Symbolic Calculus for Boundary Value Problems
on Manifolds with Edges
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Abstract. Boundary value problems for (pseudo-) differential operators on a manifold with
edges can be characterised by a hierarchy of symbols. The symbol structure is responsible for
ellipticity and for the nature of parametrices within an algebra of “edge-degenerate” pseudo-
differential operators. The edge symbol component of that hierarchy takes values in boundary
value problems on an infinite model cone, with edge variables and covariables as parameters.
Edge symbols play a crucial role in this theory, in particular, the contribution with holo-
morphic operator-valued Mellin symbols. We establish a calculus in a framework of “twisted
homogeneity” that refers to strongly continuous groups of isomorphisms on weighted cone
Sobolev spaces. We then derive an equivalent representation with a particularly transparent
composition behaviour.

Key words: pseudo-differential boundary value problems, operators on manifolds with
singularities

2000 Mathematics Subject Classification: 35J40, 35J70, 35515, 58J40

LA. RAZMADZE MATHEMATICAL INSTITUTE, ACADEMY OF SCIENCES OF GEORGIA, 1, M. ALEXIDZE

Str., TBILISI 93, GEORGIA E-mail: daka@rmi.acnet.ge
2INSTITUT FUR MATHEMATIK, UNIVERSITAT POTSDAM, POSTFACH 601553, 14415 POTSDAM,
GERMANY E-mail: schulze@math.uni-potsdam.de



Contents
Introduction

1 Boundary value problems on a cone
1.1 Manifolds with conical singularities . . . . .
1.2 Basics on operator-valued symbols . . . . .
1.3 Calculus on a manifold with boundary . . .
1.4 Operators near the tip of the cone . . . ..
1.5 Green symbols . .. ... ... .. .....

1.6 Operators on a manifold with conical exits to infinity . . . . . . . .. ..

2 Mellin pseudo-differential operators

2.1 Tools on oscillatory integrals in Fréchet spaces . . . .. .. ... .. ..

2.2 Mellin operators . . ... ... ... ....

3 The edge symbolic calculus
3.1 Edge-degenerate families . . . . . . ... ..

3.2 An alternative representation of complete edge symbols . . . . . .. ..

3.3 Some properties of edge symbols . . . . ..
3.4 Compositions . . . .. ... 0oL

4 Parameter-dependent cone calculus
4.1 Mellin quantisation . . . . . . ... ... ..
4.2  Green remainders in the Mellin quantisation
4.3 Flat elements of the algebra of edge symbols

References

14
14
16

20
20
21
22
25

26
26
30
34

37



Introduction

Parametrices of elliptic boundary value problems for differential operators on a mani-
fold with edges can be characterised as elements of suitable pseudo-differential algebras
with a certain principal symbol hierarchy. Algebras of that kind have been constructed
by the authors in [14] in connection with applications to elliptic boundary value prob-
lems of crack theory. They have a rich structure, and there are interesting subalgebras
that deserve a deeper investigation. In the present paper we develop a new machin-
ery for the subalgebra of operators with holomorphic Mellin and flat Green symbols,
here, for the case of boundary value problems with the transmission property at the
smooth part of the boundary. We will focus our attention to one of the essential as-
pects of the edge calculus, namely to operator-valued edge symbols. These are families
of (pseudo-differential) boundary value problems on an infinite cone, parametrised by
edge covariables n € R?. The case without boundary (i.e., when the base of the cone
is closed and compact) has been studied by Gil, Schulze and Seiler [7]. In the present
paper we shall obtain similar results for boundary value problems, especially, a new
representation of operator-valued edge amplitude functions. Parameter-dependent op-
erators on manifolds with conical singularities are useful also for other applications. In
particular, they are essential as ingredients of operator-valued symbols on manifolds
with corners and higher singularities, see, [26], [25]. Moreover, they belong to the
structures in heat trace expansions for operators on manifolds with conical singulari-
ties, cf. Gil [8], as well as in long-time asymptotics of solutions to parabolic boundary
value problems for spatial regions with geometric singularities, cf. Krainer and Schulze
[16] and Krainer [17].

Our paper is organised as follows: In Chapter 1 we present material on pseudo-
differential boundary value problems with parameters, cf., analogously, Boutet de Mon-
vel [2] for the standard case. Our approach is based on operator-valued symbols, act-
ing in spaces that are equipped with strongly continuous groups of isomorphisms. For
boundary value problems on cones we apply Mellin operator conventions and kernel
cut-off arguments as they have been employed in analogous form in [24], [27] for the
case without boundary. We then introduce Green edge symbols without asymptotics
as well as with infinite flatness in the axial variable r € Ry on the cone. Chapter 2
studies Mellin pseudo-differential operators with operator-valued amplitude functions
acting in Fréchet spaces. Here, we adopt definitions and arguments of Seiler [28], see
also [7]. Holomorphic Mellin symbols and associated operators are of particular rele-
vance for the rest of the paper. Recall that holomorphic operator functions play the
role of conormal symbols of elliptic operators on a cone. These are Fredholm families
in Sobolev spaces on the base of the cone. Parametrix constructions require the inverse
of such families; these are meromorphic families, where poles and Laurent coefficients
are responsible for asymptotics of solutions to elliptic equations, cf. Kondratyev [15],
or Rempel and Schulze [20]. The general functional analytic background on Fredholm
functions may be found in the paper of Gohberg and Sigal [9]; concerning further
general results on holomorphic and meromorphic Fredholm functions, see Gramsch
[11], [10]. A useful factorisation for meromorphic Mellin symbols in the specific cone
situation (when the base is closed) has been constructed by Witt [30]. In Chapter 3
we develop a calculus of parameter-dependent boundary value problems on an infinite
(stretched) cone X := Ry x X where the base X is a compact C*° manifold with
boundary. The families are operator-valued symbols of a specific structure; they rep-
resent the “non-smoothing” part of the edge symbol calculus, similarly to the case of
manifolds with edges without boundary, see [27]. We then establish another approach,



similarly to [7] for the case without boundary, that makes the elements of the calculus
(compositions, etc.) very transparent. Chapter 4 completes the material by a new
proof of the Mellin quantisation for edge-degenerate families of boundary value prob-
lems and gives characterisations of Green remainders in the edge symbol algebra that
are necessary in connection with the aspect that X" is a particular manifold with exit
to infinity.

ACKNOWLEDGEMENT: The authors thank J. Seiler, University of Potsdam, for
useful remarks to the manuscript.

1 Boundary value problems on a cone

1.1 Manifolds with conical singularities

Let us first give a definition of a manifold with boundary and conical singularities.
Given any topological space X there is an associated cone X2 := (R; x X)/({0} x X)
with base X (in the quotient space {0} x X is identified with a point, is interpreted
as the tip v of the cone). Setting X := Ry x X, called the open stretched cone with
base X, we have a homeomorphism X“\{v} = X", and every such homeomorphism
defines a splitting of variables (r,z) on X*\{v}. In our case, X will be a compact C*
manifold with boundary.

Two splittings of variables (r, ) and (7,#) on X“\{v} are said to define the same
cone structure, if (r,z) — (7,%), X — X", is the restriction of a diffeomorphism (in
the sense of C* manifolds with boundary) R x X —+ R x X to X”. In the following
we fix any cone structure and exclude in this way cases that are, for instance, cuspidal
relative to the given one. Now a manifold with boundary and conical singularities
is a topological space D with a finite set S C D of conical singularities, where D\S
is a C*° manifold with boundary, and every v € S has a neighbourhood V' that is
homeomorphic to a cone X%, where X = X(v) is a compact C* manifold with
boundary, and X" is equipped with a cone structure.

A similar definition makes sense for the case when the base is a closed compact C'*°
manifold. In particular, if D is a manifold with boundary and conical singularities,
B :=0(D\S)US is a closed manifold with conical singularities. Moreover, to every D
we can form the double 2D which is closed and has conical singularities, where the base
to a conical point v € S is the double 2X (v) of X (v). We mainly refer to associated
stretched manifolds. To recall the definition we first consider a closed manifold B
with conical singularities. Base manifolds Y to conical points v € S are then closed
and compact. In this case the stretched manifold B appears by attaching the sets
{0} x Y (v) to B\{v}, v € S; then B is a C* manifold with boundary 0B = U,csY (v)
(this is an invariant construction). Now if D is a manifold with boundary and conical
singularites S, we first form the stretched manifold 2D for 2D and then pass to D itself
by taking the subset of 2D consisting of D\S with the attached sets {0} x X (v) at the
points v € S. We then set Dyjyg := J,cg({0} X X (v)) and Dreg := D\Dyjpg. Similar
notation is used for the closed case.

1.2 Basics on operator-valued symbols

In our calculus we shall systematically employ a certain particular class of operator-
valued symbols that turns out to be very useful for a concise description of the algebra
of pseudo-differential boundary value problems.



A Hilbert space E is said to be endowed with a group action, if there is given
a group {mx}rer, of isomorphisms k) : £ — E, strongly continuous in A € Ry,
where kyk, = Ky, for all \,p € Ry. If {E,{kx}}, {E,{kx}} are Hilbert spaces with
group actions, S#(U x RP; E, E) for U C R™ open, u € R, denotes the subspace of all
a(y,n) € C°(U x R, L(E, E)) such that

||R<_771> {Dnga(yan)}“(n)”L(E,E) < c(myr 17!

for all « € N 3 € NP and all y € K for arbitrary K € U, n € RP, with constants
¢=c(a,8,K) >0, (n) = (L+n*)>.

Moreover, let S)(U x (R?\0); E, E) denote the set of all f(y,n) € C®(U x
(RP\0), L(E, E)) such that f(y,An) = )\”Fa)\f(y n)ky " for all (y,n) € Ux (RP\0),\ €
Ry. Then S%(U x R?; E, E) is defined to be the set of all a(y,n) € S*(U x R’; E, E),
such that there are elements a(,_;)(y,n) € S=i)(U x (R \ 0); E, E) where

N

a(y,n) = x(m) Y ag—j(y,n) € S*"NT(U x R} E, E)
=0

for all N € N.
Let us set ox(a)(y,n) = aq)(y,n), called the homogeneous principal symbol of
order pin n € RP \ 0. If p is clear from the context we simply set o := ok (a).
Further background on operator-valued symbols of that type may be found in [24],
[27], in particular, adequate Fréchet topologies in the spaces Sé‘cl) (U xRP; E, E) (here,
subscript “(cl)” is used when we talk about classical or non-classical symbols).

1.3 Calculus on a manifold with boundary

We now prepare elements on (classical) pseudo-differential boundary value problems
with the transmission property. Consider the half-space @ x Ry > z = (2',t), Q C
R*~1 open, and let £ := (¢',7) € R, € R?. Define S4(Q x Ry x R*F), for p € Z
to be the subspace of all a(xz,&,n) € S4(Q, x Ry x ]Rg;q) such that

D Dg {agu— (@', ¢, 7m) = (1) ag—y(a’,t, =€, ~1, =} =0 (1)

on the set {(z,£,7) € A x Ry x R : 2’ € Q,t = 0,(¢,n) = 0,7 € R\ 0}, for all
ke Na € N*~'*¢ and all j € N. Here, a(,—j) denotes the homogeneous component
of a of order p — j in (§,n) # 0. Below we shall employ symbols with the transmis-
sion property for k x m-matrices and employ invariance under symbol push-forwards,
belonging to coordinate diffeomorphisms and trivialisations of bundles on manifolds
of fibre dimensions m and k, respectively. With a(z,&,n) € S5 (Q x Ry x R*H7), we
associate a family of pseudo-differential operators in 2 x Ry by setting

Op ™ (a)u(z) = r*Op(a)e*u(z), (2)

where et is the operator of extension by zero from © x Ry to © x R and rt the
operator of restriction from Q x R to @ x Ry ; moreover, @ € S/(Q x R x ]Rg;;q)tr is a
symbol such that a = a|;~¢ (clearly, (2) does not depend on the choice of @). Similarly,
a(z',t,&',1,n) gives rise to an operator family

op™(a)(a',&',n) =rTop(a)(z', &', m)e”



on ]:R+7 Where Op(a)(;lj’?f’?n)u(t) = ff eZ(titl)Ta(w,7t7 6’77—7 n)u(t,)dtldT7 (:LJJé-,?n) E
Q x Retta,

Boundary value problems will locally be generated as pseudo-differential opera-
tors with operator-valued symbols. We shall apply the formalism of “abstract” edge
symbols in the sense of Section 1.2.

In our calculus we have, for instance, E = H*(R, ), E = H*~*(R, ), with x and &y
being given by u(t) — Azu(At), A € Ry. Then, if a(z’, t,&',7,1) € SHOxRy xRV,
is a symbol that is independent of ¢ for large ¢, we have

op*(a)(@’,¢',n) € S"(Q x R*™H HY(Ry ), H* " (R4))

for all real s > —%. In addition, if @ is independent of t, the operator family
opt(a)(z',&',n) is a classical operator-valued symbol.

In boundary value problems there is another important class of operator-valued
symbols, called Green symbols. First, the concept of operator-valued symbols easily
extends to the case of Fréchet spaces of the following kind. If a Fréchet space E can
be written as a projective limit E = projlim{E7 : j € N} of Hilbert spaces E/ with
continuous embeddings E/T! < EJ for all j, where E° is endowed with a group action
{Ka}rer, that restricts to a group action on EJ for every j, we say that E itself is
endowed with a group action {kx}rer,-

Let us now assume that E = proj lim{EN"c : k € N} is endowed with a group
action {fx}xrer,; moreover, let £ be a Hilbert space with {kx}recr,. We then set

Slery (U % RP; E, E) := proj lim{Sf,,, (U x RP; E,E*) : k € N}. Finally, let both E

and E be Fréchet spaces with group actions {katrer, and {Rr}rer,, respectively.
Then to every map r : N — N we first define the spaces S&l)(U x RP; B, E), =

proj lim{Sfcl)(U x RP; E"0) E*) : k € N} and then set

5(‘21)(U X ]RP;E,E') = USE‘CI)(U % ]RP;E,EN')T.

The group actions in the spaces F and E are fixed and known by the context; therefore
they are usually not indicated in the notation of symbol spaces. However, it happens
that we modify the choice of actions; then we indicate them as subscripts, and then,
if necessary, we write Sél)(U x RP; E, E)N’,}. In particular, for the spaces

E=L*R)oC-, E:=SR,)oC+
where S(R..) = projlim{(t)'H'(Ry) : I € N}, we employ
{diag(rx, A\2) Jacr, =: {kabrer, =t K, (3)
kx(u)(t) := Azu(At). Another possible choice is

{diag(rx, A~ %) haers =t {Xatrers = X- (4)

An element g(a',£',n) € S(‘;l)(U x R L2(Ry) o C- LA(R) @ T+), w € Ris
said to be a (parameter-dependent) Green symbol of type 0, if

g(z',€',n) € SGU x RTHLLAR) © O, S(Ry) & CH )



and
g (', €' n) € SHU xR MG LX Ry ) 0 CF,S(Ry) @ T )y

where * denotes the pointwise ad301nt with respect to the standard scalar products (in

particular, (u,v)r2(r,) fo dt). Moreover, operator families of the form
d 9 0
1ol _ /Y Y
g(fv,ﬁ,n)—go(:v,f,n)Jr;gj(fv,f,n)< 5 0) (5)

for arbitrary Green symbols g;(z',¢',n) of order p1 — j and type O are called Green
symbols of type d; the space of all those g will be denoted Ré’d(U x R 5 g0,

There is an obvious generalisation to k x m-block matrix valued Green symbols in
the upper left corners; the corresponding symbol space will be denoted by R‘C‘jd(U X
R+ w), where w := (m,j_;k,j) is a tuple of given dimensions. With symbols
g(z',¢'\n) € Ré’d(U X ]R”’Hq w) we now associate 17 dependent pseudo-differential

operators Op,. (g)(n)u(z') = " [[ el 2 g(a! ¢ m)u(F')diFd¢’. Then we
get m-wise continuous operators
Comp(Q X ]R—F (Cm) HIZCN(Q X ]R—Fa(ck)
Op,(9)(n) : @ — ® (6)
Hiouip (2,C-) Hy 7 (0,0)

forall s > d— % (“comp” and “loc” in the first components only refer to z'-variables).
We now define families of Green operators on a C*° manifold X with boundary (not
necesserily compact) acting between distributional sections in bundles E, F' € Vect(X)
and J_, J4 € Vect(0X), respectively. Here Vect(.) means the set of all smooth complex
vector bundles on the manifold in the brackets, and Hg,,, (X, E) denotes the Sobolev
space of compactly supported sections in E, Whlle H{ (X, E) is the space of sections
that are locally of Sobolev smothness s € R.

An n-dependent family G(n) of continuous operators

Hiomp (X, E) HEM(X,F)
. ® — 169 (7)
Heonkp(0X,J-) H '72(0X, )

s > d— 5, is said to be a Green operator family of order p and type d € N, if
G(n) = Go(n) + C(n), where Gy(n) is locally near 0X (in local coordinates z = (z',t)
and with respect to trivialisations of the bundles E, F, J_, and J of fibre dimensions
m, k,j— and j, respectively) of the form (6). Moreover, C(n) = (C;;(n)):,j=1,2 has the
form CO(n) + 31, C!(n)diag(T", 0) where T" is an arbitrary differential operator on X
of order [ (with smooth coefficients up to dX), while C!(), 1 =0,...,d, is a Schwartz
function in 7 € R? with values in the space of 2 x 2-block matrices of operators with
C*-kernels, smooth up to X in the variables referring to X.

Let X := 2X be the double of X, written as X _ Uy X4, where U, means glue-
ing together two copies X3 of X along 0X; let us identify X, with X. Given
E, F € Vect(X) we have the well-known space L" (X; E, F';R?) of classical parameter-
dependent operators of order u, acting between distributional sections in £ and F,
respectively. The space LY (X; E,F;R?) in Fréchet in a natural way. In particular,
L~ (X B, F; R?), the spaces of all parameter-dependent smoothing operators, coin-
sides with S(R?, L~=°°(X; E, F)); here, S(R?, G) for some Fréchet space G is the space



of all G — valued Schwartz functions on R?. Let Lé‘l(X;E,F;]Rq)tr, i € Z, denote
the subspace of all elements where the local symbols have the transmssion property at
0X; this is a closed subspace. Then, setting E := E|x_, F := F|x_, we get the space
LY (X;E,F;RY);, of all operators of the form r+A(n)et, A(n) € LY(X;E, F;RY )y,
where e™ denotes the extension of functions on int X by zero to X and r™ the restric-
tion of distributions on X to intX;.
Also LY (X;E,F;R?);, is a Fréchet space. Notice that L *(X;E,F;R?) (the
intersection over all u) just coincides with the space of upper left corners Gii(n) of
113 M — 00 . . — 00 . . P— !d . .
families in B=°°(X;v;R?), where, B—°>4(X;v;R?) := ﬂN BLY(X;v;R?7),d e N.
Definition 1.1 Given v := (E,J_;F,Jy) and u € 7 the space B (X;v;RY) of
parameter-dependent pseudo-differential boundary value problems on X of order u € Z

and typed d € N is defined to be the set of all operator families of the form

A= (A0 ) o)

for arbitrary A(n) € LY(X; E, F;R?)y, and G(n) € ngd(X; v; R?).

Let us fix a notation for the parameter-dependent principal symbol structure for
elements A(n) € B*%(X;v;R?), namely o(A) := (01, (A),05(A)) where

oy (A)(z,&m) :axE = ax F (8)

is the homogeneous principal symbol of order p in (£,7) # 0 of the upper left corner
of A, mx : (T*X x R?)\0 — X, and

E' @ H*(Ry) F'o H*(Ry)
Ug (A) ('7",7 gl, T’) : ﬂ-(:;X @ — ﬂ-:‘;X @ (9)
I St

s >d— % is the homogeneous principal boundary symbol of order u in (¢',n) # 0,

mox ¢ (T*0X x RY)\0 — 80X, E' := E|sx, F' := F|ox here, by order we understand
twisted homogeneity in the sense

b (A) (@', A, An) = N kroh (A) (@', € mky’

for all A € Ry, cf. (3), (4).

1.4 Operators near the tip of the cone

To formulate parameter-dependent operators on the (stretched) cone X" near the tip
we recall the definition of holomorphic Mellin symbols with parameters.

Let E,F € Vect(X), J_,J+ € Vect(0X) and set v = (E,J_;F,J+). Then
M‘é’d(X; v; R?) denotes the space of all

h(z,m) € A(C,B"*(X;v; R%))

such that h(5 + io,n) € B*»*(X;v;RLE) for every § € R, uniformly in ¢ < g < ¢
for arbitrary ¢ < ¢’. Moreover, let M‘é”dG(X; v;R?) be the subspace of all elements of
M‘é)’d(X; v; R?) that take values in the space Bg’d(X;'u; RY).



The space M’ d(X v;R?) is Fréchet in a canonical way, and M/, (X v;R?) is a
closed subspace; so we can talk about

C®(Ry x Ry, MEH(X;0;RY)) and  CF(Ry x Ry, MEGL(X;w;RY),  (10)

respectively. L
Moreover, let C’°°(]R+,/\/l‘(‘9’d(X;v;]Rq)) defined to be the set of all h(r,z,n) €
C“(M,M‘é’d(X;'u;]Rq)) such that

h(r,z,m) = h(r,z,m)

for some h(r, z,7) € COO(@+,M‘(§’d(X;v;Rqﬁ)). Let O (R4, M%*(X;0;RY))const be
the set of all h(r,z,7) € C°(Ry, M%*(X;v;R?)) where h(z,71) is independent of r.
Let us start from parameter-dependent boundary value problems B*4(X;v; R'*t4)
on X with parameters (g,n) € R'*?. Given an element j(g,7) € B»4(X;v; R'*T?) we
form
p(r, 0,n) == p(ro, ) (11)
and pass to the space B”’d(XA; v;RY) of all operator families of the form

a(n) := op,.(p)(n),

where p runs over all p(r, g,n) for arbitrary p(g,7) € B»?(X;v; R'T?),

We now form pseudo-differential operators with respect to the Mellin transform on
R, with operator-valued symbols

The Mellin transform Mu(z) = [;°r r)dr, first given on C§° (R} ) with Mu(z)
being an entire function in z, W111 be extended to larger spaces of distributions, also
vector-valued ones. To introduce notation we simply consider the case of scalar func-
tions on Ry. Set 'y = {# € C : Rez = [} for any § € R Function spaces on
I's > z will be regarded as usual ones with respect to Imz € R; e.g., we write
L?*(Ts), S(Ts), etc. It is well-known that the map M : u — (Mu)|1~lﬂ extends

2

from 030(&) to an isomorphism M, : t7L*(Ry) — L*(I'y_,), with the inverse
(M tg)(2) = (2mi)~ fr r~*g(z)dz. We then define weighted pseudo-differential

operators
opjy (Flut) = M7 1AMy f(r, 1, 2)u(r’)} (12)
for symbols f(r,r',z) € S*(Ry x Ry x F%fw) (in the scalar case). In the operator-

valued case we take symbols f(r,7’,2) € C®° (R x Ry, B*4(X;v; ;L1_,)), or symbols

h(r,r',z,m) € C®(Ry xRy, M‘é)’d(X; v;R?)) depending on additional parameters n €
RY?.

Let C (R, , B*4(X;v; R'7)) be the set of all p(r, 0,7) € C’°°(]R§+ BA(X;v; RITY))
such that p(r,o,n) = p(r,ro,rn) for some p(r, o, n) C>®(Ry, B4 (X ;v; ]R“q))
Moreover, let C° (R, B*%(X;v; R"7))eonst be the subspace of all p(r,0,n) of the
form (11), i.e., where p(g,7) is independent of r. The following theorem will be proved
in Section 4.1 below.

Theorem 1.2 Let p(r, 0,n) € C= (R, B4 X;v;R't9)), and let € C°(Ry) be
a function such that ¢ = 1 in a neighbourhood of 1. Then there exists an h(r,z,n) €
C®(Ry, MY (X;v;RY)) such that

op,.(p) (1) — opfy; (A)(n) = op, (1= (' /1) p) () € B~>4(X";v; RY)
for every € R.



To have a convenient notation we call h(r, z,n) the Mellin quantisation of p(r, 0, 7).
Mellin pseudo-differential operators (12) will act as continuous operators in ade-
quate weighted Sobolev spaces. Let G be a closed compact C'* manifold of dimension
n, and set G := Ry x G, called the (open) stretched cone with base G. Then the
space H®7(G"), s,v € R, is defined to be the completion of C§°(G") with respect to

the norm )

1 9 3
(g IO}
o
Here, R*(A\) € L5 (G5 Ry) is a parameter-dependent elliptic classical pseudo-differential
operator on G that induces isomorphisms H!(G) — H'™%(G) for all t,s € R\ € R;
L?(Q) refers to a fixed Riemannian metric on G. Now if X is a compact C* manifold

with boundary, we first form 2X, the double of X, and then set
HET(XN) = {u|xr 1 u € HSY((2X)M)], (13)

where X is identified with the plus-side of 2X . Similarly, if we are given a (smooth com-
plex) vector bundle V on G (or X) we form the spaces H%7(G*,V) (or H5V (XM, V))
in a canonical way (bundles in the spaces on respective stretched cones are interpreted
as pull-backs of corresponding bundles on the base of the cone).

In this paper a cut-off function w(r) means any w(r) € C§°(Ry) such that w(r) = 1
in a neighbourhood of r = 0. Given two cut-off functions w, we, we write wy < woy if
ws equals 1 on supp wi-

We are mainly interested in a modification of these spaces, denoted by K7 (G", V),
defined by the property u € K*7(G",V) & wu € H¥'(GMN,V) and (1 — w)u €
H? (Ry x G, V) for any cut-off function w, where subscript “cone” means the stan-
dard Sobolev space definition from R"*! near infinity, cf. [27, Section 2.1.4]. Moreover,
similarly to (13) we set K57(X") := {u|xn : u € K7 ((2X)")} and we use analogous
notation for spaces K%7(., V) of distributional sections in bundles V' on the cone G"
and X", repectively. Finally, let us define spaces with weight 3 € R at infinity, namely
KB (LV) = {ryBK7(,, V). Let m := (E, J) for E € Vect(X), J € Vect(dX), and
set

H (XN m) = HOV(XN, B) @ HETEITE((0X)0, ),

Ko (XNm) = K070 (X0 ) @ Ko 27 82((0X)1, ),
where we also drop 3 for § = 0. The latter spaces are endowed with the group action
diag({n&n)}AeRH {ng\nfl)})\eRJr) =: {kr}rer,- In addition, we define

So(X", E) := proj lim{K***( X" E) : k € N}
and, analogously, So((0X)", J), and set
So(X"m) = So(X", E) & So((0X)", J). (14)
{kr}rer, induces a group action on the space (14). For purposes below we set
K2H78(XN m) = KX E) @ K258 ((0X)); ). (15)

Moreover, define 8?7 (X", E) := projim{K*7¥ (X" E) : k € N}, and, analogously,
S7((8X)", J), and set

S (X";m) =87 (X", E) & 8T E((9X)", ),
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Sy (XN m) = SV(XN, E) & ST ((0X)", ).
For cut-off functions w(r), @(r) we consider operator families of the form
a(n) = w(r))"r"opy, * () (M@ (r[n))

where h(r,z,1) € C®°(Ry, B X;v; R™))eonst, v = (E, J_; F, J;). For every n we
get continuous maps

a(n) : K7P (XN m) — w78 (X1 n)
seER, s>d—1L, m:=(E,J_), n:=(F,J;). Moreover, we have
a(n) € ST (RY; K78 (XN m), K5 #7078 (X))

forall s € R, s > d — 1, where o7 (a) () = w(rl)In|"r"op}; * (W) (m)a(rinl).

1.5 Green symbols

Analogously to Green symbols for boundary value problems we now consider Green
symbols with respect to the edge-covariables 7. As before, the adequate context are
symbols g(n) = (gij(n))s,j=1,2 with a scheme of Douglis-Nirenberg orders

<uﬁ% N;%) (16)

gi1(n) € SH(RY; K>V (XM, E),So(XN, F)),
g12(n) € SETERY KB ((0X), 1), So (X7, F)),
g1 (1) € SMT2(RE; K57 (XA, B), So (X1, J4)),
g22(n) € SR L7275 ((0X)N, J.), So (X", J1)),

where

for all s € R. The symbols refer to {Iig\n) }aer, for the spaces on X” and to {n&nfl)}A€R+
for the spaces on (0X)".
Consider the space K*7#(X";m) with the group action k := {kr}rer, where

Ky = diag{/ig\n), Az Iig\n_l)}

and K*778 (X", m) with the group action x := {X>}rer, where

Xy = diag{ng\n), /\*%ﬁg\n_l)}.

We then have the symbol spaces
SH(RY; K75 (XA m), K757 (X7 )
and o
S(fj(Rq;/Cs Y ;B(XA;m),ICS B (XA§n))x,x5

recall that subscripts just refer to the chosen groups in the corresponding parameter
spaces.

In the following definition we introduce so-called Green symbols, where, in contrast
to those in Section 1.3, the half-axis is replaced by X" and the spaces are modified.

We will employ similar notation for such spaces of Green symbols that should not
cause confusion.
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Definition 1.3 Let v := (E,J_;F,J;), m := (E,J_), n := (F,Jy) and p € R.
Then Ré’o(]Rq;'u)@ denotes the set of all operator-valued symbols g(n) such that

g(n) € SHRT; K7 (XNm), So(X"51))w ks (17)

forall s,v,B €R, s> — ,and
g*(n) € SHRYG KX m), So (X7 m))x x (18)
for all s,v,8 € R, s > —5, where * means the n-wise formal adjoint with respect
to the reference scalar product of the spaces K*%%( X" E) & KY90((0X)", J_) and

KOO0 (XA F) @ KOO0 ((OX)N, Jy ), respectively. Moreover, R (RY;v)o for d € N is
defined to be the set of all operator families of the form

9(n) = go(n +Zgj (t 8) (19)

where gj(n) € RE 7R v)0, 1 =0,...,d.
Clearly, we have

R (R 0)0 © S*(R1 KT (XN m); So (X5 0)) e
for all s € R, s>d—%,andallBE]R.

Remark 1.4 Note that we have g(n) € Ré’o(]R{q;v)o if and only if (17) and (18)
hold for any fized s € R, s > ——, and all v, € R. To get an equivalent definition

of RéO(Rq,'U)oZ’n (17) and (18) we may even impose arbitrary fivzed s € R,s > —% in
the spaces on X and s’ € R in the spaces on 0X. The reason is that the respective
cone algebras on X and (0X)" contain order reducing elements for any required shift
of smoothness and that there are kernel characterisations of mappings g when, e.g.,
those s are taken to be fized. The operators with such kernels then have the mapping
properties in the sense of relations (17) and (18) for all s > —=; then this follows also
for the original operators.

Remark 1.5 Note that the particular choice of groups k and x gives us operator-
valued symbols with the scheme of Douglis-Nirenberg orders (16) for the entries of

g = (9ij)ij=1,2-
Remark 1.6 The space Ré’o(]Riq;v)o can also be defined by

ﬂsu R?; ICS’% (X m):’csrﬂl;B’:(XAEn))nn

)

where the intersection is taken over all s,v,3,s',7',8' € R, s > — , and a similar
condition for g*(n).

We will also employ more general Green symbols without prescribing asymptotic
properties.

Definition 1.7 Let Rg’O(Rq, (7,7');v) for u € R and fized 7,7 € R denote the
set of all

ﬂsu RY; K57 (X m)JS’Y’(X/\;n))KwN
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such that
g"(n) € [ SHRE; L 78(X M m), SED(XN m))y -

The intersections here are taken over s, € R, s > —%. Moreover, Ré’d(]Rq; (7,7");v)

for d € N is defined to be the set of all operator families of the form (19) for arbitrary
95 € RE°(R%;(7,7);v), j = 0,....d.

Example 1.8 The operator family

g(n) = () 7 opyy ® (F)(m(r[n])
for f(r,z,m) € C’OO(RJF,B“’d(X;'u;1"%7V X R?))const and arbitray ¢, € CSO(KJF)

where supp @ N suppy = 0 belongs to Ré_f"d(]R{q,(’y,y + 0);v). For f(r,z,n) €
Cm(ﬁ+,/\;l‘5d(X;v;Rq))const we have g(n) € Réf'”d(]Rq;v)o.

Example 1.9 Let P(n) € B~ X";v;R?) and let ¢, € CP(Ry). Then we
have pP(n)@ € RG(RY;v)o.

The following relations are a simple consequence of the definition.

Proposition 1.10 Let g(n) € Rg’d(]Riq, (7,7");v) and o, & € C°(Ry) be cut-off
functions. Then we have the following properties:

(i) og, 9o € RG" (R, (71,7); 0),
(i1) (1=0)g, 9(1=0) € RG™(RY, (v,7);v),
(iii) 095 —g € RG™(RY, (v,7);v),
(iv) rFgrl € Ré_(k+l)’d(]Rq, (v=1,7" + k);v) for arbitrary k,1 € R.

Analogous relations hold for g(n) € Ré’d(]Rq;'u)@.

1.6 Operators on a manifold with conical exits to infinity

The space X” is a C*° manifold with boundary and conical exit to infinity, see the
basics for the analogous case without boundary, cf. Parenti [19], Cordes [3] or Nieren-
berg and Walker [18]. We then have the operator spaces Bffl’d;d(X/\; v) from [12], [13].
In contrast to [12], [13] we shall employ here the order conventions from Section 1.3.
To be more precise, we first have Bé‘l’d;‘i(M ;v) for any manifold M with boundary
and conical exit to infinity, especially for the case M := X=, where X= is defined to
be R x X with the variables (r, z), equipped with a Riemannian metric that is a cone
metric dr? + r2gx for |r| > R with some R > 0, where gx is a Riemannian metric on
X. Then B%%°(X";v) is defined to be the subspace of all f € B#%(X";v) such that
xf € B(’fl’d;‘s(Xx;v) for each x € C*°(R) where x(r) =0 for r < eo, x =1 for r > &

for certain 0 < g9 < &1 (here, X" is identified with Ry x X C R x X).
Recall from [13] that B*%°(X";v) has a hierarchy of principal symbols, namely

cl
o(a) = (0y(a),0¢(a), 0y c(a); 05(a), 0 (@), 05,e (a)) (20)

where (0y(a),0s(a)) for an a € B(’fl’d;‘s(X/\; v) are the standard interior and boundary
symbols of a in the sense of B#(X";v), cf. formulas (8), (9) while the components
with subscript e or €’ are the corresponding exit symbols.
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Remark 1.11 op,(p)(n) € B“7d(X/\;'U;]R%) implies
rrop, (p)(n) € BLO(X "5 v)

for every fized n € R7\0.

2 Mellin pseudo-differential operators

2.1 Tools on oscillatory integrals in Fréchet spaces

Let E be a Fréchet space, and let T(Ry x R E) denote the space of all elements
u € C®°(Ry X R, E) such that

(Su)(r,7) :=ule™",7) € S(R; x R, E).

From the isomorphism S : T(Ry xR, E) - S(Rx R, E) we get a Fréchet topology
on the space T(Ry x R, E). In the special case E = C we also write 7 (R; x R) for
the corresponding space. Below we also employ the notation 7 (Ry x I'g) where 7 € R
is replaced by I'g = {i7 : 7 € R}. We now introduce a space of E-valued amplitude
functions for Mellin oscillatory integrals.

Definition 2.1 (i) Q(Ry x I'g, E) denotes the space of all h(r,z) € C®°(Ry X
Ty, E) such that for each continuous semi-norm p on E there exist reals p = py
and 6 =6, such that

sup{p((@f(rar)lh)(r, i))(log ’I">76<T>7H (1) e Ry xR} < o0 (21)
for every k,l € N,

(i1) Q(Ry x C,E) denotes the space of all h(r,z) € C* (R, A(C, E)) such that for
each continuous semi-norm p on E there exist reals 1 = pp, and § = 0, such that

sup{p((8* (rd,)'h)(r, B + i1))e 28 V() "H  (r,7) € Ry X R, |B] < j} < o0
for all 5, k,l € N.
The properties of the following proposition are practically evident:
Proposition 2.2 (i) h € Q(R; x [, E) implies 8%(rd,)'h € Q(R;. x [y, E).

(¢i) If T : E — E:' is a continuous operator, then h € Q(Ry x I'g, E) implies Th €
Q(Ry x T, E).

(i4i) Let E be the projective limit of Fréchet spaces E; with respect to linear maps Tj :
E—E;,jeN. Then h e Q(Ry xTy, E) is equivalent to Tjh € Q(Ry x T, Ej})
for all j € N.

(iv) Given two Fréchet spaces Ey and Ey and a continuous bilinear map (.,.): Ey %
E, = E, then hj € Q(Ry x Do, Ej), j = 1,2, implies (ho,h1) € QR x [y, E).

(v) Let V be a closed subspace of E and h € Q(Ry x I'g, E), then we have [h] €
Q(]R-F X F07E/V)

Analogous relations hold for amplitude functions in the sense of Definition 2.1 (i7)
(that are holomorphic in z).
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Example 2.3 Let X be a closed compact C*>° manifold. Then

C(Ry, L (X;5T0)) € Q(Ry x To, Lgj (X)), O (Ry, Mip (X)) € Q(Ry x C, Li; (X))
Definition 2.4 A function x.(r,2) : (0,1] x Ry x Tg — C is called regularising, if
(i) x- € T(Ry x Tg) for each ¢ € (0,1],
(i) sup{|(8%(rd,) x=)(r,2)| : € € (0,1], (r,z) € Ry x [} < oo for all k,l €N,

(iii) O (rd.)'xe)(r,z) — { é igi zii i 8 pointwise on Ry x Ty, as € tends to 0.

Example 2.5 Choose an element x € T(Ry x R) where x(1,0) = 1, and set
Xe(r,i7) := x(r®,e7). Then X is a regularising function in the sense of Definition 2.4.

Definition 2.6 A function x.(r,z) : (0,1] x Ry x C — C is said to be holomor-
phically regularising if

(i) (g,r,iT) = xe(r, B +iT) is regularising in the sense of Definition 2.4 for every
B eR,

(i7) xe(r,2) is an entire function in z € C, and T = x.(r,f +it) € S(R;) holds
uniformly in compact B-intervals,

(¢i7) for every € € (0,1] there is a compact set K. C Ry such that x.(r,z) = 0
whenever r ¢ K.

Example 2.7 If M : C°(Ry) = A(C) is the Mellin transform and ¢ € C§°(Ry)
any function such that (1) = (Mp)(0) = 1, then x(r,z) := o(r?)(Me)(ez) is holo-
morphically regularising in the sense of Definition 2.6.

Theorem 2.8 Let h(r,z) € Q(Ry x Ty, E) and x:(r, z) be a regularizing function.

Then - d
// T h(r,iT) dT = hm // 7 xe(r,iT)h(r,iT) L ar (22)
0 r

(called an oscillatory integml) exists in E and is independent of the choice of x..
An analogous result holds for h(r,z) € QR+ x C,E) where x. is holomorphically
reqularising. In particular, for h € Q(Ry x Lo, E) N Q(Ry. x C, E) both definitions of
oscillatory integrals coincide.

The proof of this theorem can be given in a similar manner as that in the context of
scalar amplitude functions and of the Fourier transform by using integration by parts
and applying Lebegue’s theorem on dominated convergence.

Remark 2.9 Let us fix a countable semi-norm system {p,},en for the Fréchet
topology of E. Then from Definition 2.1 for every h(r,z) € Q(Ry x Iy, E) there
are sequences i := (,),en and 0 := (0,),en such that the estimates (21) for p, are sat-
isfied with the exponents —5, and —pu,. Let Q"% (R, x Ty, E) denote the subspace of all
h(r,z) € QR4 xTg, E), where the estimates (21) hold for given sequences p and 6. We
then get a semi-norm system that turns Q"% (R, x Lo, E) to a Fréchet space. Then (22)
gives rise to continuous operators Q"9 (Ry x [y, E) — E and Q"9 (R, x C,E) — E,
respectively, for every pu, 4.
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2.2 Mellin operators

Our next objective is to formulate some elements of a global (on Ry ) calculus of Mellin
pseudo-differential operators with amplitude functions taking values in boundary value
problems on X. Similarly to the notation in the beginning of Section 2.1 we consider
a class of weighted Schwartz spaces on Ry with values in a Fréchet space V. In our
case V will be one of the spaces

V,:=C®(X,E) or V,_;:=C>(0X,J), (23)

where X is a compact C* manifold with boundary and E € Vect(X), J € Vect(0X).
Because of the weight conventions in Mellin pseudo-differential operators there is al-
ways given a dimension information m € N connected with V' (associated with dim X
in our application). In general, if V' is given together with m, we set

TRy, V) = {u € C¥[Ry,V): e y(e™!) € SRy, V)}.
Then the isomorphism 77 (R;,V) — S(R, V), u(r) — e~ )ty(e~t), gives us a
Fréchet topology in the space 77 (Ry, V). In particular, for the spaces in (23) we set
m =mn or m =n — 1, and we then have the spaces
TRy, C*(X, E)) and T7(Ry,C*(0X, E)),
respectively. For abbreviation we also set
TRy x Xm) := T7 (R, C*(X, E) & T7 7% (Ry,C%(0X, E))

for m := (E, J).

Using the Fréchet topology of the space B“7d(X;'U;F%7V), v = (E,J_;F,J;),
with a corresponding semi-norm system (p,),en, we can define the space Cp°(Ry x
]RQ_,B“@(X;'U;I‘; )) of all

577
f:Ry xRy — B“’d(X;v;F%_V)

such that sup{p,((ror)*(r'0r"))f) : r,r' € Ry} < oo for every ¢, k,I € N. In a similar
manner we define C5°(R,, .. .) for the case of only one Ry -variable. Set (as usual)

ool = [[7(5) 7 s g - i e e
for f(r,r',z) € C°(Ry x Ry, BH(X;v; I's_,)). We then get a continuous operator
opa(f) s T FE (R x X,m) — T7F 5 (Ry x X, n)
where m := (E,J_) and n := (F, J;). In this case the integrand in (24) is regarded

as an amplitude function of the class Q(Ry x Ty, C®(X, F) ® C* (98X, Jy)) for every
fixed r > 0.

Remark 2.10 Let f(r,r',z) € Co°(Ry x M,B”’d(X;U;F%_,Y)). Then (as it will
be verified later on in an analogous situation) the function

a(s,it) := ((r,z) = f(r,sr,z +i71))
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belongs to Q(Ry x Lo, V) for V = C°(Ry x Ry, BHY(X;v; ['1_,)). Thus the oscilla-
tory integral

fu(r,z) = //000 sTf(r,sr, 2 + Z'T)%d'T (25)

converges in Cp°(Ry x ]R_F,B”’d(X;'U;Féfv)). Formula (25) is just an expression
for the left symbol of the Mellin pseudo-differential calculus, i.e., we have op),(f) =
opy(fr). In an analogous manner we can find a corresponding right symbol fr asso-
ciated with f.

Proposition 2.11 The operator op,(f) for f € C° (R} x ]RQ_,B”’d(X;'U;Féfw))
induces a continuous map

op3y (f) s M TE(X N ym) = HTTTE (X n)
for every s € R. Moreover, f — op),(f) represents a continuous operator
O Ry x Ry, BY(X50;0y ) — L(HSTTE (X m), 1o H7HE (X )
for every s € R.

These properties follow from generalities on pseudo-differential operators with operator-
valued symbols in a similar way as corresponding assertions for the case without bo-
undary, cf. [7].

Let Cp% (R x Ry ) denote the subspace of all u(r,r’) € C*°(Ry x Ry) such that

sup |(r87«)k(r'8rr)k’u(r, )| < oo
r,r'€Ry

for all k, k" € N. Let C9% (R4 ) denote the subspace of all elements C*° (R} x Ry ) that
are independent of r'. Moreover, if E is a Fréchet space, we have a canonical definition

of spaces Cp% (Rt x Ry ; E) and CP% (Rt ; E).

Lemma 2.12 For h(r,r',z) € CpG(Ry x M,M‘gd(X;v)) and arbitrary reals
v,0,0 we have the following identities:

(i) Ky opy;(h)kx = op},(hy) where hy(r,r',2) = h(A" r,A"2", 2), here, Ky is re-
garded as a diagonal block matriz diag{ﬁg\n),ng\n_l)

sponding identity operators.

}rer, composed with corre-

(ii) op};(h)r—7 =r%op}°(T°h) where (T°h)(r,r',2) = h(r,7', 2z + o),

(iii) op},;(h) = opi,(h) as operators on functions with compact support with respect

tor e Ry.

Relations of that type and other technicalities on Mellin pseudo-differential oper-
ators may be found in [24].

Proposition 2.13 Let h(r,z,1) € CW(K+,M‘(‘9’d(X;U;Rq)) be independent of r
for large r. Then we have

a(s,w) := ((r,z,n) = h(sr,w + z,sn)) € Q(R; x C,C™ (Ry, M5 (X;0;R7))).
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Proof. By definition, the space M‘é’d(X; v;R?) is a subspace of A(C, B4 (X;v;R?)),
where Im z plays the role of an extra parameter, i.e., parameters vary on I's x R? for
each § € R, with a uniformity condition in finite intervals ¢ < 8 < ¢’. We can dissolve
this information by looking at the entries of corresponding 2 x 2-matrices separately
and going back to the definition of B*?(X;v;Ts x R?). If our parameter-dependent
operators belong to C*° (R4, M/ 4(X;v;R?)), we can proceed in a similar way; we
then write h(r,z,1) = (hij(r,2,7))ij=1,2. Assume for simplicity that the bundles F
F as well J_, J; in v are trivial and of fibre dimension 1. In the upper left corner we
have an operator family, of the form

rtA(r, z,n)et + G(r,z,n),

where G(r,z,n) is of Green type that will be discussed afterwards. A(r,z,7n) is an
element of C*° (R4, M} (2X;R?)), in the sense of notation from the analogous context
on a closed compact C*° manifold, cf. [7]. Here, 2X denotes the double of X and we
identify X with X . Let et denote the operator of extension by zero from intX, to
2X and rT the operator of restriction from 2X to intX,. Then, using an analogue
of Proposition 2.13 for the case of a closed compact manifold that corresponds to [7,
Lemma 4.1], here, applied to A(r, z,7) on 2X, we immediately get the desired result
also for rﬁ#i(r z,m)et. It remains to consider the Green operator-valued case, i.e.,
h(r,z,m) € C’°°(]R+,M o(X;v;R?)), cf. formula (10). By virtue of the representa-

tion of A(r,z,n) as a sum

d .
- 77 0
h(r,z,n) = ho(r,z,n) Z (ryz,m) ( 0 0)

where ilj € C®[R,, M‘éjé’o(X; v;R?)), 0 < j < d, with T being a differential operator
on X of first order that correspond to a vector field that is transversal to 90X, it
suffices to consider the operator functions ﬁj separately. In other words, without loss
of generality we assume d = 0. The case h(r,z,1) € O (R, My %(X;v;R?)) is
easy because the entries can be represented by (r,z,n)-dependent families of C°-
kernels that are smooth up to the boundary. The straightforward calculation is left
to the reader. Thus it remains to consider the case that h(r, z,7) is a family of Green
operators, localised in a coordinate neighbourhood of the boundary and written in
local coordinates in the form

h(r,z,m) = Op, (§)(r, z,m)

where G(r, z,m;2',€'") € C®(Ry, RE° Uy x RS, "1 5 C.)), see the definition below.
If we now show the assertion for the upper left corners hn(r, z,m) of a 2 x 2-operator
function h(r,z,n) = (hi;(r,2,1))i j=1,2, we shall see how to argue for the other entries
that are of simpler structure. In other words, the proof is complete when we study
hll (’I", 2, 77) .

To continue the proof we need a lemma that refers to operator-valued symbols with
holomorphic dependence on a covariable.

Let E and E be Hilbert spaces with group actions {s}xer, and {#x}xrer,, re-
spectively. Consider spaces of symbols Sé‘d) (RP+4 x T'; E, E) for some p,q € N and
B € R with constant coefficients and covariables (£,n) € RPT?, Imz € I'z. Then
S( )(R”+‘1 x C,;E, E) denotes the space of all a(£,n,z) € A(Cz,Sé‘Cl)(]R{pW;E,E'))
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such that a(¢,n, B +it) € S&l) (]R’g;;?jl ; B, E) for every § € R, uniformly in ¢ < § < ¢

for every ¢ < ¢’. We consider Sél) (R4 x C; E, E) in its canonical Fréchet topology
and form the space
C*Ry x U, Séﬁ:l) (RFT9; B, E)) (26)

for any open U C R™. Taking instead of a Hilbert space a Fréchet space E =
projlim{E; : j € N} with group action we get a corresponding space (26) as a pro-
jective limit over j of spaces with respect to (E, E;). In particular, we can form the
spaces

O (s x U, Sty (R LR, ), S(RS)). (27)

For the case U = U, € R* !, and ¢ instead of ¢ we get a definition of the space
C>=(Ry, Ré’O(U$, X ]Rg,jnlﬂ x C.)) as the set of all elements g(r, z,n; z', ") in the space
(27) such that the pointwise formal adjoint g*(r, z,n; ', &) also belongs to (27). The
remaining part of the proof of Proposition 2.13 now reduces to the following general
result:

Lemma 2.14 Let (E, {kx}rcr,) be a Hilbert space, (E, {Fx}rery) a Fréchet space,
both endowed with corresponding group actions. }
Let h(r,z,n;z,8) € C°(Ry x UE,S(‘ZI)(]RQ;Q x C,; E, E)) be independent of r for
large . Then
a(s,w) := ((r,z,1;2,€) = h(sr,w + 2, 51; 7, €))

is an element of Q(Ry x C,,C®(Ry x U, Slen) (]R’g;q x C.; E,E))).

This assertion for scalar symbols (i.e., E = E = C and the identity as group actions)
is just the content of the proof of [7, Lemma 4.1]. The arguments for Hilbert spaces
E and E with group actions are practically the same, since ||k()||z(m) and [|&()|l, (5

are of polynomial growth in the covariables. Finally, for the case of a Fréchet space £
we only have to check the proof for evey Ej as in the step before. 0O

To complete the proof of Proposition 2.13 we apply Lemma 2.14 to the case of
Green symbols and then repeat the arguments for pointwise adjoints that have the
same structure. 0O

Proposition 2.15 Let h(r,z,1) € C’OO(KJF,M‘(Sd(X;v;]Rq)) be independent of r
for large r, and set h(r,z,n) := h(r,z,rn). Then
7 ! —iT7 ' . ds
hr(r',z,n) = sTh(sr',z +iT, sn)?dr
converges in COO(@+,M’(‘9’d(X;U;Rq)), and for hg(r',z,n) := hg(r', z,r'n) we have
opyr (hr)(n) = opy,(h)(n)
for every real 7.

This can be proved in a similar manner as a corresponding result for Mellin pseudo-
difeerential operators with “abstract” operator-valued symbols.

The same is true for the following result: Set h;(r,z,n) = ﬁj (r,z,rm), j = 0,1,
and h(r,z,n) := h(r, z,r1).
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Theorem 2.16 Let hj(r,z,n) € Coo(ﬁ+,/\;l‘g7dj(X;vj;]Rq)) j = 0,1, be inde-
pendent of v for large v, where vy = (Ey, Jo; F,J+), v1 = (E,J_; Ep, Jo). Define
h(r,z,m) € C% (R, ME " (X500 0 v1;RY)) for e = max(po + do, dr) by

~ e ~ d
h(r,z,n) == // s”ho(r,z+iT,n)h1(sr,z,sn)—SdT
s

which is covergent in C® (R4, M (X ;v o v1;R?)). Then we have

opys (ho) (mop y (h1)(n) = opy, (k) (n)

for each real .

Theorem 2.17 Let h(r,z,n) € COO(K+,M%O(X;U;]R11)) be independent of r for
large , and set h\*) (1, z,n) := A (r, z,rn) € CW(M,M%O(X;U;]R‘I)), where

ﬁ(*)(r,z,n) = // SiTﬁ(Sr,n +1—2z+1T, Sn)*%dT

(with % denoting the pointwise formal adjoint of boundary value problems on X, cf.
[27, Theorem 4.3.33]) converges in C®(Ry, M3’ (X;v*;R?)), v* = (F,J.; E,J.).
Then

o}, (h) ()" = opy ™" (W) () (28)
for every real v, where the operator on the left hand side is the (n-wise) formal adjoint
of opy,(h)(n), i-e.,

(0p; (h) (Mw, v) 300 (x 7 Fyemoo((9x)~ 01y = (U, 0D, (R) (1) 0)20.0 (x 7 By@HOO(9X)A,T_)5
for all w € C§ (XM, E) ® C((0X)N, J-), v € CFL (XN, F)® CL((0X)N, J4).

3 The edge symbolic calculus

3.1 Edge-degenerate families

The material on operator-valued amplitude functions will be applied to the following
class of edge symbols with values in boundary value problems on X”. In the sequel,
oi(r), wi(r), i =0,1,2,..., will denote arbitrary cut-off functions.

Definition 3.1 Lety, u,v € R, u—v € N, and let RV4(RY, g;v) for g = (v,7—p)
denote the set of all operator families

a(n) = o1(r){am(n) + ar(n)}too(r) + (1 — o1(r))aine(n) (1 — 02(r)) +g(n),  (29)
where .
an (1) := w1 (r[n])r =" opy, * () (o (r[i), (30)
ap(n) := (1 = wi(r[]))r~"op,(p)(n)(1 — wa(r[n))), (31)
with p(r,0,n) € C®(Ry, B4 (X;v;R*1)) and h(r,z,n) € C*(Ry, Mg"(X;v;R?))
connected with eachother via Mellin quantisation (c¢f. Theorem 1.2), an element aing(n) €
BY4U XN, v;RY) such that aing(n) = @rains(n)p2 for certain ¢1, g2 € C(Ry), and
g(n) € Réd(]Rq,g;'u). The cut-off functions in (29), (30), (31) are assumed to satisfy
the relations ws < w1 < wo and o3 < 01 < 09.
In addition, we define R (R?;v)o to be the set of all operator families (29),
where (30) and (31) as well as aint(n) are defined as before, while now we require

g9(n) € R (R?;v)o.
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Note that we have R"4(R%;v)p C RV (R?,g;v), g = (v,y — p), with arbitrary
v, uveER p—velN
Let a(n) € RV4(R?, g;v), and set

ox(a)(n) = oX(anm)(n) + oX(ar)(n) +ox(9)(n), neRN\O,
with

v

o¥(anr)(n) = wr (rn))r="opjy ¥ (ha) (m)eo (r[n]),
ox(ar)(n) = (1 —wi(rln]))r="op,(pa)(M)(1 = wo(rinl)),
where ha(r,z,1) = h(0,z,r5) and pa(r, 0,1) = p(0, 0, 7).
Remark 3.2 We have for n #0

o (@) = Jim Ak ey, (32)

regarded as a family of operators o¥(a)(n) : K*7P(XN;m) — K7 =#B (XN n),
where (32) holds in the operator norm for every s > d — % and B € R. In addition,
ox(a)(An) = X kxo] (a) ()3
for alln#0, A € Ry
Remark 3.3 We have (in the notation of Definition 3.1)
R™(R?,g;v) C S”(RY LT (X"m); K779 (XN 1)) e,
foralls€R, s>d—1L, and all p € R.

9

3.2 An alternative representation of complete edge symbols

As announced in the beginning we now represent complete edge symbols from Defini-
tion 3.1 in a new form, where we avoid the n-dependent cut-off functions in (30), (31),
but only employ the Mellin term near zero. By this we extend a corresponding result
from [7] to the case of boundary value problems. In the following we use the same
notation as in Definition 3.1.

Theorem 3.4 The following conditions are equivalent:
(i) a(n) € R"(R?, g;v).

(ii) There are elements h(r,z,1) € C= (R, M54 (X;v;R?)), g(n) € RE4U(RY, g;v),
and aing(n) € B»UX";v;R?) where p1aing(n)ps = aint(n) for some 1,92 €
C§°(Ry), such that

a(n) = o1 (r)r = opy; * (M) (Moo (r) + (1= 01(r))aim(n) (1 = 02(r)) + g(n) (33)
with cut-off functions o, j =0, 1,2, satisfying 02 < 01 < 0p.

An analogous result holds for a(n) € RV4(R?;v)o where g(n) € Rgd(]R{q;v)o.
For the principal symbol we have in both cases

o¥(a)(n) = r="opy; E (ha)(n) + 0% (9)(n)

where ha(r,z,n) = lNL(O,z,rn), and o¥(g) is the homogeneous edge symbol of order v
of the new Green symbol g(n).
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Proof. Let us start from a(n) € R*?(R?, g;v) in the notation of Definition 3.1. Then
we have

am(n) +ar(n)
= wi(rfr)r~opas 2 (h) (mwo(r[]) + (1 — w1 (r[y]))r ™" opay 2 (R)()(L — wa(r[n]))

+(1 = w1 (rn))r ™ {op, () (n) = opiy 2 (WM H( = wa(r[n)))

Y—%5

=r""opy > (h)(n) + g1(n) + g2(n),

where

g1 (n) = (1= wi (r[]))r™" {op,(0) (n) — op}; * (W) (M)}(1 = ws(r[n]))

and

g2(1) := (w1 (rfn]) = D)r = opy; * () (m)ws () +w1 (r[i)r =" op ;2 (A)(m) (wo (r[n]) — 1)-

Since p and h are related via Mellin quantisation, cf. Theorem 1.2, we have ¢;(n) €
Rgd(]Rq ;v)o due to Proposition 4.5. Moreover, Propositions 4.9 and 1.10 yield g2 (n) €

Rgd(]R{q;v)o. Finally, by analogous calculations for the principal edge symbol we
obtain

0% 01d(@) = 0% pra(an) + 0% palar) + 0% 5a(g)

= ’I"iyopX;E(h/\) + U;/\(gl + gZ) = Jx,new(a)

with obvious meaning of notation. O

3.3 Some properties of edge symbols

Let us now investigate the properties of edge symbols from Definition 3.1 under the
aspect of the alternative representation of Section 3.2.

Lemma 3.5 Let a(n) € R¥4(R?,g;v) forg = (v,7 —p) and v = (E,J_; F, Jy).
Then we have a(n) € B»4(X";v;R?).

Proof. Write a(n) in the form (33). We have g(n) € B~ >¢(X";v;R?) which is
easy to verify and (1 — o1)aine(n)(1 — 02) € B4(X";v;R?) by the notation in (33).
Moreover, the Mellin pseudo-differential operator op), 2 (h)(n) can also be expressed

in terms of the Fourier transform on Ry > 7 with an amplitude function ¢(r, 0,n) €
C®(Ry,B"Y(X;v;RELL)), e,

opyy £ (B)(m) = op,(@)(n) mod B~*UX";u;RY), (34)
where op,(q)(1) € B"4(X";v;R?). O

Lemma 3.6 For every ¢, ¢ € C(Ry) and p(n) € B»4(X";v;R?) we have
op()y € RV4(RY;g;v) where ap(pp) = 0. Moreover, op(n)y can be represented
in the form (33) with h and ai, being compatible, i.e., there are constants ¢’ > c¢ > 0
such that

P op; 2 (W)(1) = ain(n)@ € BT (X" w3 RY) (35)

for all ¢, ¢ € C°(Ry) supported in [c,c'] (if h and ayy satisfy the latter condition,
we also talk about compatibility of h and ai, in the interval [c,c']).
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Proof. To write pp(n)y in a form as in Definition 3.1 we may set aint(n) = @p(n)1p.
Choosing cut-off functions o9 < 01 < g9 we can write

aint (1) = 010in ()00 + 01610t (1) (1 — 00)
+(1 = o1)aing(n)o2 + (1 = o1)aing(n)(1 — 02).
Then o aint(n)(1 — 0o) and (1 — 01 )aing(n)o2 are smoothing, and we have, in fact,
o1aint () (1 = 00), (1= 01)ain ()02 € RG™ (R v)o,
cf. Proposition 1.10. In other words,
Qine (1) = 01aine (M) 00 + (1 = 01)aing () (1 — 02) mod R (R7;v)0.

By Mellin quantisation we will write o1 aint(17)00 as a sum alr“’opj\;% (h)(m)oo +g(n)
with suitable h and ¢g. Because of the presence of the functions ¢ and ¢ there is
a symbol ¢(r, 0,m) € C° (R, B»4(X;v;R?)), compactly supported in R, , such that
aint (1) = op,.(¢)(n) and

rq(r,r o, i) € CF(Ry, BM( X505 Ry 1))
so that p(r, 0,n) := r’q(r, 0,n) € C®°(R,, B»4(X;v;R'T7)). It is clear that the sym-
bol p is compactly supported in R;. Due to Theorem 1.2 there exists an h(r,z,n) €
O (Ry., M (X;v; RY)) such that d(n) := op,(p)(n)—opy, * (h)(n) € B=(X";v;RY).

Note that h is compactly supported in Ry as p, and d(n) is supported away from r = 0.
Using Example 1.9 we obtain

o1t ()00 = 011 opy, () (Moo + orr ™ d(n)o
= alrf"opX/;% (h)(n)op mod Raoo’d(]Rq ;)0
which yields the desired representation
aing () = 01" opyy 2 (h)()ao + (1 = 01)aing (1) (1 = 02) + g(n)

with g(n) € Raoo’d(]Rq;v)o, and the compatibility relation is satisfied for suitable
constants ¢/ >¢>0. O

Lemma 3.7 Every a(n) € RV%(R?, g;v) (given of the form (29)) can be written
as in (33), where h and ainy are compatible in the sense of Lemma 3.6 (i.e., with ¢,
P € C§°(Ry.) being 1 in a suitable interval [c,c']).

Proof. First, by Theorem 3.4 every a(n) can be written in the form (33). By means
of inverse Mellin quantisation we find an element diy(n) € B*(X";v;R?) where
Gaint(n)0 = @int(n) for suitable cut-off functions ,4. Let us set

a(n) == o1r™"opy; * (B)(M)o0 + (1 = 01)aine (1) (1 = 02) + g(1).
We then have
a(n) —a(n) = (1 — o1)(@ine — ine) (1) (1 — 02)
which can be written by Lemma 3.6 in terms of a Mellin symbol with the desired

compatibility condition. Then a = @ + (a — @) has the form (33) where the asserted
compatibility holds. O
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Proposition 3.8 Let
h(T‘, Z, 77) € COO(K+7 M'(/ﬁd(X: U; ]Rq))a aint(n) S BVVd(X/\; v; ]Rq)a
and assume h and ainy to be compatible in [c,c']. Further, let 02 < 01 < 0p and

G2 < 61 < 09 be two sets of cut-off functions supported in [0,c'] where o0 =62 =1 in
an open neighbourhood of [0,c]. Then the operator functions

a(n) == ovr="op}; % (R)(m)oo + (1 = o1 )ainy () (1 = 02),

a(n) == G1r="opy; * (R)(m)Go + (1 = 61)aim (m)(1 = 52).

coincide mod € Raoo’d(]R{q;v)o. In other words, the class R"*(R?, g;v) is independent
of the choice of the cut-off functions whenever the above-mentioned support conditions
with respect to the compatibility interval are fulfilled. The same is true if in (33) we
interchange simultaneously o1 <> 02 and (1 —o01) <> (1 — 02).

Proof. Let ws < wy < w3 be cut-off functions such that w3 < 09, w3 < 62 and ws = 1
on [0,c]. Set

a :=wyaws + (1 —ws)a(l —ws) + waa(l — w3z) + (1 — wy)aws

and bys(n) = Jlr”’op}(/[_% (h)(n)oo. Then Proposition 4.14 yields

a —wabpws + (1 — wi)a(l —ws) € RGURY; v)o. (36)

In a similar manner, if we < w1 < wg where oyp < wo and ¢ < we, we get

a — wiawy + (1 — w1)aing (1 — ws) € R&Oo’d(]Riq;v)o. (37)

Inserting (37) into (36) yields
a — {(1 —wi)wiawo (1 — ws) +wabprws + (1 — wi)aing (1 — w)} € R RY; v)o.
Applying analogous constructions for @ we obtain
a—a—p(a—a)p € Raoo”i(]Rq;v)o

where @1 1= (1 — w4)wi, po := wo(l — ws). As in the proof of Lemma 3.6 we see that
both
@1(1 = 01)aint(1 — 02)p0 — @1 (@int — T1aint00)P0

and
©1(1 = 71)int (1 — 62)p0 — @1(aing — G1@intG0)Po

belong to Rg™*(RY;v)o. Thus
v1(a—a)po — {101 (bar — aint)oopo — 161 (bar — aint)Fowo }

also belongs to that space as well as the summand in {...}, due to the compatibility
relation (35) and Example 1.9. O
As an immediate consequence of Theorem 3.4 we get the following two propositions:
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Proposition 3.9 a(n) € R*4(R?,g;v) for g = (v,y — p) implies
o v—|al,d .
Dya(n) € RV 1*M(R?, g;v)
for every a € N?, where
o 1N (D5a)(n) = Dy (a)(n)-

Proposition 3.10 a(n) € R*°(R?,g;v) for g = (v,7 — n), v = (E,J_;F, Jy),
umplies a € ’ ;U or =(=y+u,— vt = ; —), an
implies a*(n) € RO(R?, g*;v*) for g* = (= + p, =), v* = (F,J4; E, J_), and

op(a®)(n) = o (@)* ().

3.4 Compositions

Theorem 3.11 Let aj(n) € R¥i:% (R?,g;5v;), § = 0,1, where g; = (7,7 — 1j),
M = — po, and v1 = (Ey, Jo; F, Jy), vo = (E, J_; Ey, Jo). Then we have

a1 (n)ao(n) € R™H4(R?, g;v)
for d = max(vy + di,dp), and g = (0,7 — Mo, —H1), ¥ = V1 0 Vg, where

o (arao)(n) = 0% (a1) ()% (ag)(n) for 1 € RI\O

and JZ}O"'” (arao) = oy (a1)o) (ao), o2t (arag) = ot (a1)oy’ (ao) (cf. the notation

in (8) and (9) respectively).

Proof. Let a;j := bj rr +pjm + g4, § = 0,1, where bj ar(n) = orri0p,; * (h;)(n)oo,
and p;int(n) = (1 — 01)a;ins(n7)(1 — 02). First we consider the term

a190 = b1,m90 + P1,int 90 + 9190-
Clearly, we have gigo € Rg’+"1’d(R‘1,g;v) with

o’ (g190) = oL (91)o’ (90)-

Moreover, p1 intgo € Raoo’d(]Rq,g;'u) due to the presence of (1 — o1) as a factor, cf.
Proposition 1.10 (i7). If we < w1 < wp are cut-off functions, Proposition 4.9 yields

b1,a1(m)g0(n) = wr(r[n])br,arwo(r[n])go () + (L —wi (r[n]))br, a1 (1 —wa(r[n]))go (1) (38)

mod RE?J”'l’d(]Rq,g;v). By virtue of the basic mapping properties of Mellin opera-
tors the first summand on the right hand side of the latter equations also belongs to
R /(R g;v). By an appropriate choice of w; the second summand can be written
in the form

o1 {r N (L = wr () Hx)r ™ opy, 2 (TN ha) ) Hr™ (1= ws (r[i]) oo go (m)},

where x(n) is a certain excision function and N € N arbitrary. Choosing N suffi-
ciently large and using the mapping properties of each of the three factors, we see
that also the second term on the right hand side of (38) belongs to RE?J”’I’d(]Rq,g; v).

By freezing the coefficients of hy at r = 0 we can easily verify that oot (b1,m90) =
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o) (b1,0m)07° (9o). In a similar manner we can show g1bo, pr+91P0,int € Rg)Jr"“d(Rq ,g;v).
This gives us

arag = b1 arbo,ar + P1,intPo,int + b1,3P0,int + P1,intbo,rr
mod RE?J”’I’d(]Rq,g; v). Choosing a cut-off function ¢ such that & < o7 we can write
b1, (M)poin (1) = {&b1,00 (1) (1 = 01) }aoine (1) (1 — 02) + (1 = 7)b1, 11 ()P0 int (1)-

In view of Proposition 4.14 the first term on the right belongs to Raoo’d(]Rq;'u)@.
The second term belongs to R*+"1:4(R?, g;v) due to Lemma 3.6. The composition
D1,intbo,ar can be treated in an analogous manner. In other words, there is an element
aing (1) € B4 (XA p;RY) such that paing@ = aing for suitable ¢, $ € C°(Ry) such
that

P1,intPoint + 01,0P0,int + P1intbo,pr = (1 — 01)aine(n)(1 — 02)

mod Raoo’d(]Rq, g;v). As an immediate consequence we see that this term has a van-
ishing principal edge symbol. Now, setting h{(r, z,n) := o1(r)ho(r, z,n) and applying
Lemma 2.12 we obtain

buar(mbo,ae (1) = o= ropyy 0 2 (T hy) ()opyy 0 2 (h) (oo =
= orr""opyy " ¥ (h)(n)oo,

h € C®(Ry, M4 (X;v;RY)), where the actions are defined on compactly sup-
ported functions with respect to r € Ry, cf. Theorem 2.16. More precisely, we have

h(r,z,n) = h(r,z,rn) , where

. d
h(r,z,n) = // s'"hy(r, z + vy + iT,n)o1(sr)ho(sT, 2, S’I])—SdT.
s
The asserted relation for the principal edge symbols is obviously satisfied as well as
the relation for interior and boundary symbols. O

Corollary 3.12 Assume in Theorem 3.11 that a;j(n) € R*% (R%;v;)0, j = 0,1;
then we have
ag()ar () € R™H4(RY;v)o.

4 Parameter-dependent cone calculus

4.1 Mellin quantisation
Operator families in the following theorem are interpreted in the sense
Co° (XM B) & G52 ((0X)", J-) = CF (X", F) & C*((0X)", J4)

for every fixed n € RY. Let v = (E,J_; F, Jy).
Theorem 1.2 is a consequence of the following more explicit result:

Theorem 4.1 Let p(r, 0,1) € O (R, B»4(X;v; R1T9)), and let o(r) € C°(Ry)
be any function such that ¢ = 1 in a neighbourhood of 1. Then there exists an
h(r,z,n) € CW(R+,M‘(‘9’d(X;U;Rq)) such that

op,. (¢ (r'/r) p) () = oply; (h)(n)
for every g € R.
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The proof of Theorem 4.1 will be given in several steps. First we consider the upper
left corner

pll(ra 0, 77) of p(ra 0, 77) = (pl] (’I", 0, n))i,j=1,2-
For abbreviation, in this part of the argumentation we write p(r,o,n) in place of

p11(r, 0,m). By definition we have a representation p(r, o, ) = p(r, ro,rn) for (r, 8,7) €
C®(Ry,B*4(X;E, F; lRil-Jr-q)) that can be written

ﬁ(ra é: ﬁ) = ﬁo(ra é: ﬁ) + ﬁint(r: é: ﬁ) + E(T’, é: ﬁ):

where po(r, 0,7) is supported near the boundary in the sense that ¢po(r, 0,7)y = 0
for all ¢, € C§°(intX) that are supported outside some collar neighbourhood of the
boundary, pin(r, 8,7) is supported in intX in the sense that there is a compact set
K C int X such that @pin(r, 0,7)% = pins(r, 0,7) for all ¢, € C§°(intX) such that
¢ =1 =1on K, while &(r, 9,7) is a smoothing family, i.e.,

&(r, 0,7) € C®(Ry, B~U(X; E, F; R} ).

This term will be treated by Proposition 4.4 below. Concerning pin(r, 8,7) we can
forget about the boundary, and we are in the situation of [7, Theorem 3.2]. In other
words, it then remains to consider the part po(r, 0,7) near the boundary. In view of
the definition of the spaces (R, B#%(X; E, F;R'*?)) the summand o (r, ,7) can
be written (up to operator push-forwards from trivialisations of respective bundles in
local coordinates) as a finite sum of expressions of the form

op,op™t (@)(r, ,7) + op,. ()(r, 8,7) (39)

for a symbol a(z',y',t,&;r, 0,7) with the transmission property, analogously defined
as in Section 1.3. Here, 2/, ¢y’ are variables 2, and we may assume that a vanishes for
z',y' ¢ K' for some set K' € Q, while r and (8,7) play the role of extra tangential
variables and covariables. Moreover g(z',y', & r, 0,7m) is a Green amplitude function
that vanishes for ', y’ ¢ K' for a certain K' € Q (clearly, op, (.) means the application
of the pseudo- differenmal act1on with respect to variables z' and covariables &', for

instance, op,(§)(r, &, Mu(a’) = [[ Vg’ y', &5 r, 5, Mu(y')dy'd¢'.
To study our problem we have to pass to a(x Yy t,&r0,n) =ala',y t, & ro,mn)

a'nd g(a}’? y’? t7 f; r? g? n) = g(a}’? y’? t? 67 r? rg? rn)' By Virtue Of
op,. (¢ (r'/r) op,0p™ (a)) (n) = op™op, (¢ (r'/r) op,. (a)) (n) =

rtop, . (¢ (' /r) op,i (@) (m)e”
the calculation reduces again to the case without boundary, because in that case

the result from [7] gives us a holomorphic Mellin symbol h(x',y',t,&;7,0,2,m) =
h(z',y',t,&r, 0,2,mn) with the required properties, namely

0Py, ( (r'/) op,: (@) = 0py 0P, (h) (1)

which implies rop, . (¢ ('/7) op,.(a)) (n)et = rtop, op, (h)(n)et. Using informa-
tion from [6, Theorem 2.3] we have

By 657, 0,2,7) = v=(n)op; (o (/) Py &, io<(r) (40)

where v, (r) ;= r? and

f('/LJJyIJt7 67 r? r,7i97 ,’7) = M(T', r’)r,iL(w7 w,7t7 f; r? _M(r7 r,)rg7 ﬁ) (41)
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for M (r,r") := (log r—log r')(r—r')"%, r,r" € Ry. We now have to observe analogous
relations for summands of the form op,. (¢ (r'/r) op,/(g)) (7). In other words, to com-
plete the proof of Theorem 4.1 it remains to show Proposition 4.4 and Theorem 4.3
below.

Definition 4.2 Let U C RY, be open, set w = (e,j—; f,j+), for e, f and j_,ji in
N, and consider the space of Green symbols

REY Ry x U x Re ' x Ryhe s w)

in the version of smooth dependence on (r,z') € Ry x U up tor = 0 in its Fréchet
topology. Then _
RERL x U xRE ™ x €. x RY; w)

denotes the space of all h(r, ', €', z,1) € A(C., RE (R xU xR* 1 xRY; w)) such that
h(r,x', &', B +ir,n) € Ré’d(ﬁ_,_ x U x R x RIE2; w) for every B € R and uniformly
inc<B<c for every c<c.

We shall apply this kind of spaces for the case U = Q x Q for an open set  C R* 1
also write (z',y") for the variable in  x .

Theorem 4.3 Let §(r,z',y', €, 0,m) € REYR, x Q x Q x R*™1 x R w) and

set

g(r,a,y' & 0m) := g(r, 2’ y", & ro,rm).
Further, let o(r) € C§°(Ry.) be a function such that ¢ =1 in a neighbourhood of r = 1.
Then there exists an h(r,z',y', &', z,7) € Ré’d(ﬁ+ XA x QxR xCxR;w) such
that for }

h(r,z',y", &' z,m) == h(r,z",y", &, 2,mn)
we have op, (¢ (/1) b, (9)) (n) = opS0p,. (W) (n) for every § € K.
Proof. The proof of Theorem 4.3 is formally analogous to that of [6, Theorem 2.3]
which has stated an analogous fact for scalar symbols, see also the consideration in

connection with formula (41). The difference to our case is that we apply the method
to operator-valued amplitude functions instead of scalar ones, namely

gj(ra xlaylaflagan) = gj(ra xlaylaflarga 7"’7);
where g;(r,2',y', &', 0,7) € Réﬁj’o(ﬁJr xQx QxR x R and

d -
. . < ~ (9 0
g(’l", xla yla gla o, 77) = go(ra xla yla gla o, 77) + Z gj(ra xla yla gla o, 77) < Ot 0 ) ’
j=1
cf. formula (19) in a corresponding simpler version. Similarly to (40) it is then
admitted to set

d -
= N - = (a8 0
h(rawlaylaflazan) = hO(raxlaylaglazan) +j_21hj(raxlaylaflazan) ( Ot 0 )

where

hi(r, 'y €, 2,0) = vz(r)opzéu(so (r'[r) hy) (&', y' € v (r)
for

hi(r,a',y' € io, i) == M(r,r')r'g;(r,a’y', €, =M (r,r")ro, i),
j=0,...,d. O
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Proposition 4.4 Letc(r, p,n) € C®° (R, B4 X;v; R+ )l, anEl let o € C§°(Ry)
be given as in Theorem 4.1. Then there exists an h(r,z,n) € C*° (R4, /\/l(_goo’d(X; v;RY))
such that op, (¢ (r'/r)c) (n) = opﬁl(h)(n) for every p € R.

Proof. Assume, for simplicity, that the bundles E, F' and J_, J are trivial and of
fibre dimension 1; these bundles are then denoted simply by C (we then get kernels
of operators with respect to chosen Riemannian metrics on X and 90X with mea-
sures dz and dz’, respectively; otherwise the kernels refer to Hermitian metrics in the
respective bundles; this is formally more complicated but does not contribute any sub-
stantial difficulty). Then, elements G in B=°*¢(X) (which is the corresponding space
of smoothing operators for v = (C,C; C,C)) have a unique representation as sums

d—1
Kl’)/l 0
6=+ (o0 o)
—~\ Qv 0

where Gy € B=%(X), 4! acts like v'u := (Z)'ulox for u € H*(X), s > d — 1, where
t is the chosen (global) normal variable to 0X, Kj is a smoothing potantlal operator
described by a kernel M; in C*°(X x 8X), and @; a smoothing operator on 90X i.e.,
@ has a kernel N; in C*°(0X x 0X). The operator Gy = (Go,ij)i,j=1,2 is a matrix
of operators with kernels (Cjj); j=1,» where C1; € C®°(X x X), C12 € C*(X x 0X),
Co1 € O®(0X x X), Cog € C®(0X x 0X). Then the Fréchet topology of B~>¢(X)
is determined by the bijection G = (Cij)ij=1,2 X (Ml,Nl)l 1, d—1, L.e., B74(X) =
(X x X) & C®(0X x X) @&l 0%(X x 0X) &= C*(dX x dX). Similarly, for
the element c(r, 9,n) = &é(r,r0,rn) in consideration we have a unique representation of
the form

P ki(r, 8,77 0
“r..7) = +Z(;rgﬁlo) (42

where, for instance, when we write ¢y = (¢o,i5)ij=1,2, we have

Go,11(r, 6,77) € C=(Ry, S(RF, C™(X x X)),

o,n "’

Go,12(r, 8,7) € C*(Ry, S(R; T, C (X x 9X))),

2,1n

Zo,21(r, 8,7) € O (R, S(Ry !, O (0X x X)),

etc., and, analogously, for & and §. To find h(r,z,n) = h(r,z,r) for h(r,z,7) €
(G (M,Maoo’d(X; R?)) (where v in the notation is dropped under our assumption
on the bundles) it sufficies to treat the summands in (42) and entries in the block
matrices separately. For & 11(r, g, 7) the arguments are practically the same as in the
proof of [7, Theoerm 3.2]. Concerning the other entries of ¢ as well as the integral
kernels belonging to &; and § the only change is to replace C°°(X x X) by C*° (X x0X),
C>(0X x X) and C*°(0X x 0X), respectively. Summing up, we get

h(r, 2,7) = v2(r)op 2, (§) (M)v_- ()

for g(r, 1", i0,7) == @ (r'/r) M(r,r")r'é(r, =M (r, )70, 7). O
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4.2 Green remainders in the Mellin quantisation

Let H*O(RLT™) := (#) °H*(R'™) for 5,6 € R be the standard weighted Sobolev
spaces in RI*™ with respect to the variable #, and set

H¥O(RVT™) = {ulgrn s u € H*°(RYF™)},

Proposition 4.5 Let p(r, 0,n) € C=(Ry, B4 X;v; R)) and h(r, z,1) €
C>(Ry, M’é)’d(X; v;R?)) be related via Mellin quantisation (c¢f. Theorem 4.1). Then,
if w(r), @(r) and o(r), 6(r) are arbitrary cut-off functions,

9(n) := o (r)(1 = w(rlr)){op,(p)(n) — op, (W) (m)}(1 — &(r[n))5 (r)
is an element of R%d(]Rq;'u)@.

Proof. First observe that p(r, g,7) is a sum of families in C*° (R, B*~70(X; v; R11))
composed with differentiations of order j in direction transversal to the boundary,
j=0,...,d,ct. (5). Thus, without loss of generality we may assume d = 0, because the
summands can be treated separately, and the transversal derivatives remain untouched
in the constructions.

From Theorems 1.2 and 4.1 we get

1

op,.(p)(n) —opis(h)(n) = op,(¢)(n) forall neR?,

where ¢(r, 7', 0,m) = (1 — p(r/r")p(r, 0,n), with ¢ € C§°(R}) being as before, where
op,.(q)(n) € B=>*9(X";v;R?). We then have

9(n) = o(r)(1 —w(rn))op,(q)(m)(1 = (rHn))a(r).

We now choose an open covering {Uy, ...,Ur,Ur41, ..., Un} of X by coordinate neigh-
bourhoods where U;NOX # B for 0 < j < L,U;N0X =0 for L+1 < j < N, and a sub-
ordinate partition of unity {¢;};=1,..,n. Then the functions ¢} := pjlox,j =1,...,L,
form a partition of unity on X subordinate to {U]...,Ur}, U; :== U; NOX. Asis
well-known, the covering can be chosen in such a way that also the sets U; U U, are
coordinate neighbourhoods on X for arbitrary j,k = 1,...,N. Writing g(n) in the
form

N
g = Y j(x)g(n)®x(a')

j,k=1

for ®; = diag(p;, ¢}) (composed with corresponding identity maps) the construction
reduces to the case when g(r, 7', 9,1) is replaced by ®;(x)q(r,r’, 0,7)®r(z") for arbi-
trary j; k ertlng q(ra ,,,,17 0, 77) = (le (T', 7',7 0, n))l7m=1,27 we get

Bqby =  FIDIPE ©iq120},
’ igapr Pjgey )

Now the indices (j,k) for L + 1 < j,k < N belong to interior neighbourhoods. Cor-
responding summands ¢;qi1¢ have the same nature as expressions from the case of
operators on a manifold without boundary. This has been treated in [6, Proposition
A4]. Also @gaaep), for 1 < j, k < L corresponds to the case on a closed manifold which
is the boundary. Thus this case is clear as well. There remain the following cases: the
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entries of g(n) are given in terms of op,(¢jqipr)(n) for 1 < j < Lorl <k <L
or op, (¢ga1pe)(n) for 1 < j < L, 1 < k < N or op,(p;quze}) () for 1 < j < N,
1 < k < L. We shall show the assertion by verifying the conditions of Remark 1.6 for
the respective entries separately. This will be done by looking at kernel representations
with integrals over (R x Uj) x (Ry x Uy,) for g1, over (Ry. x Uj) x (Ry x Uy) for g,
and over (Ry x Uj) x (Ry x Uj) for g12. We will study ¢(n) := g11(n). The arguments
for g21(n) and g12(n) are completely analogous and left to the reader. Without loss
of generality we consider scalar operators, i.e., where the involved vector bundles are
trivial and of fibre dimension 1. Our operator family now has the form

g(n) = o(r)(L —w(rn]))op,(a)(m) (1 — &(r[n]))e(r)
where ¢(r,7',0,m) = (1= (r'/r)) p(r,0,n), p(r,0,n) = p(r,re,rn) for a p(r, 0,7) €
C>(Ry,B" 0(]R+, 1-+-q)), such that p(r, 0,7) = ¥(x)p(r, 0,7)y(z") for a suitable ele-

ment ¢ € C§°(R n) (referred below to as a localising function in = and z'). We now
observe that integration by parts gives us

op,{(1 = (' /r)) p}(n) = op, {(1 = (' /1)) (' /r = )™ pn} ()

for every N, where pn(r,0,n) = (Dévﬁ)(r, ro,rn). In other words we may look at the
representation

g(m) = o(r)(1 —w(r]))op, (an)(m)(1 = &(r[]))a (r), (43)
for g (r,r', 0,m) = (1= (' /r)) pn(r, 0,m). Observe that pn(r,e,n) = pn(r,re,rn)
for pn(r, 8,7) == DY p(r,8,7) € C°(Ry, B*~ NORY ]R{1~+~q)) The variable z € R} is

to be interpreted as an angular variable of polar coordinates (r,z) in RIT'\0, & :=
(#1,...,Zny1)- In other words, x € R} plays the role of local coordinates under a

chart from an open set on ST := {S" : &,41 > 0} to Ki. To show our assertion we
have to characterise the operator families

K {0590 gy = fa () (44)

for every multi-index @ € N? and to show that (44) for arbitrary s,~,s,s",v, 5,
5> —%, defines a family of continuous operators

Faln) s K2T2((ST)") = K75 ((S1)") (45)
with estimates for the operator norms
1fa()l] < cm)*l forall neR (46)

with constants ¢ = ¢(a;s,7, 8,s',7', ") > 0. The same has to be done for f2(n). This
yields the symbol property of g(n). In addition, we have to show that g(#) is classical
in . We shall investigate the case & = 0 in detail. The structure of expressions for
arbitrary « is completely analogous; differentiation in 7 generates a factor rl*!, and
we may use the relation n[;]lr“”"n[n] = rlel[p]~1e!) which directly yields (46).

To analyse (45) we now employ the following fact: For every M € N there is an
N € N such that py(r, 8,7) acts with respect to z-variables of the form

ﬁN(ra é; 77)’1)(:17) = K(ZL“,ZL“’;T', @7 ﬁ)v(xl)dwla
R}

where the integral kernel has the following properties:
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(i) K(z,2';r,0,7) € Cé”(ﬁi . X KT;_ o) for every fixed (r, 9,7),

(i) (0,7) = K(z,z';r, 0,7) defines a contlnuous operator
R0 5 0% (R, (3,7) MO (R, CM (RL. x RL))).

2,1n

Let us express the action of f(n) first on functions u(r,z) € C§°(Ry x Ki) We

have
u(r ) //R/ G (] (1 - w(r) (1 - (/1))

K(z,z';r,ro,rnn] (1 —@0@)a (' [n]™Hulr', 2")dz'dr' do. (47)

To show the estimates (46) for @« = 0 we observe that the integral kernel in (47)
vanishes identically for r,r’ < ¢ where ¢ > 0 is determined by 1 — w(r) = 0 and
1 —&(@r") = 0. This allows us to completely forget about the weights v and 7/,
because we achieve at once mappings to corresponding spaces with infinite weights
at zero, starting from functions with arbitrary weights. By construction our kernel
is supported in a set I" C @i with respect to the variable (r,z) as well as to (r',z'),
where (r,z) € I' = (A\r,z) € T for every A > 1,7 > ¢ for some ¢ > 0, and, as explained
before, 0 ¢ I'. Therefore, it suffices to replace the spaces K77 ((S?)") by H*# (R} ).
Because the kernel is expressed in polar coordinates (r,z) for # € R**" it is convenient
to pass to the “cylindrical” weighted Sobolev spaces

H*P (R x SY) = {U|R+><S¢ cu € H(R x St}

where H*8(R x S7) := (r) PH*(R x S%) with the space H*(R x S%) := H*(R x
S5™)|rx sz based on drdz. By virtue of an evident half-space variant of [21, Lemma 4.2.2]
we may employ the spaces H%%(R x S%) instead of H58 (]R’frl ); finite shifts of s and
[ are obviously compensated in such a change, because smoothness and weight are
arbitrary in the required operator norm.

We then use the fact that the mapping property to be checked in Green symbols
as well as in adjoints is only necessary for an arbitrary fixed smoothness and any
fixed weight in the argument function. For instance, we check the case u(r x) €
L*(Ry x R?), where we may assume u(r,z) = 0 for z ¢ A for some A € ]Ri or for
r < ¢ for some § > 0 (we may take A = supp % with the above-mentioned locahsmg
function ). To simplify the notation we write formula (47) in the form

w(r, ) / / + /R =8 (r ] o, rl) )M Ke(r, 2, v, &' ro, rf] )

a(r'n] Hu(r', z')dz' dr' do, (48)

where
Ky (ryz,r', o' ro,ryn] ")

= (ro,rnln) )M (L= w(r) (L= (7' /1)) K(z, 57, r0,rnn) 1) (1 = &(r")).
To show that ||f(77)u||H5?B(R+><R:_+1) is bounded for every s, 5 € R, uniformly in n € R?,
it suffices to check the case s € N and to show that

1) 2 D3 £l 2 sy < 00 (49)

forevery n € R?, |a| < s. The differentiations with respect to  make no problem; thus,
for simplicity, we consider D¥ for k < s. We may suppose M to be sufficiently large
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in order to make the following considerations possible. In particular, differentiations
under the integral sign are admitted. The structure of the expressions will be preserved
under differentiations with respect to r, except for extra powers of the variable p under
the inegral, where the exponents are < s. We now set for a moment ¢ = rn[n]~! and
look at the behaviour of ¢*(ro,()™™ k < s. We have

T T (o, Q)F _Mts
le—r klwlécr k'W' Mo, ) MT

=M+s M
= (o, ()7 (ro, Q) <erFro)TE Q)
Then |DF f(n)u| can be estimated by an integral Je, fﬁi Idr'da’ for

—M+s
2

-~ 1 =M+s
I:=r k(T’f}[T]] 1> 4 9(7":33577):
with

—M+s

glr,@;n) = / 1= (k[ ) (ro) T ()T T

R,

Kur(ryx, ' o' ro, ] ™) e (' [n] ™ u(r', 2')|do.
Clearly, for M sufficiently large, the integral over p converges, and it is trivial that
g(r,z;n) € LRy x R’_ﬁ'l), i.e., for every choice of 8 we can choose M so large that
(49) holds uniformly in 7, for all |a| <'s.
Summing up we have proved that g(n) satisfies the required symbol estimates. It
remains to verify that g(n) is classical. To this end we look once again at expression
(43) and write it in the form g(n) = (1 — w(r[n]))op,(an)(n)(1 — ©(r[n])) where

an(r,r',0,m) = an(r,r',re,rn), an(rr',0,7) = o(r) (1 - (r'/r)) 6(r')pN (r, 0, 7).-
Let us simply write an(r, @,7) for r := (r,r"). Taylor expansion in r at (0,0) gives us
for every V

’r‘ Q, Z ’f‘ aNa Q, + Z 'ra&N(,raéaﬁ) (50)

la|<N |a|=N+1

for (1 —w(r[n]))op,(an)(n)(1 —a(r[n])), where an(r,r',0,n) := an(r,r',ro,rn) be-
haves like a symbol of order —(N + 1) (because an(r, 7', 0,1) gives rise to analogous
expressions as in the explicit calculations in the first part of the proof, where the order
comes from the factor 7* for || = N + 1). Moreover, we get the contributions from
the first sum on the right of (50), i.e., expressions like

ga(n) = (1 = w(r[n])op,((r,r")*an.a)(m)(1 = &(r[n]))

for an o (7, 0,m) = @n,a(re,rn) where go(An) = A1 kyga(n)ky ! forall X > 1, |n| > ¢
for some ¢ > 0, i.e., these symbols are classical. Because N is arbitrary, we see
altogether that g(n) is a classical symbol.

To complete the proof we have to do the same things for the formal adjoint g*(n).
The only relevant point is that we have to exchange the role of r and r’. This is
harmless in all terms, except (perhaps) for the analogue of py that is now of the form
pn(r',0,m) = pn(r',r'0,7'n) with a corresponing py (r', 8,7) of analogous structure as
before. It is now a standard procedure to pass from “right” symbols, i.e., with (7', g)-
dependence to “left” symbols with dependence on (r, p) with respect to variables r and
covariables p. In this change the 7n-dependence will preserve its character, i.e., we get
an alternative representation of our operator function where pn (r',7'0,r'n) is replaced
by px (r,r0,rn) for some py (r, 0,7) of analogous structure as py. The remaining part
of the proof is as before. O
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4.3 Flat elements of the algebra of edge symbols

Our next objective is to investigate Green and Mellin edge symbols (with constant
coefficients) as they appear in compositions. Starting from holomorphic Mellin symbols
the only remainders will consist of flat Green symbols. We shall extend here the results
of [7, Section A.3] from operators on a closed manifold to pseudo-differential boundary
value problems. In this case the values of symbols are 2 x 2-block matrices of operator
functions, containing upper left corners from the interior as well as the trace and
potential entries, and lower right corners operating on the boundary. Let us consider
in our proof the upper left corners. The other entries can be treated in an analogous
manner; lower right corners correspond to the case studied in [7, Section A.3].

Let X be a compact C'*° manifold with boundary. As before, vector bundles
E € Vect(X) give rise to bundles on Vect(X”) (by pull-back with respect to X" —
X) we denote them again by E. Operators of multiplication by functions in spaces
of distributional sections will be simply denoted by the functions themselves where
identity maps in corresponding bundles will be omitted.

Lemma 4.6 Let s,v € R, E € Vect(X), let w(r) be a cut-off function, and set
x(r) :==1—w(r).

1) For arbitmry LeR and ’)/’ € R we have
( )
X(T‘[1]])7° € ‘Scl(]Rq; 51877(;(/\7 E)7 ’CSN/;B(‘( /\7 E))

for an appropriate 8 = B(s,v,L).
(ii) For every ~', 8 € R there exists an L = L(s,v,7',8) > 0 such that

X(rln)r—t € S§(RY; K378 (XN, EB), HY (X1, E)).

Lemma 4.7 Let w(r) be any cut-off function and E € Vect(X). For arbitrary
$,7, 83,7, 8" € R we have the following relations:

i
. wrll)rt € Sy (RGH>7 (X7, B), K18 (XA, B))
for every L € R.
(i2)
w(rlp)rt € S;H (R K78 (XN, E), H (X, E))
for every L > 0.

Lemmas 4.6 and 4.7 can be obtained in an analogous manner as the corresponding
assertions in [7, Section A.3]. The following Lemma 4.8 corresponds to [7, Lemma A.7].

Lemma 4.8 Let wy < wi be cut-off functions and N € N, and set x1(r) = 1 —
wy (1),
flr,r'sm) == wa (r[n]) Qog /") =N xa (' In])

forr,r' € Ry and n € R?. We then have the following relations:

(@) fO A" \n) = f(r,r',n) for all X > 1, r,r' € Ry, and all |n| >const.
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(i7) For every k,k' € N, a € N? we have

sup {1(0,)* (" 0,0)" 05 £ 1", )] ] 1} < o0

/
T,

In particular, (r,r") — [n]*05 f(r,r',n) as an n-dependent family of elements in
Cp%(Ry x Ry ) is bounded inn € R7.

Proposition 4.9 Let h(r,z,n) € C°(R,, M’é’d(X;'u; R?)) be independent of r for
large r, and set h(r,z,m) = h(r,z,rn). Then for arbitrary cut-off functions wy < wy
both

go(n) = wa(rl)opy, * () ()(L = wi (r[n])

and

g1(n) = (1= wi (rf)))opy; * () (m)ws (r[n))
belong to jod(]Riq;v)o

Proof. As announced in the beginning we content ourselves with upper left corners,
i.e., we assume v = (E, F) for E,F € Vect(X). Since the method does not depend
on the bundle aspect we simply consider trivial bundles of fibre dimension 1 and then
omit v. By definition, A(r, z,7) has the form

d
h(r,z,m) Zﬁj r,z, T (51)
7=0

where 7' is any first order differential operator on X operating between sections in
E, where T7|y = 87/0t) - idg in a collar neighbourhood of X, with ¢ being the
normal variable to the boundary, and h;(r, z, 7j) belonging to C> (R, M%7 (X; R?))
for j =0,...,d. It suffices then to show the assertion for h(r,z,n) := ﬁj (r,z,rn). In
other words, without loss of generality we assume

}NL(T:Z:W) € COO(K+7M€80(X)]R(Z))

The remaining part of the proof is analogous to that of [7, Proposition A.8] and is
left to the reader. Only note that the spaces M(‘;*N(X;]Rq), HY(XN),. .. should
be replaced by M‘(L;MO(X; R?), H*7(X"), etc., though here for a manifold X with
boundary. Lemmas 4.6, 4.7 and 4.8 in the case of boundary value problems play
the same role as the analogous of results from [7, Lemmas A.5, A.6, and A.7]. The
arguments from [7] in terms of adjoints can be applied in the present situation, since
they refer to Mellin symbols in M‘(L;N’O for sufficiently large N. For N > u we reach
the case of non-positive orders, where adjoints of zero-type can be formulated as in
the boundaryless case. O

Definition 4.10 Let E be a Fréchet space. We define S(Ry. x Ry, E) to be the
subspace of all functions k € C*° (R x Ry, E) that satisfy

sup{p(dLAL k(r, P )N ("N v’ > e} < o0

for each e > 0,1,I', N € N and each continuous semi-norm p on E. These expressions
define a semi-norm system that induces a Fréchet topology on the space S(Ry xRy, E).
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Lemma 4.11 Let iL(T, ', z,m) € Cp%(Ry X M,Mém’d(X;v;Rq)), and set
ho(r,r',z,m) == h(r,r',z,rn), hy(r,r', z,n) = h(r,r z,r'n).
We have the identity
MGUX ;v RY) = MG™(RY)&-B°(X; v).

With hj(r,r',z,m), § = 0,1, we can associate an operator-valued kernel

r\ —i .
kj(’l",’l”’,?’]) :/(F) hj(T',T",ZQ,’I])dQ,
where
ki(r,r',m) € C°(RY, C®(Ry x Ry, B~>%(X;v)))
and

kj(ror' ) |ry x y x (mavo) € CF(RI\O, S(Ry x Ry, B~*4(X;v))).
The mappings h — k; induced by this construction are continuous, j = 0,1.

Proof. First we concentrate on upper left corners, the other entries behave analo-
gously, and consider again the case of trivial bundles of fibre dimension 1. We reduce
the assertion to the case d = 0 by applying a decomposition of iL(T, ', z,n) like (51) and
treating the factors at 77 separately. Then we may replace B~°°%(X) by C*°(X x X)
that turns the assertion into a form that is analogous to [7, Lemma A.10]. From that
point on there is no essential difference between the arguments for the case of X with-
out or with boundary. In other words, the proof can be completed in a similar way as
[7, Lemma A.10]. O

Proposition 4.12 Let h(r, z,n) € Cm(ﬁ_i_,/\/l(_goo’d(X;v;]Rq)), and set
ho(r,z,n) := h(r,z,rn), hi(r,z,m) = h(r', z,7'n).
If ¢(n) is an excision function (i.e., ¥ € C*®°(R?), 1» = 0 near n = 0, Y = 1 outside
some neighbourhood of n = 0), we have
9;(n) = v (rlnopi, * () (mx=(rln)) € R (BYw)o
for j = 0,1, where x1(r) = 1 —wi(r), x2(r) = 1 — wa(r) for cut-off cunctions
w1(r), wa(r). Moreover, for cut-off functions o(r), 6(r) we have
5 = o (Toply () e () € RE 5 w)o,

j=0,1.
Proof. Similarly to the proof of Lemma 4.11 we simply take d = 0 and omit v. Then

the arguments are practically the same as in [7, Proposition A.11] for the case without
boundary; the role of kernels is the same as in [7]. O

Remark 4.13 Let h(r,z,n) € C’OO(K_‘_,/\;I%’d(X;U;Rq)), and let o, € C5°(Ry)
be functions with disjoint support. Then there is a c(r,z,n) € C®(Ry, /\;l(goo’d(X; v; R?))
such that . .
wopyy 2 () () = popyy * (c)(n)e

for arbitrary v € R.
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Proposition 4.14 Let h(r,z,1) € C’OO(@JF,Mé’d(X;U;]Rq)), and let o(r), &(r),

o1(r), oa2(r) be cut-off functions where o3(r) < o1(r), and set bpr(n) := Jopjw_%(n)&

for h(r,z,n) = ﬁ(r,z,rn). Then
a2(r)bar(n)(1 = o1(r)) and (1 = o1(r))bar(n)o2(r)
belong to R (R%;v)o.
Proof. Choose cut-off functions ws < w; such that ws < 0y and wy; < o;. Then
o2(r)bar (n)(1 = 01(r)) = 02(r) (g1 (n) + g2() (1 = 01 (r)) =: g(n)

with g1 (7) = w2 (r[n])ba (n) (1 —wi (r[n])) and g2 (1) = (1—wa(r[n]))bar () (1 —wi (r[n]))-
Proposition 4.9 yields ¢g; € Rgd(]Rq;v)o. Using Remark 4.13 we may assume that
heC>®Ry, /\;Igoo’d(X; v; R?)) so that g2 € R%d(]Rq;v)o because of Proposition 4.12.
Finally, Remark 1.10 gives us g € Raoo’d(]Rq;'u)@. The family (1 — o1 (r))bpr(n7)o2(r)
can be treated in an analogous manner. O
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