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Chapter 1

Introduction

Time-resolved monitoring of photochemical and photophysical processes in adsorbate systems

has seen good progress in the past years [1,2]. Interesting in the context of this work is that the

selective preparation of molecular vibrations by infrared (IR) light proves as a powerful tool

to control the photoreactivity prior to electronic excitation by light in the ultraviolet/visible

(UV/Vis) regime. This scheme is known as “vibrationally mediated chemistry” [3]. Extending

this to adsorbates, it has been theoretically suggested that IR preexcitation will lead to larger

UV/Vis photodesorption yields [4–9] as well as to larger cross sections for other photoreactions

[8,10–12]. Particularly for adsorbate/metal systems this approach is promising as IR photons

cannot penetrate the metal surface. They couple therefore directly to the adsorbate, thus

are directly controllable and can be employed to vibrationally excite the adsorbate molecule.

Ideally, the adsorbate vibrational excitation is state- or mode-selective in accordance with

the “goal” of IR (pre)excitation.

It is even possible to induce photodesorption via IR radiation alone. Observed, some time

ago, was the thermal desorption of NH3 from Cu(100) [13], where the IR-excited N–H stretch

bond (“antenna”) directs the radiation energy via surface phonons to the molecule-surface

bond and eventually breaks it. There is no isotope selectivity (which supports the idea of a

thermal mechanism): Co-adsorped ND3 desorbs as well. Contrary, Liu et al. [14] were able to

selectively desorb molecular hydrogen from a Si(111) surface covered with atomic hydrogen

and deuterium. This suggests a real vibrational mechanism of desorption, with the H–Si

stretch bond as likely candidate to absorb the energy needed to break the bond with aid of

1
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energy set free by the formed H–H bond.

The goal of the present thesis is to explore to what extent selective vibrational IR excita-

tion is feasable in multi-dimensional adsorbate systems by means of pulsed IR light. Losses

of selectivity and yield are possible due to inter-mode coupling and coupling to the “bath”

(dissipation). Thereby, vibrations of the adsorbate (“system”) couple to phonons and, in case

of metals, to electron-hole (e/h) pairs of the substrate (“bath”), energy and phase relaxation

take place which counteracts IR excitation. If dissipation occurs (mainly) via the phononic

channel, as is the case for insulators and semiconductors like silicon, the vibrations of the

adsorbate have lifetimes in the order of milliseconds [15], nanoseconds [16–18] and down to

picoseconds [19], depending on the availability of phonon energies fitting the respective vibra-

tional quantum. For metals like copper or ruthenium, providing e/h pairs of energy differences

suitable to vibrational quanta, vibrational lifetimes are normally considerably shorter, in the

range from picoseconds [20] to some hundreds of femtoseconds [21]. This is problematic, as

picoseconds are the “natural” timescale for the IR pulses used in the present work to vibra-

tionally excite the adsorbate. Further, possible obstacles to IR excitation are weak dipole

activities (“dark” modes) and a distinct harmonicity of certain modes. The latter does not

hurt if only mode-selectivity is desired, as a single pulse of constant frequency (∼ resonant to

the fundamental transition) allows to populate also higher lying states of the addressed mode.

State-selectivity, i. e. population of a single vibrational level, however, is rendered difficult to

impossible for harmonic modes. In order to achieve, nevertheless, maximum population in

the target state (or mode), optimal control theory (OCT) [22–27] is used here to improve, as

well as to compare to, simple sin2-shaped pulses which are convenient as an initial “guess”.

The principle of OCT algorithms is to pre-define the final state of the system after the

pulse is off and to iteratively (“global control”) or non-iteratively (“local control”) calculate

a control field suitable to do so. A drawback of most OCT schemes, particularly of those

designed for dissipative scenarios [28–30], is the time-independence of the so-called target

operator. That is, one cannot control the transient population dynamics as to impose a certain

“mechanism” of excitation, only the final outcome can be controlled. The time-dependent

control of populations and/or coherences (quantum interferences between vibrational states)

would be of particular interest for quantum computing employing vibrationally excited states

as “qubits” [31,32]. OCT algorithms for dissipative systems which contain an explicitly time-

dependent target operator are still rare [33]. The algorithm of Ref. [33], however, requires

further parameters to guarantee monotonic convergence and has been tested only on small
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models (up to four vibrational states) so far. Therefore a novel algorithm is presented here

which combines the iterative OCT scheme and local control theory [34, 35], preserving the

advantages (good target yields, monotonic and quadratic convergence) of the (global) OCT

algorithm [30] it is based on, but being less demanding in computational memory requirements

and allowing to explicitly give forth a target operator for each point in time.

Three adsorbate/surface systems are investigated in this work:

• CO/Cu(100) for which a full-dimensional potential energy surface (PES) [36, 37] as

well as theoretical [36, 37] and experimental [20] vibrational lifetimes are accessible.

Being well-studied (see for example Refs. [38–45]) and exhibiting lifetimes for the

different modes and bath temperatures ranging from >100 to about two picoseconds,

CO/Cu(100) serves as ideal, multi-dimensional model for the attempt of state-selective

vibrational IR excitation.

• H2/Ru(0001) for which likewise a full-dimensional PES [46, 47] exists as well as esti-

mates [21,48] for vibrational lifetimes. In experiment, femtosecond-laser (UV) induced

photoreactions have been carried out [21,49,50]. There are indications that the associa-

tive desorption of hydrogen proceeds via a “hot electron” mechanism which promises

to be enhanced by a IR+UV strategy.

• H/Si(100), which has been previously studied theoretically [51, 52], providing vibra-

tional lifetimes in good agreement with experimental findings [53], is an interesting

microlab for phenomena in fundamental and applied surface science. Most striking,

the experiment [14] in the similar system H/Si(111), where molecular hydrogen is se-

lectively desorbed from H+D/Si(111), proceeds very likely by an IR-induced vibrational

mechanism.

Density matrix theory [54] is a very powerful technique to treat “open systems” in general,

and for the special case of vibrational IR excitation of adsorbates at dissipative surfaces it

already has proven successful in the past [9–12, 55, 56]. Thus, reduced density matrices are

used here to solve the (Liouvillian) dynamics within the Markovian approximation and the

Lindblad [57] form of dissipation. Further, to investigate the effect of neglecting the so-

called “memory effects” within the Markov approximation, comparisons to non-Markovian

calculations are also presented and discussed.
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This work is organized as follows. Chapter 2 summarizes the employed theoretical meth-

ods and models, with Appendices A, C and D providing further details on the numerical

methods used to solve the stationary, vibrational problem as well as dissipative and non-

dissipative dynamics. An overview of quantum chemistry methods needed to calculate vi-

brational lifetimes according to Refs. [36, 37] is given in Appendix E. Chapter 3 presents

the stationary solutions (see also Appendix B) of the adsorbate/metal systems listed above,

considering up to four-dimensional models for the adsorbate vibration. Shown further is the

calculation of other quantities (dipole transition moments, rates for energy and phase relax-

ation) needed to solve the dynamics. An example of how one can obtain a dipole function from

quantum chemistry calculations on cluster models of the adsorbate/metal system is reviewed

in Appendix F. Chapter 4 presents the calculations performed to state-/mode-selectively

IR-excite adsorbate vibrations for various dimensionalities of the treated systems and with

dissipation included. Both (sub)ps sin2-shaped pulses and pulses obtained from global OCT

are employed. The effects of various parameters (pulse duration, bath temperature, pure

dephasing, target operator set-up) and interesting applications (“hot-band” excitation, exci-

tation of combination mode states, high-energetic “ladder climbing”, “dark mode” excitation,

exploitation of dissipation for vibrational excitation) are studied. Appendix G thereby in-

troduces the non-Markovian theory used for comparison in case of H/Si(100) and Appendix

H presents local control calculations carried out for CO/Cu(100), neglecting dissipation, in

order to gain experience with time-scales, control fields and the system itself. Chapter 5

presents the novel, hybrid local/global OCT algorithm, numerical tests and first applications

to excitation scenarios of interest in “time-dependent control”. Chapter 6, finally, summarizes

the work and hints at future developments.



Chapter 2

Theoretical methods

In the following, the theoretical models and methods are described which are used to simulate

vibrational IR excitation of molecules adsorbed on dissipative surfaces and to achieve the

creation of suitable pulsed light for state or mode selectivity.

Section 2.1 treats the set-up and numerical solution of the field-free “system”, that is

the adsorbed molecule as a multi-dimensional oscillator. The semiclassical interaction of the

molecule with the electric field as well as the inclusion of the “bath”, e. g., the surface’s

electronic and phononic degrees of freedom, via an open-system density matrix description

is expounded in Sec. 2.2. The non-adiabatic molecular orbital model to gain vibrational

lifetimes and the harmonic and anharmonic schemes to realize energy and phase relaxation

rates are presented in Sec. 2.3. Finally, in Sec. 2.4, global and local optimal control schemes

for calculating the pulsed IR light are reviewed as well as the preferred method to analyse

complex fields – the Husimi transformation.

5
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2.1 Stationary solution of the adsorbate/surface

system

2.1.1 Time-independent Schrödinger equation

As the dynamical treatment of IR-induced vibrational excitation is done in this work in

the basis of adsorbate vibrational states |φni
〉, the field-free time-independent Schrödinger

equation

Ĥ0|ψ〉 = E|ψ〉 (2.1)

is solved in system eigenstate representation

Ĥ0|φn(q)〉 = En|φn(q)〉 . (2.2)

According to the dimensionality F considered, n = (n1, n2, . . . , nF ) and q = (q1, q2, . . . qF ) are

F -tupels of quantum numbers ni and vibrational coordinates qi, respectively. (Note, that the

unique assignment of quantum numbers n1, . . . , nF is normally only possible for low-lying

states.) En are the eigenvalues of the system, constituting the vibrational energy ladder.

The field-free Hamiltonian Ĥ0 consists of the (vibrational) kinetic energy operator T̂ and the

potential energy V as a function of coordinates q

Ĥ0 = T̂ + V (q) . (2.3)

2.1.2 Solution

There are various approaches to solve the time-independent Schrödinger equation; mostly

used in the present work are the sinc-function DVR (discrete variable representation) and

the Fourier Grid Hamiltonian (FGH) methods, which numerically represent the Hamiltonian

of Eq. (2.3) on a grid, simplifying the diagonalization in order to obtain the eigenvalues En

and eigenvectors φn(q). Both methods are summarized in Appendix A.
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2.2 Dissipative dynamics: The Liouville-von Neu-

mann equation

Describing the time-evolution of a quantum system by the time-dependent Schrödinger equa-

tion (TDSE)

ih̄
∂

∂t
|ψ(t)〉 =

[

Ĥ0 − µ̂F (t)
]

|ψ(t)〉 , (2.4)

where F (t) is the external electric field driving the system and µ̂ the dipole operator coupling

field and system1, is only possible for closed systems (no energy/phase exchange with a

“bath”) and pure states (T = 0 K) which can be expressed by a single state vector. Contrary,

a system at T > 0 K is a so-called thermal ensemble, composed of the eigenstates of Ĥ0

(denoted |φi〉 or |i〉 for short), each populated according to the Boltzmann weight by

pi =
e
− Ei

kBT

Tr[e
− Ĥ0

kBT ]

, (2.5)

with kB being the Boltzmann constant and the sum of populations
∑

i pi = 1. In a closed

scenario, that is an external field may drive the system but no energy dissipation from the

system to a “bath” occurs, the dynamics can still be solved in the wave packet representation

of Eq. (2.5). Thereby, one first has to propagate a TDSE for every thermally populated initial

wavefunction according to

|ψi(t)〉 = e−
iĤt
h̄ |φi〉 , (2.6)

where Ĥ = Ĥ − µ̂F (t). Then the desired time-dependent observables 〈Â〉(t) can be retrieved

from incoherent averaging [58,59]

〈Â〉(t) =
∑

i

pi〈ψi(t)|Â|ψi(t)〉 . (2.7)

An alternative to incoherent averaging, is to represent the system of interest in terms of

a density operator ρ̂(t) [60–62] and carrying out a single propagation of this object. To be

more specific, here a reduced density operator for the system S is considered where the bath

modes (B) have been “traced out”, i. e. ρ̂ = ρ̂S = TrB{ρ̂} – a trace over all degrees of freedom

1The vector character of both electric field and dipole operator is omitted here for simplicity.

Further, the semiclassical dipole approximation is made for the matter-field interaction.
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of the bath. The concept of a reduced density operator is useful if open quantum systems are

of interest (see below). For thermal ensembles, the initial density ρ̂(0) is constructed from

the vibrational eigenstates |φi〉 and the Boltzmann weights of Eq. (2.5) as

ρ̂(0) =
∑

i

pi|φi〉〈φi| (2.8)

and it is propagated according to the Liouville-von Neumann (LvN) equation

ih̄
∂

∂t
ρ̂(t) = L0ρ̂(t) (2.9)

with the formal solution

ρ̂(t) = e−
i
h̄
L0tρ̂(0) . (2.10)

L0 is the Liouville super-operator corresponding to the system Hamiltonian Ĥ0 which acts

on the density operator in the form of a commutator

L0ρ̂ =
[

Ĥ0, ρ̂
]

. (2.11)

Extending this to cases where semiclassical system field interaction enters in the Hamil-

tonian via the term −µ̂F (t), L0 has to be replaced by LH

LH ρ̂ =
[

Ĥ0 − µ̂F (t), ρ̂
]

. (2.12)

Further, for open systems, where energy and phase information dissipates from “system”

(here: adsorbate vibrations) to the “bath” (electronic and phononic degrees of freedom of

the surface), a total Liouvillian L = LH + LD has to be formulated, where LD governs the

dissipative contributions to the dynamics of the system. The corresponding open-system LvN

equation is

ih̄
∂ρ̂(t)

∂t
= (LH + LD) ρ̂(t) (2.13)

For the dissipative part, the Lindblad [57] approximation

LDρ̂ = ih̄

K∑

j=1

(

Ĉj ρ̂Ĉ
†
j −

1

2

[

Ĉ†
j Ĉj , ρ̂

]

+

)

(2.14)
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is used, where [, ]+ denotes an anti-commutator. The Lindblad form has the advantage that

the diagonal elements of the density matrix remain positive and the trace is conserved2, thus

allowing for a physical interpretation of the diagonal elements as state populations. Each j

of Eq. (2.14) thereby is one of K dissipative channels with Ĉj being the associated Lindblad

operator, which can be chosen semi-phenomenologically as to describe the dissipative process

occuring for this channel, see for example Ref. [64].

When the LvN equation (2.13) is represented in the basis of the vibrational eigenstates

|φi〉 of Ĥ0 the Lindblad form of LD delivers the following equations of motion for the diagonal

(population) matrix elements

dρnn

dt
= − i

h̄
F (t)

N∑

i=1

(µniρni − ρniµin) +

N∑

i=1

(Γi→nρii − Γn→iρnn) (2.15)

and off-diagonal (coherence) matrix elements

dρmn

dt
= −iωmn − i

h̄
F (t)

N∑

i

(µmiρin − ρmiµin) − γmnρmn . (2.16)

N is the number of vibrational states and n, m are the numbering of these states. The µmn

are the dipole transition moments between two states |m〉 and |n〉, that is µmn = 〈m|µ̂|n〉.
The vibrational frequencies ωmn = Em−En

h̄ follow from the vibrational eigenenergies Em, En

and the density matrix elements ρmn are set up from the vibrational eigenstates |m〉 and |n〉
as ρmn = 〈m|ρ̂|n〉. According to Eq. (2.15), energy dissipates from state |m〉 to state |n〉 with

a rate Γm→n. This corresponds to the choice

Ĉj → Ĉmn =
√

Γm→n|n〉〈m| (2.17)

for the Lindblad operators in Eq. (2.15). Further, Eq. (2.16) includes dephasing, that is the

decay of the off-diagonal density matrix elements which contain the information of coherence

between two states, with a rate of γmn = γnm. For a N -level system, one has [65,66]

γmn =
1

2

N∑

i

(Γm→i + Γn→i) + γ∗mn = γ′mn + γ∗mn , (2.18)

2Within the Redfield theory [63] and Markov approximation (neglect of “memory effects” in time-

evolution of ρ̂, see for example Ref. [54]), the individual diagonal elements of the density matrix are

not necessarily positive, but the trace is automatically conserved, i. e.
∑

i ρii = 1. In the Lindblad

picture positivity is inherent (strictly only for the time-independent case), but trace-conservance has

to be achieved by construction.
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where the first term on the right-hand side is dephasing associated with inelastic processes

(i. e., energy relaxation), while the last term is due to pure dephasing, i. e. elastic scattering

events.

The numerical solution of the coupled differential equations (2.15) and (2.16) with a given

field F (t), as employed here throughout, is summarized in Appendix C.

2.3 Dissipation model

2.3.1 Nonadiabatic molecular orbital theory for the calcula-

tion of vibrational lifetimes

The vibrational relaxation rates Γm→n are related to vibrational lifetimes. Finite lifetimes of

adsorbates are due to the coupling of the adsorbate vibrations to either e/h pairs (for metal

surfaces) or to phonons (all surfaces). For metal surfaces, the former dominates in most cases.

Experimental values of vibrational lifetimes are rare. For example, in case of the system

CO/Cu(100) only that of the C-O stretch mode is known [20] to be (2 ± 1) ps at 120 K.

Therefore we use a model suited to calculate the lifetime of the first excited state |v = 1〉 of

a normal mode q with respect to the ground state |v = 0〉 obtained by quantum chemistry

calculations on metal clusters.

The foundation of this model developed by Tully and co-workers [36,37] with vibrational

relaxation via an electronic mechanism as non-adiabatic process [67], is the Golden Rule

of Time-Dependent Perturbation Theory [68]. Accordingly, the rate for relaxation from

vibrational state |v = 1〉 to |v = 0〉 is

Γ̃ =
1

τ|v=1〉→|v=0〉
=

1

τ
=

2π

h̄

∑

f

|Hfi|2 δ(ǫi − ǫf ) . (2.19)

Here, ǫi and ǫf are the energies corresponding to the initial state |ψi〉 ≡ |i〉 and final states

|ψf 〉 ≡ |f〉 of the system, the Dirac δ-function ensuring energy conservation, and Hfi is the

matrix element connecting a pair of initial and final states. The states |ψn〉 are expanded as

Born-Oppenheimer (B.O.) products [69] of the vibrational wavefunction |vn〉 which depends

on the normal mode coordinate q, and the electronic wavefunction |en〉, depending on the
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electronic coordinates r and parametrically on the vibrational coordinate q. Further, by

inserting the nuclear kinetic energy operator T̂q = − h̄2

2µq

d2

dq2 as coupling operator, Hfi reads

Hfi =
〈

vf

∣
∣
∣〈ef |T̂q|ef 〉r

∣
∣
∣ vi

〉

q
(2.20)

= − h̄2

2µq

〈

vf

∣
∣
∣
∣
〈ef |ei〉r

d2

dq2

∣
∣
∣
∣
vi

〉

q

− h̄2

2µq

〈

vf

∣
∣
∣
∣
〈ef |

d2

dq2
|ei〉r

∣
∣
∣
∣
vi

〉

q

− h̄
2

µq

〈

vf

∣
∣
∣
∣
〈ef |

d

dq
|ei〉r

d

dq

∣
∣
∣
∣
vi

〉

q

,

where the 〈. . . 〉q and 〈. . . 〉r indicate an integration over nuclear coordinate q and electronic

coordinates r, respectively.

The first term of Eq. (2.20) vanishes due to the orthogonality of electronic states. The

second term can be neglected if the
〈

ef

∣
∣
∣

d2

dq2

∣
∣
∣ ei

〉

are assumed to be vanishingly small. Ex-

panding the inner bracket of the third term in (2.20) as Taylor series around (q = 0) and

truncating this after the first term, one obtains

Hfi = − h̄
2

µq

〈

ef

∣
∣
∣
∣

d

dq

∣
∣
∣
∣
ei

〉

q=0

〈

vf

∣
∣
∣
∣

d

dq

∣
∣
∣
∣
vi

〉

q

. (2.21)

By approximating the vibrational wavefunctions as harmonic oscillator functions, using the

harmonic selection rule (vf = vi − 1) – decay of one quantum in normal mode q – and

specifying |vi = 1〉 and |vf = 0〉, Eq. (2.21) becomes

Hfi = −h̄
√

∆

2µq

〈

ef

∣
∣
∣
∣

d

dq

∣
∣
∣
∣
ei

〉

q=0

. (2.22)

Here,
〈

vf = 0
∣
∣
∣

d
dq

∣
∣
∣ vi = 1

〉

q
= 1

h̄

√
µq∆

2 has been used, where ∆ is the vibrational quantum

h̄ω and µq the reduced mass. Further, the excited electronic states of the metal |ef 〉 are

approximated as singly excited determinants |Ψr
a〉 (an electron has been promoted from orbital

a to orbital r) relative to the Hartree-Fock ground state |Ψ0〉 being the initial electronic state

|ei〉. The expression (2.19), now in canonical molecular orbital (MO) representation, resulting

from the above restrictions resembles the Configuration Interaction Singles (CIS) theory [70]

and reads

Γ̃ =
1

τ
=
πh̄

µq
∆
∑

r,a

∣
∣
∣
∣
〈χr|

d

dq
|χa〉

∣
∣
∣
∣

2

δ(εa − εr + ∆) , (2.23)

with |χn〉 being the molecular orbitals and εn their corresponding energies.

The model set up and the approximations made so far are summarized in Fig.2.1, where

on the left the fundamental vibrational decay in the adsorbate’s harmonic potential is shown,
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normal mode q

metal

E
F

e

h

unocc.
MOs

occ.
MOs

∆

∆
|v

i
 = 1>

|v
f
 = 0>

r

ε

ε

a

Figure 2.1: Nonadiabatic MO theory in schematic representation: The adsorbate modeled

as harmonic oscillator, is decaying from the singly excited state |vi = 1〉 to the vibrational

ground state |vf = 0〉, thereby emitting the vibrational quantum (∆ = h̄ω). In the metal

(represented here as MO “band” structure with occupied MOs forming the valence band,

unoccupied MOs constituting the conduction band and the Fermi energy EF separating the

two) an electron is promoted from an orbital a in the valence band to an orbital r in the

conduction band, creating an electron-hole pair, such as to fulfill the condition (εr − εa = ∆)

for energy conservation.

and on the right the excitation of a metal electron from a molecular orbital energetically

below the Fermi level EF to an unoccupied MO, and thereby creating an electron-hole (e/h)

pair, is pictured.

Equation (2.23) can be expressed in a localized atomic orbital (AO) basis |µ〉 (|χn〉 =
∑

µCµn|µ〉) to perform actual calculations. This results in the matrix equation F Cn =

S Cnεn from which Eq. (2.22) can be calculated and with F being the Fock – or Kohn-Sham3

– matrix, S the overlap matrix and Cn = (C1n, C2n, . . . ). (For a brief review of Hartree-

Fock and density functional theory and the Self Consistent Field (SCF) procedure by which

quantum chemistry programmes solve HF and Kohn-Sham equations see Appendix E).

In AO basis and under the assumption that dεa

dq = 0 (no spatial dependence of MO

energies) as well as using the already mentioned energy conservation condition, the vibrational

3Though the original algorithm was developed for Hartree-Fock orbitals it has been shown [71]

that in CI calculations, it is possible to replace Hartree-Fock orbitals by Kohn-Sham orbitals.
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relaxation rate is

Γ̃ =
1

τ
=

πh̄

µq∆

∑

a,r

(

C†
aW Cr

)(

C†
r W Ca

)

δ (εa − εr + ∆) , (2.24)

with W = d
dqF −EF

d
dqS. All derivatives with respect to q are performed at (q = 0) as these

expressions originate from the Taylor expansion of the electronic part, see Eq. (2.21).

Introducing the density of states (DOS) at energy ǫ expressed in reduced one-particle

density-matrix representation [70]

P (ǫ) = CnC
†
nδ (ǫ− εn) (2.25)

and approximating a) that εa ≈ εr ≈ EF , that is e/h pair creation occurs in a relatively

small energy window around the Fermi level, and b) that the DOS can be considered smooth

in an interval of width ∆, the final expression is a simple trace of a matrix product:

Γ̃ =
1

τ
=
πh̄

µq
Tr
[
P (E−

F )W P (E+
F )W

]
. (2.26)

For P (E−
F ) and P (E+

F ) – the DOS below and above the Fermi level, respectively – suitable

occupied and unoccupied states have to be chosen within a certain energy window around EF .

These states have also to be broadened, for example by rectangular functions or Gaussians.

Alternatively, Tully et al. [36] suggested the use of an “average density” P (EF ) = 1
2(P (E−

F )+

P (E+
F )). Explicit examples of these procedures and their effect on the obtained rates are given

in Section 3.3.2 for the system H2/Ru(0001).

2.3.2 Harmonic and anharmonic approaches for higher rates

The model outlined in Sec. 2.3.1 delivers only the rate Γ̃j for the fundamental decay (v = 1)

→ (v = 0) in a single, harmonic vibrational mode qj . We also need rates for the decay of

higher excited states (v > 1) as well as for the decay of a F -dimensional vibrational state

|m〉 = |m1,m2, . . . ,mF 〉 to a state |n〉 = |n1, n2, . . . , nF 〉 for the density matrix propagation

(Sec. 2.2).

For a single harmonic vibration along coordinate q and at (T = 0 K), the electronic

contribution to the relaxation rate Γ̃ = Γ1→0 as calculated from Eq. (2.26) is [36]

Γm→n = mΓ̃δm−1,n , (2.27)
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i. e. the harmonic selection rule (m = n − 1) is obeyed and the rate is proportional to the

quantum number m of the decaying state. If additional phononic contributions enter, as here

for CO/Cu(100) and (T > 0 K) [37], the same scaling law holds true if the rates arise from

the Golden Rule (2.19), harmonicity is assumed and the vibration-phonon coupling is linear

in q. This is the case in Ref. [37], from where the corresponding relaxation rates were taken.

For a multi-dimensional system of F normal modes j, neglecting inter-mode coupling, the

scaling law of Eq. (2.27) for Γm→n can be generalized as

Γm→n =
F∑

j=1

Γ̃jmjδ(mj−1,nj)

F∏

k 6=j

δmknk
. (2.28)

Accordingly, only the decay (mj → nj = mj − 1) by a single quantum in a single mode j

is possible at a time and the rate is proportional to the initial quantum number mj of the

decaying mode. To give an example, let’s assume a two-mode system with modes A and B,

a decaying state |mA = 1,mB = 3〉 and rates Γ̃A and Γ̃B as rates for the fundamental decay

processes |1, 0〉 → |0, 0〉 and |0, 1〉 → |0, 0〉. There are only two non-zero relaxation rates of

state |1, 3〉 according to Eq. (2.28)

Γ(1,3)→(0,3) = 1 · Γ̃A (2.29)

Γ(1,3)→(1,2) = 3 · Γ̃B , (2.30)

so that the lifetime of state |1, 3〉 at (T = 0 K) is
[
Γ(1,3)→(0,3) + Γ(1,3)→(1,2)

]−1
=

[

Γ̃A + 3Γ̃B

]−1
.

This model is reasonable for the treatment of low-energetic IR-excitation, that is in a

regime where the system can be considered harmonic and the coupling between system and

bath is linear in the system modes. In higher energetic anharmonic regimes (for example

ladder climbing in a desorptive mode up to the desorption limit), Eq. (2.28) overestimates

the rates with increasing quantum numbers. Therefore an anharmonic correction as proposed

in Ref. [72] can be used

Γm→n =

F∑

j=1

Γ̃j
(Em − E0)

h̄ωj
δ(mj−1,nj)

F∏

k 6=j

δmknk
, (2.31)

with ωj being the harmonic fundamental frequency of normal mode j. Considering again the

example of above, the rates by which state |1, 3〉 decays to states |0, 3〉 and |1, 2〉, respectively,
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are

Γ(1,3)→(0,3) =
E1,3 − E0,3

h̄ωA
· Γ̃A (2.32)

Γ(1,3)→(1,2) =
E1,3 − E1,0

h̄ωB
· Γ̃B . (2.33)

If modes A and B are both (uncoupled) harmonic oscillators then E1,3−E0,3 = h̄ωA and E1,3−
E1,0 = 3h̄ωB and one obtains the same result as in case of the harmonic model of Eq. (2.28).

Alternatively, one can generalize Eq. (2.20) to anharmonic vibrational wavefunctions and a

less restricted electronic coupling form.

Eqs. (2.28) and (2.31) yield only the “downward” rates Γm→n for (Em > En), but at

finite temperatures (T > 0 K) there are also rates transferring population “upwards”; these

are calculated from detailed balance

Γn→m = Γm→ne
−Em−En

kBT . (2.34)

Finally, for being able to solve the differential equations (2.15) and (2.16), the dephasing

rates γmn are needed. As mentioned above, dephasing arises both from inelastic scattering

processes (T1-type dephasing) and elastic scattering (molecule remains in state v, T∗
2-type

“pure” dephasing).

The total dephasing rate (T2 dephasing) between states |n〉 and |m〉 is the sum of T1 and

T ∗
2 dephasing, as indicated in Eq. (2.18). For a two-level system, with states |0〉, |1〉 one has,

at (T = 0 K):

γ10 =
1

2
Γ1→0 + γ∗10 . (2.35)

γ∗10 can be estimated from if experimental linewidths; see for example Levinos et al. [20, 73].

In a two-state system

1

T2
=

1

2T1
+

1

T ∗
2

(2.36)

is valid, and at (T = 0 K) T1 = τ = 1
Γ̃

and thus

γ∗10 =
1

T2
− 1

2
Γ̃ . (2.37)

Further, if one assumes a Gaussian pure dephasing model, then the γ∗mn are proportional to

ω2
mn [74], and can be calculated based on γ∗10 and eigenstate energy differences.
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2.4 Optimal control theory (OCT)

A sin2-shaped pulse (or a “pulse train” of successive/overlapping sin2-shaped pulses)

F (t) = F0 sin2

(
πt

tf

)

cos(ωt+ φ) (2.38)

can be suitable for IR excitations [8,10–12,75]. In Eq. (2.38), F0 is the maximal field strength,

ω the frequency and φ the phase of the pulse (train) which, for a single pulse, starts at (t = 0)

and ends at (t = tf ). Again, the vector character of the field is omitted for simplicity.

For a direct transition |n〉 → |m〉, a first simple guess for the electric field is a π pulse

with ω = ωmn and a maximum field strength (F0 = F π
0 ), where

F π
0 =

2πh̄

tf |µnm| (2.39)

and µnm = 〈n |µ̂|m〉 is the transition dipole moment. Relation (2.39) derives from the

condition

|µnm|F π
0

∫ tf

0
s(t)dt = h̄π (2.40)

which assures that, within the rotating wave approximation (RWA) and with no dissipation

involved, a complete population inversion is obtained in a two-state system. In Eq. (2.40)

s(t) is a general shape function, sin2
(

πt
tf

)

in the present case.

For more delicate problems – e. g. strong dissipation, complicated/unknown “reaction

pathways” in multi-level systems – the creation of pulses via optimal control theory [22–27]

is helpful. Different to the Brumer-Shapiro coherent control scheme [76] which relies on

the generation of suitable quantum interference of a number of energy levels, optimal control

theory (OCT) is based on optimizing the shape of the control pulse via variational calculus as

to meet the condition that the final outcome of dynamics approaches the predefined “target”.

The OCT has been sucessfully applied for wavefunctions, see for example [26, 27, 31, 34, 77,

78,78–83]. Progress has also been made in developing rapidly converging algorithms [84–87],

formulating the formalism in Liouvillian space [28–30] and creating OCT pulses which allow

for experimental reconstruction [34,88].
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2.4.1 Global and local optimal control for wavefunctions

In the global optimal control formalism as proposed by Rabitz et al [22–24], Kosloff et al. [26]

and Manz et al. [25, 27] the control field F (t) is generated variationally as to maximize the

objective functional J

J = 〈ψ(tf )|Ô|ψ(tf )〉 − α

∫ tf

0
|F (t)|2 dt (2.41)

−
∫ tf

0
dt

[〈

χ(t)

∣
∣
∣
∣

∂

∂t
+
i

h̄
Ĥ

∣
∣
∣
∣
ψ(t)

〉

+ c.c.

]

.

Here, Ô is the so-called target operator which can be generally expressed as

Ô =
∑

ij

oij |i〉〈j| . (2.42)

If a certain target state |i〉 is to be populated, the choice as a projection operator Ô = |i〉〈i|
is useful. The penalty factor α is a scalar factor here4 that restricts the pulse fluence in the

second term of Eq. (2.41). α can also be chosen time-dependent as α(t) [80] as to obtain

pulse shapes with F (0) = F (tf ) = 0 for experimental feasibility. In this case, α(t) appears

in the integral as −
∫ tf
0 α(t) |F (t)|2 dt. Further, the Lagrange multiplier χ(t) constrains the

variational problem to obey the time-dependent Schrödinger equation (2.4) in the third term

of Eq. (2.41). Providing both an initial condition |ψ(0)〉 = |ψ0〉 (normally chosen as the

vibrational ground state) and final condition |χ(tf )〉 = Ô|ψ(tf )〉, the optimal field at time t

is

F (t) = − 1

h̄α
Im 〈ψ(t) |µ̂|χ(t)〉 . (2.43)

Technically this global scheme requires an iterative algorithm where the wavefunction ψ(t)

is propagated forward in time and the Lagrange multiplier χ(t) backward in time (obeying

Eq. (2.4) with χ instead of ψ and time being negative, i. e. t → −t). The electric field is

generated anew at each timestep from Eq. (2.43). Convergence is achieved if the field or the

target state population do not change any more significantly from one backward/forward

propagation to the next.

A different, but nonetheless often quite successful, approach is local control theory [34,35,

78,79]. Here, the initial state of the system is a fixed boundary condition like in global control

4The penalty term of Eq. (2.41) can also be chosen employing a further Lagrange multiplier; in this

case the second term of Eq. (2.41) would take on the form α
∫ tf

0

[
|F (t)|2 − κ

]
dt, with the additional

parameter κ being the Lagrange multiplier – a “target field intensity”.
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(which is a two-point boundary value problem, but the outcome of dynamics is “open”, though

triggered towards a specified goal by the target operator Ô). The procedure is non-iterative

and the pulse optimization occurs simultaneously to the single forward propagation. The

target operator indirectly controls the path, as demonstrated in the examples of Appendix

H.

As local control is a one-point boundary value problem (|ψ(0)〉 = |ψ0〉), Eq. (2.43) is

reduced to

J = 〈ψ(tf )|Ô|ψ(tf )〉 − α

2

∫ tf

0
|F (t)|2 dt . (2.44)

For small timesteps (within which the time-dependent Schrödinger equation is fulfilled) the

optimal field can be approximated [35] as

F (t) = − 2

h̄α
Im〈ψ(t)|Ôµ̂|ψ(t)〉 , (2.45)

an expression not unsimilar to (2.43) but containing Ô which ensures the creation of a field

driving the system towards the desired state. The continuity of the control pulse is guaranteed

by assuming the commutator relation

[

Ô, Ĥ0

]

= 0 (2.46)

between the target operator and the unperturbed Hamiltonian.

The above local control theory algorithm was implemented in such a way that the prop-

agation of |ψ(t)〉 in accordance with the TDSE (2.4) is carried out by the split-operator

propagator (SPO) method (see Appendix D for details) in contrast to the original implemen-

tation of Ohtsuki et al. [35], where the time-propagation is realized by the Runge-Kutta 4th

order integrator [89, 90].

2.4.2 Global optimal control for density matrices

In order to include the possibility to treat open quantum systems, Ohtsuki et al. [30] developed

a rapidly convergent algorithm extending the global OCT formalism as sketched in the first

part of Sec. 2.4.1 into the Liouvillian space density matrix representation similar to Ref. [91]
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but including dissipation. The objective functional, compare the analogy to Eq. (2.41), reads

J = 〈〈Ô|ρ̂(tf )〉〉 −
∫ tf

0
α(t) |F (t)|2 dt (2.47)

−
∫ tf

0
dt

〈〈

σ̂(t)

∣
∣
∣
∣

∂

∂t
+
i

h̄
[LH + LD]

∣
∣
∣
∣
ρ̂(t)

〉〉

,

with the third term ensuring the Liouville-von Neumann equation (2.13) to be obeyed dur-

ing the iterative forward and backward propagation-optimization within the interval [0, tf ].

Thereby the boundary condition for forward propagation of the density matrix according to

(2.13) is

ρ̂(0) = ρ̂0 =
e
− 1

kBT
Ĥ0

Tr

[

e
− 1

kBT
Ĥ0

] (2.48)

i. e. a thermal ensemble of the N vibrational eigenstates |i〉. The Lagrange multiplier density

σ̂(t) being propagated backward in time from (t = tf ) to (t = 0) has to obey

ih̄
∂σ̂(t)

∂t
= (LH + LD)† σ̂(t) (2.49)

and has as boundary condition at (t = tf ) the target Ô which is the desired density when

the pulse is off. Formally expressed in the basis of vibrational eigenstates Ô = σ̂(tf ) can

be written as Eq. (2.42) with the oij , as already mentioned above, being the (real) target

populations for (i = j) and the target coherences for (i 6= j). Often, again, the target is

chosen as a single state |i〉, that is Ô = |i〉〈i|.

With the objective and boundary conditions given above the relation for the control field

is

F (t) = − 1

h̄α(t)
Im 〈〈σ̂(t) |µ̂| ρ̂(t)〉〉 . (2.50)

In Eqs. (2.47) and (2.50) Hilbert-Schmidt scalar products
〈〈

Â|B̂
〉〉

= Tr{Â†B̂} are used.

As a result one obtains the following simple expression for the field:

F (t) = − 1

h̄α(t)
Im
[

Tr{σ̂†(t) [µ̂ρ̂(t)]}
]

= − 1

h̄α(t)
Im





N−1∑

i,j,k=0

σ∗ij(t)µjkρki(t)





=
1

h̄α(t)

N−1∑

i,j,k=0

µjk (Im [σji(t)] Re [ρki(t)] − Re [σji(t)] Im [ρki(t)]) . (2.51)
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This already hints at the “mechanism” of field creation in the optimal control scheme, but

that becomes even more obvious when writing Eq. (2.51) for a two-state system (N = 2),

where µ = µ01 = µ10 (and µ00 = µ11 = 0):

F (t) = −µ Im [ρ01]

h̄α(t)
(Re [σ11] − Re [σ00]) . (2.52)

The field at a given point in time is proportional to the product of the imaginary part of

the coherence term ρ01 of the density matrix, which oscillates with resonance frequency ω10,

and the difference of populations σ11 and σ00 in the Lagrange multiplier density5. Similarily,

though more complex, the magnitudes and oscillation frequencies of coherence terms and the

differences of state populations determine the control field in systems with (N > 2). The

“drive” towards the target enters only by the backward propagation of σ̂(t) starting from the

target Ô.

As for the computational realization of the global OCT, Ohtsuki et al. originally imple-

mented a Runge-Kutta 4th order integrator [89,90] in order to solve the Liouvillian dynamics

according to Eqs. (2.13) and (2.49). But due to numerical instabilities found for calculations

already with a moderate number of vibrational states (say 10 or more), a new implementation

was done, where the time-evolution is realized by spectral decomposition of the Liouvillian,

Newton polynomial interpolation and Schwarz-Christoffel mapping [92,93] of the Liouvillian

eigenvalue spectrum. See Appendix C for a summary of this technique.

2.4.3 Pulse analysis by Husimi quasiprobability distribution

Optimal electric fields obtained from optimal global or local control can have a complex

structure. A Fourier transformation I(ω) of field F (t)

I(ω) =
1√
2π

∫ ∞

−∞
F (t)e−iωtdt (2.53)

delivers only the relative intensities of occuring frequencies ω averaged over the whole pulse

duration. One cannot draw any time-resolved information with respect to the frequencies

from it.

5The backward propagated Lagrange multiplier density σ̂(t) behaves just like the forward propa-

gated density ρ̂(t). In basis of the vibrational eigenstates |i〉, its diagonal matrix elements σii can thus

be physically interpreted as “populations”, as σii ∈ R and σii ∈ [0, 1].
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One possibility to resolve F (t) in the time and energy (E = h̄ω) domain is the so-called

Wigner quasiprobability distribution [94] PW (t, ω)

PW (t, E) =
N

2πh̄

∫ ∞

−∞
dqF ∗(t+

q

2
)F (t− q

2
)e

iEq
h̄ , (2.54)

with N =
(

ea0
Eh

)2
being a normalization factor making PW (t, E) dimensionless. The Wigner

distribution, however, can take negative values (“non-classic effects”), making the analysis

somewhat difficult. Therefore, the Husimi distribution [95], being strictly positive, is preferred

here. To obtain it the initially calculated Wigner distribution is smoothed by Gaussians in

time and energy

PH(t, E) =
1

πh̄

∫

dt′
∫

dE′e−
κ(t′−t)2

h̄ e−
h̄(E′

−E)2

h̄κ PW (t′, E′) . (2.55)

Here, κ [(energy × time)−
1
] is an arbitary positive constant which is chosen as to obtain

a suitable resolution. The product of uncertainties has to observe the Heisenberg criterion,

that is (t′ − t)(E′ − E) ≥ h̄
2 .



Chapter 3

Adsorbate/surface systems

The study of state- or mode-selective vibrational IR excitation is done here for a selection

of adsorbate/surface systems. Three systems have been studied: CO/Cu(100), H/Si(100)

and 2H/Ru(0001). These will be discussed in some detail in the following with respect to

included vibrational degrees of freedom, potential energy surface, dipole function and the

thereof obtained vibrational eigenstates, eigenenergies and dipole transition moments used

in the quantum dynamics simulations.

3.1 CO/Cu(100)

CO adsorbed C-bound on-top of a Cu(100) surface serves as main system of interest in the

present work. A full six-dimensional potential energy surface which has been fitted to semi-

empirical data by Tully and co-workers [36, 37] exists and has proven in several theoretical

studies [40–45] to deliver results close to experimental frequencies [39]. Further, the CO

stretch mode has been studied in experiment. A vibrational lifetime of (2±1) ps [20] was found

and a linewidth, allowing to estimate the dephasing time T2 as 1.6 ps [20,73]. Although, these

quantities are unknown for the other five modes, theoretical lifetimes have been calculated by

Tully et al. based on the non-adiabatic molecular orbital model (Sec. 2.3.1). This was done

for (T = 0 K) [36]; for finite surface temperatures ranging from 10 to 450 K they implemented

an additional phononic decay channel by molecular dynamics simulation [37].

22
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Figure 3.1: (a) The six degrees of freedom of CO adsorbed on-top on a Cu(100) surface:

CO stretch mode r, CO-surface stretch mode Z, degenerate lateral motion along the [1,1,0]

≡ X and [-1,1,0] ≡ Y directions on the surface and angular degrees of freedom θ and φ; (b)

position vectors of C, O and ith Cu atom of the N atom metal slab modelling the surface.

Fig. 3.1 (a) displays a possible choice for the six vibrational modes of CO: The CO stretch

mode r and the CO-surface stretch mode Z, the two degenerate lateral modes X and Y

where the center of mass is displaced parallel to the surface in [1,1,0] and [-1,1,0] directions.

Also shown are the two angular degrees of freedom θ and φ which describe the tilting of CO

with respect to the vertical axis and the rotation around latter, respectively. The full 6D

Hamiltonian Ĥ0 is

Ĥ0 = − h̄
2

2µ

∂2

∂r2
− h̄2

2m

∂2

∂Z2
− h̄2

2m

∂2

∂X2
− h̄2

2m

∂2

∂Y 2
+

h̄2

2µr2
Ĵ(θ, φ) + V (r, Z,X, Y, θ, φ) , (3.1)

where µ = mCmO

mC+mO
and m = mC + mO are the reduced masses if surface atoms are fixed

(rigid surface approximation). Ĵ(θ, φ) is the angular momentum operator

Ĵ2 = −cot(θ)
∂

∂θ
− ∂2

∂θ2
− 1

sin2(θ)

∂2

∂φ2
(3.2)

and V (r, Z,X, Y, θ, φ), the 6D potential, introduced in the following.

Here, we have mainly restricted ourselves to two-dimensional (r, Z) and three-dimensional

(r, Z, X) [96] models in order to gain insight whether a selective vibrational excitation is

feasible at all. Further these three modes, as will be discussed later, are representative for

strong, medium and weak IR active vibrational modes and cover a wide range of vibrational

frequencies, from about 80 to 2150 cm−1. In a recent collaboration [97], also four-dimensional

(r,Z,θ,φ) dynamical simulations were carried out.
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3.1.1 Potential energy surface and stationary solution

As potential energy surface, the empirical gas/surface interaction potential of Tully and co-

workers [36, 37] is used:

V (r, Z,X, Y, θ, φ) =
N∑

i

Vi (rC , rO, ri) + VCO (|rC − rO|) . (3.3)

This is composed of N terms Vi (rC , rO, ri), describing the interaction between CO and the

ith of the N copper atoms, and the term VCO (|rC − rO|) for the interaction between carbon

and oxygen. Shown schematically in Fig. 3.1 (b) are the position vectors rC , rO and ri for

the carbon, oxygen and ith copper atom in an N atom metal slab.

The adsorbate/surface interaction terms consist of a) a simple exponential repulsion be-

tween oxygen and copper atom and b) a modified Morse potential for the C/Cu interaction

Vi(rC , rO, ri) = Ae−α|ri−rO| +B
[

e−2β(|ri−rC |−re) − 2cos2(ηi)e
−β(|ri−rC |−re)

]

, (3.4)

where re = 1.9 Å (or 3.6 a0) is the equilibrium distance between carbon and the copper

atom on which CO is adsorbed. The Morse potential part contains an orientation factor

cos (ηi) =
(rC−ri)(rC−rO)
|rC−ri||rC−rO| in the attractive part, guaranteeing full attraction when the CO

molecule’s axis points directly at the copper atom Cui, as ηi is the angle between the C–O

and C–Cui bonds. The interaction of the adsorbate atoms with each other is an unmodified

Morse potential

VCO (|rC − rO|) = F
[

e−2γ(|rC−rO|−r0) − 2e−γ(|rC−rO|−r0)
]

, (3.5)

with r0 = 1.125 Å (or 2.126 a0) being the equilibrium C–O bond length. The two equilibrium

bond lengths as well as the other parameters are given in Table 3.1.

In the 2D and 3D cases considered here, the coordinates (X), Y , θ and φ, are held fixed in

equilibrium positions, i. e. at 0. A 108 copper atom slab (formed by three layers of 6×6 atoms)

serves to calculate the potential energy surfaces V (r, Z) and V (r, Z,X) from Eqs. (3.3), (3.4)

and (3.5).

Two dimensions

A plot of the two-dimensional potential energy surface V (r, Z) is shown in Fig. 3.2; displaying

the narrow well in direction of the CO stretch mode r and the “flat” ascend of the potential
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parameter value

A 32.1 Eh

α 1.78 a−1
0

B 0.0213 Eh

β 1.59 a−1
0

F 0.408 Eh

γ 1.22 a−1
0

Table 3.1: Parameters of Eqs. (3.4) and (3.5), taken from Refs. [36, 37].

in direction of the desorptive CO-adsorbate stretch mode Z, with the desorption limit around

Z = 8 a0 and the total desorption energy (including zero point energy) being 0.021 Eh (∼
4600 cm−1)1. The equilibrium distance2 r2D

0 between C and O atoms is 2.13 a0 and the

equilibrium distance between the carbon monoxides center of mass and the binding copper

atom is Z2D
0 = 4.81 a0.

The eigenenergies Enr,nZ
and eigenfunctions |φnr,nZ

(r, Z)〉 are calculated from Eq. (2.2)

which is solved using the sinc-function discrete variable representation [98] summarized in

Sec.A.1 and the following Hamiltonian

Ĥ0 = − h̄
2

2µ

∂2

∂r2
− h̄2

2m

∂2

∂Z2
+ V (r, Z) . (3.6)

The grid used in the calculation consists of 40 points in r direction and 400 points in Z, with

the grid in r encompassing the interval [1.63,2.63] a0 and in Z [4.0,9.0] a0. This choice is well

suited to resolve the bound states as well as the (unbound) pre-dissociative states.

The energies of the lowest 21 eigenstates are given in Table 3.2 together with the quantum

numbers (nr, nZ). The zero point energy is 1237 cm−1 and the energy difference between the

ground state |0, 0〉 and the desorption limit is 3174 cm−1, their sum being 4411 cm−1. A

selection of the calculated eigenstates |φnr,nZ
〉 is given in Fig. (B.1) in Appendix B. The

most interesting feature there being that also states slightly above the desorption limit,

1Note, that the assignment of the unit [cm−1] to energies E or frequencies ω used here and in the

following is rather “sloppy”.
2The equilibrium distances vary slightly from those of the potential surface. This is due to spacing

of the grid on which the stationary problem is solved. These “equilibrium” distances, however, are

only used to numerically evaluate µmn = 〈n|µz|m〉.
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Figure 3.2: 2D potential energy surface V (r, Z) as obtained from Eqs. (3.3), (3.4) and (3.5)

by fixing the X, Y , θ and φ degrees of freedom, see Fig. 3.1 (a), to their equilibrium value.

i. e. (Enr,nZ
> 0), are still localized (unlike typical “vacuum states”) and well-resolved; these

are so-called pre-dissociative states.

The fundamental frequencies ωZ = ω(0,1)(0,0) =
E0,1−E0,0

h̄ and ωr = ω(1,0)(0,0) in Z and r

being 294 and 2153 cm−1, respectively, agree well with experiment [39] and the 6D calculations

of Cattarius and Meyer [44] carried out within the framework of the multi-configurational

time-dependent Hartree (MCTDH) approach [99]. A complete comparison of the energies of

the present 2D (r, Z) and 3D (r, Z,X) results, known experimental values and the 6D results

of Ref. [44] is given in Table 3.3 in Sec. 3.1.1. Further, they likewise compare well with

higher-dimensional calculations recently carried out in our group [97], compare also Table 3.4

below. The lower “pure” modes in Z, that is |0, 1〉, |0, 2〉, |0, 3〉 and so on, feature a rather

strong harmonicity with ω(0,2)(0,1) − ω(0,1)(0,0) = −11 cm−1, This allows one, at least for low

energetic excitations, to use the harmonic rate model of Eq. (2.28) in Sec. 2.3.2. But in order

to simulate a desorption by “ladder climbing” in the Z mode up to and above the unbound

state |0, 15〉 anharmonic rates – retrieved from Eq. (2.31) and approximating ωZ in Eq. (2.31)

as ω(0,1)(0,0).
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state |nr, nZ〉 (Enr,nZ
− E0,0)

[cm−1]

0 |0, 0〉 0

1 |0, 1〉 294

2 |0, 2〉 577

3 |0, 3〉 851

4 |0, 4〉 1113

5 |0, 5〉 1365

6 |0, 6〉 1607

7 |0, 7〉 1838

8 |0, 8〉 2059

9 |1, 0〉 2153

10 |0, 9〉 2269

11 |1, 1〉 2445

12 |0, 10〉 2469

13 |0, 11〉 2658

14 |1, 2〉 2728

15 |0, 12〉 2836

16 |1, 3〉 3000

17 |0, 13〉 3004

18 |0, 14〉 3162

19 |1, 4〉 3262

20 |0, 15〉 3308

Table 3.2: The 21 lowest eigenenergies of the 2D model of CO/Cu(100) relative to the

ground state |0, 0〉 which has a zero point energy of 1237 cm−1 and lies 3174 cm−1 beneath

the desorption limit at 4411 cm−1. States |1, 4〉 and |0, 15〉 are the first two states lying above

latter for the presently used finite grid.
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Three dimensions

The three-dimensional model, including as further degree of freedom one of the lateral modes,

X, is treated in an analogous manner as the 2D model. Shown in Fig. B.2 in Appendix B are

2D cuts through the potential surface V (r, Z,X), where X = 0 a0 in (a), Z = Z3D
0 = 4.81 a0

in (b) and r = r3D
0 = 2.12 a0 in (c). In both (b) and (c) one can see the mirror symmetry of

the potential with respect to the (X = 0) axis.

The 3D Hamiltonian reads

Ĥ0 = − h̄
2

2µ

∂2

∂r2
− h̄2

2m

∂2

∂Z2
− h̄2

2m

∂2

∂X2
+ V (r, Z,X) . (3.7)

The grid on which the time-independent Schrödinger equation (2.2) is solved within the

sinc-function DVR scheme, consists of 18 points in r, 33 points in Z and 55 points in the

X coordinate, that is 32670 points in total. The coordinate ranges are [1.8,2.5] a0 for r,

[4.1,6.0] a0 for Z and [-2.75,2.75] a0 for the X degree of freedom. Table 3.3 lists selected

eigenenergies for the calculated states |nr, nZ , nX〉 (see Fig. B.3 in Appendix B for examplary

2D cuts). These are compared with the corresponding values of the 2D model, the values

found in experiment [39] and those Cattarius and Meyer [44] calculated for six dimensions via

MCTDH. In Ref. [44] also the Tully potential was used, though with a smaller copper slab

(3×3×2) and utilizing for the actual frequency analysis a potential approximated in product

form by the so-called potfit routine included in the the mctdh programme package [100].

Frequencies for r and Z modes vary scarcely when compared to the 2D model, and thus

agree well with experiment. The agreement with the 6D result of Ref. [44] is good. With

a fundamental frequency of 77 cm−1 the lateral X mode compares reasonably well with the

value of Ref. [44], but not with the experimentally [39] found value of 32 cm−1. For alternative

6D calculations see Refs. [40, 43].

For the wavefunctions having nodes in the X coordinate and lying above state |1, 0, 0〉 it

is no longer possible to assign quantum numbers, and thus it is also impossible to calculate

individual transition rates according to Eq. (2.28) or Eq. (2.31). Further, optimal control

calculations with the global algorithm described in Sec. (2.4.2) become difficult due to memory

needs during forward / backward propagation. The “full” 3D system used in the calculations

is chosen up to a cut-off energy of 2152 cm−1 above the ground state (155 states including the

ground state), being suitable for the low energetic excitations studied here mainly. Further,

for global optimal control calculations a reasonable selection of a subset of states is made
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state |nr, nZ , nX〉 (Enr,nZ ,nX
− E0,0,0) 2D model exp. [39] 6D calc. [44]

[cm−1] [cm−1] [cm−1] [cm−1]

0 |0, 0, 0〉 0

1 |0, 0, 1〉 77 32 70.9

2 |0, 0, 2〉 153 167.6

3 |0, 0, 3〉 228 199.4

4 |0, 1, 0〉 293 294 287 294.0

8 |0, 1, 2〉 442

12 |0, 2, 0〉 576 577.4 577.5

154 |1, 0, 0〉 2152 2153 2079 2152.6

870 |2, 0, 0〉 4279 4279

Table 3.3: Selected eigenenergies as obtained for the 3D model of CO/Cu(100) relative to

the ground state |0, 0, 0〉 which has a zero point energy of 1273 cm−1 (2D: 1237 cm−1) and

lies 3136 cm−1 (2D: 3174 cm−1) beneath the desorption limit. Given for comparison are also

the values of the 2D model, experimental values [39] and the 6D calculations of Cattarius

and Meyer [44], where the same potential and “rigid surface” model had been used.

in accordance to memory and aim of the particular IR excitation to be simulated. The

second excited state in r |2, 0, 0〉, although lying more than 1000 cm−1 above the desorption

limit, is well resolved within the chosen grid boundaries, and so is suitable to study hot-band

excitation |0, 0, 0〉 → |1, 0, 0〉 → |2, 0, 0〉, as shown in Appendix H and Sec. 4.1.3. Again,

|2, 0, 0〉 is a “pre-desorptive” state.

Four and six dimensions

Recently, also in our group, the full six-dimensional eigenproblem and the 4D (r,Z,θ,φ)

model was solved, using the potential V (r, Z,X, Y, θ, φ) of Tully et al. [36, 37] with a 108

copper cluster [97]. In contrast to the above discussed model, the binding Cu atom was

now positioned 0.352 Å (or 0.665 a0) below the first surface layer as suggested in Refs. [40,

43] in order to minimize the energy. The equilibrium distances of the adsorbate on the

“reconstructed” surface are r′0 = 1.126 Å and Z ′
0 = 2.2 Å. The eigenproblem was solved

by an iterative two-term Lanczos eigensolver, see Appendix A.3. Table 3.4 displays the



3.1 CO/Cu(100) 30

3D 4D 6D

ωr [cm−1] 2153 2150 2150

ωZ [cm−1] 294 347 345

ωX/Y [cm−1] 77 26.9

ωθ/φ [cm−1] 329 335

EZPE [cm−1] 1273 1645 1638

D [cm−1] 3136 3100 3108

Table 3.4: Fundamental frequencies ωq for modes q, zero-point energies EZPE and desorp-

tion energies D with respect to the groundstate for the 3D model of Sec. 3.1.1 and the 4D

and 6D models considered in Ref. [97].

fundamental frequencies ωr, ωZ , ωX/Y (degenerate modes) and ωθ/φ, the zero-point energies

(EZPE), desorption energies (D, zero-point energy substracted) of the 4D and 6D models of

Ref. [97]. The respective values of the 3D model of Sec. 3.1.1, where the “unreconstructed”

Cu surface was employed, are shown for comparison.

The main difference here between unreconstructed (3D) and reconstructed (6D) models

is the resonance frequency in X/Y (“frustrated translation”) for the reconstructed case. The

frequencies found for the “frustrated rotation” (θ/φ) agree very well with the 287 cm−1 [39]

from experiment.

3.1.2 Dipole function

Two- and three-dimensional models

For IR-excitation, the dipole function along the various degrees of freedom is needed. In

the two-dimensional (r,Z) model, the dipole function µz(r, Z) (µz is the z-component of the
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dipole function) used to simulate the field-dipole interaction has the following form

µz(r, Z) = µz(r0, Z0) +

(
∂µz

∂r

)

r=r0

(r − r0) (3.8)

+

(
∂µz

∂Z

)

Z=Z0

(Z − Z0) +

(
∂2µz

∂Z2

)

Z=Z0

(Z − Z0)
2

= µ0 +A(r − r0) +B(Z − Z0) + C(Z − Z0)
2 .

This is a Taylor expansion around r = r
2D/3D
0 and Z = Z

2D/3D
0 , respectively, truncated after

the first term in r (linear term only) and the second term in Z (linear and quadratic terms),

with the parameters µ0 = -0.408 ea0, A = -2.25 e, B = 0.566 e and C = -0.361 e/a0. The

parameters were derived from ab initio calculations [101, 102], according to which the factor

A is enhanced, relative to free CO, by a factor of 2.18 [101].

Comparable derivative factors for the lateral modes X and Y are not available from

literature, and attempts to find them by cluster calculations proved difficult. It is expected,

however, that the variation of µ with X is weak; the dependence of µ on X was thus neglected

in the following, making the X mode a “dark” mode.

Table 3.5 shows the absolute values of selected dipole transition moments |µnm| between

states |n〉 = |nr, nZ(, nX)〉 and |m〉 = |mr,mZ(,mX)〉 as obtained from Eq. (3.8) for the

3D and 2D systems. Due to the lacking X-dependence of the dipole function transitions

|n〉 → |m〉 where (mX = nX ± 1) are forbidden. But the even symmetry of the X mode

(see the wavefunctions in Fig. B.3 in Appendix B), causes overtone transitions to be “weakly

allowed” which obey the selection rules (mX = nX ±2, nX ±4, . . . ). Transitions in Z are of a

“medium” IR activity, with dipole transition moments in the order of magnitude of 10−2 ea0

for transitions of type (mZ = nZ ± 1). Overtone transitions (mZ = nZ ± 2, nZ ± 3, . . . ) are

weakly allowed and their dipole transition moments increase steadily with nZ , just like those

for the one-photon processes, until they reach a maximum, compare Fig. F.3 (a) in Appendix

F. The CO stretch mode, finally, is strongly IR active, the overtone for (nr = 0) to (mr = 2)

being still of some activity.

The dipole moments in both r and Z mode are further almost identical for the 2D and

3D models; those for Z transitions being slightly smaller in 2D, due to the larger grid used

in this case and the “broader” quality of states having nodes in Z direction. And the matrix

elements for the fundamental transitions in both modes take on the values they are expected

to have according to the double-harmonic approximation, e. g.
|µ10|
|µ12| ≈

1√
2
.
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mode states
∣
∣µ3D

nm

∣
∣

∣
∣µ2D

nm

∣
∣

|n〉 |m〉 [10−3 ea0] [10−3 ea0]

X |0, 0, 0〉 |0, 0, 1〉 0.

|0, 0, 0〉 |0, 0, 2〉 1.9

|0, 0, 1〉 |0, 0, 2〉 0.

|0, 0, 1〉 |0, 0, 3〉 3.4

|0, 0, 0〉 |0, 0, 4〉 0.0053

Z |0, 0(, 0)〉 |0, 1(, 0)〉 38 36

|0, 0(, 0)〉 |0, 2(, 0)〉 4.8 4.7

|0, 1(, 0)〉 |0, 2(, 0)〉 53 50

|0, 2(, 0)〉 |0, 3(, 0)〉 63 60

|0, 7(, 0)〉 |0, 8(, 0)〉 83 79

r |0, 0(, 0)〉 |1, 0(, 0)〉 140 140

|0, 0(, 0)〉 |2, 0(, 0)〉 7.4 7.4

|1, 0(, 0)〉 |2, 0(, 0)〉 200 200

Table 3.5: Selected absolute values of dipole transition moments |µnm| for CO/Cu(100),

retrieved from calculating 〈nr, nZ , nX |µz|mr,mZ ,mX〉 and 〈nr, nZ |µz|mr,mZ〉 for the 3D

and 2D models, respectively, with the quantum number notation being |n〉 = |nr, nZ(, nX)〉
and |m〉 = |mr,mZ(,mX)〉.

Asymptotically corrected and higher-dimensional dipole functions

The above form of the dipole function (3.8), originally used in the present work and also

by Cattarius and Meyer [44], has the wrong asymptotic behaviour for (Z → ∞). Due to

the quadratic term in Z, µz(r, Z) grows dramatically, whereas a physically correct function

should approach the dipole moment of free carbon monoxide being 0.0441 ea0. Thus, when

aiming for example at a simulation of desorption via “ladder climbing” in Z, Eq. (3.8) is

expected to overestimate transition dipole moments for higher quantum numbers nZ .

A functional form which would guarantee µ(r0, Z) → 0 for (Z → ∞), implying the

approximation µz(COfree) ≈ 0, is

µz(r, Z) = a(r − r0) + [µ0 − b(Z − Z0)] e
−Z−Z0

c . (3.9)
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Fitting the results of quantum chemistry (B3LYP/LANL2DZ) calculations on a suited cluster

model CO@Cu34 of CO/Cu(100) – see Appendix F for details – the following parameters are

obtained: a = −1.810 ea0, b = −0.510 e and c = 1.808 a0. Since the parameters a and A

for the linear term of the dipole moment agree rather well, the choice of cluster and method

appears to be justified. The dipole function of Eq. (3.9) is used in Sec. 4.1.2.

For the four-dimensional model with coordinates (r,Z,θ,φ) in Ref. [97] the following

expression

µz(r, Z, θ, φ) =
[

µ1 +A′(r − r0) +B′e−C′(Z−Z0)
]

f(θ, φ) (3.10)

was fitted to data obtained from the CO@Cu34 cluster. The resulting parameters are µ1 =

0.0357 ea0, A
′ = −2.25, B′ = −0.4437 ea0 and C ′ = 1.2756 a0. The angular function was

chosen as

f(θ, φ) = cos(θ) + sin2(θ) [d1 + d2cos(4φ)] , (3.11)

respecting the four-fold symmetry in φ. From the fitted parameters d1 = 1.1558 and

d2 = −0.0004 one sees that the θ dependence of µz(r, Z, θ, φ) dominates strongly over the φ de-

pendence. The dipole transition moment µnm for the fundamental transitions are 3.3·10−3 ea0

for |n〉 = |nr = 0, nZ = 0, nθ = 0, nφ = 0〉 → |m〉 = |0, 0, 1, 0〉 and 1.4 · 10−12ea0 for

|n〉 = |0, 0, 0, 0〉 → |m〉 = |0, 0, 0, 1〉, respectively. The dipole function (3.10) was used in

Sec. 4.1.4 below.

3.1.3 Dissipation and dephasing rates

Rates for the two- and three-dimensional models

For the present calculations on CO/Cu(100), the lifetimes as calculated in Refs. [36,37] were

used. For (T = 0 K) a pure electronic decay mechanism (Sec. 2.3.1) and for (T = 10, 300 K)

an additional phononic decay channel was considered. The according rates Γm→n for the

fundamental transitions in each mode are given in Table 3.6 for the three-dimensional model,

i. e. |m〉 = |mr,mZ ,mX〉 and |n〉 = |nr, nZ , nX〉. Those for the r and Z modes in the 2D

model are analogous, only then |m〉 = |mr,mZ〉 and |n〉 = |nr, nZ〉 and the equations (2.28)

and (2.31) to obtain the other rates in harmonic and anharmonic consideration, respectively,

contain two instead of three terms in sum and product. The “upward” rates Γm→n for



3.1 CO/Cu(100) 34

mode transition Γm→n(0 K) Γm→n(10 K) Γm→n(300 K)

|m〉 → |n〉 [ps−1] [ps−1] [ps−1]

r |1, 0, 0〉 → |0, 0, 0〉 1
3.3

1
1.7

1
1.6

|0, 0, 0〉 → |1, 0, 0〉 0 ≈ 0 1
48 700

Z |0, 1, 0〉 → |0, 0, 0〉 1
82.0

1
22.0

1
2.8

|0, 0, 0〉 → |0, 1, 0〉 0 ≈ 0 1
11.4

X |0, 0, 1〉 → |0, 0, 0〉 1
108

1
14.0

1
2.3

|0, 0, 0〉 → |0, 0, 1〉 0 1
85 300

1
3.3

Table 3.6: Rates Γm→n for the fundamental transitions in r, X and Z modes for tempera-

tures of 0, 10 and 300 K as taken from Ref. [37] (En < Em; “downward” rates), and obtained

from detailed balance (En > Em; “upward” rates), see Eq. (2.34).

(En > Em), being non-zero for (T > 0 K), are calculated from detailed balance (2.34).

When looking at the rates one sees that the CO stretch mode r decays within few ps,

is temperature-insensitive and, due to the large vibrational quantum of 2152 cm−1, the “up-

ward” rate is very small even at 300 K. This is different for Z and X modes, which are

long-lived, couple more strongly to the metal phonons and thus have a significant tempera-

ture dependence. For example, the lifetime of state |0, 0, nX = 1〉 drops from well over 100 ps

to a value around 2 ps when going from (T = 0 K) to (T = 300 K).

By choosing these particular three modes – r, Z and X – not only a broad spectrum of

vibrational lifetimes is covered, but also quite varying IR activities (compare Table 3.5 in

Sec. 3.1.2) enter the model, making this a a suitable reference model of vibrational adsorbate

excitation in many dimensions.

In addition to the two- and three-dimensional models, a “one-dimensional” model con-

sisting of states |0, 0, 0〉 ≡ |0r〉, |1, 0, 0〉 ≡ |1r〉 and |2, 0, 0〉 ≡ |2r〉 is taken into account. Only

for this 1D study of the CO stretch mode r, see Sec. 4.1.1, pure dephasing is considered,

as a T2 time of 1.6 ps is available based on estimation from experimental linewidth mea-

surements [20, 73]. From there, pure dephasing rates (γ∗mn = γ∗nm) can be obtained from

Eqs. (2.37) and (2.35) and the Gaussian pure dephasing model mentioned in Sec. (2.3.2).

Table 3.7 lists relaxation rates Γm→n, T1 (inelastic scattering) and T ∗
2 (elastic scattering)
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|m〉 |n〉 Γm→n γ′mn γ∗mn γmn

[ps−1] [ps−1] [ps−1] [ps−1]

|0r〉 |1r〉 0 1
6.6

1
2.1

1
1.6

|0r〉 |2r〉 0 0 1
8.4

1
8.4

|1r〉 |0r〉 1
3.3

1
6.6

1
2.1

1
1.6

|1r〉 |2r〉 0 1
3.3

1
2.1

1
1.3

|2r〉 |0r〉 0 0 1
8.4

1
8.4

|2r〉 |1r〉 1
1.7

1
3.3

1
2.1

1
1.3

Table 3.7: Relaxation rates Γm→n, energy related dephasing rates γ′mn, pure dephas-

ing rates γmn and total dephasing rates γmn for the three-state model of the r mode of

CO/Cu(100), where |0, 0, 0〉 ≡ |0r〉, |1, 0, 0〉 ≡ |1r〉 and |2, 0, 0〉 ≡ |2r〉.

dephasing rates, γ′mn and γ∗mn, as well as the total (T2) dephasing rates γmn = γ′mn + γ∗mn

(see Eq. (2.18) for the three-state system at (T = 0 K). For the calculations done within the

2D and 3D models only dephasing due to energy relaxation is taken into account, i. e. the

last term of Eq. (2.18) is omitted.

Rates for the four-dimensional model

For the four-dimensional model, similarly to Sec. 2.3.1 Tremblay et al. [97] started, following

Tully et al. [36, 37], with Fermi’s Golden Rule expression for the transition rate. For the

coupling operator the total 6D kinetic energy operator, see Eq. (3.1), has been used. When

neglecting3 all cross terms one obtains a tractable 5-term polynomial, each term representing

the dissipation mechanism along a particular mode. The first four terms can be evaluated

similarly, say, for a generic stretching coordinate q(= r, Z,X, Y ). The corresponding matrix

elements are proportional to 〈vf |〈ef | ∂2

∂q2 |ei〉|vi〉. They can be simplified after application of

the product rule by the observation that the electronic wavefunctions are orthogonal and

by neglecting the term which contains second derivatives of the electronic wave functions

with respect to nuclear coordinates. Furthermore the first-order coupling is represented as a

3In the following the procedure used in Ref. [97] is briefly outlined.
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Taylor series truncated at the zeroth order. One thus gets [36, 37]

〈vf |〈ef |
∂2

∂q2
|ei〉|vi〉 ≃ 2〈vf |

∂vi

∂q
〉 〈ef |

∂ei
∂q

〉 ≃ d
(q)
fi 〈vf |

∂vi

∂q
〉 , (3.12)

where d
(q)
fi is the proportionality constant for the qth degree of freedom. In analogy to the

model discussed in Sec. 2.3.2 the initial state is considered to be harmonic along coordinate q

resulting in the simple selection rule of (∆v = −1). As in the case of Sec. 2.3.2 the transition

rate grows linearly with the quantum number associated with the normal mode of interest,

i.e. Γvi→vf
= vi Γ1→0 δ(vi−1,vf ). For the fundamental transition rates in modes r, Z and

X/Y , the values as given in Table 3.6 for (T = 0) K were used in Ref. [97].

The situation is more difficult for the angular modes, which are kinetically coupled. By

observing that 〈ef |ei〉 = 0, neglecting higher order derivatives of electronic states and eval-

uating the electronic integrals as zeroth-order Taylor expansions, one obtains a relatively

simple expression for the angular dissipation mechanism

〈vf |〈ef |r−2Ĵ2|ei〉|vi〉 ≃ −d(φ)
fi 〈vf |

1

r2sin2(θ)

∂

∂φ
|vi〉− d(θ)

fi 〈vf |
1

r2

(

cot(θ) + 2
∂

∂θ

)

|vi〉 . (3.13)

This expression is somewhat more complicated than Eq. (3.12) and care must be taken

deriving a selection rule for the transition rates between angular normal modes. Using point

group symmetry it is known that integrals in Eq. (3.13) will vanish unless the product of their

symmetry is totally symmetric. That is, in C4v point group symmetry which is relevant for

CO/Cu(100), we are looking for

Svf
⊗ Soper ⊗ Svi

⊃ A1 , (3.14)

where Svf
(Svi

) is the symmetry label of the vf th (vith) state and Soper is the symmetry label

of the connecting operator. The symmetry of the derivative is the same as the coordinate, for

instance A1 for the θ motion and E for the φ motion. It appears that sin2(θ) and cot(θ) have

the symmetry of θ, A1. The coordinate r also transforms like A1. For odd numbers of quanta

in the degenerate angular normal coordinate the states transform like E. For even numbers

of quanta in the same normal coordinate three symmetry labels are accessible: A1 for the

θ-modes, B1 and B2 for the φ-modes. Focusing on one-quantum transitions one thus has to

evaluate the symmetry of integrals from E states to {A1, B1, B2} states or the opposite. The

terms in Eq. (3.13) then are

〈vf |
1

r2sin2(θ)

∂

∂φ
|vi〉 ≡ E ⊗ E ⊗ {A1, B1, B2} ⊃ A1

〈vf |
1

r2

(

cot(θ) + 2
∂

∂θ

)

|vi〉 ≡ E ⊗ A1 ⊗ {A1, B1, B2} ≡ E .

(3.15)
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For two-quanta transitions integrals from states with the same symmetry have to be evaluated,

that is

〈vf |
1

r2sin2(θ)

∂

∂φ
|vi〉 ≡ E ⊗ E ⊗ E ≡ E

〈vf |
1

r2

(

cot(θ) + 2
∂

∂θ

)

|vi〉 ≡{A1, B1, B2} ⊗ A1 ⊗ {A1, B1, B2} ⊃ A1 .

(3.16)

From Eq. (3.15) it can be seen that one-quantum transitions are allowed and that the coupling

mechanism is along the φ degree of freedom. Eq. (3.16) reveals that two-quanta transitions

are allowed and that the coupling mechanism is along the θ degree of freedom. There are

therefore two coupling mechanisms involved in the relaxation of an excited degenerate state

E.

|n〉 |0, 0, 0, 0〉 |0, 0, 0, 1〉 |0, 1, 0, 0〉 |0, 0, 1, 0〉 |0, 0, 0, 2〉 |1, 0, 0, 0〉
|m〉
|0, 0, 0, 0〉 1.38 · 10−9 42.2 3.27 6.48 · 10−11 145

|0, 0, 0, 1〉 1
2.30 3.88 · 10−10 1.39 · 10−9 9.61 · 10−11 1.92 · 10−1

|0, 1, 0, 0〉 1
82.0 0 4.30 1.24 · 10−10 11.7

|0, 0, 1, 0〉 0 1
1.15 0 1.60 · 10−10 9.91 · 10−1

|0, 0, 0, 2〉 0 1
1.15 0 0 3.23 · 10−14

|1, 0, 0, 0〉 1
3.30 0 0 0 0

Table 3.8: 4D model of CO/Cu(100): Selected absolute dipole transition moments |µmn|
[10−3 ea0] (upper right half) and vibrational relaxation rates Γm→n [ps−1] (lower left half)

for states |m〉 = |mr,mZ ,mθ,mφ〉, |n〉 = |nr, nZ , nθ, nφ〉.

Table 3.8 lists rates Γ(mr,mZ ,mθ,mφ)→(nr,nZ ,nθ,nφ) as well as absolute dipole transition

moments |µ(mr,mZ ,mθ,mφ)(nr,nZ ,nθ,nφ)| according to Eq. (3.10) for selected eigenstates |m〉 =

|mr,mZ ,mθ,mφ〉, |n〉 = |nr, nZ , nθ, nφ〉. The relaxation rate of the first excited state in φ is

available [20, 36, 37], the according fundamental lifetime is τvib = 2.3 ps at (T = 0 K). This

means that the (degenerate) state |0, 0, 0, 1〉 decays with a rate (2.3 ps)−1 to the ground state

|0, 0, 0, 0〉. Since the relaxation mechanism from the first excited state to the ground state is

due to coupling via ∂
∂φ it thus appears possible to extract one-quantum, ∂

∂φ -mediated tran-

sition rates for every higher excited state. For example, the states which are doubly excited

along the E mode, i.e. states |0, 0, 1, 0〉 (energetically degenerate) and |0, 0, 0, 2〉 (not energet-

ically degenerate) decay, assuming a linear scaling of rates with initial angular quanta, with
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twice the rate, (1.15 ps)−1 to the first excited angular state |0, 0, 0, 1〉. Possible differences

between the decay rates of states |0, 0, 1, 0〉 and |0, 0, 0, 2〉 are neglected here. Unfortunately

there is no information on the two-quanta transitions mediated by ∂
∂θ . In Eq. (3.13) these

contributions were neglected and the one-quantum transition in the relaxation rate expression

was kept.

3.2 H/Si(100)

3.2.1 Potential energy surface and vibrational states

The system H/Si(100) was treated in collaboration with Guennadij Paramonov (National

Academy of Sciences, Minsk, Belarus), and Ivan Andrianov (formerly Universität Potsdam)

[104]. Two vibrational degrees of freedom are considered: r, the H–Si stretch mode and φ,

the Si–Si–H bending motion as sketched in Fig. 3.3.

rφ

Figure 3.3: The two system coordinates used in the present model of H (orange) adsorbed

on the Si(100)-2×1 surface (Si atoms in grey): H–Si stretch mode r and Si–Si–H bending

mode φ.

The potential energy function used for the calculation of lattice vibrations (see below)

is the same as the as in the previous publication of Andrianov and Saalfrank [52], namely

a semi-empirical bond-order potential [105–107] including three-body interactions. For the

sub-system potential V (r, φ), a semi-empirical form was used instead with

V (r, φ) = D
(

1 − e−α(r−r0)
)2

+
k

2
e−β(r−r0)2(φ− φ0)

2 , (3.17)
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with parameters D = 3.4 eV (or 0.125 Eh, H binding energy), α = 0.83 a−1
0 , β = 0.2 a−2

0 ,

k = 3.951 · 10−6 Eh/(1°)2, and the equilibrium coordinates r0 = 2.84 a0 and φ0 = 112.6°.

The system potential enters the system Hamiltonian ĤS(r, φ)

ĤS(r, φ) = − h̄2

2m

∂2

∂r2
− h̄2

2mr2
∂2

∂φ2
+ V (r, φ) , (3.18)

with m being the mass of the hydrogen atom4. Using Eqs. (3.18) and (2.2) as well as diag-

onalization ulilizing the sinc-function DVR method [98] (see also Sec.A.1 in Appendix A),

the 2D eigenstates (nr, nφ) and eigenenergies Enr,nφ
were calculated in Ref. [52]. The funda-

mental frequencies ωr and ωφ calculated in this way [52,104] are 2037 cm−1 and 637 cm−1, in

good agreement with experiment [53], where 2100 cm−1 and 630 cm−1 were determined. The

calculated zero point energy within the 2D model is 1370 cm−1.

3.2.2 Dipole function

In order to estimate a dipole function µz(r, φ) in Ref. [52] quantum chemical calculations

(B3LYP/6-31G(d,p)) using gaussian 03 [108] were carried out. A cluster H2Si6 mimicking

a fully covered Si2 dimer within a 2×1 reconstructed Si(100) surface was chosen for this, where

only r and φ for a single H atom were varied while all other atoms kept their fixed positions

as obtained from the bond-order forcefield calculation for a cluster with 180 atoms [52]. The

dipole moment was fitted to the form

µz(r, φ) = A0 +A1(r − r0)e
−A2(r−r0) +A3(φ− φ0)

2 , (3.19)

with parameters A0 = 0.4001 ea0, A1 = -1.2587 e, A2 = 0.3175 a−1
0 and A3 = -0.4735 ea0/rad

(1 rad = 57.3°).

Table 3.9 shows absolute dipole transition moments |µ(mr,mφ)(nr,nφ)| (upper right half)

and transition energies ω(mr,mφ)(nr,nφ) (lower left half) between the lowest seven eigenstates.

One can see that the φ mode is moderately IR active and very harmonic. Overtone transitions

of type (nφ = mφ ± 2) are less IR active than (nφ = mφ ± 1) transitions but still possible.

Further the H–Si stretch mode is strongly IR active and intermode coupling between the r

and φ modes is weak, see for example the small dipole transition moment |µ(1,0)(0,4)| .

4A small additional potential-like term has been omitted in Eq. (3.18.) – see Ref. [109]
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|nr, nφ〉 |0, 0〉 |0, 1〉 |0, 2〉 |0, 3〉 |1, 0〉 |0, 4〉 |1, 1〉
|mr,mφ〉
|0, 0〉 51 8.5 0.16 210 0.076 1.5

|0, 1〉 637 71 15 3.3 0.32 210

|0, 2〉 1271 634 87 1.2 21 4.7

|0, 3〉 1903 1266 632 0.046 100 2.1

|1, 0〉 2037 1400 766 134 0.0052 50

|0, 4〉 2532 1896 1261 629 495 0.093

|1, 1〉 2661 2024 1390 758 624 129

Table 3.9: 2D model of H/Si(100): Absolute dipole transition moments |µ(mr,mφ)(nr,nφ)|
[10−3 ea0] (upper right half) and transition energies ω(mr,mφ)(nr,nφ) [cm−1] (lower left half)

between the lowest seven eigenstates.

For high-energetic excitations in r also a 1D model with potential V (r, φ0) is used, for

which the necessary quantities for the density matrix dynamics are calculated by analogous

methods (sinc-function DVR) as in the 2D case. In the 1D model, the Hamiltonian in

Eq. (3.18) becomes ĤS(r) with a single term and the dipole function µz(r), where the last

term drops out as (φ = φ0). The zero point energy obtained in 1D is 1056 cm−1 (2D:

1370 cm−1); the fundamental frequency is 2050 cm−1 (2D: 2037 cm−1) and the transition

dipole moment |µnr=0,mr=1| = 0.21 ea0, differing from the 2D model only minimal. Overtone

transitions are of medium to weak IR activity, e. g. |µnr=0,mr=2| = 0.036 ea0 < |µnr=0,mr=3| =

0.0080 ea0 < |µnr=0,mr=4| = 0.0021 ea0.

3.2.3 Dissipation and dephasing rates

Dissipation rates Γ(mr,mφ)→(nr,nφ) were calculated in Ref. [52] via Fermi’s Golden Rule (com-

pare also Eq. (2.19)), expressed here for initial state |i〉 and final state |f〉 coupled by the

system-bath Hamiltionian ĤSB

Γi→f =
2π

h̄

∣
∣
∣

〈

i
∣
∣
∣ĤSB

∣
∣
∣ f
〉∣
∣
∣

2
δ(Ef − Ei) . (3.20)

The total Hamiltonian Ĥ used in Ref. [52] to calculate rates and other quantities of inter-
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est from cluster models of H/Si(100) consists of system, bath and system-bath contributions

Ĥ = ĤS + ĤSF + ĤSB + ĤB , (3.21)

where the Hamiltonian ĤS including two modes of the adsorbate (system) is given by

Eq. (3.18). ĤSF = −µ̂zFz(t) is the semi-classical system-field interaction term and ĤB de-

scribes the bath modes

ĤB =
∑

i

(

− h̄2

2Mi

∂2

∂q2i
+

1

2
Miω

2
i q

2
i

)

(3.22)

whose frequencies, masses and coordinates are ωi, Mi and qi. These were calculated from the

bond-order forcefield by normal-mode analysis from a cluster consisting of 180 atoms, giving

534 normal modes. See Ref. [52] for more details.

The coupling term ĤSB entering Eq. (3.20) for the rates, accounting for one- and two-

photon relaxation, reads

ĤSB =
∑

i

λi(r, φ)qi +
1

2

∑

ij

Λij(r, φ)qiqj , (3.23)

and is motivated by a Taylor expansion of the potential of second order around the equilibrium

bath coordinates q0i [110]. Thus the coupling functions were retrieved from derivatives of the

total potential energy surface

λi(r, φ) =

(
∂V ({xk})

∂qi

)

q0
i

(3.24)

Λij(r, φ) =

(
∂2V ({xk})
∂qi∂qj

)

q0
i ,q0

j

, (3.25)

where {xk} are the Cartesian coordinates of the cluster atoms.

Eq. (3.20) was evaluated with initial and final states |n〉 = |χn〉 · |φn〉, where |χn〉 =
∏N

i=1 |Ψi,n(qi)〉 is a “phonon function” (with |Ψi,n(qi)〉 being the nth eigenstate of the ith

environment oscillator), and |φn〉 = |φn(r, Z)〉 = |φnr,nZ
(r, Z)〉 denotes a 2D eigenfunction of

ĤS . Further, ĤSB is given by Eq. (3.23). Finally, the δ-functions in (3.20) are represented

by broadening Lorentzians with

δ(x) ≈ 1

π

γ

x2 + γ2
, (3.26)

where γ was chosen as 8 cm−1. For a bath temperature of 0 Kelvin, the rates Γ(mr,mφ)→(nr,nφ),

as listed in Table 3.10 for the lowest seven states, were obtained. Additionally given are the
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|nr, nφ〉 |0, 0〉 |0, 1〉 |0, 2〉 |0, 3〉 |1, 0〉 |0, 4〉 |1, 1〉
τ|nr,nφ〉 1.35 0.69 0.48 2130 0.37 1.45

|mr,mφ〉
|0, 0〉
|0, 1〉 0.74

|0, 2〉 0. 1.4

|0, 3〉 0. 0. 2.1

|1, 0〉 0. 0. 4.7·10−4 9.8·10−8

|0, 4〉 0. 0. 0. 2.7 4.7·10−6

|1, 1〉 0. 0. 0. 1.2·10−3 0.69 3.7·10−7

Table 3.10: H/Si(100): Lifetimes τ(nr,nφ) [ps] (first row) of the lowest seven eigenstates and

vibrational relaxation rates Γ(mr,mφ)→(nr,nφ) [ps−1] between them for T = 0 K as calculated

in Ref. [52] from Eqs. (3.20), (3.22), (3.23) and (3.24).

lifetimes τ(nr,nφ) of these states resulting from a summation over all contributing transition

rates as

τ−1
(nr,nZ) =

∑

pr 6=nr,pφ 6=nφ

−Γ(pr,pφ)→(nr,nφ) +
∑

qr 6=nr,qφ 6=nφ

Γ(nr,nφ)→(qr,qφ) (3.27)

The r mode is long-lived, in the range of nanoseconds and in good agreement with exper-

iment [53]. Here, the main interest will be the φ mode. Latter is short-lived with lifetimes

in the picosecond range and although these rates were calculated using explicitly the Golden

Rule, the rates for the lowest three one-quantum decay processes fulfill the harmonic relation

of Eq. (2.28) with the selection rule (mr = nr + 1) and a proportionality of rate and initial

quantum number mr. But already for state |0, 4〉 the decay rate with respect to |0, 3〉 is

smaller than expected in the harmonic case and an additional inter-mode decay channel to

state |1, 0〉, though with a small rate, is open. This inter-mode decay is the only possibility by

which the long-lived r mode can decay, as a direct decay to the ground state is not possible,

the according transition rates being zero.

Not only the lifetime but also their temperature dependence presented in Ref. [52] agree

reasonably well with the experimental finding for the H–Si stretch mode r [53]. The much

shorter lifetime for φ is a prediction and can be understood within the framework of a two-
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phonon relaxation process [52].

In the following, only T1 dephasing is considered here, taking only the first term on the

right-hand side of Eq. (2.18) into account to retrieve the γmn.

3.3 2H/Ru(0001)

(a) (b)

Z

r

Figure 3.4: (a) On-top view of two H atoms (orange) absorbed on the threefold hollow

sites of Ru(0001); first metal layer depicted in black, second layer in grey. (b) Sideview

schematically showing the H–H stretch mode r and the adsorbate-surface mode Z.

The vibrational model for the system 2H/Ru(0001) was developed in Ref. [111]. Like

CO on copper the two hydrogen atoms adsorbed on ruthenium have six vibrational degrees

of freedom, but in the present model a two-dimensional model is employed which is sketched

in Fig. 3.4: The H atoms occupy neighbouring threefold hollow sites of the hcp (hexagonal

closed-packed) metal (a), coordinate r describes the H–H stretch vibration and Z the motion

of the “H2”’s center of mass5 with respect to the binding position on level with the upper

ruthenium layer (b).

3.3.1 Potential energy surface, stationary solution and dipole

function

In Ref. [111], a 2D cut V (r, Z) through the 6D potential surface of Luppi et al. [46, 47]

was used. The latter was generated from periodic DFT calculations for a (2×2) coverage

5The H–H distance of ∼3 Å of the two ad-atoms is indicative of dissociative adsorption.
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|nr, nZ〉 |0, 0〉 |1, 0〉 |0, 1〉 |2, 0〉 |1, 1〉 |0, 2〉 |3, 0〉 |2, 1〉 |1, 2〉 |4, 0〉
|mr,mZ〉
|0, 0〉 760 1095 1518 1823 2184 2272 2542 2884 3016

|1, 0〉 6.9 335 758 1064 1424 1513 1782 2125 2256

|0, 1〉 61 2.6 423 729 1089 1177 1447 1789 1921

|2, 0〉 14 10 7.7 305 666 754 1023 1366 1498

|1, 1〉 1.1 59 7.0 4.3 361 449 718 1061 1193

|0, 2〉 3.1 0.34 86 0.98 4.1 88 357 700 832

|3, 0〉 0.12 23 0.97 16 13 1.1 269 612 744

|2, 1〉 0.089 2.7 14 56 10 11 6.7 343 475

|1, 2〉 0.094 4.1 1.4 1.3 82 7.4 8.1 1.8 132

|4, 0〉 0.16 0.022 0.47 32 8.6 0.94 24 18 4.8

Table 3.11: 2D model of H2/Ru(0001): Transition energies ω(nr,nZ)(mr,mZ) [cm−1] (upper

right half) and absolute dipole momenta |µ(nr,nZ)(mr,mZ)| [10−3 ea0] (lower left half). See

text for details.

of H on a three-layer relaxed slab model of Ru(0001) [47]. The 2D potential energy surface

predicts the “H2” to be bound with equilibrium distances of r0 = 2.75 Å (or 5.20 ea0) and

Z0 = 1.06 Å (2.00 ea0); the binding energy is 0.85 eV, i. e. 0.425 eV per H atom. This is

consistent with experiment [112] and earlier theoretical findings [113]. Of the two different

gradient-corrected exchange-correlation potentials tested by Luppi et al., the one arising from

the RPBE (revised Perdew-Burke-Ernzerhof) functional [114] is employed.

The Hamiltonian is analogous to the one of Eq. (3.6) for the 2D CO/Cu(100) model and

the time-independent Schrödinger equation (2.2) was solved in Ref. [111] by a Fourier Grid

Hamiltonian diagonalization, see Sec.A.2. The zero point energy is 956 cm−1. Table 3.11

gives the quantum numbers of the lowest ten states (nr, nZ) and in the upper right half

the transition energies ω(nr,nZ)(mr,mZ) between them. The fundamental frequencies ωr and

ωZ are 760 and 1095 cm−1, respectively, agreeing well with experiment [115], where 690 and

1130 cm−1 was found. Both the r and Z modes are rather harmonic within the energy range

of ca. 3000 cm−1 above the ground state (0,0) covered in Table 3.11.

In order to determine a dipole function µz(r, Z), in Ref. [111] a H2@Ru12 cluster model
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Figure 3.5: 2H@Ru12 cluster used in Ref. [111] to calculate the data for µz(r, Z) of

Eq. (3.28) employing B3LYP/LANL2DZ. The H–H distance (r0) is 5.44 ea0 (the potential of

Luppi et al. [46, 47] predicts 5.20 ea0) and the distance of the H–H axis to the first ruthe-

nium layer (Z0) is 2.01 ea0, both obtained by a previous geometry optimization. The lattice

constant d(Ru–Ru) = 5.11 ea0 is held fixed.

was used as shown in Fig. 3.3.1. B3LYP [116] and the quasi-relativistic LANL2DZ [117] basis

set and effective core potential (for Ru) were employed. The calculated data was fitted to

the form

µz(r, Z) = aZ2tanh [b (r − c) + 1] , (3.28)

with parameters a = -0.0473 ea0, b = 0.7 a−1
0 and c = 1.195 a0 (as only z-polarised IR fields

are employed only the z-component µz of the dipole moment is needed). As can be seen in

the lower left half of Table 3.11 the r mode is only weakly dipole allowed (H2 being an unpolar

molecule), whereas Z is medium to strongly allowed. Inter-mode coupling is rather strong,

with, for example |µ(1,0)(0,1)| = 2.6 ·10−3 ea0 and |µ(2,1)(1,2)| = 1.8 ·10−3 ea0 being of the same

order of magnitude as the dipole moment of the fundamental transition in r (2.6·10−3 ea0).

Another interesting feature is, that overtone transitions in r are more strongly dipole active

than single transitions, this is due to symmetry reasons as in case of the formally “forbidden”

lateral X mode of CO/Cu(100).

3.3.2 Calculation of vibrational lifetimes

There is no theoretical data available for vibrational lifetimes of 2H on Ru(0001) as obtained,

for example, from perturbation-theory calculations as in case of CO/Cu(100) [36, 37] and

H/Si(100) [52]. Luntz et al. [48], however, used perturbation-theory in connection with a

periodic DFT model in order to calculate two-dimensional (r,Z) electronic friction coefficients

ηij(r, Z) (i, j = r, Z) from which one is able to estimate vibrational lifetimes for the two modes
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as

τ r
vib ≈ µr

ηrr(r0, Z0)
≈ 190 fs (3.29)

τZ
vib ≈ µZ

ηZZ(r0, Z0)
≈ 500 fs , (3.30)

where µr and µZ are the respective reduced masses. Estimations from experiment [21] sim-

ilarly suggest lifetimes of some hundred femtoseconds for the vibrational modes. More ex-

plicitly, by fitting a one-dimensional, Arrhenius-type mode based on a truncated harmonic

oscillator and electronic friction, Denzler et al. determined an effective vibrational lifetime of

180 fs along a “reaction coordinate” [21]. In the present work, the nonadiabatic MO theory

of vibrational relaxation by Tully et al. [36,37] (see also Sec. 2.3.1) is used to gain more direct

insight into lifetimes.

Cluster models for H2/Ru(0001)

For this purpose both HF and B3LYP are chosen as methods. The basis (and effective core

potential for the metal atoms) employed throughout is LANL2 [117], using LANL2 in double-

ζ basis (LANL2DZ) for the H atoms and the five Ru atoms directly bonding it and in minimal

basis (LANL2MB) for the other metal atoms.

In a first attempt the 2H@Ru12 cluster (Fig. 3.3.1) was taken, but to study possible effects

of cluster size and geometry a further cluster model 2H@Ru13 containing one more ruthenium

atom in the first layer is additionally taken into consideration. Given in Table 3.12 are the

two cluster models and their respective HOMO (highest occupied MO) and LUMO (lowest

unoccupied MO) energies εH and εL. For both cases the H coordinates with respect to the

cluster as optimized for the 2H@Ru12 cluster are used. The calculations were carried out

by the programme package gamess [118] and a tight SCF energy convergence criterion of

10−10 Eh.

Calculated vibrational lifetimes

Tully et al. suggest [36] several possibilities to choose the Fermi energy EF at which the DOS

P (EF ) is calculated according to Eq. (2.25), here we make the choice (EF = εH), the energy

of the highest occupied molecular orbital (see Table 3.12).
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2H@Ru12 2H@Ru13

HF εH -0.6309 -0.6246

εL -0.5041 -0.4837

B3LYP εH -0.6038 -0.5857

εL -0.5733 -0.5557

Table 3.12: Clusters used in the relaxation rate calculations for r and Z modes of

H2/Ru(0001) according to Ref. [36] and their respective HOMO and LUMO energies [Eh] as

obtained from HF/LANL2DZ(MB) and B3LYP/LANL2DZ(MB) calculations.

Further, different approaches for the calculation of the DOS matrices entering Eq. (2.26)

have been made in Ref. [36], two of which are used here:

• In the first approach, we use two different matrices P (E−
F ) and P (E+

F ), a DOS below

and above EF , respectively. These are calculated by choosing a certain energy window,

say 1 eV (0.037 Eh) as done here, and taking into account the HOMO and all orbitals

lying 1 eV below it for P (E−
F ) and likewise considering the HOMO and all orbitals lying

1 eV above it for the calculation of P (E+
F ). Further, the δ-functions in Eq. (2.25) are

approximated by rectangular functions, of uniform width

∆E = (εL − εH) +
1

2
(εH − εH−1) +

1

2
(εL − εL+1) (3.31)

and height 1
∆E , leading to

P (E∓
F ) =

2

∆E

∑

p ∈ occ./unocc.

CpC
†
p . (3.32)

• In the second approach, we replace P (E−
F ) and P (E+

F ) in Eq. (2.26) by an averaged

DOS

P (Eave
F ) =

1

2

(
P (E−

F ) + P (E+
F )
)

; (3.33)

and thus

P (Eave
F ) =

1

∆E

∑

p

CpC
†
p . (3.34)
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2H@Ru12 2H@Ru13

HF P (E∓
F ) 0.133 0.136

P (Eave
F ) 0.254 0.239

B3LYP P (E∓
F ) 0.0721 0.108

P (Eave
F ) 0.124 0.110

Table 3.13: Vibrational lifetimes τv=1→v=0 [ps] obtained for the H–H stretch mode r

(T=0 K) from the two different clusters, quantum chemistry methods, and approximations

for the density of states at the Fermi level (EF = εH).

• An alternative Gaussian broadening model [103] was unsuccessful.

The derivatives of Fock and overlap matrix elements Fµν and Sµν with respect to the

normal mode q (here: r and Z as shown in Fig. 3.4 (b)) needed to calculate matrix W in

Eq. (2.26), are determined numerically for a small displacement χq from the equilibrium

position

dMµν

dq
≈ Mµν(q0 + χq) −Mµν(q0 − χq)

2χq
; (Mµν = Fµν , Sµν) . (3.35)

Thus only three quantum chemistry calculations are needed for the calculation of a single

rate, one for the equilibrium position q0 to obtain Fermi energy and DOS and two calculations

for the matrix derivates. The displacement χq was chosen to be reasonably [103] small as

0.001 Å (0.00189 a0) for both modes.

Tables 3.13 and 3.14 list the obtained vibrational lifetimes of the first excited state in

r (3.13) and Z (3.14) with respect to the vibrational groundstate. All lifetimes obtained

are within a rather reasonable order of magnitude (ranging from roughly 100 fs to 1 ps) and

the r mode relaxes in general faster than the Z mode, an observation also made in other

estimates [48]. The following observations can be made: For the cases where the δ-functions

occuring in the density of states are approximated as “double stepfunctions”, there is weak

dependence of τv=1→v=0 upon the used cluster model for the r mode and rather strong

dependence in case of Z. This is understandable, as latter motion couples more strongly

to the metal surface, so that the different MO energies, MO coefficients, Fock and overlap

matrices are of more significance, particularly as only few cluster orbitals (∼ 4 to 6) are taken

into account. Another effect can be seen when comparing the results for the two methods,
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2H@Ru12 2H@Ru13

HF P (E∓
F ) 0.909 0.309

P (Eave
F ) 0.749 0.563

B3LYP P (E∓
F ) 0.272 0.671

P (Eave
F ) 0.380 0.601

Table 3.14: Vibrational lifetimes τv=1→v=0 [ps] obtained for the H2-surface stretch mode

Z (T=0 K) from the two different clusters, quantum chemistry methods, and approximations

for the density of states at the Fermi level (EF = εH).

HF and B3LYP. The differences due to the usage of P (E∓
F ) or P (Eave

F ) are larger for HF

where there is a larger energy spacing between HOMO and LUMO (and fewer orbitals within

the energy window). In summary, the computed vibrational lifetimes τv=1→v=0 estimated

here are about 150 fs for the r mode and 560 fs for the Z mode, if an average is taken. The

error bars are large, however, so that for the 2D dynamics calculations below a uniform rate

Γ(0,1)→(0,0) = Γ(1,0)→(0,0) =
1

500 fs
(3.36)

is chosen. For transitions (mr,mZ) → (nr, nZ) between states of higher quantum numbers

the harmonic approximation (2.28) and detailed balance (2.34) are employed. As in case of

H/Si(100), only T1 dephasing is considered.



Chapter 4

Control of vibrational excitation in

dissipative systems

The system CO/Cu(100) (Sec. 4.1) is treated in the present work, considering one- (4.1.1),

two- (4.1.2), three- (4.1.3) and four-dimensional (4.1.4) models in order to study vibrational

adsorbate excitation via simple sin2-shaped control pulses as well as pulses obtained from

optimal control theory. Various effects (“pure” dephasing, temperature, pulse duration) are

examined and state-selective excitations in each vibrational mode are carried out. Special

processes such as hot-band excitation, vibrational desorption via “ladder climbing” and “dark

mode” excitation are simulated. Local control calculations on the non-dissipative 2D model

which are presented in Appendix H for brevity do serve as pre-study for the global optimal

control calculations below. The principle of local control further inspired a new “hybrid”

algorithm presented in Chapter 5 which allows for time-dependent targets.

Further, calculations on the system H/Si(100) (Sec. 4.2) and H2/Ru(0001) (Sec. 4.3) are

presented, where the main aspects of interest are non-Markovian (“memory”) effects in vi-

brational decay and IR excitation and the mode-selective excitation of very harmonic and

weakly dipole active modes.

50
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4.1 CO/Cu(100) [96,97]

4.1.1 One-dimensional model (r) [96]

Analogous to the local control calculations in Appendix H, 1D models for the C–O stretch

mode r consisting of two and three states, respectively, are set up. The eigenenergies and

dipole matrix elements are extracted from the 3D model in Sec. 3.1.

For the simple case of the two-state |0〉 → |1〉 population transfer induced by a sin2-shaped

pulse of duration tf and frequency ω = ω10 = ωr in resonance, the questions of interest are:

• What are the effects of the different kinds of relaxation processes, e. g. energy relaxation

and dephasing?

• What are the effects of pulse length tf , and the pulse fluence

f =
1

2
ǫ0c

∫ tf

0
F 2

0 sin4

(
πt

tf

)

dt =
3

16
ǫ0cF

2
0 tf ? (4.1)

Accordingly, density matrix propagations at (T = 0 K) are carried out for tf =4250,

425 and 42.5 fs, covering the range of pico- and femtosecond scales typical for pulsed IR

excitations. P1(tf ), the populations of state |1〉 at (t = tf ) are shown in Fig. 4.1 for the

different dissipation scenarios (sketched in the left bottom corner), namely

• no dissipation at all (solid lines);

• energy relaxation and T1 dephasing only (dashed lines);

• full dissipation including T ∗
2 dephasing (dotted lines).

The according energy and phase relaxation rates are given in Table 3.7. For the non-

dissipative case, as expected, complete population inversion is accomplished for π pulses

(more precisely (2n+1)π pulses with n = 0, 1, . . . ), i. e. at fluences of 3.5, 35 and 350 mJ/cm2

for long, medium and short pulses. The oscillations observed here are the so-called Rabi os-

cillations, due to the absorption and re-emission of photons. In the dissipation-free case, both

processes are complete (complete population and depopulation, respectively) if the frequency
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Figure 4.1: Population transfer from state |0〉 = |0r〉 to state |1〉 = |1r〉 in a two-state model

of CO/Cu(100) by sin2-shaped pulses of frequency ω10 = ωr for different pulse durations tf

and dissipation models at (T = 0 K): No dissipation (solid lines), energy relaxation and

T1 dephasing (dashed lines) and full dissipation with pure dephasing (dotted lines). The

respective processes are schematically shown on the left: Excitation (solid arrow), energy

relaxation (dashed arrow) and related T1 dephasing (dashed double arrow) and pure, T∗
2

dephasing (dotted double arrow). For dissipation and dephasing parameters see Table 3.7.

ω is resonant. Dissipation damps these oscillations, so that both absorption and stimulated

emission processes are incomplete. As the vibrational lifetime of state |1〉 (3.3 ps), as well

as the dephasing times are of the same order of magnitude as the duration of the longest

pulse, dissipation has the biggest influence there and the maximal P1(tf ) is smaller than 0.6.

In contrast, the dissipative loss is negligible in case of the 42.5 fs pulse. However, this pulse

would afford rather high fluences. Thus, in dissipative systems, a compromise has to made

between dissipative loss and pulse fluence. Pure dephasing due to elastic scattering has a

considerably smaller effect than inelastic scattering, the effect of the former being negligible

already for the 425 fs pulse.

This medium pulse duration, as well as full dissipation, is chosen for the examination of

hot-band excitation |0〉 → |1〉 → |2〉 in a three-state system. Fig. 4.2 compares the fluence

dependence of the final population of state |2〉, P2(tf ), for

• sin2-shaped pulses with ω = ω10 = ωr;

• OCT pulses obtained from the global control algorithm (Sec. 2.4.2) and taking as target
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operator Ô = 0.42 |1〉〈1|+ 0.58 |2〉〈2|. The time-dependent shape-functions inspired by

Ref. [88] are

α(t) =

{ α · sin2
(

10πt
2tf

)

, if t ≤ tf
10

α if
tf
10 < t < tf − tf

10

α · sin2
(

10πt
2tf

)

if t ≥ tf − tf
10

}

, (4.2)

enforcing Fz(0) = Fz(tf ) = 0.

At a given fluence, optimal pulses always yield higher target populations than the simple

sin2 pulse. For small fluences the differences are minimal though, mainly due to the small

anharmonicity in r (compare Table 3.3) with (ω10 6= ω21). The OCT pulses have a small

downward “chirp” with respect to the carrier frequency ω ≈ ω10 = ωr = 2153 cm−1 in

this case, see Fig. 4.3 (a) where the Husimi transformation of the OCT pulse of fluence f =

19 mJ/cm2 is plotted. The sin2 pulse, however, can populate state |2〉 by 0.7 at most at

f ≈ 50 mJ/cm2. For higher fluences P2(tf ) decreases, due to stimulated emission setting in.

In contrast, the OCT pulses are of advantage here, transferring up to 85 % of total population

to the target state |2〉. Examining such a pulse (f = 68 mJ/cm2) more closely by Husimi

transformation, see Fig. 4.2 (b), one sees that the “chirp” in this case is non-monotonic and

intuitively not as easily to understand as the low-energetic pulse of (a). The main feature

of pulse (b) is its off-resonance, particularly towards the end of the pulse, where an upward

“chirp” is observable. By this, stimulated emission from the target state |2〉 back to the

intermediate state |1〉 is supressed. Plotted in Fig. 4.2 as inset is the ratio
P2(tf )
P1(tf ) for both

tf [fs] 106 213 425 850 1275 1700

P1(tf ) 0.217 0.300 0.285 0.413 0.549 0.543

P2(tf ) 0.037 0.121 0.305 0.403 0.228 0.087
P2(tf )
P1(tf ) 0.171 0.403 1.070 0.975 0.415 0.160

Table 4.1: Three-level model of the r mode with states |0〉, |1〉, |2〉: Final populations and

ratios of states |1〉 and |2〉 as obtained for sin2-shaped pulses of fluence f = 17 mJ/cm2 for

different pulse durations tf at (T = 0 K).

sin2-shaped (dashed) and OCT pulses (solid with symbols) for fluences up to 25 mJ/cm2, as

a measure for the “hot-band intensity”. As in Ref. [119], where Bonn et al. studied the C–O

stretch hot-band excitation for CO/Ru(0001) within a three-state model similar to here, a
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Figure 4.2: Hot-band excitation |0〉 → |1〉 → |2〉 at (T = 0 K) in a three-level model of

CO/Cu(100): Populations of state |2〉 at t = tf as obtained for sin2 pulses of carrier frequency

ω = ω10 = ωr = 2153 cm−1 (dashed) and global OCT pulses with Ô = 0.42 |1〉〈1|+0.58 |2〉〈2|
(solid line with symbols), as function of fluences. The inset depicts a measure for “hot-band

intensity”
P2(tf )
P1(tf ) [119] for smaller fluences. For the marked OCT pulses (a) and (b), Husimi

plots are shown in Fig. 4.3 (a) and (b), respectively. The respective processes involved are

schematically shown on the left: Excitation (solid arrow), energy relaxation (dashed arrow)

and related T1 dephasing (dashed double arrow) and pure, T∗
2 dephasing (dotted double

arrow). For dissipation and dephasing parameters see Table 3.7.

superlinear growth with f is found. In Ref. [119], too, a “chirped” pulse was suggested to

enhance hot-band excitation. A further parameter which can be optimized is pulse length;

so in the present case and for sin2 pulses and a fixed fluence of 17 mJ/cm2 a pulse length of

about 1 ps was found to be suited best to achieve a high absolute value for P2(tf ), whereas

pulses of about half that duration deliver larger relative “hot-band intensities”
P2(tf )
P1(tf ) , see

Table 4.1.

4.1.2 Two-dimensional model (r,Z)

Within the 2D system with modes r and Z (compare Sec. 3.1.1) IR induced desorption of

CO from CO/Cu(100) can be studied. Hereby, population is excited to states above the

desorption limit. The pre-dissociative character of the “continuum” states with r-excitation

would lead to delayed desorption.
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Figure 4.3: Husimi plots of OCT pulses (a) and (b) with fluences f = 19 and 68 mJ/cm2

as marked in Fig. 4.2.

In the present model, all the population having reached the 21 states above the desorption

limit at (t = tf ) will be considered as “desorbed”. Due to the fact that the “continuum” here

is treated discretized, the energy relaxation rates of the respective states are chosen, alike

those for the bound states, according to the anharmonic model of Eq. (2.31). Further, the

asymptotically corrected dipole function of Eq. (3.9) is employed to ensure physically correct

dipole interaction for larger Z amplitudes.

For the optimal control calculations, a smaller, 21-state model is chosen containing all 19

bound states and only two of the “continuum” states, namely |nr = 1, nZ = 4〉 and |nr =

0, nZ = 15〉, situated 88 and 134 cm−1, respectively, above the desorption limit. Compare also

Table 3.2 for quantum numbers and eigenenergies of the 21-state model. 21 vibrational states

are still numerically tractable by the global OCT algorithm. The two kinds of “continuum”

states to be distinguished are (compare also Fig. B.1):

• The “pure” states in Z |nr = 0, nZ〉, which although being localized have more of

a “desorptive” character with the maximal spatial probabilities approaching Zdes ≈
8.2 ea0 with increasing nZ .

• The r/Z combination mode states (nr = 1, nZ), localized closer to the potential mini-

mum (Z = Z0) and thus having a pronounced “pre-dissociative” character.

The optimal field obtained from the truncated, 21-level model is then applied to the “full”
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(19+21 = 40)-state system, containing 19 further “continuum” states, up to 1136 cm−1 above

the desorption limit.

Two control pathways are set up to climb from the ground state to states above the

desorption limit within the 21-state model. In one case (A), one quantum in r and four

quanta in the Z mode are to be excited to populate state |1, 4〉. In the other case (B),

successive “ladder climbing” in Z without r-excitation, i. e. |0, 0〉 → |0, 1〉 → |0, 2〉 → · · · →
|0, 14〉 → |0, 15〉, is the goal. The target operators used are

Ô(A) = 0.50 |1, 4〉〈1, 4| + 0.25
∑4

i=1 ai

4∑

i=1

ai |0, i〉〈0, i| (4.3)

+
0.25

∑4
i=1 ai

4∑

i=1

ai |1, i− 1〉〈1, i− 1|

Ô(B) = 0.5 |0, 15〉〈0, 15 | + 0.5
∑14

i=1 bi

14∑

i=1

bi |0, i〉〈0, i| , (4.4)

where a1 < a2 < a3 < a4 and b1 < b2 < . . . < b13 < b14. For the present calculations we

chose: a1 = 1.0, a2 = 1.1, a3 = 1.2, a4 = 1.3 and b1 = 1.0, b2 = 1.1, b3 = 1.2, b4 = 1.3 . . . ,

b13 = 2.2, b14 = 2.3. The control time tf = 2000 fs was chosen long enough to keep fluence

and intensities small, but short enough to keep dissipation in check.

Shown in Fig. 4.4 are the population dynamics for three cases:

• In the top panels for a π pulse adjusted to the transition |0, 0〉 → |0, 1〉 which was also

used as guess field for optimization;

• in the middle for the OCT pulse obtained for target (A), a shape function of type (4.2),

and α = 0.793;

• in the bottom panels for the OCT pulse obtained for target (B), the same shape func-

tion, and α = 0.222.

The left panels thereby show the bound state populations with the ground state in black, the

sum of “pure” Z states in green and the sum of all states of type |1, nZ〉 with (nZ = 0, 1, 2, 3)

in orange. The right panels show the “continuum” state populations, in orange |1, 4〉 and

in green |0, 15〉. Given additionally in dashed lines are the dynamics of the OCT pulses as

applied to the larger, 40-state system. The green lines indicate here the sum of populations
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of all states |0, nZ〉 with (nZ = 15, 16, . . . , 29) and the orange lines the population sum of all

states |1, nZ〉 with (nZ = 4, 5, . . . , 8) as well as state |2, 0〉.
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Figure 4.4: Vibrationally induced desorption in a 2D (r,Z) model: On the left bound state

populations, on the right “continuum” state populations. Populations of the groundstate

|0, 0〉 in black, sums of populations of “pure” states in Z |0, nZ〉 in green and “pure” r states

|nr, 0〉 as well as “mixed” states |nr, nZ〉 in orange. Top panels: π pulse (adjusted to the

fundamental transition in Z) dynamics for the 21-level system (solid lines) and the 40-level

model (dashed lines); middle panels: OCT dynamics as obtained for target (A) and 21 levels

(solid lines); lower panels: OCT dynamics as obtained for target (B) and 21 levels (solid

lines); shown in dashed lines again is the dynamics of the OCT pulse applied on the 40-level

system.

Although the π pulse for the Z excitation transfers about 90 % of the population to bound

|0, nZ〉 states and almost none to bound |1, nZ〉 states, the “continuum” state |1, 4〉 receives

ca. a factor of 106 more population than state |0, 15〉. This ratio does not change for the two

OCT pulses (each tuned to have a fluence of about 50 mJ/cm2 to be comparable to the π

pulse). Nevertheless, the OCT pulses improve the desorption yields by a factor of ca. 1000 in

both cases. It is remarkable that although the bound state dynamics of the two OCT pulses
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Figure 4.5: Vibrationally induced desorption in a 2D (r,Z) model: Husimi transformations

of control pulses obtained by target operator (A) in (a) and by (B) in (b).

differ, the “continuum” state dynamics are rather similar. One can conclude that the Z mode

alone is no good candidate for vibrational desorption and that whenever its “continuum”

states are excited by the according frequency/-ies 1000 times more population reaches the

(r, Z) combination mode. When one applies the above pulses to the 40-level system the total

desorption yields increase from 0.002 to 0.07 (middle panel, target Ô(A)) and from 0.0003 to

0.03 (lower panel, target Ô(B)). In both cases this is due to the possibility of transitions to

state |2, 0〉 which is favoured by a large dipole transition moment of 0.16 ea0 connecting it with

state |1, 0〉. The latter becomes transiently (t ≈ 500− 1500 fs) populated by up to 0.35–0.40,

so that the hot-band-excitation in r |0, 0〉 → |1, 0〉 → |2, 0〉 is possible if suitable frequencies

(∼ 2150 − 2130 cm−1) are contained in the pulse. The additional “continuum” states of

type |1, nZ〉 and particularly of type |0, nZ〉 can only “hold” marginally more population.

The unfavoured population of pure Z states |0, nZ ≥ 15〉 is not due to faster vibrational

relaxation. To give an example: Continuum state |0, 15〉 decays with a rate of (1.5 ps)−1

back to the bound state |0, 14〉. The pre-dissociative “mixed” state |1, 4〉, lying only 46 cm−1

lower in energy than |0, 15〉, has a lifetime of [(1.7 ps)−1 + (5.5 ps)−1]−1 = 1.3 ps, where the

first contribution stems from the decay process in the r mode |1, 4〉 → |0, 4〉 and the second

contribution from decay in Z |1, 4〉 → |1, 3〉. Both |0, 4〉 and |1, 3〉 are bound states. The

reason for the favoured population of “mixed” states in the “continuum”, as well as the r

overtone |2, 0〉, is that (1) fewer one-photon transitions are needed to overcome the desorption

barrier (5 vs. 15 for the lowest “continuum” states) and (2) the excitation of the (energy-rich)

r mode is dipole favoured over Z mode excitation by a factor of 10.
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The Husimi plots of pulse (A) and pulse (B) in Fig. 4.5 (a) and (b) each display both

frequencies (∼ 2200 cm−1 and ∼ 300 cm−1) related to r and Z transitions, respectively. In

the first case (A), an early excitation in r overweighs, while Z transitions occur throughout

on a smaller scale. In the latter case (B), although a late excitation in Z dominates, this

pulse is even by a factor ∼ 2 less successful in populating states (0,nZ ≥ 15) than pulse (A).

4.1.3 Three-dimensional model (r,Z,X) [96]

For the selective excitation by OCT pulses within the 3D model, containing 155 states up

to the first excited state in r, a smaller sub-set of states was chosen to keep the problem

numerically tractable1. The easiest way to determine a suitable sub-set is to excite the

“whole” system by π pulses adjusted to the fundamentals of the modes of interest (r, X, or

Z) and the shortest pulse lengths which one will use. Then states getting only minimally

populated by these pulses are “sorted out”. For the present system, the choice shown in

Fig. 4.6 is reasonable: A 17-level system comprising the lowest 16 states plus state |nr =

1, nZ = 0, nX = 0〉.

Excitation of the r mode

The r mode has a considerably larger fundamental frequency (ωr = 2152 cm−1) than Z mode

(ωZ = 293 cm−1) and the lateral degree of freedom X (ωX = 77 cm−1). So, for the IR

excitation of state |1, 0, 0〉 one expects to obtain no large difference between the OCT pulses

obtained for a two-state minimal model as in Sec. 4.1.1 and the 17-state model. Further,

for pulse durations short enough to keep dissipative effects small, a π pulse-like shape of the

control field can be expected. Indeed, as shown in Fig. 4.7, with the choice Ô = |1, 0, 0〉〈1, 0, 0|
for the target operator, global OCT calculations deliver very similiar results for the electric

field (top panel) and target population P(1,0,0) (lower panel) for 1D and 3D models. In the

calculation, T was taken to be 10 K (state |1, 0, 0〉 relaxes within 1.7 ps), tf = 425 fs and the

penalty function in Eq. (4.2) with α = 5.0 is used. Only during the first 100 fs, the OCT field

for the 3D system displays a small additional substructure, but both pulses are in frequency

(≈ ω(1,0,0)(0,0,0)) as well as shape (orange line in upper panel) very similiar to the according

1In the the global dissipative OCT algorithm the whole previous density / Lagrange multiplier

matrix has to be kept in memory during each backward / forward propagation to evaluate Eq. (2.50).
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Figure 4.6: 3D sub-set, 17-level model used for the OCT calculations; the nomenclature

for the quantum numbers is (nr, nZ , nX) here and in the following.

π pulse and are able to transfer ca. 90 % from ground to first excited state.

The situation is different at (T = 300 K): State |1, 0, 0〉 decays only marginally faster to

the ground state at this temperature with a rate of (1.6 ps)−1, but the initial state no longer

is practically identical with the ground state. It is a thermal ensemble populated according

to Eq. (2.5) instead. As can be seen in the lower panel of Fig. 4.8, the ground state is only

populated by about a quarter of the total population, and particularly the low-energetic

“pure” states in X bear considerable amounts of population. The target operator is chosen

as before, so the control scheme is that of a single pulse and the controllability is limited. In

a previous work [120] it has been shown that the maximal population of a target state |f〉
obtainable by an optimal control scheme is

Pmax
f = ρ00(T, t = 0) . (4.5)

Here, ρ00(T, t = 0) is the Boltzmann population of the ground state, ρ(0,0,0)(0,0,0)(300K, t =

0) = 0.253 in our case. In the present case, P(1,0,0) = 0.235 as the final target population

is reached, which is 93 % of the theoretical limit. The other states behave as “spectators”,
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Figure 4.7: A comparison of optimal field (upper panel) and population dynamics (lower

panel) of the target state (1,0,0) for (T = 10 K), control time tf = 425 fs, a target operator

Ô = |1, 0, 0〉〈1, 0, 0|, as obtained for the “1D” two-level model (dashed lines) and the “3D”

17-level model. Given for comparison in orange is s(t), the (sin2) shape function of a π pulse

obeying |µ(0,0,0)(1,0,0)|F0 =
∫ tf
0 s(t)dt = h̄π for tf = 425 ps.

their populations being almost constant throughout the control time2. The control field is

typical [30, 121] for medium to strongly dissipative scenarios with late intensity maximum –

the pulse “waits” to lose not too much target population through an early population transfer

into the objective state which decays before the pulse is off.

Excitation of the Z mode

In contrast to the r mode which is strongly IR active (see Table 3.5), the Z mode is of medium

IR activity. Nevertheless, it is possible to excite state (0,1,0) to about 90 % at (T = 10 K),

see below. At this temperature state |0, 1, 0〉 decays only slowly, with a rate of (22 ps)−1,

back to the ground state |0, 0, 0〉 and the system is initially almost exclusively in the ground

state. The questions adressed here are:

2This behaviour is due to the artificial character of the 17-state model, if states |1, 0, 1〉, |1, 0, 2〉,
|1, 0, 3〉, |1, 1, 0〉, . . . were included, they would be excited starting from states |0, 0, 1〉, |0, 0, 2〉, |0, 0, 3〉,
|0, 1, 0〉, . . . , respectively. Latter states would be depopulated, and the total amount of excitation in

the r mode could exceed P(1,0,0), however, this would be no longer a state-selective process, only a

mode-selective one.
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Figure 4.8: OCT field (upper panel) and populations (lower panel) of all 17 states as

obtained at (T = 300 K) for the same parameters as in the low-temperature case above in

Fig. 4.7.

• What is the effect of pulse duration on pulse shape/structure and population dynamics?

• Do higher “pure” states in Z |0, 2, 0〉, |0, 3, 0〉 . . . become populated due to the har-

monicity of Z?

• Does the potential coupling to the two other modes influence the dynamics? (This was

not the case for the r mode under the conditions studied here.)

Shown in Fig. 4.9 are fields (upper panels) and state populations (lower panels) as obtained

at (T = 10 K) for (a) tf = 1250 fs and (b) tf = 7250 fs, a simple target operator Ô =

|0, 1, 0〉〈0, 1, 0| and a penalty function α(t) of form (4.2) with α = 20.0 in both cases.

As can be seen, unlike the longer pulse in (b), the short pulse (a) displays no late intensity

maximum. Outside the regions in the first and last part of pulse duration where the penalty

function enforces sin2 shape, it is almost cw-like instead. Noticeable is the high-frequency

superimposition between t ≈ 500 and t ≈ 1100 fs. Within this time-interval, state |1, 0, 0〉 is

transiently populated with a probability of up to 0.1. The Husimi analysis (not shown here)

confirms a contribution at an energy around the fundamental frequency (2153 cm−1) of the r

mode. But state |1, 0, 0〉 gets almost completely depopulated again before the pulse is off. The

same is true for the second excited state in Z (0,2,0), which is transiently populated strongly /

weakly by the short / long pulse. As only frequencies fitting to single quantum transitions in Z

(around 290 cm−1) are found in the Husimi analysis, an overtone transition |0, 0, 0〉 → |0, 2, 0〉
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Figure 4.9: Short 1250 fs (a) and long 7250 fs (b) OCT pulses to selectively excite state

|0, 1, 0〉 at (T = 10 K) in the 3D 17-level system of Fig. 4.6.

does not take place, the overtone is excited via |0, 0, 0〉 → |0, 1, 0〉 → |0, 2, 0〉. Thus, one can

conclude the following.

• There is a coupling to the r mode if one excites Z, but only for short pulses, that

is high intensities / fluences which broaden the spectral width of the pulse (compare

Fig. H.3).

• The overtone |0, 2, 0〉 gets excited, even considerably by the short OCT pulse being

broader in frequency and thus being able to cover ω(0,2,0),(0,1,0) = 283 cm−1 which

is slightly smaller than ω(0,1,0),(0,0,0) = 293 cm−1. The OCT algorithm achieves its

depopulation via |0, 2, 0 → |0, 1, 0〉 towards the end of the pulse; dissipation is not

thought to play a big role in this process as Γ(0,2,0)→(0,1,0) = (11 ps)−1, while the

depopulation occurs on a scale of few 100 fs.

Excitation of the X mode and a combination of Z and X modes

Due to the dipole function µz(r, Z,X) = µz(r, Z) according to Eq. (3.8) used for the present

calculations, the fundamental transition in X |0, 0, 0〉 → |0, 0, 1〉 is dipole-forbidden, but

overtone excitations of type |0, 0, nX〉 → |0, 0, nX ± 2〉 are weakly allowed (see Table 3.5).

Shown in Fig. 4.10 is the attempt to excite state |0, 0, 2〉 at (T = 10 K) with a 4900 fs OCT
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pulse. High intensities (Imax ≈ 1 ·1012 W/cm2) and fluences (here: 5200 mJ/cm2) are needed

to transfer slightly more than 50 % of the population from the ground to the target state.

Due the high field strength, there is strong field coupling to the Z mode. Thus, |0, 1, 0〉
as well as |0, 1, 2〉 – not shown for lucidity – get populated and the populations of these

states oscillate with the field (the dominant frequency being that of the |0, 0, 0〉 → |0, 0, 2〉
transition: 153 cm−1). Coupling to states |0, 1, 0〉 and |0, 1, 2〉 are states |0, 0, 0〉 and |0, 0, 2〉,
respectively. State |0, 0, 1〉 is also populated slightly, through vibrational decay from the

target |0, 0, 2〉 with a rate of (7 ps)−1. The translational modes X and Y might be important
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Figure 4.10: Optimal field (upper panel) and population dynamics (lower panel) for the

excitation of state |0, 0, 2〉 at (T = 10 K) within the 17-level model, Ô = |0, 0, 2〉〈0, 0, 2| and

a shape function according to Eq. (4.2) with α = 10.0.

to access for diffusion.

Finally, also the excitation of a combination of X and Z modes, namely state |0, 1, 2〉 is

attempted. Starting from the ground state |0, 0, 0〉, two intermediate states are possible (a

direct excitation is not favoured, as the dipole transition moment is very small):

• The state state |0, 1, 0〉 which relaxes within 22 ps before decay to the ground state.

State (0,1,0) has a medium dipole activity.

• The weakly dipole active state |0, 0, 2〉, with a lifetime of 7 ps with respect to the ground

state.

It turns out that irrespective of how the target operator is chosen, the first variant |0, 0, 0〉 →
|0, 1, 0〉 → |0, 1, 2〉 is favoured, where the weakly allowed transition to the shorter-lived state
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takes place in a second step. Shown in Fig. 4.11 is an example for such an OCT pulse

generated for tf = 4900 fs and (T = 10 K). Maximal intensity and fluence are high (similiar

to the above case where the “pure” X state is excited), but the selectivity is rather small

with scarcely 40 % population transfer to the target. Nevertheless, |0, 1, 2〉 is the highest

populated state at t = tf and most of the “loss” remains / decays back to the intermediate

state |0, 1, 0〉 and could, in principle, be excited from there again to the target state. Such

an approach is known as “laser destillation” [122,123].
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Figure 4.11: Optimal field (upper panel) and population dynamics (lower panel) for the

excitation of state |0, 1, 2〉 at (T = 10 K) within the 17-level model, Ô = |0, 1, 2〉〈0, 1, 2| and

a shape function according to Eq. (4.2) with α = 10.0.

4.1.4 Four-dimensional model (r,Z,θ,φ) [97]

In Ref. [97], Tremblay et al. used the present implementation of global OCT, for a 4D

model (r,Z,θ,φ) including the angular degrees of freedom. The needed eigenenergies and

eigenfunctions were calculated in Ref. [97] using a coupled two-term Lanczos eigensolver, see

Appendix A.3. The dipole function µz(r, Z, θ, φ) of Eq. (3.10) was used for dipole moments

µmn, and the Golden Rule approach as sketched in Sec. 3.1.3 for the relaxation rates. The

energies and dipole moments for the fundamental transitions in r, Z, θ and φ within the 4D

model are 2150, 347 and 329 cm−1 (latter value being degenerate for θ and φ) and 0.145,

0.0422, 0.00327 and 1.38 · 10−12 ea0. For further dipole transition moments and vibrational

relaxation rates see Table 3.8 in Sec. 3.1.3. The vibrational states are labeled as |nr, nZ , nθ, nφ〉
in the following. Note, that both states |0, 0, 0, 2〉 and |0, 0, 1, 0〉 decay to state |0, 0, 0, 1〉 with
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a rate of (1.15 ps)−1. For the OCT calculation presented below, a 23-level sub-system of

the full 121-level system up to and including state |1, 0, 0, 0〉 was used, chosen via the same

procedure as above in the 3D case: Applying π pulses adjusted to the fundamental transitions

in each mode and sorting out “inactive” i. e. negligibly populated, states. Within their 4D

model, Tremblay et al. were able to excite r and Z modes by OCT, similar to what was

described in the previous sections. Due to the much smaller transition moments, however,

excitation of the θ and φ modes is much less straightforward. In the following, we shall

restrict ourselves to the angular modes only.

Excitation of θ and φ modes

The transition dipole moments for “pure”, single quantum transitions in θ, i. e. (nθ → nθ+1),

are of the same order of magnitude than that for the overtone excitation of the dark mode X

in the above Sec. 4.1.3. Thus, similarly strong fields are needed to excite |0, 0, 1, 0〉. In fact, the

control field one obtains for the example in Fig. 4.12 (a) (tf = 1000 fs, Ô = |0, 0, 1, 0〉〈0, 0, 1, 0|,
penalty function α(t) of type (4.2) and α = 0.1), has intensities Imax = 1.7 · 1013 W/cm2 and

a fluence (f = 6300 mJ/cm2) which are both high. The target state is populated with a

probability of 0.43 at t = tf within the 23-level sub-system the pulse was optimized for (not

shown). This value drops to 0.27 for the complete 4D model with all 121 states up to state

|1, 0, 0, 0〉, see the lower panel of Fig. 4.12 (a). The main loss is due to population of “pure”

Z modes (0,nZ ,0,0), most prominently states |0, 1, 0, 0〉, |0, 2, 0, 0〉 and |0, 4, 0, 0〉. Note, that

the resonance frequencies of both modes Z and θ are similiar with about 330-350 cm−1, but

the transition dipoles of the Z mode are one magnitude larger than those in θ. There is also

transient excitation of combination modes (0,nZ ,nθ,0). In both cases, populations oscillate

approximately in parallel with the field oscillations, which are quite complex. Therefore, the

plot of the field’s Husimi analysis is shown in Fig. 4.12 (b). There are contributions between

300-400 cm−1 which can be assigned to both single quantum transitions in Z and θ. Further,

weaker signals around twice that frequency domain are observed, indicating two-quantum

transitions (nZ/nφ → nZ/nφ + 2). An interesting feature is the very low-energetic “static

field” contribution (frequency ca. 20 times smaller than the resonance frequencies in Z and

θ), dominating for t ≈ 250 − 800 fs: It is thought that, similiar to the STIRAP (successive

stimulated Raman adiabatic passage) mechanism [124, 125], the laser here couples to states

|0, 2, 0, 0〉 and |0, 3, 0, 0〉 to form a so-called “dressed state”, which is then depopulated by the

third short pulse towards the end of the control time, centered at the resonance frequency.
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Figure 4.12: Excitation of the fundamental transition in θ |0, 0, 0, 0〉 → |0, 0, 1, 0〉 at

(T = 0 K) by global OCT: (a) Control field (upper panel), obtained for a truncated 23-level

system and the dynamics of selected states |nr, nZ , nθ, nφ〉 it triggers in the complete 121-level

system; (b) Husimi transformation of the OCT field of (a).

The first excited state in φ receives a population of 0.12 at the end of the pulse. This is

not achieved by direct excitation from either |0, 0, 0, 0〉 or |0, 0, 1, 0〉 but through vibrational

decay from states excited in a combination of Z and θ mode.

So, in order to access state |0, 0, 0, 1〉 Tremblay et al. started with the above 1 ps OCT

pulse obtained for the θ mode and a successive free decay (Fz(t) = 0 for 1.0 ps < t ≤ 2.0 ps as

initial field) and optimized this using shape function α(t) of type (4.2) with α = 0.03, target

operator Ô = |0, 0, 0, 1〉〈0, 0, 0, 1| and again the 23-level sub-system. Within this model

the target can be populated with a probability of 0.53. Applying the such obtained pulse

(Imax = 4.0 · 1013 W/cm2, f = 11100 mJ/cm2, upper panel of Fig. 4.13 (a)) to the full 4D
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Figure 4.13: Excitation of the fundamental transition in φ |0, 0, 0, 0〉 → |0, 0, 0, 1〉 at

(T = 0 K) by global OCT: (a) Control field (upper panel), obtained for a truncated 23-level

system and the dynamics of selected states |nr, nZ , nθ, nφ〉 it triggers in the complete 121-level

system; (b) Husimi transformation of the OCT field of (a).

model with 121 levels, this value is reduced to 0.32 (see Fig. 4.13 (a), lower panel). Main losses

are to states |0, 0, 1, 0〉 and |0, 1, 0, 0〉, and significant population of other Z/θ combination

and “pure” Z mode states was also observed.

The Husimi analysis of the pulse in Fig. 4.13 (b) reveals, just like the population dynamics,

the two stages of the reaction meachanism:

• For (t < 1000 fs) one has slightly “chirped” contributions, centered around 350 and

700 cm−1, which can be assigned to one- and (weaker) two-photon transitions in Z/θ.

These occur along with the no longer dominating low-energetic “static field”. Regarding
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the population dynamics, it is difficult to draw a definite mechanism here.

• For (t > 1000 fs), where the initial field was chosen to be zero, to allow for (among

other processes) a free decay |0, 0, 1, 0〉 → |0, 0, 0, 1〉 with a rate of (1.15 ps)−1, the OCT

algorithm creates an exponentially decaying field. The main frequency of this decaying

field is about 650 cm−1. A possible explanation is that the field hinders the decay of

|0, 0, 0, 1〉 to the ground state |0, 0, 0, 0〉, which happens at a rate of (2.3 ps)−1.

In Ref. [97] also the stationary 6D problem (r,Z,X,Y ,θ,φ) was solved. However, due to

the many vibrational states involved even for low-energetic “cuts” in the eigenspectrum the

IR-dynamics and particularly the application of global OCT, is too complex to handle at the

moment3. But as the X/Y modes are well decoupled, due to their low frequency, from the

other four modes, and the lateral dipole dependence is expected to be very small, the 4D

model is probably already a sufficient description of CO/Cu(100).

In summary, it was found that selective IR-excitation is feasible within the multi-

dimensional models of CO/Cu(100) although both a coupling to the bath (dissipation and

dephasing) and inter-mode coupling takes place. Choosing pulse lengths suitably with respect

to vibrational lifetimes, the dissipative loss can be kept small at about 10 %. For the stretch

modes r and Z even state-selectivity is possible. The “dark” lateral mode X was accessed

via overtone excitation. The the weakly dipole active angular mode φ was excited utilizing

energy relaxation of the previously excited θ mode. Intermode coupling was observed only

at very high field strengths and between modes of similar resonance energies (Z and θ).

3In cooperation with Scott Greenwald (Freie Universität Berlin), so-called balancing [126–128] is

fused with OCT, in order to reduce the dimension of matrices in an automated way.
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4.2 H/Si(100) [104]

In this section, simulations of the system dynamics in one- (r) and two-dimensional (r,Z)

models of H/Si(100) (Sec. 3.2) are presented.

4.2.1 One-dimensional model (r)

5 10 15
r [a

0
]

0

1

2

3

4

en
er

g
y
 [

eV
]

0
.5

 E
b
o
n
d
 (

H
2
)

|n
r
=0>

|n
r
=5>

Figure 4.14: 1D potential energy curve V (r) as obtained from Eq. (3.17) by setting (φ =

φ0) with the 40 vibrational eigenstates |ψnr〉 ≡ |nr〉 calculated by sinc-DVR (Sec. A.1) using

a grid of 40 points with r ∈ [1.5, 15.0] ea0. Shown on the right is half energy gained by the

bond formation of H2.

In the recent, experimental success to isotope selectively break a bond by vibrational

excitation [14] – namely the desorption of H2 from a Si(111) surface on which hydrogen

and deuterium atoms were co-adsorbed – it was shown that the H–Si stretch mode is excited

thereby. Using the related system H/Si(100), already previously studied [51,52], and a simple

1D model for the H–Si stretch mode r (compare Fig. 3.3 and Sec. 3.2), a similar scenario is

studied in the following. Shown in Fig. 4.14 are the potential curve V (r) and the vibrational

eigenstates |nr〉. Through the bond formation H + H → H2 about 4.6 eV are set free. For a

single H atom, as considered in the present model, this would mean an energy “gain” of 2.3 eV

(see double arrow on the right of Fig. 4.14) from desorption. On the other hand, breaking

a single Si–H bond “costs” about 3.4 eV according to Fig. 4.14. Thus, by promoting the

system by roughly (3.4−2.3) eV= 1.1 eV in vibrational energy per Si–H bond a vibrationally
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mediated desorption should energetically be possible. Since the Si–H stretch mode has a

vibrational frequency of about 0.25 eV, this requires – if anharmonicities are accounted for –

about 5 vibrational quanta (see the arrows in Fig. 4.14).
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Figure 4.15: Excitation of state |5〉 at (T = 0 K) via vibrational “ladder climbing” from

the ground state |0〉: (a) Five successive, sin2-shaped 1 ps π pulses adjusted to the transition

|0〉 → |1〉 and (b) Five successive, sin2-shaped 1 ps π pulses adjusted to transitions |0〉 → |1〉,
|1〉 → |2〉, |2〉 → |3〉, |3〉 → |4〉, and |4〉 → |5〉 from left to right. The total fluences of fields

(a) and (b) are 36 and 17 mJ/cm2, respectively; the maximum intensity is 1.9 · 1010 W/cm2

in both cases (the sub-pulse intensity for the fundamental transition).

The r mode is long-lived, with the first excited state |1〉 surviving for nanoseconds accord-

ing to experiment [53]; here the theoretical lifetime for (T = 0 K) of 2.13 ns, in accordance

with Table 3.10, is chosen. The rates for higher excited states are calculated according to

Eq. (2.31) for (T = 0 K).

The 40 states shown in Fig. 4.14, some of them above the desorption energy, were

then taken as a basis for the solution of the Liouville-von Neumann equation according to

Eq. (2.13). The goal was to excite vibrational state |5〉 by IR pulses. Fig. 4.15 shows electric

fields (upper panels) and populations (lower panels) of states |i〉 for two different excitation

scenarios of the 40-level model: In (a) five successive, sin2-shaped 1 ps π pulses adjusted to

the transition |0〉 → |1〉 are used, while in (b) again five 1 ps π pulses are used, but adjusted

in frequency and fluence to transitions |0〉 → |1〉, |1〉 → |2〉, |2〉 → |3〉, |3〉 → |4〉, and |4〉 → |5〉
from left to right. In the first case, one mainly observes a damped Rabi oscillation between

states |0〉 and |1〉, |2〉, the next state up the ladder, is scarcely populated at all. The r mode is

too anharmonic for “mode selective” excitation (as observed, for example, in Sec. 4.2.2 below
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for the φ mode). In contrast, one gets 94.2 % state selective population of |5〉 in case (b),

with each π pulse succeeding almost in complete population inversions and an almost per-

fect successive “ladder climbing”. In experiment, either a down-“chirped” cw-like-field with

decreasing intensity or a sequence of pulses with fine-tuned frequency and intensity/fluence,

as simulated in the above, should be successful in this case. Note, that in Ref. [14] a train of

unchirped 1 ps pulses has been used. The excitation of higher vibrational states may then still

be due to so-called energy pooling [129], where dipole-dipole interactions mediate vibrational

quantum exchanges; a process which was neglected here.

4.2.2 Two-dimensional model (r,φ) [104]

In the 2D model, in addition to r also the bending mode φ is included – see Fig. 3.3. The topics

of interest in the 2D model of H/Si(100) are selective vibrational excitation, but also how

the often used Markov approximation (Sec. 2.2) of density matrix dynamics differs from the

more general non-Markovian model (Appendix G). All non-Markov calculations were carried

out by Guennadij Paramonov (Academy of Sciences, Minsk, Belarus and Freie Universität

Berlin). For the field-free time evolution as well as the density matrix propagations with

sin2-shaped IR pulses the lowest 50 eigenstates in the 2D (nr, nφ) are used. In order to

retrieve optimal control fields via global OCT calculations choosing the lowest 22 states has

been found to be sufficient, for the targets to be defined below.

Field-free decay

In a first step the field-free (Fz(t) = 0) decay of exemplary vibrationally excited states –

namely |nr = 0, nφ = 4〉 and |nr = 1, nφ〉 – is examined. The bath temperature is chosen

finite, but very low, as 4 K (i. e. ”upward” rates are vanishingly small), also for the simulations

of IR excitations below. The relaxation rates are those of Ref. [52] for (T = 0 K) – compare

Table 3.10. The coupling parameters needed in the non-Markovian model (see Appendix

G) were chosen such [104] that the decay times states of |0, 1〉 and |1, 0〉 in the Markovian

approximation were reproduced. This approach assures that the overall vibrational lifetimes

in both models agree with each other, however, only for small quantum numbers. Also, the

detailed time-behaviour will be different.



4.2 H/Si(100) [104] 73

(a) (b)

0 2000 4000 6000 8000 10000
time [fs]

0

0.2

0.4

0.6

0.8

1

p
o
p
u
la

ti
o
n
s

0 200 400
0

0.5

1

|0,3>

|0,2>

|0,1>

|0,0>|0,4>

|0,4>

0 2000 4000 6000 8000 10000
time [fs]

0

0.2

0.4

0.6

0.8

1

p
o
p
u
la

ti
o
n
s

Markovian dynamics
non-Markovian dynamics

|1,2>

|1,1>

|1,0>

Figure 4.16: Free evolution over 10 ps of initially pure states |nr = 0, nφ = 4〉 (a) and

|nr = 1, nφ = 2〉 (b) at (T = 4 K). Shown in solid lines is the non-Markovian dynamics, given

for comparison in dashed lines are the results obtained from Markovian approximation.

Shown in Fig. 4.16 are the population dynamics for a free decay over a period of 10 ps

starting at (t = 0) with the pure states |0, 4〉 in (a) and |1, 2〉 in (b), respectively. The

populations obtained by the non-Markovian model are plotted in solid black lines, those

from the Markovian approximation in dashed orange lines. As for the decay mechanism, one

observes for the four-fold excited “pure” φmode state (a) a rapid (lifetimes ranging from some

hundreds of fs to a bit more than one ps) “reverse ladder climbing” back into the ground state:

|0, 4〉 → |0, 3〉 → |0, 2〉 → |0, 1〉 → |0, 0〉. In accordance with energy relaxation rates being

roughly proportional to the quantum number nφ of the initial state in each (nφ → nφ − 1)

sub-process, |0, 4〉 → |0, 3〉 occurs on a faster time-scale than |0, 3〉 → |0, 2〉 and so on. After

10 ps, the four excited states are quasi depopulated. Although for (t → ∞)4 Markovian and

non-Markovian populations approach each other – both running asymptotically towards the

Boltzmann distribution at (T = 4 K) – there are two main differences:

• The decay of the initial state is exponential in the Markovian case (see inlay of

Fig.4.16(a)), whereas the non-Markovian decay is initially non-exponential (Gaussian-

like) with limt→0
dPn

dt = 0.

• The heights as well as positions of the population maxima for the intermediate states

differ for both models. It appears as if the Markovian decay is delayed with the tails

4“∞” here means t≫ τ(0,nφ).
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of the intermediate “ladder” states being longer. This could be due to (1) a different

functional behaviour of the Pn(t) for (t→“∞”) and not only for (t→ 0) – though with

the same value in the limit – and/or (2) small differences in the vibrational lifetimes

for quantum numbers (nr, nφ > 1).

Except for small times t where again an exponential (Markov) vs. Gaussian (non-Markov) be-

haviour of the initial state population P(1,2)(t) is observed, the differences in the intermediate

dynamics are less pronounced in (b). The reason for this is that only two one-photon decay

(instead of four as in above case) processes take place within tf = 10 ps: Two fast transitions

|1, 2〉 → |1, 1〉 → |1, 0〉. Thus, the different functional behaviour in the state populations’

tails does not accumulate so much as in case (a).

Excitation of the r mode

The strongly IR active and long-lived r mode is well and state-selectively excitable as can

be seen in the above 1D calculations of Sec. 4.2.1. Due to the weak (r,φ) coupling, the same

is true within the 2D model, so that the successful, almost complete population inversion

|0, 0〉 → |1, 0〉 is possible when sin2 pulses similar to those above are employed (not shown).

The only important results to draw from these calculations, where the sub-ps and ps sin2

pulses were “hand-optimized”, are:

• Similar to the example in Sec. 4.1.3 it is found that too short pulses (tf < 1 ps) lead

to a loss in final population of state |1, 0〉 as the overtone |2, 0〉 becomes considerably

excited even after the pulse is off. This is because state |2, 0〉 has also a ns lifetime. To

avoid this loss of state-selectivity longer pulses have to be used.

• The difference between Markovian and non-Markovian models is small and mainly

transient; this is due to the small relaxation rates (which “represent” the bath modes)

for this long-lived mode – “memory effects” are less important in case of weaker system-

bath coupling.
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Excitation of the φ mode

More interesting here is the question as to whether and how selective excited states in φ

can be accessed. This mode has lifetimes in the order of ps, i. e. on the same timescale of

IR pulses used here. Further, this mode has a rather harmonic eigenspectrum due to the

functional form (quadratic) chosen for V (r, φ), see Eq. (3.17) and Table 3.9. Finally, it shows

only medium IR activity, because µ changes less with φ than with r.

In Ref. [104] “hand-optimized” sin2 pulses (duration tf , maximal field strength F0 and

constant carrier frequency ω being the parameters) were constructed to selectively excite state

|0, 1〉 within the non-Markovian model. Shown in Fig. 4.17 in solid black lines is one of the best
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Figure 4.17: Excitation of state |nr = 0, nφ = 1〉 at (T = 4 K) by a “hand-optimized” sin2-

shaped pulse (black lines) of duration 0.25 ps, maximum field strength F0 = 0.007755 Eh/ea0

and carrier frequency ω = 635.2 cm−1. Shown in solid lines is the field (upper panel) and

the population dynamics (lower panel) for the non-Markovian case for which the pulse was

optimized; plotted in dashed lines is the non-Markovian dynamics as obtained for the same

pulse. Shown in orange dashed lines is the OCT field and population dynamics obtained

within the non-Markovian approximation with Ô = |0, 1〉〈0, 1|, a penalty function of type 4.2

and α = 0.1.

results that was obtained in Ref. [104] with parameters tf = 250 fs, F0 = 0.007755 Eh/ea0
5

5For a π pulse the according maximal field strength would be larger with 0.01203 Eh/ea0 – the

idealization as dissipation-free two-level system does not hold true here.
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and ω = 635.2 cm−1 (ωφ = 637.0 cm−1). State |0, 1〉 is populated by only 0.3646 at (t = tf ),

while overtones |0, 2〉 and |0, 3〉 are rather strongly populated with 0.1812 and 0.05989, besides

even higher states carrying populations of 1 % or more. The population in the ground state

remains high (0.3756). This is a typical behaviour for a harmonic system: Not the first

excited state is selectively populated by irradiation with light of the fundamental resonance

frequency, but all states of this mode get populated, the population normally decreasing

for increasing quantum numbers. Since no other modes are excited, this is so-called “mode

selectivity” instead of “state selectivity” as in most examples above. Further improvement

of state-selectivity was not possible with a single pulse. Plotted in dashed black lines in the

lower panel of Fig. 4.17 is the Markovian dynamics obtained for the same pulse. Similar to

the field-free evolution above, some small differences between both models are observed. As

the pulse is optimized for the non-Markovian case, the population of state |0, 1〉 at (t = tf )

is even smaller with 0.3301. The “lacking” population does not remain in the ground state

(which is populated with 0.3738 at final time, similarly to the non-Markovian case), but

is mainly transferred to the overtone states. Obviously, a “hand-optimized” pulse for the

Markovian case will improve the target yield somewhat.

Instead of a “hand-optimization”, an OCT calculation (in the Markov picture) was carried

out. The pulse (upper panel, orange) has an interesting structure: Except for beginning and

end, where a penalty function analogous to Eq. (4.2) constrains the field to a sin2-shape, its

dominant component is cw-like and thus allows for somewhat smaller intensities. A second

component with weaker intensity is observed which at the first look might constitute a higher

frequency, possibly to (de)excite the first overtone |0, 2〉 directly from (to) the ground state.

But the Husimi analysis reveals only a single frequency of about ωφ = 637 cm−1. This can

only mean that a small fraction of the resonant field is phase-shifted with respect to the

dominant fraction. It is believed that this special mechanism can, to some extent, counteract

the excitation of overtone states. And indeed, states |0, 2〉, |0, 3〉 etc. are less populated than

in case of the sin2 pulse, not only for the Markov model, but also when compared to the

non-Markovian case. Although, the target population (0.3636) does not exceed the value of

the latter, more population remains in the ground state with the present OCT pulse and is

not lost into higher excited φ states.

The pronounced harmonicity of a mode, as here the case of φ, is not necessary an obstacle

for vibrational excitation in general. It is possible to excite a single mode if not state-

selective, but by transferring population into high-energetic states of latter with still moderate
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Figure 4.18: Excitation of state |nr = 0, nφ = 11〉 by a single, “hand-optimized” sin2-

shaped pulse of duration 1.0 ps and parameters F0 = 0.008707 Eh/ea0 and ω = 642.3 cm−1:

Dynamics for the system in non-Markovian description, for which the pulse was optimized,

in solid lines and in dashed lines the dynamics it induces when applied within the Markov

approximation. Pφ is Pφ =
∑

nφ>1 P(0,nφ).

fluences/intensities. In case of the φ mode of the system H/Si(100) this might be of interest

in order to induce lateral motion of the adsorbate (that is H-diffusion). In the example for

such a high-energy excitation given in Fig. 4.18 the goal is to populate state |0, 11〉. Again,

in Ref. [104] a pulse was “hand-optimized” for this purpose for the non-Markovian case

(solid lines) and tf = 1.0 ps. The other optimized parameters are F0 = 0.008707 Eh/ea0 and

ω = 642.3 cm−1. One thus achieves a population of 0.3576 for state |0, 11〉 at (t = tf ). Further,

after the pulse is off, φ-excited states |0, nφ〉 with (nφ = 1, 2, . . . ) are in total populated by

Pφ(tf ) = 0.9844. φ-selectivity Sφ(tf ), defined as

Sφ(tf ) =
Pφ(tf )

Pex(tf )
with Pex(tf ) = 1 − P(0,0)(tf ) , (4.6)

with Pex being the excitation probability, reaches a large value of 0.989. A different picture is

obtained if the same pulse is applied within the Markovian approximation (dashed lines): For

the first 200–300 fs when only the lower-lying φ states are populated, the differences are still

small, but later on both the amount of population transferred to the desired state |0, 11〉 as

well as to other higher-excited φ states is considerably smaller. Also the course of population

of state |0, 11〉 (and other states not shown) differs: Instead of the “two-step population”

in the non-Markov picture, a “single-step population” followed by a “plateau” is observed

in the Markov picture. The selectivity Sφ(tf ) is still rather large with 0.930 – the “lost”

population mainly remains in /decays back to the ground state. Again as discussed for the
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cases shown in Fig. 4.16, a slightly different functional behaviour of populations accumulates.

One can conclude, that the Markov approximation is good for low-energetic excitations, few-

step processes and weak dissipation.

Excitation of a “mixed” state in r and φ

Finally, also the excitation of a combination mode in (r,φ) is attempted, using a two-pulse

strategy, that is

Fz(t) =

{
F0,1sin

2
(

πt
tf,1

)

sin (ω1t+ φ1) for t ∈ [0, tf,1]

F0,2sin
2
(

π(t+tf,1)
tf,2

)

sin (ω2(t+ tf,1) + φ2) for t ∈ [tf,1, (tf,1 + tf,2)]

}

. (4.7)

Shown in Fig. 4.19 are pulse (upper panel) and population dynamics (lower panel) ob-
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Figure 4.19: Excitation of the state |nr = 1, nφ = 1〉 at (T = 4 K) by a two-pulse strategy

using a field (upper panel) of type (4.7) with “hand-optimized” parameters for maximum field

strengths and frequencies: Shown in the lower panel in black solid lines is the non-Markovian

dynamics the field was optimized for as well as state populations (dashed orange) obtained

within the Markov approximation if the same field is applied.

tained by “hand-optimization” within the non-Markov picture (solid lines) and with the

goal to populate state |1, 1〉 maximally. The parameters are: tf,1 = 1.0 ps, tf,2 = 0.5 ps,

F0,1 = 0.0007517Eh/ea0, F0,2 = 0.004121Eh/ea0, ω1 = 2042 cm−1 (ωr = 2037 cm−1),

ω2 = 636.3 cm−1 (ωφ = 637.0 cm−1) and φ1 = φ2 = 0. Thereby, pulse durations as well

as phase shifts were kept fixed, only the other parameters were optimized in Ref. [104]. The

first transition in r |0, 0〉 → |1, 0〉 constitutes a basically complete population inversion within

the first 1 ps pulse, although there is some transient excitation of |2, 0〉, the overtone in r.
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There is only a small difference between the non-Markovian model (solid black lines) and

the Markovian one (dashed orange lines) – dissipation is small, that is, the “memory effect”

is small. This is different for the following 500 fs where state |1, 1〉 becomes populated by

0.3615 (non-Markovian dynamics) and by 0.3586 (Markovian dynamics), respectively, and

where also higher combination mode states |1, nφ ≥ 2〉 receive considerable amounts of pop-

ulation. Again, the “memory effect”, neglected by the Markovian picture, plays a larger role

when dissipation is stronger.

In summary, it was possible to selectively excite r and φ modes in the two-dimensional

model of H/Si(100). Thereby, state selectivity is successful in case of r, whereas the harmonic

potential term along φ allows only for mode-selectiveness for this mode. Non-Markovian

effects were shown to be negligible when dissipation is small and the excitation mechanism

involves only few intermediate steps. A different functional behaviour of population dynamics

was observed for Markovian and non-Markovian models for the limits (t→ 0) and (t→ ∞).

4.3 2H/Ru(0001) [111]

In the following, the results for the IR-excitation of the two-dimensional (r,Z) model of

2H/Ru(0001) (Sec. 3.3) are reviewed.

The 2D system 2H/Ru(0001) poses several “problems” for selective vibrational excitation:

• There are short (sub-picosecond) vibrational lifetimes for both modes (compare also

Sec. 3.3.2), making short and thus high-fluence pulses necessary.

• There is only weak (r) and medium (Z) IR activity (see Table 3.11), a further factor

demanding for larger intensities/fluences.

• Both modes are very harmonic (see the eigenenergies of the lowest 10 states in Table

3.11).

• The inter-mode dipole coupling is comparatively strong, with dipole transition moments

of the same order of magnitude as that for single-photon transitions in the r mode.

Thus, it is likely that a certain amount of “pure” Z mode states as well as (r,Z)
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combination mode states are populated if “pure” r states are to be excited, and vice

versa.

For these reasons state-selective IR excitation is difficult/impossible and the aim in the follow-

ing is a high mode-selectivity. The latter is neither granted as the resonance frequencies are

rather similar (ωr = 760 cm−1 and ωZ = 1095 cm−1) and the short, high-intensity/-fluence

pulses needed might cause a broad energy spectrum by which both modes can be reached.

In the following calculations, the 20 lowest eigenstates in the 2D model of 2H/Ru(0001)

are used for density matrix propagation. The field optimization is done by global OCT at

(T = 0 K). For the fundamental relaxation rate, vibrational lifetimes of τr = τZ = 500 fs have

been chosen, as outlined above.

4.3.1 Excitation of the Z mode

Starting with a sin2-shaped π pulse of duration tf = 300 (Imax = 2.4 · 1012 W/cm2, f =

274 mJ/cm2) adjusted to |0, 0〉 → |0, 1〉, the fundamental transition in Z, one obtains (upper

panel of Fig. 4.20 (a)), as typical for a very harmonic mode, a distribution of population in

the lowest states |0, nZ〉. Thereby,

P(0,1)(tf ) > P(0,2)(tf ) > P(0,3)(tf ) > P(0,4)(tf ) (4.8)

(see Table 4.2) and the initial state |0, 0〉 remains still strongly populated by 0.242. The

Z-selectivity

SZ(tf ) =
PZ(tf )

PZ(tf ) + Pr(tf ) + Pcombi(tf )
= 0.995 (4.9)

is very high, as “pure” states in r and combination mode state |nr > 0, nZ > 0〉 become only

weakly populated, by ∼ 0.002 in both cases. Here, PZ(tf ) is the population of Z-excited

states, Pr(tf ) that of r-excited states and Pcombi(tf ) that of (r, Z) combination states at

(t = tf ), as defined in the caption of Table 4.2. The denominator in Eq. (4.9) thus defines

the total excitation probability Pex(tf ).

With the goal to invert the relation of populations in (4.8) and thus increase the level of

excitation, an optimal control pulse with target operator

Ô = 0.01 |0, 1〉〈0, 1| + 0.05 |0, 2〉〈0, 2| + 0.19 |0, 3〉〈0, 3| + 0.75 |0, 4〉〈0, 4| (4.10)
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Figure 4.20: Excitation of the Z mode at (T = 0 K): (a) Dynamics for a π pulse (upper

panel) adjusted to the fundamental transition |nr = 0, nZ = 0〉 → |nr = 0, nZ = 1〉 and the

optimal control pulse (lower panel) described in the text; (b) Husimi plot of the OCT pulse.

is set up to enforce

P(0,1)(tf ) < P(0,2)(tf ) < P(0,3)(tf ) < P(0,4)(tf ) . (4.11)

And indeed, as the result for the dynamics in the lower panel of Fig. 4.20 (a) and the

explicit (sums of) final populations in Table 4.2 show, this is possible to a large extent (with

the exception of P(0,2)(tf ) > P(0,3)(tf )). Further, the OCT pulse achieves a more complete

depopulation of the ground state (P(0,0)(tf ) = 0.097) and a higher total excitation of the

Z-mode with Pr(tf ) = 0.879 (being 0.753 for the π pulse), increasing the amount of energy

transferred into the Z mode from 0.20 to 0.32 eV. But the Z-selectivity drops by about 2 %,
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t = tf P(0,1) P(0,2) P(0,3) P(0,4) PZ Pr Pcombi SZ

pulse

π 0.305 0.245 0.126 0.077 0.753 0.002 0.002 0.995

OCT 0.140 0.247 0.203 0.290 0.879 0.010 0.014 0.973

Table 4.2: Comparison of π pulse (Fig. 4.20 (a), upper panel) and OCT pulse (Fig. 4.20 (a),

lower panel): Final populations P(0,nZ)(tf ), sums of excited populations in Z, r and (r,Z)

combination mode states, PZ(tf ) =
∑4

nZ=1 P(0,nZ)(tf ), Pr(tf ) =
∑6

nr=1 P(nr,0)(tf ), Pcombi =
∑

nr≥1,nZ≥1 P(nr,nZ)(tf ). Listed further are the Z-selectivities SZ(tf ) as defined in Eq. (4.9).

as “pure” r states as well as combination mode states are more strongly populated by this

high-fluence OCT pulse (f = 941 mJ/cm2).

The Husimi transformation of the OCT pulse (Fig. 4.20 (b)) reveals a dominating,

downward-”chirped” signal, as typical for a “ladder climbing” mechanism, centered around

the resonance energy for (nZ → nZ + 1) transitions (∼ 1000 − 1100 cm−1). During the last

100 fs, where the main population transfer into state (0,4) occurs, there is also a weaker

signal at overtone-excitation energies (∼ 2200 cm−1). Thus, a rough description of the

excitation mechanism is, that during the first 200 fs mainly one-photon “ladder climbing”

|0, 0〉 → |0, 1〉 → |0, 2〉 → |0, 3〉 takes place, while in a last, shorter step the two-photon

transition |0, 2〉 → |0, 4〉 occurs. This mechanism is well suited to somewhat inhibit the fast

dissipative loss of state |0, 4〉. In this light, the “surplus” of final population in state |0, 2〉
can be understood: Although |0, 2〉 “feeds” the excitation of state |0, 4〉 it receives again pop-

ulation from state |0, 3〉 which becomes excited early, but nevertheless decays with a rate of

(167 fs)−1 to |0, 2〉, while state |0, 2〉 has a lifetime almost as long (250 fs) as the whole pulse

duration.

4.3.2 Excitation of the r mode

In analogy to the OCT pulse above to excite the Z mode, the objective of this sub-section

is to transfer a maximal amount of energy into the (weakly dipole active) r mode. Several

target operators were chosen, but it is found that the best result is obtained for targets

making advantage of the fact that µ(nr,0)(nr+2,0) ≈ 2µ(nr,0)(nr+1,0) (compare Table 3.11). For
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Figure 4.21: Excitation of the r mode at (T = 0 K): (a) Population dynamics, where

Pr(t) =
∑6

nr=1 P(nr,0)(t) and Pothers(t) =
∑

nr,nZ≥1 P(nr,nZ)(t), and (b) Husimi plot of the

OCT pulse.

the example presented in Fig. 4.21, a target operator

Ô = 0.08 |2, 0〉〈2, 0| + 0.23 |4, 0〉〈4, 0| + 0.69 |6, 0〉〈6, 0| (4.12)

and a control time of 1 ps was chosen. Shown in the upper panel of Fig. 4.21 (a) is the control

field (Imax = 6.6 ·1013 W/cm2, f = 7122 mJ/cm2) obtained when applying a penalty function

of type (4.2) with α = 0.02. The mechanism is rather complex. By no means only the “in-

tented” mechanism |0, 0〉 → |2, 0〉 → |4, 0〉 → |6, 0〉 takes place, but also transitions between

states of uneven quantum numbers nr. Therefore, only the sum Pr(t) of all “pure” states in

r is plotted in the lower panel of Fig. 4.21 (a). Pure r mode states |nr, 0〉 are populated by

0.59 at final time tf , being an improvement when comparing this to the according values of

Pr(tf ) = 0.39/0.43 if one uses π pulses adjusted to transitions |0, 0〉 → |1, 0〉 / |0, 0〉 → |2, 0〉
with frequencies ω = 760/1518 cm−1 and fluences f = 6397/1635 mJ/cm2 – latter used as
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initial field for optimization here. As expected, there is some coupling to pure Z states

(PZ(tf ) = 0.09) and, more strongly, to (r,Z) combination mode state (Pcombi(tf ) = 0.21).

The pulse itself is “late” as to avoid dissipation and its main frequency component (Husimi

plot in Fig. 4.21 (b)) is that of (nr → nr + 2) transitions around frequencies of 1500 cm−1.

The signal has a downward-chirp for “ladder climbing”. There is no contribution observable

which would suggest one-photon transitions, but there are weaker contributions at frequen-

cies < 600 cm−1 which cannot be assigned to any transition(s). It is possible that some sort

of dressed state is formed similar to STIRAP [124, 125] and in analogy to the observation

of a static field component made in Sec. 4.1.4 when calculating an optimal pulse to excite

the θ mode of CO/Cu(100). Generally speaking, the r-excitation is indeed very difficult and

requires prohibitively large fluences.

In case of the 2D (r,Z) model of 2H/Ru(0001) state selective excitation was not possible

due to the harmonicity of both modes and, particularly in case of r, the need for high-

intensity pulses with broad energy widths. However, it was shown that via OCT it is possible

to “invert” the population distribution in Z as achieved by a π pulse and, thereby, transfer

a large amount of energy targeted into this mode.



Chapter 5

Optimal control with

time-dependent targets

The problem common to both the global optimal control theory algorithm (Sec. 2.4.2), as used

in the previously presented density matrix calculations, as well as the variant of local control

theory (Sec. 2.4.2) which served to study the simple non-dissipative scenario (Appendix H)

is the lack of a time-dependent target operator. The iterative scheme of global control allows

only to specify the desired system at (t = tf ), whereas local control, based on a single

forward propagation, even lacks this second boundary condition. However, to some extent,

compare the second example in Appendix H, the weight (“target”) factors oii which enter

the equation (2.45) for the control field can influence the dynamics, although in a very non-

systematic way. In condensed phase environments [9] and/or for quantum computing [31,32]

the selective preparation of a state at tf may not be useful (it subsequently decays), but

one may be interested in preserving target state populations and/or coherences over a longer

period of time.

Optimal control or related algorithms with time-dependent targets are still rare (partic-

ularly in the density matrix formulation); the most important examples from the literature

are listed in the following:

• Optimal control of time-averaged quantities by controlling the pulse envelope in a

dissipative two-level system was used in Ref. [130].

85
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• The optimization of the pump-probe signal in a non-dissipative three-level system was

performed in Ref. [131].

• A combination of optimal and coherent control theories for a non-dissipative three-level

system was applied in Ref. [132].

• The “adaptive tracking method” and locally designed coherent control theory for dis-

sipative and non-dissipative systems were formulated in Ref. [133,134].

• A global OCT for non-dissipative systems was used in Ref. [135].

• A generalization of global OCT to time-dependent targets was suggested, and applied

to dissipative and non-dissipative four-level test systems in Ref. [33].

The first two methods do not contain an explicitly time-dependent “target”. The third

method is no optimal control theory in the common sense, as it is based on coherent control

theory and results in analytical expressions for the control field. Unlike the first two methods

the fourth does contain a time-dependent target, that is, the control field directly depends on

a time-dependent trajectory – the so-called “performance index”. The disadvantage, however,

is that instabilities may occur through singularities which have to be corrected for [133]. The

last two algorithms are global, insofar as they are based on an iterative forward-backward

propagation plus optimization scheme. The former of the two algorithms, however, is set

up in the non-dissipative wavepacket frame only. The disadvantage of the latter is that it is

formulated in the rotating-wave approximation, requires two further parameters guaranteeing

the monotonic convergence and has only been tested on small systems so far. In what follows

a new algorithm is presented which does not have the disadvantages just mentioned.

5.1 Algorithm

The algorithm formulated in the present work is a simple model based on the monotonically

and quadratically convergent, iterative global OCT algorithm as formulated by Ohtsuki et

al. for dissipative systems [30] which often gives very good target yields (compare Sec. 4)

and combines it with the local, non-iterative control scheme which exhibits computational

efficiency and applicability to strong-field situations. Therefore, the total control interval

[0,tf ] is subdivided intoM intervals [t
(n)
0 , t

(n)
f ] and in the nth sub-interval a global optimization
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scheme is applied to drive the density operator from ρ̂(t
(n)
0 ) to ρ̂(t

(n)
f ) with the goal to optimize

the predefined, time-dependent operators Ô(t
(n)
0 ) and Ô(t

(n)
f ) at beginning and end of the

sub-interval, respectively.

For the “conventional” global optimal control algorithm (compare Sec. 2.4.2) a solution

algorithm for the coupled equations (2.13), (2.49), and (2.50) was proposed in Ref. [30]:

step 0: ih̄
∂σ̂(0)(t)

∂t
= (LH(ε0) + LD)† σ̂(0)(t) (5.1)

step k > 0: ih̄
∂ρ̂(k)(t)

∂t
=

(

LH(F (k)) + LD

)

ρ̂(k)(t) (5.2)

ih̄
∂σ̂(k)(t)

∂t
=

(

LH(F
(k)

) + LD

)†
σ̂(k)(t) (5.3)

where the arguments in brackets of LH denote on which field the Liouvillian depends. Here,

ε0 is a trial field, and

F (k) = − 1

h̄α
Im
〈〈

σ̂(k−1)(t)|µ̂|ρ̂(k)(t)
〉〉

(5.4)

F
(k)

= − 1

h̄α
Im
〈〈

σ̂(k)(t)|µ̂|ρ̂(k)(t)
〉〉

(5.5)

are the fields for forward and backward propagation in iteration k. To extend this formalism

to time-dependent targets the above control equations (2.13), (2.49) and (2.50) are solved

now iteratively, in every interval [t
(n)
0 , t

(n)
f ], using the algorithm with forward-backward prop-

agation of above. In the n-th interval, for the density operator ρ̂(t) and the Lagrange density

σ̂(t), the respective initial conditions are:

ρ̂(t
(n)
0 ) = ρ̂(t

(n−1)
f ) forward propagation (5.6)

σ̂(t
(n)
f ) = Ô(t

(n)
f ) backward propagation , (5.7)

i. e. for ρ̂(t) the final density of the (n − 1)th interval serves as initial condition for the nth

interval, and Ô(t
(n)
f ) is the initial condition for backward propagation of σ̂(t) in that interval.

If the individual time slices are chosen narrow enough, a continuous time-dependent target

can be modelled. If there is only one time slice over the entire control time, the conventional

optimal control algorithm [30] is regained. Within every sub-interval, the initial guess field

for the first propagation, ε
(n)
0 , is set to zero to avoid any dependence of the final control

field on the initial one. By this procedure discontinuities in F (t) between two intervals are

avoided, even when the Lagrange multiplier density σ̂(t) becomes discontinuous. The latter

can happen in case of long sub-intervals, because backward propagation always starts with

the value of Ô at t
(n)
f . Then the envelope of the obtained optimal pulse is no longer smooth



5.2 Numerical tests 88

(not shown for brevity). The global nature of control as well as the convergence behaviour

of the algorithm in Ref. [30], are strictly fulfilled only within a sub-interval [t
(n)
0 , t

(n)
f ], while

individual intervals are locally coupled in time. The objective functional J for the total control

time [0,tf ] is a sum

J =
M∑

n=1

Jn , (5.8)

where Jn is identical with the right side of Eq. (2.47) when substituting [t
(n)
0 , t

(n)
f ] for [0,tf ].

In the eigenstate representation used here both densities ρ̂(t) and σ̂(t) and the target

Ô(t) are of matrix form, e.g.

Ô(t) =

L∑

i=1,j=1

|i〉oij(t)〈j| . (5.9)

The matrix elements oij(t) are given as analytical functions of time in the calculations pre-

sented in the following.

As test system a one-dimensional model of the Z mode of CO/Cu(100) at (T = 10 K) is

used which is “extracted” from the three-dimensional model (compare Sec. 3.1.1) by choosing

from states |nr, nZ , nX〉, states |0, nZ , 0〉 only.

5.2 Numerical tests

In order to study the algorithm’s numerical performance, a two-level model with |nZ = 0〉 ≡
|0〉 and |nZ = 1〉 ≡ |1〉 is used, in which a population inversion |0〉 → |1〉 is to take place

within a control time tf = 5500 fs (= τ1→0
4 ). The time-dependent diagonal (real) target matrix

elements oii(t) (“populations”) are chosen here as

o00(t) =
C0

N(t)e
− (t−a0)2

2σ2
0

(5.10)

o11(t) =
C1

N(t)e
− (t−a1)2

2σ2
1

, (5.11)

with C0 = C1 = 1, σ0 = σ1 = 1375 fs and the normalisation N(t) = o00(t) + o11(t) ensuring

that Tr{O} = 1. We further take a0 = 0 and tf = a1 = 5500 fs. Further, N(t) causes the
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population target matrix elements o00(t) and o11(t) to resemble a smoothed step function –

see the dashed lines labeled 00 and 11 in the lower panel of Fig. 5.1. Inherent to the algorithm

(which starts each sub-interval optimization by a backward propagation beginning with the

according Ô(n)(t
(n)
f )), an analytic function for at least one off-diagonal element oij(t) = o∗ji(t)

is required which has to oscillate in the complex plane with a frequency ωij (chosen as the/a

resonance frequency of the desired state, for example). Omitting an oscillatory part in the

off-diagonal target matrix elements (“coherences”), one also obtains a non-oscillatory control

field. Chosen here is

o01(t) = |o01(t)|eiω01t , (5.12)

where −ω01 = ω10 = 293 cm−1 and the coherence “envelope” |o01(t)| is chosen of Gaussian

form, centered at
tf
2 = a01 = 2750 fs

|o01(t)| = C01e
− (t−a01)2

2σ2
01 , (5.13)

where C01 = 0.5 and σ01 = 786 fs, see Fig. 5.1. The parameters in both cases are chosen delib-

erately such that the shape of density matrix elements oij resembles that for a dissipation-free

two-level system upon which a typical π pulse, centered at (t =
tf
2 ) is applied. For the cal-
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Figure 5.1: Optimal field (upper panel) and dynamics of ρ00, ρ11, |ρ01| = |ρ10| (lower

panel, solid orange lines) as obtained for the time-dependent target of Eqs. (5.10), (5.11),

(5.12) and (5.13), M = (N − 1) = 100 000 (one time step per sub-interval) and α = 1 6= f(t);

the time-dependent target elements o00, o11, |o01| = |o10| are plotted as dashed lines in the

lower panel. Given for comparison in the upper panel is s(t), the (sin2) shape function of a

π pulse obeying |µ01|F0

∫ tf
0 s(t)dt = h̄π for the present target time tf .

culation presented in Fig. 5.1, with the solid lines representing the actually obtained density
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matrix elements, (N = 100 001) timesteps and (M = 100 000) sub-intervals are used, i. e. each

sub-interval contains only a single timestep, further a time-independent penalty α = 1 is cho-

sen. It is seen that target (dashed) and density (solid) matrix elements agree generally quite

well, only towards the end of the pulse there are deviations in the populations of a bit more

than 10 %. This is due to dissipation. For the coherence term the agreement is even better,

with the maximum deviation being less than 2 % at (t =
tf
2 ). In order to have a global mea-

sure for the success of a time-dependent optimal control calculation, an achievement factor

A is defined as

A =
1

tf

∫ tf

0
A(t)dt =

1

tf

∫ tf

0
〈〈Ô(t)|ρ̂(t)〉〉dt (5.14)

which is ideally 1 if ρ̂(t) = Ô(t). In the example of Fig. 5.1, it is 0.9701. The control field

(upper panel of Fig. 5.1) is centered at (t =
tf
2 ) and resembles a π pulse (the shape of a sin2 π

pulse is shown in orange). Only around (t =
tf
2 ) the control field is more intense than the π

pulse. The control field for which |µ01|F0

∫ tf
0 s(t)dt = 1.049h̄π (the fluence, 48 mJ/cm2, being

5 % larger than that of the π pulse) is able to populate the target state 1 by ρ11(tf ) = 0.882,

while with the π pulse one gets ρ11(tf ) = 0.871. This is a proof of the reliabilty of the

conventional OCT algorithm upon which the algorithm is based.

After having shown that the algorithm can control time-dependent targets, the question

now is how accuracy and computational cost of the algorithm depend on Ni

Ni =
N − 1

M
, (5.15)

the number of timesteps per sub-interval. The example of Fig. 5.1 is taken and a convergence

threshold δJ
(k,k−1)
n for J

(k)
n , the objective functional in iteration k of sub-interval n, is defined

as

δJ (k,k−1)
n = |J (k)

n − J (k−1)
n | . (5.16)

Further, in order to compare calculations with different numbers of sub-intervals M , a con-

stant number of timesteps (N = 100 001) is chosen and a common, total threshold of

δJ = MJ (k,k−1)
n = 10−12 (5.17)

is fixed, while Ni is varied in the calculations summarized in Table 5.1.

The first thing one notes is that for the case when (Ni = 1) the best accuracy and compu-

tational performance is achieved. Thus, even with A being not 1, this is chosen as reference
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M Ni δJ
(k,k−1)
n Iav A A(tf ) Erel CPU time [s]

105 1 10−17 1.94 0.970 10 0.884 02 0 16

104 10 10−16 3.75 0.970 10 0.884 03 3.423 · 10−6 18

103 102 10−15 5.30 0.970 07 0.884 07 3.689 · 10−5 20

102 103 10−14 17.6 0.969 51 0.883 95 6.064 · 10−4 30

10 104 10−13 496 0.964 02 0.884 00 6.274 · 10−3 455

1 105 10−12 18 300 0.884 20 0.884 20 8.855 · 10−2 16 334

Table 5.1: Performance test for the two-level system: M , the number of sub-intervals, and

δJ
(k,k−1)
n of Eq. (5.16), the convergence threshold in each sub-interval n. Iav is the average

number of backward-forward iterations per sub-interval, A and A(tf ) are the total and final

time achievements, respectively, see Eq. (5.14). Taking the achievement factor for Ni as

reference (Aref ), the relative error is Erel =
Aref−A

Aref
. The CPU time is given for a AMD

Opteron™Processor 246.

value. The larger Ni here, the less accurate the calculations become. For (Ni = 105) and

(M = 1), where the algorithm is equivalent to the ordinary global OCT, the error Erel relative

to the reference case as defined in the caption of Fig. 5.1 is almost 1 %, as the conventional al-

gorithm is not made for time-dependent targets. The final achievement A(tf ) remains almost

constant independent of Ni. This is another proof of reliabilty for the conventional algorithm

contained in the new hybrid algorithm. Further, the average number of forward-backward

iterations per interval n to meet the respective convergence criterion δJ
(k,k−1)
n grows fast

for increasing Ni, although, due to N and δJ being held fixed, the convergence threshold

δJ
(k,k−1)
n decreases. In summary, time-dependent control with the present algorithm is most

efficient and accurate with sub-intervals equivalent to the timestep of density matrix propaga-

tion. Then also the “smoothness” of the (envelopes of) Lagrange multiplier matrix elements

σii(t) (σij(t)) is guaranteed. In each sub-interval σ̂(t) has to obey the boundary condition of

Eq. (5.7) so that only if the sub-intervals are small enough smoothness is reached; a lacking

smoothness of the Lagrange multiplier density matrix, particularly in the envelopes of the

coherence terms, leads also to a pulse envelope being “non-smooth”.
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5.3 Applications

5.3.1 Creation and preservation of a wavepacket
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Figure 5.2: Creation – stabilization – destruction of a wavepacket in the two-level system

at (T = 10 K): The control field (upper panel) obtained by a target matrix O(t) consisting

of elements as given in Eqs. (5.21), (5.21), (5.12) and (5.13). Shown in the middle panel

are o11(t) (dashed) and the obtained ρ11(t) (solid orange); plotted in the lower panel are

|o01(t)| = |o10(t)| (dashed) and |ρ01(t)| = |ρ10(t)| (solid orange).

One of the main reasons, why optimal control with time-dependent-target is so interesting,

is the possibilty to control populations and/or coherences during the control time. This is a

feature needed, for example, in the following application of the present algorithm, where

• first a wavepacket |ψ(t)〉 is created from the ground state |0〉,

|ψ(t)〉 =
1√
2

(
|0〉 + e−iω10t|1〉

)
(5.18)

as a linear combination of states |0〉 and |1〉 within the two-level system;

• then the wavepacket is stabilized for a while, despite dissipation, such that (except for

phase factors) one ideally has

ρ(t) =
1

2

(

1 1

1 1

)

; (5.19)
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• finally, the whole population is transferred to state |1〉.

Such a scenario would be useful, for example, in quantum computing using vibrational states

to set up “qubits” to switch a linear combination of states constituting a qubit “on” and

“off”. The target populations o00(t) and o11(t) are set up as to create a “plateau” region

centered at
tf
2 = 2750 fs = a′0 = a′1

o00(t) =
1

N(t)



C0e
(t−a0)2

2σ2
0 + C ′

0e

(t−a′0)2

2σ
′2
0



 (5.20)

o11(t) =
1

N(t)



C1e
(t−a1)2

2σ2
1 + C ′

1e

(t−a′1)2

2σ
′2
1



 . (5.21)

The other parameters are C0 = C1 = 1, C ′
0 = C ′

1 = 0.5, a0 = a1 = 0, σ0 = σ1 = 687.5 fs

and σ′0 = σ′1 = 392.9 fs. N(t) = o00(t) + o11(t) is again the norm-preserving factor. Further a

time-independent penalty factor α = 1 is used. The target element o11(t) is shown in dashed

in the middle panel of Fig. 5.2. It is not absolutely clear how the envelope |oij(t)| = |oji(t)|
of the coherence terms might look like, so the same, simple form of Eqs. (5.12) and (5.13) is

chosen (Fig. 5.2, lower panel, dashed line).

The target populations are well reached by the optimal pulse, as demonstrated in Fig. 5.2.

There is only a small deviation when the “plateau” region starts and towards the end when

dissipation inhibits a complete population transfer, but it is (P0 = P1 = 0.5) during the

whole ca. 1500 fs where the corresponding target matrix elements take on this value. And,

indeed, such a population stabilization is feasible for long times with the present algorithm,

up and above times of 22 ps, being the lifetime of state |1〉. The envelope of coherence

terms deviates more strongly, as the optimal control algorithm enforces a “plateau” region

for |ρ01| = |ρ10|, too, though slightly inclined due to dephasing. In this case, one can see, that

the algorithm has the ability of “self-healing” if the choice for |o01(t)| is physically incorrect

as here. Through more physical choices of |o01(t)| = |o10(t)| (for example a smoothed step-

function being flat in the regime where the wavepacket shall be stabilized), the achievement

factor A being 0.872 here could be increased. The control field (upper panel of Fig. 5.2,

f = 94 mJ/cm2) consists of two intense sub-pulses (approximately corresponding to two π
2

pulses) acting in the time-domains where population transfer takes place, and a low-intensity,

cw-like field preserving the wavepacket in between.
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5.3.2 Controlling a multi-level system
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Figure 5.3: “Ladder climbing” |0〉 → |1〉 → |2〉 within the 9-level system: (a) Two sin2-

shaped π pulses (phase shift ∆φ = π
2 ) adjusted to the two respective transitions and the

according population dynamics, where “others” labels
∑8

i=3 ρii(t); (b) non-zero population

target matrix elements oii(t) for (i = 0, 1, 2) in the upper panel and the actually obtained

populations ρii(t) for (i = 0, 1, 2) in the middle panel for the control field (lower panel).

Finally, to test the method for a multi-level system, the ground state |0〉 and the eight

lowest excited eigenstates in Z (labeled |1〉, |2〉, . . . , |8〉), that is a 9-level system, is chosen.

As the Z mode is rather harmonic for small quantum numbers, inducing a “ladder climbing”

analogous to the five-fold excitation of the r mode in H/Si(100) (Sec. 4.2.1) is more difficult.

Shown in Fig. 5.3 (a) is the field (upper panel) and the population dynamics (lower panel)

as induced by two successive sin2-shaped π pulses, each of duration 2062.5 fs and adjusted
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to the transitions |0〉 → |1〉 and |1〉 → |2〉 in order to induce a two-step “ladder climbing”.

Depending on the phase factor φ of the second π pulse (φ is being kept fixed at zero for

the first pulse) one can excite state |2〉 at (t = tf = 4125 fs) to populations of, for example,

about 0.2 (φ = 0, π) or ca. 0.4 for (φ = π
2 ) as shown here. By fine-tuning the phase difference

between the two pulses the result cannot be improved much further, as the population transfer

does not occur sequentially. Thus the second pulse can only optimally transfer population to

state |2〉, which is in state |1〉 during the second half of the control interval [0, tf ]. But, as

can be seen in the lower panel of Fig. 5.3 (a), a considerable amount of population is still in

the ground state 0 and up to 30 % are in higher excited states |3〉, |4〉, . . . .

We now use the time-dependent target algorithm to enforce a sequential “ladder climbing”

|0〉 → |1〉 → |2〉. Specifically we choose:

o00(t) =
C0

N(t)
e
− (t−a0)2

2σ2
0 (5.22)

o11(t) =
C1

N(t)
e
− (t−a1)2

2σ2
1 (5.23)

o22(t) =
C0

N(t)
e
− (t−a2)2

2σ2
2 (5.24)

o01(t) = C01e
− (t−a01)2

2σ2
01 eiω01t = o∗10(t) (5.25)

o12(t) = C12e
− (t−a12)2

2σ2
12 eiω12t = o∗21(t) . (5.26)

All other target matrix elements are kept zero. The upper panel of Fig. 5.3 (b) shows

o00(t), o11(t) and o22(t) and the middle panel the actually obtained state populations ρ00(t),

ρ11(t) and ρ22(t) for a penalty function of type (4.2) with α = 0.1. The lower panel displays

the control field of fluence 120 mJ/cm2 (the total fluence of the two π pulses is 155 mJ/cm−1).

Although the target is not perfectly fulfilled (A = 0.726), the intended sequential mechanism

is. As expected, this increases ρ22(t) to 0.61 and the amount of population transferred to

higher states |3〉, |4〉, . . . is decreased by the optimal pulse. The shape of the control pulse is

rather complex, but one can roughly identify two “sub-pulses” which are responsible for the

two transitions.



Chapter 6

Summary

The goal of the present work was to selectively excite vibrations of adsorbates on dissipative

surfaces by pulsed IR light.

Models for CO/Cu(100), H/Si(100) and H2/Ru(0001), where two, three and four vibra-

tional degrees of freedom of the adsorbate were taken into account, have been set up in a

reduced density matrix scheme. Energy and phase relaxation, that is the coupling to the elec-

tronic and phononic degrees of the surface “bath”, have been included within a Markovian,

Lindblad scheme via dissipation and dephasing rates. The latter were taken/calculated from

perturbation theory approaches. The vibrational rates explicitly calculated in this work for

the system H2/Ru(0001), being approximately 150 fs for the internal H–H stretch mode r and

ca. 560 fs for the motion Z of H2 with respect to the Ru(0001) surface, fit well with estimates

from theory and experiment [21,48] based on electronic friction coefficients. Vibrational life-

times for the systems CO/Cu(100) and H/Si(100) were taken from earlier work by Tully et

al. [36, 37] and Andrianov et al. [52], respectively. For the former system these range from

about 2 ps for the C–O stretch mode r, confirmed by experiment [20], to over 100 ps for X/Y ,

the lateral motion of CO with respect to the copper surface. The adsorbate-surface stretch

mode Z and angular degrees of freedom θ/φ have lifetimes ranging in between these values. In

case of H/Si(100) the adsorbate-surface stretch mode r is long-lived (nanoseconds), while the

adsorbate/surface bending mode φ lives for few picoseconds, in both cases in agreement with

experimental findings [16, 17]. Dipole functions to model the semi-classical field-adsorbate

interaction are obtained from fitting the data of quantum chemistry calculations to suitable
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functions, reflecting the physically correct asymptotic behaviour and symmetries. Vibra-

tional IR excitation was simulated by (a series of) sin2-shaped pulses and pulses obtained

from global optimal control theory. The according algorithm from Ohtsuki et al. [30] was

implemented utilizing spectral decomposition of the time-evolution operator, interpolation

via Newton polynomials and Schwarz-Christoffel conformal mapping [92, 93] to propagate

the system in time, in obeyance of the Liouville-von Neumann equation (2.13).

The challenges of the IR-excitation in the multi-dimensional and dissipative scenarios

studied here are (1) the inter-mode coupling in the adsorbate and (2) dissipative pro-

cesses, i. e. the coupling of the adsorbate vibrations to the surface “bath”. In the system

CO/Cu(100), the internal adsorbate stretch mode r as well as the adsorbate-surface stretch

mode Z at low temperatures can be highly and state-selectively populated. “Pure” dephas-

ing (elastic scattering processes), which can be estimated for the r mode from experimental

data [39], has been shown to be negligible for pulse lengths smaller than the “pure” dephasing

time T ∗
2 . Henceforward, working in general with rather short pulses (in the picosecond and

subpicosecond regime, usually chosen smaller than the energy relaxation time T1), “pure” de-

phasing was neglected, only dephasing due to energy relaxation (inelastic scattering processes)

was considered. For the high-energetic r mode, the dependence of “hot-band” excitation on

pulse fluence was studied for monochromatic sin2 pulses as well as OCT pulses. It turned out

that, delivering similar results for small fluences, OCT is of advantage at higher fluences as

the algorithm finds a complex “chirp” structure which is able to avoid stimulated emission

processes and can highly populate the overtone. The non-linear dependence of “hot-band

intensities” on fluence found here for the system CO/Cu(100) is in agreement with a similar

finding of Bonn et al. [119] for the C–O stretch mode in CO/Ru(0001). The r mode, further,

does scarcely couple to the other, low-energetic modes, as a comparison of the according

OCT pulses for a one- and a three-dimensional model has shown. This, however, is an ef-

fect of the potential of Tully et al. [36, 37] used here, it is possible that improved potentials

will result in a different coupling behaviour. High temperatures, where the low-lying states

are considerably Boltzmann-populated, have proven to lead to a decrease in population but

not in state-selectivity upon irradiation with light in resonance with the Z mode. Even the

overtones of the (“dark”) lateral mode X and the angular mode θ are accessible, although

with smaller selectivity and the need for high-intensity pulses as they are (1) only weakly IR

active and (2) there is considerable coupling to the Z mode. Latter, though, simplifies the

excitation of the combination mode Z/X. The φ mode can be excited to some extent either,

exploiting its population from the excited θ mode through dissipative effects. The Husimi
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transforms, carried out to resolve the often complicated OCT pulses simultaneously in time

and energy, deliver interesting information on “chirps”, off-resonant / static field contribu-

tions and allow to give better explanations on the excitation mechanisms. It was found that

optimal control often chooses the best pathway on its own, so it might serve to deliver “non-

intuitive” strategies to experimentalists. Within the two-dimensional model (r, Z) it was

shown that vibrationally induced desorption would be achieved best via a pathway including

as few as possible intermediate excitation steps, that is climbing the “ladder” in both r and

Z modes. In future calculations with a similar aim, employing a suitable four- (r, Z, θ, φ) or

full six-dimensional model, it can be expected that the rather energy-rich θ mode might play

an additional role.

For the system H/Si(100), IR-induced desorption was attempted within a simple one-

dimensional model of the H–Si stretch mode r, inspired by such a process experimentally

induced for H/Si(111) [14]: The long-lived r mode can be excited by five quanta (state |nr = 5〉
populated by over 94 %), transferring 1.1 eV into the system, which allows, considering the

energy gain of 2×2.3 eV per H–H bond formed, to overcome the (minimum) desorption barrier

of 3.4 eV (as obtained from the energy balance for a single H atom). Thereby, it is suggested

here to use five sin2-shaped pulses (of moderate 17 mJ/cm2 total fluence), “adjusted” to

the five one-photon transitions. This is in contrast to the experimental set-up employed

in case of the isotope-selective desorption of H2 from a Si(111) surface with H and D co-

adsorbed [14], where pulsed light of constant energy was employed. A possible explanation

why desorption was still observed in Ref. [14] might be the occurance of so-called energy

pooling [129]. For the two-dimensional model, additionally including the angular mode φ

(the angle of the H–Si bond with respect to the Si(100) surface), density matrix propagations

employing the Markovian approximation (as throughout in the present work) were compared

to non-Markovian calculations. For both field-free decay processes and IR excitations via

sin2-shaped pulses “hand-optimized” for the non-Markovian case, it was found that memory

effects can play a role if (1) the excited states couple strongly to the substrate phonons,

that is dissipation is strong and (2) a multitude of intermediate transitions takes place, as

the non-Markovian effects “accumulate”; this is the case for high-energetic “ladder climbing”

for example. Otherwise, the Markovian approximation holds well. Further, it was seen

that, unlike the r mode, the φ mode is not as easy to populate, being less dipole active.

Due to the harmonicity of the potential in φ, state-selective excitation is hard to achieve,

optimal control theory being only able to reduce intensities/fluences slightly. Mode-selective

excitation, however, is successful.
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A similar situation was observed in the two-dimensional model of H2/Ru(0001), where

both the H–H stretch mode r and the H2-surface stretch Z are quite harmonic. Additionally,

unlike in the previous cases where vibrational lifetimes are in the ps or even ns (for the r

mode of H/Si(100)) regime, both modes have a lifetime of only several hundreds of fs. The Z

mode is easier to populate, even some state-selectivity can be achieved by OCT pulses. The

only weakly IR allowed r mode is best accessed by overtone excitation for which the dipole

transition moments are more advantageous.

Finally, a novel hybrid global/local OCT algorithm has been developed allowing to in-

corporate explicitly time-dependent target operators in the control scheme for dissipative

systems according to Ref. [30]. The principle was to execute a series of global OCT calcu-

lations within small time-intervals (making up the total control interval) and thereby taking

the final outcome of interval n as initial condition for the (n+ 1)th interval. For a two-level

test system, the algorithm proved to be reliable, with the “normal” global OCT as limit-

ing case for a single “sub-interval”. The algorithm proved to be both most accurate and

computationally advantageous if the the number of sub-intervals coincides with the number

of timesteps used for propagation. However, when choosing smaller timesteps (here some

fs were used) this relation, particularly concerning the computational cost, might no longer

hold true. The elements of the time-dependent target density matrix were given as analytical

functions of time. Both populations and coherences of/between the states of interest were

given in the time-dependent target. Although the set-up of a functional form for coherences

is difficult, the algorithm possesses certain “self-healing” abilities, by fulfilling the population

targets and “adjusting” the coherence terms. The algorithm has been successfully applied to

two examples: (1) The creation, preservation and, finally, destruction of a wavepacket within

the two-level model and (2) a two-step “ladder climbing” within a 9-level model of the Z

mode of CO/Cu(100). In the first case, the algorithm was able to correct the unphysically

chosen coherence term of the target operator and thereby fulfilling the population dynamics

as required by the target. It was possible to preserve the wavepacket for ca. 2 ps and with

the present algorithm it is even feasible to keep the state populations constant for timescales

equivalent to or longer than the respective lifetime of the excited state of 22 ps. The stabi-

lization of the coherence, however, was futile. Within the present scheme it was only possible

to let the absolute value of a coherence term oscillate about its natural decay (not shown

for brevity). In the second case, the algorithm enables to enforce successive “ladder climb-

ing” where a sequence of two π pulses excites many states at once (due to the rather large

harmonicity of the considered mode at low energies) and thereby decreases the final target
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outcome dramatically, somewhat depending on the phase difference between them.

This work offers the possibility for further extensions. The immediate prospects for the

system CO/Cu(100) are full-dimensional calculations. The challenge for density matrix prop-

agations, but even more so for OCT calculations, are numerical limitations with respect to

the number of states considered. Global OCT in density matrix representation becomes nu-

merically instable and too costly for more than 40 to 50 states. One possibility is to select

states “by hand” as done for the three- and four-dimensional models in the present work.

Another interesting possibilty might be to automatize this procedure by iterated local balanc-

ing; the according algorithm interfaced to OCT is currently developed by Scott Greenwald

(Freie Universität Berlin). For H2/Ru(0001) and possibly H/Si(100) higher-/full-dimensional

models would also be of interest, in latter case the simulation of the desorption of H2 and a

comparison with H/Si(111), still to be modelled in theory, would be main goals. The OCT

algorithm with time-dependent targets can be still improved, as at the moment the often un-

known and/or complicated coherence terms are still necessary in the target as to generate an

oscillating field. Generally, the control of larger dissipative systems such as surfaces, solids,

liquids and biomolecules is aimed at. The present work shows that this goal is within reach.



x



Appendix A

Numerical methods for solving the

stationary problem

In order to determine the multi-dimensional vibrational states in anharmonic systems, the

time-independent Schrödinger equation (2.1) has to be solved. The numerical methods used

to represent the Hamiltonian are summarized in the following.

A.1 Sinc-function discrete variable representation

A common approach for the numerical representation of Eq. (2.1) is to use a so-called discrete

variable representation (DVR) [136–144] which has first been applied to solve the vibrational

eigenproblem by Peet and Yang [145–147]. Unlike in variational basis representation (VBR)

[141], the solutions of the eigenproblem in DVR are not expressed as coefficients of a set of

basis functions φi(x) (x being the spatial coordinate, a vibrational mode q for example), but

as coefficients of the approximate solutions φ̃i(xi) at chosen interpolation points xi.

For both the discrete variable representation and the Fourier Grid Hamiltonian methods,

the potential term V̂ of the total Hamiltonian Ĥ = T̂ + V̂ is diagonal in grid basis, that is

the Hamiltonian matrix element (i, j) reads

Hij = Tij + V (qi)δij , (A.1)
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with δij being the Kronecker-δ which is 1 in case of (i = j) and 0 if (i 6= j). The derivation

of expressions for Tij in sinc-function DVR is sketched in the following.

In a one-dimensional quantum system, the kinetic energy operator T̂ reads

T̂ = − h̄2

2m

d2

dx2
, (A.2)

with m being the (reduced) mass. In the sinc-function DVR method the coordinate x shall

be restricted to the interval [a, b] and the discrete points xi for the DVR equally spaced, that

is
(

xi = a+ (b− a)
i

N

)

, (A.3)

with i = 1, 2, . . . , (N − 1). The (N − 1) functions for the (N − 1) grid points are required to

vanish at (x = a) and (x = b), respectively. The sinc-function DVR of Colbert and Miller [98]

employed in this work, uses the particle-in-a-box eigenfunctions φn(q)

φn(x) =

(
2

b− a

) 1
2

sin

[
nπ(x− a)

b− a

]

, (A.4)

which fulfill the condition φn(a) = φn(b) = 0.

In grid point representation, the matrix element (ij) of the kinetic energy operator of

Eq. (A.2) becomes

Tij = − h̄2

2m
∆x

N−1∑

n=1

φ̃n(xi)φ̃
′′
n(xj) , (A.5)

where ∆x = (b−a)/N is the grid spacing, and φ̃′′n(xj) is the second derivative of φ̃n(xj) with

respect to xj . Inserting Eq. (A.4) into Eq. (A.5), the latter becomes

Tij =
h̄2

2m

(
π

b− a

)2 2

N

N−1∑

n=1

n2sin

(
nπi

N

)

sin

(
nπj

N

)

; (A.6)

and if one evaluates the sum over n analytically1, then:

Tij =
h̄2

2m

(−1)(i−j)

(b− a)2
π2

2

(
1

sin2 [π(i− j)/2N ]
− 1

sin2 [π(i+ j)/2N ]

)

. (A.7)

1The term inside the sum gives n2

2 cos(nA) − n2

2 cos(nB), with A = π(i − j) and B = π(i + j).

Then
∑N−1

n=1 n
2cos(nA) = − ∂2

∂A2 Re
∑N−1

n=1 einA and a second analogous expression for the B-term,

with which the geometric series can be rewritten as Re
∑N−1

n=1 einA = − 1
2 + 1

2

sin[(N− 1

2
)A]

sin( A
2

)
, and the

procedure to obtain Eq. (A.7) becomes clear.



Note, that Eq. (A.7) is only valid for (i 6= j).

For the limit (a → −∞) and (b → ∞), but finite grid spacing ∆xi = (xi+1 − xi) with xi

according to Eq. (A.3), Eq. (A.7) becomes

Tij =
(−1)(i−j)

2m∆x2
i

·
∣
∣
∣
∣
∣

π2

3 , if i = j
1

(i−j)2
, else

∣
∣
∣
∣
∣

. (A.8)

For a radial coordinate r with (a = 0) and (b→ ∞) and a grid spacing δr the matrix elements

of the kinetic energy read [98]

Tij =
h̄2

2mδr2
(−1)(i−j) ·

∣
∣
∣
∣
∣

π2

3 − 1
2i2

, if i = j
2

(i−j)2
− 2

(i+j)2
, else

∣
∣
∣
∣
∣

. (A.9)

Note, that the matrix element vanishes if (i = 0) or (j = 0), that is (r = 0) itself is not a

point on the grid. Further, it is [98]

Tij =
h̄2

2m
·

∣
∣
∣
∣
∣
∣
∣
∣
∣

(−1)(i−j)

2

(

1

sin2
[

π(i−j)
2N

] − 1

sin2
[

π(i+j)
2N

]

)

, if i = j

1
2

(

2N2+1
3 − 1

sin2[πi
N ]

)

, else

∣
∣
∣
∣
∣
∣
∣
∣
∣

(A.10)

for a polar coordinate (θ ∈ [0, π]) with grid points φi = iπ
N ; the matrix element vanishes for

(i = 0) or (j = 0), i. e. the points (θ = 0, π) are not on the grid. Finally, in case of an

azimuthal coordinate φ ∈ [0, 2π] represented by basis functions

Φn(φ) =
einφ

√
2π

, (A.11)

with (n = 0,±1,±2, . . . ,±N) which obey the periodic boundary condition Φn(0) = Φn(2π)

and which are represented by grid points (φi = i 2π
2N+1) with (i = 1, 2, . . . , 2N+1), the matrix

element becomes [98]

Tij =
h̄2

2m
(−1)(i−j) ·

∣
∣
∣
∣
∣
∣
∣

N(N+1)
3 , if i = j

cos
[

π(i−j)
2N

+1
]

2sin2
[

π(i−j)
2N

+1
] , else

∣
∣
∣
∣
∣
∣
∣

, (A.12)

with ∆φ being the grid spacing.

Equations (A.8), (A.9), (A.10), and (A.12) are simple expressions for the kinetic energy

term as compared to other DVRs, see references cited above for example.



In a F -dimensional system the complete Hamiltonian matrix element Hninj
belonging to

the two quantum number F -tupels ni and nj thus reads

Hninj
=

F∑

i=1,j=1

Tij

F∏

j,j′ 6=i

δjj′ + V (xi)
F∏

i,j=1

δij , (A.13)

as the potential energy matrix is diagonal as for all DVRs in general, independent of the type

of basis functions used.

A.2 Fourier Grid Hamiltonian

Similar to the sinc-function DVR method in Sec. A.1, in the Fourier Grid Hamiltonian (FGH)

method [148] the φi(x) are to be determined in a grid basis, such that φi(x) is numerically

represented at a finite number (N) of discrete, equidistant points xi, for which (∆x = xi+1 −
xi). A possibility to do that, is to use so-called Dirac δ-functions [149] as basis functions

φi(x) = δ(x− xi) (A.14)

which, although being not a discrete ortho-normal basis [150] as 〈φi(x)|φj(x)〉 = δ(xi − xj)

and thus δ(0) (for i = j) is not normalizable. This problem can be overcome in treating the

δ-functions as continuous basis functions, from which in the development of the basis set only

a subset is used, leading to a basis set error, but leaving a simple, diagonal expression for the

potential energy

〈δ(x− xi) |V (x)| δ(x− xj)〉 = V (xi)δ(xi − x) . (A.15)

Using the general relations in quantum mechanics for the (inverse) Fourier transformation

of wavefunctions ψ(x) to (from) momentum space p

ψ(p) =
1√
2πh̄

∫ ∞

−∞
ψ(x)e−

ipx
h̄ dx and ψ(x) =

1√
2πh̄

∫ ∞

−∞
ψ(p)e

ipx
h̄ dp, (A.16)

from which the so-called Parseval equation
∫ ∞

−∞
|ψ(x)|2 dx =

∫ ∞

−∞

∣
∣ψ(p)

∣
∣
2
dp (A.17)

follows, one obtains as Fourier transformation δxi
(p) of the δ-function

δxi
(p) =

1√
2πh̄

∫ ∞

−∞
δ(x− xi)e

− ipx
h̄ dx =

1√
2πh̄

e−
ipxi

h̄ . (A.18)



Using this relation, the elements Hij of the field-free Hamiltonian Ĥ0 = p̂2

2m + V (x) =

− h̄2

2m
d2

dx2 + V (x) can be expressed in the basis of the δ(x− xi) as

〈

δ(x− xi)
∣
∣
∣Ĥ0

∣
∣
∣ δ(x− xi)

〉

=

〈

δxi
(p)

∣
∣
∣
∣

p̂2

2m

∣
∣
∣
∣
δxj

(p)

〉

+ V (xi)δ(xi − xj) (A.19)

=
1

2πh̄

∫ ∞

−∞
e−

ip(xi−xj)

h̄
p2

2m
dp+ V (xi)δ(xi − xj) .

To simplify and merge Eq. (A.19) into a numerically easily applicable relation, discrete

Fourier transformation is afforded, as in reality one only has a finite number of N data points

and the values ψn of the function ψ(x) are only known at spatial points (xn = n∆x), with

(n = 0, 1, . . . , N − 1) and ∆x being the grid spacing in x. Through these N data points one

can only access N independent values of the connected Fourier-transformed function ψ(p)

within the momentum domain p ∈ [−pmax : pmax]2, namely

pj =
h̄j

2N∆x
, j = −N

2
, . . . ,

N

2
. (A.20)

Approximating the integral
∫∞
−∞ in (A.16) as sum

∑N−1
n=0

ψ(pj) ≈ ψj =
1√
2πh̄

N−1∑

n=0

ψne−
ipjxn

h̄ ∆x (A.21)

and inserting pjxn = h̄j
2N∆xn∆x = h̄jn

2N , the expression for discrete Fourier transformation

results

ψj =
∆x√
N

N−1∑

n=0

ψne−
ijn
2N , (A.22)

and analogously the inverse transformation

ψ(tn) ≈ ψn =
∆p√
N

N
2∑

j=−N
2

ψje
ijn
2N , with ∆p =

h̄

N∆x
. (A.23)

Inserting the above relation (A.22) into Eq. (A.19) and assuming (N = 2i) with i, j ∈ N

and some lengthy conversions, the diagonal and off-diagonal elements of the Hamiltonian can

be expressed as

Tii =
π2

µL2

N2 + 2

6
and Tij = (−1)(i−j) π

2

µL2

1

sin2
[

(i−j)π
N

] , (A.24)

2pmax = πh̄
∆x is the maximal momentum which can be resolved via the N grid points according to

the Heisenberg principle ∆x∆p ≥ h̄
2 and the so-called “sampling theorem” [151].



with L = (N−1)∆x being the grid length. As in case of the sinc-function DVR, the potential

terms of the Hamiltonian are diagonal and Hij is calculated according to Eq.(A.1).

The Hamiltonian matrix, when represented in either sinc-function DVR or FGH has then

to be diagonalized in order to retrieve eigenvalues and eigenfunctions. This is done in the

present work by the LAPACK routine DSYEVX [152].

A.3 Iterative two-term Lanczos eigensolver

As straightforward implementation of sinc-DVR and FGH methods of diagonalization as

outlined in Secs. A.1 and A.2 reach their limits here with three dimensions, in Ref. [97]

four- and six-dimensional eigenpairs (eigenstates and eigenvalues) were extracted according

to recently published ideas [153–156], using a contracted iterative coupled two-term Lanczos

eigensolver for extracting eigenpairs of the full dimensional Hamiltonian [157–159]. Advan-

tages of iterative methods over direct methods are that they allow exploiting the structure of

the Hamiltonian [160–168], and make it possible to extract only parts of the spectrum. The

bottom part of the spectrum, which is needed for latter calculations, is known to converge

first for Krylov subspace methods [160–168].

For the iterative scheme a basis of simply contracted functions was chosen, where the

basic idea is to split the full dimension Hamiltonian into two or more reduced-dimension

Hamiltonians. For a particular sub-dimensional Hamiltonian, the operator is represented in

a tensor product basis of time-independent one-dimensional functions, such as DVR func-

tions [98, 141, 169–175]. The lowest few energy levels and wavefunctions of each reduced-

dimension Hamiltonian are obtained using an iterative eigensolver [170, 172, 176–183]. The

resulting reduced-dimension wavefunctions are then used as a tensor product basis for the full

dimension problem. Its eigenvalues and eigenvectors are then extracted using yet again an

iterative eigensolver, for which it was shown that the structure of the matrix in the contracted

basis can be exploited efficiently [153, 154]. The main advantage of this simple contraction

strategy coupled to an iterative eigensolver is that it allows tackling larger systems in full

dimension.

In the present study a mixed basis of potential optimized DVR (PO-DVR) was chosen

for the motion on the surface along {X,Y }, and a contracted basis for the remaining degrees



of freedom, compare also the full six-dimensional Hamiltonian of Eq. (3.1). First, the four-

dimensional Hamiltonian

Ĥ = − h̄
2

2µ

∂2

∂r2
− h̄2

2m

∂2

∂Z2
+

h̄2

2µr2
Ĵ2(θ, φ) + V (r, Z, θ, φ) (A.25)

was solved, where V (r, Z, θ, φ) is obtained by fixing X and Y at their equilibrium values (see

Sec. 3.1). The stretch degrees of freedom, r and Z, are represented using PO-DVR bases.

They were generated by diagonalizing one-dimensional Hamiltonians represented using the

sinc-DVR functions of Colbert and Miller [98], see above. The required one-dimensional

potentials were obtained by freezing all other coordinates to their equilibrium values.

Real spherical harmonics were used to describe the angular degrees of freedom

|jm〉 = NjmP
|m|
j (cos(θ))

{

cos(mφ) for m ≥ 0

sin(mφ) for m < 0
, (A.26)

where P
|m|
j (cos(θ)) are associated Legendre polynomials and Njm are normalization con-

stants, including the Condon-Shortley phase factor [153]. All spherical harmonics up to

(jmax = 30) and (−jmax < m ≤ jmax) were included in the basis for the contraction scheme.

The angular part of the potential was represented on a direct product grid of (Nθ = jmax +1)

points ranging from 0 to π for θ, and (Nφ = 2jmax + 1) points ranging from 0 to 2π for φ.

The lowest lying eigenvalues and eigenvectors of the resulting four-dimensional Hamiltonian

matrix were extracted using the coupled two-term Lanczos algorithm. The eigenfunctions of

the four-dimensional Hamiltonian have the form

|Φ4D
i 〉 =

∑

αβjm

C
(i)
αβjm|χα(Z)〉|χβ(r)〉|jm〉 , (A.27)

where |χα(Z)〉 are PO-DVR functions along Z and |χβ(r)〉 are PO-DVR functions along

r. Full re-orthogonalization of the Lanczos vectors was used to favour convergence and to

recover the true degeneracy of the eigenstates.

The eigenfunctions of the four-dimensional problem are used as a basis for the full di-

mension problem in combination with PO-DVR functions for the {X,Y } coordinates. That

is, the nth six-dimensional wavefunction has the form

|ψn〉 =
∑

κσi

A
(n)
κσi|χκ(X)〉|χσ(Y )〉|Φ4D

i 〉 , (A.28)

where |χκ(X)〉 is a PO-DVR basis for X and |χσ(Y )〉 is a PO-DVR basis for Y . The eigen-

functions are again extracted using a coupled two-term Lanczos eigensolver with full reorthog-

onalization. For implementation details, see Ref. [156].



Appendix B

Boundstate calculations for

CO/Cu(100)

Shown in Fig. B.1 are selected two-dimensional eigenstates |nr, nZ〉 obtained from solving

Eq. (3.6) on a grid, compare Sec. 3.1.1.

Figs. B.2 and B.3 depict two-dimensional cuts through the three-dimensional poten-

tial surface V (r, Z,X) and selected vibrational eigenstates |nr, nZ , nX〉, respectively. See

Sec. 3.1.1 for more details.
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Figure B.1: Selected vibrational eigenstates |nr, nZ〉 of the 2D CO/Cu(100) model as

discussed in Sec. 3.1.1. State |0, 14〉 is the last bound state, states |1, 4〉 and |0, 15〉 are the

first unbound states.
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Figure B.2: 2D cuts through the 3D potential energy surface V (r, Z,X) as obtained from

Eqs. (3.3), (3.4) and (3.5). The Y , θ and φ degrees of freedom, see Fig. 3.1(a), are fixed at

their equilibrium value of zero. For the cuts X = X0 = 0 a0 is chosen in a), Z = Z0 = 4.81 a0

in case of b) and r = r0 = 2.12 a0 in plot c).
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Figure B.3: Selected vibrational eigenstates |nr, nZ , nX〉 of the 3D CO/Cu(100) model as

discussed in Sec. 3.1.1, represented as 2D cuts with X = X0 = 0 (r/Z plots) and r = r0 =

2.13 a0 (Z/X plots), respectively. Shown in the upper row are the ground state and the first

excited states in Z and r – compare also Fig. B.1 above; in the middle row three wavefunctions

are shown having nodes in X alone, displaying the gerade symmetry for even and ungerade

for odd quantum numbers. In the lower row a “mixed” state, |0, 1, 2〉 and |2, 0, 0〉, the second

excited state in the CO stretch mode r, latter lying above the desorption limit, are shown.



Appendix C

Numerical methods to solve the

Liouville-von Neumann equation

The numerical solution of Eqs. (2.15) and (2.16) with a given field F (t), is based on three

concepts:

• The spectral decomposition of the time-evolution operator eL̃t := G(L̃t), where L̃ =

− i
h̄L, in

ρ̂(t) = eL̃tρ̂(0) = G(L̃t)ρ̂(0) (C.1)

by setting up the eigenequation

L̃Ên = λnÊn , (C.2)

with the λn and Ên being the eigenvalues and eigenoperators of the Liouvillian L̃. In

this (exact!) representation the Liouvillian superoperator reads

L̃• =
L−1∑

n=0

λnÊnTr{Ê†
n•} , (C.3)

with • being the surrogate for the quantity the Liouvillian acts on and L the number

of eigenvalues (if the Hamiltonian Ĥ, from which the Liouvillian is constructed, has N

eigenvalues, the Liouvillian has N ×N). Likewise G(L̃) can be spectrally decomposed,
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and following from that Eq. (C.1) then reads

ρ̂(t) =
L−1∑

n=0

eλntÊnTr{Ê†
nρ̂(0)} , (C.4)

which can be used to obtain the time-dependent density, if L can be diagonalized.

• But as eigenvalues λn and eigenoperators Ên are usually not known and a direct di-

agonalisation of the Liouvillian is difficult or impossible, a convenient way to find

approximations for them is by polynomial expansion of G(L̃). At prespecified sam-

pling points zn, interpolation polynomials P (zn) reconstruct by definition the values of

an unknown function G(zn). In this scheme, G(L̃) still can be represented exactly as

G(L̃) = P (L̃) =
L−1∑

n=0

anRn(L̃) . (C.5)

Specifically, if one uses a Newtonian interpolation scheme, it is

Rn(L̃) =

{ ˆ̂1 , n = 0
∏n−1

i=0 (L̃ − λi
ˆ̂1) , n > 0

}

, (C.6)

with ˆ̂1 being the unitary superoperator corresponding to the Liouvillian superoperator

L. And the coefficients an of Eq. (C.5) are the so-called divided differences, which

generally are calculated as

a0 = G(λ0) =: G[λ0]

a1 = G(λ1)−G(λ0)
λ1−λ0

=: G[λ0, λ1]

a2 = G(λ1,λ2)−G(λ0,λ1)
λ2−λ0

=: G[λ0, λ1, λ2]

. . .

an = G(λ1,λ2,...,λn)−G(λ0,λ1,...,λn−1)
λn−λ0

=: G[λ0, λ1, . . . , λn]

. (C.7)

Graphically these divided differences can be obtained from a “pyramidal” scheme. Let’s

assume four interpolation points λ0, λ1, λ2 and λ3:

λ0 G[λ0]

G[λ0, λ1]

λ1 G[λ1] G[λ0, λ1, λ2]

G[λ1, λ2] G[λ0, λ1, λ2, λ3]

λ2 G[λ2] G[λ1, λ2, λ3]

G[λ2, λ3]

λ3 G[λ3]

. (C.8)



From this scheme, one obtains a certain coefficient of the Newtonian polynomial by

forming the difference of the two coefficients (the lower one minus the upper one)

immediately to the left of the quantity searched for and dividing this by the difference of

the two interpolation points in the two rows following within this “pyramidal” pattern;

so for example G[λ1, λ2, λ3] = G[λ2,λ3]−G[λ1,λ2]
λ3−λ1

.

• Eq. (C.5) still requires the knowledge of the λn, one can indeed approximate from M

sampling points z
(M)
m as

G(L̃) ≈ P̃ (L̃) =
M−1∑

m=0

amR
(M)
m (L̃) . (C.9)

Here,

R(M)
m =

{ ˆ̂1 , m = 0
∏m−1

i=0 (L̃ − z
(M)
i

ˆ̂1) , m > 0

}

, (C.10)

and

a0 = G(z
(M)
0 ) =: G[z

(M)
0 ]

a1 =
G(z

(M)
1 )−G(z

(M)
0 )

z
(M)
1 −z

(M)
0

=: G[z
(M)
0 , z

(M)
1 ]

. . .

am =
G(z

(M)
1 ,z

(M)
2 ,...,z

(M)
m )−G(z

(M)
0 ,z

(M)
1 ,...,z

(M)
n−1)

z
(M)
n −z

(M)
0

=: G[z
(M)
0 , z

(M)
1 , . . . , z

(M)
m ] .

(C.11)

Further, the number of sampling points actually used in the Newton interpolation is

smaller than the number of eigenvalues λn of L̃.

The z
(M)
m are retrieved in the present work from a Schwarz-Christoffel conformal map-

ping scheme [92, 93]. This scheme finds uniformly distributed sampling points z
(M)
m

via a mapping of the complex eigenvalue spectrum on a rectangle of size (a × b),

where a is the width of the energy spectrum, i. e. [a = − i
h̄max(Ei − Ej)], and

[b = ΓD = max(Γi→j)+max(γij)], the maximum dissipation plus dephasing “strength”.

This rectangle is located in the left half of the complex plane and mirror-symmetric

with respect to the real axis, see Fig. C (a), and encloses all possible eigenvalues λn of

L̃.

As G(L̃) is analytic, it can be fully specified by sampling points (z
(M)
m ∈ D), where D

is an arbitrary domain enclosing the eigenvalues λn. Almost optimal sampling points

are uniformly distributed on D, that is

lim
M→∞

max
(

|RM (z)| 1
M

)

= r , (C.12)
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Figure C.1: Schwarz-Christoffel conformal mapping scheme: (a) A rectangle of size

(a× b), located in the left half of the complex plane, with sides a and b, defined in the

text, encloses all the eigenvalues λn of L̃. Shown schematically in (b) is the mapping of

eight sampling points w
(8)
m uniformly distributed on the unity circle in the complex plane

onto the rectangle of (a), delivering eight uniformly distributed sampling points z
(8)
m

being the optimal to represent the analytic function G(L̃) via Eq. (C.9) and relations

(C.10) and (C.11).

is valid for any (z ∈ D). r is called the logarithmic capacity and is defined via

RM (z) =
M−1∏

m=0

(z − z(M)
m ) . (C.13)

IfD is a circle, optimal sampling points w
(M)
m can be chosen as theM roots of

(
wM = r

)

leading to
(

w
(M)
m = re

i2πm
M

)

with (m = 0, 1, . . . ,M − 1). This is exemplary shown for

(M = 8) in Fig. C (b) on the left side. The Schwarz-Christoffel transform [92, 93]

numerically finds

z(M)
m = Ψ

[

w(M)
m

]

, (C.14)

on a rectangle (in most cases), as is graphically shown in Fig. C (b) on the left. This

numerical transformation is most stable if (r = 1), i. e. when the wM
m are the roots of

the unity circle in the complex plane.

For each propagation the Schwarz-Christoffel mapping (giving the z
(M)
m and thus the

RM (z)) and the calculation of the Newton polynomial coefficients am has to be done only



once. Then the dynamics can be solved by substituting the polynomial approximation (C.9)

for G(L̃t) into Eq. (C.1) which describes the evolution of ρ̂(t) in time.



Appendix D

Numerical method to solve the

TDSE: The split-operator

propagator method

In order to solve the time-dependent Schrödinger equation (2.4) the wavefunction |ψ(t)〉 is

expanded here in the basis of vibrational eigenstates |φi〉

|ψ(t)〉 =
∑

i

Ci(t)|φi〉 , (D.1)

with the Ci(t) being the elements of the coefficient vector C(t) being evolved in time in

accordance to Eq. (2.4). Further, time is discretized (t→ ti) with ∆t = ti+1 − ti.

Using a splitting technique [184], the coefficient vector C(t+∆t) at time (t = t+∆t) can

be evaluated as

C(t+ ∆t) = U †e
−iF (t)µ̃∆t

Ue−iH̃∆tC(t) . (D.2)

Thereby, H̃ is the (unperturbed) Hamiltonian matrix in basis of vibrational eigenstates which

is diagonal with H̃ii = Ei, the Ei being the vibrational eigenvalues. µ̃ is the (diagonal) dipole

matrix and U is an unitary matrix which transforms from the basis of vibrational eigenstates

into a basis where the dipole matrix is diagonal.
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Appendix E

Quantum chemical methods

E.1 Hartree-Fock theory

The Hartree-Fock (HF) method [70] offers an approximate solution for the (non-relativistic)

time-independent electronic Schrödinger equation (2.1) within the Born-Oppenheimer ap-

proximation [69].

The ground state wavefunction |Ψ0〉 is taken as a single Slater determinant [70] which is

the simplest form of an antisymmetric N -electron wavefunction

|Ψ0〉 =
1√
N !
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∣
∣

. (E.1)

Here, the χi are one-electron spin orbitals with xj as vector describing the spin and spatial

coordinates of electron j, where x = (r, ω) consists of spatial and spin coordinates.

The electronic Hamiltonian Ĥe consists of a sum of operators for the kinetic energy of

the electrons T̂e, the attractive electron-nuclear interaction potential Ven and the repulsive

electron-electron potential Vee. The repulsive internuclear potential Vnn is a constant within

the Born-Oppenheimer approximation for a given molecular geometry. With NA being the

number of nuclei, ZA the charge of nucleus A and rpq being the distance between particles p
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and q, Ĥe, expressed in atomic units, is

Ĥe = −
N∑

i=1

∆i

2
︸ ︷︷ ︸

T̂e

−
N∑

i=1

NA∑

A=1

ZA

riA
︸ ︷︷ ︸

Ven

+
N∑

i=1

N∑

j>i

1

rij
︸ ︷︷ ︸

Vee

+

NA∑

A=1

NA∑

B>A

ZAZB

rAB

︸ ︷︷ ︸

Vnn

. (E.2)

E.1.1 Hartree-Fock Equations

By variationally minimizing the expectation value for the ground state energy

E0 = 〈Ψ0|Ĥe|Ψ0〉 (E.3)

and additionally applying the condition of orthonormal spin orbitals

〈χi|χj〉 = δij (E.4)

the Hartree-Fock equations are obtained

f̂(x1)χa(x1) = εaχa(x1) , (E.5)

where εa is the one-electron energy of spin orbital a. For closed-shell systems the spin variable

can be eliminated by integration over ω to give the spin-free restricted Hartree-Fock (RHF)

equations in which the spatial orbitals ψa are the same for α- and β-electrons:

f̂(r1)ψa(r1) = εaψa(r1) . (E.6)

Here, the Fock operator reads

f̂(r1) = ĥ(r1) +

N
2∑

b=1

(

2Ĵb(r1) − K̂b(r1)
)

︸ ︷︷ ︸

V̂ HF (r1)

, (E.7)

and Ĵb and K̂b are Coulomb and exchange operators which constitute the Hartree-Fock po-

tential V̂ HF (r1). (For their definition, see, for example, Ref. [70].)

In practical applications, the spatial molecular orbitals ψa of the Hartree-Fock equations

(E.6) are expressed by a finite linear combination of K basis functions φν centered at the

atoms, i. e. by applying the LCAO-MO ansatz (Linear Combination of Atomic Orbitals to

Molecular Orbitals):

ψa(r1) =
K∑

ν=1

Cνaφν(r1) . (E.8)



By multiplying Eq. (E.6) by φ∗µ(r1) from the left, and integration over r1 one obtains the

so-called Roothaan-Hall equations in matrix form

F Ci = εi S Ci (E.9)

which can be solved numerically.

Here, the matrix elements Fµν and Sµν of Fock and overlap matrix are

Fµν =

∫

dr1 φ
∗
µ(r1)f̂(r1)φν(r1) = 〈φµ|f̂ |φν〉 (E.10)

Sµν =

∫

dr1 φ
∗
µ(r1)φν(r1) = 〈φµ|φν〉 . (E.11)

Further, εi are the HF orbital energies, and

Ci =










C1i

C2i

...

CKi










. (E.12)

is the coefficient vector of MO i. Eq. (E.9) is solved by a self-consistent field (SCF) procedure.

E.2 Density functional theory

As a powerful alternative to wave-function based methods such as HF, density functional

theory (DFT), which is based on the electronic density ρ(r) has emerged. DFT methods are

founded on the so-called Hohenberg-Kohn theorems.

E.2.1 Basics

One consequence of the Hohenberg-Kohn theorems is an expression for the ground state

energy:

EHK [ρ] = T [ρ] +

∫

ρ(r)Ven(r)dr + J [ρ] + Exc[ρ] . (E.13)

Here, ρ = ρ(r) is the electronic density, T [ρ] the kinetic energy functional,
∫
ρ(r)Ven(r)dr

is the electron-nuclear attraction, J [ρ] the classical inter-electronic repulsion and Exc[ρ] the

non-classical exchange-correlation functional.



While the Coulomb functional J [ρ] can be written immediately as

J [ρ] =
1

2

∫∫
ρ(r1)ρ(r2)

r12
dr1dr2 , (E.14)

and T [ρ] is calculated in the frame of the Kohn-Sham equations (see section E.2.2), suitable

functionals for the nonclassical contributions to the energy must be found.

The functional Exc[ρ] is normally expressed as a sum of a correlation functional Ec[ρ] and

an exchange functional Ex[ρ]

Exc[ρ] = Ec[ρ] + Ex[ρ] . (E.15)

For the exchange functional Ex[ρ], the local density approximation (LDA)

ELDA
x [ρ] = −αCx

∫

ρ
4
3 (r)dr (E.16)

(E.17)

or the generalized gradient approximation (GGA)

EGGA
x [ρ] = ELDA

x [ρ] −
∫ |∇ρ|2

ρ(r)
4
3

f(
|∇ρ|2

ρ(r)
4
3

) (E.18)

are popular, with α being atom-specific and Cx being a constant [185]. Further, in the

semi-empirical Becke functional [186] EB88
x (= EB

x ) one uses

f(x) =
β

1 + 6βx 1
sinh x

with x =
|∇ρ|
ρ(r)

4
3

. (E.19)

and β being a constant.

For the correlation energy a variety of functionals has been developed. Examples are the

LDA correlation functional ELDA
c and the the so-called LYP functional (GGA) of Lee, Yang

and Parr [187] which contains one empirical parameter, and which is denoted as ELY P
c . In

the following we will mostly use the widely used B3LYP-functional [116]:

EB3LY P
xc = (1 − a′)ELDA

xc + a′Eex
x + b′EB88

x

+ c′ELY P
c + (1 − c′)ELDA

c . (E.20)

The parameters a, b, c and a′, b′, c′ are obtained by fitting to sets of atomic and molecular

data. B3LYP is a hybrid functional which also contains some “exact” (HF-like) exchange

energy Ex.



E.2.2 Kohn-Sham equations

The Kohn-Sham equations offer a numerical way to compute the kinetic energy functional

T [ρ] and the ground state electron density ρ(r) by introducing orbitals ψs
a.

In analogy to the Hartree-Fock one-particle operator f̂ in Eq. (E.7), a Kohn-Sham op-

erator f̂KS can be defined and the canonical Kohn-Sham equations for RKS (Restricted

Kohn-Sham) are

[−∆1

2
+ Veff (r1)]

︸ ︷︷ ︸

f̂KS

ψs
a(r1) = εsaψ

s
a(r1) . (E.21)

Solution of Eq. (E.21) yields Kohn-Sham orbitals ψs
a and orbital energies εsa. The effective

one-particle potential Veff (r1) is the sum of the external potential Ven(r1), the Coulomb

potential VJ and the exchange-correlation potential Vxc

Veff (r1) = Ven(r1) +
δJ [ρ]

δρ
︸ ︷︷ ︸

VJ

+
δExc[ρ]

δρ
︸ ︷︷ ︸

Vxc

(E.22)

in which the notation δA[ρ]
δρ represents functional derivatives. In contrast to the effective

Hartree-Fock potential V̂ HF , the effective Kohn-Sham potential Veff is local.

The ground state electron density ρ(r1) is simply given by

ρ(r1) = 2

N
2∑

i=1

|ψs
i (r1)|2 . (E.23)

In a SCF procedure, starting from initial Kohn-Sham orbitals ψs
a, ρ

[0], solutions for V
[0]
xc

and V
[0]
eff are obtained. The nth iteration yields the orbital energies ε

s[n]
a and the orbitals

ψ
s[n]
a , so that ρ[n], V

[n]
xc and V

[n]
eff can be calculated. The iteration stops, when E

[n]
KS and ρ[n]

stay almost invariant in comparison with the previous iteration (n−1).

E.3 Effective core potentials

For chemical elements of third row and higher, like the metals copper and ruthenium for

which quantum chemical calculations are carried out in this work, there is a large number



of core electrons which play no role in a chemical sense. But in order to represent the

valence orbitals, these core orbitals, nevertheless, need to be expanded by a large number of

basis functions, which would make it costly or impossible to calculate larger metal clusters.

Further, relativistic effects are of importance in the second half of the periodic system, and

they are not included in normal HF or DFT theory using Slater or Gaussian type orbital

basis sets.

These two problems can be overcome by using so-called effective core potentials (ECPs) or

pseudopotentials replacing the core electrons [188]. These are created by (1) generating a good

all-electron wavefunction for the atom by either a numerical Hartree-Fock or a relativistic

Dirac-Hartree-Fock calculation, (2) replacing the valence orbitals by a set of node-less pseudo-

orbitals designed such that they behave correctly in the outer part, but do not have a nodal

structure in the core region, (3) replacing the core electrons by a potential so that the solution

of the Schrödinger (or Dirac) equation produces valence orbitals matching the pseudo-orbitals

and (4) fitting this numerical potential to a suitable set of analytical functions, normally (two

to seven) Gaussians

VECP (r) =
∑

i

air
nie−αir

2
. (E.24)

Parameters ai, ni and αi depend on the angular momentum (s-, p-, d-, . . . -shell) and are

determined by least square fits.

The quasi-relativistic ECP used here for copper and ruthenium is LANL2 (Los Alamos

National Laboratory 2) of Hay and Wadt [117]. Quasi-relativistic means that still a one-

component wavefunction is employed (i. e., no antimatter states and no spin-orbit coupling),

however, the most important relativistic contributions such as the mass-velocity and so-called

Darwin terms, are included. Ref. [117] also provides spacial atomic orbital basis sets to be

used in conjunction with the ECPs.



Appendix F

A new parametrization of the

CO/Cu(100) dipole function

A simple approach is chosen to fit an improved dipole function µz(r, Z) according to Eq. (3.9),

based on cluster calculations:

• One-dimensional potentials Ṽ (r, Z0) and Ṽ (r0, Z) and the corresponding dipole func-

tions µ̃z(r, Z0) and µ̃z(r0, Z) are calculated with the help of a cluster model and equi-

librium distances r0 = 2.13 a0, Z0 = 4.81 according to the potential of Refs. [36, 37].

• The points of the calculated µ̃z(r, Z0) and µ̃z(r0, Z) are fitted to the linear form

µ̃0 + a(r − r0) (F.1)

along r and Mecke form along Z

[µ̃0 − b(Z − Z0)] e
−Z−Z0

c , (F.2)

respectively, where µ̃0 is the equilibrium dipole moment (along z) of the cluster model.

The intervals in which these two fits are carried out are determined by a certain limit in

the squared difference between the Tully potential V (r, Z) and the calculated potential

Ṽ (r, Z). Here, this limit is chosen to be 5·10−4 Eh – the precision of energy convergence

of the SCF procedure.
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• The parameters obtained in this way enter Eq. (3.9). The disparity between the actual

µ0 and the µ̃0 of the cluster model is not affecting the linear term in r, being a mere

addition in the total dipole expression, but it changes the curvature in the Mecke term

when transferring parameters b and c from µ̃z(r, Z) to µz(r, Z), due to the requirement

of correct asymptotic behaviour for (Z → ∞).

Figure F.1: CO@Cu34 cluster on which the B3LYP calculations for the improved dipole

function were performed.

Shown in Fig. F.1 is the cluster model which was found to be most suitable. It consists of

34 copper atoms, arranged in three layers á 9, 16 and 9 atoms, respectively. The bonding

distances were chosen in accordance with the potential of Tully et al. [36, 37], that is r0 =

2.126 a0, Z0 = 4.81 a0 and a lattice constant of 6.829 a0 – copper being of fcc (face-centered

cubic) structure. As method, B3LYP [116] (see also Eq. (E.20) in Sec. E.2.1) was chosen. The

basis for C and O was 6-311G (d,p) [189]. For all Cu atoms a quasi-relativistic effective core

potential – LANL2 (Los Alamos National Laboratories 2) – and the corresponding basis set

for 19 valence electrons per copper was chosen. The first and third metal layer are treated

completely in double-zeta basis (LANL2DZ), likewise the four inner atoms of the second layer

(having direct bonds to the first layer Cu-atom upon which CO is absorbed). The outer atoms

of the second layer are treated within minimal basis (LANL2MB). See Appendix E, Sec. E.3

for more details on pseudopotentials and LANL2(DZ/MB) in particular. All calculations

were carried out using the gaussian 03 programme package [108]

The top panels of Fig. F.2 (a) and (b), display in dashed lines the potential energy surfaces

V (r, Z0) − V (r0, Z0) and V (r0, Z) − V (r0, Z0) as obtained from the potential of Tully et

al. [36, 37], by setting all system coordinates to their equilibrium values in Eqs. (3.3), (3.4)



and (3.5), with the exception of r (a) and Z (b) respectively. Plotted in green solid lines

are the results for Ṽ (r, Z0) − Ṽ (r0, Z0) and Ṽ (r0, Z) − Ṽ (r0, Z0) from cluster calculations.

In both cases the calculations underestimate the repulsion for negative displacements and

overestimate it for positive displacements, both thought to be a result of having a finite

cluster instead of a surface1. Close to the respective equilibrium positions the agreement is

good. The points within the regions where squared difference between the (relative) cluster

potential and the potential of Tully and co-workers is smaller than 5·10−4 Eh is chosen for

the dipole fits (see above) which are plotted in the middle panels of (a) and (b): The dashed

line indicates the calculated points and the solid green line the fits to Eq. (F.1) in (a) and

to Eq. (F.2) in (b). These fits deliver, with a precision of 0.001 e / 0.001 a0, a = −1.810 e

for the linear term and b = −0.510 e and c = 1.808 a0 for the Mecke term. The lower panels

finally show µz(r, Z0) = µ0 +a(r−r0) and µz(r0, Z) = [µ0 − b(Z − Z0)] e
−Z−Z0

c in solid green

lines, with the parameters obtained from µz(r, Z0) and µz(r0, Z), respectively. Plotted for

comparison (dashed lines) are the same terms from the old dipole function (3.8). Note, that

the “bend” in µ̃z(r, Z0) occuring shortly after r = 2.3 a0 is probably due to an arbitrary

change of sign of the cluster dipole moment.

An extended two-dimensional model is taken into account to present the differences be-

tween old and new dipole function. It consists not only of 21 states, as is the case for the

model presented in Sec. 3.1.1, which is suited to study low-energetic excitations – contain-

ing only two states above the desorption limit – but contains further “continuum states”,

compare Sec. 4.1.2. Plotted in Fig. F.3 are the dipole transition moments of interest, being

those between “pure” states |0, nZ〉, |0,mZ〉 in the Z mode. Fig. F.3 (a) and (b) display those

values obtained for the old dipole function (3.8). As can be seen in (a) µ(0,nZ)(0,mZ) increases

for single quantum transitions [(mZ = nZ ± 1), the row parallel to the diagonal (nZ = mZ)]

up to a quantum number of 8, then it decreases. Double excitations [(mZ = nZ ± 2), the

row parallel to the single excitation terms] display a similar behaviour, but peaking later on

around quantum numbers 16/17 and having in general smaller values. Still smaller values

are obtained for triple excitations, which gain a role only at or above the desorption limit

(> quantum number 14). For still higher quantum numbers, though, the dipole transition

moments for single transitions explode to very large values due to the quadratic term in

Z. For the new dipole form (3.9), the data shown in (c), this does not happen. After run-

ning through their maxima the dipole transition momenta for one-, two- and three-quanta

transitions approach zero for (nZ ,mZ → ∞).

1However, it is also not clear whether the potential surface of Refs. [36,37] is accurate.
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Figure F.2: Cluster calculations and fits to improve µz(r, Z0) (a) and µz(r0, Z) (b). Top

panels: The potentials V (r, Z0)−V (r0, Z0) and V (r0, Z)−V (r0, Z0) (dashed lines) as derived

from the six-dimensional PES of Tully et al. [36,37] and potentials Ṽ (r, Z0) and Ṽ (r0, Z) (solid

green lines) calculated from the CO@Cu34 cluster (Fig. F.1) within B3LYP/LANL2(DZ/MB).

Middle panels: Dipole functions µ̃z(r, Z0) (a) and µ̃z(r0, Z) (b) as obtained from the cluster

calculations (dashed lines) and fits (solid green lines) to Eq. (F.1) in (a) and to Eq. (F.2) in

(b). Lower panels: µz(r, Z0) (a) and µz(r0, Z) (b) according to the old dipole function of

Eq. (3.8) with parameters A = -2.25 e, B = 0.566 e and C = -0.361 e/a0 (dashed lines) and

according to the new functional form of Eq. (3.9) with the parameters obtained from the fits.
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Figure F.3: Squared dipole transition matrix elements |µ(0,nZ)(0,mZ)|2 as obtained within

the 2D model of CO/Cu(100) for the old dipole form of Eq. (3.8) (a+b) and the new form of

Eq. (3.9) (c).



Appendix G

Non-Markovian theory

One variant of reduced density matrix theory for the laser-driven vibrational system dynamics

used in Ref. [104] and Sec. 4.2.2 includes “memory” (non-Markovian theory) and is described

in the following.

The interaction picture is used here, i. e. the system-bath interaction (see the Hamiltonian

for the combined total system in Eq. (3.21)) can generally be written as

ĤSB =
∑

k

Q̂k(s1, s2, . . . , sN )F̂k(q1, q2, . . . , qM ) . (G.1)

ĤSB is bilinear in system and bath operators Q̂k(s1, s2, . . . , sN ) and Fk(q1, q2, . . . , qM ), where

s1, s2, . . . , sN (=r,φ, here) and q1, q2, . . . , qM are the N system and M bath coordinates,

respectively. In the model for H/Si(100) used here,

ĤSB =
M∑

i=1

λi(r, φ)qi +
M∑

i=1

M∑

j=1

Λij(r, φ)qiqj . (G.2)

Further, the system and bath Hamiltonians ĤS and ĤB are given by Eqs. (3.18) and (3.22).

The density operator characterizing the total system in the interaction picture1 is denoted

by σ̂I(t). Its time evolution is governed by the Liouville equation, see, e. g., Ref. [54],

∂σ̂I(t)

∂t
=
i

h̄
Fz(t)

[
µI

z(r, φ, t), σ̂
I(t)
]
− i

h̄

[

ĤI
SB(r, φ, {qi}, t), σI(t)

]

. (G.6)

1The density operator σI(t) and the operators of Eq. (G.6) in the interaction picture are related
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The statistical description of the system coupled to an unobserved bath is provided by the

reduced density operator ρ̂I(t) = TrB

{
σ̂I(t)

}
. The equation of motion for the reduced density

operator is obtained [54] by making use of the formal solution of the Liouville equation (G.6)

which gives – under the condition of irreversibility, i. e. σ̂I(t) = ρ̂I(t) ρ̂B(0) – the equation

of motion for the reduced density operator

∂ρ̂I(t)

∂t
=
i

h̄
Fz(t)

[
µI(r, φ, t), ρ̂I(t)

]
− 1

h̄2 R̂
I(r, φ, t) , (G.7)

where R̂I(r, φ, t), which will be referred to as the time-dependent relaxation operator, is

R̂I(r, φ, t) = R̂I
1(r, φ, t) + R̂I

2(r, φ, t) =

=
M∑

i

∫ t

0
dt′
{[

λI
i (r, φ, t), λ

I
i (r, φ, t

′)ρ̂I(t′)
]

〈Qi(t)Qi(t
′)〉

−
[

λI
i (r, φ, t) , ρ̂I(t′)λI

i (r, φ, t
′)
]

〈Qi(t
′)Qi(t)〉

}

+
1

2

M∑

i

M∑

j

∫ t

0
dt′
{[

ΛI
ij(r, φ, t), ΛI

ij(r, φ, t
′)ρ̂I(t′)

]

〈Qij(t)Qij(t
′)〉

−
[

ΛI
ij(r, φ, t), ρ̂

I(t′)ΛI
ij(r, φ, t

′)
]

〈Qij(t
′)Qij(t)〉

}

. (G.8)

The overall relaxation operator R̂I(r, φ, t) consists of two parts, R̂I
1(r, φ, t) accounting for one-

phonon relaxation, and R̂I
2(r, φ, t) accounting for two-phonon relaxation. The 〈Qi(t)Qi(t

′)〉 =

TrB{qI
i (t)q

I
i (t

′)ρ̂B(0)} and the 〈Qij(t)Qij(t
′)〉 = TrB{qI

i (t)q
I
j (t)q

I
i (t

′)qI
j (t

′)ρ̂B(0)} are

time correlation functions and it can be easily shown that 〈Qij(t)Qij(t
′)〉 =

〈Qi(t)Qi(t
′)〉〈Qj(t)Qj(t

′)〉.

For the bath represented by normal modes (an ensemble of harmonic oscillators) [see

Eq. (3.22)] it can be shown that the time correlation function for one-phonon transitions,

〈Qi(t)Qi(t
′)〉, has the following form:

〈Qi(t)Qi(t
′)〉 =

h̄

2Miωi
Φ(ωi, t− t′, T ) ,

Φ(ωi, t− t′, T ) = [n(ωi) + 1] exp[−iωi(t− t′)] + n(ωi) exp[iωi(t− t′)] , (G.9)

to the Schrödinger picture as follows:

σ̂I(t) = ei(ĤS+ĤB)t/h̄ σ̂(t) e−i(ĤS+ĤB)t/h̄ , (G.3)

BI(r, φ, t) = eiĤSt/h̄ B(r, φ) e−iĤSt/h̄ (with B = µz, λi, or Λij) , (G.4)

qI
i (t) = eiĤBt/h̄ qi e

−iĤBt/h̄ . (G.5)



where

n(ωi) =
1

exp(h̄ωi/kBT ) − 1
(G.10)

is the Bose-Einstein distribution function.

Equation of motion (G.7) has been treated numerically in the system-state representation.

Taking matrix elements between the system eigenstates |n〉 = ψn(r, φ), one gets

dρI
nn′(t)

dt
=
i

h̄
Fz(t)[µ

I
z(t), ρ̂

I(t)]nn′ − 1

h̄2 [RI
1nn′(t) +RI

2nn′(t)] . (G.11)

The explicit treatment of the two-phonon relaxation with matrix RI
2nn′(t) is very costly,

therefore a quasiresonant model, similar to those used in previous works [190, 191] and a

partial averaging over one of two bath variables have been used. A partial averaging over the

j-coordinate of the bath yields

RI
2nn′(t) ⇒ h̄2

8

M∑

i

∫ t

0
dt′
{

[ΛI
i (t),Λ

I
i (t

′)ρ̂]I(t′)]nn′

Miωi

M∑

j

Φ(ωi, t− t′, T )Φ(ωj , t− t′, T )

− [ΛI
i (t), ρ̂

I(t′)ΛI
i (t

′)]nn′

Miωi

M∑

j

Φ(ωi, t− t′, T )∗Φ(ωj , t− t′, T )∗
}

, (G.12)

where the products of the matrix elements between the system states for the two-phonon

transitions are defined as:

ΛI
i (t)nkΛ

I
i (t

′)ln′ =
1

M

M∑

j

ΛI
ij(t)nkΛ

I
ij(t

′)ln′

Mjωj
. (G.13)

The products of the matrix elements given by Eq. (G.13) have been calculated in the

Schrödinger picture by making use of the results given in Appendix B of Ref. [52], see Eq. (33)

therein, and subsequently transformed into the interaction picture.

A quasiresonant model for the two-phonon relaxation has been employed as follows. Tak-

ing into account that the most efficient energy exchange among coupled systems occurs in

the case of resonance, it is reasonable to assume that the two-phonon relaxation depends

on the bath frequency ωj in a resonant way with respect to any system frequency ωmn and

the other bath frequency ωi. Specifically, similar to previous works [190, 191], the following

substitution is made in Eq. (G.12):

M∑

j

Φ(ωi, t− t′, T )Φ(ωj , t− t′, T ) ⇒



⇒
vmax∑

m=1

m−1∑

n=0

∫ Bmn

Amn

Φ(ωi, t− t′, T )Φ(Ω, t− t′, T ) gmni(Ω)dΩ , (G.14)

where (Amn < ωmn < Bmn) and gmni(Ω) is represented by a Lorentzian-type distribution

function

gmni(Ω) =
1

π

γmn

γ2
mn + [(ωmn − ωi) − Ω]2

, (G.15)

which has a maximum at (Ω = ωmn − ωi), and (γmn > 0) determines the width of the

distribution (G.15), corresponding to a combined system-bath frequency (ωmn − ωi). The

γmn are treated here as empirical parameters, determined from criteria discussed in Sec. 4.2.2.

Within the quasiresonant model used here, we keep only the sum frequencies ωi + ωj in

Eq. (G.14) and suppose that the Bose-Einstein distribution functions n(Ω) can be reasonably

approximated by their ”central values” (n(ωmn − ωi)) in each frequency interval (Amn ≤
Ω ≤ Bmn). Taking into account that the bath is supposed to be in thermal equilibrium at

all times, we assume that the energy exchange among the system and the bath at a certain

system frequency ωmn is not affected by those occuring at other system frequencies. We

therefore allow the respective distributions gmni(Ω) defined by Eq. (G.15) to be overlapping

and set (Amn = −∞) and (Bmn = ∞). This yields tabulated integrals [192] in Eq. (G.14),

which finally reads as follows:

M∑

j

Φ(ωi, t− t′, T )Φ(ωj , t− t′, T ) ⇒

⇒
vmax∑

m=1

m−1∑

n=0

exp(−γmn|t− t′|) {[n(ωi) + 1][n(ωmn − ωi) + 1] exp[−iωmn(t− t′)]

n(ωi)n(ωmn − ωi) exp[iωmn(t− t′)]} . (G.16)

Equation (G.11) is the basic equation of motion in the present work for the investigation

of the non-Markovian dissipative quantum dynamics of the system driven by the IR laser

field. Through the relaxation terms, it depends on all previous times. It has been solved by

using several modifications of standard numerical methods [193], in particular, the Adams-

Bashforth-Moulton schemes for a predictor-corrector method similar to the previous works

[190, 191, 194–196]. The solution of Eq. (G.11) yields the reduced density matrix elements

ρI
nn′(t) of which, in particular, the time-dependent populations

Pn(t) = ρI
nn(t) (G.17)

are interesting for the comparison of Markovian and non-Markovian theories for the two-

dimensional model of H/Si(100) in Sec. 4.2.2.



Appendix H

Local control of vibrational

excitation in a non-dissipative

system

In order to gain experience on whether and how the C–O internal stretch mode r and the

CO-surface stretch mode Z are IR-excitable, local control theory (LCT) calculations are done

for the two-dimensional model of CO/Cu(100) (Sec. 3.1.1) in the non-dissipative case, i. e. all

energy relaxation and dephasing rates Γi→j and γij are zero. Therefore, a time-evolution in

the wavepacket picture according to Eq. (2.4) is sufficient; in the implementation done in this

work a SPO propagator (Appendix D) is used. The control field is generated according to

Eq. (2.45), obeying the objective functional (2.44) as proposed by Ohtsuki et al. in Ref. [35].

In the following, for illustration, pure excitations in r are presented. We also applied the

method for the excitation of the Z mode and of (r,Z) combination modes, which will not be

described here for brevity.

Shown in Fig. (H.1) is the simplest, possible approach for an excitation in the r mode:

From states |nr = 0, nZ = 0〉 ≡ |0〉 and |nr = 1, nZ = 0〉 ≡ |1〉 a two-level model is

constructed, see the sketch on the left bottom corner of Fig. (H.1). The target operator is a

projection operator on state |1〉, i. e. Ô = |1〉〈1|. The control time was chosen as tf = 2.0 ps.
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In the case presented in Fig. (H.1), a time-independent penalty factor α 6= f(t) = 57 is

found to be the largest possible for complete population inversion |0〉 → |1〉. The maximum

intensity of the pulse is 2.2 · 1011 W/cm2 and its fluence 30 mJ/cm2. As typical for local

control pulses, due to the single forward propagation plus optimization mechanism, the pulse

starts as “flatline” with Fz(t) ≈ 0 till about t = 900 fs, then a highly symmetric pulse, at first

glance resembling a π pulse and of an approximate duration of 1 ps, completely transfers the

population from state |0〉 to state |1〉. The envelope function of a 1 ps π pulse of sin2-shape

is also shown in the figure. According to Eqs. (2.39) and (2.40) and a sin2 shape function
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Figure H.1: Excitation of the fundamental transition in r |0, 0〉 → |1, 0〉 within a two-

state model of CO/Cu(100) (see sketch in the left bottom corner), where |0, 0〉 ≡ |0〉 and

|1, 0〉 ≡ |1〉. The parameters for the LCT calculation are: control time tf = 2 ps, penalty

factor α = 57 and target operator Ô = |1〉〈1|. The upper panel displays the obtained local

control field and, for comparison the shape of the sin2-shaped π pulse of 1000 fs (centered at

t = 1400 fs), and the lower panel the associated population dynamics of states |0〉 and |1〉.

s(t) = sin2
(

πt
tf

)

the fluence f of a π pulse transferring population from state |0〉 to state |1〉
is

fπ = 3ǫ0c
1

tf

(
πh̄

2|µ01|

)2

, (H.1)

where |µ01| is the absolute transition dipole moment (here: |µ01| = 0.20 ea0, compare Table

3.5). Its maximum intensity is

Iπ
max =

1

2
ǫ0c|F π

0 |2 = 2ǫ0c

(
πh̄

tf |µ01|

)2

(H.2)

Taking tf = 1.0 ps for the π pulse this gives fπ = 7.6 mJ/cm2 and Iπ
max = 2.0 · 1010 W/cm2.

Comparing this to the values of the LCT pulse, one sees that the shape of latter is considerably



“sharper”, leading to an intensity 10 times larger than in case of the π pulse and accordingly

also to an almost 4 times larger fluence. For strongly dissipative cases, such “sharp” pulses,

where also the population inversion occurs faster than in case of a π pulse, should, although

more energetic, prove more successful.
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Figure H.2: Hot band excitation in r within a non-dissipative three-state model of

CO/Cu(100) (see sketches on the left), where |0, 0〉 ≡ |0〉, |1, 0〉 ≡ |1〉 and |2, 0〉 ≡ |2〉.
Taken for both LCT calculations (a) and (b) are the parameters tf = 3 ps and α = 25, but

two different target operators as described in the text. The upper and lower panels show

LCT field and population dynamics, respectively. Maximum intensities are 2.2 · 1011 W/cm2

(a) and 5.7 · 1011 (b); pulse fluences are 36 J/cm2 (a) and 48 mJ/cm2 (b) and populations

at (t = tf ) are P0 = 0.049122, P1 = 0.000022, P2 = 0.950856 (a) and P0 = 0.117392,

P1 = 0.000002, P2 = 0.882606 (b).



The next question to be adressed, is whether a hot-band excitation |0〉 → |1〉 → |2〉, with

|2〉 ≡ |2, 0〉 is feasible and whether the direct pathway to transfer population to the target state

|2〉, |0〉 → |2〉, plays a role. Again a minimal model, this time with 3 states, is set up, see also

the sketches on the left side of Fig.H.2, where the two- and one-photon excitation mechanisms

to reach state |2〉 are depicted. The control time tf is chosen as 4 ps as shorter values deliver

too intense pulses within this LCT scheme and for both calculations (a) and (b) the penalty

factor α is 25. Two different target operators were chosen: Ô = 0.45 |1〉〈1| + 0.55 |2〉〈2| in

case of (a) and Ô = 0.2 |1〉〈1| + 0.8 |2〉〈2| in case of (b). Note that Ô = |2〉〈2| does not yield

any useful result (that is at least some percentage of population is transferred to state |2〉) for

reasonable pulse parameters. These two examples show, how local control, although lacking

an iterative mechanism and thus a clear definition of a boundary condition at (t = tf ), the

target operator Ô influences the OCT pulse. In case (a), where state |1〉 and |2〉 have almost

the same weight, the pulse sets in earlier, is less intense, choses a reaction path where state

|1〉 is intermediately populated for more than one picosecond, and “pushes” population into

the target in two “waves” and is more successful to depopulate the ground state |0〉. In the

other case, where more weight is laid on state |2〉, the “flatline” goes beyond (t = 2 ps), the

pulse is short, intense, does not show any sub-structure as in case (a) and the intermediate

population of state |1〉 lasts only for ca. 500 fs. Both pulses display a cw-like “tail” in the

end, this is due to the fact that in both cases the population transfer to state |2〉 is not 100 %

and the algorithm tries to improve this until the end of control time. In both cases, the final

target population can still be improved by smaller α values, but it is not possible to reach

100 % within reasonable pulse intensities and fluences – on the contrary in case (b) where

from a certain α on the outcome gets worse, as the shorter (actual) pulse here is more prone

to stimulated emission, which causes population transfer |2〉 → |1〉 → |0〉.

The question, whether direct excitation |0〉 → |2〉 happens can not be answered from the

population dynamics alone, therefore the Husimi distributions of both pulses (a) and (b) are

calculated according Eq. (2.55) and shown in Fig. H.3 (a) and (b) respectively. In both cases

(nr + 1) transitions dominate, at higher frequencies (not shown for better resolution) the

Husimi distribution shows only negligible contributions for an additional (nr + 2) excitation.

The energy pattern in case of (a) reveals that, at least around ca. (t = 1000 − 2000 fs),

both processes |0〉 → |1〉 (setting in some hundred fs earlier) and |1〉 → |2〉 are triggered by

the pulse via two contributions of higher and lower energy respectively. This fits well with

population dynamics as depicted in Fig. (H.2) (a). Interestingly, neither frequency matches

the exact resonance frequencies of 2152 and 2127 cm−1, one is considerably larger than the
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Figure H.3: Husimi plots for the two LCT pulses in Fig. H.2 (a) and (b).

former, the other slightly smaller than the latter. Pulse (b) has a signal being broader in

the energy space and which does not reveal two different contributions, this is due to the

higher fluence and intensities in this case. The maximum of the signal in the energy domain

is again off-resonant with respect to both transition frequencies, but as the signal is so broad,

considerable portions of the pulse do contain resonant contributions, thus the final target

state population is lower in this case, owing to losses through stimulated emission.
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