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Abstract

Boundary value problems for pseudodifferential operators (with or without the transmis-
sion property) are characterised as a substructure of the edge pseudodifferential calculus
with constant discrete asymptotics. The boundary in this case is the edge and the inner
normal the model cone of local wedges. Elliptic boundary value problems for non-integer
powers of the Laplace symbol belong to the examples as well as problems for the identity
in the interior with a prescribed number of trace and potential conditions. Transmission
operators are characterised as smoothing Mellin and Green operators with meromorphic

symbols.
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2 INTRODUCTION

Introduction

Boundary value problems for differential (or pseudodifferential) operators on a smooth man-
ifold with boundary have much in common with problems for operators on a manifold with
edges. This relies on the fact that the “half-space” R, x Q for an open set @ C R?,
¢ = dimY, can be regarded as a wedge with model cone R, and edge Q. Let us illus-
trate this for a differential operator A = 3’ <, aa(2)Dg in Ry x  with smooth coefficients

aq () € C®(Ry x Q). Inserting z = (¢,y) for t € R, y € (), the operator A takes the form

A=t Y agslty) (~t2) (D)’ (0.0.1)
J+1BISK

with coefficients a;z(t,y) € C*(Ry x Q) for all j, 3. In general, a differential operator A
in Ry x Q of the form (0.0.1) will be called edge-degenerate. The class of such operators
is much larger than that induced by operators with smooth coefficients, though there are
far reaching similarities between boundary value problems and edge-degenerate operators in
the framework of the edge algebra, see, for instance, [23] or [27]. Operators without the
transmission property at the boundary are of particular relevance in this connection (even
for ¢ = 0). A result of Eskin [5] says that zero-order pseudodifferential operators on the half-
axis can be reformulated as Mellin pseudodifferential operators with meromorphic symbols,
modulo Hilbert-Schmidt operators. Similar ideas have been used by Rempel and Schulze [18]
in relation to the calculus of Vishik and Eskin [35] for higher dimensions, though an edge
algebra characterisation was not given in [18]. Also Plamenevskij [16] has derived certain
Mellin reformulations of pseudo-differential operators. An essential point in such construc-
tions is a suitable control of corresponding symbols and remainders near 0. Eskin’s result for
the half-axis has been refined later on in [19] to a representation with a complete sequence
of meromorphic Mellin symbols of lower conormal order, modulo so-called Green operators,
defined by their mapping properties to spaces with asymptotics, see also the monograph [27].
This calculus became a model for a specific cone algebra (for cones with non-trivial base)
with a similar Mellin and Green operator structure, cf. [20] and [24], [27], or the papers [21],
[22]. The cone algebra completes the class of differential operators on a manifold with conical
singularities of Kondrat’ev [13] to a corresponding pseudodifferential algebra containing the
parametrices of elliptic elements. Also the edge, corner, and higher singular pseudodifferen-
tial algebras of [25], [26], [30] belong to this development. The operators in these algebras are
degenerate in a typical way (in fact, edge-degenerate, corner-degenerate, etc.). There are ide-
als of smoothing operators with asymptotics, generated by certain operator-valued symbols
that are contributed by the geometric singularities of the configuration. In particular, they
describe the nature of additional trace and potential conditions along the lower-dimensional
strata.

There is then the following natural question. Consider, for instance, a bounded domain
G in R", say, with a piecewise smooth boundary (e.g., with conical, edge, etc. singularities).
Let a(z,£) € SY(R™ x R™) be a symbol of order zero in Hormander’s symbol space (subscript
“cl” stands for the space of classical symbols), and consider the pseudodifferential operator

A=r1"O0p(a)e" : L*(G) —» L*(Q), (0.0.2)

Op(a)u(z) = [[e@=")a(x, E)u(a) de'de, dé = (2m)~"dE, with et : L2(G) — L*(R")
being the operator of extension from G to R® by 0 in R* \ G and rT : L*(R") — L?(G) the
restriction to G. The problem is then to what extent A can be characterised as an element
in the above-mentioned “corner operator algebra” on G that is intrinsically defined, without



any reference to a neighbouring space of G . For higher order operators we can ask the same;
then the space L?(G) has to be replaced by weighted Sobolev spaces that are typical for
geometric singularities.

In the present paper we shall solve this problem for a domain (or a manifold) with smooth
boundary and symbols that have not necessarily the transmission property at the boundary.
For our characterisation we employ the edge algebra from [23] with constant discrete asympto-
tics, (see also [28], or Egorov and Schulze [4], Gil, Schulze, and Seiler [6], [7]). As a byproduct
we get a new characterisation of Boutet de Monvel’s algebra [3]. To have a convenient method
for reductions of orders in our calculus we establish a corresponding parameter-dependent
variant, cf., analogously, Agranovich and Vishik [1] for a simpler situation.

Operators of the form (0.0.2) occur in a number of interesting applications, see, for in-
stance, Widom [37], or Kapanadze and Schulze [11]. For the authors the problem became
relevant in connection with boundary value problems, where the Atiyah-Bott obstruction for
the existence of Shapiro-Lopatinskij elliptic conditions does not vanish, cf. Atiyah and Bott
[2], see also [29] and the joint paper [31] of the authors. In [31] we will give a transpar-
ent construction of the set of all global projection boundary conditions (analogues of APS
boundary conditions for operators without the transmission property) in terms of the edge
symbol machinery. Our results also contribute to the description of a pseudo-differential
algebra with asymptotics, where mixed elliptic problems have their parametrices. There are
so-called transmission operators in this algebra, and we show that they have the form of
smoothing Mellin and Green operators in the edge calculus. This extends a similar relation
of Eskin [5] for zero order operators on the half-axis, see also [27] for arbitrary orders, with
lower order conormal symbols; moreover, the characterisation specialises to an observation of
Grubb [9] for the case of symbols with the transmission property (in arbitrary dimensions),
see also the article of Myshkis [14].

Moreover, we construct elliptic elements of special interest, in particular, elliptic boundary
value problems for non-integer powers of the symbol of the Laplacian, or boundary value
problems for the identity operator (plus a smoothing Mellin operator) with a prescribed
number of elliptic boundary and potential conditions. Furthermore, as a refinement of a
corresponding result in [18], we construct homotopies through elliptic elements to operators
with interior symbols that have the transmission property at the boundary.

Finally, we apply our characterisation of transmission operators to the construction of a
large general class of operators (with or without the transmission property) that are elliptic
(and thus Fredholm) without additional boundary and potential conditions.

1 Edge symbols on the half-space

1.1 Cone Sobolev spaces and Green symbols

The aim of this subsection is to fix some terminology for the pseudodifferential analysis on
manifolds with conical and edge singularities.

For s € Ny, 7 € R, we let H®7(R;.) be the Hilbert space of all distributions u € D'(R;.)
such that

t7(t0,)*u(t) € LA (R, ,dt)  forall k <s.

This definition extends in a natural way to arbitrary real s. Throughout this paper a cut-off

function is an arbitrary element w(t) € C§°(R;) such that w = 1 in a neighbourhood of
t=0.
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Definition 1.1.1 Let s,yv € R. Then
K" (Ry) :={ueD'(Ry): wueH(Ry) and (1 —w)u € H*(R) },

(with w € C°(Ry.) being an arbitrary cut-off function and H*(R) the standard Sobolev space
of smoothness s) is a Hilbert space with the norm

lullcsrmy) = llwullpen @y + 11— w)ull g @)

The scalar product in L?(Ry) = K%°(R,) induces a pairing

KT (Ry) x K727 (R ) = € (0,0) = (u,0) p2(ry),

that admits an identification of the dual space (K*7(Ry))" with %~ 7(Ry).
The cone Sobolev spaces contain subspaces of distributions with a certain asymptotic
behaviour at 0 that is typical for solutions of elliptic equations of Fuchs type.

Definition 1.1.2 Let 7,0 € R and 6 > 0. An asymptotic type Q € As(v,0) is a finite set

Q={(g)eCxNy: ; —7—0<Reg<i-1}
The complex conjugate type of Q is defined as Q = {(g,l) : (q,1) € Q}.

With such a @ € As(y,8) we associate the function space
!
Eo(Ry) = {t o) 3 S et Tloght: cp € (C}, (1.1.1)
(g,1)eQ k=0

which is a finite-dimensional subspace of K*7(Ry ). Here, w is some fixed cut-off function.

Definition 1.1.3 Let 5,7 € R and Q € As(~,0). Then

K5 (Ry) = Eq(Ry) & lim oo k*7H* (R, ),
Sh(Re) = {u € KFT(Ry): (1-w)ue SR}

are Fréchet subspaces of K*7(Ry). If Q = 0 is the empty set, we agree to write Ky (Ry)
and 8] (R}).

These spaces can be written as a projective limit £ = @keNEk of Hilbert spaces E,
namely

By = EQ(Ry) + K* 70~k (R, ) if B =K (R;.),
By = Eo(Ry) + ()FKFH=H(Ry) i B =S)(R;).

So far we have only treated @) € As(v,6) for finite §. The extension to # = oo is straightfor-
ward by saying that ) € As(vy,oc0) if

(1.1.2)

Qk) ={(¢,1) €Q: 1 —v—k<Req<i—9}€As(y,k) forallkeN
and then defining
K5 (R) = im K50 (Ry ), SRRy = lim k83, (R).

Example 1.1.4 If T := {(—j,0) : j € No} € As(0,00), then S(R+) := S(R)|r, = SH(R}).
This simply means that smoothness up to zero corresponds to Taylor asymptotics at t = 0.
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The following class of smoothing operators — the so-called Green operators — will be of
particular interest in the sequel.
Definition 1.1.5 Let 7,7 € R, 6,0 € Ry U {00}, and asymptotic types Q@ € As(—,0),
Q' € As(y',8") be given. If g = (v,0;7',0'), then Ca(Ry,g9)q,o consists of all operators
G e L(KO7 (R, ), K% (Ry)) such that for all s € R

G: K7 (Ry) = Sy (Ry),  G" K77 (Ry) = Sg7 (R4 ).
Here, % denotes the adjoint with respect to the L?(Ry )-scalar product. The union over all
such types Q, Q" is denoted by C(R+,g). If 6 = 0" we agree to write g = (7,7, 0).

Let E be a Hilbert space and & a strongly continuous group of isomorphisms on FE, i.e.,
k: Ry — L(E) where kxk, = kxp for all A, 0 > 0, and A — kye : Ry — E is continuous for
any e € E.

Example 1.1.6 On E = K*7(Ry) the “standard” group action is defined by

[N

(kaw)(t) = A2u(At), u € K27 (Ry). (1.1.3)

The factor Az appears in order to ensure that ky € L(L*(R}.)) are unitary operators.

If £, E are Hilbert spaces with corresponding group actions &, k, and  C R™ is an open
set, we say that a is an operator-valued symbol of order u, written a € S#(Q x R?; E, E), if
a€C®(Q, xR, L(E, E)) and

sup ([R5 {050) aly, m) Yol oo,y (M) 7 < 00
yeKmera My mlle(e,E)
for all multi-indices a € N}, 8 € NJ* and any compact subset K of Q. Note that for
E =E =C and k =k = 1 we recover the standard symbol classes S*(2 x R?).

If F is a Fréchet space that can be written as a projective limit £ = 1&11 renEy of Hilbert
spaces ... < Ek+1 — E’k <y ... Eyand ®isa group action on E; that restricts for each
k to a group action on Ej, then we define S*(Q x RY; E, E) 1= (o S*(Q2 x RY; E, Ey,).
Example 1.1.7 If S),(R;) = Um penEy as in (1.1.2), the standard group action from Ea-
ample 1.1.6 induces a group action on any Ej,.

Similarly to the scalar case, the subspace S4(Q x RY; E, E) of classical symbols consists
of all a that admit an zero expansion a ~ Y 7~ X@(u—k) With an excision function x(n) and

“k-homogeneous” functions a(,_y), i-e., ag,—r) € C°(Q x (R?\ 0), L(E, E)) and
(i) (Y, An) = A“”“E)\a(“_k) (y,n)n;\l for all A > 0.

Green symbols are now particular operator-valued symbols that are pointwise Green op-
erators as described above:

Definition 1.1.8 Let 7,7 € R, 6,0 € Ry U {oo}, and asymptotic types Q@ € As(—,0),
Q' € As(y/,0") be given. Then RE(QX X R?,9)0.q0', g = (7,6;7',0") denotes the space of all
symbols that satisfy

g€ N SO XRGLR),SHRY)), g€ NSO x RGE™ T (), 857 (Ry)),

where * refers to the pointwise L?(Ry )-adjoint. If § = 0" we agree to write g = (7,7, 0).
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1.2 Green symbols and parameter-dependent integral kernels

Our aim is to show that Green symbols are families of integral operators (with respect to
the L?(R, )-scalar product) with smooth kernels of a specific structure. To this end we first
investigate Green operators on R, .
Let G € L(K*7(R}),K* 7 (Ry)) for some fixed s,s’,7,7" € R such that
G:K7(Ry) = Sy(Ry), G K777 (Ry) = Sg ' (Ry)

for some asymptotic types ) € As(v,6) and Q' € As(y',0') for 0 < 0,60" < co. Again, * refers
to the scalar product of K%°(Ry) = L?(R.). Then general facts on operators in Hilbert
spaces tell us that G has an integral kernel

ko € 55 (R)BK* 7 (Ry) N K (R, )85 (Rs), (1.21)

Le., Gu(t) = (ka(t,-), oo = [, ka(t,t')u(t’) dt’ for any function u € K*7(Ry).
We are now going to refine the statement from (1.2.1). Therefore, for arbitrary v € R we
set

Sg(Ry) :={ue L®"(Ry): (1 -w)ue S(R),
(log" Hhw(t)u(t) € K7 (Ry) forall ke Ny}, (1.2.2)
where w is an arbitrary cut-off function.

Lemma 1.2.1 If 0 <6 < oo, then

L*(Ry )®7 S5 (Ry ) NS§ (R )@ L (Ry ) = S§(Ry )@ S) (Ry.).- (1.2.3)

Proof. The right-hand side of (1.2.3) is clearly contained in the left one. Writing an element
g = g(s,t) from the left-hand side as g = w(s)w(t)g+ w(s)(1 —w)(t)g+ (1 —w)(s)w(t)g+ (1 —
w)(s)(1 —w)(t)g and using the push-forward S1 defined by (S% F)(z) = e~27 f(e=7) reduces
the statement to the proof of

L*(R)®,S(R) NS(R)®,L*(R) = S(R)®Sp(R) (1.2.4)

where Sy(R) = S(R) for # = 0 and otherwise Sp(R) = {u € S(R) : e’*u(t) € S(R) for all 0 <
0 < 6}. The result is known to be true for # = 0. The proof for § = 0 is actually a simpler
version of that for § > 0, which we shall give below.

It suffices to show for some g = g(x,y) belonging to the left-hand side of (1.2.4) that

95(z,y) = €’y € SR)BS(R) = S(R x R)
for any fixed 6 with 0 < 6 < 6. Thus we have to show
(@) () (DY (D) e g(z,y) € LA(R x R)  forall k,k',1,I' € Ny.

Here, we write (D, )* = op((§)*) for any p € R. In the following || - || denotes the norm in
L?*(R x R). Using repeatedly the inequality a8 < a? + 3% and Plancherel’s formula, it is
straightforward to see that

(@) ()" (D) (D) ggll < 1) (De)* gzl + (D) (Dy)* g5l +
+ (D) (D) gzl + )™ (Dy) g5l (1.2.5)
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The fourth term is finite, since gz € L*(R)®,S(R). To treat the other terms choose p > 1
such that § < pf < p?0 < 6 and denote by p' its dual coefficient, i.e., % + 1% = 1. Then
af < a? + ¥ for all a, 8 > 0. By passing to the Fourier image, we first obtain

(D) (Dy) g5l < [{D2)** g5l + (D) gg1l-

The second summand is finite. For the first, let §(£,y) = Fy—e9(,y). Then

(D) g5l = 116€)* € 4(&, w)I| < 1167 a(&, w)l| + 1P 4, v)||
= |(D.)* *g|| + (e g|| < 0.

Therefore, the second and third term on the right-hand side of (1.2.5) are finite. Finally,

(@)™ (D)o ggll < llG2)?* (D) egll + (D2 e g
r ’ 27,
< 1l @)?F (D) gll + (D2 Fgll + [le? Y gl| < oo
shows that the right-hand side of (1.2.5) is finite. This yields (1.2.4). O

Proposition 1.2.2 Let 0 < 0,6' < 0o and Q € As(—v,0), Q' € As(y',0") be given asymp-
totic types. Let G € LIK®V(Ry), K7 (Ry)) with the property that

G (R) = 8GRy, G KT (R = 857 (R
Then G has an integral kernel kg (with respect to the L*(Ry )-scalar product) satisfying:
a) ko € 83 (R )BrS5" (Ry) i= 8§ (R )BxS; " (R) N 87 (R )BxS57 (R ).

b) IfQ,={(¢,)) €Q: ¢>3+7— %} € As(—, %), and similarly @, € As(Y/, %) for
Lyl =1, then kg €S), (R:)®r S5 (Rt ).
In particular, for @ = ' = oo we have kg € S, (&)@,TSéV(&)

Proof. a) First let 8 and #' be finite. Using reductions of order, we may asume that
s=3s =v=79"=0. Define A = A(Q) = opY;(h) with h(z) = H(q’l)eQ(z—q)l(z+7)_l.
Here, without loss of generality, @) is written as a sequence of pairs (g, ) where (¢, k) € @
for all k < [. Then A € £(L?*(R;)) is an isomorphism that restricts to isomorphisms
SH(Ry ) = SP(Ry) and S§(Ry) — SP(Ry ). Similarly, we construct A’ corresponding
to Q'. If we set G = A'GA*, then G : L*(Ry) — SY(R, ) and G* : L*(Ry) — SY (Ry).
By (1.2.1) and Lemma 1.2.1, G has a kernel k € S, (Ry)®rS§(Ry). Then the result
follows by expressing G = (A= (A=1G)*)* on the level of kernels. The corresponding
result for # = 0" = oo is obtained by passing to the limit 6}, = 6}, = k for k — oo.

b) The proof is similar to that of a), by using the fact (cf. [34]) that

Sp(Re)BrSg(Ry) = N S (Ry)&xS% (Ry). O
1<p<oo 7 4
Let us now turn to the description of Green symbols. In the formulation of the corre-
sponding result, we use the following notation: If E is a Fréchet space, then S#(Q x R?, E)
denotes the space of all symbols a € C*°(Q, x R, E) satisfying

sup {[[18; 87 aly, mlll(m)*1#} < oo forall a € Nj, 5 € Ny,
yeK,neR?
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for any continuous seminorm ||| - ||| of E and any compact subset K of Q. Classical symbols

again are those having asymptotic expansions a ~ Zzozo X@(u—k) With an excision function

x and a(,_y) satisfying a(,_p)(y, A\n) = /\“*’“a(ﬂ_k) (y,m) for positive A.

S¢(R?) is a nuclear Fréchet space (a proof may be found in [38]), and we have

Sh(RY,E) = SH(RY)&,E. (1.2.6)

Moreover, we have Sé‘cl) (QxRY) = Sé‘cl) (R7,C*>(Q)).

Proposition 1.2.3 Let Q € As(—7,0) and Q' € As(v',0") with 0 < 60,6’ < co. Then

g € RE(QYXRY, (v,0;7",0") 0, if and only if there exists a kernel-function

K,m, 6 ¢) € SH(Q, x B, S5 (R3S (Ry )
such that g(y,n) is the integral operator with kernel kq(y,n,t,t") = [nlk(y,n,t[n],t'n]).

Proof. The y-variable is here unessential and thus will be dropped for the proof. If the
kernel k, is of the required form, it is straightforward to show that g is a Green symbol. The
homogeneous components g(,_j) are then given by the kernels

koo s (6, 8) = [nlkgu—jy (o, tlnl, '), n#0.

Vice versa, if g is a Green symbol, each homogeneous component g(,_;) possesses a kernel
kg, € C®(RY\ 0,82, (]R+)®r857(]R+)) due to Proposition 1.2.2. By the s-homogeneity
of gu—j we obtain ky, . (An,t,t") = M=tk (n,At, At') forall X > 0. This shows
that kq,_j)(n,t,t") == [n| =" kg,_;, (n,tln]=",¢'|n]~") is homogeneous of order p — j in 7 and
belongs to C*°(R? \ 0,87, (M)@rSév(]Rq)) If we now choose some kernel k with k ~
> ieo k(u—j), then ke SS(R%,SV’, (&)@FS&V(&)), and if g(n) is defined via the kernel
[k (n, t[n],¢'[n]). This yields § € Rg(RY, (v,60;7',6'))q.q by the first part of the proof, and
g—9€ R;™(RY, (v,0;7',0")q.q by construction of g and k, respectively. Therefore,

F(n,t,¢') = ky (.1, ) — [k, ¢n), ¢'[]) € S(RE, S (Ry ) Br Sy (Ry ).

However, the assertion then holds if we set k(n,t,¢) := k(n,t,t') + [n] " k(n, t{n] 2, ¢'[n] 1),
since the second term on the right-hand side again belongs to S(RZ,SV,(&)@A@FSéV(KL)).
O

Corollary 1.2.4 Let g € RE(Q xR, (v,60;7,8'))q,q , and let k be its kernel function as in
Proposition 1.2.3, then

ke SLOx R,SY (R)BnST (Ry)),
where Qp, Q) are as in Proposition 1.2.2 b). In particular, if § = 6" = oo,
ke SO xR, SY (RL)®S5" (Ry ).
Example 1.2.5 With a = a(t,7,7n) € S(‘fl(KJr X ]R_l,fnq) we associate the operator family

op™(a)(n) =17 op(a)(me™ : G5 (Ry) = O (Ry),

where e™ denotes the extension by zero and r™ the restriction to R, .
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a) If 09,01 € C§°(Ry) are cut-off functions such that oy and 1 — oy have disjoint support,
then we have g(n) := ogop™(a)(n)(1 — o1) € RG™(RY,(0,0,00))r,1 for the Taylor
asymptotics T = {(—4,0) : j € No}. Indeed, it is straightforward to show that g(n)
posesses a kernel kq(n,t,t') € S(]R%,S(K.,_ x Ry)). It remains to observe that S(Ry x

Ry) =SR4)®,S(Ry) and S(Ry) = SY(Ry), c¢f. Example 1.1.4.

b) If wo, w1 € CP(Ry) are cut-off functions such that wo and 1 —w; have disjoint support,
then g(n) = wolt[n]) o™ (a)(m) (1 — w1)(t[]) € RE(RY, (0,0,00))1.7, where T denotes
Taylor asymptotics as above. Indeed, if k(n) = kg, with the standard group action

from Ezample 1.1.6, then g(n) = &~ '(n)g(n)k(n) = wo(t)op™(a@)(n)(1 — wi)(t) with
a(t,m,n) = a(tln] ", 7n],n) € SL(RY, SH(Ry x R;)) by Proposition 2.2.1 below. There-

fore, G(n) has a kernel-function k(n,t,t') € SH(RY,S(Ry x Ry)). Thus the assertion
holds in view of Proposition 1.2.3, since g(n) has the kernel k(n,t,t') = [n]k(n, t[n], t'[n]).

If we require that a € S*O(Ry x ]R;J%q), we can interchange the role of oo and (1 — oy1) in
a) and of wo and (1 — wy) in b), and still obtain the same statement on g(n). Moreover,
corresponding results hold for a = a(y,t,7,m) € S*(Ry x Q x RIT 7).

1.3 Edge-degenerate symbols and holomorphic Mellin symbols
A symbol p € SH(Ry x Q, x ]Ri:;q) is said to be edge-degenerate, if there exists a symbol

plt,y,7,m) € SH(Ry x 9 x RLEY) such that
p(t,y,7,m) = p(t,y,tr, tn). (1.3.1)
Ifa € SRy x Q x RI19) we call p an edge-degenerate symbol associated with a, if
a(t,y,7,m) —t "p(t,y,7,n) € S™(Ry x Q x R").

Lemma 1.3.1 To any a € S(‘fl(ﬁ_,_ x Q x RT4) there erists an edge-degenerate symbol p
associated with a. If p is connected with p as in (1.3.1), p is uniquely determined modulo
S=°(R4 x Q x R1T9) by the asymptotic expansion

ﬁ ~ z%ﬁ(u—j)a ﬁ(u—j) (ta Y, 7, 77) = tja(ﬂ—j) (t7 Y, T, 77)7
j:

where a(,_;) are the homogeneous components of a. (Vice versa, if p is as in (1.3.1) we can
find an a € S5 (R x Q@ x R such that a—t #p € S~°(Ry x Q x R1*?) if and only if the
homogeneous components p,_jy of p have a zero of order j in t =0).

Proof. If p is of the described form, then, in S*(Ry x Q x R1T7),

o0 o0

tp(ty, Tom) ~ Yt ag, j (t oyt tn) = Y agj (ty, 7o) ~ alt,y, T, n).

Jj=0 Jj=0

If po € SH(Ry x Q x R'9) also satisfies t~po(t,y,7,n) = t=*Po(t,y,t,tn) = alt,y,T,n)
modulo S™®°(Ry x 2 x RIT?), then p—pp € S (R x Q x R*?) and thus

p—Do € SHRL x Ax RT) NS~ (R x O x R'7) = §7°(Ry x O x R'*7).
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Let M{,(R%) denote the space of all smooth functions & : Cx R4 — C holomorphic in the
first variable such that hg(7,n) := h(8+i7,n) € S4(R:H?) for any real 8, and that 3 +— hg is
locally bounded in # € R. The corresponding space of (¢, y)-dependent symbols is denoted by
MERy x 2y x RE) (= C=(Ry x Q, M§(R?)) with M{(R?) being equipped with its natural
Fréchet space structure).

With such symbols (and also meromorphic ones introduced below) we associate operator
families

fopl () (y, m)ul(#) = / Y,z ) (Mu)(2) dz, u e CF(Ry),
1/2—7Y

where v € R and (Mu)( fo t*u(t) 2 is the Mellin transform of u.

Lemma 1.3.2 To any edge degenemte symbol p € SH(Ry x Q x R'™Y) as in (1.3.1) there

exists an h € M”( + X QX RE) such that for h(t,y,z,n) = h(t Y, z,tn) the following relation
holds

op (R (y,m) — op(p)(y,n) € C=(Q, L™ °(Ry; RY)). (1.3.2)
If po(y,7,m) = p(0,y,tr,tn) and ho(y,z,n) = fNL(O,y,z,tn), then also
op s (ho)(y,m) — op(po)(y,m) € C=(Q, L™ (Ry; RY)). (1.3.3)

Moreover, if p is independent of y, also h may be chosen to be independent of y.

A proof of Lemma 1.3.2 can be found, for instance, in [27, Section 2.1.3]. The symbol

h associated with p is uniquely determined modulo My™(Ry x  x R?), and h is called a
Mellin quantization of p.

1.4 Complete edge symbols

We are going to study a class of operator—valued symbols, that shall serve later on as local
symbols for (parameter—dependent) pseudodifferential operators on manifolds with edges (in
particular on manifolds with boundary). For more details and elements of the calculus we
refer to [25], [4], and [32].

Definition 1.4.1  a) A set P C Cx Ny is called a Mellin asymptotic type if the projection
mcP of P to the complex plane contains for any 3 > 0 only finitely many points lying
in the vertical strip {z € C: |Rez| < §}.

b) A meromorphic, smoothing Mellin symbol h = h(z) associated with an asymptotic type
P as in a) is a meromorphic function on C with poles at most in any p € nc P of order
at most n+ 1 if (p,n) € P. In addition, if x is a ncP—excision function, then

= (xh)(B+iT) € ST(R,)
for any real 3, locally bounded in B € R. We denote by M, the space of all such
functions; the corresponding y—dependent functions by M, (Q) (= C*(Q, M5>)).

For given data g = (7,7 — p, k) with k € N, we define R}, (€, x R, g) to be the space
of all operator—functions of the form m(y,n) + g(y,n) with arbitrary g € Rf (€ x R¢,g), cf.
Definition 1.1.8, and

miy, ) Zt w9 (03 opi (hia) )n® ) @A) (1.4.1)

la|<j
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Here, hjo(y) € MIZJ‘ZO(Q) for certain Mellin asymptotic types Pj, and weights v;o € R such
that I'y . N7cPja = 0 and v — j < vyjo < 7 for all j, . Further, w and @ are arbitrary
cut—off functions.

Definition 1.4.2 The space R*(Q2 x R?,g) for g = (7,7 — i, k) and k € N is defined to be
the set of all symbols of the form

a(y,n) = o{w(tn)t=" opy, (h) (y,mwo (t[n]) + (1 — w)(E[n])t =" op(p) (y, n) (1 — wi)(t[n]) }oo
+ (1 =0)op(q)(y,n)(1 —o1) +m(y,n) + g(y,n)

where m + g € RM+G(Q x R?.g), h is a Mellin quantization of an edge—degenerate symbol
p(t,y,7,n) = p(t,y,tr,tn) with p € SHR; x Q@ x REL?), and ¢ € SHO(R x Q x REHe).
Moreover, 0, 0j and w, w; are arbitrary cut—off functions satisfying wwo = w, wiw = w and
009 =0, 010 = 0.

Recall, e.g. from [28], that any a € R*(Q2 x R?, g) is an operator—valued symbol of the
classes S*(Q x R?; K57 (Ry.), K5~ #(Ry.)) and S*(Q x R K57 (Ry ), Ky 77 (Ry)) for
any asymptotic type @ € As(v, k) with a resulting type R = R(Q,a) € As(y — u, k).

If a € Rhy (2 x R, g) the analogous statement is true for IC “ TTH(Ry ) replaced by
K5y (R ).

As a slight generalization of Definition 1.4.2 we introduce matrices of complete edge
symbols,

R*(Q x R?,g;1,m) = R*(Q x RY, g) @ C™ @ C', (1.4.2)

where we identify C™ @ C! with the space of (m x [)-matrices. Equivalently, we could require
all components h, p,q, g from Definition 1.4.2 and all hj, from (1.4.1) to be matrix—valued.
Analogously, we have the subclasses R}, (Q xR?,g;1,m) and R, (QxR?,g;1,m). Elements

from (1.4.2) act pointwise as operators IC o) Ry Cl) — ICZ;)”’Vf“(]R_H(Cm), where

Ko Ry, C) = K5 (Ry) @ C = eB K5y (Ry) (1.4.3)

In fact, if we endow K(5j) (R, C') again with the standard group action (kyu)(t) = A/2u(\t),
then R*(Q x ]Rq,g,l,m) C SH(Q x RY; ICS )Ry chy, IC?IQ)”’Vfu(]R_F,(Cm)).

2 The edge symbol structure of boundary value prob-
lems

For a given symbol a = a(t,y,7,n) € S*°(Ry x @xREL) set op™(a)(y,n) =T op(a)(y,n)e™,
cf. the notation in Example 1.2.5 (op™ (a)(y, n) is first regarded as a family of maps C§° (R} ) —
C*(R.)). The main purpose of this section is to show that the opT-action on R, leads to
an edge symbol in the sense of Subsection 1.3. More precisely, for any v € R and N € N

op™ (a)(y,n) — g(y,n) € R*(A xR, (v,7 — i, N)), (2.0.4)

where g := g,,n is an appropriate Green symbol. Since the y-variable never enters explicitly
in the proofs, we shall drop it in the following. Now let 0,009,001 € C§°(R;) be cut-off
functions such that o and (1 — o), respectively o1 and (1 — o) have disjoint support. Then
we write

op™(a)(n) = o op™(a)(n)ao + (1 = o) op(a)(n)(1 — o1) + g2 (n)
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with the remainder g1 (1) = o op™(a)(n)(1—00) + (1 —0) op™ (a)(n)o1. Due to Example 1.2.5
a), g1 belongs to Rz (R?, (0,0, 00))r7 if a € S*O(Ry x R*9).

If w,wo, w1 € C§P(R4) are cut-off functions satisfying the same conditions as the o’s
above,

aop™ (a)(n)oo = o{w(t[n]) op™ (a)(n)wo (tln]) +
+ (1= w)(t[n]) op(a)(n) (1 = w1)(t[n]) + g2(n) }or

with a remainder g»(n) € RE(R?;(0,0,00))7,7, cf. Example 1.2.5 b). The term (1 —
w)(t[n]) op(a)(n)(1 — wy)(t[n]) will be treated in Subsection 2.1 (see Proposition 2.1.5 be-
low). The crucial step towards a verification of (2.0.4) is the analysis of the operator family

w(t[n]) op™ (@) (M)wo (¢[n))-

Since &y ' opt(a)(n)rr = opT(ar)(n) for ar(t,7,n) = a(tA\~t, 7\, n), the analysis of the above
operator-family is — by conjugation with r[,; — essentially equivalent to the investigation of
wo op™ (@) (n)w; with

“trnl,m). (2.0.5)
The symbol a shall be investigated in the following Subsection 2.2. Then a combination of
results from the theory of cone pseudodifferential operators from [27] (i.e., the analysis of
op™(p) for p € S¥(R; X R;)) together with those from Subsections 1.2 and 2.1 shall lead to
(2.0.4).

a(t,m,n) = agy(t,7,n) = a(tn]

2.1 Symbol structures far from the boundary

Lemma 2.1.1 Let p(t,7,n) € C°(Ry x (RyF9\0)) be positively homogeneous (of arbitrary
degree) in (1,m) and x(7,n) € C°(R™?) be a 0-excision function. Then

r(t,m,m) = (x(r,m) — x(tr,t0)p(t,7,m) € S~ (Ry x RIA7).

Proof. Without loss of generality let us assume that x(7,7) = 0 for |(7,n)| <1 and x(7,n) =
1 for |(r,n)] > 2. If we define 7(¢t,7,n) = x(7,n) — x(¢7,tn), then ¥ is smooth, and if
t € [a,b] C Ry then 7(t,z,m) = 0 for |(r,n)] < min{1,b='} and for |(r,n)| > max{2,2a~'}.
Thus 7 € S™°(R; x R**?) and, since 7 excises 0 for any ¢ > 0, this is also true for r. O

Lemma 2.1.2 Let w,wy, 0,00 € CP(Ry) be cut-off functions and define r as in Lemma
2.1.1. Then x can be chosen in such a way that, for any v € R,

g9(n) = o(1 = w)(t[n]) op(r) (n) (1 — wo)(t[n])oo € Bg™ (R, (7,7,0))0,0-

Proof. By Lemma 2.1.1 we know that g(n) has an integral kernel k(n, t,t') € C®(R? x Ry x
Ry). By Proposition 1.2.3 it suffices to show that

k(. t,0) = [ R, ]~ ') ) € S(RE, S (Ry ) D SH(Ry))- (2.1.1)
By definition of g we have
k(n,t,t') = [0~ (1 = w)(t)o(t[n] ") /e"“_t')["]f”{x(ﬂ n) = x ()~ () p(tn] =" 7 ) dr
(1 =@)()a(t' [ ")
=1 -w)®o(t™) / O (el m) = X,/ ) yp(eln) ™, 7l m) dr

(L =@)(E)5 (' [n] ).
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Due to the factors (1—w), (1 —®) and o, & we clearly have k € C(RY, S (R )®SH(Ry)).
For |n| so large that |n| = [n], we have

[(rlnl,ml = [nl(r) =] and |(¢(r,n/)] = t(1) > ¢. (2.1.2)

There exists a ¢ > 0 such that (1 —w)(t) = 0 for all ¢ < ¢. Now we choose a x such
that x(7,n) = 1 for all |(,n)] > ¢. Then k(n,t,t') = 0 whenever t < ¢, and by (2.1.2),
k(n,t,t") = 0 whenever ¢ > ¢ and [n] > c¢. This shows that k(n,¢,¢) # 0 only for n in
a bounded subset of R?, and therefore k¥ € C§°(R? x Ry x Ry ), which obviously implies
(2.1.1). O

Lemma 2.1.3 Let p(t,7,m) = p(t,t1,tn) be an edge-degenerate symbol with p(t,,n) € S~ (R4 x
RI49) and set gr(n) := o(1 —w)(t[n])t =" op(p)(n)(1 —wo)(t[n])oo. Then to any given k € N,
the number L can be chosen so large that

9L, 95, € SH(RY; H*(R), H*tHOTH(R))  for all 5,6 € R.
Here, H*(R) = (:\)"°H*(R) are weighted Sobolev spaces.
Proof. See the proof of Lemma 3.17 in [6]. O

Lemma 2.1.4 Let a(t,7,n) € ST (R x RI17) and set gr,(n) := o(1 —w)(t[n]) op(a)(n)(1 —
wo)(t[n])oo. Then to any given k € N, the number L can be chosen so large that

9L, 95 € STF(RL; H**(R), H*T°**(R))  for all 5,6 € R.

Here, H*(R) = (-y"9H*(R) are weighted Sobolev spaces.

Proof. It suffices to verify the statement for g;, since it then automatically is also true
for g7 by duality of the Sobolev spaces. By [33, Lemma 5.3] for any s, € R we have
o(1—w)(tn]) € S*(RL; H**(R), H****(R)) for all k > 0. Hence we only have to show that
we can choose L such that

op(p)(n) € S~ (RY; H**(R), H**"° (R)) (2.1.3)

for any s and §. Due to the factor o we may assume that a has exit order 0 in ¢. Since
a(t,7,n) € C*(RS, S™HO(Rx R, )), it is clear that op(a)(n) € C* (R, L(H*°(R), H*T* (R)))
for L > k. Moreover, we have g(n) := k 1(n)g(n)x(n) = op(a)(n) with @ being given by
(2.0.5). Since @ € S~ *(R%, S~ °(R x R;)) (which is a relation of similar type as (2.2.1) be-
low), this means that g(n) : H*%(R) — H*t*9(R) for L > k and WGl (s (), mo 405y <
c(n) "t

The derivatives of op(a)(n) can be treated in the same way, since D;» op(a)(n) = op(Dya)(n)
and D¢a € S~L1°I(R x R"*¢). Hence, (2.1.3) holds for L > 2k. O

Proposition 2.1.5 Let a € S (Ry x REYY) and p € SH(Ry x RELY) be an edge-degenerate
symbol associated with a. Then, for any v € R,

9(n) == o(1L = w)(tl){op™ (a)(n) — t~" op(p) (M) }(1 — wo)(t[n])oo € RE(RY, (+,7,0))0,0-
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Proof. Let p(t,7,n) = p(t,tr,tn) with p as in (1.3.1). If x(r,n) is a O-excision function
(chosen as in Lemma 2.1.2), we have a — Efz_ol Xa(u—j) € SML(Ry x R4) for any L € N,
and

L—1
t_“p(ta T, 77) - Z X(tTa tn)a(u—j) = t_“pL (ta T, 77) = t_“ﬁL (ta tr, tﬂ)
=0

where p;, € SM~L (R, xRIT9). Hence, for rp (t,7,1) := Zf;ol{X(T, n)—x(t1,tn) Yaq.—j) (t, 7,1)
we obtain g(n) = o (1 —w)(t[n]){op(ar)(n) —t~* op(pr)(n) +op(re)(n)}(1 —w)(¢n])s. Slﬂ(g
1.

L is arbitrary, the result then follows from Lemmas 2.1.2, 2.1.3, and 2.1.4.
2.2 Vector-valued interpretation of symbols on the half-space

Throughout this subsection we let a € S*(R; x Ri17) and @ as in (2.0.5). A simple obser-
vation, using the chain rule and the relation (r[n],n) ~ (7{n),n) = (T)(n), is that

awa:SHRy x RM) - S#(R?, S* (R, x R)) (2.2.1)

is a continuous map. Since the unit sphere in R consists of the two points 1, —1, the
homogeneous components of a are of the form

Aty (t,7) = a (DO (1) 78 + a4 ()07 ()77,

where 6 is the characteristic function of Ry, and aif € C°°(R..). For abbreviation we then
write

o0
a~ Y ar(t)yr* for 7 — +oc.

Proposition 2.2.1 Ifa € S4(Ry x Ri17), then @ € SH(RY, S " (R4 x R;)) and the mapping
a — a is continuous. In particular, if x is an arbitmry 2€r0 emczswn function, then

a(t,7,m) Z af @t~ mmr R ir)rr e S“(]R%,S”_N_l(ﬁ+ x R;)) (2.2.2)

for 7 = +oo, where the coefficients of aki are given by

aki(tan) - ; k O];| ]iot(t)n ’ ajia(t) = (_Z-)ufj7|a\(a Q(p— ]))(t +1 0)
Jj+|a

Note that the symbol in (2.2.2) then automatically belongs to Sk (RY, S¢™ MRy xR,)).

Proof Since the functions a,c (t 7)) are polynomials in 7 of degree at most k, it is clear
that af (t[n]~',n)m]** € SH(R: x R¢). Thus to show — as the first step — that a €

Sk( &,Sﬁ(ﬁJr x R;)), we have to verify (2.2.2). To this end let ¢ > 0 such that x(r) =0
for |7| < ¢, hence x(7/[n]) = 0 for |7| < ¢[n]. Thus we can choose a zero excision function

X(7,m) such that X(7,n)x(7;) = x(g) for all 7,7, or, equivalently, X(r[n],n)x(r) = x()

forall (r,7) € R x R?. By (2.2.1) we have (1 — x)(r)a(t,7,n) € S*(R%,S™°(Ry x R;)).
Moreover,

a(t,m,m) — x(7) kz gyt~ 7], m) = an (t,7,m) + (1 — x)(T)a(t, 7, ),
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1

with an (¢, 7,m) = an(tln] ", 7n],n), where

N
aN<t,T,n>=x<r[n11>{ (720 = X(r1) 3 @ Tn}

Again by (2.2.1), we see that ay € S‘“N’l(]R%,S“*N’l(E+ x R;)). Thus to show (2.2.2) it
suffices to investigate for 7 — £o00

N

X(1) X2 {%1«) (et~ rlnl,m) — aic (]~ n)[n]“_k(iT)“_k}- (2.2.3)

k=0
For 7 # 0 a Taylor expansion yields

o

1 bl Loe
agu—r)(t,7,m) = Z 'akia(t)n“(n)“ k=lel 4 Z ni),/o (5na(u—k))(t777977) df.

la]l<N & lo|=N+1 (V +1)!

Inserting (t[n]~*, 7[n],n), summing from k = 0 to k = N, and rearranging terms gives us

Z( > %’ia(t[n]_l)n“)(i[nmu—k+

o

N 1
T2 2 ﬁ/{)(55a<u—k>)(t[n]’1,T[n],en)de

k=0 |c|=N+1

Hence, by definition of the ai’s, the function in (2.2.3) equals

>0 (30 a4

a

N " 1
o 2 mX(T)/O(aZa(u—m)(t[n]’l,T[n],on)d0. (2.2.4)

k=0 |o|=N+1

The first term in (2.2.4) is easily seen to be an element of S#(R¢,C>(R;)) © S*~N~1(R,) C
SH(RYL, SH=N=1(Ry x R;)). For the second term in (2.2.4) observe that (uniformly for ¢ in
compact subsets of Ry and (7,7) € R x R?)

XN au s Uil 7l O] < Cx(r) ol Byt
= Cx(r)[]* 1 (72 + (B2 ] 2) 2B hloh)
If u—k—|o| > 0, this can be estimated from above by C[n]*=*=1el(r)x=k=lol since (8n)2[n] 2
is uniformly bounded in n € R? and 0 < 0 < 1. If u — k — |o| < 0, we estimate by
Tﬂ—k—|0'|

OV (ryr =171 = Ol 1o ) ey < Oyt

Derivatives with respect to ¢, 7,7 can be similarly treated by chain rule, to obtain that the
second term in (2.2.4) belongs to S#F(RZ,S# N1 (Ry x R;)). Thus (2.2.2) is proven, and
this shows that a € S*(R, S, HRy x Ry)).
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We now show that a is classical in n. First of all, using the expansion of a into ho-

. e~ N—-1 ~ -1 _

mogeneous terms in (7,7), we can write a(t,7,n) — >._o X(T[n], M) au—r) (0]~ 7], n) =
an(t,7,m) where any € S~ MRy x ]R%“)). Therefore, as we just have shown, ay €

SkN(RY, Sh N(R, x R,)). Thus we are done if we can verify that
X(rl, magu_ry @~ w0l m) € SETHRE, SETF([Ry x R,)). (2.2.5)

We have X (], m)aq, &) (t[n) ™", 7l m) = 050" K~ rwa (6, 7,m)+[n] =7 (¢, 7,m) by Taylor
expansion, where ry (t,7,1) = t'X(7[n],n) (8t a(, k) (0, T, 1) € SP7F(RY, S47F (R x R,)),

1
N (t7,m) = tVX(r[], 77)/ (0 Oy agu—r) (Bt ", 7[n],m) 6 € S F (R, SETH(Ry x Ry )).
0
For sufficiently large |n|, we have X(7[n],n) =1 and [n] = |n|, thus

[~ a8, 7o) = "= (Bage—i)) (0, 7, mln|™Y) - for all [y > C,

for some constant C' > 0. Therefore, [An]~'ri (¢, 7, An) = M=*=tn]~lry (¢, 7,m) for all |n| >
C, A > 1 shows that [n]~'ry(t,7,n) € S“”“’l(]R%,S(ﬁ*k(@+ x R;)) is homogeneous of degree
p — k — 1 for large |n|. This yields (2.2.5). Finally, by (2.2.1) and the closed graph theorem,
the map a — a between the spaces of classical symbols is also continuous. [l

Let us finish this subsection by proving a result on asymptotic summation in a certain
symbol class, which will be relevant later on.

Lemma 2.2.2 Let (uj)jen be a decreasing sequence tending to —oo and such that po — pj €
No for all j € Ny. Further let symbols h; € Sﬁ(]R%,ng (Ry)) be given. Then there exists an

h e SH(RY, ME(Ry)) such that for any N € N

N—
h(t,z,m) — Z i(t;z,m) € tNSH(RY, MEN (Ry)) + SH(RY, M5™ (Ry)).

Proof. Set a¥(t,ir,n) = t/="Fh;(t,ir,n) € SL(RE, SL (Ry x To)) = S (Lo, SH(Ry x RY))
for j > k. The latter identification is Justlﬁed by v1rtue of (1.2.6). For fixed k£ we can

construct a sequence 0 < d; — +o0 such that ar := 3~ X(F )a;c converges (absolutely) in

SHe (Lo, S (R x R?)). Here, x is a zero excision function. By a standard diagonal sequence-
argument, we can assume that this convergence holds simultaneously for all & € Ny. We then
have for any N € N

N—-1 N—-1
aaltsinn) = 3 val(einn) = Max(tinn) + 2 0007 )t in
=0 j=0 j

The second term on the right-hand side clearly belongs to S’ ( (RE, S, (Ry x I'p)). To
obtain the corresponding statement for the h;’s, let us recall the ex1stence of the so-called
kernel cut-off operator. This is a C*° (R )- hnear continuous map K : {J, cp S4(Ry x Tp) —

U,er M&(R4) that restricts to maps K : S4(Ry x I'g) = MY (Ry) for any v and has the
property that a — K(a) € S~ (KJF xTo) and a— K (a) € Mg (Ry) if a € M%(Ry). This K
clearly induces mappings S} (R?, “(Ry x Tp)) = SH( (Rg, Mg (R,)), which we again denote
by K. Then the assertion of the lemma follows if we define h := K (ag) € S4(RZ, M§(R4)),
since hj — K (a}) € S§(RE, Mg™(Ry)). O
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For purposes below we consider the particular case of Lemma 2.2.2 when h;(t,z,n) =
aj(t,n)h;(z) with a; € S4(Ry x RY) and h; € M.

With A9 (iT) := Ej(i’]’) we form h(t,z,n) = Z?io tla; (t,m) K (x;h)(2) for x;(it) = X(dij)
for an appropriate sequence d; — +o0; then, modulo tNSé‘l(]R% , MEN (R4)),

h(t, z,m) — Zth (t,z,m) = Ztaatﬂ (h9)(2) = Ry (2) + K (1 = x;)h9) (2)].

2.3 The case of weight and order zero

In this subsection we shall investigate the operator family wi (¢[n]) op™(a)(n)w2(¢[n]) for a
symbol a € S°(Ry x R'*9) of order 0. We consider this case separately, since it contains all
basic ideas relevant for the case of arbitrary order and weight, but is a little more transparent
and concrete. We shall show, in particular, that

wi (t[n]) op™ (a) (w2 (t[n]) € R°(RY, (0,0, 00)),

i.e., in (2.0.4) we need no correction term g, at least for v = 0. To begin with, let us define
the following Mellin symbols

g5(2) = (1 € My ). jezp

( _€:|:2m'z)71
k - —
fo=1, fk(z):jljl(]—z) EM{(]O) <<k} for k € N.

(2.3.1)

We choose some splittings g+ = g& + g+, fr = fro + fr with holomorphic gz € MQ,
fro € M5 , and meromorphic smoothing Mellin symbols g* and fj.
For a € SY(R?, S (Rt x R,;)) we define

or @)t z,m) = {af (t, g™ (2) + @ (g™ (2)} fu(2),

where the coefficients @ a,c are defined by the expression @ ~ 35, @i (¢, 1) (i)~
ie., @ € S°(Ry x RY) and for any N € N

kas T — too,

N-1
a(t,m,m) = x(7) I;)(?I’Z(t,n)w(ﬂ +ag (6,8~ (1)) (ir) ™" € S (R, STV (R4 x R.)),

for any 0-excision function (7). According to the above splittings of g* and f; we obtain a
splitting of o (@) into

oaro@(t,z,m) = (@f (t,n)gg (2) + @ (¢,m)gg (2) fio(2) € SA(RE, Mp* (Ry)),
aar (@), 2,m) = (03 (@) — 03(@))(¢, 2,m)
F () + @ (6l () € Sa(RE, MpX(R+)),
with meromorphic Mellin symbols,
liE(2) = @ fuo + 95 i) (2) € Mg (2.3.2)

and asymptotic types Ry, = {(4,0) : j € Z\{1,...,k}}u{(,1) :j € Z,1 < j < k}.
Moreover, let G&™ (R ), m € N, be the space of all “weak Green operators” R € L(L2(Ry)),
which by definition satisfy

R:L*Ry) = S™(Ry), R :L*(Ry) = S"Ry) +SY 0. jengy (Re),  (23.3)

:ak
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where S™(R..) consists of all functions u € C™(Ry) such that |d¥u(t)|(t)™ < oo uniformly
inteR,. aim (Ry) is a Fréchet space in an obvious way.

Note that S(E) = SH(R; ) = lim nend™ (), Ca(Ry, (0,0,00)) pr = lim menGo™ (E+ )
for P={(—-j,1): j € Ng} € As(0,0), cf. Definition 1.1.5.

Proposition 2.3.1 Let a € SY (RS, SY(Ry x R;)). Then there ewist di(a) € S (RE, M)
such that for any N € Ny

N N - -
wi op™ (@) (nwz = w1 ;} t* oply (7370 (@) (w2 + w1 ,; t* oply (di (@) (Mws + R (@) (n)

with a remainder Ry € SQ(RL, G (Ry)) and m = m(N) = oo as N = oo.

Proof. First assume that @ € SY (R, R, ) is independent of 7). Then the result is true by (the
proof of) Theorem 2.1.25 in [27], if we set dy,(d) = > ptj—r dpj(@), where the dy;(a)(z) are
the Taylor coefficients of &, (@)(t, 2) ~ E;’;O t/dy;(@)(z). Certainly, the map a — Rn(a) :
SY(R+ x Ry ) — L(L*(Ry)) is linear and continuous. From the closed graph theorem we see
that @ — Ry(d) defines a continuous map SO(Ry x R,) — e (Ry) . Hence the result
follows, if we set dy(@)(z,n) = dy(@(n))(2). O

Theorem 2.3.2 Let @ € SY(RY, S (Ry x R;)). Then there exists an he SO (RS, MY (R4))
and dy, € SY (RS, M >) such that

- N
wy op™ (@) (wz = w1 oy (h)(Mws + wi kZ:O t* oply (di) (Mw2 + R (n)

with Rx having a kernel in SO (RY, S%(N) (R )®,SY (R )NSY (R )@TS?D(N) (Ry)), with asymp-
totic types P(N),T(N) € As(0, N + 1) given by

P(N)={(=4,1): 0<j<N},  T(N)={(-4,0): 0<j<N}eAs(O,N+1).

Proof. We apply the above Lemma 2.2.2 to the symbols hy = U;fo (@) to obtain a symbol

h such that i — E;.V:O t'hy, = tN ey + 7, where rygq € SO(RE, MgV Y (Ry)) and 7 €
SO(]R%,M(EOO(NK+)). Using the expansion r(t, z,7n) = E;.V:O g (z,m) +tN TNt 2,m), we

can set dy, = di,(@) + (), Ry = I%N(a) + w1t opl, (rv 41 + Fni1), where dj, and Ry

are those from the previous Proposition 2.3.1. We then have Ry € SSI(R%,GEUm) (Ry)). It
remains to show the kernel structure of Ry. Write

M

Rn(n) = w1 ) %: t* opQ (di) (mw2 + Rar(n) =: Ry () + Rar(n)
=N+1

for any M > N. However, by the mapping properties of smoothing Mellin symbols, we know
that Ry p € SQ(RE, L(L*(Ry ), Sy11(Ry))) and Ry € SA(RE, L(L*(Ry ), Sp ) (R+)))-
Since we can choose M arbitrarily large, it follows that Ry € SO (R, L(L*(Ry ), Sp(ny(Ry)))
and Ry € S (RY, L(L*(Ry ), Sp(ny (R4 ))). Hence the result holds in view of the above kernel
characterization, Proposition 1.2.3. |
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As inspiration of the latter proof shows that
h(t,z,n) = ZtJthn +Zt’ (2) (2.3.4)
with hji € M(;j, and for lji from (2.3.2)

di(zm) = Y %(afa;x + X S@a)0n; ), (235)

p+j=k J* p+i=k J
provided @ ~ Y32 @ (¢, 1) (iT) " for 7 — £o0.

Let us now look at the particular case, when a(t T,n) = a( ="' 7 ] n) for some a €

[ 1
SO (R+ x ]R{%:Z)). By Proposition 2.2.1 we have a ~ Zk ° o i (t,n)(iT)~F with @ (t,n) =

ay () m) ] ~F and @i (6,1) = 3,4 ook %a;'iy(t)n“-
It follows that 8{’6;-&(0, n) = [n]=* > ntlal=j aT L(0%at,)(0)n®, j+p = k. Inserting this into
(2.3.5) we obtain di,(z,1) = [1]7* 32|, < Car(2)n* Where

1 k

— ! v
& j=la| -

| —

{0 a1 ) O (2) + (0 Va7 4. ) 0)1F (2)}-

cak

Hence, by Theorem 2.3.2,
wi(tn]) op™ (a) (mw2 (t[n]) = w(n){wr op™ (@) (Mw2}k ™" (1) =
N
wi (t[n]) opiyy (h)w2 (tl]) + w1 (¢[]) 2_: t'“( > Op?u(cak)n‘”‘)w(t[n]) +gn(n), (2.3.6)

k=0 lo| <k

where

h(t,z,n) = h(tl], z,n) € O (RS, MY(R,)),

and gn (n) = k(n) Ry (n)&~"(n) € RE(R?, (0,0, N + 1)) p(ny, () Which is a Green symbol by
Proposition 1.2.3. Identity (2.3.4) yields

h(t, z,1m) Zt](% bja(t, 2)n ) = i( > 1ol (8 2) (),

0 J=0 |a|<j
bia(t,2) = (0] 0 (O (2) + a7 (DR (2).

In particular, we see that h(t,z,n) = H(t,z,tn) with H(t,z,n7) € C®(RE, M3(Ry)). (For
this one has to note that h]i(z) = K(Xjfji)(z) for x; = x(r/d;) with d; — 400 and
fji € S;lj (T'o) by construction of h. By eventually enlarging the d;’s, without loss of gen-
erality we may assume that the series 37, (32|, <; 1121y, (¢, 2)n®) converges absolutely in
> (Re, MY (R,)).) B

On the other hand, by Mellin quantization, there exists an F(t,7,n7) € M3Q(R; x R?)
such that op,(f)(n) = op™(a)(n) € L™°(Ry;RY) for f(t,z,n) = F(t,z,tn). Note that F' is
parameter-dependent on 7, while H is not. Therefore,

wi (t[m]){ops (£) () — o (h) () hwz (tn]) € L™ (Ry; RY).
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Since this is true for any choice of wy,ws € C§°(Ry ), we obtain
oYy (f) (1) — op; (h)(n) € O (RY, L™°(Ry.)).

This yields f —h € O (RS, M3 (R, ))NC>( ]Riﬂ S=°(Ry xT'1)) = O (R4, Mp™(Ry)). The
latter identity holds, since S9 (R4 x L1)NS™(Ry xTy) =57 ©(Ry x I'1) and MZ(R:)N
S=®(R, x F%) = M5>°(R+). Then

(F— H)(t,2,m) € C™ (RS, Mg™(Ry)) N C= (RS, MY(R.)) = O (R, M5™(R-)).
Due to the following Lemma 2.3.3, a replacement of the symbol h in (2.3.6) thus generates
only remainders of “allowed” type.
Lemma 2.3.3 Let p(t,z,n) € C° (R}, M,™ (Ry)) and p(t,z,n) := p(t, z,tn). Then

(4[] 0D (p) ()2 ¢ 1) Z (3 op ) ) eal) + v ()

=0 |ar]=0
with pas(z) = (08 71°1085)(0, 2,0) € Mg and ry € RY(R, (0,0,N))o,0

Proof. By a Taylor expansion of p in t at ¢ = 0, it is immediately seen that ry(n) =
wi (tn]) S o tV 1 0p%y (P8Y) ()wa () with pSY (t,2,m) = 31,2, tn) and

1
(¢, 2,m) =/ @ 1*aap)(6t, z,0n) d6 € O (RL, M5>(R,)).

0

It is now routine to check that ry is indeed a Green symbol. The presence of the factor %
shows that 7y and r}; generate “flatness” O € As(0, N), a Taylor expansion of p, () in t at
t = 0 shows that ry, 7} are classical symbols. We shall not go into further details here. [

Summing up, we now have proved the following theorem:

Theorem 2.3.4 Let a € S{(Ry xREL) and wy,w, € C5°(Ry) be arbitrary cut-off functions.
Ifﬁ € M3 (R, x RY) is a Mellin quantization of a and h(t,z,n) = ﬁ(t,z,tn), then for any
N € Ny we have

wi([n]) op™ (a) (Mw2 (t[n]) = wi (t[n]) opYy (1) (w2 (¢[n]) +
N
o (thr)) 32 ¢4 ( 32 ophy (har)n® )wa(tin]) + g (n)
k= || <k
for certain meromorphic Mellin symbols
har, € Mp>°, R, ={(,0): je€Z\{1,...,k}}Uu{(,1): j=1,... Kk},

and an element gy € RY(R, (0, 0 N + 1)) p(wvy,r(n) with asymptotic types P(N),T(N) €
As(0, N + 1) given by P( ) {(-=4,1): j=0,...,N}, T(N) ={(-4,0): j=0,...,N}.
Ifa~ Y02 acy in SY(Ry x ]Ril"‘q) the conormal symbols are

o3 (opT(@)(zm) = 32 (af(mg*(2) +ay, (g™ (2)) ()

pt+k=j

with polynomials afk(n) = (_,:!)p > it |al=p 4 (050Fa(_1y)(0,£1,0)n* and g*, f, as in (2.3.1).
For the principal conormal symbol this reduces to

o (op™(a))(2) = a(0)(0,1,0)g™ (2) + a(0) (0, =1,0)g™ (2).
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2.4 The case of large weight and arbitrary order

We now turn to the verification of (2.0.4) for the case of large v compared with the order p.
To be more precise, we shall assume

Y>py,  3Au—7¢€L. (2.4.1)
Here, p4+ := max(0,p4) and p— := min(0,u). For a € ,5'51(]1%;17,‘S'(‘:LI(KJr x R;)) with @ ~
S o @ () (iT)P " for T — 00 we set
o M@t n,2) = {@ (&, m)g" (= + ) + @ (&, m)g™ (= + )} fr-u(2)

where g is as in (2.3.1) and f,(2) = % with Euler’s I'-function. Note that if 4 & Z,

then fr_, has simple polesin 1,... ,k—pu provided k —p > 1, otherwise fr_, is holomorphic.
This yields o, *(@) € Sé(RY, Mg;k(ﬁg) with an asymptotic type

{(,0): jeZ} if pe€Zand k <p,
Ry =<{(,0),(1,1): le{1,... ,k—pn}, j€eZ\{L,... ,k—p} ifp€Zandk>pu,
{(G,0),(l—p,0): jEN, l€Z)} i g7
(2.4.2)

Therefore, ncRy = Z if p € Z and ncRy, = NU (Z — p) if p ¢ Z. In any case, condition

(2.4.1) ensures that I'y _, Nmc Ry = 0.

As we did in the zero order case we split JJ‘(,;k(ﬁ) into a holomorphic part of order p and
a smoothing meromorphic part,

oh M@, 2) = ohry @6, 2) + {af (I, (2) + G (), (2)},
where
lie =+ W) frou(2) + 95z + ) fron(z) € M. (2.4.3)
We introduce asymptotic types @ = Q(y) € As(—~,00), P = P(y) € As(0,00) by

Q={(k,1): keZ, k<}+n}, P={(j,0),(k1): jk€Z, k<5+p—7v<j<sz}
(2.4.4)

ifpeZ,andif p ¢ 7,

Q={(k,0),( +p0): jk€Z, kj+p<i+q},

: : LA (2.4.5)
P:{(k,O),(]—l—,u,O): ],kGZ, k<§7 ]<§_7}'

By G (R, ,~) we denote the Fréchet space of all operators R € £(K%(R,.), L2(R,)) with
the property R : K®7(Ry) — S™(Ry), R* : L*(Ry) = S™(Ry) + S, (Ry). Using [27,
Theorems 2.1.44 and 2.1.40] we have the following proposition:

Proposition 2.4.1 Let a € Sé‘l(]R%,S(’fl(K+ x R;)) and wi,ws be cut-off functions. Then, as
an operator-family C§°(Ry) = C*®(Ry), and for any N € Ny, we have

N ~
wiop™ (@) (nwz = wit™" kzot’“ opy; (ahr (@) (mws + B (n)

with a remainder ENW = Ry ,(a@) € Séﬁ(R%,Gg,m) (Rt, 7)) and m = m(N) = oo for N — oo.
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Proceeding as in the proofs of Proposition 2.3.1 and Theorem 2.3.2 we get:

Proposition 2.4.2 Leta € S4(RY, S4(Ry xR, )). Then there exists anh € SH(RY, ME(RL))
and dy, € SL(RG, Mp>) such that for any N € Ny

N
wi op™ (@) (Mws = wit ™" opjy (k) (Mwz +wr Y5t op (di) (n)wz + R, (1)
k=0

with Ry ~ having a kernel in SQ(R%,S%(N) (R1)®,S; " (Ry) NSO (R, )® 86(1\,) (Ry)), where,
if @ and P are as introduced above in (2.4.4), (2.4.5),

{(km)eP: L—N—-1<k<l}eAs(0,N+1), (2.4.6)
{(kym)€Q: L4y —N-1<k<Lliq}ecAs(—,N+1).

Again, we obtain formulas both for h and dy,, namely
tzn Zt]"'tn +Zt] b, (2),

di(z,m) = ) %{(35’5?)(0;77)13_3-@) +(07a;)(0,m)i,_;(2)}

p+i=Fk

for certain hji ; € Mg_j and lji ; from (2.4.3). Similarly to the zero order case we finally
obtain the following theorem.

Theorem 2.4.3 Let v, € R with v > it and %_+ p—v€Z. Let a € SH(Ry x RELY) and
wi,ws be arbitrary cut-off functions. If h € Mp(Ry x R¢) is a Mellin quantization of a and
h(t,z,n) = h(t, z,tn), then for any N € Ny

wi(t[n]) op™ (@) (w2 (t[n]) =
N

or ()t opk, (W) () eln]) +n el - ¢ (3 o (s )eoa () + g ()
k=0 la|<k
for certain meromorphic Mellin symbols hay, € My, Ry as in (2.4.2), and a Green symbol

gn(m) = gn(M(7) € RG(RE, (v,0,N + 1)) o), Py wtth Q(N), P(N) from (2.4.6).

2.5 The general case

Lemma 2.5.1 Let g € RL(RY,(v,6,7',6")) have a kernel k € SQ(R‘?,SZQ’, (M)@T‘Sé”(]&_))
Then there exists a go € R (R, (7,0 —e;7',0" —€')) such that

9—90 € RG(RY, (v —e,0 — 59 +,0" =€),
and go(n) is a finite rank operator for any n € RY.

Proof. If we define Q'(¢') := {(¢/,') € Q : Req <i—+'—¢'} € As(y/ +¢,0 —¢'),
Qp(EN) :=Q"\ Q'(e") € As(y',0), we have a direct decomposition S, (Ry) = 322’,?:) (Ry) @
Eqy (e (Ry) with the finite-dimensional space Eqy (1) (R ) C 832’6(5’) (Ry) as defined in (1.1.1).
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Analogously, we obtain Séw (Ry) = Sé((g)_g) (R‘F)@g@)(s) (Ry). SiEce SK(RY,E) = S4(RY)®,E
for any Fréchet space E, cf. (1.2.6), we thus can write k = ko + k with

k € SH(RY, 83,5 (Ry)BaS5 7 (R ),
ko € SH(RY, 8,15 (R ) By o) (Ry) + Eqy ey (R B85 1™ (Ry) +
+ gy (e (R ) By o) (R4 )):

We now define go via the kernel function kg. Then go € R (R?, (y,00;7 +¢',0" —€')) +
RE(RY, (y—¢,0 —e;7',00)) + RE(RY, (77, 00; 9, 00)), by Proposition 1.2.3, and go is pointwise
of finite rank, since the £-spaces are finite dimensional. |

Corollary 2.5.2 Let 6 > 0 be given and g € RE(RY, (v,7',8)) with 8 > 20. Then there exists
a Green symbol go € RE(RY, (7,7',0)) which is pointwise of finite rank, and

9= 90 € RG(R, (v — 0,7 +6,0)).
This is an immediate consequence of Corollary 1.2.4 and Lemma 2.5.1. Now we are in
the position to state (2.0.4) in a precise way.

Theorem 2.5.3 Let a € S4(Ry x R!TY), N €N, and vy € R with 3 — v € NU(Z — p) (i.e.,
Y =7 € Zifpe ). Then to any ' € R with v' > max(p4,7) and 3 — ' ¢ Z — p there
exists a Green symbol g(n) = g(n)(v,7',N) € RE(R?Y, (v, (y — p)—, N)) which is pointwise of
finite rank, and such that

wi(tn]) op™ (@) (w2 (t[n]) — g(n) = wi(t[])t " opj,(h) (w2 (t]) +

N—-1
ot Y0 (3 opl (har)n® )wa(tln])

k=0 la<k

(2.5.1)

mod R, (RY, (v,7 — p1, N)) where h and hay are as in Theorem 2.4.3.

Proof. Write H, for the first term on the right-hand side of (2.5.1), and m,YN for the second
term. By Theorem 2.4.3 we then have a representation

wi (t[n]) op™ (a) (w2 (t[n]) = Hor (n) +m2Y () + g2+ ()

with a Green symbol g?Y,NIH € RE(R?, (v',0,2N" + 1)) for any N’ € N. By Corollary 2.5.2

there is a Green symbol go € Rf,(R?, (7,0, N')), pointwise of finite rank, such that gg,Nl"'1 -

go € RE(RY, (' = N',N',N'")). Thus, if we choose N’ such that N’ > max(y' — v,y — p, N),

2N'+1

then g‘v, —go € RE(R?, (v, — i, N)). Thus we can write

wi (t[]) op™ () (Mw2 (t]) = Hy (1) +m3 () + g1(n) + g ()

with g1 = (&2 11 = go) + (m2N'HL —ml), g = (m2V T — m2N'H) 4 g

Since t#~*w, (t[n]) op}; (har)n*wa(tln]) € RE(RY, (v,7 — p, N)) whenever k& > N, the
Green symbol g; belongs to Ry, (RS, (v, — p, N)). Moreover, g is as required, since

t=Feoy (t[n]){op}y (hak) — 0D3; (hak) In*ws (tn))

is an element of R, (RY, (7,7 — p,00)) C R (RY, (7, — p, N)), which is pointwise of finite
rank, cf. [27]. O
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In Theorem 2.5.3 one, of course, tries to choose the remainder g(y,~', N) as “small” as
possible, i.e., having a kernel which is as regular as possible. In case v > p,, one can take
g =0, cf. Theorem 2.4.3. If v < p this is not true, instead one has to choose 7' as small as
possible. The best case would be 7' = p; however this is only possible if % —pu— € Z. But
if this condition is not satisfied, the construction of g shows that g is independent of ~' for
v" — p4. In any case, we can find a unique Green symbol § = g(-y, N) such that Theorem
2.5.3 holds with g instead of g.

2.6 Transmission operators
In this section we are going to investigate the operators (as mapping C§°(Ry) — C*(R}))
A(y,n) ="~ op(a)(y,me*,  A'(y,n) =17 op(a)(y, n)e "

for a symbol a(t,y,7,n) € S*°(R; x Q, x RIT7), where ¢* denotes simultaneously both
the pull-back C*®(R;.) — C>®°(R_) and C*°(R_) — C*°(R;) under the reflection ¢t — —t.
Roughly speaking, the operator A(y,n) measures what op(a)(y, ) brings from “the right of
zero” (i.e., from R ) to the left (i.e., to R_), and A'(y,n) vice versa. By symmetry, it suffices
to analyze A(n). To be precise, if b(t,y,7,n) € S*°(R x Q x R*7) is the (unique) symbol
such that op(b)(y,n) = op(a)(y,n), where a(t',y,7,n) = a(—t',y,7,n), then

A'(y,n) = e*r~ op(b)(y, n)e".
We shall show now that for any v € R and V € N
A(y,n) —g(y,m) € Ry (@ xR, (v,7 — p, N)), (2.6.1)

where g = g, n is an appropriate Green symbol. Again the variable y €  is unessential,
and we shall drop it in the following.
An easy calculation shows, that the kernel of A(n) is given by

(t,t) = — /ei(t+t’)Ta(—t, —7,n)dr.

Therefore, if 0,00 € C§°(Ry) are arbitrary cut-off functions, then
g A(n)(1 = 00), (1 = o) A(n)oo, (1 — o) A(n)(1 — 00) € R;™(R?, (0,0,00) 7,7,

T ={(—j4,0): j € N}, since all these operator families have a kernel in 8(]&‘17,8(@+ x Ry)).
Since

K AK) ="t op@me”,  a(t,r,n) = altly) ", rll,n) € S*(RY, S"*(Re x R)),
it follows that for cut-off functions w,wy € C§°(R)
w(tm)Am(1 = wo)m]), (1 —w)(tm)Amwo(tn]), (1 —=w)(En)Am(1 = wo)(tn])
belong to R, (R%, (0,0,00))r,r, cf. the argumentation in Example 1.2.5 b). Hence we have
A(n) = o{w(t[]) A(n)wo (tn]) + g(n) }oo mod Rg™ (R, (0,0, 00))7,r (2.6.2)

with a Green symbol g € RZ(R%, (0,0,00))r,r. Thus the remaining term to consider is
w(t[n])A(n)wo (t[n]). First we shall do this in the case of order 0 and then for arbitrary order.

Let fo =1 and fi(z) = Hle (j —2)7* asin (2.3.1) and

g(z) = e ™ (1 — 2™ ¢ M50y jezy (2.6.3)
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Proposition 2.6.1 Leta € SSI(M,SSI(& x R;)) have the asymptotic expansion
o ]
i~y aki(t,n)T_k for T — %oo0.
k=0

If we set

ot @ =9 Y L @ 0,0) - dfaz 0,1 f,(2),
p+j=k

then for any N € Ny
N
w(t[n))e™r™ op(@) (n)e*wo(t[n]) = w(t[n]) ,;) t* oy (37" (@) (m)wo (¢[n]) + R (n)

with Ry having a kernel in S (RS, Sp ) (R ) @SSR, )ﬂSS(M)@)ﬁS%(N) (R+)) with asymp-
totic types P(N),T(N) € As(0, N + 1) given by

P(N)={(-=5,0): 0<j<N},  T(N)={(-j,0): 0<j <N}

This statement follows by the method used in the proof of Theorem 2.3.2, now applied
to Theorem 2.1.191, 2.1.192 of [27] for @ independent of 7.
Applying this result together with Proposion 2.2.1 to

k= {w(tm)er™ op(a) (e wo(tn]) br(n) = wer™ op(@)(n)e*wo,
with a(t, 7,n) = a(t[n] 1, 7[n],n) then yields the following theorem.

Theorem 2.6.2 Let a € S°(R x R'*9), A(n) = e*r~op(a)(n)et, and w,wy € C(Ry) be
arbitrary cut-off functions. Then there exist Mellin symbols

hat € M, Ry={(G,0): j€Z\{1,....k}}U{(1): j=1,...,k}

such that for any N € Ny

N
W] Am) = 32 5 (2 ophs(ha)n”) b tln]) € RE(RG, (0,0, N + 1)) iy vy,
k=0  a|<k
where the asymptotic types P(N),T(N) € As(0, N + 1) are given by
P(N)={(=4,1): 0<j <N}, T(N)={(-40): 0<j< N}

In particular, (2.6.1) is true for y =u =0 and g = 0.
Ifa~ 30" gay in S°(R x R'?), the conormal symbols of A(n) are

orf (A)(z,m) = 9(z) 32 (ag(n) — ag.(m)fo(2),

ptk=j
—Z p 1 o N
ap.(n) = ( k,) > = (050fa)(0,£1,0)n%,
I+|o|=p Q-

Proceeding analogously to Sections 2.4 and 2.5 using Theorem 2.1.210 and Remark 2.1.211
of [27], we get the following result.
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Theorem 2.6.3 Let a € S (R x R**7) and A(n) = e*r~ op(a)(n)et. Moreover, let v € R
satisfy 1 —y ¢ NU(Z —p) (i.e., 1 —y ¢ Z if p € Z) and N € N. Then to any ' > max(p4,7)
and &+ —~' € Z — p there exists a Green symbol r = r(v,7',N) € RE(R?, (v, (y — p)—, N)
which is pointwise of finite rank, and such that

N-1
(e (A =0 3 ¢4 ( 52 onhhon)n®) Jenlel] = rtn) € RE B, (17 = . ))

0 |a|<k

for certain hor, € My and Ry as in (2.4.2). In particular, r = 0 in case v > py. The
conormal symbols of A(n) —r(n) are

o (A=) =9z ) 3 (an) = ap () fy-u(2),

where g is as in (2.6.3), fo(z) =T(1—2)/T(1 —z+ o), and

—i)P 1
ain =S L @nokag) 0, 41,0
I+lal=p ¢

In the same sense as we explained after Theorem 2.5.3, there exists a unique, best possible
remainder 7 = 7(7y, N) such that Theorem 2.6.3 holds true for 7 instead of r.

3 Global calculus

In this chapter we formulate a calculus of pseudodifferential boundary value problems on a
smooth manifold X with boundary Y. For the used notation, see the Appendix.

Given a (classical) pseudodifferential operator A € L/ (2X), p € R, we cannot expect
that

rtAet : C5°(int X) — C*(int X) (3.0.4)

has an extension to a continuous map rtAet : H¥(X) — H*™#(X) (at least for s > —1)
unless A has the transmission property at the boundary Y (if A has the transmission property,
such a continuity holds, cf. [3] or [17]). For this reason Vishik and Eskin [35] have studied
operators of the form rt A : H§(X) — H* #(X) that are continuous for all s € R, cf. also
Section 4.5 below. However, there is no algebra property in this formulation. Therefore, we
shall change the scales of spaces and pass to weighted Sobolev spaces as they are employed
in the theory of operators on a manifold with edges; here, the edge is ¥ = 09X and the
inner normal R the model cone of the “wedge” Ry x Y. We then have the space Y*(X,g),
g = (v, —u, k), of edge pseudodifferential operators on X, whose elements act continuously
in weighted Sobolev spaces and can be composed in the same class. From the calculus of [28]
(using Mellin quantization) we know that to any operator r+Aet as in (3.0.4) there exists
an A, € Y*(X, g) such that

C,:=rTAet — A, € L™°°(int X). (3.0.5)
An essential point of our investigations in this chapter is to give a much more precise de-

scription of the remainder C, than in (3.0.5), i.e., to describe the singular structure of the
kernel of C near the boundary.
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3.1 Weighted Sobolev spaces on a manifold

Given a Hilbert space FE, endowed with a strongly continuous group of isomorphisms ) :
E — E, A € Ry, we define the space W?(R?, E) to be the completion of S(R?, E) with
respect to the norm

1

([ wegami an)”

If a Fréchet space E is written as a projective limit £ = @1 renEy of Hilbert spaces Ey, k € N,
such that there are continuous embeddings Fj11 — E — ... — Ej for all k and Ej is en-
dowed with a strongly continuous group of isomorphisms {£x}rcr, that restricts to strongly
continuous groups of isomorphisms ky|g, : Ex — Ej for all k, we say that E is endowed
with a group action. In that case we have the spaces W*(R?, E,) and continuous embeddings
WE(R?, Ejy1) <= W*(R?, Ey) for all k, and we set W*(R?, E) = lim yenW?*(R?, Ej).

Example 3.1.1 For E = K*7(Ry.) with the standard group action (kau)(t) = \/?u(\t) we
get the space

WS (Ry x R*H) == WI(R'H K7 (Ry ).
If Q € As(7,0) and K5" (R} ) = lim kenEy, in the sense of (1.1.2), we obtain

Wg" (R x R'H) = W (R, K57 (R ),
which are subspaces of W*7 (Ry x R 1),

Definition 3.1.2 Let {Ui,... ,Un} be a covering of the manifold X as described in the
beginning of this chapter and {¢1,... ,oNn} a subordinate partition of unity. Then W*7(X)
is defined to be the completion of C§°(int X') with respect to the norm

1
(Zu GO e+ 210G (sl (3.1.1)

j=M+1

Similarly (i.e., replace in (3.1.1) || - [ oxrn-1) by || - ||, with By as in (1.1.2) and pass
to the projective limit) we get the Fréchet space W5 (X) C W*7(X) for asymptotic types
Q € As(n,0).

Throughout this exposition we fix a Riemannian metric on X that induces the product
metric of [0,1] x ¥ on a collar neighbourhood of Y. We then have a natural identification

L*(X) = W™(X)
and, via the L?(X)-scalar product, a non-degenerate sesquilinear pairing
WHT(X) x W™ T7(X) —» C.

Analogous definitions make sense for the case of distributional sections in vector bundles.
Let Vect(-) denote the set of all smooth, complex vector bundles on the space in the brack-
ets. For every E € Vect(X) we have an analogue W*7 (X, E) of the above space of scalar
functions, locally modelled by W7 (R*~1 K*7 (R, ,C!)), where I € Ny corresponds to the
fibre dimension of E, cf. [28, Section 3.5.2].

For each E we fix a Hermitian metric. We then have a corresponding space L?(X, E) that
equals WO9(X | E). Moreover, there is a straightforward generalisation of spaces with con-
stant discrete asymptotics of type @) associated with weight data (vy,6), namely W(SV(X, E).
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3.2 Pseudodifferential boundary value problems

We are going to recall some details on the class Y#(X x A, g; E, F') of parameter-dependent
edge pseudodifferential operators on X. Here, A = R for some [ € Ny and E, F € Vect(X).

Definition 3.2.1 If Q € As(d,6) and R € As(—v,60) are given asymptotic types and g =
(7,0,8), then Y ~°°(X,g; E, F)g.r denotes the subspace of all continuous operators

G e QRE(WS’”(X,E),WOO“S(X,F)Q) where G* € QRE(WS’%(X,F),W°°777(X,E)R)
with G* being the formal adjoint of G with respect to the corresponding L?-scalar prod-

ucts. This is a Fréchet space, and we introduce the parameter-dependent class as Y ~°(X X
NG E Flr:=SA\,Y"*(X,g;E,F)g,r) and then set

VTR X A g B F) = U Y T(X x A,gi B, F)g.n- (3.2.1)
Let {Ui1,...,Un} be a covering of X as described in the Appendix and assume that
E and F are trivial over U;, E|y, = U; x C!, Fly; = U; x C™. Using the charts

x;:Uj = xRy for j =1,..., M, we can associate with any operator A : C§°(Q; x Ry ) —
C*(Q; x Ry) the pulled-back operator

Aj : C°(Elintu;) = C°(Flint v )-

Specializing this to operator families A(A) = op,(a)(A), a € R*(£2; x Rt x A,g;l,m), we
denote the resulting space of parameter-dependent operators A;(A) by

Y*(U; x A, g; Elu,, Flu,).- (3.2.2)

For the following definition let {¢i,...,pn} be a partition of unity subordinate to
{U1,...,Un} and ¢; € C§°(U;) such that ¢;¢; = ;. Moreover, set & = Zj’V:M-H ;)

and choose a function ¥ € C§°(Upr41 U ... U Up) such that @¥ = ®.

Definition 3.2.2 The space Y*(X x A,g; E,F) for g = (v,7—w, k), k €N, is defined to be
the set of all operators A(N\) = ijvil 0 A (N + @Aing(N)T + C(X) such that

(i) A;(\) e YH(U; x A, g; E\u;, Flu;) forallj=1,... ,M,
(i) Aine(\) € LE (int X x A; B, F),
(i) C(\) € Y=2(X x A, g; B, F).
Furthermore, YA‘Z,+G(X XA, g;E,F) (resp. Y4(X x A,g; E, F)) will denote the subspaces of
all AN) e YH(X x A, g; E,F) such that Aipy € L™°°(int X x A; E, F) and the local operator-

valued symbols for Aj(\) all belong to Rl (0 x R"~! x A, g;1,m) (resp. R{,(Q; x R* x
A, g;l,m)).

Given A(\) € Y*(X x A,g; E, F), then pointwise A(A) : C§°(int X, E) — C*(int X, F)
has continuous extensions to

AN W(“"QV) (X,E) > W(S];)”’Vf”(X, F) (3.2.3)
(where R € As(y — p, k) is a resulting asymptotic type to Q € As(v,k)). It is also worth

mentioning that
Yir

(X XA, g; B F) = YH(X x A, g; E,F) N L™®(int X x A; E, F). (3.2.4)
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Let us finish this subsection by giving some remarks on the principal symbols (which
determine the ellipticity) associated with such operators. Since by construction

YH(X x A,g; E,F) C L (int X x A; E, F)

cl

we can associate with any A(\) € Y#(X x A, g; E, F) its homogeneous principal symbol,
oy(A) : Y E — 7% F, mx : (T*"X xA)\0— X (3.2.5)

with 7x being the canonical projection. (3.2.5) is a bundle homomorphism that is smooth
up to the boundary. In fact, the local amplitude functions near the boundary are given
by t *p(t,y,7,m,\) =t Hp(t, y, tr,tn, tA) for certain p(t,y, 7,n, A) (modulo symbols of order
—oo on Ry x 2 x R* x A), and the homogeneous principal part of order p equals

P (Y, T A) = Py (8 Y, tr,tn, tA) = Py (t,y, 7, ),

where p(,,)(t,y,7,n, ) is the homogeneous principal part of p(t,y,7,1,A) in (7,7,A) # 0 of
order p that is smooth up to t = 0. Moreover, we have the operator-valued principal edge
symbol

oa(A) : 75 (K3 (RL) @ B') — i (KSR (R,) @ F) (3.2.6)

where E' = E|y, F' = Fly, and wy : (T*Y x A) \ 0 = Y is the canonical projection. o(A)
is invariantly defined by corresponding local expressions, using Definition 1.4.2, namely

oa(a)(y,n, A) =t *wi(tn, Al) opys (ho) (¥, m, N)wz (t]n, Al)
+ (1 — wi(tn, Al)) ops (po) (y, 1, A) (1 — wa(t[n, Al)) (3.2.7)
+aa(m)(y,n,A) +0a(9)(y,n,A),

where for a smoothing Mellin symbol m as in (1.4.1) we set

k
7o(m)(y,m, X) = ™ w(tln, A 2 ¢ ‘zlj,Opﬁ(hja)(y)(q,A)"@(tln,kl)-
=0 |a|=j

Remark 3.2.3 Operator families from (3.2.7) are pointwise cone operators on Ry with dis-
crete asymptotics. As such they have a principal conormal symbol that is independent of the
(co)variables (n,\), namely

om(a)(y,z) :=omos(a)(y, z) = ho(y, z) + hoo(y, 2)- (3.2.8)

Let us recall that any A(A) € Y#(X x A, g; E, F) particularly is a parameter-dependent
pseudodifferential operator in L (int X x A; E, F). Therefore, passing to local trivializations
of the bundles near the boundary, with A(\) we can associate local symbols belonging to

SH(Ry x @ xR™ x A; C!, C™), where [ and m are the fibre dimensions of E and F, respectively.

Definition 3.2.4 By L*(X x A, g; E, F) we denote the subspace of Y*(X x A,g; E, F) con-
sisting of all operator-families A(X), whose local symbols near the boundary all belong to
SH(R: x @ x R™ x A;CH, C™) modulo S~ (R x Q@ x R* x A;C!,C™).

Equivalently, we could require that A(\) belongs to L*(X x A,g; E,F) if and only if
AN\ e YH(X x A,g; E,F), and all homogeneous components of the local symbols near the



30 3 GLOBAL CALCULUS

boundary are smooth up to t = 0. Or, to write it globally, as operators C§°(int X, E) —
C>(int X, F),
LMX x Ag; B, F)
=Y*X x A, g; E,F)N{rt LY (2X x A;2E,2F)et + L™ ™(int X x A; E, F)}
={Y*(X xA,g;E,F)Nn r+Lffl(2X x N;2E,2F)e™} + Yiia(X xA g EF).
Remark 3.2.5 If A(\) € L*(X x A,g; E,F) its principal conormal symbol op(A) only

depends on the homogeneous principal interior symbol of A(Xo) of order p (for any Ao € A,
evaluated in the sense without parameters), frozen at the boundary.

3.3 Connection to the results of Sections 1 and 2

We now formulate the relation of the local results from Sections 1 and 2 to the present
global calculus on the manifold X. For any parameter-dependent pseudodifferential operator
A(N) € L (2X x A;2E,2F) we can form rT A(A)et : C§°(int X, E) — C*°(int X, F') and, for

cl

the pull-backs e* under e : X, -+ X_ore: X_ — X,
e*r A\)et 1 C5°(int X, E) — C®(int X, F), rT"A(Ne &*: C§°(int X, E) — C™(int X, F).
We shall now relate these operators to the classes of edge pseudodifferential operators we

introduced above. We will consider separately the case of order zero and the general case.

Theorem 3.3.1 For every A(X\) € LY (2X x A;2E,2F) we have
r*A(\Net € L% X x A,g; E, F),
where g = (0,0,00). In particular, for any k € NU {+00}, we obtain
L(X x A, (0,0,k); E,F) =t LY (2X x A;2E,2F)et + Yy, (X x A, (0,0,k); E, F).
Proof. Let us decompose A(\) as

N
AN = AT ) + AL ) + D0 4,00 +C(), (3.3.1)

j=1
where Ai:';t()\) are zero order pseudodifferential operators supported in X1 (away from the
boundary), C(A) € L~ *°(2X x A;2E,2F) a smoothing remainder, and all A; located in

charts covering Y = X N X_ and corresponding to local operators
0Pty (@) (A) = op, (0, (a;))(A),  a; € SG(R x 2, x R x A;C!,C™)

where | and m denote the fibre dimensions of E and F, respectively. Then

(\) + O (\et.

N
rTANet = > rtA;(Vet + A,

j=1
Clearly, rtC(A)e™ belongs to Y ™°(X x A, g; E, F)7, for Taylor asymptotics T = {(—4,0) :
j € No} € As(0,00). By Theorem 2.4.3 we have op™ (a;)(y,n,A) € RO(Q x R*™ x A, g;1,m).
Hence rt A(M)et € YO(X x A, g; E, F) by Definition 3.2.2. Obviously, the local symbols near
the boundary of r* A(A)e™ are smooth up to the boundary. This yields the result in view of
Definition 3.2.4. |
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Let us mention that starting from given X and E,F € Vect(X), it is not essential for
the structure of rt Ae™ to have A and extensions 2E, 2F of the bundles on the double 2X;
it suffices to know these data in a neighbourhood of X in a larger open manifold X (say,
X glued together with 2V \ int X along Y, where V is a collar neighbourhood of ¥ in X).
Nevertheless, for convenience we mainly talk about 2X, and 2E,2F € Vect(2X), etc.

Theorem 3.3.2 If A(\) € L%(2X x A;2E,2F) and g = (0,0,00), then
et ANet rtANe e* € Yy, (X x A, g; E, F).

Proof. If we write A(\) as in the beginning of the proof of the previous theorem, we obtain
N
et A(Net = > e rmA; (Ve + e rmC (Ve
j=1

Then the second summand belongs to Y, > (X x A,g; E, F)rr for Taylor asymptotics T',
and the (local) terms e*r~A;(\)e™ can be treated with Theorem 2.6.2. The argumentation
for rT A(A)e~e* is the same. O

In an analogous way, using the local results from Theorem 2.5.3 and Theorem 2.6.3, these
statements can be generalized to the case of arbitrary order € R. They read as follows:
Theorem 3.3.3 Let A(\) € LY(2X x A;2E,2F), N € N and vy € R with £ —y ¢ NU(Z —p).
then to any 7' € R with v > max(p4,7) and 3 —+' € Z — p, there exist Green operators

G(A) =GN (1,7, N), R(A) = RN (7,7, N) € YE(X x A, (7, (v = w)—, N)),
such that
rPA(N)e" —G(\) € L"(X x A, (v,7 — p, N); E, F),
et AN — RO\ € Vi, (X x A, (1,7 — 1, N); E, F)
The analogue of the last statement also holds for r™ A(A)e~e*. In case v > py, it is possible
to take G(A) = R(\) = 0.

_As described immediately after Theorem 2.6.3, there exist best possible choices G =
G(v,N) and R = R(y, N) for which the previous theorem remains valid.

4 Boundary value problems

4.1 Boundary value problems on a manifold

We let X be a compact manifold with smooth boundary Y as described in the Appendix.
Boundary value problems for operators A(\) € Y#(X x A, g; E, F) will be studied in
terms of 2 x 2-block matrices of continuous operators

WX, E) W (XL F)
AN : ® - ® (4.1.1)
HS(YN]*) HS?H(YNLr)

for additional vector bundles J_, J; € Vect(Y) over the boundary, and the upper left corner

(u.l.c.) of A equals A. More precisely, Y*(X x A, g;v) for v = (E, F; J_, J;) consists of all
operators A of the form

AN = <AE)>‘) 8) +G(\) (4.1.2)
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for some A(X\) € Y*(X x A, g; E, F) and some Green operator G € V£ (X x A, g;v), the latter
space being defiend below. The elements A(\) € Y#(X x A, g; v) are continuous as operators
(4.1.1) and A(N) : W5 (X, E) @ H*(Y,J-) = Wi "7 (X, F) @ H*H(Y, J;) for all s € R
and every asymptotic type ) with some resulting R.

Moreover, L#(X x A, g;v) will denote the subspace of all elements of Y#(X x A, g;v)
where the upper left corners belong to L#(X x A, g; E, F).

Remark 4.1.1 The space Y*(X,g;v) is a particular case of the general space of edge prob-
lems for edge-degenerate pseudodifferential operators on a manifold W with edges. In the
present case W is simply X, and the edge is the boundary Y. Here, we have singled out the
space with constant (iny € V') discrete asymptotics, though parametrices of elliptic operators
require a generalisation of the notion of asymptotics to continuous (or variable iny € Y and
pointwise discrete) ones; however, this is not the main aspect of the present paper.

Definition 4.1.2 Let g = (,0,0) and, as above, v = (E,F;J_,Jy). For asymptotic types
Q € As(6,6) and R € As(—v,0) we let Y;7(X,g;v)q,r denote the space of all opera-
tors G satisfying G € (V,cp LV (X, E) © H*(Y, J,),WCOQO’(S(X, F)® C=(Y, Jy)) such that
G* € Nyer LOWVF (X, E)0 H (Y, J.), Wi (X, E)®C>(Y, J_)) with G* being the formal
adjoint with respect to the corresponding L?-scalar products.

This is a Fréchet space, and we introduce the parameter-dependent analogue as

Yo (X x A g;v)o.r = SN V57(X,g5v)q,r)-
Moreover, we set Y (X x A,g;v) := Ug g Vo™ (X X A,g;v)q,r-

Let us now employ the spaces K7 (Ry,CH) @ C*, SH(Ry,C*) @ C* for Q € As(v,0),
k,l € Ny with the group action k) @ 1, where k) denotes the standard group action (1.1.3).
If g =(v,0,0) and I,m,j_,j+ € Ny we define

in analogy to Definition 1.1.8 to be the space of all symbols g satisfying

9w € N SHQ X RY, L7 (Ry,C') 8 O, Sh(Ry,C") 0 T*), s
- , 1.3
g (ym) € N SO x R, (Ry,C") 6 C+, 557 (Ry,C') & O-)

for some asymptotic types @ € As(d,0), R € As(—,6). If we want to point out the specific
asymptotic types involved, we write R (2 x R?, g;v)g,q-

Let {U1,...,Un} be a covering of X as described in the Appendix. Let U] := U;NY # 0
for j = 1,...,M, and assume all bundles £, F' and J_, Jy to be trivial over U; and UJ’~,
respectively, Ely;, = U; x C!, Fly, = U; x C", Ji|y; = Uj x C%. If we use charts
Xj - Uj = Q) x R, then any operator

C3°(Ry x 2;,CH) O (Ry x Q;,C™)
g: &) ' — ©® '
C5°(;,C-) Co(9;,C+)
induces via its pull-back under x; an operator
C°(Elyy)  C*(Fly;)

Gg: © — © .
Coo(J-log)  C(Jt|ur)
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Specializing this to operator-families g(A) € RE(Q; x R*™! x A, g;v), v = (I,m;j—,j4),
we obtain the space V& (U; x A,g; El|u;, Flu;; J,|U;_,J+|U]/_). For the following definition
let {¢1,...,on} be a partition of unity subordinate to the covering {Uj,...,Un}, and
¥; € C5°(Uj) wth hjp5 = ;. Set ¢ = ¢;|ur and ) = ¢;lu; for 1 < j < M.

Definition 4.1.3 The space Y5 (X x A,g;v), v = (E,F;J_, Jy), consists of all operator
families

G =3 (“"J’ 0,.> G, (‘Zg 1/?]) +e) (4.1.4)

with G;(X\) € YV&(U; x A, g; Elu;, Flu;, J-lur, Jluy) and C(A) € Y™ (X x A, g;v).

Remark 4.1.4 Any A € Y*(X x A,g;v) has, in the sense of (4.1.1), a block-matriz repre-
sentation A = (% g) with A € YM(X x A, g; E,F) and (% g) € Va(X x A, g;v).

The ellipticity in the class Y*(X x A, g;v) is based on a pair of principal symbols o(A4) =
(oy(A),00(A)). If A= (49)+ G in the above sense, then

oyp(A) =0y(A) : 71X E — 7% F, mx  (T*X xA)\0—= X, (4.1.5)

is the homogeneous principal symbol of the upper left corner of A, as it was described in
(3.2.5). Moreover, the principal boundary symbol of A is defined as

Ko (Ry) @ B Ko (R ) @ F
oa(A) : 1y & — 7y ® , (4.1.6)
J_ Ji

7wy : T*Y x A\0 =Y, where E' = E|y, F' = Fl|y, and s € R is arbitrary (the choice of s is
unessential). In (4.1.6), 05(A) is as described in (3.2.6), (3.2.7), and 05(G) is obtained from
the homogeneous principal symbols of the Green symbols involved in the construction of G,
cf. (4.1.3) and Definition 4.1.3.

4.2 Ellipticity and reductions of orders

The calculus of edge problems, cf. [28], specialised to a manifold with boundary, gives us
parametrices of elliptic elements in Y#(X,g;v) in a larger space with continuous asympto-
tics. For our purposes it suffices to establish parametrices in operator spaces, where Green
operators induce only some weight improvements relative to a given reference weight v. To
this end, we introduce

VE(X x A, (7,0);v)0 = 0<L€J<1 VE(X x A, g.;v)0,0 (4.2.1)

where 7,0 € R, g. = (7,0,¢). The subscript O, O on the right of (4.2.1) indicates that
in (4.1.4) the asymptotic types involved in C(A) as well as in the local amplitude functions
associated with G;(\) are the empty in As(7,¢) and As(d, ), respectively.

Then in the sense of (4.1.1) and (4.1.2), we let Y*(X x A, (v,v7 — u); v)o, be the space of
all block-matrices

A= (61 8) +G,  AEYHX XA (my-pivle, V(X XA (1,7 - piv)o,

where Y#(X x A, (y,7 — 1);v)o is defined as in Definition 3.2.2 with the following mod-
ifications: The local amplitude functions of the operator-families A;(\) are defined as in
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Definition 1.4.2 (extended to the matrix case) but there the Green symbol g is required to
belong to Uy, oq RE(Q X R*™ X A, (7,7 — p,€))0,0 and the Mellin symbol m is replaced
by the expression (1.4.1) but now hj, =0 for j + || > 0, and

hoo € M’Y = 0<L5J<1 Mme R (422)
where M2° denotes the space of all functions h(z), which are holomorphic on S, . :=
{z € C: |Rez+ 7y — 1| < ¢} and such that h(o + i) € S(R;) locally uniformly in
{foeR: o+~ — 3| <e}. The spaces M7 > are Fréchet in a canonical way. Moreover, the

form C(A) from Definition 3.2.2 is required to be of such a form that (C((f‘) g) belongs to
V6(X x A, (v,7 = piv)o.

Remark 4.2.1 Every A € Y*(X x A,g;v), g = (7,7 — ,0), belongs to Y*(X x A, (y,v —
1);v)o.

Definition 4.2.2 An operator A € Y*(X XA, (v, 7y—p);v)o forv=(E,F;J_, J}), is called
parameter-dependent elliptic, if (4.1.5) and (4.1.6) are isomorphisms. For p = 0 we simply
talk about ellipticity (without parameters).

The ellipticity condition for g5(.A) is required for some sy € R. It is then automatically
satisfied for all s € R. Clearly, if A(\) € Y*(X x A, (y,7 — 1);v)e is parameter-dependent
elliptic, A(\p) is elliptic in the sense without parameters, for every fixed Ay € A.

Remark 4.2.3 For convenience, elements A € Y*(X x A, (7,7 — u);v)o will also be written

in the form
A0 0 K
(A0 8 s

where A € YPM(X x A, (v,7 — p); E,F)o and G = (§ §) H(X, (v,7y — w);v)o. Observe
that the ellipticity of A implies that A =u.l.c. A € Y*(X, (v,y—n); E, F)o is elliptic in the
sense of the second part of Definition 4.2.2, and 05(A) = u.l.c.

oo(A) : 3y K2V (Ry) ® BN — 7y KP7H77H(Ry ) @ F, (4.2.4)
my : (T*Y x A)\ 0 — Y, is a family of Fredholm operators between the fibres. Set S* =
{(y,m,A) € (T*Y xA)\O: |n|*+|\? =1}, and let wy,1 : S* = Y be the canonical projection.
Then inds- 0(A) = [7y,J+] = [7y  J-] € 7§ | K(Y). In general, the ellipticity of an element
AeYHX xA,g;E,F)o only implies that (4.2.4) is a Fredholm family where

indg- og(A) € K(S™). (4.2.5)
The following two theorems are special cases of the general calculus of [28].

Theorem 4.2.4 Let A € Y*(X x A, (v,7 — p);v)o be parameter-dependent elliptic, v =
(E,F;J_,J.). Then there is a parametric P € Y (X x A, (v — pu,7);v Yo, v ! =
(F,E;Jy,J_), in the sense

I-PA€Y (X xA (v,7)iv)o, IT-AP €Y (X xA,(y— 7 —p)vr)o,

with vy = (E,E;J_,J_) and v, = (F,F;Jy,J;).
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Theorem 4.2.5 Let A € Y*(X x A, (7,7 — p);v)o be elliptic. Then

WX, E) WX F)
AN : & o ® (4.2.6)
Hs(Ya J—) Hs_“(Ya J+)

is a Fredholm operator for each s € R, X € A, and the index ind A(\) is independent of s
and A. For non-trivial A we have ind A(X) = 0 for all s and X\, and there is a ¢ > 0 such
that (4.2.6) is an isomorphism for |A| > ¢, s € R.

The main aspect of the present section is the construction of order (and weight) reducing
elements in our algebra of boundary value problems with a prescribed number of trace and
potential conditions. In this connection we want to construct some particular Mellin symbols.

Proposition 4.2.6 For every k € Z there exists an element fi.(z) € My> such that 1 +
fr(2) #0 for all z € C, and 1 +wop),(fr)& : K& (Ry) — K=V(Ry) is a Fredholm operator
of index k for every s,y € R; here w(t) and &(t) are arbitrary cut-off functions. In addition,
keeping w, @ and vy fized, there exists an operator gy, with kernel in C§°(Ry x Ry) such that

L+ wopy, (fr)@ + gk : L2V (Ry) — K57 (Ry)
is surjective for k > 0 and injective for k <0, s € R.

Proof. As is known, cf. [5] and [27], the index of a Fredholm operator of the form 1 +

wop (£ : K7 (Ry ) = K27(Ry.) for f € Mp™, e RNT1_, =0, equals

1 Im z=o00

_Aarg(]- + f(z))|rl, Im z=—o00>

2w 277
where A denotes the change of the arguments of 1 + f(z) when z runs from Im z = —o0 to
Imz = oo on the line 'y To construct fi(z) we first consider the case k = 1, v = 0,

e
and start from an arbitr;ry function m(z) € C*°(I'y) such that m(z) = 0 for Imz < 0 and

Im z=o00

m(z) = 2mi for Imz > 1, then Aargm(z)h% mZ=% _ = 2m. Moreover, we have m(z) €

Sa(T'y). By kernel cut-off we find an h(t) € Mg such that m(z) — h(2)lr, € S~ ('),
2

cl

where A arg h(2)|r, [[m#=° = 2, cf. [28, Remark 1.1.51]. Let us set I(z) := e"*); we then
2

Imz=—0c0
have I(z) € M and I7*(z) € M), and Aargl(2)|r,|[m:=> = 2 for every # € R. Now

Imz=—00

we may set fi(z) = I(z) — 1, and we have fi(z) € My™ because fi(z)|r, € S(I'y) which
2
implies f1(2)|r, € S(I'1) for each B. Similarly, we can set fi(z) = (*(2) — 1. Let us now

1
consider the case k > 0.2 Set for abbreviation a = 1+wop},(fr)&. Without loss of generality
we may consider the case s = v = 0. In fact, the choice of s is unessential anyway, because
kera and coker a are independent of s. Moreover, we may pass to the operator ag := k=7 ak”
where k7(t) € C*(R;) is any strictly positive function where k7(¢t) = t¥ for 0 < t < ¢,
k7(t) = 1 for t > ¢; for certain 0 < ¢g < ¢;1. Let ¢ be so large that w, @ vanish for ¢ > c¢o.
Then we get ag = 1+ wt =7 opl,(fu)t '@ = 1 +wopy, (T fr)w : L*(Ry) — L*(R}). Set
N_ = (imag)* (the orthogonal complement in L?(R,)) and set N_ := dim N _. Since
indag = k > 0 we have dimkeray = N_ + k. Choose a subspace N_ C ker ap of dimension
N_,let P: L*(R,) — N be the orthogonal projection to ./\7,, and choose an isomorphism
G :N_ — N_. Then ap + GP : L*(R;.) — L?(Ry) is surjective; the operator GP has an
integral kernel in N~ @ A/ that can be approximated by a kernel b in CP(Ry) ® C°(Ry)
in such a way that ap + ¢ : L*(Ry) — L?(R;) remains surjective, when g is the operator
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with kernel b. It suffices then to set g = t77gt”. For k < 0 we can again first reduce the
construction to s = v = 0, then carry out the construction for the adjoint operator that has
non-negative index and then take the adjoint of the resulting operator. |

Lemma 4.2.7 For every fitedy € R and p € F%_,Y there exists an element g(z) € Mz> for

a suitable R such that g(z) has exactly one pole at p of first order, and (1+ g(2))~* # 0 for
all z # p, |Rez — (3 — )| < & for some e =¢e(g) > 0.

Proof. Without loss of generality we assume v = % and p = 0; the general case can be
reached by a translation in the complex plane. We set g(z) = [ t**w(t) dt for a suitable
choice of a cut-off function w(t). First it is clear that such a g(z) has a pole of first order at
z =0 and g(z) € My for a discrete asymptotic type R with 7cR = {0}. Choose w(t) in
away that w(t) = lfor0<t<landw(t) >0for 1 <t<1l+o,w(t)=0fort>1+0
for a ¢ > 0, to be defined in a suitable way below. Write g(z) = fol t*=tdt + r(z), for
r(z) = 11+0 t*~lw(t)dt. We then have 1 + g(z) = 27'(1 + 2z + 2r(2)). Thus, 1+ g(2) =0,
z # 0, if and only if 1 + z 4+ zr(z) = 0, ie., z2(1 +r(z)) = —1. For every § > 0 there is a
o > 0 such that |r(z)| < & for |[Rez| < 1. Now we have z # —1 for all |Rez| < %, thus
z(1+7(z)) # —1 for all |[Rez| < 3 when o > 0 is chosen sufficiently small. O

Theorem 4.2.8 For every v,u € R and E € Vect(X) there exists an elliptic operator D* €
LMX,g;E,E), g = (7,7 — p,0) such that

(i) oy (D*)(&) = [¢]"idE,
(ii) D* induces isomorphisms D" : WY (X, E) — WS=#Y"H(X E) for all s € R,
(iii) (D*)~" € L™#(X,g~ % E, E) where g~* = (y — 1,7, 0).

Theorem 4.2.9 For every J € Vect(Y) and suitable N € N (such that J is a subbundle of
Y x CV), and for every v € R there ewist elliptic operators A, = (Ajif ), A = (A- K) in
yO(Xag;'U:I:) for g = (v,7,0), v4 = (N,N;0,J), v— = (N,N; J,0) (where N stands for
the trivial bundle X x CN) such that

(i) Ax = 1mod Yy, 5(X,g; N, N),

(ii) the operators

W7 (X,CN) W (X,CN)
A ws(x, Ny —» ® . A @ — WT(X,CN) (4.2.7)
H*(Y,J) H*(Y,J)

are isomorphisms for all s € R,
(i) A7' € Y°(X,g,v4).

Proof of Theorem 4.2.8. We will show a parameter-dependent variant of the assertion
and then get the result by freezing the parameter at a point of sufficiently large absolute
value. For simplicity, we consider the case of the trivial bundle £ = X x C. The general
case is analogous, we only have to multiply symbols by the identity map in the fibres of E.
First assume that || refers to a Riemannian metric on X that is the product metric from
[0,1) X Y in a collar neighbourhood of the boundary with a given Riemannian metric on Y.
Then we have |£|? = |7]? + |n|? near the boundary. Starting from local parameter-dependent
amplitude functions (1 + |£]> + [A]*)#/2, X € A, and applying an operator convention based
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on the Fourier transform, then a summation, using a finite atlas and a subordinate partition
of unity, we get an element D{(\) € L (int X x A) with |, A\|* as the parameter-dependent
principal symbol of order p with respect to the covariables £ including parameters A. Let us
show that for every v € R there is an element D#(\) € L*(X x A, g), g = (7,7 — i, 00), such
that D#(X) — Do(A\) € L=°(int X x A). To this end we choose functions o, 09,01 € C°(X)
supported in a collar neighbourhood of the boundary Y, such that c =1, 090 =1 and oy =1

near Y, and oog = 0, 001 = 01 and set
D*(X) = H*(\) + (L —o)DE (N (1 — oy). (4.2.8)

Locally near Y in the variables (t,y) € Ry x Q we set H#(\) = Op(a)()\) for an operator-
valued symbol a(y,n, ) := o (t){b(y,n, A) + m(n, A) + g(n, A) }oo(t), where

b(y,n,A) =t~ wi(t[n, A]) opa, (R) (g, m, Nwa (t[n, A])
+ (1 —wi(tn, A]) op,(p) (¥, m, A) (1 — ws(t[n, A])) (4.2.9)

for a symbol p € SH(Ry x @ x R? x A) with [£,A[* = (|¢|* + [A]*)*/? as the parameter-
dependent homogeneous principal part, and

(m+g)(m,\) € Ry, (R x A, g). (4.2.10)

Here, according to relation (1.3.3), the Mellin symbol & is chosen in the form h(t,y, z,1,A) =
h(t,y, z,tn,t\), where h(t,y,z,7,\) € C® (R, x Q,Mg(]R’nlfl x A)), such that

t=# o}, (W) (y,m, A) = op; () (y,m, ) mod C=(Q, L™= (Ry; Ry~ x A)).

The homogeneous principal boundary symbol of b(y,n, A) equals

00(b) (1, A) = =1 (¢, Al) 0p (o) (m, News (¢, Al)
(1= w1 (#1m, A1) 0D (9 (1, V) (1 = ws (tl, A)). - (4.2.11)

It is invariant as an operator function parametrised by points (y,n,A) € T*Y x A\ 0. By
virtue of the special form of p(,) we can choose h in such a way that (4.2.11) only depends
on |n, Al.

We now apply the result of Lemma 4.2.11 below, namely the existence of an element
(4.2.10) such that

oa(a)(1m,A) = 09 (D) (11, ) + oo (m + g)(n, A) : K¥7(Ry.) — K57H77#(Ry.) (4.2.12)

is a family of isomorphisms for all (y,n,A) € T*Y x A\ 0, s € R, also, where (4.2.12) depends
on |n,Al. This shows that the operator D*()) is parameter-dependent elliptic in the sense
of Definition 4.2.2, where the bundles J_, J; do not occur (they are of fibre dimension 0).
From Theorem 4.2.5 we conclude that D#(\) : WHY(X) — W #7#(X) is a family of
isomorphisms for all |A| > ¢ for some ¢ > 0. Thus it suffices to set D* := D*()g) for a
Xo € R, |Ao| > ¢. Let us now consider the case when the Riemannian metric on X is not
necessarily the product metric from [0,1) x Y. In this case it suffices to observe that in
the bijectivity condition for (4.2.12) only the restiction of (|¢|> + |A|?)"*/? to the boundary is
involved. However, this has again the behaviour of (|7]> + |n|? + [A|*)*/? i.e., we can argue
as before. To complete the proof we have to verify property (iii). What we always know
is the invertibility of D* in Y H(X,(y — u,7); E, E)o for some € > 0. But we have, in
fact, (D*)~! € L=#(X,g~!; E, E), because the interior symbol of the (D*)~! is as required,
and the occurring smoothing Mellin and Green operators have asymptotic types that are
independent of y € YV, cf. formula (4.2.11). O
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Remark 4.2.10 The proof of Theorem 4.2.8 shows that there is a parameter-dependent
analogue of the assertion, i.e., there exists an element D*()\) € L*(X x A,g;E,E) for
g = (7,77 — p,00) with |£,A\|* -idg as the parameter-dependent principal interior symbol such
that D*(\) : WSV (X, E) — WS H7H(X E) are isomorphisms for all X € RP. It suffices
to carry out the construction first with the parameter set A X R 3 (X, 0) and then to insert
0 = & € R sufficiently large.

Lemma 4.2.11 Let p € S45(Ry x Q x RY x A) be a symbol with (|¢* + IN2)#/% as the
parameter-dependent homogeneous principal part. Then for every v € R there is an element
(4.2.10) such that (4.2.12) is an isomorphism for all (y,n,\) € 2 x (R*~! x A\ {0}), s € R.

Proof. Since the homogeneous principal part p(,) of p is independent of y € €2, also ho does
not depend on y, and hence it suffices to construct (4.2.10) in y-independent form.

05(b)(n, A) is a family of operators in the cone algebra on R, , and its principal conormal
symbol u(z) is independent of n, \. We have (with Euler’s I'-function)

uw(z)={atgt(z+p)+a g (z+p)}l(1l-2)/T(1-2z—p) (4.2.13)

* are non-vanishing constants.

modulo a meromorphic Mellin symbol of order —oo, where a
The latter relation is a consequence of the results in Chapter 2.

The function u(z) is holomorphic in C, and we have u|p, € S¥(I'g) for each 3, uniformly
in compact B-intervals. The symbols u|r, are elliptic in Im z for each 3. On the given weight
line I's_ the function u(2) has at most a finite number of zeros of finite multiplicity. Let
p;j denote these points and [; the corresponding multiplicities, j = 1,..., M. Then, if g(z)

is the function of Lemma 4.2.7, we have H;.nzl(l + g(z —p;))li = 1+ f(z) for an element

f(z) € Mg for some asymptotic type R for Mellin symbols, and u(z)(1+ f(z)) has no zeros

in a strip |Rez — (3 — )| < e for some ¢ > 0.
Setting ¢ (1, A) := 1 + w(t[n, A]) opy, (f)@(t[n, A]) for some choice of cut-off functions w,

w, the composition

a5 (0) (1, Noa(p)(n, A) : K27(Ry) = KS7H77H(Ry) (4.2.14)

is a family of Fredholm operators for (n,A) # 0, s € R. Let k be the index of (4.2.14) (it is
always independent of s) and let f_j(z) be a Mellin symbol in the sense of Proposition 4.2.6.

Set 1h(1, A) := 1+ w(t[n, A]) op, (f-#)&(¢[n, A]). Then
co(n,A) = 09(b)(1n, \)aa(p)(n, N)oa () (n, A) : K7 (Ry) — K¥7H77H(Ry) (4.2.15)

is a family of Fredholm operators. Applying Lemma 4.2.12 below we find a family r5(n, A) of
operators K7 (Ry.) — K*7#7~#(IRy.), smooth in (1, A) # 0, with r5(dn, 6A) = 0#ksrs (1, Nk *
for all § € Ry, such that ro(n, \) has a kernel in C°°(]R+ x Ry), and ca(n, A) + ra(n, )
Ko7 (Ry) — KS#7Y H(Ry) is a family of isomorphisms for all s € R. Set r(n,\) :
x(1, M)ra(n, A) for an excision function x in (1, A). Then a(y,n, A) :=b(y, n, N)p(n, N (n, /\)
r(n,A) has the form b(y,n, A) +m(y,n,A) + g(y,n,A) where (m + g)(y,n,\) € Ry, (2 x
R x A,g), g = (7,7 — p,00) and og(a)(n, X) = ca(n,A) +r5(n, ) is an isomorphism for
all (n,\) #0, s € R O

Lemma 4.2.12 The operators (4.2.15) are of index zero for all s € R, and there is an element
ro(n,A) € oaRE(R"™! x A, g) for g = (v,7—p,00) that has a kernel in C§°(Ry xRy for each
(n,A) # 0, where (ca +1a)(n,A) : K¥V(Ry) = K*~#7#(Ry) is a family of isomorphisms
forall s € R, (n,\) #0.
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Proof. The operators (4.2.15) are (n, A)-wise elliptic in the cone algebra on Ry, and it is
known, cf. [28], that dimensions of kernels and cokernels are independent of s. In this proof
the dimension of covariables does not play any role; therefore, we simply use n € R? \ {0}
for some ¢ instead of (n,\) € R*~! x A\ {0}. Moreover, for abbreviation we write ¢ and r
in place of ¢y and ry, respectively. To construct r(n) it suffices to assume |n| = 1 because
our operator families are uniquely determined by their values on the unit sphere when their
order is given. Fix s and set H; := K*7(R}), Hy := K*~#7 #(Ry). Then ¢(n) : H1 — H»
is a family of Fredholm operators of index zero, n € S¢7!. A standard construction gives us
the existence of some M € N and of an isomorphism & : CM¥ — H, such that the row matrix

H
(c(n) k) : & — H, is surjective for all 7 and that in addition there is an isomorphism of
cM

the form
H; H,
c(n) k)
S R 4.2.16
(b6t o 7 (4:2.16)

H (=53
where (b(n) d(n)) : C?i —s CM can be represented by choosing an orthonormal base

in ker (¢() k) and defining the map as a projection first to ker (¢(n) k) composed with
an isomorphism ker (¢(n) k) — CM. This can be done in terms of scalar products with
elements in H; & CM. Since C§°(R,.) is dense both in H; and Hs, a simple approximation

argument allows us to take k in the form k& : w — Zj\il wjp; for w = (wi,...,wum),
with functions ¢; € C§°(Ry), and (b(n) d(n)) (1) = (fooo u(t)y(t) + Zl]\il djivr)j=1,.. .M
foru € Hy, v = (v1,...,vn) € CM with functions ¢; € C§°(Ry). In general, ¢; and dj

depend on 7. However, in the present situation they may be chosen to be independent of 7,
since our operator functions only depend on |p| which equals 1. Without loss of generality
we may assume that the M x M-matrix d is invertible. Otherwise, if this is not the case for
the original choice we can perturb d to an invertible matrix without violating the isomorphy
of (4.2.16). Now a simple algebraic argument shows that (4.2.16) is invertible if and only if
¢ — kd~'b is invertible. This allows us to set r = —kd1b. O

Proof of Theorem 4.2.9. By assumption, J; := J is a subbundle of Y x CV. Let Jy be a
complementary bundle such that Jo @ .J; =Y x CV. Let w(t), &(t) be fixed cut-off functions
and choose elements fi(z) € M, and gi(t,t') € C°(Ry x Ry) according to Proposition
4.2.6 for k = 0,1. Set Le(n, Nu(t) == |n, Al [~ gr(tln, Al ' |n, Al)u(t') dt' and

by, (ya m, )‘) = {W(t|77; /\|) Opy\l(fk)a(t|n7 )‘|) + Uk (777 /\)} ® idﬂ';,Jk?

where my : T*Y x A\ 0 — Y is the canonical projection. If 1 denotes the identity operator in
K&7(XN,CN), then o5(A4)(y,m,A) := 1+ diag(bo, b1)(y,n, A) locally in y € 2 is a boundary
symbol belonging to 1+03R?\4+G(Q xR*~1 x A, g; N, N). The invariance allows us to interpret
(y,n,A) as points in T*Y x A\ 0. There is then an operator family A(A) := 14 (M + G)(A\)
for (M +G)(\) € Yy, (X x A,g; N, N) that has 05(A) as parameter-dependent principal
boundary symbol. By construction

06(A+)(y7n7>‘) : ICS,FY(]R-Fa(CN) - ’CSN(RIHCN)

is surjective for all (y,n,A) € T*Y x A\ 0, and we have kerog(A4)(y,n, A) = Ji, (which is
the fibre of J; over y € Y'). Choose a family of maps

oo(T)(y,m,A) : K7 (Ry,CY) = 751
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such that o5 (T)(y,0n,6)) = 0a(T)(y,n, A\)k; ' for all § € Ry and that 05(T)(y,n, A) induces
an isomorphism

05(T) : kerop(At) = 7y Jh.

Since C§°(Ry,CN) is dense in K*7(Ry,CN), we find o5(T) in such a way that it acts for

each y as a vector of scalar products u(t) — <f0°°(u(t’), wi(y,m A t))ey dt’) (where
J=1,e,d

d is the fibre dimension of .J;) for suitable ¢;(y,n, A) € C§°(Ry, CV), smoothly dependent on

(y,m,\). From o5(t) we can pass to a family of operators T'(A) : W*7(X,CN) — H*(Y, J;)

belonging to Y°(X x A, g;v.) with 05(T') as parameter-dependent principal symbol.

Ko7 (Ry,CY)
Since 05(Ay) : K& (R, ,CV) — & is an isomorphism (recall that we set
myJ
J1 = J), the operator family
W (X, (CN)
AL(N) = (AT“AA)) WNX,CN) s B
( ) HS (Y, J)

is parameter-dependent elliptic and hence induces isomorphisms for all sufficiently large |A|.
Thus, we may set A = A4 (X) for any A € A of sufficiently large absolute value. The prop-
erty (iii) is a consequence of the fact that opr(Ay)(z) : CV — CV is a family of isomorphisms
for all z € C, i.e., Mellin and Green operators belonging to A;l have trivial asymptotic types.
The construction of A_ is completely analogous; details will be omitted. O

Similarly to Remark 4.2.10 there is a parameter-dependent analogue of Theorem 4.2.9.

Remark 4.2.13 Let J := Y x CN be a trivial bundle (where we also write N instead of
J); then there exist elliptic operators Ay = (AT*), A = (A, K) in Y°(X,g;vy) for
g9=(7,7,), v+ =(1,10,N), v_ = (1,1;N,0), such that

(1) Ai =1 mod Y]\O4+G(X;g;]-71);

(ii) the operators

W (X) WS (X)
AW (X)=» e, A: @& o WO(X) (4.2.17)
H#(Y,CN) H*(Y,CN)

are isomorphisms for all s € R where AT' € Y°(X, g; v).

In fact, using the arguments in the proof of Theorem 4.2.9 we first find isomorphisms
(4.2.17) for the case N = 1. Let AL denote these operators. To construct (4.2.17) for
arbitrary N, say, for the plus-case, it suffices to successively form compositions Af =

1
e . 0 AX Y for arbitrary N > 2. Similarly, we can proceed in the minus-case.
0 lst (Y) +

4.3 Homotopies and operators with the transmission property

To analyse the nature of elliptic pseudodifferential boundary value problems it is often useful
to apply homotopies through elliptic elements. In the present section we shall show that
elliptic operators in £*(X,g;v), g = (7,7 — u,0), v = (E,F;J_,J;), can be connected by
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a homotopy with elliptic boundary value problems with the transmission property (up to a
stabilisation).

Let us briefly summarise what we have constructed above in connection with the algebra
of boundary value problems A of the class £L#(X x A, g;v), u € R. Every A has a (parameter-
dependent) principal symbol o(A) = (o4 (A),05(A)) =: (p(u),a(u)) consisting of interior and
boundary components. These are homomorphisms

Pu) i TxE — mXF, (4.3.1)
mx :T*X x A\0— X, and
o (R ) @ B eo-nr B (Ry) )
agu) : Ty @ — Ty & ) (4.3.2)
J_ Ji

my : T*Y x A\ 0 = Y, where p,)(z,&,A) is smooth up to the boundary and homogeneous
of order p in (£, ) # 0 in the usual sense, while a(,)(y,n, A) is homogeneous in the sense

agu) (y,0m,6X) = 0" diag(kx,id ;4 )a( (y,m, A) diag(ka, id ;- )

for all (y,n,A) € T*Y x A\0, § € Ry. In addition, we have a subordinate principal conormal
symbol, cf. Remark 3.2.3, that is a family of homomorphisms

om(a)(y,2) - B, — F, (4.3.3)

yevY, ze F%_
Imz = Foo.
There is a compatibility between (4.3.1) and (4.3.2). In fact, the restriction po(y, &, A) of
P (@, €, A) to T* X[y x A\ 0 is uniquely determined by the upper left corner of (4.3.2). In
addition, there is a compatibility condition between (4.3.1) and (4.3.3).
Consider p(,)(0,y, 7,1, A), the restriction of p(,(z,, A) to the boundary. Then, for 7 # 0
we have p,)(0,y, 7,7, A) = |[7[*p)(0,y,7/|7],n/IT|,A/|T]), and the compatibility is

4 Let vE(y) : E, — F, denote the limits of |Im 2| o (a(,))(y,z) for

vE(y) = puy (0,9, £1,0,0). (4.3.4)

According to the constructions of Section 3.2 the upper left corner a;; (,) of a(,) is given
by an expression of the form (3.2.7), where, in particular g =: g11,(,) is the upper left
corner of a homogeneous Green symbol g(,y = (gij,(u))i,j=1,2, that is locally of the class
oo RE(Q x R x A, g;v)p for some asymptotic types P, Q. More precisely, we have

by + A 0
() (yﬂ?,)\) = <( () m(g))(y " ) 0) +g(u)(y,n,)\), (4.3.5)
where
by (y,ms A) =t wi(t]n, A]) op 3, (o) (y, 1, Nws (t[n, A]) (4.3.6)
+t7H(L —wi(t|n, Al)) op,(po) (y, m, A) (1 — ws(t[n, Al)),
1y (1 X) = (8, AD) 004 (o) (9) (el A1) + 1y (. A) (4.3.7)

for nu (y, 1, A) = tHw(tln, Al) 5oy 73 1=, 0P a7 (hja) () (1, 2B (¢m, Al), which is an ele-
ment of op RE(Q x R"™1 x A, (7,7 — w);l,m)o.



42 4 BOUNDARY VALUE PROBLEMS

Remark 4.3.1 To each pair (p(,),a()) of this structure there is an A € LF(X X A, g;v)
such that 0 (A) = p() and 0p(A) = ay).

In other words, symb L' (X x A, g;v) := {(0y(A),08(A)) : A€ LF(X xA,g;v)} consists
of the space of all pairs (p(.),a.)) of the described kind. Let op denote the choice of a map
(P(u)»>a(u)) — A such that o(A) = (P, a))-

An element o = (p(,),a(,)) € symb LF(X x A, g;v) is called elliptic, if the components
define isomorphisms (4.3.1) and (4.3.2), respectively.

Recall that for every a(,) we have a subordinate principal conormal symbol o (a(,)) (Y, 2),
cf. Remark 3.2.3, that only depends on the upper left corner of a(,). If (p(,),a(,)) is elliptic,

om(ag)(,z): E' = F' (4.3.8)

is a family of isomorphisms for all z € 1’%7 A pair (pu),h), where p(,) is of the form

o
(4.3.1) and h(y, z) of the form of a principal conormal symbol o (u.l.c. a,), ie., h(y,z) =

h(0,y,2,0,0) + hoo(y, 2) associated with p(,) is said to be elliptic (with respect to the weight
7), if both p(,) : 7% E — 7% F and h(-,z) : ' — F" are isomorphisms, the latter ones for all

S F%,W.

Definition 4.3.2 A family (pz’u),az’“))ggrgl of elements in symb LF(X X A,g;v) is said
to be a homotopy, if (pfﬂ))ggrgl is a homotopy of homogeneous symbols T3 E — w%F as
usual, while the other ingredients of arN are continuous in r € [0,1]. More precisely, writ-
ing (in local coordinates) a(ﬂ) (y,m, ) analogously to (4.3.5), with upper subscript r in the
involved summands and ho, po and hj, in (4.3.6), (4.3.7) being replaced by hy, py and
h%,, respectively, (where v in (4.3.7) is independent of r) we require lNL’"(O,y,z,ﬁ,X) €
C([0,1],C=(Q, MH(RI x A) ® C™ @ C' for hi(t,y,2,1,A) = B0, 4,2, 7 Mla_gn e
further hiy(y,z) € C([0,1],C>®(Q, M) @ C™ @ C', and 90 (W>m,A) € C((0,1], oo Re(Q x
R*1 x A,g.;v)),n{, (y,n,A) € C([0, 1],00RE(Q x Rt x A, g.;1,m)) for some 0 <e <1,
g = (7,7 — me).

Finally, a family of pairs (pfﬂ),hr)ogrgl is said to be a (oy,onm)-homotopy, if pz’u) :
B — % F is as before, and h"(y, z), supposed to be of the form h' (y,z) = E’"(O,y, z,0,0)+
hio(y, z) with K" and hoo as mentioned above, is required to be continuous in the sense that
ﬁ’"(O,y,z,0,0) € C([0,1],C>=(Q, ME)) ® C™ © C! and hiy(y, 2) € C([0, 1],C>=(Q, M7 ) ®
C™ @ C! for some 0 < € < 1, where the compatibility condition (4.3.4) is fulfilled for all
r € [0,1] with v®7(y) := lim{|Im 2| ~*Ah"(y,2) : Imz — Foo}.

Lemma 4.3.3 Let 0° = (p{,),af,)) € symbLH(X x A, g;v) for v = (E,F;J_, Jy) be el-
liptic, and let (pfu),hr)ogrgl be a (0y,0n)-homotopy, where both components are elliptic
for all v € [0,1], i.e., p’("u) % E — 7% F, as well as h'(-,z) : E' — F' are isomorphisms
(the second one for all z € 'y ), and assume UM(G?N)) = h®. Then there exists an L €
Vect(Y') and a homotopy through elliptic elements 6" = (pfﬂ),ﬁfﬂ)) € symb LH(X x A, g;v),
re 0,1, v = (E,F;J_®L,Jy & L), such that aM(a(u)) = h" for all v € [0,1] and

o’ = (p(()u)’diag(a(()u)7r(u) ®idgs 1)), where () (0, A) = |n, A[*.
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Proof. Let us define a homotopy (af, (“))ogrgl of operator families

a’{l,(p) (y7 R >‘) = t_Nwl (t|T], >‘|) Op’]{{(hg)(ya 1, A)WQ (t|777 >\|)
+ 741 = wi(tln, M) op ™ (P{,)) (g, 1, (1 = w3 (tn, Al))
+m€u) (yﬂ?;/\) +gI1,(p) (yﬂ);)\); (439)

where m?“) and 9(1)1,(“)

in (3.2.7) in the notation os(m) and os(yg) , respectively (here, taken with parameters). In
other words, af, (“)|r:0 is the upper left corner of a?“). To get (4.3.9) it suffices to construct

are the smoothing Mellin and Green summands for r = 0 that occur

hi(t,y,z,m,A) and mfﬂ) (y,n,A). For the Green summands that are families of compact
operators we simply set g7, (,, = (1—r)gd (- Moreover, we may choose mf,, (y,m, N\

to be of the form m{, (y,n,A) = t*w(tn, Al) opy, (hie) ()& (¢, Al) + (1 — r)ng, (y,m, ),

cf., similarly, formula (4.3.7), where n?u)

is the compact remainder belonging to m(()u)' In
other words, we have to define h{,(y,z). Let x(7,m7,A) be an excision function and set
pr(ya T,1, /\) = X(T7 7, /\)pfy) (07 Yy, 7,1, /\) There is an hr(ya 2, 777 /\) €C™ (Qa M(%(]R%lil X AX))

such that, when we set h{j(t,y,z,1,A) := iNL"(y, z,tn, tA), we have

opyy (ho) (y,m, A) =t~ op,(p") (y, m, \)

mod C*°(Q, L~ (Ry; ]R;“l x Ay)). Here, we first argue in local terms with respect to y € Q,
Q C R*! open, but then, when we include hf,(y,2) to be defined yet, our final operator
functions will be invariant as families on (y,n,A) € (T*Y x A) \ 0.

We now have hijy(y, z) := h"(y, z) — h" (y,2,0,0) € Mz for every y, where R = R(y) is a
certain asymptotic type for Mellin symbols that is inherited from the meromorphic summand
of h" of order —oo (since h{(y, z,0,0) itself is holomorphic in z). Those summands of order
—o0 are elements of M2° for some € > 0 for all € [0, 1]. Thus, hg(y, 2) is as desired.

Then,

s QR E'
(ar ad I (]Rég) N *’Csfu/yfp( F'
) M2, ) 5T : % Ri)®

is a family of Fredholm operators, surjective for » = 0. It is then clear that there exists an
L € Vect(Y') and a potential symbol k : 73 L — 73 K* =7 #(Ry ) ® F' such that

Ko (Ry ) @ E'
S¥
(ag‘u) rk) LTl J_ — ALK TR (RL) @ F (4.3.10)
SV
L

is surjective for all 0 <7 <1 and all (y,n,A) € T*Y x A\ 0. The operator family

0 0
Gt () %22,(u) 0 (4.3.11)
0 0 T(u) @ ldﬁ;,L

maps the kernel of (4.3.10) for r = 0 isomorphically to 3 (J+ @ L). The contractibility
of the interval [0, 1] then implies the existence of an extension of (4.3.11) to a family of
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isomorphisms
J.
A r k +
(aiL(u) a£27(u) TT > - ker (afﬂ) Tk?) -7y | @ (4.3.12)
“31,n)  %32,(n)  33,(n) L

continuous in r € [0, 1] where (agj (“))1353 = (0,0,idz; 1), and the entries of (4.3.12) belong
to the class opR{ (... ) for an evident choice of weight and bundle data. O

A family (A")o<r<1 of operators in L¥(X x A, g;v) is said to be a homotopy if it is contin-
uous in r € [0, 1] with respect to LW*Y (X, E)® H*(Y, J_), W+ 7~ M(X, FY®H*"(Y, J1))
for every s € R. We talk about a homotopy through elliptic operators if A" is elliptic for
each r € [0,1].

Theorem 4.3.4 Let A° € LH(X x A,g;v) be an elliptic operator, g = (v,7 — u,0), v =
(E,F;J_,Jy). Moreover, let (pfu),hr)ogr§1 be a (oy,0onm)-homotopy through elliptic ele-
ments in the sense of Lemma 4.3.3, where o}/(A°) = p{,, and opop(A°) = h°. Then

there exists an L € Vect(Y) and a family (A")o<,<1 of elements in L*(X x A,g;v) for
v=(E,F;J_®L,J; ®L) such that

_ W=1(X, E) WA (X, F)
A7) @ — @ (4.3.13)
HS(Y,J_®L) HHY,J, ®L)

is a continuous family of Fredholm operators for each s € R, and ,ZO()\) = A"(\) & RE(N),
where Ry (X\) : H*(Y,L) — H* *(Y, L) is an (elliptic) element of L;(Y x A; L, L).

Proof. Starting from A° and setting 0 := (p{,),a{,)) = (04(A"),00(A")) we have the

situation of Lemma 4.3.3. We then find an L € Vect(Y) and a homotopy ¢" := (p(u),ﬁ’("u)) €

symb L#(X x A,g;v) through elliptic elements that connects ¢° = (p?“),diag(a?m,r(ﬂ) ®

idry ) with &' = (p(,,@(,))- Then A"(X) = op(¢") (cf. the notation of Remark 4.3.1) is
a Fredholm operator (4.3.13) for every r € [0,1], A € A, s € R, and it is clear that we have

continuity in 7 with respect to the operator norm. O

We want to give a relation between operators in £#(X, g; v) and boundary value problems
with the transmission property at the boundary. Homogeneous principal symbols (4.3.1) may
assumed to be induced by (classical) local symbols of integer order with the transmission
property in the sense of [3], see also [17]. Such symbols (here considered with parameters
A € A =R!), give rise to operators in L*(X x A, g; E, F), g = (v,7— 1, 0), when we apply the
operator convention of Remark 4.3.1. Let B*(X x A, g; E, F') for u € Z denote the subspace
of all L*(X x A,g; E, F), where the local (parameter-dependent) symbol p(t,y,7,17,A) (in
the variables (t,y,7,7,A) in a collar neighbourhood of the boundary) has the transmission
property at the boundary (¢ = 0), and such that the conormal symbol to the order p equals
cI'(1 —2)/T(1 — z — ), where ¢ : E' — F' is the homomorphism induced by the restriction
of p(,) to the points (r,y,7,m,A) = (0,y,1,0,0), cf. also formula (4.2.13). Moreover, let
B*(X x A,g;v) denote the subspace of all A = (Ajj)ij=1,2 € L¥(X x A,g;v) such that
A € B”(X X A,g;E,F).

Remark 4.3.5 By definition we have B*(X x A,g;v) C L¥(X X A, g;v) C V*(X X A, g;v)
(where the first inclusion refers to p € Z). The subspaces B~°° C L°° C Y~ >° (unions over
all p) remain preserved under compositions (if weight and bundle data fit together) and the
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components of the principal symbols behave multiplicative. B~ is closed under parametriz
construction of elliptic elements. For the other classes this is not the case when we insist on
constant discrete asymptotic types in the Mellin and Green operators. However, if we enlarge
the classes by operators with continuous asymptotics, cf. [28], we get parametrices within the
respective classes .

Lemma 4.3.6 Let p(,) be an elliptic symbol of order p € Z, cf. (4.3.1), and let h be of
the form of a principal conormal symbol associated with p(,), assumed to be a family of
isomorphisms h(-,z) : E' — F' parametrised by z € iy, (such that the pair (pu),h) is
elliptic in the above mentioned sense with respect to the weight ). Then there is a (oy,0Mm)-
homotopy (pfu),hr)ogrgl through elliptic pairs, such that (p?u),ho) = (p(u),h), and p%u)
has the transmission property at the boundary and h'(z) = ¢I'(1 — 2)/T(1 — z — u) for an
isomorphism ¢ : E' — F' that is induced by the restriction ofp%“) to the points (r,y,7,n,\) =
(0,9,1,0,0).

Proof. First observe that when we have two (o, oar)-homotopies of elliptic pairs, the com-
ponentwise composition (defined, if the bundle from the image of the first factor fits to the one
of the domain of the second factor) is again a (o4, oar)-homotopy. To be more precise, we set
(p(u),hT)OST51 . (ﬁ(}/), hr)03r51 = (pfu)i)v(qu), (T_Vhr)hT)OSTS1 where (T_Vhr)(z) = hT(Z — I/).
Now, as is well-known, to each order p € Z there exists a homogeneous elliptic symbol with
the transmission property. Near the boundary we may set

T o (1-w()
= _— —1 —Umw P *
b(fu)(tayaTa”L)‘) . <X<Oé|7’],A|> |na)‘| ZT) |7':777>\| ideg

where x(7) € S(R) is a function such that supp(F,%,x) € R, x(0) = 1, and a >
sup{|(0-x)(7)| : 7 € R} a constant, cf. [9], or [21, Section 5.3], and w is a cut-off func-
tion and b(_,(x,&,A) = [§,A|7# - id;-pg for all z where 1 — w vanishes. To b_,) we
choose an h such that (b(,u),iNL) is an elliptic pair with respect to the weight v = 0, namely
h(z) := bI'(1 — 2)/D(1 — z + ), where b is the restriction of b(uy to (0,9,1,0,0). Assume for

a moment that (pab),hr)ggrgl is already found. Then

(Plys Vo< (b= 1) = (D by (TR R)o<r<a (4.3.14)

is a (oy,onm)-homotopy through pairs that are elliptic of order 0 and with respect to the
weight 0. Formula (4.3.14) reduces the construction of P(yy and h" (z) to the case of order
zero and weight zero. In other words, without loss of generality we may assume p = 0
and construct pf,) and h"(z) on I's. For simplicity, we consider the case of trivial vector
bundles E and F with fibre C. Set S*Y := {(y,7,n,A\) € T*X|y xR : |r,n,A| = 1}
and N := {(y,7) : y € Y,-1 < 7 < 1}, where 7 is the covector to the normal variable
t. Let us fix a diffeomorphism v : ¥ x (=1,1) = Y x I's, such that v(y,7) := (y,2(7)),
where z(7) € I'y and Imz(7r) — +oo when 7 — F1. Then the ellipticity of the given
pair (p(g), h) means that fO .= (P(0), v*h) represents a non-vanishing function on S*Y U N.
Setting p*(y) := p()(0,y, £1,0,0), we have h(y,z) = p*(y)g™ (z)+p~(y)g~ (2) +1(y, z) where
U(y,z) € C(Y, My 2°) for some e > 0. A trivial geometric consideration shows that there is a
homotopy (f™)o<r<1 through non-vanishing functions on S*Y' UN such that f! is represented
by a pair of the form (p%o), 1); here, we write f" = (py),9"), ie., p?o) = po), V'h=g¢° It
is also evident that the functions g” can be chosen in such a way that (v*)~1g" =: h" have
the form h"(y,2) = p"*(y)g™ (2) +p" (y)g~ (2) +1"(y, z) where p"*=(y) = p;)(0,y,%£1,0,0),
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ﬁ(y, z) € COO(Y,S(F%)), and l~1(y, z) = 0. Applying now a kernel cut-off argument to ﬁ(y, 2)
we can pass to a family I"(y, z) € C*(Y, M, °) such that

W (y,2) = p" " ()9 (2) + " (¥)g~ (2) +1"(y, 2)
is as desired, in particular, I'(y, z) = 0 due to ["(y, z) = 0. O

Theorem 4.3.7 Let A° € L#(X x A,g;v) be an elliptic operator, u € Z, g = (11,0,6),
v=(E,F;J_,Jy). Then there exists an L € Vect(Y) and a homotopy (,Zr)ogrgl through
elliptic elements in L*(X x A, g;v) forv=(E,F;J_®L,Jy ®L) such that A0 = A0 RY
(¢f. the notation in Theorem 4.3.4) and A' € B*(X x A, g;v).

Proof. Let (p(()“), hP) denote the pair consisting of the principal interior symbol and the prin-

cipal conormal symbol of A°. Then Lemma 4.3.6 gives us a (o, o7 )-homotopy (pfu) s hM)o<r<1

through elliptic pairs such that (p%“),hl) is a pair where p%ﬂ) has the transmission property
and h' is as in Lemma 4.3.6. To complete the proof it suffices to apply Theorem 3.3.2. O

4.4 Elliptic operators without additional conditions

In Theorem 4.2.8 above we have constructed elements D* in L*(X,g;v), g = (7,7 — i, 9),
v = (E, E), that are elliptic without additional boundary conditions. In general, if we start
from an arbitrary homogeneous principal symbol

Py TxE = X F (4.4.1)

on X, it may happen that there is no choice of bundles J_, J; on Y such that there is an
elliptic operator A € L*(X,g;v),v = (E, F;J_, J), where 0 (A) = p(,). This phenomenon
is well known for differential operators, cf. Atiyah and Bott [2], or, more generally, for
pseudodifferential boundary value problems with the transmission property, cf. [3], [29]. In
a forthcoming paper [31] we shall investigate the case of arbitrary symbols (4.4.1) (i.e., when
the transmission property is not necessarily satisfied).

In this section we want to show other general cases where ellipticity always holds, again
without boundary conditions.

Let X be a compact C*° manifold with boundary Y and 2X the double of X. We employ
notation from the Appendix, in particular, the reflection map € : 2X — 2X and the notation
2E for bundles E on X. Write 2X = X_ U X whereY = X_NX,, and By = 2E|x, .

Starting from an element A € L% (2X;2E,2E) we can form the continuous operator

A:L*(2X,2E) - L*(2X,E). (4.4.2)

We now apply the decomposition L?(2X,2FE) = L*(X,,Ey)®L*(X_, E_) and the operators
et : [?(Xy, Ey) — L*(2X,2E), r* : L*(2X,2E) — L*(X., E4). This transforms (4.4.2) to
the operator

rtAet t1tAe L2(X+7 E+) L2(X+7 E+)
A= <1"AeJr rAe) B - 9 :
¥(X_,E.) L*X_,E)

By substituting the reflection map ¢ : X_ — X, we get

_ L*(X,E) L*(X,E)

+ Aot + * ’ ’

B:= <€£rAZe+ ;rAZeEE*): > - o . (4.4.3)
L*(X,E) L*X,E)
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Theorem 4.4.1 A € L (2X;2E,2FE) implies B € L°(X;9; E® E,E® E) for g = (0,0, 0).
Moreover, the ellipticity of A is equivalent to the ellipticity of B.

Proof. Let AV € LY%(2X;2E,2F) denote the push-forward of A under ¢ : 2X — 2X. Then
e*r~Ae~e* = rt AVet, and Theorem 3.3.2 yields rt Ae~e*,e*r~Aet € Y}, (X,9;E, E).
Thus the first assertion is proved. To show the second one we first note that the ellipticity of A
is equivalent to the Fredholm property of (4.4.2) which is equivalent to the Fredholm property
of (4.4.3). Finally, B is Fredholm, if and only if B is elliptic with respect to (o (B),0a(B)).
Such a result is proved in [18] for boundary value problems of order zero, where operators
are also expressed by using r™ and et, modulo compact operators. O

Remark 4.4.2 The constructions for Theorem 4.4.1 can also be carried out in analogous
form for parameter-dependent operators with parameter X € A. Then the resulting B()\)
induces isomorphisms for sufficiently large |\|.

Given an elliptic operator (4.4.3) we can pass to an elliptic operator
B* := Bdiag(D*,D") € L*(X,g; E® E,E® E)

where D* is the operator from Theorem 4.2.8 for weight data g, := (1,0, 00). This yields a
Fredholm operator B* : W*#(X, E® E) — L*(X,E®E) in L*(X, 9,; EOE, E® E) without
additional conditions. Returning to the transmission situation we get a Fredholm operator

b gy WORGLEL)  LA(XLE)
A = <5*B%1” 6*5%2,1 6*> : ® - S ) (4.4.4)
2 22 WX B ) L*(X_,E.)

BN = (Béllj)ihi::hz.

Remark 4.4.3 The way to construct A* allows us to start from an arbitrary elliptic principal
symbol P,y : max (2E) — w35 (2E), mx : T*(2X) \ 0 = 2X, to form a zero order symbol
P(oy(x,8) == Dy (, &) || 7" idag and an associated operator A% € LY%(2X;2E,2E) and to pass
to an operator B® via Theorem 4.4.1. Then (4.4.4) is a Fredholm operator where

Uw(Bﬂ) = 17(“) T*X,\0> a¢(5*B§28*) = ﬁ(u)|T*X,\0- (4.4.5)

Here, the left hand sides of (4.4.5) mean the homogeneous principal symbols of corresponding
operators in L*(Xi,g,; Ex, By ).

4.5 A relation to the operator convention in Vishik-Eskin’s theory

As noted in the introduction there is a theory of pseudodifferential boundary value problems
of Vishik and Eskin, see, [36] or the book [5]. The transmission property of interior symbols
is not required in this framework. The operator convention, say, for operators Op(a) in the
half-space with symbols a(§) € S*(R¢) with constant coefficients, is

rt Op(a) : HY(R}) — H**(RY). (4.5.1)

Here R} := {z € R" : =z, > 0}, and Hg(]RT_:_) is the subspace of all u € H*(R™) such that

suppu C KT;_. Clearly, (4.5.1) is continuous for all s € R.
Our operator convention employs weighted spaces W*7 (R} ) = W#(R*,K*7(R;.)), and
we have continuous operators

1™ Op(a)e™ + Cy : W*T(RY) = W #7H(RY) (4.5.2)
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for all s € R Here, v € R is fixed, and C, is a suitably chosen operator with a kernel in
C>(R} x RY).

Let us now assume s = 7y > —%. Then there is a canonical identification Hg(@i) =
W#s(R%). Thus, for s —p > —1 we have Hj "(R ) WeTHs=E(RY ), and (4.5.2) takes the

form
rt Op(a)e™ + O : HO(]R ) — Hi™ “(R+). (4.5.3)

Let us give a construction for Cs when r := s — ,u ¢ 3 iIN. Form the n-dependent family

of maps d(n) : O+ - S(Ry), d() : ¢ — X eI, ¢ = (cor- . ),
where w is a cut-off function. Moreover, consider b(n) : H"(R;.) — CI'l+1 | where (b(n)v); :=
w5 [1] i=28Jv|,=0, 7 = 0,...,[r]. We then have d(n)b(y) € SR H (R, ), H"(Ry)) and
1—d(n)b(n) € SG(RI~; H™(Ry.), H5(R)). Note that d(n)b(n) is a Green symbol in Boutet
de Monvel’s theorey of type [r]+ 1. It can easily be verified that G, := Op,,(db) and 1 -G, =
Op, (1 — db) are complementary projections in the space W"(R*~*, H"(Ry)) = H"(R?),
where Op, (1 —db) : H*(R}) — Hg(@i) Now composing r* Op(a) in (4.5.1) from the left
with 1 — Gs_, gives us

1" Op(a) — Gs—,r* Op(a) : HS(EZ) — Hg_“(ﬁi)

which agrees with (4.5.3) when we set Cs = Gs_,r™ Op(a).

Appendix: Notation and miscellaneous

If @ C R" is an open set we let S#(Q2 x R?) = S#(Q2, x R]) denote the space of all symbols
a € C®(Q2 x R?) satisfying

sup |8O‘8’3 (y,m)| ()1 < o0 for all & € NJ and € N}
yEKﬁF
ner?

for any compact subset K of 2. The subspace of classical symbols S’} (€2 x R?) consists of all a
that admit an asymptotic expansion into homogeneous components, i.e., there exist functions
a(u—jy € C=(Q x (R? \ 0)) such that a,_j (y,rn) = r*~Ia,_; (y,n) for any positive r and
all (y,n), and for any N € N

N—-1
aly,n) — Y x(Mag—jy,n) € S*N(Qx RY),

j=0
where y € C*(R?) is a 0-excision function, i.e., x = 0 near n = 0 and x = 1 outside a
compact set.
In an analogous way we define the spaces Sé‘d) (R x Q x RY) and set

Sél)(KJr x Q x RY) := Sy (R x @ x R, coxps-

Occasionally we will require that symbols from S( ) (Ry x © x RY) have a certain exit-
behaviour for ¢ — 0o, namely
sup sup |950)0F a(t,y,m)|(t)~F ()7 < oo

teR ye KR
ner?
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for any compact set K and all indices «,3,k. That symbol space will be referred to as
5{?8 (Ry x Q x ]R%) (in case of classical symbols we also require the homogeneous components
to have a corresponding exit-behaviour in t).

In the above definitions, the dimensions of @ C R™ and R? or Ry x ©Q and R?, are
admitted to be different. In applications R? is replaced by R} x A or ]Rﬁn” x A, where n is
considered as the covariable to y C 2, T as the covariable to ¢t € R, , and A = R for some
[ € N, is an additional parameter space. Then we shall use notations as Sé‘c 1)(9 x R* x A),

Sél) (Ry x Q x ]Ri‘;" x A), and so on. This leads to the definition of parameter-dependent
pseudodifferential operators op(a)(A), which are given by

@M al) = [ ¢ Malw.n il dr, e CR@),
in case of a € Sé‘c 1)(9 x R™ x A), and similarly for a from other symbol spaces. Then
Lé‘cl)(Q x A) := {op(a)(A) +c¢(A): a € S&l)(ﬂ XR" x A),ce L™°(Q x A)}

where L=°(2 x A) =2 S(A,C>®(2 x Q)) consists of all integral operators having a smooth
kernel, depending rapidly descreasing on A.
In case of M being a smooth manifold (without boundary), we let Lﬁ:l) (M x A) consist of

all operators which, modulo L= (M x A), locally equal op(a)(A) with a € S(“d) (2 xR™ x A)
and  corresponding to local coordinates of M. Again, L=°°(M x A) = S(A,C>®(M x M))
consists of all Schwartz functions with values in integral operators with smooth kernel.
Throughout the exposition we let X denote a smooth compact manifold with smooth
boundary Y. We let {U;,...Un} be an open covering of X by coordinate neighbourhoods,
such that U; NY #QPfor j=1,... M <NandU;NY =0 forj=M+1,... ,N.
The corresponding charts are denoted by

XjZUj%QjXK+, j=1,..., M, XjZUj—>Ej, j=M+1,...,N, forEjg]R”.

By the collar theorem, without loss of generality we can assume that, for j,k = 1,... , M,
the transition diffeomorphisms

Kij = X,ch_1|Uij,c Ry x (Q] N Qk) - Ry x (Q] N Qk)

have the form ry;(t,y) = (¢, k};(y)) for diffeomorphisms s ; : Q; N Qg — Q; N Q.
We let Vect(X) denote the set of all smooth (complex) vector bundles on X, where the
transition maps near the boundary are assumed to be independent of the normal direction .
With X we associate the double 2X. This is a smooth closed manifold which is obtained
by glueing together two copies X4, X_ of X along their common boundary. We then let

€:2X =+ 2X

be the canonical reflection diffeomorphism which induces diffeomorphisms € : X, — X_ and
e: X_ — X4 (where Y = X4 NX_ remains fixed). Accordingly, to each bundle E € Vect(X)
we have its double 2F consisting of two copies Ey, E_ of E. The reflection ¢ induces bundle
isomorphisms e*: E, -+ FE_ande*: E_ = E,.

On 2X we have the standard distribution spaces, in particular, the Sobolev spaces H*(2X)
of smoothness s € R. Let r* denote the operator of restriction u +— ulint x of a distribution
uw on 2X to int X, where X is identified with X, and set H*(X) = {rtu: u € H*(2X)}.
Further, let e™ be the operator of extension by zero from X to 2X that is defiend as a map
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et : H*(X) — D'(2X) for all s > —1. Moreover, define Hi(X), s € R, to be the subspace
of all w € H*(2X) such that suppu C X = X,.

Analogously, for E € Vect(X), we have H*(2X,2E), H*(X,E), and H§(X, E).

Let Z denote the integer numbers, N the positive integers, Ny the non-negative ones. R
are the real numbers, R, the positive reals, R, the non-negative reals. The complex numbers
are denoted by C.

ForyeRwelet I, = {z € C: Rez =~} be a vertical line in the complex plane, which
occasionally is identified with R via v+ it — 7.

If E, F are Fréchet spaces, the set of all linear continuous operators £ — F' is written as
L(E,F). By E®;F we denote the completed projective tensor product of E and F, which
itself is a Fréchet space.

A smooth function w on R, is called a cut-off function if 0 < w < 1, w = 1 in a
neighbourhood of 0, and w has compact support.

A function x € C*(R?) is called a zero excision function of 0 < x < 1, x = 0in a
neighbourhood of 0, and 1 — x has compact support.

We let [-] denote a smoothed norm function, i.e., a smooth, positive function on R? (for
some ¢) such that [n] = || for |n| sufficiently large.
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