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Chapter 1

Introduction

Time-resolved monitoring of photochemical and photophysical processes in adsorbate systems
has seen good progress in the past years [1,2]. Interesting in the context of this work is that the
selective preparation of molecular vibrations by infrared (IR) light proves as a powerful tool
to control the photoreactivity prior to electronic excitation by light in the ultraviolet/visible
(UV/Vis) regime. This scheme is known as “vibrationally mediated chemistry” [3]. Extending
this to adsorbates, it has been theoretically suggested that IR preexcitation will lead to larger
UV /Vis photodesorption yields [4-9] as well as to larger cross sections for other photoreactions
[8,10-12]. Particularly for adsorbate/metal systems this approach is promising as IR photons
cannot penetrate the metal surface. They couple therefore directly to the adsorbate, thus
are directly controllable and can be employed to vibrationally excite the adsorbate molecule.
Ideally, the adsorbate vibrational excitation is state- or mode-selective in accordance with

the “goal” of IR (pre)excitation.

It is even possible to induce photodesorption via IR radiation alone. Observed, some time
ago, was the thermal desorption of NH3 from Cu(100) [13], where the IR-excited N-H stretch
bond (“antenna”) directs the radiation energy via surface phonons to the molecule-surface
bond and eventually breaks it. There is no isotope selectivity (which supports the idea of a
thermal mechanism): Co-adsorped ND3 desorbs as well. Contrary, Liu et al. [14] were able to
selectively desorb molecular hydrogen from a Si(111) surface covered with atomic hydrogen
and deuterium. This suggests a real vibrational mechanism of desorption, with the H-Si

stretch bond as likely candidate to absorb the energy needed to break the bond with aid of



energy set free by the formed H-H bond.

The goal of the present thesis is to explore to what extent selective vibrational IR excita-
tion is feasable in multi-dimensional adsorbate systems by means of pulsed IR light. Losses
of selectivity and yield are possible due to inter-mode coupling and coupling to the “bath”
(dissipation). Thereby, vibrations of the adsorbate (“system”) couple to phonons and, in case
of metals, to electron-hole (e/h) pairs of the substrate (“bath”), energy and phase relaxation
take place which counteracts IR excitation. If dissipation occurs (mainly) via the phononic
channel, as is the case for insulators and semiconductors like silicon, the vibrations of the
adsorbate have lifetimes in the order of milliseconds [15], nanoseconds [16-18] and down to
picoseconds [19], depending on the availability of phonon energies fitting the respective vibra-
tional quantum. For metals like copper or ruthenium, providing e/h pairs of energy differences
suitable to vibrational quanta, vibrational lifetimes are normally considerably shorter, in the
range from picoseconds [20] to some hundreds of femtoseconds [21]. This is problematic, as
picoseconds are the “natural” timescale for the IR pulses used in the present work to vibra-
tionally excite the adsorbate. Further, possible obstacles to IR excitation are weak dipole
activities (“dark” modes) and a distinct harmonicity of certain modes. The latter does not
hurt if only mode-selectivity is desired, as a single pulse of constant frequency (~ resonant to
the fundamental transition) allows to populate also higher lying states of the addressed mode.
State-selectivity, i. e. population of a single vibrational level, however, is rendered difficult to
impossible for harmonic modes. In order to achieve, nevertheless, maximum population in
the target state (or mode), optimal control theory (OCT) [22-27] is used here to improve, as

well as to compare to, simple sin?-shaped pulses which are convenient as an initial “guess”.

The principle of OCT algorithms is to pre-define the final state of the system after the
pulse is off and to iteratively (“global control”) or non-iteratively (“local control”) calculate
a control field suitable to do so. A drawback of most OCT schemes, particularly of those
designed for dissipative scenarios [28-30], is the time-independence of the so-called target
operator. That is, one cannot control the transient population dynamics as to impose a certain
“mechanism” of excitation, only the final outcome can be controlled. The time-dependent
control of populations and/or coherences (quantum interferences between vibrational states)
would be of particular interest for quantum computing employing vibrationally excited states
as “qubits” [31,32]. OCT algorithms for dissipative systems which contain an explicitly time-
dependent target operator are still rare [33]. The algorithm of Ref. [33], however, requires

further parameters to guarantee monotonic convergence and has been tested only on small



models (up to four vibrational states) so far. Therefore a novel algorithm is presented here
which combines the iterative OCT scheme and local control theory [34,35], preserving the
advantages (good target yields, monotonic and quadratic convergence) of the (global) OCT
algorithm [30] it is based on, but being less demanding in computational memory requirements

and allowing to explicitly give forth a target operator for each point in time.

Three adsorbate/surface systems are investigated in this work:

e CO/Cu(100) for which a full-dimensional potential energy surface (PES) [36,37] as
well as theoretical [36,37] and experimental [20] vibrational lifetimes are accessible.
Being well-studied (see for example Refs. [38-45]) and exhibiting lifetimes for the
different modes and bath temperatures ranging from >100 to about two picoseconds,
CO/Cu(100) serves as ideal, multi-dimensional model for the attempt of state-selective

vibrational IR excitation.

e Hy/Ru(0001) for which likewise a full-dimensional PES [46,47] exists as well as esti-
mates [21,48] for vibrational lifetimes. In experiment, femtosecond-laser (UV) induced
photoreactions have been carried out [21,49,50]. There are indications that the associa-
tive desorption of hydrogen proceeds via a “hot electron” mechanism which promises

to be enhanced by a IR+UV strategy.

e H/Si(100), which has been previously studied theoretically [51,52], providing vibra-
tional lifetimes in good agreement with experimental findings [53], is an interesting
microlab for phenomena in fundamental and applied surface science. Most striking,
the experiment [14] in the similar system H/Si(111), where molecular hydrogen is se-
lectively desorbed from H+D/Si(111), proceeds very likely by an IR-induced vibrational

mechanism.

Density matrix theory [54] is a very powerful technique to treat “open systems” in general,
and for the special case of vibrational IR excitation of adsorbates at dissipative surfaces it
already has proven successful in the past [9-12,55,56]. Thus, reduced density matrices are
used here to solve the (Liouvillian) dynamics within the Markovian approximation and the
Lindblad [57] form of dissipation. Further, to investigate the effect of neglecting the so-
called “memory effects” within the Markov approximation, comparisons to non-Markovian

calculations are also presented and discussed.



This work is organized as follows. Chapter 2|summarizes the employed theoretical meth-
ods and models, with Appendices [A, C and D providing further details on the numerical
methods used to solve the stationary, vibrational problem as well as dissipative and non-
dissipative dynamics. An overview of quantum chemistry methods needed to calculate vi-
brational lifetimes according to Refs. [36,37] is given in Appendix [E. Chapter 3| presents
the stationary solutions (see also Appendix B) of the adsorbate/metal systems listed above,
considering up to four-dimensional models for the adsorbate vibration. Shown further is the
calculation of other quantities (dipole transition moments, rates for energy and phase relax-
ation) needed to solve the dynamics. An example of how one can obtain a dipole function from
quantum chemistry calculations on cluster models of the adsorbate/metal system is reviewed
in Appendix [F. Chapter [4 presents the calculations performed to state-/mode-selectively
IR-excite adsorbate vibrations for various dimensionalities of the treated systems and with
dissipation included. Both (sub)ps sin?-shaped pulses and pulses obtained from global OCT
are employed. The effects of various parameters (pulse duration, bath temperature, pure
dephasing, target operator set-up) and interesting applications (“hot-band” excitation, exci-
tation of combination mode states, high-energetic “ladder climbing”, “dark mode” excitation,
exploitation of dissipation for vibrational excitation) are studied. Appendix |G thereby in-
troduces the non-Markovian theory used for comparison in case of H/Si(100) and Appendix
H presents local control calculations carried out for CO/Cu(100), neglecting dissipation, in
order to gain experience with time-scales, control fields and the system itself. Chapter 5|
presents the novel, hybrid local /global OCT algorithm, numerical tests and first applications
to excitation scenarios of interest in “time-dependent control”. Chapter|6, finally, summarizes

the work and hints at future developments.



Chapter 2

Theoretical methods

In the following, the theoretical models and methods are described which are used to simulate
vibrational IR excitation of molecules adsorbed on dissipative surfaces and to achieve the

creation of suitable pulsed light for state or mode selectivity.

Section treats the set-up and numerical solution of the field-free “system”, that is
the adsorbed molecule as a multi-dimensional oscillator. The semiclassical interaction of the
molecule with the electric field as well as the inclusion of the “bath”, e.g., the surface’s
electronic and phononic degrees of freedom, via an open-system density matrix description
is expounded in Sec.2.2. The non-adiabatic molecular orbital model to gain vibrational
lifetimes and the harmonic and anharmonic schemes to realize energy and phase relaxation
rates are presented in Sec.[2.3l Finally, in Sec.[2.4] global and local optimal control schemes
for calculating the pulsed IR light are reviewed as well as the preferred method to analyse

complex fields — the Husimi transformation.
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2.1 Stationary solution of the adsorbate/surface

system

2.1.1 Time-independent Schrodinger equation

As the dynamical treatment of IR-induced vibrational excitation is done in this work in
the basis of adsorbate vibrational states |¢p,), the field-free time-independent Schrédinger

equation

Holv) = Ely) (2.1)

is solved in system eigenstate representation

Ho|¢u(q)) = Enlén(e)) (2.2)
According to the dimensionality I’ considered, n = (n1,n2,...,nr) and ¢ = (q1,q2, ... qr) are

F-tupels of quantum numbers n; and vibrational coordinates g;, respectively. (Note, that the
unique assignment of quantum numbers nq,...,ng is normally only possible for low-lying
states.) E, are the eigenvalues of the system, constituting the vibrational energy ladder.
The field-free Hamiltonian Hy consists of the (vibrational) kinetic energy operator T and the

potential energy V' as a function of coordinates ¢

Ho=T+V(g) . (2.3)

2.1.2 Solution

There are various approaches to solve the time-independent Schrodinger equation; mostly
used in the present work are the sinc-function DVR (discrete variable representation) and
the Fourier Grid Hamiltonian (FGH) methods, which numerically represent the Hamiltonian
of Eq. (2.3) on a grid, simplifying the diagonalization in order to obtain the eigenvalues E,,
and eigenvectors ¢, (q). Both methods are summarized in Appendix|A.
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2.2 Dissipative dynamics: The Liouville-von Neu-

mann equation

Describing the time-evolution of a quantum system by the time-dependent Schrodinger equa-
tion (TDSE)

in (o) = [ — iF 0] l0(0) (2.4)

where F'(t) is the external electric field driving the system and i the dipole operator coupling
field and syste, is only possible for closed systems (no energy/phase exchange with a
“bath”) and pure states (7' = 0 K) which can be expressed by a single state vector. Contrary,
a system at T > 0K is a so-called thermal ensemble, composed of the eigenstates of H,

(denoted |¢;) or |i) for short), each populated according to the Boltzmann weight by

_ B
e kBT
bi = ~ Ay ) (25)
Trle *BT]

with kp being the Boltzmann constant and the sum of populations ). p; = 1. In a closed
scenario, that is an external field may drive the system but no energy dissipation from the
system to a “bath” occurs, the dynamics can still be solved in the wave packet representation
of Eq. (2.5)). Thereby, one first has to propagate a TDSE for every thermally populated initial

wavefunction according to

_iHt

[i(t) =€ n |gi) (2.6)

where H = H — [iF(t). Then the desired time-dependent observables (A)(t) can be retrieved

from incoherent averaging [58, 59]

(A)t) = Zpiwi(t)\fllwi(t» - (2.7)

An alternative to incoherent averaging, is to represent the system of interest in terms of
a density operator p(t) [60-62] and carrying out a single propagation of this object. To be
more specific, here a reduced density operator for the system S is considered where the bath

modes (B) have been “traced out”, i. e. p = pg = Trp{p} — a trace over all degrees of freedom

!The vector character of both electric field and dipole operator is omitted here for simplicity.

Further, the semiclassical dipole approximation is made for the matter-field interaction.
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of the bath. The concept of a reduced density operator is useful if open quantum systems are
of interest (see below). For thermal ensembles, the initial density p(0) is constructed from

the vibrational eigenstates |¢;) and the Boltzmann weights of Eq. (2.5) as
p0) = pildi) (il (2.8)
i
and it is propagated according to the Liouville-von Neumann (LvN) equation

ih (1) = Loplt) (2.9)

with the formal solution
p(t) = e 750 5(0) (2.10)

Ly is the Liouville super-operator corresponding to the system Hamiltonian Hy which acts

on the density operator in the form of a commutator

Lop = {FIO,[}} . (2.11)

Extending this to cases where semiclassical system field interaction enters in the Hamil-

tonian via the term —[F(t), Lo has to be replaced by Lg
Lup=[Ho—pF(),0] . (2.12)

Further, for open systems, where energy and phase information dissipates from “system”
(here: adsorbate vibrations) to the “bath” (electronic and phononic degrees of freedom of
the surface), a total Liouvillian £ = Lg + Lp has to be formulated, where £p governs the
dissipative contributions to the dynamics of the system. The corresponding open-system LvN

equation is

Zhagit) = (Ly + Lp) p(t) (2.13)

For the dissipative part, the Lindblad [57] approximation
K

Lop=iny <éjﬁé*j . % [ A]Téj,pt) (2.14)

j=1
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is used, where [,] denotes an anti-commutator. The Lindblad form has the advantage that
the diagonal elements of the density matrix remain positive and the trace is conservej;L , thus
allowing for a physical interpretation of the diagonal elements as state populations. Each j
of Eq. (2.14) thereby is one of K dissipative channels with C’j being the associated Lindblad
operator, which can be chosen semi-phenomenologically as to describe the dissipative process

occuring for this channel, see for example Ref. [64].

When the LvN equation (2.13) is represented in the basis of the vibrational eigenstates
|pi) of Hj the Lindblad form of £p delivers the following equations of motion for the diagonal

(population) matrix elements

. N N
d i
and off-diagonal (coherence) matrix elements
dp i N
dz:m = —iWmn — ﬁF(t) Z (,Umzpm - pmz,uzn) - YmnPmn - (216)

i
N is the number of vibrational states and n, m are the numbering of these states. The
are the dipole transition moments between two states |m) and |n), that is p,, = (m|in).
The vibrational frequencies wy,, = % follow from the vibrational eigenenergies E,,, Fy,
and the density matrix elements p,,,, are set up from the vibrational eigenstates |m) and |n)
as pmn = (m|p|n). According to Eq. (2.15), energy dissipates from state |m) to state |n) with

a rate I';, .. This corresponds to the choice

Cj — Con = V/Ton_n|n)(m| (2.17)

for the Lindblad operators in Eq. (2.15). Further, Eq. (2.16) includes dephasing, that is the
decay of the off-diagonal density matrix elements which contain the information of coherence

between two states, with a rate of v, = Ypm. For a N-level system, one has [65,66]

1 N

Tmn =y D T +Tosd) + Vo = Yo + Vin (2.18)

i

2Within the Redfield theory [63] and Markov approximation (neglect of “memory effects” in time-
evolution of p, see for example Ref. [54]), the individual diagonal elements of the density matrix are
not necessarily positive, but the trace is automatically conserved, i.e. Y. p;; = 1. In the Lindblad
picture positivity is inherent (strictly only for the time-independent case), but trace-conservance has

to be achieved by construction.
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where the first term on the right-hand side is dephasing associated with inelastic processes
(i. e., energy relaxation), while the last term is due to pure dephasing, i. e. elastic scattering

events.

The numerical solution of the coupled differential equations (2.15) and (2.16) with a given

field F(t), as employed here throughout, is summarized in Appendix C|

2.3 Dissipation model

2.3.1 Nonadiabatic molecular orbital theory for the calcula-

tion of vibrational lifetimes

The vibrational relaxation rates I',,,—.,, are related to vibrational lifetimes. Finite lifetimes of
adsorbates are due to the coupling of the adsorbate vibrations to either e/h pairs (for metal

surfaces) or to phonons (all surfaces). For metal surfaces, the former dominates in most cases.

Experimental values of vibrational lifetimes are rare. For example, in case of the system
CO/Cu(100) only that of the C-O stretch mode is known [20] to be (2 £+ 1)ps at 120K.
Therefore we use a model suited to calculate the lifetime of the first excited state |[v = 1) of
a normal mode g with respect to the ground state |v = 0) obtained by quantum chemistry

calculations on metal clusters.

The foundation of this model developed by Tully and co-workers [36,37] with vibrational
relaxation via an electronic mechanism as non-adiabatic process [67], is the Golden Rule
of Time-Dependent Perturbation Theory [68]. Accordingly, the rate for relaxation from
vibrational state |v = 1) to |[v = 0) is

1 12

~ T
D= - > Hpil?o(ei —ef) (2.19)
f

To=1)—p=0) T
Here, ¢; and €; are the energies corresponding to the initial state |¢;) = |i) and final states
|f) = | f) of the system, the Dirac §-function ensuring energy conservation, and Hy; is the
matrix element connecting a pair of initial and final states. The states |¢,) are expanded as
Born-Oppenheimer (B.O.) products [69] of the vibrational wavefunction |v,) which depends

on the normal mode coordinate ¢, and the electronic wavefunction |e,), depending on the



2.3 Dissipation model 11

electronic coordinates r and parametrically on the vibrational coordinate g. Further, by

inserting the nuclear kinetic energy operator Tq = —%% as coupling operator, Hy; reads
Hy = (vg|eslBilesye|vi) (2.20)
h? d? h? d?
= g (o fereizgal ) 3, Qg ),

_Fﬁ <U '<€ |i|e> i U'>
g f qu z[dq [ . ;

where the (...), and (...), indicate an integration over nuclear coordinate ¢ and electronic

coordinates r, respectively.

The first term of Eq. (2.20) vanishes due to the orthogonality of electronic states. The
second term can be neglected if the <e ¥ ‘%
panding the inner bracket of the third term in (2.20) as Taylor series around (¢ = 0) and

ei> are assumed to be vanishingly small. Ex-

truncating this after the first term, one obtains

i), o
Hyy=——((er|—|é& v |—
! qu o qu

Hq
By approximating the vibrational wavefunctions as harmonic oscillator functions, using the

Ui> : (2.21)

harmonic selection rule (v = v; — 1) — decay of one quantum in normal mode ¢ — and

specifying |v; = 1) and |vy = 0), Eq. (2.21) becomes

A
Hpy=—hy/— (e e . (2.22)
f 2414 f 0

Here, <vf =0 ‘d% v; = 1> = %\/ “‘ZZA has been used, where A is the vibrational quantum
q

hw and g the reduced mass. Further, the excited electronic states of the metal |ef) are

4
dq

approximated as singly excited determinants |¥7) (an electron has been promoted from orbital
a to orbital r) relative to the Hartree-Fock ground state |¥() being the initial electronic state
le;). The expression (2.19), now in canonical molecular orbital (MO) representation, resulting
from the above restrictions resembles the Configuration Interaction Singles (CIS) theory [70]

and reads

d 2
<Xr’d7q‘Xa> deqa —er+4) (2.23)

~ 1 7h
F_T_MA;

with |y,) being the molecular orbitals and &, their corresponding energies.

The model set up and the approximations made so far are summarized in Fig[2.1, where

on the left the fundamental vibrational decay in the adsorbate’s harmonic potential is shown,
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lv.=1>
1

IVf =0> occ.
MOs

normal mode q

G ‘ metal

Figure 2.1: Nonadiabatic MO theory in schematic representation: The adsorbate modeled
as harmonic oscillator, is decaying from the singly excited state |v; = 1) to the vibrational
ground state [vf = 0), thereby emitting the vibrational quantum (A = Aw). In the metal
(represented here as MO “band” structure with occupied MOs forming the valence band,
unoccupied MOs constituting the conduction band and the Fermi energy Er separating the
two) an electron is promoted from an orbital a in the valence band to an orbital r in the
conduction band, creating an electron-hole pair, such as to fulfill the condition (¢, —e, = A)

for energy conservation.

and on the right the excitation of a metal electron from a molecular orbital energetically
below the Fermi level EF to an unoccupied MO, and thereby creating an electron-hole (e/h)

pair, is pictured.

Equation (2.23) can be expressed in a localized atomic orbital (AO) basis |u) (|xn) =
Z Cunlp)) to perform actual calculations. This results in the matrix equation F C,,
S C)en from which Eq. (2.22) can be calculated and with F being the Fock — or Kohn- Shamj
— matrix, S the overlap matrix and C,, = (C1p,C2p,...). (For a brief review of Hartree-
Fock and density functional theory and the Self Consistent Field (SCF) procedure by which

quantum chemistry programmes solve HF and Kohn-Sham equations see Appendix [E).

In AO basis and under the assumption that ‘%f; = 0 (no spatial dependence of MO

energies) as well as using the already mentioned energy conservation condition, the vibrational

3Though the original algorithm was developed for Hartree-Fock orbitals it has been shown [71]
that in CI calculations, it is possible to replace Hartree-Fock orbitals by Kohn-Sham orbitals.
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relaxation rate is

-1 h
P—- =3 (chwe, ) (clwe,) s —=+4) | (2.24)
T MqA a,r o o
with W = 4F — Erd8. All derivatives with respect to g are performed at (¢ = 0) as these
= dg=— dg=

expressions originate from the Taylor expansion of the electronic part, see Eq. (2.21).

Introducing the density of states (DOS) at energy e expressed in reduced one-particle

density-matrix representation [70]

P(e) = C, Cl6 (e — &n) (2.25)

and approximating a) that ¢, = ¢, ~ Ep, that is e/h pair creation occurs in a relatively
small energy window around the Fermi level, and b) that the DOS can be considered smooth

in an interval of width A, the final expression is a simple trace of a matrix product:

= % = Tﬂ [P(Em)W P(ELW] . (2.26)

For P(EL) and P(E}) — the DOS below and above the Fermi level, respectively — suitable
occupied and unoccupied states have to be chosen within a certain energy window around Ep.
These states have also to be broadened, for example by rectangular functions or Gaussians.
Alternatively, Tully et al. [36] suggested the use of an “average density” P(Ep) = 2(P(Ex)+

P(E})). Explicit examples of these procedures and their effect on the obtained rates are given

in Section[3.3.2/for the system Hy/Ru(0001).

2.3.2 Harmonic and anharmonic approaches for higher rates

The model outlined in Sec.2.3.1 delivers only the rate f‘j for the fundamental decay (v = 1)
— (v = 0) in a single, harmonic vibrational mode ¢;. We also need rates for the decay of

higher excited states (v > 1) as well as for the decay of a F-dimensional vibrational state

|m) = |m1,ma,...,mp) to a state [n) = |ni,ng,...,np) for the density matrix propagation
(Sec.[2.2).

For a single harmonic vibration along coordinate ¢ and at (7' = 0K), the electronic

contribution to the relaxation rate I' = I';_ as calculated from Eq. is [36]

Cpn = mT0m 10 (2.27)
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i. €. the harmonic selection rule (m = n — 1) is obeyed and the rate is proportional to the
quantum number m of the decaying state. If additional phononic contributions enter, as here
for CO/Cu(100) and (7" > 0K) [37], the same scaling law holds true if the rates arise from
the Golden Rule (2.19), harmonicity is assumed and the vibration-phonon coupling is linear

in ¢. This is the case in Ref. [37], from where the corresponding relaxation rates were taken.

For a multi-dimensional system of F' normal modes j, neglecting inter-mode coupling, the

scaling law of Eq. (2.27) for I'y,—., can be generalized as

F F
Toom = > Limidm,—1n,) [[ Omim - (2.28)
j=1 ki

Accordingly, only the decay (m; — n; = m; — 1) by a single quantum in a single mode j
is possible at a time and the rate is proportional to the initial quantum number m; of the
decaying mode. To give an example, let’s assume a two-mode system with modes A and B,
a decaying state |m4 = 1, mp = 3) and rates fA and f‘B as rates for the fundamental decay
processes |1,0) — ]0,0) and |0,1) — |0,0). There are only two non-zero relaxation rates of

state |1,3) according to Eq. (2.28)

T3 = 1:Ta (2.29)
Fagy—az = 3-Tp , (2.30)

so that the lifetime of state [1,3) at (' = 0K) is [F(173)_>(073)+F(173)_,(172)]7 =
. _ 11
[FA+3PB] .

This model is reasonable for the treatment of low-energetic IR-excitation, that is in a
regime where the system can be considered harmonic and the coupling between system and
bath is linear in the system modes. In higher energetic anharmonic regimes (for example
ladder climbing in a desorptive mode up to the desorption limit), Eq. (2.28) overestimates
the rates with increasing quantum numbers. Therefore an anharmonic correction as proposed
in Ref. [72] can be used

F F
™ (Em — EQ)
T = D :ro(S(mj_W) I dmems (2.31)
Z

with w; being the harmonic fundamental frequency of normal mode j. Considering again the

example of above, the rates by which state |1, 3) decays to states |0, 3) and |1, 2), respectively,
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are
Ei13—FEo3 =
Fas)—03 = T hoa -T'a (2.32)
Ei3—FE1p =
Fagy—az = ~hen -I'p . (2.33)

If modes A and B are both (uncoupled) harmonic oscillators then E; 3—Ep 3 = hwy and Ej 3—
FE1 = 3hwp and one obtains the same result as in case of the harmonic model of Eq. (2.28).
Alternatively, one can generalize Eq. (2.20) to anharmonic vibrational wavefunctions and a

less restricted electronic coupling form.

Egs. (2.28) and (2.31) yield only the “downward” rates I'y,—, for (E,, > E,), but at

finite temperatures (7' > 0K) there are also rates transferring population “upwards”; these

are calculated from detailed balance

_Em—FEn

Tnom = Dmone  FB7 (2.34)

Finally, for being able to solve the differential equations (2.15) and (2.16), the dephasing
rates Ymn are needed. As mentioned above, dephasing arises both from inelastic scattering
processes (T;-type dephasing) and elastic scattering (molecule remains in state v, T5-type

“pure” dephasing).

The total dephasing rate (Ty dephasing) between states |n) and |m) is the sum of 77 and
T3 dephasing, as indicated in Eq. (2.18). For a two-level system, with states |0), |1) one has,
at (T'=0K):

1 *
Y10 = §F1_>0 + 70 - (235)

Yo can be estimated from if experimental linewidths; see for example Levinos et al. [20,73].

In a two-state system

1 1 1
— =4 = 2.36
, o, Ty (2:36)
is valid, and at (T'=0K) 11 =7 = % and thus
1 1~
o==-=I . 2.37
710 T, 2 ( )

Further, if one assumes a Gaussian pure dephasing model, then the ~,,, are proportional to

w2, [74], and can be calculated based on v;, and eigenstate energy differences.
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2.4 Optimal control theory (OCT)

A sin?-shaped pulse (or a “pulse train” of successive/overlapping sin?-shaped pulses)
.o [Tt
F(t) = Fy sin . cos(wt + ¢) (2.38)
f

can be suitable for IR excitations [8,10-12,75]. In Eq. (2.38), Fj is the maximal field strength,
w the frequency and ¢ the phase of the pulse (train) which, for a single pulse, starts at (¢ = 0)
and ends at (t = ty). Again, the vector character of the field is omitted for simplicity.

For a direct transition |n) — |m), a first simple guess for the electric field is a 7 pulse

with w = wy,, and a maximum field strength (Fy = F), where

27h
Fr=—""0 (2.39)
tf|MnM|

and finm = (n|f|m) is the transition dipole moment. Relation (2.39) derives from the

condition
ty
o | ET / s(t)dt = (2.40)
0

which assures that, within the rotating wave approximation (RWA) and with no dissipation

involved, a complete population inversion is obtained in a two-state system. In Eq. (2.40)

wt

s(t) is a general shape function, sin? ( tf) in the present case.

For more delicate problems — e. g. strong dissipation, complicated/unknown “reaction
pathways” in multi-level systems — the creation of pulses via optimal control theory [22-27]
is helpful. Different to the Brumer-Shapiro coherent control scheme [76] which relies on
the generation of suitable quantum interference of a number of energy levels, optimal control
theory (OCT) is based on optimizing the shape of the control pulse via variational calculus as
to meet the condition that the final outcome of dynamics approaches the predefined “target”.
The OCT has been sucessfully applied for wavefunctions, see for example [26,27,31,34,77,
78,78-83]. Progress has also been made in developing rapidly converging algorithms [84-87],
formulating the formalism in Liouvillian space [28-30] and creating OCT pulses which allow

for experimental reconstruction [34,88].
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2.4.1 Global and local optimal control for wavefunctions

In the global optimal control formalism as proposed by Rabitz et al [22-24], Kosloff et al. [26]
and Manz et al. [25,27] the control field F(t) is generated variationally as to maximize the

objective functional J

N ty 9
J = W@moww»—aA F(t)at (2.41)

_/Otf » Kx(t) ;+;ﬁ‘w(t)>+c.0}

Here, O is the so-called target operator which can be generally expressed as
O=> oyli)(il - (242)
tj

If a certain target state |i) is to be populated, the choice as a projection operator O = |i)(i|
is useful. The penalty factor « is a scalar factor hergZ that restricts the pulse fluence in the
second term of Eq. (2.41). « can also be chosen time-dependent as «a(t) [80] as to obtain
pulse shapes with F(0) = F(ty) = 0 for experimental feasibility. In this case, «(t) appears
in the integral as — fotf o(t) |F(t)]*dt. Further, the Lagrange multiplier x(¢) constrains the
variational problem to obey the time-dependent Schrodinger equation (2.4) in the third term
of Eq.(2.41). Providing both an initial condition |¢(0)) = |1)p) (normally chosen as the
vibrational ground state) and final condition |x(tf)) = Oly(t £)), the optimal field at time ¢
is
1 .

F(t) = ——Im (&) |2l x()) - (2.43)
Technically this global scheme requires an iterative algorithm where the wavefunction ()
is propagated forward in time and the Lagrange multiplier x(¢) backward in time (obeying
Eq. (2.4) with x instead of ¢ and time being negative, i.e. t — —t). The electric field is
generated anew at each timestep from Eq. (2.43). Convergence is achieved if the field or the
target state population do not change any more significantly from one backward/forward

propagation to the next.

A different, but nonetheless often quite successful, approach is local control theory [34,35,

78,79]. Here, the initial state of the system is a fixed boundary condition like in global control

4The penalty term of Eq. (2.41) can also be chosen employing a further Lagrange multiplier; in this
case the second term of Eq. (2.41) would take on the form « fotf [|F(t)|* — k] dt, with the additional

parameter x being the Lagrange multiplier — a “target field intensity”.
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(which is a two-point boundary value problem, but the outcome of dynamics is “open”, though
triggered towards a specified goal by the target operator O) The procedure is non-iterative
and the pulse optimization occurs simultaneously to the single forward propagation. The
target operator indirectly controls the path, as demonstrated in the examples of Appendix
H.

As local control is a one-point boundary value problem (|(0)) = |¢y)), Eq. (2.43) is

reduced to

«

. ty 9
7= Wploletn) -5 [ IFOFa (2.49)

For small timesteps (within which the time-dependent Schrédinger equation is fulfilled) the
optimal field can be approximated [35] as

2

F(t) = —%ImW(t)\OﬂW(t)) ) (2.45)

an expression not unsimilar to (2.43) but containing O which ensures the creation of a field
driving the system towards the desired state. The continuity of the control pulse is guaranteed

by assuming the commutator relation
[O,ﬁo} =0 (2.46)
between the target operator and the unperturbed Hamiltonian.

The above local control theory algorithm was implemented in such a way that the prop-
agation of |¢(t)) in accordance with the TDSE (2.4) is carried out by the split-operator
propagator (SPO) method (see Appendix D for details) in contrast to the original implemen-
tation of Ohtsuki et al. [35], where the time-propagation is realized by the Runge-Kutta 4th
order integrator [89,90].

2.4.2 Global optimal control for density matrices

In order to include the possibility to treat open quantum systems, Ohtsuki et al. [30] developed
a rapidly convergent algorithm extending the global OCT formalism as sketched in the first
part of Sec.[2.4.1/into the Liouvillian space density matrix representation similar to Ref. [91]
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but including dissipation. The objective functional, compare the analogy to Eq. (2.41), reads

J = <<Om<tf>>> / ' <>|F<>|2dt (2.47)

- << ‘ £H+£D] ()>>,

with the third term ensuring the Liouville-von Neumann equation (2.13) to be obeyed dur-

ing the iterative forward and backward propagation-optimization within the interval [0,%;].
Thereby the boundary condition for forward propagation of the density matrix according to

(2.13) is

1
e kBTHO

e (2.48)
Tr [e_’“BTHO}

p(0) = po =

i. e. a thermal ensemble of the NV vibrational eigenstates |i). The Lagrange multiplier density
(t) being propagated backward in time from (¢ = t¢) to (¢ = 0) has to obey

96 (t)
ot

ih = (Lg+Lp)6(t) (2.49)

and has as boundary condition at (¢t = tf) the target O which is the desired density when
the pulse is off. Formally expressed in the basis of vibrational eigenstates O = G(ty) can
be written as Eq. with the o0;;, as already mentioned above, being the (real) target
populations for (i = j) and the target coherences for (i # j). Often, again, the target is
chosen as a single state |i), that is O = |i)(i].

With the objective and boundary conditions given above the relation for the control field
is

F(t) = s (00 il p0) (2.50)

In Egs. (2.47) and (2.50) Hilbert-Schmidt scalar products <<121]B>> = Tr{A'B} are used.
As a result one obtains the following simple expression for the field:

F(t) = hal(t)lm [1e(at(1) [aa(e)]

N-—

= U M]kpkz )
4,5,k=0

,_n

1 N-1

= halt) > ik (Im o ()] Re [pgi(t)] — Re [0 ()] Im [ors(1)]) . (2.51)
1,7,k=0
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This already hints at the “mechanism” of field creation in the optimal control scheme, but

that becomes even more obvious when writing Eq. (2.51) for a two-state system (N = 2),
where p = o1 = p10 (and poo = p11 = 0):

_ pIm [po1]

FO) ===20

(Re [0'11] — Re [O’og]) . (252)

The field at a given point in time is proportional to the product of the imaginary part of
the coherence term pg; of the density matrix, which oscillates with resonance frequency wig,
and the difference of populations o1 and ogg in the Lagrange multiplier density®. Similarily,
though more complex, the magnitudes and oscillation frequencies of coherence terms and the
differences of state populations determine the control field in systems with (N > 2). The
“drive” towards the target enters only by the backward propagation of 6(t) starting from the

target 0.

As for the computational realization of the global OCT, Ohtsuki et al. originally imple-
mented a Runge-Kutta 4th order integrator [89,90] in order to solve the Liouvillian dynamics
according to Egs. (2.13) and (2.49). But due to numerical instabilities found for calculations
already with a moderate number of vibrational states (say 10 or more), a new implementation
was done, where the time-evolution is realized by spectral decomposition of the Liouvillian,
Newton polynomial interpolation and Schwarz-Christoffel mapping [92,93] of the Liouvillian

eigenvalue spectrum. See Appendix|C for a summary of this technique.

2.4.3 Pulse analysis by Husimi quasiprobability distribution

Optimal electric fields obtained from optimal global or local control can have a complex

structure. A Fourier transformation I(w) of field F(t)

I(w) = \/127 /  P()e—tdt (2.53)

delivers only the relative intensities of occuring frequencies w averaged over the whole pulse
duration. One cannot draw any time-resolved information with respect to the frequencies

from it.

5The backward propagated Lagrange multiplier density &(¢) behaves just like the forward propa-
gated density p(t). In basis of the vibrational eigenstates |i), its diagonal matrix elements o;; can thus

be physically interpreted as “populations”, as o;; € R and oy; € [0, 1].
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One possibility to resolve F(t) in the time and energy (F = hw) domain is the so-called
Wigner quasiprobability distribution [94] Py (¢, w)

dgF*(t + Hpe — D' | (2.54)

21h

—00

with N = (%)2 being a normalization factor making Py (¢, F') dimensionless. The Wigner
distribution, however, can take negative values (“non-classic effects”), making the analysis
somewhat difficult. Therefore, the Husimi distribution [95], being strictly positive, is preferred
here. To obtain it the initially calculated Wigner distribution is smoothed by Gaussians in

time and energy

1 , /_K,(t/ft)g _n(E'-EB)? P
Py(t,B) = — [ dt [ dE'e™ "% e Py(t\ E') (2.55)

Here, k [(energy X time)*l] is an arbitary positive constant which is chosen as to obtain

a suitable resolution. The product of uncertainties has to observe the Heisenberg criterion,
: / / h

that is (' —t)(E' — E) > 3.



Chapter 3
Adsorbate/surface systems

The study of state- or mode-selective vibrational IR excitation is done here for a selection
of adsorbate/surface systems. Three systems have been studied: CO/Cu(100), H/Si(100)
and 2H/Ru(0001). These will be discussed in some detail in the following with respect to
included vibrational degrees of freedom, potential energy surface, dipole function and the
thereof obtained vibrational eigenstates, eigenenergies and dipole transition moments used

in the quantum dynamics simulations.

3.1 CO/Cu(100)

CO adsorbed C-bound on-top of a Cu(100) surface serves as main system of interest in the
present work. A full six-dimensional potential energy surface which has been fitted to semi-
empirical data by Tully and co-workers [36,37] exists and has proven in several theoretical
studies [40-45] to deliver results close to experimental frequencies [39]. Further, the CO
stretch mode has been studied in experiment. A vibrational lifetime of (2+1) ps [20] was found
and a linewidth, allowing to estimate the dephasing time T5 as 1.6 ps [20,73]. Although, these
quantities are unknown for the other five modes, theoretical lifetimes have been calculated by
Tully et al. based on the non-adiabatic molecular orbital model (Sec.2.3.1). This was done
for (T' = 0K) [36]; for finite surface temperatures ranging from 10 to 450 K they implemented

an additional phononic decay channel by molecular dynamics simulation [37].

22
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(a)

Figure 3.1: (a) The six degrees of freedom of CO adsorbed on-top on a Cu(100) surface:
CO stretch mode r, CO-surface stretch mode Z, degenerate lateral motion along the [1,1,0]
= X and [-1,1,0] =Y directions on the surface and angular degrees of freedom 0 and ¢; (b)

position vectors of C, O and ith Cu atom of the N atom metal slab modelling the surface.

Fig.[3.1 (a) displays a possible choice for the six vibrational modes of CO: The CO stretch
mode 7 and the CO-surface stretch mode Z, the two degenerate lateral modes X and Y
where the center of mass is displaced parallel to the surface in [1,1,0] and [-1,1,0] directions.
Also shown are the two angular degrees of freedom 6 and ¢ which describe the tilting of CO
with respect to the vertical axis and the rotation around latter, respectively. The full 6D

Hamiltonian Hj is

A R* 0%  B® 0> h* 0 R® 02 R
S A A A Z,X,Y, 1
0 2u0r2  2moZ? 2moX?2 2moY? + 27?2 J(0,0) +V(r, 2, X.Y,6,9) ,(3.1)
where p = €™M0 and m = mg + mo are the reduced masses if surface atoms are fixed

mc+mo
(rigid surface approximation). J(f, ¢) is the angular momentum operator

. o 02 1 92
2 _ o o 1 o
Jm= COt(e)@@ 0% sin?(0) ¢ (32)

and V(r, Z,X,Y, 0, ¢), the 6D potential, introduced in the following.

Here, we have mainly restricted ourselves to two-dimensional (r, Z) and three-dimensional
(r, Z, X) [96] models in order to gain insight whether a selective vibrational excitation is
feasible at all. Further these three modes, as will be discussed later, are representative for
strong, medium and weak IR active vibrational modes and cover a wide range of vibrational
frequencies, from about 80 to 2150 cm~!. In a recent collaboration [97], also four-dimensional

(r,Z,0,¢) dynamical simulations were carried out.
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3.1.1 Potential energy surface and stationary solution

As potential energy surface, the empirical gas/surface interaction potential of Tully and co-
workers [36,37] is used:

N
V(T>Z>X7Y797¢) :ZV;(ECWKOaEi)—I_VCO (|£C_£O|) . (33)

K3
This is composed of N terms V; (ro, 10, 1;), describing the interaction between CO and the
ith of the N copper atoms, and the term Voo (|re — rp|) for the interaction between carbon
and oxygen. Shown schematically in Fig.[3.1(b) are the position vectors rq, ry and r; for

the carbon, oxygen and ith copper atom in an N atom metal slab.

The adsorbate/surface interaction terms consist of a) a simple exponential repulsion be-

tween oxygen and copper atom and b) a modified Morse potential for the C/Cu interaction
Vi(rosrosr;) = Ae—elri—rol 4 B |:e—2ﬁ(|£i—£c|—7°e) _ QCOSQ(m)e—ﬁ(Izi—zcl—re) 7 (3.4)

where 7, = 1.9A (or 3.6a) is the equilibrium distance between carbon and the copper

atom on which CO is adsorbed. The Morse potential part contains an orientation factor

_ (re—r)re—ro)
cos (M) = Te=rlleerol

molecule’s axis points directly at the copper atom Cu;, as 7; is the angle between the C-O

in the attractive part, guaranteeing full attraction when the CO

and C—Cu; bonds. The interaction of the adsorbate atoms with each other is an unmodified

Morse potential
Veo (lre —rol) = F [6_27(‘£C_£O‘_”0) —2¢ Wlee—rol=ro)) (3.5)

with 7o = 1.125 A (or 2.126 ag) being the equilibrium C-O bond length. The two equilibrium

bond lengths as well as the other parameters are given in Table|3.1!

In the 2D and 3D cases considered here, the coordinates (X), Y, 6 and ¢, are held fixed in
equilibrium positions, 4. e. at 0. A 108 copper atom slab (formed by three layers of 6 x6 atoms)
serves to calculate the potential energy surfaces V(r, Z) and V(r, Z, X) from Egs. (3.3), (3.4)

and (3.5).

Two dimensions

A plot of the two-dimensional potential energy surface V (r, Z) is shown in Fig. 3.2; displaying

the narrow well in direction of the CO stretch mode r and the “flat” ascend of the potential
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parameter value
A 32.1Ep,
o 1.78a5"
B 0.0213E,
& 1.59a,!
F 0.408 Ep,
¥ 1.22a5!

Table 3.1: Parameters of Egs. (3.4) and (3.5), taken from Refs. [36,37].

in direction of the desorptive CO-adsorbate stretch mode Z, with the desorption limit around
Z = 8ap and the total desorption energy (including zero point energy) being 0.021 Ej (~
4600 cmfl)ﬁ. The equilibrium distancelng 73P between C and O atoms is 2.13a9 and the
equilibrium distance between the carbon monoxides center of mass and the binding copper

atom is ZgD = 4.81 ag.

The eigenenergies Ey, ,, and eigenfunctions |¢n, »,(r, Z)) are calculated from Eq. (2.2)
which is solved using the sinc-function discrete variable representation [98] summarized in
Sec./A.1 and the following Hamiltonian

- R s

Hy =

The grid used in the calculation consists of 40 points in r direction and 400 points in Z, with
the grid in r encompassing the interval [1.63,2.63] ag and in Z [4.0,9.0] ag. This choice is well

suited to resolve the bound states as well as the (unbound) pre-dissociative states.

The energies of the lowest 21 eigenstates are given in Table|3.2/together with the quantum
numbers (n,,nz). The zero point energy is 1237 cm ™! and the energy difference between the
ground state |0,0) and the desorption limit is 3174cm™!, their sum being 4411cm~!. A
selection of the calculated eigenstates |¢p, n,) is given in Fig. (B.1) in Appendix [B. The

most interesting feature there being that also states slightly above the desorption limit,

!Note, that the assignment of the unit [cm~!] to energies E or frequencies w used here and in the

following is rather “sloppy”.
2The equilibrium distances vary slightly from those of the potential surface. This is due to spacing

of the grid on which the stationary problem is solved. These “equilibrium” distances, however, are

only used to numerically evaluate pin, = (n|u.|m).
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0.04 — 9
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Z [ag]

1.8 2 22 24 2.6

Figure 3.2: 2D potential energy surface V (r, Z) as obtained from Egs. (3.3), (3.4) and (3.5)
by fixing the X, Y, 6 and ¢ degrees of freedom, see Fig.[3.1 (a), to their equilibrium value.

i. e. (En,n, > 0), are still localized (unlike typical “vacuum states”) and well-resolved; these

are so-called pre-dissociative states.

The fundamental frequencies wz = w(g1)(0,0) = @ and w; = w(y 0)0,0) in Z and r

being 294 and 2153 cm ™, respectively, agree well with experiment [39] and the 6D calculations
of Cattarius and Meyer [44] carried out within the framework of the multi-configurational
time-dependent Hartree (MCTDH) approach [99]. A complete comparison of the energies of
the present 2D (r, Z) and 3D (r, Z, X) results, known experimental values and the 6D results
of Ref. [44] is given in Table 3.3/ in Sec.[3.1.1l Further, they likewise compare well with
higher-dimensional calculations recently carried out in our group [97], compare also Table 3.4!
below. The lower “pure” modes in Z, that is |0,1), |0,2), |0,3) and so on, feature a rather
strong harmonicity with wg 2y(0,1) — w(0,1)(0,0) = —11 cm ™!, This allows one, at least for low
energetic excitations, to use the harmonic rate model of Eq. (2.28) in Sec.[2.3.2. But in order
to simulate a desorption by “ladder climbing” in the Z mode up to and above the unbound

state |0, 15) anharmonic rates — retrieved from Eq. (2.31) and approximating w  in Eq. (2.31)

as w(O,l) (070) .
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state | [ny,nz) | (En,.m, — E0,0)
[em™]
0 10,0) 0
1 0,1) 294
2 10,2) 577
3 10,3) 851
4 10, 4) 1113
5 10,5) 1365
6 10, 6) 1607
7 10,7) 1838
8 |0, 8) 2059
9 I1,0) 2153
10 10,9) 2269
1 1,1) 2445
12| 10,10) 2469
13| |0,11) 2658
14 11,2) 2728
15 | 10,12) 2836
16 11,3) 3000
17 | 10,13) 3004
18 | |0,14) 3162
19 11, 4) 3262
20 | |0,15) 3308

Table 3.2: The 21 lowest eigenenergies of the 2D model of CO/Cu(100) relative to the
ground state |0,0) which has a zero point energy of 1237cm™! and lies 3174cm™! beneath

the desorption limit at 4411 cm~!. States |1,4) and |0, 15) are the first two states lying above

latter for the presently used finite grid.
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Three dimensions

The three-dimensional model, including as further degree of freedom one of the lateral modes,
X, is treated in an analogous manner as the 2D model. Shown in Fig. B.2/in Appendix B are
2D cuts through the potential surface V(r, Z, X), where X = 0ag in (a), Z = Z3P = 4.81 ag
in (b) and r = 73P = 2.12a¢ in (c). In both (b) and (c) one can see the mirror symmetry of

the potential with respect to the (X = 0) axis.

The 3D Hamiltonian reads

R n? 9?2 m: 9?2 n? 07
Mo=—5 57 amazz amaxz V%X (3.7)

The grid on which the time-independent Schrodinger equation (2.2) is solved within the
sinc-function DVR scheme, consists of 18 points in 7, 33 points in Z and 55 points in the
X coordinate, that is 32670 points in total. The coordinate ranges are [1.8,2.5]ay for 7,
[4.1,6.0] a9 for Z and [-2.75,2.75]ag for the X degree of freedom. Table 3.3 lists selected
eigenenergies for the calculated states |n,,nz,nx) (see Fig. B.3/in Appendix B for examplary
2D cuts). These are compared with the corresponding values of the 2D model, the values
found in experiment [39] and those Cattarius and Meyer [44] calculated for six dimensions via
MCTDH. In Ref. [44] also the Tully potential was used, though with a smaller copper slab
(3x3x2) and utilizing for the actual frequency analysis a potential approximated in product
form by the so-called POTFIT routine included in the the MCTDH programme package [100].
Frequencies for r and Z modes vary scarcely when compared to the 2D model, and thus
agree well with experiment. The agreement with the 6D result of Ref. [44] is good. With
a fundamental frequency of 77 cm™! the lateral X mode compares reasonably well with the
value of Ref. [44], but not with the experimentally [39] found value of 32 cm™!. For alternative
6D calculations see Refs. [40,43].

For the wavefunctions having nodes in the X coordinate and lying above state |1,0,0) it
is no longer possible to assign quantum numbers, and thus it is also impossible to calculate
individual transition rates according to Eq.(2.28)) or Eq.(2.31). Further, optimal control
calculations with the global algorithm described in Sec. (2.4.2) become difficult due to memory
needs during forward / backward propagation. The “full” 3D system used in the calculations
is chosen up to a cut-off energy of 2152 cm~! above the ground state (155 states including the
ground state), being suitable for the low energetic excitations studied here mainly. Further,

for global optimal control calculations a reasonable selection of a subset of states is made
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state | |ny,nz,nx) | (En.nynx — £0,00) | 2D model | exp. [39] | 6D calc. [44]
[em™1] [cm ™1 [em™1] [em™1]
0 10,0,0) 0
1 10,0,1) 7 32 70.9
2 10,0,2) 153 167.6
3 10,0,3) 228 199.4
4 10,1,0) 203 204 287 204.0
8 10,1,2) 442
12 10,2,0) 576 577.4 577.5
154 |1,0,0) 2152 2153 2079 2152.6
870 12,0,0) 4279 4279

Table 3.3: Selected eigenenergies as obtained for the 3D model of CO/Cu(100) relative to
the ground state |0,0,0) which has a zero point energy of 1273cm~! (2D: 1237cm~!) and
lies 3136 cm ™! (2D: 3174 cm™!) beneath the desorption limit. Given for comparison are also
the values of the 2D model, experimental values [39] and the 6D calculations of Cattarius

and Meyer [44], where the same potential and “rigid surface” model had been used.

in accordance to memory and aim of the particular IR excitation to be simulated. The
second excited state in 7 |2,0,0), although lying more than 1000 cm™~! above the desorption
limit, is well resolved within the chosen grid boundaries, and so is suitable to study hot-band
excitation [0,0,0) — |1,0,0) — ]2,0,0), as shown in Appendix [H and Sec.4.1.3. Again,

[2,0,0) is a “pre-desorptive” state.

Four and six dimensions

Recently, also in our group, the full six-dimensional eigenproblem and the 4D (r,Z,0,¢)
model was solved, using the potential V(r,Z, X,Y,0,¢) of Tully et al. [36,37] with a 108
copper cluster [97]. In contrast to the above discussed model, the binding Cu atom was
now positioned 0.352 A (or 0.665ag) below the first surface layer as suggested in Refs. [40,
43] in order to minimize the energy. The equilibrium distances of the adsorbate on the
“reconstructed” surface are r{ = 1.126 A and Zy = 2.2 A. The eigenproblem was solved

by an iterative two-term Lanczos eigensolver, see Appendix A.3. Table [3.4 displays the
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3D | 4D | 6D
w, [em ™1 2153 | 2150 | 2150
wz [em™!] 294 | 347 | 345
wxy lem™] |77 26.9
wyg [em™] 329 | 335
Ezpp [em™1] | 1273 | 1645 | 1638
D [em™!] 3136 | 3100 | 3108

Table 3.4: Fundamental frequencies w, for modes ¢, zero-point energies Ezpp and desorp-
tion energies D with respect to the groundstate for the 3D model of Sec.3.1.1] and the 4D

and 6D models considered in Ref. [97].

fundamental frequencies w;, wz, wx/y (degenerate modes) and wy /¢» the zero-point energies

(EzpE), desorption energies (D, zero-point energy substracted) of the 4D and 6D models of
Ref. [97]. The respective values of the 3D model of Sec.[3.1.1, where the “unreconstructed”

Cu surface was employed, are shown for comparison.

The main difference here between unreconstructed (3D) and reconstructed (6D) models

is the resonance frequency in X/Y (“frustrated translation”) for the reconstructed case. The

frequencies found for the “frustrated rotation” (6/¢) agree very well with the 287 cm ™! [39]

from experiment.

3.1.2 Dipole function

Two- and three-dimensional models

For TR-excitation, the dipole function along the various degrees of freedom is needed. In

the two-dimensional (r,Z) model, the dipole function p,(r, Z) (u, is the z-component of the
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dipole function) used to simulate the field-dipole interaction has the following form

ir2) = oz + (92)  r-m) 9)

aﬂz) 82ﬂz> 2
+ (Z — Zo) + < (Z — Zo)
<3Z Z=2Zo 0z? Z=Zo

= o+ A(r —ro) + B(Z = Zo) + C(Z — Zy)*

This is a Taylor expansion around r = rgD/ 3D and Z = ZgD/ 3D, respectively, truncated after

the first term in 7 (linear term only) and the second term in Z (linear and quadratic terms),
with the parameters o = -0.408eag, A = -2.25e, B = 0.566e and C' = -0.361e/ag. The
parameters were derived from ab initio calculations [101,102], according to which the factor

A is enhanced, relative to free CO, by a factor of 2.18 [101].

Comparable derivative factors for the lateral modes X and Y are not available from
literature, and attempts to find them by cluster calculations proved difficult. It is expected,
however, that the variation of © with X is weak; the dependence of u on X was thus neglected

in the following, making the X mode a “dark” mode.

Table 3.5 shows the absolute values of selected dipole transition moments || between
states |n) = |n,,nz(,nx)) and |m) = |m,,mz(,mx)) as obtained from Eq. (3.8) for the
3D and 2D systems. Due to the lacking X-dependence of the dipole function transitions
|n) — |m) where (mx = nx £+ 1) are forbidden. But the even symmetry of the X mode
(see the wavefunctions in Fig./B.3 in Appendix B), causes overtone transitions to be “weakly
allowed” which obey the selection rules (mx = nx £2,nx £4,...). Transitions in Z are of a
“medium” IR activity, with dipole transition moments in the order of magnitude of 1072 eag
for transitions of type (mz = nz +1). Overtone transitions (mz =nz +£2,ny +£3, ...) are
weakly allowed and their dipole transition moments increase steadily with n, just like those
for the one-photon processes, until they reach a maximum, compare Fig.[F.3 (a) in Appendix
F. The CO stretch mode, finally, is strongly IR active, the overtone for (n, = 0) to (m, = 2)

being still of some activity.

The dipole moments in both r and Z mode are further almost identical for the 2D and
3D models; those for Z transitions being slightly smaller in 2D, due to the larger grid used
in this case and the “broader” quality of states having nodes in Z direction. And the matrix

elements for the fundamental transitions in both modes take on the values they are expected
lmiol o 1

lw2] © V2"

to have according to the double-harmonic approximation, e. g.
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mode states ’u%ﬁ ‘,ufl%
|n) |m) [1073 eag] | [1073 eaq)
X 0,0,0) 10,0, 1) 0.
0,0,0) 0,0,2) 1.9
0,0, 1) 0,0, 2) 0.
0,0, 1) 0,0, 3) 3.4
0,0,0) 0,0,4) 0.0053
Z 10,0(,0)) 10,1(,0)) 38 36
10,0(,0)) 10,2(,0)) 4.8 4.7
10,1(,0)) 10,2(,0)) 53 50
10,2(,0)) 10,3(,0)) 63 60
10,7(,0)) 10,8(,0)) 83 79
r 10,0(,0)) ]1,0(,0)) 140 140
10,0(,0)) 12,0(,0)) 7.4 7.4
11,0(,0)) ]2,0(,0)) 200 200

Table 3.5: Selected absolute values of dipole transition moments |fp,| for CO/Cu(100),
retrieved from calculating (n,,nz,nx|u.|m,, mz,mx) and (n,, nz|u,|m,, mz) for the 3D
and 2D models, respectively, with the quantum number notation being |n) = |n,,nz(,nx))

and |m) = |m,,mz(,mx)).

Asymptotically corrected and higher-dimensional dipole functions

The above form of the dipole function (3.8), originally used in the present work and also
by Cattarius and Meyer [44], has the wrong asymptotic behaviour for (Z — o). Due to
the quadratic term in Z, u.(r, Z) grows dramatically, whereas a physically correct function
should approach the dipole moment of free carbon monoxide being 0.0441 eag. Thus, when
aiming for example at a simulation of desorption via “ladder climbing” in Z, Eq.(3.8) is

expected to overestimate transition dipole moments for higher quantum numbers n .

A functional form which would guarantee pu(rg,Z) — 0 for (Z — o0), implying the
approximation p,(COfpee) =~ 0, is

Z—2y

px(r,Z) = a(r —ro) + [po — b(Z — Zy)) e =

(3.9)
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Fitting the results of quantum chemistry (B3LYP/LANL2DZ) calculations on a suited cluster
model COQCugy of CO/Cu(100) — see Appendix F for details — the following parameters are
obtained: a = —1.810eag, b = —0.510e and ¢ = 1.808 ag. Since the parameters a and A

for the linear term of the dipole moment agree rather well, the choice of cluster and method
appears to be justified. The dipole function of Eq. (3.9) is used in Sec.|4.1.2.

For the four-dimensional model with coordinates (r,Z,6,¢) in Ref. [97] the following

expression
1=(r, 2,0,0) = |+ A'(r —ro) + Bl =) 1(9, ) (3.10)

was fitted to data obtained from the COQ@Cusy cluster. The resulting parameters are pu; =
0.0357eag, A’ = —2.25, B’ = —0.4437eag and C' = 1.2756a9. The angular function was

chosen as
f(8,¢) = cos(6) +sin?(0) [dy + docos(4¢)] (3.11)

respecting the four-fold symmetry in ¢. From the fitted parameters d; = 1.1558 and
dy = —0.0004 one sees that the 6 dependence of . (r, Z, 6, ¢) dominates strongly over the ¢ de-
pendence. The dipole transition moment fi,,,, for the fundamental transitions are 3.3-1073 eaq
for [n) = |n, = 0,nz = 0,np = 0,ny = 0) — |m) = [0,0,1,0) and 1.4 - 10~ %eay for
|ny = 10,0,0,0) — |m) = ]0,0,0,1), respectively. The dipole function (3.10) was used in
Sec.4.1.4 below.

3.1.3 Dissipation and dephasing rates

Rates for the two- and three-dimensional models

For the present calculations on CO/Cu(100), the lifetimes as calculated in Refs. [36,37] were
used. For (T = 0K) a pure electronic decay mechanism (Sec.2.3.1) and for (7" = 10, 300 K)
an additional phononic decay channel was considered. The according rates I',,_,, for the
fundamental transitions in each mode are given in Table 3.6 for the three-dimensional model,
i.e. lm) = |m,,mz,mx) and |n) = |n,,nz,nx). Those for the r and Z modes in the 2D
model are analogous, only then |m) = |m,,mz) and |n) = |n,,nz) and the equations (2.28)
and to obtain the other rates in harmonic and anharmonic consideration, respectively,

contain two instead of three terms in sum and product. The “upward” rates I',,_, for
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mode transition Ipan(0K) | I'pen(10K) | T'hy—rn (300 K)
Im) — n) [ps™!] [ps!] [ps™!]
r 11,0,0) — 0,0, 0) 3= L L
0,0, 0) - |1,0,0) 0 ~0 481700
Z 0,1,0) - 10,0,0) 25 5 5o
0,0, 0) — 0,1,0) 0 ~0 4
X 0,0, 1) — 0,0,0) 0 % 33
0,0,0) — 0,0,1) =55 3=

Table 3.6: Rates I',,_., for the fundamental transitions in r, X and Z modes for tempera-
tures of 0, 10 and 300 K as taken from Ref. [37] (E,, < E,,; “downward” rates), and obtained
from detailed balance (E,, > E,,; “upward” rates), see Eq. (2.34).

(En, > E,,), being non-zero for (1" > 0K), are calculated from detailed balance (2.34)).

When looking at the rates one sees that the CO stretch mode r decays within few ps,
is temperature-insensitive and, due to the large vibrational quantum of 2152cm ™!, the “up-
ward” rate is very small even at 300 K. This is different for Z and X modes, which are
long-lived, couple more strongly to the metal phonons and thus have a significant tempera-
ture dependence. For example, the lifetime of state |0,0,nx = 1) drops from well over 100 ps

to a value around 2 ps when going from (7" = 0K) to (7' = 300 K).

By choosing these particular three modes — r, Z and X — not only a broad spectrum of
vibrational lifetimes is covered, but also quite varying IR activities (compare Table (3.5 in
Sec.[3.1.2) enter the model, making this a a suitable reference model of vibrational adsorbate

excitation in many dimensions.

In addition to the two- and three-dimensional models, a “one-dimensional” model con-
sisting of states |0,0,0) = |0,), |1,0,0) = |1,) and |2,0,0) = |2,) is taken into account. Only
for this 1D study of the CO stretch mode r, see Sec.l4.1.1, pure dephasing is considered,
as a Ty time of 1.6 ps is available based on estimation from experimental linewidth mea-
surements [20, 73]. From there, pure dephasing rates (v}, = 7;,,) can be obtained from
Egs. (2.37) and (2.35) and the Gaussian pure dephasing model mentioned in Sec. (2.3.2).

Table 3.7 lists relaxation rates I'y,—.p, 77 (inelastic scattering) and T (elastic scattering)
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m) n) | Tomen | Youn | Yown | Ymn

s | [ps™'] | [ps™'] | [ps™!]
0,) 1) | 0 &= | = | o
0,) 12| 0 0 | g5 | =1
L) 10| 55 | & | 21 | Ts
1) [2)| O 3= ot s
2,) 10,y | O 0 = |
2, (L) | & 3 ot L

Table 3.7: Relaxation rates I',,_.,, energy related dephasing rates </, pure dephas-
ing rates 7vm,, and total dephasing rates 7, for the three-state model of the r mode of
CO/Cu(100), where |0,0,0) = |0,), |1,0,0) = |1,,) and |2,0,0) = |2,).

dephasing rates, v,,,, and ~} . as well as the total (T) dephasing rates Ymn = Vin + Vion
(see Eq. (2.18) for the three-state system at (I" = 0K). For the calculations done within the
2D and 3D models only dephasing due to energy relaxation is taken into account, i.e. the

last term of Eq. (2.18) is omitted.

Rates for the four-dimensional model

For the four-dimensional model, similarly to Sec.2.3.1 Tremblay et al. [97] started, following
Tully et al. [36,37], with Fermi’s Golden Rule expression for the transition rate. For the
coupling operator the total 6D kinetic energy operator, see Eq. (3.1), has been used. When
neglectinég’p all cross terms one obtains a tractable 5-term polynomial, each term representing
the dissipation mechanism along a particular mode. The first four terms can be evaluated
similarly, say, for a generic stretching coordinate ¢(= r, Z, X,Y’). The corresponding matrix
elements are proportional to (vs|(e f|§—q22\ei>|vi>. They can be simplified after application of
the product rule by the observation that the electronic wavefunctions are orthogonal and
by neglecting the term which contains second derivatives of the electronic wave functions

with respect to nuclear coordinates. Furthermore the first-order coupling is represented as a

3In the following the procedure used in Ref. [97] is briefly outlined.
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Taylor series truncated at the zeroth order. One thus gets [36, 37]

62 8’[)1' 8€i (9) 8’()1'
<Uf\<€f!@\6i>|vi> ~ 2(vy| 8q> <€f|afq> ~ dy; <Uf‘87q> ; (3.12)

where dgf? is the proportionality constant for the ¢'" degree of freedom. In analogy to the

model discussed in Sec. 2.3.2 the initial state is considered to be harmonic along coordinate ¢
resulting in the simple selection rule of (Av = —1). As in the case of Sec.2.3.2 the transition
rate grows linearly with the quantum number associated with the normal mode of interest,
i.e. Py, = v T 5(u171,vf)‘ For the fundamental transition rates in modes r, Z and
X/Y, the values as given in Table[3.6 for (T'= 0) K were used in Ref. [97].

The situation is more difficult for the angular modes, which are kinetically coupled. By
observing that (ef|e;) = 0, neglecting higher order derivatives of electronic states and eval-
uating the electronic integrals as zeroth-order Taylor expansions, one obtains a relatively

simple expression for the angular dissipation mechanism

—2 %2 (¢) 1 9 (9) 1 9
i) Vi) =X —Qy, 5 -~ |V;) — . -y 2— i . 1
(el 1) =~ oy s 2 ) = gl (conl®) + 25 ) o)~ (3.13)

This expression is somewhat more complicated than Eq. (3.12) and care must be taken
deriving a selection rule for the transition rates between angular normal modes. Using point
group symmetry it is known that integrals in Eq. (3.13) will vanish unless the product of their
symmetry is totally symmetric. That is, in Cy, point group symmetry which is relevant for
CO/Cu(100), we are looking for

Svf & Soper & Svi D) Al 5 (314)

where S, (Sy,;) is the symmetry label of the vsth (v;th) state and Sgpe, is the symmetry label
of the connecting operator. The symmetry of the derivative is the same as the coordinate, for
instance A for the § motion and E for the ¢ motion. It appears that sin?(#) and cot(f) have
the symmetry of 6, A;. The coordinate r also transforms like A;. For odd numbers of quanta
in the degenerate angular normal coordinate the states transform like E. For even numbers
of quanta in the same normal coordinate three symmetry labels are accessible: A; for the
f-modes, B; and Bs for the ¢-modes. Focusing on one-quantum transitions one thus has to
evaluate the symmetry of integrals from E states to {A1, By, Ba} states or the opposite. The
terms in Eq. (3.13) then are

1 0
Y1) =E® E®{A;, By, B,} 5 A
<vf”l“28in2(9) 8¢|v> ® ®{ 1 1 2} DN

1 ) (3.15)
(vrl 5 <Cot(9) + 289) i) = E® A1 @{A1, By, B} =B
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For two-quanta transitions integrals from states with the same symmetry have to be evaluated,
that is

1 0

———|v;) = E E E=E
vl gy ag ! = B EO®

' 6 (3.16)
(ol (cot(®) 42, ) o) =00, Br, Ba) @ A {Ar, Biy By} S A

From Eq. (3.15) it can be seen that one-quantum transitions are allowed and that the coupling
mechanism is along the ¢ degree of freedom. Eq. (3.16) reveals that two-quanta transitions
are allowed and that the coupling mechanism is along the 6 degree of freedom. There are

therefore two coupling mechanisms involved in the relaxation of an excited degenerate state
E.

n) |0,0,0,0) ]0,0,0,1)  10,1,0,0)  ]0,0,1,0)  ]0,0,0,2)  [1,0,0,0)
Im)

|0,0,0,0) 1.38-107° 42.2 3.27 6.48 - 10~ 145
|0,0,0,1) 755 3.88-1071% 1.39-107° 9.61-107* 1.92-107!
|0,1,0,0) 5 0 4.30 1.24-10°10 11.7
|0,0,1,0) 0 = 0 1.60-10710 9.91.101
0,0,0,2) 0 5 0 0 3231071
1,0,0,0) o 0 0 0 0

Table 3.8: 4D model of CO/Cu(100): Selected absolute dipole transition moments |ftyy|
[1073 eag] (upper right half) and vibrational relaxation rates I'y,—, [ps™!] (lower left half)

for states |m) = |m,, mz,mg, my), |n) = [np, Nz, N9, N4).

Table 3.8 lists rates T'(,,, m mym o)—(nrnzmngmg) 8 well as absolute dipole transition
moments |/L(mr,mz,m9,m¢)(nr,nz,n9,n¢)| according to Eq. (3.10) for selected eigenstates |m) =
|my, mz, mg, mg), |n) = |n;,nz,ng,ng). The relaxation rate of the first excited state in ¢ is
available [20, 36, 37], the according fundamental lifetime is 7,5, = 2.3 ps at (7" = 0K). This
means that the (degenerate) state |0,0,0, 1) decays with a rate (2.3 ps)~! to the ground state
|0,0,0,0). Since the relaxation mechanism from the first excited state to the ground state is
due to coupling via 8% it thus appears possible to extract one-quantum, %—mediated tran-
sition rates for every higher excited state. For example, the states which are doubly excited
along the E mode, i.e. states 0,0, 1,0) (energetically degenerate) and |0,0,0,2) (not energet-

ically degenerate) decay, assuming a linear scaling of rates with initial angular quanta, with
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twice the rate, (1.15 ps)~! to the first excited angular state |0,0,0,1). Possible differences
between the decay rates of states |0,0,1,0) and |0,0,0,2) are neglected here. Unfortunately
there is no information on the two-quanta transitions mediated by %. In Eq. (3.13) these
contributions were neglected and the one-quantum transition in the relaxation rate expression

was kept.

3.2 H/Si(100)

3.2.1 Potential energy surface and vibrational states

The system H/Si(100) was treated in collaboration with Guennadij Paramonov (National
Academy of Sciences, Minsk, Belarus), and Ivan Andrianov (formerly Universitdt Potsdam)
[104]. Two vibrational degrees of freedom are considered: r, the H-Si stretch mode and ¢,
the Si—Si—H bending motion as sketched in Fig.[3.3.

N4

\ /™

Figure 3.3: The two system coordinates used in the present model of H (orange) adsorbed
on the Si(100)-2x1 surface (Si atoms in grey): H-Si stretch mode r and Si-Si-H bending
mode ¢.

The potential energy function used for the calculation of lattice vibrations (see below)
is the same as the as in the previous publication of Andrianov and Saalfrank [52], namely
a semi-empirical bond-order potential [105-107] including three-body interactions. For the

sub-system potential V(r, ¢), a semi-empirical form was used instead with

Vi) =D (1= 00) 4 Ze g )t (3.17)
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with parameters D = 3.4eV (or 0.125E;,, H binding energy), a = 0.83 aal, = 0.2 aa2,
k=3.951-10"°E;/(1°)2, and the equilibrium coordinates ro = 2.84a9 and ¢y = 112.6°.

The system potential enters the system Hamiltonian H. s(r, @)

. K2 92 h2 92

HS(T7 ¢) = _%ﬁ - W@ + V(T’ ¢) ) (318)

with m being the mass of the hydrogen atonri; Using Eqgs. (3.18) and (2.2) as well as diag-
onalization ulilizing the sinc-function DVR method [98] (see also Sec. A.1 in Appendix A),
the 2D eigenstates (n,,ng) and eigenenergies FE,, ,, were calculated in Ref. [52]. The funda-
mental frequencies w, and wy calculated in this way [52,104] are 2037 cm™! and 637 cm ™!, in
good agreement with experiment [53], where 2100 cm™! and 630 cm™! were determined. The

calculated zero point energy within the 2D model is 1370 cm 1.

3.2.2 Dipole function

In order to estimate a dipole function p.(r,¢) in Ref. [52] quantum chemical calculations
(B3LYP/6-31G(d,p)) using GAUSSIAN 03 [108] were carried out. A cluster HaSig mimicking
a fully covered Sis dimer within a 2x1 reconstructed Si(100) surface was chosen for this, where
only r and ¢ for a single H atom were varied while all other atoms kept their fixed positions
as obtained from the bond-order forcefield calculation for a cluster with 180 atoms [52]. The

dipole moment was fitted to the form
pa(r, @) = Ao + Ar(r —ro)e™ 20770 4 A3(p — go)? (3.19)

with parameters Ag = 0.4001 eag, A1 = -1.2587e, Ay = 0.3175 aal and Az = -0.4735eag/rad
(Irad = 57.3°%).

Table 3.9/ shows absolute dipole transition moments |z upper right half)

e o) (rmg)|
and transition energies Wy, m ) () (lower left half) between the lowest seven eigenstates.
One can see that the ¢ mode is moderately IR active and very harmonic. Overtone transitions
of type (ng = mg £ 2) are less IR active than (ng = mg & 1) transitions but still possible.
Further the H-Si stretch mode is strongly IR active and intermode coupling between the r

and ¢ modes is weak, see for example the small dipole transition moment |z (1,0y(0,4)| -

4A small additional potential-like term has been omitted in Eq. (3.18.) — see Ref. [109]
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[nr,mg) | 10,0) 110,1) 110,2) | ]0,3) | |1,0) | ]0,4) | [L,1)
|m, myg)

10,0) 51 | 85 | 016 | 210 | 0.076 | 1.5
0, 1) 637 71| 15 | 33 | 032 | 210
10,2) 1271 | 634 87 | 12 | 21 | 47
0,3) 1903 | 1266 | 632 0.046 | 100 | 2.1
11,0) 2037 | 1400 | 766 | 134 0.0052 | 50
10, 4) 9532 | 1896 | 1261 | 629 | 495 0.093
11,1) 2661 | 2024 | 1390 | 758 | 624 | 129

Table 3.9: 2D model of H/Si(100): Absolute dipole transition moments |(i(m, my,)(n,ny)l
[1073 eap] (upper right half) and transition energies w,, o) (i) [em~!] (lower left half)

between the lowest seven eigenstates.

For high-energetic excitations in r also a 1D model with potential V (r, ¢g) is used, for
which the necessary quantities for the density matrix dynamics are calculated by analogous
methods (sinc-function DVR) as in the 2D case. In the 1D model, the Hamiltonian in
Eq. becomes Hg(r) with a single term and the dipole function p(r), where the last
term drops out as (¢ = ¢g). The zero point energy obtained in 1D is 1056cm™! (2D:
1370 cm™1); the fundamental frequency is 2050 cm™! (2D: 2037 cm™!) and the transition
dipole moment |ft,, =0 m,=1| = 0.21 eag, differing from the 2D model only minimal. Overtone
transitions are of medium to weak IR activity, e. g. |tn, =0,m,=2| = 0.036 eag < |tn, =0.m,=3] =
0.0080 eag < |pn,=0,m,=4| = 0.0021 eay.

3.2.3 Dissipation and dephasing rates

Dissipation rates I'( were calculated in Ref. [52] via Fermi’s Golden Rule (com-

mp,me)—(nr,ng)

pare also Eq.(2.19)), expressed here for initial state |i) and final state |f) coupled by the

system-bath Hamiltionian Hgp

N 2
Hsp|1)| 6B~ B (3.20)

2m /.
Loy =5 [(0

The total Hamiltonian H used in Ref. [52] to calculate rates and other quantities of inter-
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est from cluster models of H/Si(100) consists of system, bath and system-bath contributions
ﬁ:ﬁs+ﬁsp+f[53+f[3 , (3.21)

where the Hamiltonian Hg including two modes of the adsorbate (system) is given by
Eq. (3.18). I—YSF = —[,F,(t) is the semi-classical system-field interaction term and Hp de-
scribes the bath modes
) 9% 1
B Z:( 2Mzaq22+2 sz%,) ( )
whose frequencies, masses and coordinates are w;, M; and ¢;. These were calculated from the
bond-order forcefield by normal-mode analysis from a cluster consisting of 180 atoms, giving

534 normal modes. See Ref. [52] for more details.

The coupling term Hgp entering Eq. (3.20) for the rates, accounting for one- and two-

photon relaxation, reads
3 1
Hsp = Z Ai(r, @)ai + 5 Z Aij(r, 9)aiq; (3.23)
% ij

and is motivated by a Taylor expansion of the potential of second order around the equilibrium
bath coordinates q? [110]. Thus the coupling functions were retrieved from derivatives of the
total potential energy surface
oV ({xy,
Ai(r, @) = Vi) (3.24)
8q2- qo

2 xr
Aij(r,d) = <‘W> o (3.25)

where {2} are the Cartesian coordinates of the cluster atoms.

i

Eq. (3.20) was evaluated with initial and final states |n) = |x,) - |¢n), Where |xn) =
Hi]\il |W; n(gi)) is a “phonon function” (with |¥;,(g;)) being the nth eigenstate of the ith
environment oscillator), and |¢,) = |¢n (7, Z)) = |¢n,n, (7, Z)) denotes a 2D eigenfunction of
Hg. Further, Hgp is given by Eq. (3.23). Finally, the d-functions in (3.20) are represented
by broadening Lorentzians with

L v
o)~ ————— 3.26
(.%') T2 + ,)/2 3 ( )
where  was chosen as 8 cm~!. For a bath temperature of 0 Kelvin, the rates Ly mg) = (e mg)

as listed in Table[3.10| for the lowest seven states, were obtained. Additionally given are the
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mesmg) 10,00 [10,1) | [0,2) | [0,3) | L0y | [0,4) | [1,1)
Tl ) 1.35 | 0.69 0.48 2130 0.37 | 145
Im., mg)

0,0)

0,1) 0.74

0,2) 0. 1.4

0,3) 0. 0. 2.1

|1, 0) 0. 0. |4.7107* 981078

|0, 4) 0. 0. 0. 2.7 471076

1,1) 0. 0. 0. 1.2.107% | 0.69 | 3.7.1077

Table 3.10: H/Si(100): Lifetimes 7(,,, ) [ps] (first row) of the lowest seven eigenstates and
vibrational relaxation rates I, m,)—(n,.ny) [ps~!] between them for T = 0K as calculated
in Ref. [52] from Egs. (3.20), (3.22), (3.23) and (3.24).

lifetimes 7(,,, ) of these states resulting from a summation over all contributing transition

rates as

T(;Li,nz) - Z

DrFENy 7p<b7énd>

Tpo—ems) + D Lnme)—(ara) (3.27)

@rFNr,depFng

The r mode is long-lived, in the range of nanoseconds and in good agreement with exper-
iment [53]. Here, the main interest will be the ¢ mode. Latter is short-lived with lifetimes
in the picosecond range and although these rates were calculated using explicitly the Golden
Rule, the rates for the lowest three one-quantum decay processes fulfill the harmonic relation
of Eq. (2.28) with the selection rule (m, = n, + 1) and a proportionality of rate and initial
quantum number m,. But already for state |0,4) the decay rate with respect to |0,3) is
smaller than expected in the harmonic case and an additional inter-mode decay channel to
state |1,0), though with a small rate, is open. This inter-mode decay is the only possibility by
which the long-lived » mode can decay, as a direct decay to the ground state is not possible,

the according transition rates being zero.

Not only the lifetime but also their temperature dependence presented in Ref. [52] agree
reasonably well with the experimental finding for the H-Si stretch mode 7 [53]. The much

shorter lifetime for ¢ is a prediction and can be understood within the framework of a two-
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phonon relaxation process [52].

In the following, only 77 dephasing is considered here, taking only the first term on the
right-hand side of Eq. (2.18) into account to retrieve the vpp,.

3.3 2H/Ru(0001)

(a) (b)

VaVAVIRNER

Figure 3.4: (a) On-top view of two H atoms (orange) absorbed on the threefold hollow

sites of Ru(0001); first metal layer depicted in black, second layer in grey. (b) Sideview

schematically showing the H-H stretch mode r and the adsorbate-surface mode Z.

The vibrational model for the system 2H/Ru(0001) was developed in Ref. [111]. Like
CO on copper the two hydrogen atoms adsorbed on ruthenium have six vibrational degrees
of freedom, but in the present model a two-dimensional model is employed which is sketched
in Fig.l3.4: The H atoms occupy neighbouring threefold hollow sites of the hep (hexagonal
closed-packed) metal (a), coordinate r describes the H-H stretch vibration and Z the motion
of the “Hy”’s center of mass® with respect to the binding position on level with the upper

ruthenium layer (b).

3.3.1 Potential energy surface, stationary solution and dipole

function

In Ref. [111], a 2D cut V(r,Z) through the 6D potential surface of Luppi et al. [46,47]

was used. The latter was generated from periodic DFT calculations for a (2x2) coverage

5The H-H distance of ~3 A of the two ad-atoms is indicative of dissociative adsorption.
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nenz) 110,0) | 10 [1o,0) [ 1200 |11 [ 0,2 [ 13,0y [ 120y | 112 | 11,0)
lmy, mz)

|0, 0) 760 | 1095 | 1518 | 1823 | 2184 | 2272 | 2542 | 2884 | 3016
[1,0) 6.9 335 | 7h8 | 1064 | 1424 | 1513 | 1782 | 2125 | 2256
|0, 1) 61 2.6 423 729 | 1089 | 1177 | 1447 | 1789 | 1921
|2, 0) 14 10 7.7 305 | 666 | 754 | 1023 | 1366 | 1498
[1,1) 1.1 59 7.0 4.3 361 | 449 | 718 | 1061 | 1193
|0, 2) 3.1 0.34 86 | 098 | 4.1 88 357 | 700 | 832
13, 0) 0.12 23 0.97 16 13 1.1 269 612 744
12,1) 0.089 | 2.7 14 56 10 11 6.7 343 | 475
[1,2) 0.094 | 4.1 1.4 1.3 82 74 8.1 1.8 132
|4, 0) 0.16 | 0.022 | 0.47 32 8.6 0.94 24 18 4.8

Table 3.11: 2D model of Hy/Ru(0001): Transition energies wi,, n,)(m,.m,) [cm '] (upper
right half) and absolute dipole momenta |fi(,, n,)(m,,mz)| [1072 eag] (lower left half). See

text for details.

of H on a three-layer relaxed slab model of Ru(0001) [47]. The 2D potential energy surface
predicts the “Hs” to be bound with equilibrium distances of 7 = 2.75 A (or 5.20eap) and
Zy = 1.06 A (2.00eag); the binding energy is 0.85¢V, i.e. 0.425eV per H atom. This is
consistent with experiment [112] and earlier theoretical findings [113]. Of the two different
gradient-corrected exchange-correlation potentials tested by Luppi et al., the one arising from

the RPBE (revised Perdew-Burke-Ernzerhof) functional [114] is employed.

The Hamiltonian is analogous to the one of Eq. (3.6) for the 2D CO/Cu(100) model and
the time-independent Schrédinger equation (2.2) was solved in Ref. [111] by a Fourier Grid
Hamiltonian diagonalization, see Sec. A.2. The zero point energy is 956 cm~!. Table 3.11]
gives the quantum numbers of the lowest ten states (n,,nz) and in the upper right half
the transition energies wi,, n,)(m,,m,) Petween them. The fundamental frequencies w;, and
wz are 760 and 1095 cm ™!, respectively, agreeing well with experiment [115], where 690 and
1130 cm~! was found. Both the 7 and Z modes are rather harmonic within the energy range
of ca. 3000 cm™~! above the ground state (0,0) covered in Table[3.11.

In order to determine a dipole function pu.(r, Z), in Ref. [111] a Ho@Ruy2 cluster model
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Figure 3.5: 2HQ@QRujs cluster used in Ref. [111] to calculate the data for p(r,Z) of
Eq. (3.28)) employing B3LYP/LANL2DZ. The H-H distance (r9) is 5.44 eagy (the potential of
Luppi et al. [46,47] predicts 5.20 eag) and the distance of the H-H axis to the first ruthe-
nium layer (Zp) is 2.01 eag, both obtained by a previous geometry optimization. The lattice
constant d(Ru-Ru) = 5.11 eay is held fixed.

was used as shown in Fig.3.3.1. B3LYP [116] and the quasi-relativistic LANL2DZ [117] basis
set and effective core potential (for Ru) were employed. The calculated data was fitted to

the form
po(r, Z) = aZ*tanh [b(r —c) +1] (3.28)

with parameters a = -0.0473eag, b = 0.7 aal and ¢ = 1.195ay (as only z-polarised IR fields
are employed only the z-component . of the dipole moment is needed). As can be seen in
the lower left half of Table 3.11/the r mode is only weakly dipole allowed (Hg being an unpolar
molecule), whereas Z is medium to strongly allowed. Inter-mode coupling is rather strong,
with, for example |1(1,0y(0,1)| = 2.6 - 1073 eag and 20,2 = 1.8 1073 eag being of the same
order of magnitude as the dipole moment of the fundamental transition in r (2.6-1073 eag).
Another interesting feature is, that overtone transitions in r are more strongly dipole active
than single transitions, this is due to symmetry reasons as in case of the formally “forbidden”
lateral X mode of CO/Cu(100).

3.3.2 Calculation of vibrational lifetimes

There is no theoretical data available for vibrational lifetimes of 2H on Ru(0001) as obtained,
for example, from perturbation-theory calculations as in case of CO/Cu(100) [36,37] and
H/Si(100) [52]. Luntz et al. [48], however, used perturbation-theory in connection with a
periodic DFT model in order to calculate two-dimensional (r,7) electronic friction coefficients

nij(r, Z) (i, j = r, Z) from which one is able to estimate vibrational lifetimes for the two modes
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as
o
.~ —————— &~ 190fs 3.29
vib Nrr (7407 ZO) ( )
zZ Kz
4 o~ — 2~ B00fs 3.30
vib n22 (TO, ZO) ( )

where u, and pz are the respective reduced masses. Estimations from experiment [21] sim-
ilarly suggest lifetimes of some hundred femtoseconds for the vibrational modes. More ex-
plicitly, by fitting a one-dimensional, Arrhenius-type mode based on a truncated harmonic
oscillator and electronic friction, Denzler et al. determined an effective vibrational lifetime of
180 fs along a “reaction coordinate” [21]. In the present work, the nonadiabatic MO theory
of vibrational relaxation by Tully et al. [36,37] (see also Sec.[2.3.1) is used to gain more direct

insight into lifetimes.

Cluster models for Hy, /Ru(0001)

For this purpose both HF and B3LYP are chosen as methods. The basis (and effective core
potential for the metal atoms) employed throughout is LANL2 [117], using LANL2 in double-
¢ basis (LANL2DZ) for the H atoms and the five Ru atoms directly bonding it and in minimal
basis (LANL2MB) for the other metal atoms.

In a first attempt the 2H@QRu;5 cluster (Fig.[3.3.1) was taken, but to study possible effects
of cluster size and geometry a further cluster model 2H@Ru;3 containing one more ruthenium
atom in the first layer is additionally taken into consideration. Given in Table[3.12 are the
two cluster models and their respective HOMO (highest occupied MO) and LUMO (lowest
unoccupied MO) energies ey and 1. For both cases the H coordinates with respect to the
cluster as optimized for the 2H@QRujo cluster are used. The calculations were carried out

by the programme package GAMESS [118] and a tight SCF energy convergence criterion of
10710E,.

Calculated vibrational lifetimes

Tully et al. suggest [36] several possibilities to choose the Fermi energy Er at which the DOS
P(Er) is calculated according to Eq. (2.25), here we make the choice (Er = ), the energy

of the highest occupied molecular orbital (see Table 3.12).
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2HQRu12 2H@QRuy3
HF €x -0.6309 -0.6246
€l -0.5041 -0.4837
B3LYP ¢ep -0.6038 -0.5857
€L -0.5733 -0.5557

Table 3.12: Clusters used in the relaxation rate calculations for r and Z modes of
Hy/Ru(0001) according to Ref. [36] and their respective HOMO and LUMO energies [Ej] as
obtained from HF /LANL2DZ(MB) and B3LYP/LANL2DZ(MB) calculations.

Further, different approaches for the calculation of the DOS matrices entering Eq. (2.26)

have been made in Ref. [36], two of which are used here:

e In the first approach, we use two different matrices P(E}) and P(E}), a DOS below
and above Er, respectively. These are calculated by choosing a certain energy window,
say 1eV (0.037E) as done here, and taking into account the HOMO and all orbitals
lying 1eV below it for P(E) and likewise considering the HOMO and all orbitals lying
leV above it for the calculation of P(E}). Further, the d-functions in Eq. (2.25) are
approximated by rectangular functions, of uniform width

1 1
AE = (e —en) + 5 (en —en-1) + 5 (6L —er41) (3.31)
and height A—IE, leading to
2
PER =% Y. G . (3.32)

p € occ./unocc.

e In the second approach, we replace P(Ey) and P(E}.) in Eq. (2.26) by an averaged
DOS

P(E3) =

(B(Er) +P(EF)) (3.33)

N | =

and thus

ave ]‘
P(EF) = 57 0 CpCh - (3.34)
p
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2HGRu;; 2HGRuys
HF P(E}) 0.133 0.136
P(Ewe) | 0.254 0.239
B3LYP P(E}) | 0.0721 0.108
P(E®e) | 0.124 0.110

Table 3.13: Vibrational lifetimes 7,-1_,—0 [ps] obtained for the H-H stretch mode r
(T=0K) from the two different clusters, quantum chemistry methods, and approximations

for the density of states at the Fermi level (Er = ep).

e An alternative Gaussian broadening model [103] was unsuccessful.

The derivatives of Fock and overlap matrix elements F),,, and S, with respect to the
normal mode ¢ (here: 7 and Z as shown in Fig.[3.4 (b)) needed to calculate matrix W in
Eq. (2.26), are determined numerically for a small displacement X, from the equilibrium
position

dM/_w — M;w(qo + Xq) - Mul/(QO - Xq)
dq 2Xq

) (M/.w = F;w, S;w) . (335)

Thus only three quantum chemistry calculations are needed for the calculation of a single
rate, one for the equilibrium position gg to obtain Fermi energy and DOS and two calculations
for the matrix derivates. The displacement y, was chosen to be reasonably [103] small as
0.001 A (0.00189 ag) for both modes.

Tables 3.13| and [3.14 list the obtained vibrational lifetimes of the first excited state in
r (3.13) and Z (3.14) with respect to the vibrational groundstate. All lifetimes obtained
are within a rather reasonable order of magnitude (ranging from roughly 100 fs to 1ps) and
the r mode relaxes in general faster than the Z mode, an observation also made in other
estimates [48]. The following observations can be made: For the cases where the d-functions
occuring in the density of states are approximated as “double stepfunctions”, there is weak
dependence of T,—1_.,—0 upon the used cluster model for the r mode and rather strong
dependence in case of Z. This is understandable, as latter motion couples more strongly
to the metal surface, so that the different MO energies, MO coefficients, Fock and overlap
matrices are of more significance, particularly as only few cluster orbitals 