Bounded Imaginary Powers of Differential Operators
on Manifolds with Conical Singularities

S. Coriascot, E. Schrohe, and J. Seiler

ABSTRACT. We study the minimal and maximal closed extension of a differential operator A
on a manifold B with conical singularities, when A acts as an unbounded operator on weighted
Ly-spaces over B, 1 < p < 0.

Under suitable ellipticity assumptions we can define a family of complex powers A%, z € C.
We also obtain sufficient information on the resolvent of A to show the boundedness of the pure
imaginary powers.

Examples concern unique solvability and maximal regularity of the solution of the Cauchy
problem v’ — Au = f, u(0) = 0, for the Laplacian on conical manifolds.
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Seeley’s classical paper [17], published in 1967, showed in a striking way how pseudodifferential
techniques could be applied to analyze complex powers of elliptic (pseudo-)differential operators
on closed manifolds. Replacing the resolvent in the Dunford integral by a parameter-dependent
parametrix, he obtained a representation of the powers that was precise enough to deduce a wealth
of information on eigenvalue asymptotics, zeta functions, and index theory. Seeley also extended
his results to differential boundary value problems. In 1971 he showed the boundedness of the

purely imaginary powers on Ly-spaces, [19].

At that time the principal motivation for these studies was the description of interpolation spaces.
An additional motivation for studying the behavior of imaginary powers came from Dore and
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2 BOUNDED IMAGINARY POWERS OF CONE DIFFERENTIAL OPERATORS

Venni’s 1987 article [3], in which they showed how the boundedness of imaginary powers can be
used to derive results on maximal regularity for evolution equations.

Meanwhile, bounded imaginary powers or even the existence of a bounded H® calculus [11] have
been established in many situations, e.g. for classes of differential operators on R™ and smooth
manifolds [2], boundary value problems on bounded and certain unbounded domains in R" [4],
[12], [22], as well as for operators in Boutet de Monvel’s calculus [21].

We shall focus here on the case of a manifold with a conical singularity. This is a Hausdorff space, B,
that is a smooth manifold outside the singular point, while, close to this point it has the structure
of a cone with smooth, closed cross-section X. Blowing up B near its tip, we obtain a manifold B

with boundary 0B = X:

“blow up”

~—~—
~[0,1[x X

Near the boundary, we fix a splitting of coordinates (¢,z) € [0,1[xX. Rather than on B, the
analysis will be performed on B (respectively the interior of B). We consider so-called cone or
Fuchs-type differential operators, 1.e., operators which close to the boundary are of the form

(1.1) A=tH Zu:aj(t)(—tﬁt)j,

where each a; € C® (R, Diff*=7 (X)) is a smooth family of differential operators on the cross-
section. Such an A acts as an unbounded operator A : C2  (intB) C 7{2’7(}3) — HS’V(B), where

comp

the space 7-[2” (B) away from the boundary coincides with L,(B) and near the boundary with

= L, ([0,1[x X, %£d2),  n=dimX.

Here, 1 < p < o0, and 7 is an arbitrary real number. The particular choice of v = «, = (n—i—l)(%—%)

leads to the natural space of p-integrable functions on B, i.e., L,(B) = 7-[2’7” (IB). This is justified
by the fact that a change to polar coordinates shows the equivalence L,(R™*!) = t_ﬂp—_le (R4 x
S A dp).

Let Aa = Aa(6) denote a closed sector in the complex plane, symmetric about the negative real

half-axis and of aperture 2(m — @) for some 0 < § < m. We find conditions (Definition 4.5) on A,
which depend on v € R but not on 1 < p < oo, that ensure the following:

i) the closure Apin of A has no spectrum in Ax N{|A| > R};
ii) the resolvent satisfies the uniform estimate ||(A — A)_lnﬁ(?{fﬂ(%)) <ep A7

Moreover, we obtain very precise information on the structure of the resolvent. For this and i) see
Theorem 4.6; ii) is shown in Proposition 4.7. We also give conditions (Remark 6.4) implying that
the mazimal extension Apax satisfies statements analogous to i) and ii). Note that the choice of the
symmetry axis | — oo, 0], which in classical terms [1], [19], is called a ray of minimal growth for A,
is inessential for our purpose and only done for convenience. The case of an arbitrary symmetry
axis {te’? | t > 0} can be reduced to our situation, replacing A by e"i?A.

Since Amin (respectively Amax) in the above case has compact resolvent, any “keyhole” region
A, consisting of the sector Ax and an arbitrarily small ball around zero, only contains finitely
many elements of the spectrum. Assuming that zero is the only spectral point in the keyhole (or,
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alternatively, shrinking the angle of the sector and possibly rotating A a little), we define complex
powers AZ . (respectively AZ,.) for all complex z with negative real part. This is done in terms of

a Dunford integral, integrating the resolvent against A* along the boundary of the keyhole. Using
the specific structure of the resolvent, we show (Theorem 5.1) that

iii) HAaninHﬁ(Hfﬂ(E)) < ¢, el™ 21 uniformly for all z with |Re 2| sufficiently small

2
max

as well as the analogous estimate for A (Theorem 6.3). Consequently, the purely imaginary

1y

W (respectively A% ), y € R, exist as suitable limits and satisfy an estimate as in iii).

powers A Yo

It should be noted that both the construction of the complex powers and the boundedness of the
imaginary powers only rely on the information about the resolvent provided by Theorem 4.6. Our
conclusions therefore carry over to all situations where the resolvent has this structure.

The key to the above described results is, similar to Seeley’s classical concept, to view A — A as
an element of a calculus of parameter-dependent pseudodifferential operators on B, and to express
(A — A)~! within this calculus. In our context, the appropriate calculus is Schulze’s parameter-
dependent cone algebra, cf. for example [15], [5]. The conditions we impose on A are, more or
less, ellipticity conditions on A — A within this calculus. We require three associated objects not to
have spectrum in the sector Aa. The first is the usual homogeneous principal symbol of A, defined
on the cotangent bundle over the interior of B. The second is the so-called rescaled symbol, which
reflects the behavior of the principal symbol near the boundary. The third is the so-called model
cone operator ﬁ, which acts as an unbounded operator in Sobolev spaces on the infinite cylinder
R4 x X. It 1s induced by freezing the coefficients of A at the boundary, i.e.; using the notation
from (1.1), A =t=# 34 a;(0)(—10:)] .

In order to separate the more general functional-analytic issues from the specific difficulties related
to conical singularities, we give a review of several basic facts about complex powers of unbounded
operators on a Banach space in Section 2, while in Section 3 we briefly discuss Fuchs-type operators.
Sections 4, 5 and 6 are devoted to the proof of the results stated above.

In Section 7 we treat an example and show how our work can be combined with that of Dore and
Venni to obtain results on existence and regularity for the non-homogeneous Cauchy problem in
Ly(B):

(1) - Ault) = f1), u(0) = 0.
Here, A is the Laplace-Beltrami operator for a Riemannian metric with a conical degeneracy.

The paper ends with an appendix relating the structure of the resolvent as we use 1t to that given
in earlier work by Schulze and that of Gil [6]. Moreover, we collect a few definitions and notions
in Section 9.

ACKNOWLEDGEMENT: We thank M. Korey (Potsdam) for several valuable discussions.

2. Complex powers of operators in a Banach space

Let us recall some well-known facts on complex powers of a closed, densely defined operator
A:DACF—F
in a Banach space F', cf. for example [19]. We denote by A = A(J, 8) the keyhole region
AG,0) = A €T |\ <3 or |arg)] > 6}
with § > 0 and 0 < @ < 7. We assume that

(A1) The spectrum of A has empty intersection with A\ {0}.
(A2) |[(A = A)~H|z(m|A| is uniformly bounded for large A € A.
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If C is the parametrization of the boundary of A, cf. (9.1), we let

1
(2.1) AZ:T N (A= A)"td), ze€H={z€C|Rez<0}.

T Je
Here, A is defined via the logarithm log A = log |A| + iarg A, where —7 < arg A < 7. Since the
integrand is O(|A|71*Re2) the integral is absolutely convergent, and thus (2.1) defines continuous
operators A® € L(F). The notation A* should be viewed with a little care, since A~! in general is
not the inverse of A, which is not required to exist.

REMARK 2.1. Under conditions (Al), (A2), the function z — A* :TH — L(F) is holomorphic and
satisfies the semi-group property

APAY = ATV z,w € H.

If one furthermore imposes that for some positive constant ¢
(A3) ||]A®||z(r) is uniformly bounded in the rectangle —c < Rez < 0, [Imz| < k for any k € IN,

then the limits of A* for z — 2y exist for any real y. More precisely:

REMARK 2.2. Under conditions (A1), (A2), and (A3), the limits

AYf= lim A*f
H3z—iy

exist for any real number y and any f € F, and thus define operators A% € L(F). Furthermore
AW = ATYHYAF for f € D(A). In particular, if we set
1
Ey=— A—A)7Ld),
2m |>\|:6( )

then Eqy is a projection in F and A° =1 — Fy.

Remark 2.2 could be rephrased as follows: Under conditions (A1), (A2), and (A3), the operators
7% .= A + By, z € H,

form an analytic semi-group (with lim,_,o 7% f = f for any f € F') and there exist constants ¢ > 1
and w > 0 such that

1T cry < ceVl el
Moreover, (1 — Eg)A + Ey : D(A) — F is an isomorphism, whose inverse is 7.
In concrete situations the problem is to analyze whether an operator A satisfies conditions (A1),
(A2), (A3), and then to find the best possible constant w. Fundamental works on this topic are due
to Seeley [17], [18], [19], where he gives criteria ensuring that a differential operator on a compact
manifold (with boundary) has these properties. The main object of the present paper is to give
such criteria for differential operators on manifolds with conical singularities.

3. Cone differential operators

The natural class of differential operators on B is the algebra of cone differential or Fuchs-type
operators, cf. [5], [9], i.e. those A which are near the boundary dB = X of the form

(3.1) A=t* zu: a;(t)(—to);

here a; € C°° (R4, Diff* 9 (X)) are functions smooth up to the boundary with values in the differ-
ential operators on X. We can rewrite (3.1) as

(3.2) A=tropy TR, flt2) = ioaj(wz%
=
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where the Mellin pseudodifferential operator is defined by

(3.3) [op?v}l_u__ (Hul(t) = 177t 2)(Mu)(z) dz, u e Ccomp(mt B).

Rez:%’—l—'y—u

Here, v € R is arbitrary, and (3.3) is independent of the choice of 4. We keep 7 in the notation,
since we shall consider extensions of A to different weighted Sobolev spaces, the weight being given

by ~:

DEFINITION 3.1. For s € Ny, v € R, and 1 < p < oo we introduce "H;W(}B) as the space of all
functions v € H} lOc(mt B) such that

(0,0 (wu)(t, &) € Ly(Ry x X, %de)  Vk+|a|<s

for some cut-off function w € 5., ([0, 1]).

The definition of the Banach spaces #," (B) naturally extends to real s. Then A induces, for any
s, v, and p, continuous operators

A HE(B) — H (B).

With A we associate three symbols. The first is the usual homogeneous principal symbol O'Z (A) €
C®(T*(intB) \ 0), which, in coordinates near the boundary, is

(3.4) ¢( Yt o, 8) =17H EO’ )(t, x, ) (itT)!

Dropping the factor t=#, replacing ¢7 by 7, and inserting ¢ = 0, we obtain

5:2(%1 z,7,&): E )(0, z 5)(“’)

which yields the rescaled symbol of A,
(3.5) 5:2(%1) € C((T"X xR)\ 0).

The third one is the conormal symbol

(3.6) oﬂMNdzﬂ&dzégw@%

a function of z € C with values in the differential operators on X.

REMARK 3.2. The operator A is called elliptic with respect to the weight v + u, if both the homo-
geneous principal symbol and the rescaled symbol never vanish, and

(3.7) P (A)E)  HI(X) = HH(X),  Res =2y p,
1s an 1somorphism for all z on that line.

It can be shown, [14] Theorem 3.13, that A is elliptic if and only if the operators A : 7-[;"’“”"’“(}3)
— HYV(B) are Fredholm for any s and p.

We shall consider A as the operator

(3.8) A:D(A) = HETTH(B) CHYY(B) — Hy ' (B).
REMARK 3.3. a) In case A is elliptic with respect to v+, (3.8) is the closure of A considered
on the domain ngmp(mt B).

b) By the spectral invariance of the cone algebra, [14] Theorem 3.14, the spectrum of A is
ndependent of 1 < p < co.
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With A we associate the model cone operator, which acts in Sobolev spaces on the infinite cylinder
(3.9) XN =Ry x X.

Let (t,z) denote cylindrical coordinates on X*. Then H ..,.(X") is the space of all distributions
u whose push-forward under conical coordinates (t,tz) belongs to H (RF7) (for details see [13],

Section 4.2).

DEFINITION 3.4. For s,y € R and 1 < p < oo the spaces K)V(X") consist of all distributions
u€ i (X") satisfying, for some cut-off function w € €, ([0, 1]),

comp
(X7).

Jloc

wu € H, (B), (1—w)ue H;

p,cone

Freezing the coefficients of A at ¢t = 0, we obtain the model cone operator ﬁ,

(3.10) A=1t7H E a; (0)(—t0:)’ - ICZ‘,W"'“(XA) — ICZ?”(XA).
j=o
REMARK 3.5. a) If A is elliptic with respect to the weight v+ and satisfies the ellipticity con-

dition (E1) introduced below, then it can be shown that (3.10) is the closure ofg considered
on the domain C22,  (X").

comp

b) If we set a(A) = A — A with A from (3.10), then a(\) corresponds to the so-called principal
edge symbol of A— A, if we view A— A as a constant coefficient edge symbol in the framework
of Schulze’s theory of pseudodifferential operators on manifolds with edges, cf. for ezample

[5].

It is worth mentioning that @(A) = A — Aisa homogeneous function in a specific way. Namely if
we define for ¢ > 0
(3.11) Kot Coomp (X)) = € (X7), (mou)(t,2) = 0" F u(et, 2),

comp

then these operators extend by continuity to isomorphisms in E(IC;W(X’\)) and

(3.12) a(o" ) = 0" ko a(A) K?;l.

o~

In particular, spec(A) is a closed conic subset of the complex plane.

Near the boundary of B we can write A — A = t_“opj\;“_%(h)(/\) with the parameter-dependent

Mellin symbol

(3.13) h(t,z,X) = h(t, z, ")), h(t,z,\) = X — f(t, z),
and f from (3.2).

4. The resolvent of cone differential operators

To describe the structure of the resolvent we recall some elements from the theory of parameter-
dependent cone pseudodifferential operators, starting with the smoothing remainders of the cal-
culus. To this end we introduce a family of Fréchet spaces of smooth functions on intB and X",
respectively.

DEFINITION 4.1. For v € R we let C*7(IB) denote the space of all u € C*°(intB) such that

(4.1) sup t%—_l_vm log! ()" (u)(t, ) ||| < oo Yk, eNg
0<t<1
for any semi-norm ||| - ||| of C*°(X). Similarly, 8 (X") is the space of all u € C®(X") which are

rapidly decreasing as t — oo and satisfy (4.1).
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We shall say that an operator GG has a kernel k with respect to the "Hg’o(}B)—scalar product if

(Gu)(y) = (k(y, ), Wy000m) = /Bk(y, YIul)ty)"dy',  u € Conmp(int B),

where t denotes a boundary defining function on B and dy’ refers to a density on 2, the double
of B. We shall use the analogous notion for operators on X”, based on the scalar product of

K9OXN) = Lo(XN, t dtd).

DEFINITION 4.2. An operator-family G = G(X), A € A, belongs to CZ™7(B; A, %), v € R, if there
exists an & = e(G) > 0 such that G(\) has a kernel k(X) = k(X,-,-) with respect to the HY°(B)-

scalar product and

k(A y,y) € S(A,C®TH(By) ©r €7 (By ),

cf. (9.3); @, denotes the completed projective tensor product. Cz7 (B A, ~) is the residual class
of the calculus. For every choice of s, p, and A, the operator GG(A) maps H;" () into C°*7(I). For
the description of the resolvent we shall need another class of operator-families. For each fixed A,
they are smoothing over X”, yet they have a finite order in A:

DEeFINITION 4.3. Let v, u € R and d > 0. We define Ré’d(X’\;A,'y) as the space of all operator-
families G = G(A) that have a kernel with respect to the ICS’O(XA)-scalar product of the form

n41

RO st 2') = T RO 9t 2, N, 2),

where [] is a smoothed norm-function (i.e., [-] is smooth, positive on C and [A] = |A| for large X)
and for some ¢ = £(G) >0

kAt b 2') € SE(A) O 8175 (X)) Or 8577 (X )
In this case, G(A) maps IC;”(X’\) into 8§ (X") for any s and p. See also the Appendix for more

information on such operator-families. Trivially, a symbol a € Sc%l (A) satisfies the estimate
(4.2) e <e(L+PADE, A,

Recall from Section 3 that if A is a cone differential operator, then A — A can be written in terms
of Mellin symbols taking values in the differential operators on X, cf. (3.13). In that case the
Mellin symbol is a polynomial in z. A general Mellin symbol is an entire function with values in
the pseudodifferential operators on X; more precisely:

DEFINITION 4.4. For p € R and d > 0 let Mg’d(X;A) denote the space of all functions G(z, A),
which are holomorphic in z € C with values in L*%(X; A), and for which

Gs(1,A) = g(B+ir, \) € LPY(X;R, x A)
15 locally bounded as a function of 3 € R. This ts a Fréchet space in a canonical way.
Let us now state the ellipticity assumptions on A, which ensure the existence of its resolvent in a
keyhole region:

DEFINITION 4.5. We call A elliptic with respect to the weight v + p and the sector Aa, cf. (9.2),
iof the following two conditions are satisfied:

(E1) Both the homogeneous principal symbol O'Z (A) and the rescaled symbol 5Z (A), ¢f (3.5), do
not take values in A, R
(E2) the model cone operator A, acting as in (3.10), has no spectrum in Aa \ {0}.

If conditions (E1) and (E2) are satisfied, they automatically hold for a slightly larger keyhole region
(by closedness of the spectrum, compactness of B, and the homogeneity of the rescaled symbol, the
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homogeneous principal symbol, as well as @(A), cf. (3.12)). Moreover, one can show that condition
(E2) implies that (3.7) is a family of isomorphisms.

We would like to point out that, although the above conditions seem to be quite strong, it follows
from more general considerations that they are essentially necessary.

Under conditions (E1) and (E2) we can now describe the resolvent of A:

THEOREM 4.6. If A is elliptic with respect to Aa = Aa(f) and v+ p, then A has no spectrum in
Aa O {|A| > R} for some R >0, and for large X € Aa

(13) A=A =0 {opl TN + GO oo+ (- o) PN = 1) + G (M),

where 0,00, 01 € Coonp([0, 1[) are cut-off functions satisfying 10 = 01, 00g = o, and there exists

a d >0 such that, for A = A(4,0),

i) g(t,z,A) = §(t, 2, t"\) with § € C=(Ry, MEY(X;A)),
i) P(A) € L™**(intB; A), of. (9.4),
iii) G(A) € RGMM(X™ A, v), and G (X) € CZ7 (B A, 7).

In view of the fact that A has compact resolvent (recall that the embeddings 57 (IB) — H}¢(IB)
are compact provided s > r and v > ), only finitely many points of the spectrum of A will lie in
A. Thus, after possibly rotating A a little and shrinking the keyhole A, we can assume that A has
no spectrum in A, except perhaps 0.

Theorem 4.6 follows from the parametrix construction in the parameter-dependent cone algebra
given in [6], Theorems 3.2, 3.4, cf. also [5], Section 9.3.3, Theorem 6. An important observation
we can draw from this theorem 1s a norm estimate of the resolvent:

ProPOSITION 4.7. Under the assumptions of Theorem 4.6 there exists a constant ¢, > 0 such that
for all sufficiently large A € A

1A =A™ e @y < o AT

PROOF. We first reduce the case of arbitrary ¥ to the special case v = v, = (n 4 1)(3 — %)
To this end let b € C™(intB) be a positive function such that b(¢,z) = 7, v = 5, — v, for all
(t,z) € [0,1] x X. Multiplication by b induces isomorphisms #;" () — H; P (B) with inverse

induced by b=!. Therefore,
-1 —-1;-1
||(A - A) ||,C(’Hg"y(]B)) ~ ||b(A - A) b ||»C('Hf,’7p(]B)) .
But for large |A|,
bA-A)"v =0 {t“opj‘f}_%(T_”g)(/\) + t”G(/\)t_”} oo+ (1=a)bPAb™H(1—01)+bG o (M),

where T7%g(t,2,A) = g(t,2 — v, ). Since T7%g and bP(A\)b~! are of the same quality as g and
P()), respectively, and t*G(A\)t~" € R (X" A7) and bGoo(A)b1 € CZ%(B; A,7,), we can
assume from the very beginning that v = v,.

The term G (A) certainly behaves in the right way, since it is rapidly decreasing in A. Also the term
(1 = a)P(A)(1 — oq) is good by the standard Calderon-Vaillancourt theorem. The two remaining
terms t*op},(9)(A) and G(X) we shall consider in the spaces

Ko (XM) = Ly(Ry x X, " dtdx).
If k, is the group action from (3.11), then ||I{Q||£(K2,yp = o' for all ¢ > 0. Hence for an

arbitrary operator T € E(ICZ?’W”(X’\)) we have

(X))

_ -1
e e oenyy = e Thallepege oo
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Now let G(A) have a kernel k(A) as described in Definition 4.3 (with p replaced by —p and d = p).

Then the operator-norm of G(A) is the same as that of /f[;\]ll/uG(A)/f[A]l/u, which has the kernel

k(A t,z,t',2'). But this kernel is O(|]A|71) in A, cf. (4.2). To treat the last term we can pass to
local coordinates, i.e. we assume X = R” and

ﬁé_%(t,x,r,é’,/\) S S_u’u(@+ XR”XRH_H;A),

By a tensor product argument we can assume that ¢ is independent of (¢, z). Conjugating with
R[AJ1/u s We have to show that

by F )N, gy (LT EN) = G (R,

is uniformly bounded in L, (R4 x R” t*dtdx) for large |A|. Since then ﬁ is bounded away from
zero and infinity, a simple calculation shows that

(t00) 080 g (8,7 &, V)| < enta(l + |7] + |€]) =l

1
2 p

uniformly in (¢, 7,&,A), i.e., ¢'(A) € MSP(R 4 x R™ x F%._l_% x R™) uniformly in A. Then the result
follows, see the end of Section 9. O

There are certain relations between A and g from i) respectively P(A) from ii), which we are going
to study now.

Let U C R™ be a coordinate neighborhood for X, whose closure is contained in another coordinate
neighborhood. Condition (E1) ensures that the local symbol

(4.4) GOtz 7€) =t ol (A)(t, @, 7T, €),

cf. (3.4), exists up to ¢ = 0 and does not take values in A for all (¢, ) € [0,1]x U and all (,&) # 0.

LEMMA 4.8. There exists a zero excision function x on R, such that for any ¢ € ngmp(U) and
any o € Coonp ([0, 1)

e@)e()x(Ir & + M)A = §W (2, 7,6) " € STRH(EL x R? x BRI A).

PROOF. Let a denote the symbol in question. For shortness let us write y = (¢, %) and n =
(7,€). Since the (eigen)values of §(*)(y, ) are proportional to ||* (uniformly for y € [0,1] x U)
and do not lie in Aa, there exists a constant ¢ > 0 such that (A— ¢ (y,7))~" is a smooth function
n

{(y,n,A) €[0,1] x U x R x C | A € Aa or |A| < ¢|n|*}.

Thus, if we choose y in such a way that x(|n|* + |/\|§) vanishes for |n| < ((S/C)ﬁ and |A| <6, then
a is smooth on Ry x R”™ x RM7 x A for A = A(8,0). To verify that a is a symbol, it suffices to
show that

(4.5) la(y, n, A < e (1+ [ + A7)

uniformly in y € [0,1] x U and (,A) € R'*" x A. Since a is anisotropic homogeneous of order
(—p, p) for large (n, A) € R1T"x Aa, estimate (4.5) holds on R1¥7x A 4. It also holds for [A] < and
|| sufficiently large, since then |(A— G (y,7))~"| is O(|n|=*) due to the above described behavior
of the (eigen)values. For |A| and |n| simultaneously small, estimate (4.5) holds anyway. O

For every 3 € R, we can associate with ¢ from Theorem 4.6.1) a local symbol

gﬁ = gﬁ(t,l‘,T,g,A) & S_u’u(@+ X Rn X Rl-l_n,/\)
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It is a consequence of the above mentioned parametrix construction in the cone calculus that the
principal symbol of g is determined by the inverted principal symbol of A — A. With the notation
from Lemma 4.8 we indeed have

(4.6) p(x)o(t) {g@ —x(Im P+ A ) (A = q(u))—l} € STATLIH(RY x R™ x R A).

Similarly, the local symbols of P(A) from Theorem 4.6.ii) can be approximated modulo S=#=1h#
in terms of the inverted local principal symbol of A — A.

5. Complex powers of cone differential operators

The aim of this section is to show that a cone differential operator A satisfying (E1), (E2), also
satisfies condition (A3). More precisely we shall show:

THEOREM b.1. Let A be elliptic with respect to v + p and Aa, having no spectrum wn the keyhole
A = A(4,0), except perhaps 0. Then one can define A* as in (2.1) and there exists a constant
¢p > 0 such that for all z € H with |Re z| sufficiently small

(5.1) 1A% 2z my) < € efltmel,

Let us first give a short outline of the proof. In view of Theorem 4.6 we can replace in (2.1) the
resolvent (A — A)~! by the right-hand side of (4.3). Then one obtains four integrals (corresponding
to the four terms on the right-hand side of (4.3)), each of which has to be estimated as in (5.1).
For the one associated with G (A) this is certainly possible, since G (A) is rapidly decreasing in
A and therefore

H//\ZGoo(/\) d/\H . < c;)(sRezet?IImzL
c L(Hp " (B))

882 is uniformly bounded for small |Re z|.

Obviously

For the integral connected with (1 — ¢)P(A)(1 — o1) one can proceed exactly as in the proof of
Theorem 1 of [19], since this term is localized away from the boundary, and there, 7-[2”(}3) coincides
with the usual L,-spaces (note also the remark after formula (4.6)).

Hence it remains to consider the expressions
(5.2) a//\ZG(/\) d\ oy, U/Azwop};%(g)u) X\ .
c c

We shall start with the analysis of the first term. Letting
HOV(XN) = L (XN 1 CF=0r e gy — o (X0 TP gy,

it is obvious from Definition 3.1 that multiplication with any cut-off function o € Cg,,, ([0, 1])

induces continuous operators HJ¥(B) — HJ7(X") and H7 (X") — H) 7 (B). Estimating the first
term in 5.2 thus reduces to the following proposition:

PROPOSITION 5.2. Let G(A) € R (X";A,7) and G, = //\ZG(/\) d\ for z € H. Then G, €
c

E("Hg”(XA)), and there exists a constant ¢, > 0 such that for |Rez| sufficiently small

o)1
||Gz||£(7-tf;”(XA)) < e eflmel,
PROOF. By conjugation with ¢7 we can assume that ¥ = 0 (cf. the proof of Proposition 4.7).
If we split the integral into three terms according to the decomposition of C in (9.1), the integral
over Cz can be estimated in the desired way, since ||G(A)|| is bounded on Cy. By symmetry, C; and
C3 can be treated in the same way. So we shall assume for the rest of the proof that

Ct)y=Ci(t) =te", —oco<t<1,
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(for notational convenience we replace ¢ by 1). Also for convenience we suppress the z-variables
from the notation. We shall frequently make use of the fact that, substituting A = g*¢'?, we have

[sovan=pe® [7 e de
C 1

According to Definition 4.3, G/(A) for |A] > 1 is an integral operator (with respect to the scalar
product in H5 (X)) with kernel

B0 s) = RO AFE A s),
where, for some & > 0,
k(A t,5) € STHA) Br S(X") B S5(XN)

(the fact that k is classical will not play a role for the following calculations). Then G, is an integral
operator with kernel

(5.3) ko (t,s) = /C N k(A 1, 5) dA.

Writing k(X ¢, s) = (X(£) + (1 — X) (1)) k(M ¢, s)(X(s) + (1 — ¥)(s)) with the characteristic function
x of [0, 1], the proposition will be true, if we can show that in any of the four cases

(5.4) k. (t,s) :e—ellmzl/AZ;z(|A|%t)k(A,t,s)x(uﬁs) dA
C

(5.5) ko (t,s) = e el e g(IA =) k(A t, 5)(1 = D) (A7 5) dA

(5.6) ko (t,s) = e el [z (1= Q) (A7) k(A £, )T (A 5) dA

(5.7) ka(tys) = el [ Ar (1= Q) (AR L 5)(1 = X)(IA]7 s) dA

— e .

the associated integral operators are bounded in HS’O(X’\), uniformly in —a < Re z < 0 for some
« > 0. The cases (5.5) and (5.6) are equivalent by symmetry (i.e. passing to the adjoint). The
proofs of all cases (5.4), (5.5), and (5.7) rely on the following Hardy inequalities:

(5.8) /Ooo (/Otg(s) ds)pt—l—’“ dt < (2)" /Ooo gO)PtP==" dt
(5.9) /Ooo (/too g(s) ds)pt—1+’“ dt < (2)" /Ooo g()P= dt

for any non-negative function g on R4 and r > 0 (cf. [23], Lemma 3.14, page 196). To begin with
case (5.4) we use the fact that, for some fixed € > 0,

k(A 1, 8)| < c| A"l F e M A

uniformly in A € C and ¢, s > 0, to obtain

(o)
|@w$mcr%“%i¥“/ " I Y (et) X (o5) de
1

_ s 71 1yuRez+2 ~ ~ —ndl . _ndlg
= ety (min(g, )T — D) X(Ox ()7 F T
Since pRe z is negative, the factor min(%, %)“Rez is uniformly bounded by 1 for 0 < s,¢t < 1. If
—% = —a < Rez < 0 the factor —5%—
I — #Re z42¢

can be estimated from above by a constant uniformly in
0 < s,t < 1. Since furthermore the kernel function ¥ (¢)x(s)t~ =a

F4e s~ 7+ belongs to HU (XM @
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HO}O(X’\) and thus induces a continuous operator in HS’O(X’\), it remains to consider the kernel

P
=t e g i e min(%, %)25. Because this kernel is symmetric in s and ¢, indeed it suffices to treat
e P e s <t
k(t,s) = - .
5>t

If G denotes the associated integral operator, then
t

P ~ ~ n P 52'—11)—1 _ ~ "T_1+a P —1—pe
IGul 00 xn, g/o (/0 k(t, s)|u(s)| s ds) ’ a= | ( K |u(5)|ds) t=1=re gy
P n1
(£)" [ 1wor 2= (9l
by Hardy’s inequality (5.8). This finishes case (5.4). For case (5.5) observe that
R £, 5)(1 = ) (s)] < en AT 4e N

for any N € N uniformly in A € C and s,¢ > 0. Then

IN

o0
[ 5)] < et 45 [ e N ) (1 ) (gs) do
1

This expression equals zero if s <t and for s >t we can estimate

1/t
k.(t s)]| < cNt_ﬂz—_l‘FaS—N” $ NReZ-I—nT_l_I_g_Nd
) =~ X 0
1/s

0= ey (b (6 9) — KI(E,9))

with kernel functions k! and k2 given by

0 s <t kz(t ) ‘) 0 s <t
bl ’8 = n .
(L)Nt_”_l_“Rez ts> 1 ? X (ts)___{_l (é)as_“Rez ts> 1

5

ki (t,s) = X(t) {
In order to check the uniform boundedness of the integral operator K! associated with k!, —a <
Rez < 0, on HS’O(X’\) we observe that

HYO(X") =17 Ly (X7, 1" dtdx)

with 8 = p(n + 1)(% - Z%) The boundedness of K is equivalent to the boundedness of t# K1t~/

on L, (X", t"dtdx). To show it, we employ Schur’s lemma: if N is sufficiently large, then

00 00
/0 tPkl(t,s) 57 s"ds = )N((t)tﬁ'i'N_"_l_“Rez/ sTNT =0 s = mt_“f{ezi(t) <1
t
and
[ min(1,s) _Nep
/0 tﬁk’; (t, S)S_ﬁ tndt = S_N_ﬁ /0 tﬁ-l—N_l_uRez dt = m min(l, S)ﬁ-l—N_uRez S 1.

To handle k? first observe that we can drop the factor s~#R¢# since this is uniformly bounded by
lins<1and Rez <0, and if s > 1 and _;_u < Rez < 0 then (%)a/zs_uRez <lfor0<t<1
(for t > 1 anyway k2(¢,s) = 0). Thus we can assume that

0 s <t
k’z t, Ik’z t, = Nt nt1 z n41 n41 B .
2(t, ) (t,s) X(){(ts)__g-—(%) e o Cs >t

But then Hardy’s inequality (5.9) shows that the integral operator associated with the kernel k? is
continuous in HS’O(X’\) with operator norm bounded by % This finishes case (5.5). For the final
case (5.7) we use that

(1= DOk, 5)(1 = D) (s)] < en A7 Vs
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for any N € N uniformly in A € C and s,¢ > 0. Then

ket )] < ent™ Vs /joguf‘e”"-”(l D(et)(1 - D)(es) de

_ cn t_N -N )uRez+n+1 2N

[ . S 1 =
_uRez+n+1—2N max (1

)T
The factor in front is obviously uniformly bounded in Re z < 0 for N sufficiently large. Since pRe 2z
is negative,

)@k (t,s)(1 =) ()] < e (L= s~ (1= x)(s),

ROk (1, 5)(1 = X)(5)] < ex (V" 1s™N (1= 3)(s),

(1= )k (1, 5)X(s)] < e (1= x) (@)t 71x(s).

All these kernel functions belong to Hy*(X") @ Hg}O(X’\) for sufficiently large N and thus induce

continuous operators in 7-[2’0 (X"). Hence it remains to investigate ¥ (¢)k; (¢, s)X(s) and by symmetry
even

0 ts <t
k(t,s) = - .
(t;s) {S_NtN_”_l s>t
Again Hardy’s inequality (5.9) shows that the associated operator is H"°(X")-continuous. O

We consider now the second term in (5.2). Using a partition of unity on X with any two functions
supported in a single coordinate neighborhood, we can assume X = R™ and use local symbols
compactly supported in z. To complete the proof of theorem (5.1) we make use of the decomposition
(4.6) and of the fact (see Section 9) that operators defined by means of symbols a € MS®(R x
R aga X ™) are bounded on #H " (R 4 x R”), with norm estimated in terms of the seminorms

associated to a. We treat the homogeneous principal symbol of ¢ and the lower order part separately.

LEMMA 5.3. Let b € STH-LE(R, x R x Pugr % R™ A) be compactly supported in t and

ba(t, e, M — 5 4T, &) = ¥ / Nb(t, x, L — i, £ 14N) d
C

For Rez < 0 this defines a symbol b, € M S°(R 4 x R™ x Pugr % R™), and the symbol estimates

of e=flmzlp - gre uniform in —1 < Rez < 0. Consequently,

B 9|1
llopar * (b )Hﬁ HO(RyxEn)) S Cp € o=l

untformly in —1 < Rez < 0.

Proor. Without loss of generality, we can set v = ”T‘i'l We have to show that
(5.10) 0L (t0,)F D2 020, (¢, @, ir, )| e~ Ml (7 gyl +le]
is uniformly bounded for ¢ > 0, x € R® 7 € R and —1 < Rez < 0. The totally characteristic
derivatives in ¢t can be handled very simply, observing that t0,t# = ut",

10, ( (t,z,ir €, t“/\)) = (tD)(t, z, i, €, 1MN) + p(AOD) (L, 2, iT, €, 1MN)

and both symbols t8:b and ADxb are of the same type as b. Since the derivatives with respect to , 7
and ¢ can be taken under the integral sign, it suffices to assume b € STH™1=F# (R xR x['g xR™; A)
and to show that

b (¢, x,i7, )| < ceflmm=l(r g)=F
uniformlyin¢ > 0, 2 € R® 7 € R and —1 < Rez < 0. By hypothesis, we have

bo(t,x,ir, &) < ct* [ IN[(14 77 4 |€7 4 [t# A2/ ) ZH=1=RI/2 g
| 3 3 3 —_ 3
C
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and on C we can estimate |\*| from above by §Rezefllmzl The transformation g = t#\ yields
|b.(t, z, i1, €)| < céReze‘glIle(T,@_k/ (14 |ol)~" ¥ do,
trc

where t#C means the path C(t#d,8). Since the support of b is compact, we may assume without
loss of generality that 0 < ¢ < 1. Then we obtain the estimate

[ oasieh Fdosomit [l E de < o,
teC Ca
and the statement follows, since §%¢? is uniformly bounded in —1 < Rez < 0. O

PROPOSITION 5.4. Let § = §(t,x,z,&,A) be a local symbol associated to the Mellin symbol § of
(A — A)~L of Theorem 4.6.1) and let

g:(t, 2, 2 — y 4+ ir &) = o ()" / NGt w, ML — oy 4 ir, £, 14 X) dA
c
with some cut-off function o € C,,.([0,1[). For Rez < 0 this defines a symbol g, € MS° (R, x

comp

R™ X Tuy1 ., x R™), and the symbol estimates of e=flmzly are uniform in —1 < Rez < 0. In
2

particular,

~

||Op7w_E(gz)Hﬁ(Hgﬂ(R*_x]Rn)) < ¢, eflm=]

uniformly in —1 < Rez < 0.

ProoF. Without loss of generality let v = ”T‘i'l We shall also suppress ¢ from the notation

and 1nstead assume that 0 < ¢ < 1. We can also assume & confined to a compact subset of R™. By

(4.6),
Gtz im & N) = x(Im €12+ A F ) — § (¢, 2, ir, €)™Y mod  STATLEEL x R™ x R A,

where (%) denotes a local symbol of A as defined in (4.4). In view of Lemma 5.3, we therefore may
assume that

g-(t, 2,07, &) :t“//\ZX(|T,€|2—|—t2|/\|u2)(t“/\—(j(“)(t,x,ir,g))_ld/\
C

=1 / X &7 + lel ) (e = W) (¢, 2, im, €)™ do,
thC

where we have used the substitution ¢ = t#A. We have to estimate this expression as in (5.10). The
factor t~#* behaves correctly, since (td;)"t=#* = (—uz)*t=#* is uniformly bounded in 0 < ¢t < 1
and —1 < Rez < 0. For (1,£) # 0 we have

spec(§)(t, z,i7,€)) C {A € C | er |7, €[* < A < a7, €] and |arg A| < 6}

with suitable constants ¢; and c3. Thus for large enough |7, &| we have x (|7, €]? +¢72#|¢]?) = 1 and
the spectrum of (j(“)(t, z,i7,&) is located to the right of the path C. By Cauchy’s theorem we can
then replace the path t*C by C, and obtain for large |7, |

/ o (o — Wt &, ir, &) Vo = 2mi W (L, &, iT, €)°.
¢
Then we can estimate (as in [19], (2.9))

|07 (400)*0g 07 9. (1, &, i, €)| < p(|2])e® M 2l (r €)rRe == imlel < (|l =l (7, g) =1l

with a polynomial p. However, since we can replace § by 6 — ¢ for some £ > 0 (as noted in the
comments on conditions (E1) and (E2)), this yields the uniform symbol estimates of g, for large

|7,€l.
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For small |7, &|, we now shall show that

(5.11) g:(t, @, i7,€) = t‘“z/( ) o a(t,x, 7§ 0)do,
T(t

where we have set
Cl(t, Ty T,g; Q) = X(|T,€|2 + |Q|ﬁ%)(g — j(“) (t’ x, Z'T,g))_l c S‘N,N(@_l_ w R™ % R1+n; A)
and Y(¢) is the path given in the following picture (with ry > 0 to be chosen appropriately):

3

Aq

Ay

As

In fact, the difference of both sides from (5.11) equals
(5.12) a(r) :/ o’a(t,x, 7,8 0)do for r =rg.
C(r,0)

Since, for small |7, &, the spectrum of §(W(¢,z,ir, &) is contained in some ball of finite radius,
a(t,z,7,&; ) is holomorphic in g for |g| > ry, if 7o is chosen large enough. Thus a(r) = a(rg)
for all » > rg, by Cauchy’s theorem. For any fixed z and (¢,z,7,¢) the integrand in (5.12) is
O(Jo|~1*Re2) for |g|] — oo and, on the radial part of C(r), the integrand is O(rf¢*). Hence,
a(rg) = Tl}iinoo a(r) =0, and (5.11) holds.

To estimate the right-hand side of (5.11), we split the integral into four parts, which we briefly
analyze separately. First of all, observe that |¢?| can be estimated from above by e?lm 2l (¢ g)Rez
on the whole path. This and the fact that a(t,z, 7, &;0) € STHH(Ry x R™ x R1+7: A} are enough

to get the desired estimates for the terms obtained integrating along the two arcs A; As and AsAq,
since they can be treated with essentially the same technique we used to prove Lemma 5.3. The
term obtained integrating along AsAs is

b(t,x,r,&’):/ (sew)za(t,J:,T,E’;sew)ew ds.
tHS

The derivatives with respect to x, £ and 7 can be taken under the integral sign, so that we could
again start with a symbol a € STH=%#(R, x R"™ x R1*7; A) and prove that, for any [,

|(tat)lb(t’ z, T’€)| < Cl6€|1m2|<7—a€>_k

uniformly in —1 < Re z < 0. This is true for [ = 0, as one can easily check. For | = 1 we get
t0:b(t, e, 7, &) = / (5¢"®)7 (t0ra)(t, , 7, &; se')e? ds — p(t"5e? ) T la(t, x, 7, &; 115e™?),

tHs
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and this also satisfies the desired estimate. In fact, the first term is of the same kind as b, while
for the second it suffices to use the definition of S™H=%H#(R, x R" x R1*7; A) and the fact that
0 < t < 1. The result for arbitrary ! can be proved by induction and, obviously, the contribution
obtained integrating along AsA; behaves in a completely similar way. This yields the desired
symbol estimates for small |7, £| and finishes the proof. O

REMARK 5.5. Let us point out that the proof of Theorem 5.1 only makes use of assumption (E1),
the structure of the resolvent (4.6), and the fact that spec ANA = 0. It does not use that the domain
D(A) equals 7-[5”"’“(}3). Therefore, Theorem 5.1 holds true for A considered on other domains, as
long as (E1), (4.6), and spec AN A =0 are satisfied.

In the next section we shall investigate the possible closed extensions of A, and use the previous
remark to obtain an analogue of Theorem 5.1 for the maximal extension of A.

6. Closed extensions of cone differential operators

Let A be a cone differential operator, which is elliptic with respect to v+ p in the sense of Remark
3.2. If we consider A as the unbounded operator in Hy7(B) with domain €2, (int B), its closure
Apin = Al{ipn is given by

D(Amin) = 7{5”‘"“(]]33),
and the maximal closed extension Apax = ALE, by
D(Amax) = {u e H)(B) | Aue M) (B)} .
Note that in (3.8) we simply wrote A instead of Api,. Taking into account the duality of 7-[2”(}3)
and 7{2}_7(}3), the following lemma is valid:

LEMMA 6.1. If At is the formal adjoint of A with respect to the scalar product ofﬂg’o(}B), then

(TR = (AR, (ARL)" = (D"
We shall write this more shortly as A%, = Al .. and AL, = Al . .

A proof of the above statements in case p = 2 and v = 0 is given in [9]. The argument in the
general case is analogous. As a simple consequence,

(/\ - Amax)_l = [(X_ Afnin)_l]*
whenever one of both sides exists. Since the structure of the resolvent of A = A, as given in
Theorem 4.6 is invariant under passing to the adjoint, we obtain the following theorem:

THEOREM 6.2. If A . s elliptic with respect to Ax and —~ + i, then Ama, has no spectrum in

min

Aa O {|A| > R} for some R >0, and for large X € Aa

(A= Apa) ™ = o {t0p3r ¥ (9)(N) + G p oo + (1= ) P = 1) + G (),

oQ

where 0,00, 01 € C5,, ([0, 1]) are cut-off functions satisfying o106 = 01, 00¢ = o, and

i) g(t,z,A) = g(t, =, t"X) with § € C>= (B4, My (X; A)),
ii) P(A) € L™ (int B; A),
i) G(A) € RGMM(X™; A7), and G (N) € CZ7 (B A, 7).

Proceeding exactly as in Proposition 4.7 and Section 5, we can prove a norm estimate for the
complex powers of Aax:
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THEOREM 6.3. Let Al .~ be elliptic with respect to —y + p and Aa, having no spectrum in the
keyhole A = A(4,0) except perhaps 0. Then one can define A% .. as in (2.1) and there exists a

constant ¢, > 0 such that for all = € H with |Re z| sufficiently small
o)1
||Arznax||£(’}-[g’7(]B)) < e eflmel,

Of course, it is desirable to express the ellipticity assumptions made on A’ . in the previous two

theorems purely in terms of A,.x. This can be done as follows.

n

REMARK 6.4. Ifﬁ is the model cone operator on X" associated with A and ﬁmax = ﬁg{g 15 the

closed operator given by

X

ZXA@MJ::{uekﬁﬂ(XA)|ﬁueK£”@¥M},

then Al is elliptic with respect to —y + p and Aa if and only if A satisfies condition (E1) and

n

(E2) ﬁmax has no spectrum in Aa \ {0}.

The previous remark holds true, since similar to Lemma 6.1, Amm = ﬁfnax and ﬁ;‘n = Afmn

It can be shown that D(Apax) differs from D(Anin) by a finite dimensional space (for the case
p = 2 see [9]),
D(Amax) = D(Amin) © V, dimV < co.

More precisely, the dimension of V' only depends on the conormal symbol of A,

(6.1) dimV = > M (oh(A), 2),
—2<Rez— "—'2"—1+'y<0

where M (h, z) denotes the multiplicity in z in the sense of [7] of a function h, which is holomorphic
in a punctured neighborhood of z. Moreover, V' consists of smooth functions of the form

k;
ZE t p] logt) CjkECOO(X);

the coefficients ¢, the exponents p; € C (’in —v—p < Rep; < ”—"’1 — ), and k;, N € Ny are
determined by A. In particular, the only closed extensions of A are the operators Ay given by

D(Aw) = D(Amin) & W, W<V
In this notation, Apin = Ay and Apax = Ay . Correspondingly,
D(Amax) = P(Amin) ®V,  dimV =dimV,
and all closed extensions ﬁﬁ; are given by
D(Ap) =D(Amin) & W, W<V,

REMARK 6.5. If the conormal symbol oiy;(A)(z) is invertible for all "T'H —v—2<Rez < "TH -,
then dimV = dimV = 0 by (6.1), and both A and A have only one closed extension in 7-[2”(}3)
and K3V (X7), respectively.

7. Example: A Cauchy Problem for Laplacians

Let g(t) be a family of metrics on X, depending smoothly on a parameter t € Ry, and Ax (t) the
corresponding Laplacian on X. If we equip int B with a metric that coincides with dt? +¢?¢(t) near
t = 0, the associated Laplacian A is near the boundary given by

72{(10,)7 + (n — 1+ 1G7H(1)(@: ) (1)1ds + Ax (1)}

where G = (det(gij))% and n = dim X. Hence A is a cone differential operator in the sense of
(3.1). We shall prove the following theorem:



18 BOUNDED IMAGINARY POWERS OF CONE DIFFERENTIAL OPERATORS

THEOREM 7.1. Let A be the Laplacian on int B in the above sense, 1 < p < oo such that
(7.1) 2max(p,p’) — 1 < n = dimJB.
Ifv=n+ 1)(— — —) then A defined on CZ5,,(intB) has for any 1 < ¢ < oo a unique closed
extension Ay, 4 0 "Hq’%( ), which is given by
D(Apq) = %Z’WP-I—Z(]B»
Moreover, —A, 4 ts elliptic with respect to v, + 2 and any sector Aa C C\Ry.

ProoF. Let us set A = —A. The rescaled symbol of A is
o (A) (2, 7.6) = 7 + el

where || refers to the metric g(0) on X. Hence A satisfies the ellipticity condition (E1) for any
Aa in question. The conormal symbol of A, cf. (3.6) and (3.7), is

o3 (A)(2) = =22+ (n— 1)z — Ax (0) : H¥(X) — H**(X).
If 0= Xg > A; > ... are the eigenvalues of Ax(0), then ¢3,(A)(2) is not bijective if and only if

se{pt e (2 )b jem).
Note that, in particular, o3,(A)(z) is invertible for all z with 0 < Rez < n — 1, and thus by
condition (7.1) for all z with 2+ —~, —2 < Rez < 2 — 4, This shows that A is elliptic with
respect to vy, + 2 in the sense of Remark 3.2 and has only one closed extension
Ap g s Hg T2 (B) C Hy W (B) — Hy (B)
by Remark 6.5. The model cone operator is
A= =72 {(19:)" + (n = 1) (1) + Ax (0)}

i.e. — A is the Laplacian on X" with respect to the metric dt? +t2¢(0). As before, A has a unique
closed extension

n 2, 2 0, 0,

Ap g Ky XM C K, P(XN) — K, (XM,

Since A is symmetric and non-negative, ﬁzyz 1s self-adjoint and spec(ﬁzyz) C @4_. Let us show that

spec(Ap q) C Ry V1< ¢ <oo, psatisfying (7.1).
By Corollary 3.15 of [14] (in the version for operators in the cone - algebra CH(X™; (v,y—u,0)) on
X", which is introduced in Section 8.2.5 of [5]), the spectrum of Apyq is independent of 1 < ¢ < co.
Thus we can set ¢ = 2 and write A, = A, ». We can assume p > 2, by passing to the adjoint (i.e.,
Ay = Ap and —y, = 7). Then ker(A — A;) C ker(A — As) = {0}, since K272 (XM c k22X
in view of 4, > 72 = 0. The fact that o3, (A)(z) is invertible for 0 < Rez < 23 — 4., — 2 implies
that

A 2,20 Ay — f272 12 A ™, -

(7.2) ker(A — Ap) C K37(X7) = K3 (XN), A¢Ry;
we shall give the argument below. As a consequence, we have for the adjoint

ker(A— A,)* = ker(A — A,/) C ker(A — Ay), A¢ Ry,
hence A — ﬁp is bijective for A\ ¢ R, .
In order to see (7.2) set y! = min('yp +2,0). The invertibility of the conormal symbol implies that
A — Ais elliptic with respect to ' + 2. Moreover the minimal and maximal extensions of A — A
considered as unbounded operators in IC2 (X’\), coincide and their domain is ICz’W +2(X’\). In
particular, N' = ker{\ — A IC;’W”'-I—Z(X’\) — IC;’W”I (X™)} is a subset of the maximal domain,

thus it is included in ICS’VI-FZ(X’\). Iterating this process, we see that N' C Kg’vj-"z(X’\) for all
v/ :=min(y/ 71 4+ 2,0) = min(v,’ + 2j,0). Choosing j large enough we get (7.2). O
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Let us mention that A is also considered in [10]. As a consequence of Theorem 7.1 we get the
following result on the solvability of the Cauchy Problem for the Laplacian:

THEOREM 7.2. Let A be the Laplacian on intB as described above, 1 < p < oo, and 2max(p,p’) <
dimB. Then the Cauchy problem
(7.3) () - Au(t) = f1), 0<I<T;  u(0) =0,
has for any
FeL ([0,T], 1 ™(B),  1<gr<e,
a unique solution
uwe W, ([0,T],Hy""(B) 0 Ly ([0,T], H2 T (B)) .

FPurthermore, u, v, and Au depend continuously on f.

In fact, in Theorem 7.1 above, we have shown that —A is elliptic with respect to v, +2 and any sector
Aa not containing B, . Moreover, the problem (7.3) is equivalent to v/ (t) — (A — ¢)u(t) = et f(t),
v(0) = 0, and, for sufficiently large ¢, the operator —A + ¢ satisfies the assumptions of Theorem
5.1 for any fixed 0 < ¢ < T and ¢ > 0. Then

1A+l eyor ey < o™ Yy ek,

and Theorem 7.2 immediately follows from Theorem 3.2 of [3].

8. Appendix: Smoothing Mellin symbols and Green symbols

The structure of the resolvent (respectively parametrix) of a differential operator A as given in
Theorem 4.6 at the first glance does not coincide with those which you find for example in [5] or
[6]. This is mainly due to the fact that we consider A as an unbounded operator in #;7(I8) whose
resolvent acts continuously in H;’V(B), and do not consider A as a bounded operator acting from
7-[;,"’“”"’“(3) to M, 7 (IB). We shall use this appendix to clarify this point.

Let us begin with a discussion of so-called Green symbols. Let us set
KHXM)” = (1) K7 (X7
for real v, cf. Definition 3.4. These are Hilbert spaces, and X ~%~7(X")~" can be identified with

the dual space of K*7(X")" via the scalar-product in K%°(X"). The operators , defined in (3.11)
extend by continuity to operators in L(K*7(X")¥).

For p € R and d > 0 we let
Su,d(A; ICs,'y(X/\)u’ ICs','y' (X/\)V')
denote the space of all smooth functions a € C*° (A, L(K*7(X"), ICSIWI(X’\)”I)) satisfying
Iy -7 {05 @) e gayrrall < e (1) 571
uniformly for A € A and all multiindices «.

We call a smooth function b € C*(Aa \0,E(ICSW(X’\)”,ICSIWI(X’\)”I)) twisted homogeneous of
degree (u, d) if it fulfills

b(o%N) = 0" ko b(A) K
for all A and ¢ > 0. Note that multiplying b with a 0-excision function (supported sufficiently far

away from zero) yields a symbol in S*4(A; K*7(XM)Y, ICSIWI(X’\)”I). The space
S (AT (XY K (X))
then consists of all symbols from S*4(A; K*7(X")Y, ICSIWI(X’\)”I), that have asymptotic expan-

o0 . .
sions a~ alh=39) with functions a(#=7% that are twisted homogeneous of degree (—j,d).
k=0
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DEFINITION 8.1. Let v,y € R. If g € SHI(A; KOY(XM), KOV (XN)), we can form the adjoint
symbol g* € S“’d(A;ICO’_VI(X’\),ICO’_V(X’\)) by taking pointwise the adjoint with respect to the
KO%(XM)-scalar product. We then call g a Green symbol if additionally there exists an e = €(g) > 0,
such that

g€ N SHUAKIY(XN RS (XM,

g* € Im Iséll,d(A;Ks,—'y’(X/\)u’Ks',—w+a(X/\)u').

The entity of all such Green symbols we shall denote by
RGN XA, (4,9)-

It is a trivial fact that if 4/ >~/ then
RE (XM A (71,9) C R (XA, (7.97)).

Moreover it can be shown, cf. [20], that in case ¥ = 4’ both Definitions 8.1 and 4.3 yield the same
symbols respectively operator-families. In other words, Green symbols can either be characterized
by their mapping properties in Sobolev spaces or by the structure of their kernels.

Let us now return to the resolvent, cf. Theorem 4.6. If you compare with [6], you will find that
there ‘our’ term G/()) is replaced by a term of the form Gg(A) + M (A), where

Go(A) € RGMM(X™5A, (v, 7 + m),
is a Green symbol and

M(\) = w(t[\F) t“ opyy * (h) wol(t[\]¥)

00
comp

for some cut-off functions w,wy € C (R4 ), and a meromorphic Mellin symbol

he Mp™(X).

The last notation roughly means that & 1s a meromorphic function on the complex plane with
values in L7°°(X), the smoothing pseudodifferential operators on X, having only finitely many
poles in any vertical strip [Rez| < 8, # > 0, and the Laurent coefficients of the principal part of
h at any such pole are finite rank operators. For more details see [5], Section 8.1.2. By the above
observation,

Go(A) € RZ"MM (X7 A, 7).
The same is also true for M, since it is easy to see that
M€ Sc—llhu(A;]Cs,v(X/\)V’ICs’,w+u(X/\)y’)

for all s,s", v,v' (note that M is twisted homogeneous for large |A]). Observe that > 1 since we
are dealing with differential operators of positive order. The adjoint symbol is given by

M*(\) = wo(t[AJF) 1 opy* ™ (") w(t[A]F) + Gi(V)
where h*(z) = h(n+1— pu—2Z)* and

G1(\) = wo (1) {opy, ™ F (h*) — op T E (07) pw el

|

).

Here, vy = ~ if 2* has no pole on the line Rez = "T'H + v, otherwise v > « sufficiently close to
~v. However, it is known, cf. [5], Section 8.1.2, Theorem 6, that then Gy € RZ""(X"; A, (—v, —7))
and

M* — Gy € Sc_l“’“(/\;ICS’_V(XA)”,]Cslv—w-l_“(XA)V')

for all 5,5, v, /. All together this shows that M € RZ"*"(X"; A, ~) and hence justifies the descrip-
tion of the resolvent we have given in Theorem 4.6.
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9. Notation

For 0 # A € C we let arg A be the unique number —7 < arg A\ < 7 such that A = |\|e!*&*, For
z € C we then set
N = |A[Feizare

For fixed z this is a holomorphic function in A € C\ {A € R | A < 0}.
For ¢ > 0 and 0 < § < 7 we let A = A(4,6) denote the closed keyhole region

AG.0) = (Ae TN <3 or |arg)] > 0}
and C = C(4,0) its parametrized boundary, C = €; U Ca U Cs, with
(9.1) Ci(t) =te", —co <t <38; Colt)=de™ —0<t<0; C3(t)=te™" d<t<oo.
We let Aa = Aa(0) denote the closed sector contained in A,
(92) Aa(0) = DA€ C | Jarg Al > 0} U {0)

and, similar to (9.1), Ca its parametrized boundary.

We now recall various spaces of pseudodifferential symbols and operators we shall use throughout
this paper. In the following we let y,d € R and d positive.

We call a function smooth on A, if it i1s the restriction to A of a function which is smooth in an
open neighborhood of A. If £ is a Fréchet space, then

(9.3) S(AE)
consists of all u € C* (A, F) satisfying
sup [|3a(A) | A < oc
AEA

for any multi-index v € NZ, any N € IN, and any continuous semi-norm ||| - ||| of E. The space of
symbols of order p and anisotropy d,

SHAURT < RIS A),
consists of all functions @ € C*™ (R™ x R™ x A), which fulfill the estimates

o —|x|—d 2,1
1080507 aly, 1, A)] < cagy (NI Ny = L P+ A1),
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for any multi-indices «, 3, and 7. Further we set

SRy x R X R™A) = SPUR™ X R™ A)lg, gm-txgnxa-
For a compact manifold X, dim X = n, the space
(9.4) LhA(X;A)

of parameter-dependent pseudodifferential operators of order p and anisotropy d consists of all
operator-families, which are obtained as a sum (according to a covering of X by coordinate neigh-
borhoods) of local operators with symbols from S#4(R" x R"; A) and a smoothing remainder from
L=(X;A) = S(A, L7°(X)). In the last definition, L=°°(X) is the usual space of smoothing
operators on X i.e. the space of all integral operators having a smooth kernel.

If v € R and I'y denotes the vertical line in the complex plane
I'y={2€C|Rez =~}
the space of symbols
MSH(Ry x R™ x oy x R™)

consists of all functions @ € C™ (R4 x R™ x Fﬂ-_l_,y x R™) which satisfy the estimates
2

|07 (100" 02 O alt, e, M — 5 4 im €)] < erap(r P TTIEL (rg) = (L4 7P )R

The associated (Fourier-Mellin) pseudodifferential operator is

[opjw_%(a)u](t,x) = t~%op(a)(t, z)(Mu)(z,z) dz, u e

Ry xR"?
Rez=2tl —y COmp( + )a

where op is the standard Fourier pseudodifferential operator on R”, and M the Mellin transform

(Mu)(z) = / tu(t) L.
0
Such operators induce continuous mappings H>7 (R x R™) — H*~#Y (R4 x R™) for Sobolev spaces
MRy x RY) = {u | (Su)(r,@) = eFT (e 0) € HHRT)T.
The continuity is due to the fact that a Mellin pseudodifferential operator on R x R™ transforms,

under conjugation by S, to a usual pseudodifferential operator on R!*" and then the Calderén-
Vaillancourt theorem applies.
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