| < 1.

Proof:  We note that for an arbitrary integer N > 0 the function L f can be represented in
a form

2
IO = > oW (5 ®) - pin (955 1008 M) F(6,0),  (39)
1y fn=1
where J = (j1,72,... ,jn). Indeed, for N = 1 this is true. To apply the induction assume this

equality to be valid for some N and prove that it is valid for NV 4+ 1. But this is evident as by
virtue of the definition of L and due to (35) we have

LVUf(t) = LIV f) = fjpjo CIARICNC)
) Jo=t (36)
= Z Pjo (t)pjl (6]'0 (t)> PN <5j1v71 ©--+0 6j0 (t)) f <5J(t))

J0sJ15 s JN=1

with J = (j07j17 v 7]N)
Applying the triangle inequality we find with the help of (35) that for an arbitrary function
f € C(Ir) and at any point t € I the inequality

2
LVFOIS X2 2@ (53 () -+ pin (Bines o= 55,0 1] (37)

JiyeesJN=1

holds. Let us prove that for an arbitrary point ¢ € I one can find an integer N and a number
v < 1 such that for all functions f with ||f]| = 1 the inequality

N
[ILTF(@)] <7 (38)
*We consider a standard norm || - || in C(Ir) : ||F|| = Erelz}x|F(t)|
T
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is valid. If ¢ € 75 then p;, (t)+ pj,(t) < 1 due to (ii), and hence inequality (38) follows with N = 1.
Let t € T5. When proving the Maximum Principle we established that under hypotheses of the
lemma there is a multi-index J = (J1y--+ ,JN=1), N > 2, such that the corresponding J-orbit
t, 05, (t),... ,07(t) is Ts-proper and 7 (t) € Ts5. Let N be a minimal integer with such a property.
Then by the definition of a Ts-proper orbit we have

pj(t) =0, pj <5j1 (t)> =0, ..., pjy_, <5jN72 0---04j (t)) =0,

with ji + jr = 3 for all k, and hence due to (37)

|LNf(t)| < Pj (t)pj2 (6]'1 (t)) T PiN- (6]'1\!—2 ©---0 5j1 (t)> ()01 (6f(t)) + p2(6f(t)))'

In virtue of (ii) the first N — 1 factors on the right hand side are not greater then 1 whereas the
latter one is strictly less then 1. This completes the proof of inequality (38).

By continuity this inequality remains valid with the same N for all points in a neighborhood
of the point . Choosing a finite covering of I by such neighborhoods we will find a number m
for which inequality (37) is valid with N = m for all points ¢ € I7. In doing so it should be taken
into account that, according to (36), if inequality (38) is true with some N it remains valid for
all numbers N’ > N. This completes the proof of Lemma 12 and hence the proof of the existence
in Theorem 2.

To complete the proof of Theorem 2 it remains to show that the inverse operator B~! (whose
existence follows from the uniqueness of a solution to equation (2)) is bounded: H(I') — C<1>(D).
But we have proved that this operator is defined on the whole Banach space H(I') (the existence
part in Theorem 2). In order to use the Banach’s closed graph theorem® and thus to establish the
desirable boundedness we have only to show that the operator B is bounded: C<1>(D) — H(D).
The latter is equivalent to an a priori estimate

IBE,H(I)| < el F,CD)l, FeCy, (D),
with ¢ > 0 a constant. But
IBF, H(I')[| = max |(d?/dz*)BF| + max [BF|,
zZ zZ

and making use of the explicit form of the operator (d?/dz?)B (see the equality preceding (34))
we arrive easily at the latter inequality. This completes the proof of Theorem 2.

5 Proof of Theorem 1

As any constant vector field 1 satisfies conditions (6) and (7), using Theorem 2 we conclude
that if 9. = O then equation (2) has a unique solution f € Cay (D) for an arbitrary function
h € H(T). In just the same way a continuity of the inverse operator B! follows from Theorem 2.

To prove the necessity of hypothesis (5) assume that D¢ # O. Let (q1,¢2,... ,¢n+1) be a
critical Te-proper cyclic J-orbit in I' with J = (j1,j2,... ,jn). According to Lemma 5 there is
a critical Tg-proper cyclic J-orbit (t1,t2,... ,t,+1) in I responding to the same multi-index J.
The latter means according to definitions (see Subsec. 4.1) that

(i)  t1=tpp1 (cyclicity)

3This theorem states: if By and B> are Banach spaces and L : By — B> is a continuous one-to-one linear
operator on B; onto Bs, then its inverse L~! is also continuous.
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where j;. = 3—jj, is (in a sense) a complement index to j;. Turn to equation (28), with H replacing
B o Q=1 As1is a constant vector field the corresponding function w(z1, ) can be choosen as
linear one. But then both functions w,, and w,, are constants. Combining this observation with
equalities (29) and (30) results in the identity

Hl(t) + ,llg(t) =1, telr. (40)

On the other hand, using the same reasoning the operator K; equals 0. Thus equality (28)
becomes

G(t) — m(H)G (31() = p2(H)G (32(1)) = A(t), (41)

where each function p;(t), j = 1,2, is proportional to d%(¢) what follows from (18). Let us
substitute ¢ for ¢; in (41). Using subsequently relations (39) and (40) we find that one of the
numbers d;(t1), equals zero which means that y;(t1) = 0, whereas pj (t1) =1 and d5(t1) = to.
This results in the equality R

G(t1) — G(t2) = h(t1).

Using this procedure subsequently for t = t9,... ,¢ = t,, and applying the cyclicity of the orbit in
question on the last step we arrive at the system of equalities

Summing up these equalities we get
n
S ht) =o.
j=1

By the definition of % this equality is equivalent to the equality
n
> 05h(gz) = 0. (42)
j=1

Here O, is the differentiation with respect to the natural parameter on I'. Thus each critical
T¢-proper cycle (Ci,... ,Cuy1) generates a relation (42) involving any given function h in (2). A
violation of this relation leads to the unsolvability of equation (2) with this A. In other words
each orbit from 9, represents an obstruction when constructing the inverse operator B~l. Thus
we have proved the part "only if” in Theorem 1. This completes the proof of this theorem.
Remark Note that the problem of the completeness of a system of the above obstructions as
well as the problem whether or not these conditions are sufficient for the solvability of problem
(2) remain still open.

6 Proof of Theorem 3

To prove this theorem it suffices to note that under conditions of the theorem the function

w = 71/(s)d3 . 7u(t)dt
0 0

solves equation (3) and satisfies both conditions (6) and (7). Thus the result follows from Theo-
rem 2.
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7 First boundary problem for hyperbolic differential equations

As an application of the obtained results a new boundary problem for a wide class of hyperbolic
differential operators in the plane will be studied in this section. The main distinctive features of
this problem is that it is considered in a bounded domain, and the value of an unknown function
is given on the whole boundary of the domain. In this connection it is worth mentioning that
in the framework of the classical theory of PDE boundary problems for hyperbolic equations are
usually considered in domains which are intimately connected with the corresponding equation
(half space, half cylinder, an angle between characteristics in R? etc). If the domain is bounded,
a part of the boundary is usually free of a priori information about unknown solution. The
evolutionary character of hyperbolic equations seems to impose a taboo on a priori information
about a solution on the whole boundary of a bounded domain. However as we show below
(see Theorem 13) for a wide class of hyperbolic equations this taboo can be lifted. In domains
closely connected with the corresponding hyperbolic differential operators solutions of equations
in question are uniquely defined if their values on boundaries of these domains are known (the
first boundary problem).

7.1 Statement of the problem

For the sake of brevity we restrict ourselves to a homogeneous differential operator with constant
coefficients.

In the (z,y)-plane R? we consider an arbitrary homogeneous z-strictly hyperbolic operator
P(0y,0y) of the 3rd order. The z-strictly hyperbolicity means that the characteristic polynomial
P(7,A) has, for any A # 0, three distinct real roots in 7. It follows that the operator P = P(0y, 0y)
can be uniquely represented in the form

P(0y,0y) = a(0y — a10y)(0r — a20y) (0 — a30y) (43)

with some constants a, a1, a2, a3, where a; # ay, for j # k. The characteristics of the operator P
are straight lines

Yy + a1z = const, y+ azx = const, Yy + a3z = const.

Let 11,15 and I3 be vector fields in R? parallel to these lines, respectively. Denote by R, Ro,... ,Re
characteristic rays beginning at some point 0. Choose any triple of neighboring rays R;, say,
Ri1,Ro and R3. Let Rz be the ray lying between R; and Ry. Consider a curvilinear triangle
D = OA;A; with sides OA; C Ri, OAy C Ro. As to the side I' = A; Ay it is assumed to
be an arbitrary smooth curve without singularities which is transversal to OA; and OAs (cf.
Subsec 2.1). We suppose the closure D to satisfy the hypotheses 1° and 2° of Subsec. 2.1. It
follows in particular that I' is transversal to the vector field l3.

The First Boundary Problem for the above operator P(0,,0y) and domain D is as follows.

Given functions F € C(D) and h € C(OD) find a solution of the boundary problem

Pu=F in D, u=~h on OD. (44)

We call a function u in D a generalized solution of the problem (44) if u € C*(D), u = h on 9D,
and for all functions ¢ € C5°(D)

/utPgodxdy = /F(pdxdy,
R2 R2

where ‘P is the formally adjoint differential operator.
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7.2 The formulation of the result and a sketch of the proof

To formulate the main result concerning a solvability of problem (44) let us consider the semi-
group ®¢ of maps in I' introduced in Subsec. 2.2 with 1 = I3. The critical sets 7¢; considered in
Subsec. 2.2 are now nothing but the sets of characteristic points in I' with respect to the operator
P and we call them characteristic sets. In exactly the same way we introduce J-orbits as well as
the notions cyclic, critical and 7T¢;-proper orbits. Finally we introduce the set 91 whose elements
are all the 7¢;-proper cyclic orbits, consisting of only characteristic points in I'.

Denote by C*(9D) the space of continuous on 9D functions whose restrictions to all sides of
the triangle D are k times continuously differentiable functions. The main result concerning the
problem (44) is as follows.

Theorem 13 Assume that at least one of the characteristic sets T¢, and Te, is finite. Then for
any functions F € C(D) and h € C%(0D) there exists a unique generalized solution u(z,y) of the

problem (44) if and only if the set N¢ is empty. The inverse operator (F,h) — u is continuous:
C(D) x C*0Q) — C*D). If F € C¥D) and h € C*1(0D), k > 1 is an integer, then
u € C**2(D) is a classical solution of the problem in question.

Proof: We restrict ourselves to the proof of the existence of a unique generalized solution
to problem (44) with F' = 0. Let us write down the operator P in the form (43). It is obvious
that there exists a linear transformation in R? reducing the problem under consideration to the
problem

(m10y +m20y)0,0,u =0 in D, u=~h on OD. (45)

Here D is a domain in R? whose boundary 0D consists of three parts I'j UT's UT'3, where
Fl:{(xay)|y:030§$§1}a FQ:{(xay)|$:0?0§y§1}a

Dy = {(2,9) | & = ar(t),y = aa(t); 0< ¢ <1},

and
041(0) = 0, 041(1) = 1; 042(0) = 1, a2(1) =0.

(For convenience we preserve the previous notations for the domain and functions).
Let
h=hi(z) on I'y, h=hy(y) on I';, and h=hs(z,y) on Is.

The continuity of the function h leads to the natural compatibility conditions
h1(0) = h2(0),  hi(1) = h3(1,0),  ho(1) = h3(0,1). (46)

Due to assumptions about the domain D an arbitrary generalized solution u to the equation in
(45), satisfying boundary condition only on I'y U T’ can be represented in the form

r Y

w(z,y) = /(/F(ms Fnat)dt)ds +hi (@) + hoy) ~ m(0), 0<wmy<l — (47)
0 0

Here n = (n1,n2) is a unit vector which is orthogonal to the vector m = (mj,mg2) and n; > 0,
ng < 0. As to the function F, this is an arbitrary continuous function on the interval I = (ng,n1).
The necessity of satisfying the boundary condition u = h3 on I's leads to the following integral
equation for an unknown function F' € C(I):

ay (t) D) (t)

/(/ F(nlx—i—ngy)dy)dx:H(t), 0<t<L (48)

0 0
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Here
H(t) = —hi (o (t)) — ha(az(t)) + hs(ai(t), z(t)) + hi(0)

is a given function. What is important is that the function H(t), generated by an arbitrary
continuous and twice piecewise differentiable function h in (45), belongs to the space H(I) =
C?NCy(I) (see Subsec. 2.1). This follows from the compatibility conditions (46). Conversely, the
function u(z,y) which is defined by (47) with F' a solution of equation (48) solves the problem
(45).

Thus the problem (45) turns out to be equivalent to the equation (48) which is nothing but
the equation (22). The existence of a unique solution to the problem (45) provided that 9 = ©
follows immediately from Theorem 1.

Appendix
Proposition A.1 With the notation introduced in Subsec. 4.1 the inequalities

ai(z) >0, dy(z) <0, z€ly (A.1)
hold.

Proof: It suffices to prove the first inequality.

(I) We note that if the curve I in a neighborhood of a point M (zg,yo) € I is described by
an equation y = f(z) with f a differentiable function, then one of half-intervals {(z,y) | z =
20,0 <y —yo <e}and {(z,y) | x = z¢, —e <y —yo < 0} is free of points of D.

(IT) We note also that given differentiable functions o1 (t) and ¢3(t) with the same range
there are points ¢; and ¢, such that

pi(t1) = @2(t2) and @) (t1)ps(t2) # 0. (4.2)

Indeed, localizing the problem and using an affine transformation one can reduce the proof to the
case when domains of ¢;(t) and ¢3(t) coincide and ¢/ () > 0. But then the result is obvious: as
ty we take any point with ) (t2) # 0, and we choose t; = @] " o pa(t2).

(IIT)  To prove the first inequality in (A.1) assume that o/ (7) < 0 for some 7 € I; and take a
point 7 with o} (1) > 0. (As a1(—1) = 0 and a4 (1) = 1 such a point certainly exists). We choose
a point ¢ € (7,7) for which

A= = .
a1 (0) Trg%x?al(t)

It is clear that there are positive numbers 67, 65 such that
B .= 041(9 — 91) = 041(9 + 92)

But then the restrictions a_(t) and a4 (t) of the function «(¢) to the intervals (0 — 6;,60) and
(0,0 + 02), respectively, map their domains on (A, B). In view of (II) there exist points t* and ¢,
such that

' =a_(t") =aq(ty) and o (t*)a! () #0. (A.3)

We now consider three points in 0D
M, = (1‘*,0), M* = ($*7a2(t*))7 M, = ($*7a2(t*))'

For definiteness let aa(t,) > az(t*). Due to (A.3) each point M* and M, has a neighborhood in
which I' is described by an equation

w2 = f(x1),  |z—a'<r

18



with f = ag o a7'. In virtue of (I) on the straight line z; = 2* a half-neighborhood of each
point M* and M, is free of points of D. As My and M* belong to D and D is l,-convex, the line
segment MyM* lies wholly in D. But this contradicts to what has been said about the point M,.
This completes the proof of Proposition A.1 .

Proof of Proposition 10: It is clear that
dimker(R — N) = dim(E — R™'N) < o0 (A.4)

since R — N = R(E — R7'N). Denote R — N = P and E — R™'N = Q so that P = RQ. By
definition

coker @ = B/R(Q) = {f + R(Q)},*
where f + R(Q) denotes a class of elements f’ in B such that f — f' € R(Q). Therefore

coker P = RB/R(AQ) = {Rf + R(RQ)}.

But RB = B due to invertibility of R and Rf — Rf' € R(AQ) if and only if f — f' € R(Q). This
means that
dim coker P = dim coker Q).

It remains to combine the latter equality with (A.4) and to use the compactness of the operator

RN and the F.Riesz-Schauder theorem®.

oo
Proof of Proposition 11: It suffices to prove the convergence of the series ZHR’“H Let

k=0
|T|| =7 and ||T™]| =~ < 1. Then for all integers p = 1,... ,m — 1 the inequality

|T™™+P|| < 7P4™ holds. This implies

00 oo m—1
STIRFI =D T < (7 = 1)/ (r = 1)(1 — ).
k=0 n=0 p=0
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