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Introduction

This paper is aimed at constructing a new pseudo—differential calculus on a class
of manifolds M with geometric singularities M’ C M, where M’ consists of edges
and corners (in a certain regular sense), and M \ M' is a C*° manifold. Simpler
special cases are manifolds with conical singularities or manifolds with smooth
edges (the latter ones are locally defined by wedges, i.e., Cartesian products
between model cones and open sets in an Euclidian space). As is known from
such situations, non—smooth configurations cause an enormous variety of new
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structures and “unexpected” analytical and topological difficulties, cf. [26], [5],
[31]. Special cases are C°° manifolds M with boundary M' = 0M; they can be
regarded as manifolds with edges M’, where R, (the inner normal to M’ with
respect to some Riemannian metric) is the model cone.

Pseudo—differential algebras on (in general, pseudo—) manifolds M with sin-
gularities are described by hierarchies of symbols that encode specific properties
of the operators near the singularities M' (apart from their “standard” struc-
ture on the C™ part M \ M'), in particular, additional operators of trace and
potential type on M’ (for dim M’ > 0), cf. [29], [32]. Classical elliptic boundary
value problems with or without the transmission property, mixed and transmis-
sion problems, and various types of crack problems belong to the realisations of
the calculus with edges, cf. [28], [11]. In the past few years elliptic operators
on manifolds with singularities have been intensely studied under the aspect of
the index theory, cf. [6], [7], or [34], [19], and the references there. The specific
nature of singularities in terms of typical differential operators needs precise
definitions that distinguish regular singularities from cuspidal ones, cf. [35]. In
the present paper we suppose the corner singularities to be modelled by regular
cones with base manifolds that are regular manifolds with edges.

Typical differential operators may appear as Laplace—Beltrami operators
for degenerate Riemannian metrics. Our corner singularities are generated by
iteratively forming cones and wedges. First, let X be a closed, compact C*
manifold, and let X2 := (Ry x X)/({0} x X) denote the cone with base X.
Further, let X := R, x X be the associated open stretched cone in a chosen
splitting of variables (r,z). Then, if gx(r) is a family of Riemannian metrics
on X, smoothly dependent on r up to r = 0, the Laplace—Beltrami operator on
X" to the cone metric dr? + r2gx (r) has the form of a Fuchs type operator (of
order u = 2), that is

A :r_“jéaj(r)<—r%>j, (0.0.1)

with operator-valued coefficients a;(r) € C* (R, Diff*~7 (X)) (here, Diff*(X)
is the space of all differential operators on X with smooth coefficients in its
natural Fréchet topology; all manifolds here are supposed to be locally compact
and paracompact).

Let B be a manifold with conical singularities B’ and B its stretched man-
ifold (that is, B’ C B is a finite subset, and B is locally near a point v € B’
modelled by X2 for a closed, compact C* manifold X, while B is a C* man-
ifold with boundary, modelled by R, x X near dB). We then have the space
Difff; .(B) of all differential operators of order x on int B with smooth coeffi-
cients that are of the form (0.0.1) locally near 9B. This definition is invariant
under diffeomorphisms of B, and Difff; , (B) is a Fréchet space in a natural
way.

Next consider a Cartesian product X x Q 3 (r,z,y) for an open set Q! C R?
with a wedge metric dr? + r’gx (r,y) + dy?, where gx(r,y) is a family of Rie-
mannian metrics on X, smoothly dependent on the variables (r,y) up to r = 0.
Then the associated Laplace-Beltrami operator on X" x ) is an edge—degenerate
operator (of order p = 2). By edge—degenerate we understand operators of the
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form

A= S agalny) (—r%)j(rDy)“ (0.0.2)

Jtlel<p

with coefficients ajqo(r,y) € C°(Ry x Q, Diff*~UFlel (X)), Let W be a (say,
compact) manifold with edge Y and W the stretched manifold associated with
W (precise definitions will be given below; roughly, W \ Y and Y are C*
manifolds, and locally near every point of the edge the space W is modelled by
XA x Q, while W is a C* manifold with boundary, locally near 8W modelled
by Ry x X x Q, @ C R? open, where X is a closed, compact C* manifold).
Let Difff:dge (W) denote the space of all differential operators of order p on int W
with smooth coefficients that are locally near OW of the form (0.0.2). This
is an invariant definition under a natural class of diffeomorphisms of W, and
Diff}.(W) is a Fréchet space.

The spaces M we are interested in are assumed to have a singular subspace
M' such that M \ M’ is C*°, and M’ contains a finite subset M", the set of
corners of M, such that M'\ M" is C*°, too, and V := M \ M" is a manifold
with edges M’ \ M". Moreover, the space M near any ¢ € M" is modelled by
a cone W2 for a compact manifold W with edges. Such an M will be called a
manifold with edge—corner singularities here. More details will be given below,
in particular, on the nature of transition maps belonging to different “singular
charts” on M.

By iteratively forming cones and wedges and gluing together the local pieces
we can define spaces with “higher” edge and corner singularities, generally called
manifolds with singularities (though such spaces are stratified and not necessar-
ily C' manifolds). Associated pseudo—differential algebras with symbol hierar-
chies as constructed in [32] are then also defined in an iterative way. Operators in
those algebras are said to be elliptic, if all components of the (operator—valued)
symbol tuples are pointwise bijective.

Solutions to elliptic equations are expected to have a specific asymptotic be-
haviour near the singularities of the configuration. Precise characteristations of
such asymptotics are known in many special cases, e.g., for conical singularities,
cf. [12], [22], [5], [28], edge singularities, cf. [24], [26], or corners in the sense of
[27], cf. also [27], [4], [30], [14]. The problem in general is open. Asymptotics
should be understood as a form of elliptic regularity, depending on an itera-
tive system of “spectral” data of operator—valued symbols with respect to the
various links of local cones and on further global data.

The main difficulty is connected with the fact that asymptotics depend on
the individual operator (analogously to “non-linear eigenvalues” A € C of a
meromorphic function A(\) of operators acting in a Hilbert space; those A are
just non-bijectivity points; for the moment, we simply talk about eigenvalues).
The operator functions may depend on additional edge variables y; so the eigen-
values A may be variable and of non—constant multiplicity with respect to y. A
calculus that is able to express asymptotics for elliptic equations in general has
to integrate all individual patterns of eigenvalues. This needs an efficient ap-
proach to encode asymptotics in distribution and symbol spaces. In our paper
we employ the concept of continuous asymptotics from [22], here extended to
our new algebra. In particular, discrete asymptotics belong to the framework,
described by meromorphic vector— and operator—valued functions. Asymptotics
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concern a neighbourhood of r = 0, where r € R is the axial variable of a local
(stretched) cone. The invariance of our formulations refers to a fixed system of
charts with transition functions of a certain specified nature. As a typical new
effect we describe in this paper the interaction of edge and corner asymptotics
near the corner points and characterise the nature of singular terms.

If M is a manifold with corners, V.= M \ M" is a manifold with edges
M'\ M", and we have the associated stretched manifold V. Since M is locally
near a corner point ¢ € M" of the form ([0,e) x W)/({0} x W) for some ¢ > 0,
we can identify V with (0,) x W locally near the corresponding “stretched
corner point”, and we then get a stretched manifold M to M by attaching the
sets {0} x W to V for every ¢ € M", i.e.,, M is locally near a stretched corner
point of the form [0,e) x W; this is an invariant construction. Now we have
a space Difff, . (M) of natural differential operators on M \ M’ defined by
the property to belong to Diﬁé‘dge (V) and to have (in the splitting of variables
(t,w) € [0,e) x W near stretched corner points) the form

w k
A=t by(t) (—t%) (0.0.3)
k=0

for certain operator—valued coefficients by, (t) € C*°([0,¢), Diffg(;g’é(W)). Opera-
tors (0.0.3) may be regarded as a “higher” version of Fuchs type operators. The
elements of Diftt, . (M) will be called corner—degenerate.

If we look at the splitting of variables w locally near OW into (r,z,y) €
X" x Q and take a Riemannian metric on (0,g) x X" x Q > (t,r,z,y) of the

form
dt* + 2 (dr? + r2gx (t,r,y) + dy?),

where gx(t,r,y) is a family of Riemannian metrics on X, smoothly dependent
on the variables (¢,r,y) up to t = 0 and r = 0, the associated Laplace-Beltrami
operator on (0,¢) x X x Q belongs to Diff% ([0,€) x Ry x X x Q) (for p = 2).
Corner degeneracy of an operator A means in this case that we can also write

A=t Y aj,m(t,r,y)<—rt%>j<—r§r>k(rDy)o‘ (0.0.4)

J+k+]ol<p

with coefficients ajkq (t,7,y) € C°°([0,¢) x R4 x Q, Diff#—U+k+lal (x)y,
In this paper we introduce an algebra of corner—degenerate pseudo—differential
operators A with a principal symbol hierarchy

o(A) = (0y(A),0n(A4),0¢(A))

consisting of triples of interior, edge and conormal symbols, respectively. The
elements of that algebra are 2 x 2-block matrix operators containing trace and
potential operators with respect to the edges M'\ M". In other words, far from
the corners the operators correspond to those of [29], while they are degenerate
here near the corner points. The lower right entries are cone pseudo—differential
operators on M’ in the sense of the cone algebra of [22], [28]. We study el-
lipticity of operators and get parametrices within the algebra. In addition, we
characterise scales of weighted spaces and subspaces with iterated edge—corner
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asymptotics and obtain regularity and asymptotics of solutions to elliptic oper-
ators in such spaces.

The program of this paper is as follows. In Chapter 1 we present the ele-
ments of the pseudo—differential calculus on manifolds with edges with param-
eters. Here, we freely use the tools from [29], see also [5]. An inspection of
the material from the case without parameters shows that most of the results
carry over to the parameter—dependent case (more details may be found in the
author’s joint paper with Maniccia [16]). For the corner theory below we need
some important refinements on asymptotic data that allow us to argue in terms
of Fréchet subspaces of the full edge operator algebra (with continuous asymp-
totics).

Chapter 2 develops the machinery of operator—valued symbols with asymp-
totics, referring to holomorphy or meromorphy in the complex covariable with
respect to the Mellin transform in the corner axis variable (the corner is re-
garded as a cone, where the base is a manifold with edges). This part of the
calculus, developed in Sections 2.1 and 2.2, contains simpler variants as special
cases, namely, when the base is closed and C* or when it is a compact mani-
fold with conical singularities. For the closed C*° case we recover corresponding
elements from the cone theory (see, e.g., [26], [29]); the case with conical sin-
gularities leads to the corner situation from [27]. In the present theory the
closed C*° case is realised in the subalgebra on M' that is a manifold with
conical singularities M". Another new element are the corner Sobolev spaces
with asymptotics that we investigate in Sections 2.3 and 2.4. In particular, the
structure of iterated edge—corner asymptotics is a feature that is respected un-
der the pseudo—differential action with meromorphic corner symbols. It is also
responsible for the nature of Green operators in the corner calculus.

Chapter 3 is devoted to the algebra of pseudo—differential operators on a
manifold with edge—corner singularities. According to the general ideas of es-
tablishing operator theories on stratified spaces, cf. [32], we obtain our algebra
as a conification of the edge algebra. Despite of the complexity of the edge—
corner calculus, many constructions are parallel to the “usual” cone theory, see
[26]. The parameter—dependent pseudo—differential calculus on a closed C'*°
manifold is formally replaced here by the parameter—dependent edge theory. In
other words, we verify that the conification concept really works in the case of
a cone when the base is a manifold with edges.

Observe that manifolds M with conical points and boundary are particular
manifolds with edge—corner singularities in the sense of this paper. The edge is
then the boundary M' = OM with its conical singularities M" (that are just
the corner points) and corner bases that are simply compact C° manifolds with
boundary. In this case our theory is a calculus of boundary value problems, see
Kondrat’ev [12] for the case of differential operators. The interior symbols are
edge—degenerate along the smooth part M'\ M" of the boundary. Special such
symbols (modulo smoothing ones) are symbols that are C* up to M'\ M".
Another (narrower, though interesting) class of interior symbols are those with
the transmission property at M’ \ M" which is just the assumption in [12] as
well as in the pseudo—differential algebra of boundary value problems in the
author’s joint paper with Schrohe [20], [21], based on the calculus of Boutet de
Monvel [3] (see also Rempel and Schulze [17]) and the cone algebra of Rempel
and Schulze [18] (see also [25],[26]).

Another special case of our theory are Sobolev type problems. Classical
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Sobolev problems are posed for elliptic equations in a domain like G \ C, where
G is an open set in R™ and C' a closed C*° submanifold of codimension > 1. On
C there are posed elliptic trace (and potential) conditions that can be viewed
as edge conditions. Problems of a similar type have been originally studied by
Sobolev [36] and later on in a certain operator algebra framework by Sternin
[37]. The case when C' is a manifold with singularities is interesting as well.
In particular, if C' has conical singularities, our calculus is a framework to get
parametrices and the Fredholm property to elliptic Sobolev problems.

Edge—corner singularities are very natural in various models of physics. For
instance, long—time asymptotics of solutions of boundary value problems to
parabolic equations in domains with edges can be expressed by our methods
where a variant for boundary value problems is to be employed, together with
an interpretation of the time as an (anisotropic) corner axis variable, see also the
author’s joint papers with Krainer [14], [13] concerning results in this direction
under other geometric assumptions.

As noted before our calculus as a cone theory for a base with edges employs
the parameter—dependent edge algebra. Tools of that theory may also be found
in Behm [2] and Dorschfeldt [4]. Parameters (in anisotropic form) may occur as
spectral variables in elliptic differential operators. If the operators are given on
a manifold with conical singularities, spectral parameters play the role of edge
covariables. This has been applied by Gil [8] for studying heat trace expansions,
using results of [27]. A similar program makes sense for operators on manifolds
with edges with the spectral variable as parameter.

Let us finally note that when B; are manifolds with conical singularities S;,
1 = 1,2, the Cartesian product M := B; X B; is a manifold with edge—corner
singularities 57 x S3. It would be interesting to investigate external products of
elliptic operators (or of complexes) on B; and B (say, for compact By, B2) and
to establish a Kiinneth formula for the index in terms of the theories of elliptic
operators on By, B and By x Bs.

1 Edge calculus with parameters

1.1 Cone asymptotics and Green symbols
A manifold W with edges Y C W is defined by the following data:

(i) W\Y and Y are C*° manifolds.

(ii) Every y € Y has a neighbourhood V' in W that is homeomorphic to a
wedge X2 x  for a closed compact C*° manifold X and an open set
Q CR?, ¢ = dimY; any such homeomorphism ¢ : V — X2 x  is said to
be a singular chart (near the edge).

(iii) Each singular chart ¢ : V — X2 x Q induces diffeomorphisms ¢ :=
elvyy VY = XM x Qand ¢ = ¢lyny : VNY — Q; furthermore, if
@ V = X2 x Q is another singular chart with V' N v # () the transition
map Popyt : XN x ¥ — X" x X is the restriction of a diffeomorphism
RxXxY 5> RxXxYtoX"xX; here, X := o (VNVANY), T :=
FVnvny).
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= R} x X is called the (open stretched) model cone of the corresponding
(open stretched) wedge X" x Q and X its base.

For simplicity, throughout this exposition we assume X to be the same for
all y € Y and the transition maps to only depend on y in a neighbourhood of
r = 0; here, (r,z,y) denotes the local splitting of variables in X" x Q.

A manifold W with edges Y gives rise to an associated stretched manifold
W that is a C*° manifold with boundary OW, where W \ 0W is diffeomorphic
to W\Y, and W is generated from W \ Y by attaching the sets {0} x X x
to V\'Y, cf. (ii); this is an invariant construction. Then OW is an X-bundle
on Y. For references below we fix a collar neighbourhood = [0,1) x OW of OW
in W with the normal variable r € [0,1) and a function h € C*°(W \ OW) that
is strictly positive, where h = r for 0 < r < € for some 0 < ¢ < 1.

We now formulate operator—valued symbols on an open set U C RP with
values in a space of so—called Green operators on X" that encode a part of the
asymptotic information of our wedge operator calculus.

The symbols refer to weighed Sobolev spaces X7 (X /\) s 7 € R, that are de—
fined as follows. First consider the Mellin transform (Mu) fo ) dr
acting on (vector—valued) distributions u(r) on Ry belonglng to spec1ﬁc spaces
that become clear in the context. In particular, we may take u € C§° (R, C*(X)).
Let L% (X; R') denote the space of all classical parameter—dependent pseudo—
differential operators on X of order u, that is, the local symbols are classical
with respect to the covariables (¢,)) € R** n = dim X, and L=°(X;R) :=
N, L& (X R) = S(R!, L=°°(X)), where L~°°(X) is identified with C*°(X x X)
via a chosen Riemannian metric on X. We employ the known fact that for every
€ R there exists an element R*()\) € LY (X;R') that induces isomorphisms

RM(N) : H¥(X) — H*M(X)

between the standard Sobolev spaces on X of smoothness s, for all s € R and
AeR.

Set I's := {z € C: Rez = B} for f§ € R. Then H*7(X") denotes the
completion of C§°(Ry,C*°(X)) with respect to the norm

1 s . e
{2—7”. [ i <Imz>(Mu>(z>||iz<X>dz},
LH77

where R*(9) € LY(X;R,) is an element that induces isomorphisms in the
Sobolev spaces on X (dlfferent choices of such order reducing families give rise
to equivalent norms). We now define

K7 (XM) = {wu+ (1 —wv: ue MY (XM, ve HE, (XM}

Here, w(r) is a cut—off function (that is, @ € C§°(Ry) and w(r) = 1 in a
neighbourhood of r = 0), and HE . (X") is the subspace of all v € HE (R x
X)|x~ such that (x*) Lo(z)(1 — w(r))v € H*(R"!) for every ¢ € C®(X)
supported in a coordinate neighbourhood U on X, for any diffeomorphism y :
Ry x U — Ry x X of the form x(r,z) = (r, x1(z)) for a diffeomorphism x; :
U — X to an open set ¥ on the unit sphere S™ in R**!.

If a Fréchet space E is a (left) module over an algebra A, the completion

of {ae : e € E} in E for an a € A is denoted [a¢]E; in an analogous sense
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we understand Ela] or [a]E[b] when E is a right or two—sided module over A.
Moreover, if Ey and E; are Fréchet spaces embedded in a Hausdorff topological
vector space H, we endow Ey + E; = {eg +e1 : ey € Ep,e; € Ey} with the
Fréchet topology from the bijection Ey + Ey = Ey ® E1 /A, A= {(e,—e) : e €
Ey N E1}, where the space on the right is taken in the quotient topology. We
then call Ey+ E; the non—direct sum of Fréchet spaces. In particular, if Ey and
E, are Hilbert spaces, also Ey + E; is a Hilbert space under the identification
with the orthogonal complement of A in Ey ® E;.

In this sense we can write K%7(X") = [w]HS7 (X)) + [1 — w]HE, . (XM).

The spaces H®7(X") and K%7(X") are systematically employed in [26], see
also [29]. We have

KO0(XM) = HOO(XM) =7+ 2 LA(Ry x X) (1.1.1)

with L2(Ry x X) being taken with the measure drdr, dz associated with a
Riemannian metric on X. We will mainly consider the spaces X*7(X") on the
infinite cone. Note that wrk*7(X") = wK*19(X") for every s,7v,6 € R
Moreover, setting ky : u(r,z) — )\nTHU()\T, x), A € Ry, we have a strongly (in
A € Ry ) continuous group {kx}aer, of isomorphisms

Ra s KPT(XN) = K57 (XY

for every s,v € R.

If E is a Hilbert space and {xx}xer, a strongly continuous group of isomor-
phisms, ky : E — E, A € Ry (such that kxkx = Ky for all A, X' € Ry and
k1 = idg), we say that F is endowed with a group action. More generally, if
a Fréchet space E is written as a projective limit of Hilbert spaces @jeNEj,
with continuous embeddings E7t! < EJ for all j, and if {k\}rcr, Is a group
action on E° that restricts to group actions on E7 for all j, we say that E is
endowed with a group action. We also admit the case E = CV; then the group
actions are always supposed to be of the form kye := A%, e € E, for a certain
a € R\ {0} (the value of « is given by the context). If group actions {kx}rer,
and {px}xrer, are given on spaces E and F, respectively, on E & F we choose
the group action diag(kx, ), defined by u ® v — Kk u @ pyv for all u € E,
veF. B

Let (E,{kr}rer,) and (E,{Rr}rer,) be Hilbert spaces with fixed group
actions. Then

SH(U x R%; E, E) (1.1.2)

for U C RP open, u € R, denotes the subspace of all a(y,n) € C*®(U x
R?, L(E, E)) such that

||%(n1>{D3Dga(y, MYemylle ) < e~V

forevery a € NP 8 € N! | y € K, for arbitrary KU, n € R?, with constants
¢ =c¢(a,B,K) > 0. The best possible constants form a semi-norm system in
the space (1.1.2) which is then a Fréchet space.

If S(“N)(U x (R? \ {0}); E, E) denotes the set of all f(y,n) € C=(U x (R \
{0}); E, E) such that f(y,\n) = /\“%Af(y,n)n;\l forall A € Ry and all y € U,
1 # 0, we have

xS"M(U x (R4 \ {0}); E,E) C S*(U x R%; E, E)
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for every excision function x(n) € C*°(R?) (that is, x(n) = 0 in a neighbourhood
of =0, x(n) =1 for |n| >cf0raconstantc>0)

Let SH(U xR%; E ,E) denote the subspace of all a(y,n) € S*(U x RY; E, E)
such that there are elements a(,_j;)(y,n) € S 9(U x (R? \ {0}); E, E),jeN,
satisfying.

N

rn(y,m) = aly,n) = x(m) Y ag—j(y,n) € S* V(U x R E,E)  (1.1.3)
7j=0

for all N € N, where x is any excision function. The semi—norms of the (uniquely

determined) a(,—;)(y,m), j € N, together with the semi-norms of remainders

rn(y,n) in (1.1.3) can be taken as a semi-norm system in S% (U x R?; E, E)
such that this space is Fréchet.

If a definition or relation makes sense both for non-classical or classical
objects, we write “(cl)” as subscript. If E or E are Fréchet spaces with group
actions, we can also define S(“ y(UXRGE ,E) in a reasonable way, cf. [32]. In

particular, if F is a Hilbert, E/ y_ ]eNEJ a Fréchet space, we have continuous

embeddings S, (U x R?; E EItLY o Sy (U xR E ,E7) for all j, and we then
set

Sty (U x RY E, B) :=lim St (U x RY; B, EY).

The pseudo—differential calculus on a wedge X" x Q> (r,z,y) is a calculus
with operator—valued symbols that refer to spaces

E=K"7XNeC-, E=K"""*XNaC+ (1.1.4)
for all s € R, and fixed v € R, with the group actions

diag(rx, ¢x) (1.1.5)

with the above—mentioned k) and gy e := A Fefore e O, ) € Ry (recall that
n = dim X). In the present section we replace E by suitable Fréchet subspaces
with (discrete or continuous) asymptotics in the first component. The subspaces
K37(X") of K#7(X") depend on chosen asymptotic types P, associated with
weight data (7,0) and a “weight interval” @ = (¢, 0] for some —oo < ¢ < 0.
We first have the space of functions of “flatness ©” relative to the weight

K& (X") = lim o507 7775 (X7)

(clearly, K&7(X") = K®°°(X") for infinite ©). Given any B C R we set
Sp={2z€ C: Rez € B}. Let As(X,g°) for g = (v,0) denote the set of all
so—called discrete asymptotic types

P = {(Pjamj;Lj)}ogjgN, (1.1.6)
where N = N(P) < oo and N(P) < oo for finite ©, defined by the fol-
lowing properties: mcP := {p;}lo<j<n C S(nTH7W+197nT-H7,Y) for n = dim X,

Rep; - —o0 as j — oo for N(P) = 00, m; € N, and L; C C®(X) a finite-
dimensional subspace. We also admit the trivial asymptotic type © as an ele-
ment of As(X,g®) characterised by mc© = 0.
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We then define K37 (X ") to be the subspace of all u(r,z) € K*7(X") such
that there are coefficients ¢jr(«) € L;j, 0 <k <mj, 0 < j < N, such that in the
case © = (—00,0] for every 0 < § < —d there is an M (f) such that

M mj;

u(r,z) — w(r) Z Z cjk(x)r~Pi logh r € KSTHA(X )

=0 k=0

for all M > M(B), where w is an arbitrary cut—off function. For finite @ we
similarly require u(r,z) — E;.V:O Sidocip(x)r~Piloghr € K§Y(X") for N =
N(P).

Next we describe what we understand by continuous asymptotics, first for a
finite weight interval ©.

If U C Cis an open set and E a Fréchet space, A(U, E) denotes the space
of all E—valued holomorphic functions in U. Further, if K C C is any compact
set, A'(K, E) denotes the space of all E-valued analytic functionals carried by
K. Both A(U, E) and A'(K, E) are considered with their corresponding natural
(nuclear) Fréchet topologies. Let V defined to be the system of all closed subsets
V € C such that VN {z: ¢ < Rez < ¢} is compact for every ¢ < ¢, and
V=VIi={z=0-XNz+A21: 20,21 €V with Rezg = Rez;, 0 < A < 1}.
Given a compact set K € V contained in {z : Rez < %L — 4} we form the
space A'(K,C* (X)) and set

Ex(XM) = {w(r){Cuw,r™™): € A(K,C™(X)} (1.1.7)

for a fixed cut—off function w(r). The space (1.1.7) is contained in K7 (X").

Let Ms denote the weighted Mellin transform, defined by (Msu)(z) =
M(r~%u)(z + 6). Then, for 6 < v — % we get a subspace M;(Ex(X")) C
A(C\ K,C*>(X)) that is isomorphic to A'(K,C°(X)); thus there is an iso-
morphism Ex(X") =2 A(K,C*(X)). Write u ~ v for u,v € Ex(X") if
u—v € Kg'7(X"), andlet P = Ex(X")/ ~ be the quotient space with respect to
this equivalence relation. Then P is called a continuous asymptotic type associ-
ated with the weight data g = (7, ©). Observe that when K € V is another com-
pact set, K C S(—o0,mf1 ) Such that KNS 4y o) = KN St 40,00)
we have Ex (X)) ~ = Ez(XN)/ ~, ie., we get the same P. Let ¢ P denote
the closure of the set mcP := K N S(HTH_7+19700). Moreover, define As(X,g) to
be the set of all P, associated with the weight data g.

Now we set

K37(XM) = Kg7(X") + Ex(XN) (1.1.8)

for any K as before. This space is independent of the specific K. We endow
(1.1.8) with the Fréchet topology of the non—direct sum, cf. [26].

To extend the definition of continuous asymptotics to the infinite weight
interval (—oo, 0] we first observe that every P’ € As(X,g’) for ¢’ = (v, (¥,0])
induces an element P € As(X,g) for g = (7, (¢,0]) whenever ¢’ < ¢, and there
is then a canonical continuous embedding K3/ (X") — K37 (X").

Given an element V € V, V C S(_Oo7n+1_7) we can form a sequence Vj :=

2

vn S(nTH7,7+,§k’OO), k € N, for any sequence (Jy)ren such that ¥x1 < U <0
for all k¥ and ¥ — —oo as k — oo. Let g, = (v, (¥,0]), and denote by
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Py, € As(X,g,,) the asymptotic type associated with Vj, and g,. We then have
continuous embeddings K/ (X") < KB (X") for all k, and we set

KB'(X7) :@keNK;:(XA)- (1.1.9)

Here, P stands for the equivalence class of sequences Py € As(X gi), k € N.
Equivalence to another sequence Py € As(X,§,), Gx := (7, (9, 0)), of analogous
structure means that (Pk)keN comes from the same V as (Py)ren. It can easily
be verified that (1.1.9) only depends on the equivalence class of such a sequence.
Let As(X, (v, (—00,0]) denote the set of all P arising in this way. Let us set
V = wcP for the set V € V associated with P. The trivial asymptotic type ©
characterised by mc©® = () belongs to As(X,g) also in the set—up of continuous
asymptotics.

Observe that for P € As(X,g), g = (v,0), O finite, an element u €
K#7(X") belongs to K37 (X") if and only if for any compact K € V such
that KN Susr Ly ) = mcP thereisa ¢ € A'(K,C*(X)) such that u(r,z) —
w(r)(¢,r %) € K§7(X"). For © = (—o0, 0] the property u € K37 (X") is equiv-
alent to the existence of a sequence (; € A'(K;,C>*(X)), j € N, for compact sets
K; CC, jeN, sup{Rez: 2z € K;} = —00 as j — oo, where J;cn Kj = mcP,
such that to every 8 > 0 there is an M (8) such that

Z (¢,r %) € KSR (XM) (1.1.10)
j=0

for all M > M (B) and any cut—off function w.
Let P € As(X,g) (or € As(X,g*)) for g = (v,0), and set

SHXM) == [WIKF (XM + 1 — w]S(R;, C* (X)) (1.1.11)

in the Fréchet topology of the non—direct sum. Here, use the fact that for every
P there is a sequence of Hilbert spaces E7, j € N, with continuous embeddings
Eitl « Bi —y EY = K37 (X") for all j, such that

Sp(X™) = lim jen (11.12)

and (Ej);jen can be chosen in such a way that {kx}rer, on K*7(X") restricts
to a group action on each E7, j € N. This allows us to form symbols taking
values in spaces (1.1.12)

In the following, for abbreviation we will write “P € As(X,g(*))” instead of
“Pe As(X,g) or P € As(X,g°*)”.

Applying the general notation in connection with operator—valued symbols
we then get the spaces

SM(U x RY; E, E) (1.1.13)
for
E:=K"XMNeU-, E:=8"X"aoU+, (1.1.14)
P e As(X, k™), k = (y — 11,0), as well as

SH(U x RY; F, F) (1.1.15)



1 EDGE CALCULUS WITH PARAMETERS 12

for
Fi=K" XN e O+, F:=8;"(X"aC-, (1.1.16)

Q € As(X, 1), 1= (~7,0).

Incidentally, it will be convenient to assume asymptotic types P to fulfill the
“shadow condition”. By this we understand the property p € ncP = p—j €
mcP for all 5 € R such that p—j € S(nTH7W+197nTH7V) (where P is associated

with the weight data (v, (¢, 0])).
Definition 1.1.1 An element

gly,m) € () CF(U x R, LK™ (X") @ T, K77 H(X ") & C+))
seR

is said to be a Green symbol with asymptotics of type (P,Q) € As(X,k(')) X
As(X, 1) if g(y,n) belongs to the space (1.1.13) with respect to diag(kx,@x)
in the spaces, cf. formula (1.1.5), (1.1.14) and g*(y,n) belongs to (1.1.15) with
respect to diag(ky, py ') in the spaces (1.1.16) for all s € R, where * denotes the
(y,n)—wise formal adjoint.

The formal adjoint is given by (gu,U),CO'O(X,\)G%CJ-+ = (u,g*v)Ko,o(X,\)@Cj,
for all u € C§°(XN) @ TU-, v € CP(XN) @ T+, Let RE(U xR, g;5_,j+)p0o
for g = (v,7 — u, ©) denote the space of all those g(y,n). For j_ = j; =0
we simply write R, (U x R?,g). Moreover, Ri2(U x R?,g;j_,j;+) denotes the
union of all spaces R (U x RY,g;j_,j+)po over P € As(X, k), Q € As(X,1);
analogous notation is used with g® when the union refers to discrete asymptotic

types.
For purposes below we introduce the subspace of all flat elements

REWU xR, g;w)o = REWU xR, g;w)e,e, (1.1.17)

where O are the trivial asymptotic types in As(X, k) and As(X, 1), respectively,
while w := (e, f;j—,j+) are dimension data with the meaning that upper left
corners are f x e—matrices, while j_ is the number of trace entries, j; is the
number of potential entries in the corresponding block matrices. Similarly, to
generalise the above—mentioned notation to the f x e-matrix—valued case, we
have the spaces

R&(U x RY,g;w)pq (1.1.18)
for arbitrary P € As(X, k) and @ € As(X,1).

1.2 Mellin edge symbols

We now briefly formulate other essential ingredients of the edge symbol calculus.
First we look at smoothing Mellin operators with asymptotics.
Given an element f(r,r',z) € C®°(R4 x Ry, LE (X I'y_.)) we set

opyy (FHulr) = My My s f(r,r' 2)u(r')}

o0 . dl
s [[(Z) ey T a2
r, 0

1

-
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first defined for u € C§°(Ry,C>°(X)) and then extended to weighted Sobolev
spaces. The right hand side makes sense as an oscillatory integral. For v = 0
we also write op, (-) instead of op9, (-). Note that op},(f) = r? opy (T~ f)r=7
for (T77f)(2) = f(z =)

Let As®(X) denote the set of all sequences

R ={(rj,n;,Gj)}jew

such that mcR := {r;};ez C C intersects S . in a finite set for every ¢ < ¢/,
Rer; — Foo as j = +oo, n; € N, and Gj C L™ *°(X) is a subspace of finite
dimension (for G; = {0} we will ignore the corresponding triple in R; we admit
mcR to be finite or a set infinite on one side). The elements R € As®(X) are
called discrete asymptotic types for Mellin symbols. Given a closed set A C C, a
function x € C*°(C) is said to be an A—excision function, if there are 0 < g9 < &1
such that x(z) = 0 for dist(z, A) < g9 and x(z) =1 for dist(z, A) > ;.

Define M;*°(X) to be the space of all f(z) € A(C\ ncR,L *°(X)) such
that

x(2)f(2)|rs € S(Ts, L™7(X))

for every mc R—excision function x(z) and all § € R, uniformly in ¢ < Rez <
¢’ for every ¢ < ¢, and f(z) is meromorphic with poles at all r; € m¢cR of
multiplicity n; + 1 and Laurent coefficients at (z — r;)~(**1) belonging to G,
for all 0 < k < &; and all j. We consider the space M;>°(X) in its natural
Fréchet topology.

The elements f € M;,*(X), R € As®(X), play the role of symbols of
pseudo—differential operators on Ry x X of the form Opé\Z( f) for RNy _3 = 0.
If w(r), &(r) are cut—off functions, we get continuous operators

wopy, * (1@ : K (XN = SH(X™) (1.2.2)

when RN Lo = 0, for all s € R and every P € As(X,g°), g = (7,9),
with some resulting @@ € As(X,g*®); here, © is an arbitrary weight interval.

Analogous relations are needed for continuous asymptotic types. Let us start
from a compact set K € V, and choose a ( € A'(K,L °°(X)). Then, setting
u(r) = w(r)(Cw, "), we have fi(z) := Msu(z) € A(C\ K,L™°(X)) for any
0 € R such that K C {z: Rez < % — 0}, and fk is independent of the choice
of 0. This gives us special examples of symbols for Mellin pseudo—differential
operators.

In general, let V' € V be arbitrary and set V. o = V NS, o for ¢ < ¢'. Then
M;,°°(X) denotes the subspace of all f(z) € A(C\ V,L *°(X)) such that for
every ¢ < ¢ there is an element (. € A'(V, o, L~*°(X)) with the properties

re,er(2) = f(2) = fv, . (2) € A(S(c,ey, L (X)),

and 7 . (2)|r, € S(Ig, L~*°(X)) for every ¢ < 8 < ¢/, uniformly in c+¢ < 3 <
¢’ — e for every ¢ > 0.

To indicate a relation between V' € V and asymptotic phenomena in the cal-
culus below we identify V with a set As(X) of so—called continuous asymptotic
types R for Mellin symbols. Although for the moment this is only another nota-
tion for V, we keep in mind the connection with the range L~=>°(X) of analytic
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functionals; later on we will employ analogous relations for manifolds X with
edges and then integrate further non—trivial information from X.

In other words, instead of M, °°(X) we now write M (X) for R € As(X)
and set V =: mcR.

The space My °°(X) is Fréchet in a natural way. Note that for S € As®(X)
we have a continuous embedding Mg ™ (X) — M;°(X) when R € As(X) is
defined in terms of W := mcS. Let M °(X) (M,3% (X)) denote the union of
the spaces M (X) over all R € As(X) (€ As®(X)) with the inductive limit
topology.

Incidentally, to express a relation for discrete or continuous asymptotic types
for Mellin symbols, we write R € As'® (X) if R € As*(X) or R € As(X).

Given an element f(r,r',z) € C®°(R; x Ry, M;,*(X)) for R € As!®(X),
mcR N I‘nTJrlﬂ = (), for every P € As(X,g(®), g = (v,0) there is a Q €
As(X,g®) such that (1.2.2) is a continuous operator for all s € R.

We now pass to a class of operator—valued symbolsin (y,n) € UxR?, U C RP
open, with values in operators of the form (1.2.2). For notational convenience
we give formulations for continuous asymptotics. The discrete case is completely
analogous.

In the following constructions w;(r), ¢ = 0,1, ... will denote arbitrary cut—off
functions. Moreover, let n — [n] be any function in C*°(R?) such that [n] > 0
for all n € R? and [n] = |n| for all |n| > ¢ for some constant ¢ > 0.

Let

Rja,Qja S AS(X), mchaﬁFnTﬂf :ﬂ-(cQjaanTﬂiéja =0 (1.2.3)

Via
for weights vjq,0j0 € R, 0 < j <k, where
VZYa2v=J V20 27-j  0<j<k (1.2.4)
for some reference weight v € R. Choose elements
fialy) € CF(U, Mg 2(X)),  hjaly) € CF(U, My 7 (X)) (1.2.5)

for0<j<kand a e N, |af <j. Here, k € N is fixed and connected with the
length of a weight interval © = (—(k + 1), 0].
We then form the operator functions

mja(y,n) ==~ wo(rln)r fops ™ 2 (fia)(y) +opyy 2 (hjaxy)}n%l(gn >6)

that are C* in (y,n) € U x R? with values in the space of continuous operators
K57 (XN) = Koo #(XN), for all s € R and all j.
By virtue of mjq (y, \p) = MIHl g m, (y,n)eyt, for all X > 1, || > ¢,
we have mjqo(y,n) € Sffﬁla\ (U X RI; K7 (X)), KOT=H(XN)) for every s € R.
Given weight data g = (v,7 — 1,0) for v,u € R and © = (—(k + 1),0],
k € N, we define R, +q(U x R?,g) to be the space of all operator functions
m(y,n) + g(y,n) for arbitrary g(y,n) € R (U x R?, g) and

k
my,m) =Y Y mjal(y,n) (1.2.7)

J=0Ja|<j
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for mja(y,n) of the form (1.2.6) with arbitrary fja(y), hja(y) and vja, 6ja
defined by (1.2.5), (1.2.3) and (1.2.4).

Given an element (m + g)(y,n) € Ry, (U x R?,g), where m(y,7) has
the form (1.2.7) with summands (1.2.6) and g(y,n) € RE(U x R?,g), g =
(v,vy—1,0), © = (=(k + 1),0], we set

o) (m+9)(y, z,m) == Z (fia(y,2) + hjaly, 2))n" (1.2.8)
le|<j

and o (m + g) = (05\]} (m + g))o<j<k- Let PI(n) denote the space of all
polynomials of degree j in 1 = (n1,...,7,). Then o) is a linear map

k
oy : Rhy o(U xR, g) - @ C®(U, MAZ(X)) ® PI(n). (1.2.9)
j=0

Remark 1.2.1 The map (1.2.9) is well-defined, i.e., independent of the specific
choice of decompositions fja +hja, weights Yja, djo in (1.2.6), cut—off functions
wo, w1 and of the function [n]. We have kero(yry = Ri5(U x R?, g).

Thus, without loss of generality we may (and will) normalise the choice of

weights v;o and dj, in (1.2.5) by setting

1 2

e P 1.2.10
for 0 < |a| <j,1 < j < k. Moreover, we fix the cut—off functions wy and w; as
well as the function [n]. Furthermore, to single out convenient spaces of Mellin
+ Green symbols we form a Mellin asymptotic type R € As(X) by setting
V = mcR = UOS\aISj(”CPja U mcQja) when m is given in terms of m;, by

1<j<k

(1.2.7). Applying a Cousin decomposition argument we find asymptotic types
Ry, Ry, Ry € As(X) such that ncR; C wcR for 0 <i < 2 and

Yja =7 —

mcRo N FHTH—’Y =acRi N FHTH—(’Y—%) = nmcR> anTJrl_(,Y_g) =0
and elements fO(yaz) € Coo(U, MEOOO(X))a fja,i(yaz) € Coo(Ua MEZOO(X))a i =
1,2, such that

o\ (m)(y,2) = foly,2),

o w2 = 3 (fian:2) + fian(y, )0
| <j

Now, if we start from R € As(X) where n¢R = ncR; U mcRs and prescribe
Ry € As(X), to every tuple of elements

foe CF (U M2 (X)), fialy,2) € C(U, Mg~ (X))

la| < j, 1< j <k, we find decompositions fjo = fja,1 + fja,2, Where fijn; €
C®(U,Mp> (X)), i =1,2. Setting

k
m(y,m) = r~"wo(r[i) opy; * (Fo)w)wn (rli)) + 17 D17 > wo(r[])

i=0 Jal<y

_1_ 2

{003 ¥ T (fja)®) + 003 * F(fja2) @) wi(rln])  (1.2.11)
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we have

oy (m) = {fo(y,Z), ( > fja(y,z)n“)

1<'<k}'
o <3 ==

It can easily be proved that there are asymptotic types P € As(X, (v — u, 9)),
Q € As(X,(—v,0)) such that when we take oy (m) and choose any other

decomposition fjo = fja,1 + fja,2 of analogous kind and form m(y,n) similarly
to (1.2.11), we have

m(y,n) —m(y,n) € RG(U x RY,g)pq. (1.2.12)

To admit more general Green summands g(y,n) in expressions (m + g)(y,n) we
choose mc P and mc@ so large that we also have g(y,n) € RE(U x R?,g)p. If
those P, @) contain the minimal ones in the sense of relation (1.2.12), we call the
asymptotic types (Ri, Re; P,@) compatible. It is obvious that every element
a(y,n) € R”M+G(U x R?, g) is contained in a sum of vector spaces

Ry q(U xR, g)1 + Ry (U xR, g)o, (1.2.13)

where Rl (U x R?,g); is defined to be the set of all m;(y,n) + g(y,n) with
o) —00 k (o) —00 j

o (mi) € C(U, Mg*(X)) & @F_, C=(U, My (X)) 0 Pi(n) and gly,) €

RE(U x RY,g)p,q, for a suitable choice of asymptotic types (R, R1,Ra; P, Q)

with compatible (R;, Ra; P, Q). To have a notation for the considerations below

we define Asprya (X, g) to be the set of all such tuples S := (Ro, Ry, Ro; P, Q)

and denote by Ry, , (U x R?, g)s the space (1.2.13).

Let Riy;, (U x R?;g;5,j1) denote the space of all 2 x 2-block matrix
operator functions of the form (¢ §) (y,n)+g(y,n), where m(y,n) € Ry, (U x
]Rqag) a‘ndg(yan)ERLGL'(UX]Rqaga]—7]+) _

Let us set S7(X") = [W]K>®7(X") + [1 — w]S(R4+,C>®(X)) for any P €
AS(X, (+,0)).

Theorem 1.2.2 a(yﬂ?) € ,R’NM-i-G(U X Rq,g;j,7j+) for g = (’777 - /L,@), 0=
(—=(k+1),0], implies

a(y,n) € S4(U x R'; E, E) (1.2.14)

for E = K" (XMN @ C-, E = SY(X") & U+, s € R, as well as for E =

K (XM eU-, E = Sy XM @ T+, s € R, for every P € As(X, (v,0))
with some Q € As(X, (v — i, 0)), dependent on P and a.

For the Green summand the assertion is part of Definition 1.1.1, while for
the Mellin operator family we have (y,n)—wise the desired mapping properties,
with smoothness in (y,7), and the summands in (1.2.7) are ky—homogeneous of
degree p — j + |a| in n for large |n| which entails the result for Mellin terms.

1.3 The edge symbol algebra

The parameter—dependent edge calculus relies on edge—degenerate symbols in
local wedge coordinates (r,z,y) € Ry x X x Q for open ¥ C R*, 2 C R?, with
covariables (p,&,m) € R**"T¢ and a parameter A € R'. Since symbols make
sense for arbitrary dimensions of variables and covariables, we first replace (2
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by an open set U C RP, admit ¢ := (r,r') € (Ry)? and omit A. Later on, if
parameters play a role, instead of n we write (n,A), i.e., replace g by ¢ + L.
Let S5 ((R4)? x & x U x RM™+1) 4, denote the subspace of all

p(t,x,y,g,f,n) S Sétl((]R_F)z XY x U x ]R1+n+q)

such that there is a p(t,z,y,0,&,n) € SH((Ry)? x £ x U x RM*7H7) for which
p(t,z,y,0,&n) =t z,y,70,§,m0).
Let {Gj}1<j<n be a covering of X by coordinate neighbourhoods, let x; :
G; — X be charts, {p;}1<j<n a subordinate partition of unity, and {¢;}1<j<n
another system of functions ¢; € C§°(G;) such that ¢;1¢; = ¢; for all j.
Given symbols

pi(t,z,y,0,6,m) € SH(R4)? x T XU x R ) qpe, 1< <N, (1.3.1)

we can form (¢,y, 0, 7)—depending operator families

p(t,y,0,m « 0P, (pj) (t, Y, 0, M5 (1.3.2)

||Mz

Here op, (a ff el@=2")8q(x &)u(z') dz'd¢, when a is any symbol in (z, €).

Set L~ °°(X (R )% x U x ]R{H‘q) = S(R,C®((Ry)? x U, L=>°(X))), and
let L (X; (Ry)? x U x R 7)444e denote the space of all operator functions of the
form p(t,y, 0,n) + c(t,y, 0,n), where p is given by (1.3.2) for arbitrary symbols
(1.3.1) and c € L™°(X, (Ry)? x U x R**9).

Froma(r,r',y, 0,n) € L (X; (Ry)?xU xR ) eqge we can pass to op,.(a)(y,n)
(op,.(+) is the pseudo—differential action on R} with respect to the Fourier trans-
form on R) and get op, (a)(y,n) € C°(U, LL (X" R?)).

To organise a pseudo—differential algebra on the wedge Ry x X xQ with edge—
degenerate symbols (1.3.1) such that the associated operators act in weighted
Sobolev spaces and respect asymptotics we will modify the families (1.3.2) by
smoothing elements of the class L=°(X; (R;)? x U x R'T?) such that the re-
sulting new families have a holomorphic extension to the complex plane with
respect to .

To this end we introduce the space M{(X;R?) of all functions h(z,n) €
A(C, L (X,R?)) that have the property h(z,n)|r, € L5 (X;Ts x R?) for each
B € R, uniformly in ¢ < 8 < ¢ for arbitrary ¢ < ¢’. For ¢ = 0 we simply write
M/5(X). The space M%(X;R?) is Fréchet in a canonical way. So we can form
spaces of the kind C*°((Ry)? x U, M} (X;R?)), ete. Let M5(X;(Ry)? x U x
R?)eage denote the subspace of all h(r,7',y,z,m) € C°((Ry)? x U, M5H(X;R?))
such that there is an h(r,r’,y,z,7) € C°((Ry)? x U; M§5(X;Ry)) for which
h(r7 r’? y7 Z7 77) = %(T, r’? y? Z? rn)'

Theorem 1.3.1 [29, Section 3.2. 2] For every p(r,r',y,0,m) € L% (X; (R4)* x
U x R ) oqge there exists an h(r,r',y,z,n) € M&H(X; (Ry)? x U X R?)eqge such
that

op, (p)(y, 1) = opiyr(h)(y,n) mod C= (U, L~°(X"; RY))

for each B € R.
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The Mellin symbol A is the result of a certain kernel cut—off procedure, cf.
also [23], [25]. An inspection of the proof shows that the variables (r,r') in the
operator function p remain untouched in the construction of iNL(r, .y, z,7). In
particular, if p vanishes for |r,r'| > ¢ for a constant ¢ > 0, we can choose hin
such a way that it also vanishes for |r,r'| > c.

Remark 1.3.2 If we set

pO(ra Y, 0, 77) = ﬁ(oa 07 y,ro, 7"’7); ho(T’, Y, %, 77) = h(07 07 Y, %, 7"77);

where h is associated with p in the sense of the constructions for Theorem 1.3.1,
we have op, (po)(y,n) = oply; (ho)(y,n) mod C* (U, L=°(X";RY)) for each B €
R.

For the following theorem we fix cut—off functions w(r), @(r) satisfying wi =
w, set x := 1—w and choose any ¥ € C*° (R ) vanishing near 0 such that xx = x.

Theorem 1.3.3 [29],[9] Let p(r,r',y, 0,n) € LY (X; (Ry)? x U x R ) g4 be of
the form (1.3.2), and assume that p vanishes for |r,r'| > ¢ for some ¢ > 0. Let
h(r,r',y,z,m) € My(X; (Ry)? x U x RY)eqge be associated with p in the sense
of Theorem 1.3.1, and set

ay (y,n) == r~*{w(r[n]) opay 2 (h)(y, m)B(r[n])
+ x(r[n]) op,.(p) (y, WX (M)} (1.3.3)

Then we have
ay(y,n) € S*(U x RY; E, E) (1.3.4)

for E = K&V(X?), E = Ks=#7=#(X") as well as for E = K37(X") and
E = Ky "X for every P € As(X, (v, 0)(*)) with some resulting Q €
As(X, (v — p, ©)®), for arbitrary ©, and all s € R.

Remark 1.3.4 If b(r,r",y,0,m) € L °°(X;(Ry)? x U x R'™?) vanishes for
|r,r'| > ¢ we have

g(y,n) :=r""x(r[n]) op,.(b)(y,n)X(rlM]) € R;>(U x R?,g)

for g = (v,0,(—0,0]) for arbitrary v,0 € R.This gives us an extension of
Theorem 1.3.3 to arbitrary p € L¥ (X; (R4)? xU xRYY) vanishing for |r,r'| > ¢,
when the Mellin symbols h belonging to b are defined to be zero.

Definition 1.3.5 Let R*(U x R?,g;j_,j+) for g = (7,7 — 1, ©) defined to be
the set of all operator families (“6” 8) (y,n)+(m~+g)(y,n) for arbitrary a(y,n) of
the form (1.3.3) and (m+g)(y,n) € Riy;, (U xR, g;5_,j4). Forj_=j; =0
we simply write R*(U xRY,g). The elements of R*(U xRY,g;j—,j+) are called
edge symbols with continuous asymptotics.

Analogous notation makes sense for discrete asymptotics, indicated by g°.
Here, in connection with edge symbols we will mainly discuss continuous asymp-
totics.

There is an evident generalisation of our 2 x 2-block matrix symbol classes
to the case that the operators in the upper left corners are f X e—matrices,
pointwise acting in the sense K*7(X",C¢) — K*~#7~#(X",Cf) where

K57 (XM, CN) = K7(XM) @ O,
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We then have the symbol spaces
R¥(U x R, g;v) (1.3.5)

and the corresponding subspaces with subscripts “M +G” and “G”, with weight
data g = (v,7 — i, ©) and dimension data v = (e, f;j—,j+)-

We also have symbol spaces (1.3.5) for © = (—o0, 0] that are defined to be
intersections of corresponding spaces for © = (—(k + 1),0] over k € N.

Remark 1.3.6 Write n = (',n") forny € RY, ' € RY', g = ¢ +¢". Then
aly,n) € RM(U X RY, g;v) implics a(y, ', nl}) € R4(U xR ,g;v) for every fized
Ny € R?". To verify this property it suffices to observe that the function n — [n)
may be replaced by any other strictly positive function c¢(n) that is a classical
symbol in n of order zero.

1.4 Operators on a manifold with edges

We now turn to operators Op(a)u(y) = [[ e’ ¥=¥)a(y,n)u(y') dy'dy with re-
spect to the local edge variables y € Q, Q C R? open, a(y,n) € R* (xR, g;v).
Concerning the dimension data we first assume v = (e, f;j—,j+); later on we
replace this by a tuple of vector bundles (E, F'; J_, J;) with the corresponding
fibre dimensions. Moreover, if we say nothing else, we set g = (v,v — u, ©) for
©=(—(k+1),0], ke NU{o0}.

The operators will be continuous in edge Sobolev spaces, based on the fol-
lowing general definition from [24]. Given a Hilbert space H with group action
{ka}rer,, the (“abstract” edge-) space W*(R?,H), s € R, is defined to be
the completion of S(R?, H) with respect to the norm { [ ||(77>s"6671>ﬁ(77)||fq dn}=.
Moreover, if H = ].(Ln jeNHj is a Fréchet space with group action, we set
WH(R?, H) = lim jenW*(R?, HY).

Similarly to the “comp”— and “loc”—versions of standard Sobolev spaces,
we can define spaces Wg,,, (€2, H) and Wi (Q, H) for any open set 2 C R?.
Further properties of such spaces may be found in [26], [29]. In particular, for
H we can insert the weighted cone Sobolev spaces K*7(X") and subspaces with
asymptotics, cf. (1.1.12).

Set

Westp(X" X Q) 1= Wegmp (4, £77(X7),
WET(XN x Q) := WE(Q, K57 (XM)).

loc

Notice that “comp” and “loc” on the left hand sides only refer to the y—variables.
Analogous notation will be used with subscript P € As(X, (v, 0)), as well as for
vector—valued functions, e.g., Wiz, (X" x Q,CN) := W5, (2, K57 (X", CV)),
K57 (XA, CN) = K57 (XN @ CV, ete.

Moreover, for m := (e, j) we set

n+1

Wiihp (X" x Q) = Wil (X" x Q,C ) e H 2 (Q,T),
WET (XN x Qym) = WS (XM x Q,C%) @ H "5 (Q,T),

P,comp P,comp

and, analogously, with subscript “loc”, for all s € R and every P € As(X, (v, ©)).
In the following theorem we set m = (e,j-), n = (f,j+), v = (e, f; j—, j+)-
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Theorem 1.4.1 For every a(y,n) € R*(Q x RY,g;v) the operator Op(a) :
Ce (XN x Q,C°) & CP(N,T-) — C®(X"N x Q,C) @ C®(Q,C+) eatends
to continuous operators

Op(a) : Wi (X7 x Q3m) = WEPTH(X" x Q;n)

loc

and

Op(a) : W;j’,zomp(X/\ x Q;m) — Wéjlgévf“(X/\ x Q;m)
for all s € R and every P € As(X, (v,0)) with some Q € As(X, (v — p,0))
(only depending on a and P, not on s).

This result is a consequence of the fact that operator—valued symbols as
defined in Section 1.1 give rise to continuous operators in abstract edge spaces,
and of Theorem 1.2.2 and 1.3.3.

Let Vect(-) denote the set of all smooth complex vector bundles on the space
in the brackets. In particular, for a (stretched) manifold W with edges we shall
represent bundles locally on (stretched) wedges R, x X x  with respect to
the singular charts in the above-mentioned form, where transition maps will
assumed to be homogeneous of order 1 with respect to homotheties in the axial
variable 7 € Ry

To avoid too complicated notation we assume W to be a trivial X—bundle,
such that a neighbourhood of W corresponds to Ry x X x Y with Y being the
edge, and the Riemannian metric on W near W is supposed to be the product
metric of the metric from the Lebesgue measure on R, and Riemannian metrics
on X and Y. We only consider vector bundles E € Vect(W) such that the
restriction of E to this neighbourhood is the pull-back of some bundle Ey on X
with respect to the projection Ry x X x Y — X. Let E' denote the pull-back
of Ey with respect to the projection X x Y — X.

The occurring complex vector bundles are assumed to be equipped with
Hermitian metrics. Hermitian metrics in bundles on X" are assumed to be
homogeneous of degree 0 with respect to homotheties in the axial variables
reR;.

Using invariance (recall that our atlas on W is fixed and specified) we can
define global spaces

Wgév?np (W7 E): Wlst;g (W7 E)
of distributional sections, where “comp” and “loc” (similarly to the local mean-
ing of notation) does not exclude supports up to OW (though we might write
int W in the spaces, because Sobolev spaces are used to be defined in int W =
W \ OW; nevertheless, for simplicity, we write W in the spaces and hope that
this will not lead to confusion).

In a similar sense we get subspaces Wy, (W, E) and Wp (W, E) for
asymptotic types P; the coefficients of asymptotics then belong to C*° (X, Ep).
Writing P € As(X,g) (or P € As(X,g®)) we mean in this case the obvious
generalisation to the bundle case. Note that the “comp”— and “loc”—spaces
(with or without asymptotics) are locally outside a neighbourhood of W in
the standard Sobolev spaces of smoothness s (with the corresponding specified
support in the “comp”—case).
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Set m = (E,J) for E € Vect(W), J € Vect(Y) and

Wit (Wym) i= Wil (W, E) & Hoomy (Y J);
WP ,comp (W’ m) WP ,comp (W E) & Hcomp2 (Y J)

for P € As(X,g) (or P € As(X,g*®)). In an analogous manner we define the
corresponding spaces with subscript “loc”.
If W is compact, we may omit “comp” or “loc” and simply write

WY (W;m) and W3 (W;m),

respectively.

In the spaces WY (W, E), E € Vect(W), and HP (Y,J), J € Vect(Y), we
fix sesquilinear pairings, based on the chosen Riemannian metrics and Hermitian
metrics in the bundles, that induce scalar products in subspaces W% (W, E) i :=
{u € WEXW,E) : suppu C K} and HO(Y, ) = {v € HL.(Y,J) :
suppv C K'} for arbitrary compact subsets K C W and K’ C Y, respectively.
This gives us sesquilinear pairings W1, (W, E) x W >77(W,E) — C and

Heonp (Y, J) x Hi 2(Y, J) — C for all 5,7 € R, or, in more concise description,

WEY(Wim) x W

comp loc

ST (Wim) = C (1.4.1)

for m = (B, J) and WS "7 (Wom) == Wi (W, E) @ H % (v, 7).

An operator C : Wi, (Wim) — W T=#(W;n) for m = (E,J_), n :=
(F,Jy), E,F € Vect(W), Jx € Vect(Y), is said to belong to Y~>°(W, g;v) for
g=(7,9,0),0=0,0,v=(E,F;J_,J), E,F € Vect(W), J € Vect(Y), if
C induces continuous operators

CoWilp(Wim) = WS (Win), €T WS~ (Win) = W (Wym)

for all s € R and asymptotic types P € As(X,(4,0)), Q@ € As(X,(—,0)),
depending on the operator C; here, C* is the formal adjoint of C with respect to
the pairing (1.4.1).

Remark 1.4.2 The space Y~ (W, g;v)po of all elements Y~ (W, g;v) with
giwen P and @) is Fréchet in a canonical way.

We then set
VW, g;v;R)pg := SR, Y™°(W, g;v)po) (1.4.2)

and define Y~°(W, g;v;R) to be the union of the spaces (1.4.2), where P,Q
run through all asymptotic types associated with the given weight data.
In particular, we have the subspace

V™ (W, g;v; R o := Y ™2°(W,g;v; R e o (1.4.3)

of all smoothing operators, where the asymptotic types P and @ are the trivial
ones in As(X, (4,0)) and As(X, (—v,©)), respectively (both denoted by ©; we
hope this will not cause confusion).

To define edge pseudo—differential operators with parameters we start from
the space of operator—valued symbols R*(Q x R?*! g;w) for open Q@ C RY,
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g = (,7—u0), w:= (e f;j_,jt+). Globally, we consider vector bundles
v = (E,F;J_,J;) with the numbers in w as fibre dimensions. In Section 1.1
we have introduced singular charts a:: V' — X2 x Q on W. These induce charts
@ :VNY — QonY and stretched charts @ : V — Ry x X x Q on W. In
addition, we have interior charts + : U — @, for coordinate neighbourhoods
U CintW, G C R*"*7 open.

On int W we have the space LY (int W; E,F;R") of classical parameter—
dependent pseudo—differential operators, acting between spaces of distributional
sections in E and F (classical means that local amplitude functions are classi-
cal symbols in covariables including parameters). Similarly, we have the space
LE(Y; -, I RY).

Let x,x € C°°(W) be functions that equal 0 for dist(z,0W) < ¢ and 1 for
dist(Z,0W) > e1, T € W, for sufficiently small 0 < g9 < &1 < 1.

Then Y*(W, g;v; R') is defined to be the set of all block matrix families

Al = (xAin(t)(A)i 8) + B +C(N) (14.4)

for arbitrary C(\) € Y~ °(W, g;v; R'), Aine(N) € LY (int W; E, F; RY), and B())
being a locally finite sum of operators of the form

(@71):0; Op, (a))(N)d;,  jEN, (1.4.5)

with respect to charts a; : V; — X2 x (U, for arbitrary a;(y,n,A) € R*( x
]Rgf)\l,g;w), 5j,gj € C§°(9) with 6]5]' = dj, where ((@})*d;)jen is a partition of
unity on Y. The interpretation of (1.4.5) is that the local pseudo—differential
operator 0; Opy(aj)()\)gj with operator—valued symbol a; is operator—pulled
back to a stretched neighbourhood V; with respect to the corresponding singular
chart @; : V; = Ry x X x ©; and isomorphisms Ely, = (R x X x ;) x C°,
J |viny = x C-, etc. Here, we assume that the system (V;);en covers a
neighbourhood of W in W. The definition is correct, since we have invariance
of operators d; Op(a;)(A)d; under transition maps, modulo elements of order
—oo and because upper left corners of operators of the form B(A) belong to
LY (int W; E, F;R").

In particular, Y, , (W, g; v; R!') denotes the subset of all elements A()) in
Viira (W, g;v; R') where the local amplitude functions a; belong to Ry (Qx
R+ g;w) for all j and Ajn(A) € L~°°(int W; E, F;R!). Analogously we define
YE(W, g;v; R) by requiring a; to be a Green amplitude function for all j. The
latter operator families are called parameter—dependent Green operators on W.

As a consequence of Theorem 1.4.1 we have the following assertion:

Theorem 1.4.3 Let g = (v, — 1, 0), v = (E,F;J_,J}), and m = (E, J_),

n = (F,Jy). An element A € Y*(W,g;v;R,) induces families of continuous
operators

AN) - Wk, (Wim) — Wi 77 (Win) (1.4.6)
and
AN WE Lomp (W m) = WE 007 (Wim) (1.4.7)

foralls € R, A € R, and for every P € As(X, (v, 0)) with some Q € As(X, (y—
1, ©)).
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By definition, the elements of Y*(W, g;v;R') are 2 x 2-block matrices,
where the upper left corners refer to the bundles (E,F) contained in v =
(E,F;J_,J.). Let Y*(W,g;E, F;R') denote the space of upper left corners.
Analogously, write

Vi «W,g;E F;R),  YE(W,g;E F;R) (1.4.8)

for the spaces of upper left corners of elements in the corresponding 2 x 2-block
matrix spaces with subscripts M + G and G, respectively.
The space V5 (W, g; v; R') can be written as the union of Fréchet subspaces

Ve (W,g;0;R ) pe (1.4.9)

over P € As(X, (y—u,0)) and @ € As(X, (-, 9)), where elements G in (1.4.9)
are defined to be sums Gjoc +C, with Gy, being given in terms of local amplitude
functions in R (Q x R, g;w)p g, cf. formula (1.1.18), and C belonging to
YV (W,g;v;R)pg, cf. (1.4.2).

Moreover, let us consider tuples of asymptotic types

D1 = (RO,Rl;P,Q) and D2 = (RO,RQ;P,Q) (1410)

in the sense of notation used in the decomposition (1.2.13) where (R, R2; P, Q)
are compatible. Then, similarly to (1.2.13), every M+G € YA’/‘HG (W,g; E,F;R)
is contained in a sum of vector spaces

Vi oW, g; B, F;R) + Y, (W, g; E,F;R'), (L4.11)

for a suitable choice of asymptotic types (Ro, R1, R2; P,Q) with compatible
(R1, R2; P, Q). Here, Yﬁ+G(W,g; E, F;R'); is defined to be the set of all opera-
tors M +G such that G € Y4 (W, g; E, F;R)pg,and M € Y}, (W, g; E, F;R')
is a locally finite sum of expressions (1.4.5) with a; belonging to Ry, (9 x
R gie, f)i := Rhp (2 x R g); ® Cf @ C°. The spaces

Yiiia(W,g; E,F;R'); (1.4.12)

are Fréchet in a canonical way, and we endow the space (1.4.11) with the Fréchet
topology of the corresponding non—direct sum.

Let Y5, (W, g;v;R'); denote the set of all A € Vi, (W, g;v;R), A =
(Ajk)jk=12, where the upper left corner A;; belongs to YA‘/f,_i_G(W,g; E,F;R');
and (0 42) to VE(W,g;v;R ) pg.

Summing up, we have the following structure:

Proposition 1.4.4 The space yj‘f/HG(W,g;v;]Rl) is the union of non—direct
Fréchet sums

y];\L4+G(W7g;'U;]Rl)1 +y]l\L4+G(WJg;’U;]Rl)2 (1413)

for Fréchet subspaces Yy o(W,g;v;R); C Vi, o(W,g;v;RY), i = 1,2; the
union is taken over all (D1, D2) for tuples of asymptotic types (1.4.10) that are
compatible in the above—mentioned sense.
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Let Asp+¢(X, g;v) defined to be the set of all tuples S := (R, R1, R2; P, Q)
satisfying the described compatibility, cf. similar notation of Section 1.2; here,
we indicate the involved bundles v to specify the various coeflicient spaces in
the asymptotics that refer to the involved bundles. For (1.4.13) we then also
write

Viie(W, g v R g, S € Asyria(X,g;v). (1.4.14)
We now define the subspace
VH(W,g;0;R o (1.4.15)

of Y*(W,g;v; R') to be the set of all A for which C € Y~>°(W, g; w; R )0 in the
representation (1.4.4), cf. formula (1.4.3), and a;(y,n, \) € R*(Q xR g;w)o
for all j, cf. formula (1.4.5). Here, R*(Q x R g;w)o for w = (e, 55, j+)
denotes the subspace of all elements a(y,n,\) € R*(Q x RIT g;w), a =
(@i5)4,j=1,2, such that in the representation a = (”‘Parm 8) + g (cf. analogously,
Definition 1.3.5 for e = f = 1) we have g € R (Q x R g;w)o, cf. formula
(1.1.17), and where 05\]4) () takes its values in f X e-matrices with entries in
C>®(Q,M5>(X))®Pi(n), 0 < j <k, cf. formula (1.2.9).

The space Y*(W, g;v; R') o is Fréchet in a natural way. By definition, every
A € VW, g;v;R) has the form

A=Ao+M+G (1.4.16)

for certain Ao € Y*(W,g;v; R )o and M +G € Vi, (W, g;v;R'). Clearly,
the decomposition (1.4.16) is not unique. Applying Proposition 1.4.4 we get the
following remark.

Remark 1.4.5 Every A € Y*(W, g;v; R') belongs to a Fréchet subspace, namely
a non—direct sum of the form

VW, g;v;R g = V' (W,g;0; R )o + Vi (W, g;v;R )s. (1.4.17)

Without loss of generality we may (and will) assume that the involved asymp-
totic types P,Q for Green operators satisfy the shadow condition.

We now introduce the principal symbols of operators A in Y*(W,g;v;R').
First, A;; := u.l.c. A belongs to L¥; (int W; E, F; R'). Thus there is a parameter—

cl
dependent homogeneous principal symbol of order u

ou(A)F, 6 N) = 0y (A1) (F 6N : mlwE = mhywl, (1.4.18)
where Tingw : T*(int W) x R \ 0 — int W is the canonical projection; (, §~)
denotes points in T*(int W), and 0 stands for ({,A) = 0. Locally near OW

we have a splitting of variables 7 = (r,x,y) and covariables £ = (,&,n), and
(1.4.18) is edge—degenerate in these coordinates. Moreover,

Uw,f(A)(ra z,y,0, 67 7, )‘) = r”gw (./4)(7", z,y, 7,71 0, 67 7”717’], ril)‘) (1419)

is smooth up to r = 0. We call gy ¢(A) the Fuchs type symbol derived from
(1.4.18); it has an invariant meaning as a homomorphism of liftings of E and
F to a realisation of T*(int W) x R! \ 0 that is connected with a special cocycle
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referring to the edge degeneracy of symbols. To have a notation this realisation
is said to be the compressed variant of T*(int W) x R', denoted (T*W x R')¢

(roughly, covectors in (T*Wx R! )¢ near W are represented by (g, &, 7, X), where
(0,6,m,A) = (r1g,&r~ 1, r 1)) are the “usual” covariables). If my ¢ : (T*Wx
R')g \ 0 — W is the canonical projection, we then have

U¢7f(A) = qu’f(All) : F{W,fE — ﬂ-{’v,fF' (1.4.20)

This notation includes the smoothness of the homomorphism up to the boundary
ow.

Next we pass to the homogeneous edge symbol of order

,Cs,’y(X/\) ® El ’Cs—u,’y—u(X/\) ® FI
on(A)y,m, A) = 7y S - Ty ®
J_ J
(1.4.21)

Homogeneity of order p means in this case that the relation
on(A)(y, 01,0)) = 8"Fson(A)(y,n, Ny
holds for all § € R;. Here,
n+1 . n+1
ks = diag(ks, 0 2 idqpy ), K := diag(ks,0 2 idqy ) (1.4.22)

(recall that (ksu)(r,xz) = 6HT+1u(6r, x)). The upper left corner on(A;;) of
(1.4.21) is locally given by the expression

on(A11) (g, A) = 1 {w(r|n, Al) ophr ® (o) (y, 1, A& (e, Al) (1.4.23)
+ x(rn, Al) op,.(po) (y,m, A)X(r[n, Al) }

k
+3°5" oalmia) (W, m N + oalgin) (. m N,

=0 |al=;

where py and hg are as in Remark 1.3.2, here in the version with (n, ) in place
of n, and w,w, x and X as in formula (1.3.3). Furthermore,

oA (msa) (., X) 1= (. M) {opys ™ (fia) () (1.4.24)
+opas 2 (Fa) ()}, N wr (v, AD),

cf. the (1, A)—version of (1.2.6), while oA(g11)(y,n, A) is the homogeneous prin-
cipal symbol of order u of gi1 as a symbol in S¥(Q x R+ ;K97 (XN) ® C°,
K7 =#(XN) ® Cf). The remaining entries of (1.4.21) are the homogeneous
principal symbols of g(y,n, A) = (g:; (¥, 1, A))i,j=1,2 for i +j > 2. They are anal-
ogously defined as oa(g11)(y,n, A) because g;;(y,n, A) are all classical symbols,
though with “Douglis—Nirenberg orders”, cf. Definition 1.1.1, that cause the
extra powers of J in the group actions (1.4.22).
Let us write

0(A) = (o4 (A),on(A)), (1.4.25)

called the principal symbol of the operator A.
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Remark 1.4.6 Let A € Y*(W, g;v;R'), and assume that W is compact. Then
o(A) =0 implies that

AN = WY (W;m) — W7 (W n)

is a compact operator for every s € R and A € R'.

This follows from the fact that A(X) maps to WS=#TL7=#+¢(W; n) for some
e > 0, and from the compactness of embeddings W' (W, n) < W7 (W;n)
for s' > s, 9" > .

Let M, ) denote the operator of multiplication by diag(e, ') for ¢ €
C>®(W), ¢ € C>®(Y). For the case plow = 7*¢', where 7 : OW — Y is
the canonical projection, we simply write M. It is easy to verify that A €
VH(W, g;v; R') implies M g o AM 4y € VH(W, g;v; R for arbitrary ¢, 1) €
C*(W), ¢,y e C®(Y).

Theorem 1.4.7 [29, Section 3.4.4] Let A € Y*(W, g;v;R), B € Y"(W,g;0;R)
for p,v € R and

g=0-v,y—(p+v);0), v = (Eo, F;Jo, Jy), (1.4.26)
g=0,7-70), v = (E,Eo; J_, Jo), (1.4.27)
and let p € C5°(W). Then we have AM,B € Y* (W, h;w;R') for
h=(v,y—(u+v),0), w=(E F;J_,J}), (1.4.28)
and
o(AM,B) = o(A)o(M,B)

(with componentwise multiplication). If A or B belong to the space with subscript
M + G) or G, then the same is true of the composition.

Definition 1.4.8 An operator A € Y*(W,g;v;R') for
g9=07=-m0), v=(EFJ.,J)
is said to be elliptic if
(i) A is oy—elliptic, that is, (1.4.20) is an isomorphism,
(ii) A is on—elliptic, that is, (1.4.21) is an isomorphism for some s = so € R.

Clearly, if (1.4.20) is an isomorphism, so is (1.4.18). Moreover, if (1.4.21) is
an isomorphism for s = sg, then it is an isomorphism for all s € R.
Note that when (1.4.21) is an isomorphism,

w.l.c.oa(A)(y,n, ) : my K¥V(XN) @ BN — 7y K77 H(XM @ F' (1.4.29)

is a family of Fredholm operators. (1.4.29) belongs to the cone algebra on X”
for every (y,n,\) € (T*Y x R')\ 0. As such it has a “subordinate” principal
conormal symbol, namely

om(A)y,z) : H*(X, Eo) — H*™"(X, Fp)
that is meromorphic in z € C and a family of isomorphisms for all y € Y and

z € Fn2+17,y.
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Theorem 1.4.9 [29, Section 3.5.2],[4] Let A € Y*(W,g;v;R') be elliptic. Then
A has a parametriz P € Y *(W,g ;v 5 R) in the sense that

Mgp — PM@AM@Z) € yioo(wagl;vl;]Rl)a
My — AMyPM, € Y- (W,g,;v,;R)

holds for every ¢,v € C5°(W) where i = ¢; here g~ = (v — p,7,0), v=! =
(FaEa J—i—: J—)7 and gl = (7777 6)7 v = (EaEa J—: J—)7 gr = (7 — K, — My 6)7
Ur = (FaFa J+7J+)'

Corollary 1.4.10 Let W be compact and A € Y*(W, g;v; R') elliptic. Then, in
the notation of Theorem 1.4.9, there is a parametriz P € Y *(W,g v~ R,
where T—PA =: C; and T— AP =: C, belong to the respective spaces of operators
of order —oo. Moreover,

A - WS (W m) — WE—HY—1(W; ) (1.4.30)

is a Fredholm operator for every s € R, X\ € R', ¢f. the notation of Remark
1.4.6.

Remark 1.4.11 Forl > 0 the operators (1.4.30) are of index zero for all s € R,
X € R, and there is a constant ¢ > 0 such that (1.4.30) are isomorphisms for
all s € R, |A| > ¢, and the parametriz P can be chosen in such a way that C;
and C, vanish for |A| > c.

2 Corner symbols and iterated asymptotics

2.1 Holomorphic corner symbols

In this section we assume W to be compact and consider Y*(W, g;v; RIT!)
with parameters (\,7) € RIt!; here, g = (v,7 — p,0) and v = (E, F;J_, Jy).
In our applications we shall interpret 7 € R as Imw for w € I'g with some
B. The corresponding space of parameter—dependent operators will be denoted
VH(W,g;v; R x Tg).

The elements a(A, w) in that space play the role of operator—valued symbols
(therefore, we now employ small letters). By Remark 1.4.5 every a(\, w) belongs
to a Fréchet subspace

VMW, g;0; R x Tp)r (2.1.1)

of Y*(W,g;v; R x I'g) for some R € Aspria(X,g;v).

Definition 2.1.1 Let MEO(W,g;'U;]Rl) for Re Asyia(X,9;v), g = (7,7 —
, ©), denote the subspace of all h(\,w) € A(C,Y* (W, g;v; R, )r) such that

h(\, w)gixr, € V*(W,g;v; R x I's)g

for every B € R, uniformly in c < 8 < ¢ for arbitrary ¢ < . Moreover, we
define Mz 5(W, g;v; R') for g = (7,7—u, ©) to be the subspace of all h(\,w) €
A(C, Y~ (W,g;v;R')r) such that h(A, w)|pixr, € S(Ts, Y™ (W, g;v;R)g)
for every p € R, uniformly in c < < for arbitrary ¢ < .
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The spaces M%VO(W, g;v,R) and Mzo(W. g;v; R!) are Fréchet in a canon-
ical way. In this paper we are mainly interested in the case | = 0; then we simply
omit R' in the notation.

The spaces of Definition 2.1.1 have been introduced by Maniccia and Schulze
[16]; most of the results of Sections 2.1. and 2.2 are proved there.

Set f(A,7) := a(A, B +i7) for fixed 8, and define k(f; X, ) := (F, 5. f)(A,¢)
where F' is the one-dimensional Fourier transform. Choose any ¢(¢) € C§°(R)
form

’
?

(H (@) YA 7) = Feur {p(Qk(f5 A, O}, (2.1.2)
and set hy (A, B+i7) := (H(p) f)(A, 7). We also write hy (A, w) = (H(p)a)(A, w)
for f(\,7) = a(X, B +iT).
In the sequel we fix any choice of asymptotic data R.
Theorem 2.1.2 For every ¢ € C°(R) and a(\,w) € Y*(W,g;v; R x [s)r
we have hi(\,w) € Y*(W,g;v; R x ['s)r. Moreover, there is an h(\,w) €
M%vo(W,g;v;]Rl) (that is, of course, unique) such that

hi(A, w) = h(X, w)|gixp, - (2.1.3)

In other words, h(A,w) is the analytic extension of h; (A, w) with respect to
w from I'g to C. We then set h(A, w) := H(p)(a)(\,w), w € C.

Theorem 2.1.3 For every h(\,w) € M%’O(W,g; v;RY) and arbitrary o, B € R
we have

o(h(A,a +i71)) = a(h(A, B +i1)),
cf. formula (1.4.25); here h(\,a +i1), a € R, is regarded as an element of
YW, g;v; RH g
Remark 2.1.4 Let h(\,w) € M%’O(W,g;v;]Ril), and assume that h(\, 8 +
i) € YR (W,g;v;R') for some fized 3 € R. Then h(\,w) € ME%(W,g;U;]Rl).

Theorem 2.1.5 For every a(A\,w) € Y*(W,g;v;R x [)r there exists an
h(\w) € M%O(W,g;v;]Rl) such that

a(A,w) = h(A, w)|gtyp, mod V™®(W,g;v; R x Tg)pg.
To construct h(A, w) in Theorem 2.1.5 it suffices to set
h(A, w) = H()a(A, w)

for any ¢¥(¢) € C§°(R) such that (¢) = 1 in a neighbourhood of ( = 0. In
particular, we have H (1) — ¢)a(A, w) € MG (W, g;v; R!') for two such cut—off

functions ¢ and QZ

Notice that there is a formal similarity between Theorem 2.1.5 and Theorem
1.3.1. Formula (2.1.2) is just what we called a kernel cut—off construction. The
important point here is that despite of the complexity of parameter—dependent
edge operators the kernel cut—off operators H(y) , H(¢) preserve all data,
including asymptotics, but produce holomorphic families with the properties
in Definition 2.1.1. An analogous construction in a simpler situation has been
applied in [27], see also the author’s joint paper with Fedosov and Tarkhanov

[7].
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Remark 2.1.6 Since kernel cut—off operators only act with respect covariables,
Theorem 2.1.5 extends to the case of operator families that smoothly depend on
other variables. For instance, we will apply below the fact that for a(t,\,w) €
VH(W,g;v; Rl x Dg)g there exists an h(t,\,w) € C”(K.,.,M%O(W,g;v;]l{{l))
such that

a(t,\,w) — h(t:Aaw”@erRleB € C°(Ry,Y™°(W, g;v; Rl x T'5)g).

2.2 Meromorphic corner symbols and ellipticity

An element h(\,w) € M%’O(W,g;v;]R{l), R € Asyq(X,g;v), is said to
be elliptic, if there is a 8 € R such that h(\,8 + i7) is elliptic in the space
YH(W,g;v; ]Rl}\tl ), cf. Definition 1.4.8. From Theorem 2.1.3 we know that then
h(X\, B +iT) is 7elliptic for arbitrary 8 € R, i.e., the definition is independent of
the choice of 3. Let h(\,w) € MY (W, g;v; R!) be elliptic. In view of Remark
1.4.11 the operators

h(\, w) : WY (W;m) — W7 (Wi n) (2.2.1)

are Fredholm and of index zero for all s, and they are isomorphisms for all
|A,w| > ¢ for some ¢ > 0. Let us now set [ = 0, i.e., A disappears. Then, for
every a < o thereis an I(a, o') such that the operators (2.2.1) are isomorphisms
for all w € C with @ < Rew < o and |Imw| > I(a,a’). We are now in a
context that is familiar in the abstract set up of holomorphic Fredholm functions
in Hilbert spaces, cf. Gohberg and Sigal [10]. Here, we have more specific
information.

Remark 2.2.1 Let h(w) € MY, (W, g;v) be elliptic. Then there is a countable
set D C C such that DN {w : a < Rew < &'} is finite for every a < o, where
the operators

h(w) : WP (W, m) — WTHT7H(W; n) (2.2.2)

are isomorphisms for all w € C\ D and all s € R, and there is an S €
As(X,g Y v7t) such that h*(w) € A(C\ D, Y *(W,g v Y)s), cf the
notation in Theorem 1.4.9.

As is known from abstract Fredholm functions, h~!(w) extends to a mero-
morphic Fredholm function with poles d; € D and multiplicities n; + 1, nj € N,
j € Z,and Laurent coefficients at (w—dj)’(’““), 0 <k < nj, that are operators
of finite rank. These can be characterised in our concrete situation as elements
in Yy=°(W, g7t v71)s.

To single out some convenient spaces of meromorphic operator functions we
introduce the set As®(W;wv)s of sequences

T :={(dj, nj, Lj) }jez, (2:2.3)

so—called discrete corner asymptotic types (associated with S € Asy+a(X, g;v),
weight data g = (0,0 — u,0) and v = (H,L; G_,G.), for bundles H, L on W
and G_, G4 on Y), where we assume n¢T N{w : ¢ < Rew < '} to be finite
for every ¢ < ¢, meT := {d;};ecz, and L; to be a finite-dimensional subspace of
Y~—°(W, g;v)s of operators of finite rank for all j.
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Definition 2.2.2 Mg7 (W, g;v) for S € Asyic(X,g;v) andT € As*(W;v)s
denotes the set of all

fw) € A(CC\ 7T, Y™ (W,g;5v)s)

that are meromorphic with poles at d; € wcT' of multiplicities nj+1 and Laurent
coefficients at (w — d;)~F+tV) belonging to L; for 0 < k < nj, j € Z, where
x(w)f(w)|r, € Y~°(W,g;v;T5) for every f € R, uniformly in c < < ¢ for
arbitrary ¢ < ¢, for any mcT—excision function x (i.e., x € C(C), x(w) =0
for dist(w, 7cT) < o, x(w) = 1 for dist(w, 7cT) > €1, for certain 0 < g9 < €1).

The space Mg 7 (W, g;v) is Fréchet in a canonical way. For arbitrary u € R,
g=1(38,0 —u,©), we set

M (W, hsu) i= MY (W, g5v) + MGT (W, hju), (2.2.4)

endowed with the Fréchet topology of the non—direct sum.

Theorem 2.2.3 Let a(w) € Mp (W, g;v), b(w) € M% 5 (W, g;v) for any
pairs of asymptotic types 7

(R,V) € Aspyria(X,g;v) X As*(W;v)g, (2.2.5)
(R,V) € Aspric(X,3;0) x As®(W;9) 5, (2.2.6)

with (1.4.26), (1.4.27). Then we have (ab)(w) € Mg}”(w, h;w) for a resulting
pair (S,T) € Asyrra(X, h;w) X As®*(W;w)s , where h and w are given as in
(1.4.28).

The proof of Theorem 2.2.3 employs Theorem 1.4.7 above in various ways,
in particular, for the characterisation of resulting asymptotic types under com-
positions.

An element f € MgT(W,g;'U) is said to be elliptic, if for any decompo-
sition f = h 4+ m for MZYO(W,g;'U), m € Mg7T(W,g;v), the element h is
elliptic in the above-mentioned sense (this does not depend on the choice of
the decomposition.) Equivalently, we can require the family f|r, to be ellip-
tic in Y*(W,g;v;I'3)s for any f € R such that 7¢7 NIz = @ (which is then
independent of 3.)

The following theorem extends Remark 2.2.1 to the case of elliptic meromor-
phic Mellin symbols. It will be crucial for the following regularity results with
edge—corner asymptotics below.

Theorem 2.2.4 Let f € MY, (W, g;v) for
R € Asyia(X, g;v), V e As*(W;v)g,

be elliptic. Then there is an inverse f~(w) € A(C\ ncT, Y *(W,g L0 71)s)
for certain S € Aspyrig(X,g v, T € As*(W;v~1)s, that extends to an
element f~1 € M;“T(W,g_l;v_l) (in the sense of the multiplication from The-
orem 2.2.3).

Proof. First, if f(w) € M%VV(W, g;v) is elliptic, there is a countable set D C C
such that D N K is finite for every compact set K where K N wcV = 0; in
addition, for every a < o' there exists an M («, ') such that f(w) is bijective
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foralwe{weC: a<Rew <d,|Imw| > M(a,a')}. In particular, we find
a € R such that flr, € Y*(W,g;v;I's)r is a parameter-dependent elliptic
element. Corollary 1.4.10 gives us a parameter—dependent elliptic parametrix
g €Y H(W,g~ v g)5 where the existence of S € Asyq(X, g7 v7!) is
an automatic consequence of the definition (recall that edge operator belongs to
a Fréchet subspace with asymptotics of a certain type S ). Applying Theorem
2.1.5 we get an h(w) € Mg)’é(W,gfl;'ufl) such that h|p, = g(w) modulo a
family of order —oco. In other words, also hlr, is a parametrix of f|p,. Now
{h(w)f(w)}r, —1 € Y~2(W,g,;;v;;T'3) and hf € M%ﬁ(W,gl;'vl) implies [ :=
hf € M;;;(W,gl; v;) (the latter relation is an easy consequence of Theorem

2.1.2). In other words we have hf = 1+, and it remains to show that (1+1)~! =
1+m for some m € M% ‘7(W, g;;v1). However, this is analogous to the methods

in the cone theory, see, for instance, [20, Lemma 4.3.13]. Applying once again
Theorem 2.2.3 we get f~1 = (1 + m)g of the desired kind. O

2.3 Weighted corner Sobolev spaces

We now introduce a new class of weighted Sobolev spaces on a (stretched)
corner W* = Ry x W, where W is a compact (stretched) manifold with edge.
First, let H be a Hilbert space with group action {kx}xer,, and assume that
to H is associated a dimensional number m € N that is known and fixed in
each concrete case. (The number m is not the dimension of H but rather a
number given independently and paired with H.) We then define the space
V#I(Ry x R?, H) for 5,6 € R, to be the completion of C§°(Ry x R?, H) with
respect to the norm

1
1 b . 3
o [ @ Ity Ot Py ol dun |

Fmil_S R4
2

Here, M;_,,, is the Mellin transform in ¢ € Ry and F),_,, the Fourier transform
iny e R?.

The choice of the group {/@\})\GRJr is assumed to be known and fixed in each
concrete case. Let V*9(Ry x RY, H); denote for a moment the corresponding
space for ky = idy for all A € Ry . Then the operator T := M~'F~'x; ' MF

(w,m)
induces an isomorphism
T:V(Ry xR, H) — VO (R, x R?, H);.

This allows us to single out subspaces of V*°(R, x R?, H) connected with
subspaces of £ C H, where {kx}rer, does not necessarily induce a group
action on F, namely

T=HV* (R x RY, E) }.

Similar considerations make sense when H is a Fréchet space with group
action. We then get spaces V*°(Ry x R?, H) by the same scheme as above in
the beginning of Section 1.4.

Applying the identity M (t%u)(w) = (Mu)(w + B) for arbitrary 8 € R we
obtain t?V*°(Ry x R?, H) = V*9t8 (R, x R?, H) for all 3,6 € R and s € R.
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In our applications we shall insert the spaces H = K*7(X”") and Fréchet
subspaces K37 (X”) with asymptotics of type P € As(X, (7,0)®), cf. Section
1.1. In this case we set m = 1 4+ n + ¢ where n = dim X. In other words, there
are the spaces

V*O(Re x R, K57(XM)  and - VO(Ry x R KR (X7),

respectively.

To see the nature of singular functions in the spaces V¥ (Ry xR?, K37 (X))
we first suppose that P is a discrete asymptotic type associated with (v, ®) for
finite ©, written as (1.1.6). Let £p(X”) denote the linear span of all functions
w(r)cjk (x)r~Pi logh r for a fixed cut-off function w(r) and arbitrary cji € Lj,
0<k<mj,0<j<N. Then we have L3"(X") = K" (X") + Ep(X") which
is a direct decomposition, and it follows a direct decomposition

VOO Ry x RY, KB (XM)) = VO (R x R, K7 (XM)) + TV (Ry. x RY, Ep(X ™)1
(2.3.1)

The first space on the right hand side represents flat remainders of asympto-
tics,while the elements belonging to T-1{V*9 (R x R?,Ep(X ")), } are just the
singular functions of the edge part of the corner asymptotics. The latter space
is the linear span of all elements of the form

Mg ooy A, m) ™2 wo(r(w,m)) (raw, 1)) ™ (log (e, m)) 00 (w, )}

for cjr € Lj, vjr(t,y) € V(R xR7), 0 < k < my, 0 < j < N. Here,
VaO(Ry x R?) := V*9(Ry x R?, )y, and d(w,n) = Mz isi—wFy_nv(t,y).
Concerning asymptotic types P we assume, for instance, a representation (1.1.8)
for a compact set K C S(nTH77+197nTH7,Y). In this case the space T~H{ V(R x
R?,Ex(XN))1} consists of all elements of the form

n41

Mg e s m) ™ F 0 (w, ) (G, (r(w, 1)) %)}

for arbitrary ¢ € A'(K,C®(X,V*9(Ry xR?)), where V*9 (R xRY) := {o(t,y) :
v EVSI(Ry x R?)}.

Let W be a compact manifold with edge Y, ¢ = dim Y, and W the stretched
manifold. By assumption OW has a neighbourhood V with a global splitting of
variables (r,z,y) € [0,1) x X x Y.

Choose an open covering {G1,... ,Gny} of Y by coordinate neighbourhoods
and diffeomorphisms x; : G; — R?, further a subordinate partition of unity
{¢1,... ,on}, and form the diffeomorphisms x; : Ry x X x G; = Ry x X x R?
by setting x;(t,z,y) = (t,z,k;(y)), § = 1,...,N. We then define the space
VI (R x Y, K57 (X)) for 5,7, € R to be the completion of C§°(Ry x Y x X)
with respect to the norm

N
{106 (egu)l

Clearly, we get an equivalent norm when we change the charts on Y or the
partition of unity. In a similar manner we obtain spaces

VO (Ry x Y, K37 (X")) = lim jenV*’ (Ry x Y, EY)

[N

2
vs~5(R+wacs~v<XA))} -
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for every P € As(X, (7,0)), using the fact that L3 (X") = @jeNEj is a
Fréchet space with group action for an appropriate choice of spaces EJ, cf.
similarly, formula (1.1.12).

Remark 2.3.1 Setting Wy := Ry x Y x (R x X) as the stretched manifold to
Wo = Ry xY x X2 which is a manifold with edge Ry xY and model cone X2,
we have

VEOI(Ry x YV, K7 (XN) € WET (W),

loc

VSR, x Y, K3 (X)) C Wi loe(Wo)

for every s,7v,0 € R and any asymptotic type P € As(X, (v, 9)).

This allows us to define global corner spaces on Ry x W for an arbitrary
compact manifold W with edges. As usual, everything will be done for the
corresponding stretched manifold W. Let M denote the double of W which
is a closed C'*° manifold of dimension m = 1+ n + ¢ when the edge Y is of
dimension ¢ and the base X of the model cone of dimension n. We then have
M=W_UW, and OW = W_ NW, , where W_ and W, are copies of W that
are glued together along OW.

In Section 1.1 we have introduced the spaces H*°(M”). We now choose any
X € C°°(M) such that supp x C int W (where W is identified with W, ) and (in
our fixed global splitting of variables near OW into (r,z,y) € [0,1) x X xY)
x=0for0<r <% x=1onW\([0,2)xXxY). Then, for any p(r) € C§°(0,1)
we have

V(R x Y, K57 (X1)) € HO (M), (2.3.2)
We now introduce the spaces

VEOD (WY = {wv 4 xh: v € VR, x Y, K57(XN),h € H>O (M)}
(2.3.3)

where w := 1 — x, and analogously

VETO(WA) o= {wo+ xh: v € VIR, x Y, K37 (XM), h € H¥ (M)}
(2.3.4)

By virtue of relation (2.3.2) this is a correct definition, i.e., independent of the
choice of .

In (2.3.3) we can choose Hilbert space structures that define norms in the
spaces, and (2.3.4) is a Fréchet space in a natural way.

Notice that the weight ¢ in (2.3.3) and (2.3.4) concerns ¢ — 0 as well as
t — oo (similarly to the meaning of the weight in the spaces H*°(M")); for
instance, we have

tBVISDv(%J) (WA) — V}S;(V,J-H?) (WA)

for arbitrary s,v,6,8 (and a similar relation for the spaces without subscript
P). Here, we are mainly interested in the behaviour for ¢ — 0.
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2.4 Iterated asymptotics

Our text goal is to introduce iterated asymptotics of weighted Sobolev distri-
butions on a manifold M with edges and corners, where neighbourhoods of
corners are modelled by cones W4 for a compact manifold W with edges. If
M" ={ec,...,cn} denotes the finite set of corner points, M \ M" is a man-
ifold with smooth edges; corresponding asymptotics near the edges have been
introduced in Section 1.4. Thus, it suffices to mainly look at W2, in fact, at
the stretched cone W" > (¢,T), and asymptotics for ¢ — 0.
Fix a weight interval Z = (£,0], —oo < £ < 0, and set

Vi (W) = lim ok VOO (W), (24.1)

P € As(X, (v,0)). Here, k € C*°(Ry) is any strictly positive function such that
k(t) =tfor 0 <t < coand k(t) = 1 for ¢; < t < oo for certain constants ¢y < ¢ .
The space (2.4.1) is Fréchet in a natural way (and, of course, independent of
the choice of the function k). For 2; = (&;,0],¢ = 1,2, and & < & < 0, we have
continuous embeddings

s,(v,0 s,(v,0
VG (W) < Vg (W)
for all s,7v,d € R.
Let us fix weight data
h:((s?E); E:(fao]a _OOS€<07

and an asymptotic type P € As(X,g) for g = (v,0). Let As(W,h*)p denote
the set of all discrete asymptotic types

Q = {(gj,nj,Lj) }o<j<n,

where N = N(Q) < oo and N(Q) < oo for finite =, defined by the following
properties:

mcQ = {¢ito<jsn C Simpr_spe mir_g)

for m = dimW, Req; = —oo as j = oo for N(Q) = oo, nj € N, and L; C
W57 (W) is a finite-dimensional subspace for all j, where P is independent of
J.

Definition 2.4.1 Let P € As(X,g) for g = (7,0), and Q € As(W,h®)p
for h = (0,Z). We then define Vls;g’a)(WA) to be the subspace of all u €
V;,’(V’é) (W) such that there are elements cj, € Lj, 0 <k <nj, 0<j < N(Q),
where for every £ < < 0 there is an Mg such that

M nj

u(t, ) —w(t) Y Y (@t logh t € VL (W) (2.4.2)
7=0 k=0

for all M > Mg and any cut—off function w(t).

The coeflicients c;j, are uniquely determined by u. Let, in particular, = be
finite. Then, in condition (2.4.2) we may set § = £ and M = N(Q). In this
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case let Eo(W") denote the linear span of functions w(t)cjx (%)t~ % log® ¢ for all
cjk € Lj, 0 <k <nj, 0< 7 < N(Q), with some fixed cut—off function w(t). We
then have

Vig" (W) = VRl (W") + E(W")

which is a direct decomposition. The space V}sp’g’a) (W") is Fréchet, and Eq (W")

is of finite dimension. This gives us a Fréchet topology in the space V;(QWS) (WH)
(that is independent of the choice of w). For infinite = we can choose a sequence
(&k)ren of reals with &1 < & < 0 for all k and & — —oo as k — 0o, and form
Qr ={(g,n,L) € Q: Regq> mTH — 0+ &}, k€ N We then have continuous

embeddings V;”,gi)l (WH) — V;;ygj) (WM) for all k, and we get

s,(v,0 . s,(7,0
Vi (W) = lim wenV g, (W)
with the Fréchet topology of the projective limit.

Remark 2.4.2 Let p(t) € C®°(Ry) and assume that either o(t) € C§°(R4)
or o(t) = 1 —(t) for some (t) € CP(R;). Let H denote one of the
spaces V(10 (WH), V;,’(V’é) (WN), or V;(QW"S)(W/\) for certain P € As(X,g),
Q € As(W,h®)p. Then u € H implies pu € H.

3 The edge—corner algebra with trace and
potential conditions

3.1 Green corner operators

In this paper a manifold M with edges and corners is a topological space (para-
compact and locally compact) with subspaces M" C M' C M, where M" is
the finite set of corner points, M \ M’ and M'\ M" are C*° manifolds, and
M\ M" is a manifold with edges. In addition, we assume that every ¢ € M’ has
a neighbourhood V' that is homeomorphic to ([0,€) x W)/({0} x W) for some
e > 0, where W is a compact manifold with edges Y, and that there is fixed
a corner structure on V in terms of a splitting of variables on [0,€) x W into
(t,7), interpreted as a restriction of variables from R x W to [0,e) x W.

We have a notion of equivalence of corner structures by saying that another
splitting (¢, ") is equivalent to (¢, %) if (¢,Z) — (¢',Z') comes from a restriction
of a diffeomorphism R x W — R x W in the sense of C°° manifolds with
boundary, where in addition the X-bundles (that constitute the boundary)
are isomorphically transformed to each other.

For simplicity, we shall keep the corner axis t € R, fixed in a neighbourhood
of zero. Moreover, transition maps “in W—direction” near ¢t = 0 are assumed to
preserve the chosen global splittings of variables (r,x,y) in a neighbourhood of
OW. Clearly, these conditions could be considerably weakend, but the analysis
of operators with asymptotics requires a choice of an atlas with some additional
structure, though we do not loose generality in the sense that such an atlas
may always be found (recall that OW was assumed to be a trivial X—bundle
on Y, cf. Section 1.4). With M we associate a stretched manifold M, locally
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modelled by R} x W near stretched corner points {0} x W (cf. the notation in
the introduction).

By construction, on M we have locally near Mg := {0} x OW the variables
(t,r,z,y), where t € R, is the corner axis variable, r € R, the cone axis variable
from the model cone of W near OW, and ¢ € X, y € Y. Recall that X is the
base of the model cone and Y the edge of W.

To simplify notation we assume that M'" consists of one corner point v.
(We admit the base W of the corner to have different connected components;
so the general case is covered anyway.) In addition, to avoid “comp”— and
“loc” —subscripits in Sobolev spaces we assume M to be compact; then also M
is compact.

Given fixed Riemannian metrics on X and Y, respectively, we construct a
Riemannian metric on M by taking the product metric from Ry x R; x X x Y
near {0} x OW and gluing it together with a metric on Mieg := M\ ({0} x W)
in the sense of a stretched manifold with edge.

Vector bundles F on M are assumed to be equipped with Hermitian metrics
with an analogous product structure with respect to variables on M near {0} x
OW. (Concerning Ely;,, we impose the same conditions as above.) We then
have the spaces L?(M, E) with given scalar products.

On M we have singular charts of different kind, namely

YXeorner 1 V= Ry xRy x & x Q3 (t,r,z,y) (3.1.1)

for open ¥ C R*, Q@ C R?, with (stretched) corner neighbourhoods V on M
(where V N Mg # 00), moreover,

Xeone : K = Ry x A > (¢,7) (3.1.2)

for open A C R'F"+¢  with (stretched) cone neighbourhoods K on M (where
Kn Msing 7é 0)7 and

Xedge : L = Ry x ¥ 3 (r,9) (3.1.3)

for open ¥ C R*7*7 with (stretched) wedge neighbourhoods L. on M (where
L N Ming = 0, LN OMeg # 0; the latter notation treats Meg as a stretched
manifold with edges). Finally, there are the standard (regular) charts on the
C* manifold M \ M', namely

Xint : U =T >m (3.1.4)

for coordinate neighbourhoods U C M \ M’ and open sets I' C R#T"+¢,

Notation from Section 2.3 and 2.4 concerning weighted spaces on W" (with
and without asymptotics) directly generalise to the case of distributional sec-
tions of vector bundles F. In other words, we have spaces

VW B, vEOO W E), Vgt W, E)

for P € As(X,g), Q@ € As(W,h®)p (coefficients of asymptotics are, of course,
related to E in an evident manner). In the following definition the latter E is
used for a bundle on M as well as for its restriction to a neighbourhood of Mging
that is also regarded as a restriction of a bundle on W", again denoted by E
(we hope, this will not cause confusion). Moreover, we fix a cut—off function
w(t) supported in a small neighbourhood of ¢t = 0.
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Definition 3.1.1 We set

HE) (M, E) = [w]V* ) (WA E) + [1 — w]W* (Mieg, E), (3.1.5)
HE O (M, E) = [w]VE T (WA, E) + [1 - wWE] o (Mieg, E), (3.1.6)
130 (M, E) = [w]VES (WA, E) + [1 - wWi] o (Mieg, E), (3.1.7)

for P € As(X,g), Q € As(W,h®)p, s5,7,0 € R.

This is a correct definition in the sense that the spaces are independent of
the choice of w. In (3.1.5) we get Hilbert space structures for fixed w, while
(3.1.6) and (3.1.7) are Fréchet spaces in the non-direct sum topology.

For purposes below, for given «, 8 € R we fix a strictly positive function [%#
on Mieg \ OMeg that equals

128 = {w(t)t™ + (1 — w(t))}r®

near Ming, where w(t) is a cut—off function that vanishes for ¢ > /2 (the vari-
able ¢t refers to (0,¢) x W, while r is the cone axis variable for the local wedge of
Mg near OMe, ), and JoB equals 8 near OMeg outside an e/2-neighbourhood

l+ntg

of Mying with respect to ¢t. Set for a moment I(n,q) :== 17— 2 >~2. We then
have

H OO (M, B) = i(n, g)L* (M, E),
and we endow H%(®0) (M, E) with the scalar product
(f,9) = (Un, " f,U(n, )" 9) L2 )

for f,g € H%(©0) (M, E). Taking this as a reference scalar product for the scale
H* (0 (M, E), there is a non-degenerate sesquilinear pairing

H> (M, E) x H 5T (M,E) — C

induced by C§° (Mreg \ OMreg) X CF° (Mreg \ OMieg ) — C via (-, ).

Let us now set for abbreviation B := M' which is a compact manifold
with conical singularities M" (that is a single point in our simplified model).
Then, we have weighted Sobolev spaces H*%(B) for 5,3 € R; here, B is the
stretched manifold associated with B. Recall that when Y denotes the base
of the conical singularity ¢ in B, i.e., B is locally near ¢ modelled by Y2, we
have H*P (B) = [W]HSP (V") +[1 — w]HE .(int B) for a cut—off function w(t); the
spaces H*?(Y") have been defined in Section 1.1 above. Analogously, we define
weighted spaces H*?(B, J) of distributional sections in vector bundles J on B.
Concerning dimensions, for the corner base W we employ the notation from
Section 1.1, in particular, ¢ = dimY with Y being the edge of W, n = dim X,
where X is the base of the model cone for W. Then the edges of M \ M" are of
dimension g + 1, i.e., dimB = ¢ + 1, and dim Mg = 2 + n + ¢. Thus, the edge
of M\ M" is of codimension n+ 1 in M \ M", and hence it is adequate to look
at direct sums of spaces

0 (M m) == 1S (M, E) @ Ho~ 59— (B, J) (3.1.8)

for vector bundles E and J on M and B, respectively, where m := (E, J).
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To have a short description for anti—duality with respect to pairings induced
by (-, *)20.00 v ) and (-, )00 (), respectively, we also set

H ) (M m) o= HE PO (M E) @ HEH 50T (B, ). (3.1.9)
Analogously, we set
g_ntl 5 ntl
Hp O (Mym) = MO (M E) o My, 7 " (B, )

for P := (P, Py, Ps), where P, € As(X,g),P» € As(W,h*)p,, P; € As(Z,1°)
forg = (v,0), h = (4,2),l = (§ — ”T'H,E) (and, similarly, with * at s and 4).
Let As(X,W, Z;g,h*,1%) denote the set of all such triples P = (P;, P, P3).

Proposition 3.1.2 There are canonical continuous embeddings
HSI7(’YI76’)(M7 E) N Hs,(mé) (M, E)

fors' > s, v >, >0 that are compact for s' > s, v > v, §' > §. Moreover,
we have continuous embeddings

Hy OO0, B) o HEOO ML E),  HLG T (M E) < MG (M, E)

(in the notation of Definition 3.1.1) for s' > s.

The proof of Proposition 3.1.2 is not really difficult and left to the reader.
In a similar (but simpler) situation assertions of this type for weighted cone and
edge Sobolev spaces may be found in [29, Theorems 2.1.53, 3.1.23].

Remark 3.1.3 For every P € As(X,g), g = (7,0), and Q € As(W,h)p,
h = (0,Z), there is an € > 0 such that

7_[;(3:5) (M, E') < HS,(’Y+E,(5+E) (M, E)
for all s € R.
The observation of Remark 3.1.3 follows from dist(7c@, T mi1_ 5) > € and
dist(mc P, Laga ) > € for some & > 0. Then we have , for instance, KE1(X") <

K7+ (X)) which entails V5 (WA) < Yot (WA), of. (2.3.4). The
improvement of ¢ by ¢ is obvious anyway.

Definition 3.1.4 Let g = (v,0,0;6,0,Z) and v = (E,F;J_,J;) (where E,
F are vector bundles on B). Then Cq(M, g;v) is defined to be the space of all
operators

G :HSO) (M m) — H@) (M n),

continuwous for all s € R, such that there are triples of asymptotic types P €

AS(XJ W; Z; (Q: 6)7 (O’,E)., (U_nTHJE).) a'ndQ € AS(XJ W; Z; (_77 6)7 (_67 E).’

(=0 — 2L 2)*) such that G induces continuous operators

G H D (Mm) — HE T (M) (3.1.10)
and
a* - Hs*,(—g,(—a)*)(M; n) — 7.[507(*%(*5)*)(M; m) (3.1.11)

for all s € R; here, m := (E,J_), n := (F,J;). The elements of Ca(M, g;v)
are called Green corner operators.
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In the sequel we specify the choice of weight intervals by setting © := (—(k+
1),0] for —oo <k <0 and = := (—(I 4+ 1),0] for —oco <1 < 0 (later on, we also
admit [ = —o0).

In the following we assume that a neighbourhood of Mg in M is identified
with [0,1) x W; then functions ¢ € C§°(R;) that are supported in [0,1) will
also be interpreted as functions on M.

Given an element f(t,w) € C®°(Ry, Mp>(W,g;v)), R := (Ri,R2) €
ASMJrG(X;g;v) X AS.(W;,U)RU where g = (777 - H76)7 v = (E7F7 Jfa J+)7
cf. Definition 2.2.2, we can form operators

plt)opyy 7 (N = 1) (Mym) — H =) (W m)

form:=1+n+q, m=(E,J ),n=(FJ:), and ¢,% € C5°(R,) supported
in [0,1). It can easily be proved that for every

P = (P17P27P3) € AS(X,W,Z;g,h.,l.)
for g = (7,0), h = (6,2), 1 = (6 — 2, E), there exists a
Q= (Q17Q27Q3) € AS(X7W7 Z;gah.al.)

for g = (v — u, ©), such that

m

p(t)opar T (HP(E) : HET ) (M m) — HY O™ (M m)

is a continuous operator for all s € R.
Remark 3.1.5 Let ¢, o € C§°([0,1)) and assume that ¢ =0 or § = 0 in a
neighbourhood of t = 0. Then we have

popyy ()@ € Ca(M, k;v)

for k = (v,7 — p,0;0,0,5). Moreover, if ¢, € C§°([0,1)) are arbitrary, we
have

j—m ~ - ~
ot’ opyy 2 (), 00Dy * (AP P € Ca(M, k;v)

for every f > 1+ 1 (recall that E = (—(1 + 1),0])).

These relations can be verified in a similar manner as the corresponding ones
in the simpler situation for conical singularities, cf. [26, Section 2.1.5], see also
[29, Section 2.3.5].

3.2 Smoothing Mellin corner operators

Definition 3.2.1 Let g := (g x;9w), 9x = (V,7v — 1, 0), gw = (§,0,Z) and
v = (E,F;J_,J;), and let Cprra (M, g;v) denote the space of all operators
M + G for arbitrary G € Co(M, g;v) and

l
M =t""0u(t) S topys % (£)@(1) (3.2.1)
j=0
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where w, @ are arbitrary cut—off functions (supported in [0,1)) and
fi € MgZ(W,gx)  for Rj = (Rj1, R;p»)
where Rj) € Asya(X,gx;v) and Rjo € As®*(Wiv)g,,, 0 > a; > —j, and
meRj2 N lmpn = 0, j=0,...,1L (3.2.2)

Here, © = (—(k+1),0], k € NU{o0}, and E = (—(l+1),0], I € N. For infinite
= we define Cpirc(M, g;v) to be the intersection over corresponding operator
spaces for finite Z; := (—(1 +1),0], 1 € N.

Remark 3.2.2 The specific choice of the cut—off functions w, W or of the weights
a; affects an operator (3.2.1) only by an element of Ca(M, g;v). Setting

o7 I (A)(w) = fi(w),  0<j<I, (3.2.3)
A€ CryrcM, g;v), we have well-defined maps
007 Crra (M, g5 0) = MRZ(W, (7,7 — 1, 0)),

and o2=7 (M +G) =0, 0 < j <1, if and only if A € Ca(M,g;v).

Below, for abbreviation we also write
0c(A) := 0277 (A) (3.2.4)

when § and o are known by the context.

Theorem 3.2.3 Let A € Cyrra(M, g;v), B € Crprra(M, h; w) and assume that
weight data and bundles in the range of B fit to those in the domain of A. We
then have AB € Cyp1c(M, g o h;v o w) (with an evident meaning of o in the
latter expression).

The proof of Theorem 3.2.3 is formally similar to a corresponding result
in [26, Sectonl.3.1]. In particular, the conormal symbols compose by an ana-
logue of the Mellin translation product, known from the calculus for conical
singularities with smooth base manifolds.

Theorem 3.2.4 Every A € Cypra(M,g;v) (with the notation for g and v as
in Definition 3.2.1) induces continuous operators

A HEOD (M m) — HOO =) (M)

A Hf;(%a) (M;m) — 7-[220’(7_”"7) (M;n)

m=(E,J_),n=(F,J;), foralls € R and each P € As(X,W, Z; (~, ©), (§,E)*
= S (

(60— ,é)'), with some resulting @ € As(X,W,Z; (v — u,0),(0,2)*, (0 —
n1 =),
2 )

The proof of the first assertion of Theorem 3.2.4 is a consequence of the con-
tinuity of Mellin pseudo—differential operators in weighted Sobolev spaces that
can be shown in the present context nalogously to a corresponding result when
the cone base is smooth. The second assertion employs the fact that discrete



3 THE EDGE-CORNER ALGEBRA 41

asymptotics of distributions in ¢ € Ry are translated ny the Mellin transform
into meromorphy in w and that the Mellin symbols themselves are meromor-
phic. The inverse Mellin transform then produces resulting asymptotics in ¢
for t — 0. Concerning r—asymptotics the latter conclusion refers to operator—
valued symbols that are smoothing and Green in r—direction. This implies the
asserted mapping property between spaces with asymptotics.

Remark 3.2.5 Let A € Cyuc(M, g;v) and assume oS (A) = 0. Then A is
compact as an operator H*V)(M;m) — H> =17 (M; n) for every s,5 € R.

3.3 The edge corner algebra
Let us fix weight data

g= (777_,”76;67075) = (gX:gW)

where v, u,8,0 € R, © = (—(k +1),0] for £ € NU {0}, = = (—(l + 1),0],
[ € NU{o0}, and set

v = (EaFa J—7J+)

with vector bundles E/, F on M and J_, J; on B.

Let w(t) and @(t) be cut-off functions supported in [0, 1) where w = w, set
X :=1—w, and let Y € C*(R,) be another function vanishing near zero where
XX = X-
Definition 3.3.1 The space CH(M, g;v) is defined to be the set of all operators
of the form

A=wt7op), (W) + LY+ M+ G

for arbitrary M + G € Cyuic(M,g;v), L € Y*(Mieg,gx;v) and h(t,w) €
C®(Ry, M 0(W, g x;v) for some R € Asyi(X,gx;v).

Remark 3.3.2 There is a canonical embedding CH(M, g;v) = V*(Mreg,gx; V),
and we have

Crya(M,g;v) = CH(M, g;v) N Y™ (Mreg,gx;v)- (3.3.1)

Remark 3.3.3 By definition the elements of C*(M, g;v) are 2 x 2-block matriz
operators A = (A;j)ij=1,2. The space of lower right corners Az, consists of the
cone algebra C*(B, (6 — ”T'H, o— nTH, =); (J-, J1)) with discrete asymptotics, cf.
[26] (recall that B is the edge of M that is a manifold with conical singularities;

B is the associated stretched manifold).

Let us give a more explicit description of interior symbols of operators in
CH(M, g;v) in local coordinates (3.1.1), (3.1.2), (3.1.3). Since our operators
outside My, belong to the edge algebra on Mie,, we concentrate on a neigh-
bourhood of Miin,, i-e., on the charts (3.1.1) and (3.1.2). The main contribution
comes from the upper left corners. For simplicity, we consider the case of trivial
bundles E and F of fibre dimension 1; for v = (C,C;0,0) we omit v in the
notation.

Proposition 3.3.4 For h(t,w) € COO(R+,M%70(W7QX)), Re Asyia(X,9%),
we have:
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(i)
(Xcorner)*Wt(s_a Opfw_ ( )w € L (]R—I— xRy x ¥ x Q) (332)

with an amplitude function of the form t5=7r *peomer(t, ™, 2, Y, T, 0,£,1),
where

pcorner(ta rT,yYy,T,o0, g: Tl) = ﬁ(ta Ty, 7-7 57 fa TA)) |‘7=rt'r7§:rg,77:r77 (333)

for a symbol p(t,r,x,y,7,0,&,7) € SH(Ry x Ry x T x Q x Rzz?z)

Y Y
(Xcone)«wt’ =7 0py, 2 (h)@ € LY (Ry x A), (3.34)
and (3.3.4) has an amplitude function of the form t°=7peone(t,Z,T, E),
where

Peone(t, &, 7,€) = P(t, %, 7, ) |7=tr (3.3.5)

for a symbol p(t, T, 7,€) € SH(R: x A x ]R{2+£”+q)

T7

The amplitude functions in (3.3.3) and (3.3.5) refer to the Fourier transform
in the respective variables. The characterisations (3.3.2) and (3.3.4) mean that
we find amplitude functions pcorner and peone, such that

(Xcorner)*A = Optm,z,y(pcorner) mod Lioo(]R—F X ]R—F X X X Q)

and
(Xcone)x A = Opt,'z’(pcone) mod L™*(Ry x A),

A= wopfw_% (h)@.

The proof of Proposition 3.3.4 (ii) is close to that of a similar statement from
the cone theory. In fact, if we first substitute the diffeomorphism A : Ry — R,
t—t:= —logt, for A1 = (Xcone)+A we get

X*Al € Lgl(]R X A)

with an amplitude function h(—logt,Z,v — B +ir,§), t € R It follows that
(x«)"'xsA41 € LE(Ry x A), where the shape of an amplitude function can
be evaluated by applylng the standard transformation behaviour of pseudo-—
differential symbols under push—forwards; this gives us a corresponding Fuchs
type degeneracy in the covariable 7 and smoothness in the first variable t = e—*
up to zero. For the proof of Proposition 3.3.4 (i) we can iteratively proceed in
a similar manner first with the ¢—variable, according to (ii) and then with the
model cone variable r. The double degeneracy in 7, i.e., the dependence on rtr
is due to the fact that the operator—valued Mellin symbols are assumed to be
edge—degenerate, i.e, T is already multiplied by a factor 7.
Let us now consider systems of symbols

{tdiariupmorner(t; T, T, Y,T,0,&, n)}i=1,--- ,c (3.3.6)
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and
{t' " piconet, T, 7, ) et a (3.3.7)
in local coordinates belonging to charts on M near Ming
Xicorner : Vi = Ry x Ry x X x Q (3.3.8)
and
Xjcone : Kj = Ry x A, (3.3.9)

respectively, where |J;_, V; U?:l K; are assumed to form a neighbourhood of
Miing in M. Assume for simplicity that all symbols vanish for ¢ > /2. Let us
call the system

b= {pi,corner; pj,eone}i:l,... ci=1,...,d (33]—0)

a complete interior symbol on M near Miing if the symbols p; corner and pj cone
behave invariant under symbol push—forward belonging to arbitrary transition
maps from (3.3.8) and (3.3.9), modulo symbols of order —oo.

Clearly, the elements in (3.3.6) and (3.3.7) are assumed to be smooth up
tot =0,r =0 and t = 0, respectively. (We can easily extend the definition
of a complete interior symbol to a full atlas on M consisting of charts (3.1.1),
(3.1.2), (3.1.3) and (3.1.4); far from Mii,; we have the same as in the edge
calculus which is left to the reader).

If h(t,w) € M}y »(W,g x) is an element vanishing for ¢ > ¢/2, the symbols

of opf\;% (h) via Proposition 3.3.4 form a complete symbol on M near Mipg-
p is said to be of order —oo if all components are of order —oo

Theorem 3.3.5 To each complete interior corner symbol (3.3.10) on M near
Miing (vanishing for t > €/2) for arbitrary v,5 € R there exists an h(t,w) €
M’AO(W,gX) for some R € As(X,gx), where gx = (7,7 — i, ©), such that
the symbols of

_ s—m _ s—m
{(Xi,corner)*t6 7 OP s 2 (h): (Xj,cone)*t6 7 oP s 2 (h)}izl,... ci=1,....d (3.3.11)
coincide with p, modulo an element of order —oo.

A proof of Theorem 3.3.5 will be published elsewhere. The result will not be
used here, though it illustrates the nature of corner operator spaces in the sense
of Definition 3.3.1. Theorem 3.3.5 shows that C#(M, g;v) is a sufficiently rich
operator space, where arbitrary corner degenerate local symbols are admitted.

The correspondence p — opM (h) may be regarded as a Mellin operator
convention for corner—degenerate symbols and prescribed weights.

Theorem 3.3.6 Every A € C*(M, g;v) induces continuous operators

A HD O (M m) — HER RO (M) (3.3.12)
and

AHZTO (MEm) — 1 0T (M m) (3.3.13)
foralls € R and every P € As(X,W, Z; (v,09), (6 ,E) (6—24L 2)*), with some
resulting Q@ € As(X, W, Z; (y — u, ©), (o, :)',( — ” L =) )
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The arguments of the proof are similar to those for Theorem 3.2.4. Here, we
have to apply them also for the holomorphic Mellin symbols. In addition, for
the region far from the corner points we apply Theorem 1.4.3.

Let us now define the principal symbol structure of operators A € C*(M, g; v).
First, by Remark 3.3.2 we inherit the principal symbols (o4(A),oA(A4)) from
V#(Mreg , g x; ), cf. formulas (1.4.18)—(1.4.21) for the case without parameters.
Locally, in the splitting of variables (¢,r,z,y) near Mging (cf. the notation in
the beginning of Section 3.1) we can write

op(A)(t, 2y, 7 0,6m),  oa(A) (Y, Tn).
Similarly to (1.4.19) we now have associated symbols
oy e(A)(t, 72,0y, 7,0,6m) =tk au(A)(t,r,x,y, T e e, 6 e y)
(cf. also the degeneracy in (0.0.4)) and
one(A)(t,y,7,n) =" oA (A)(t,y,t " 7,m) (3.3.14)

that are smooth up to t = 0. We call oy ¢(A) and o ¢(A) the Fuchs type
symbols derived from oy (A) and oa(A); this is compatible with the terminology
of Section 1.4 near the edge far from the corner point.

These symbols have an invariant meaning as bundle homomorphisms

oypg(A) =0y e(Ann) i mye B — my e F (3.3.15)
for mye : T¢M\ 0 — M, and

K7 (X7 @ B Kemmr=(XM) & F
ons(A) : e ® — T ® (3.3.16)
J_ Jy

for mp¢ : T¢B\ 0 — B (E' and F’ are bundles on the model cone X" obtained
by first restricting the original bundles E and F' from W to X and then lift-
ing them to X" by the projection X" — X.) Moreover, TfM and T§B are
“compressed” variants of the cotangent bundles T3 My, and 7B, respectively
(covectors in T¢ M near ¢ = 0 are represented by (7, 0,&,7), where (7, 0,£,1) =
(t~tr—ir,r~1g,&,r71n) are the “usual” covariables, outside a neighbourhood of
t = 0 this is compatible with the corresponding notion in Section 1.4; similarly,
covectors in T3 B near t = 0 are represented by (7,7) when (,7) = (t~'7,7) are
the usual covariables.)
Moreover, we set

oc(A)(w) = h(0,w) + o (M + G)(w), (3.3.17)
cf. notation (3.2.4). This is a meromorphic operator function

W=1(W, E) W I(W, F)
o (A)(w) : ® - & (3.3.18)

H=555 (Y, J)  H=h="5 (Y, J)
in w € C; s € R is arbitrary. Notation of bundles E, F' and J_, J; are used
here in the sense of restrictions of the bundles E, F' on M to W, the base of the
corner (recall that W is a stretched manifold with edge Y') and of J_, J; to Y.
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Remark 3.3.7 A € CH(M, g;v) implies
oc(A) € M (W, g;0)

for certain S € Aspria(X,g;v), T € As®*(W;v)s.

By the principal symbol of A € C#(M, g;v) of order u we understand the
triple

o(A) := (oy,£(A),on£(A),0c(4)). (3.3.19)

Remark 3.3.8 A € CH(M, g;v) and o(A) = 0 implies that the operator (3.3.12)
is compact for every s € R.

In fact, 0(A) = 0 implies the continuity of
A HE (M) — HEHHLO TS0 (M )

for some £ > 0. By virtue of Proposition 3.1.2 the space on the right hand side
is compactly embedded into H* (7= (M; ).
In the following theorem we set

g = (gXagW) for gx = (7_ v,Y — (V+N);®); gw ‘= (67075)7
h = (hx,hw) for hx :=(y — v,y —v,0), hw :=(4,,Z),

and v := (Eo,F; JO,J+), w = (E,Eo; J,,Jo).

Theorem 3.3.9 A € C*(M, g;v), B € C"(M, h;w) implies AB € C¥*V(M, g o
h;v o w) where

0(AB) = o(A)o(B)

(with componentwise composition of the first two symbols, while o.(AB)(w) =
(T—*B0.(A))oc(B), (TP f)(w) = f(w + B)). If A or B belongs to the subspace
with subscript M + G (G) then the same is true of the composition.

Proof. We have assumed (for simplicity) that M is compact. Therefore, the
composition AB exists in the sense of continuous operators in respective weighted
spaces, cf. the first assertion of Theorem 3.3.6. Moreover, by construction we
have A € V*(Mieg,gx;v) a similar relation for B, cf. Remark 3.3.2. Then
Theorem 1.4.7 gives us AB € Y*1"(Mieg, (g © h)x;v o w), together with the
symbol rules from the edge calculus. Furthermore, the operators A and B near
Ming also behave like edge operators, where the Fourier transform along the R,
component of the edge is replaced by the Mellin transform in ¢ € R;.. The edge
calculus with the Mellin transform in one of the local edge coordinates is analo-
gous to that with the Fourier transform; then we have again a composition result
in the corresponding Mellin—Fourier edge calculus, including the corresponding
symbol rule. This gives us the multiplicativity of the oy ¢ and o g~components.
It remains to observe that operators in our cone-edge calculus near My, for-
mally behave like cone operators with operator—valued symbols, similarly to the
cone algebra with smooth base, cf. [26, Chapter 2] or [29, Chapter 2]. In the
present situation the base is a compact (stretched) manifold W with edges, but
compositions can analogously be evaluated. In particular, we get compositions
of the same nature, and, in particular, the asserted symbol rule for conormal
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symbols. Finally, the last statement when in a composition a factor belongs to
a subclass with subscript M + G is a consequence of Remark 3.3.2. If one of the
factors is a Green operator, the assertion follows from the definition of Green
operators together with Theorem 3.3.6 and a similar construction for formal ad-
joints (that can easily be identified as elements in a modification of our calculus
with shifted order and weight indices, cf. formula (3.3.1). O

3.4 Ellipticity and regularity with asymptotics

We now turn to the ellipticity in the edge—corner algebra on M with trace and
potential conditions on B. Notation for weight data and bundles are used as in
Definition 3.3.1.

Definition 3.4.1 An operator A € CH(M, g;v) is said to be elliptic if
(i) both (3.3.15) and (3.3.16) are isomorphisms,

(i) (3.3.18) is an isomorphism for all w € FmTJrlié, for some s € R where
m=14+n+gq.

Recall that, according to the meaning of the notation in (3.3.15), (3.3.16),
the isomorphisms are required to hold up to r = 0 and ¢ = 0 in correspond-
ing stretched coordinates. In particular, ellipticity of A € C*(M, g;v) implies
ellipticity in the sense of Y*(Meg,gx;v), cf. Remark 3.3.2.

Remark 3.4.2 If (3.3.18) is an isomorphism for an s = sg € R then so is for
all s € R.
In fact, oc(A)|r 0, € y“(W,gX;v;FmTHJ) is parameter—dependent el-
2

liptic. Then (3.3.18) is a family of Fredholm operators for every s, but kernel
and cokernel are independent of s.
In the following theorem we set

gil = (’7_/147776;0—7675)7 ,071 = (FaE;JJr;J*)

and g; := (7,7,050,0,5), v := (B, E;J_,J_), g, = (v — 1,7 — 1,0; 6,6, 5),
Uy = (F,F, J_;,_, J+)
For simplicity we now assume M to be compact.

Theorem 3.4.3 Let A € C*(M,g;v) be elliptic. Then there is a parametriz
PeC"(M,g~tv™") in the sense

1-PAecCaM,g;;v1), 1-AP e Ce(M,g,;v,). (3.4.1)

Proof. First of all, Ay := Alw,., € V*(Mreg,gx;v) is elliptic in the sense of
Definition 1.4.8 and has a parametrix P, € y_”(Mreg,g)_(l;'u_l) by Theorem
1.4.9. Restricting Ain to a neighbourhood (0,¢) x W, where [0,¢) x W denotes
a neighbourhood of Mij,e in M, we now observe that A. := ti—o op‘Z?(h) €
VH((0,e) x W,g x;v) is also elliptic for a sufficiently small ¢ > 0, and that
there is an f(t,w) € C’OO(]RJF,M;%(W,g;(l;U*l) for a certain S, such that
P. =t Op;% (f) is a parametrix of A; in (0,e) x W. In the sequel we simply
set € = oo which can be reached by a simple diffeomorphism (0,e) — R;. To
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construct f we first consider the case 0 = §. We then have the Mellin—Leibniz
product

Fltwlah(ew) ~ 32 L OLD (6w (—100 bt w),

cf. [26, Section 1.2.4, Theorem 18], or [15] for a similar situation. Here, it can
be carried out as an asymptotic sum in C®°(Ry, Y°(W, (7,7, 0);v; FmT-{—l_(s)g

for some asymptotic type S. This allows us to invert h(t,w) with

|@+ Xr%i-_l_g
respect to # 7. Denote by fi (¢, w) € C’OO(EJF,J/’”(W,g}l;'U*l;FmTHﬂ;)SI the
resulting inverse, where S; is certain asymptotic type. According to Remark
2.1.6 from f;(t,w) we can pass to an f(t,w) € C’OO(@JF,MEI‘fO(W,g}l;v’l))
such that f(t,w)#ph(t,w) —1€ COO(R+,M§;°O(W,9}1;1;’1)) for a certain
S2. We then obtain, in particular,

£(0,w)h(0,w) = 1 + I(w) (3.4.2)

for some I € Mg (W, g x ;;v1). Next we apply the ellipticity condition (ii) in
Definition 3.4.1. It tells us that h(0,w) defines an isomorphism (3.3.18) on the
weight line FmT-{—l_a. Theorem 2.2.4 yields h~1(0,w) € ME?V(W,g;(l;U*l) for
certain R, V.

Thus, using (3.4.2) it follows that (f(0,w) — (0 w))h(0,w) =: l(w), ie.,
F0,w) —h=1(0,w) = l(w)h=1(0,w) EM~~(Wg v7h), cf Theorem223
Thus, we find a smoothing Mellin operator M; 1= —w op}s\/[ % (Ih=1|4=0)w such
that

oc(w op(;;%(f)w + M) = o (A). (3.4.3)

We now form the operator P, := w opM (f)w + xPintX + M1. Then
]-_PlAECMJrG(Mng;’Ul)J ]-_A-Pl ECM+G(M,QT;UT),

cf. Remark 3.3.2, and o(P;) = 071 (A) as a consequence of (3.4.3). In particular,
the leading conormal symbols in 1 — P; A and 1 — AP; vanish. This allows us
to apply a formal Neumann series argument to improve P; to the desired P, by
setting

N

P = {Z(—1)J’(1 - PlA)j}Pl. (3.4.4)

=0

N may be taken to be finite when the weight interval = is finite; for infinite =
we can carry out (3.4.4) in the sense of an asymptotic sum, cf. also [26, Section
2.2.2] for a similar (but simpler) situation with infinite sums of smoothing Mellin
operators. It remains to look at the case of arbitrary o,d. The only change in
this case is a corresponding shift of weights with respect to the corner axis
variable, both for the original operator and for the parametrix that may be
commuted through operators, up to a shift of Mellin symbols in w. O
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Corollary 3.4.4 For the parametriz P in Theorem 3.4.3 we have
0(P) = (04,¢(4), 0, £(4),T° ot (4) (w)),
(TP f)(w) = f(w + B).
In fact, it suffices to apply Theorem 3.3.9.

Corollary 3.4.5 If A € C*(M, g;v) is elliptic, the operator (3.3.12) is Fredholm
for every s € R.

This is a consequence of Theorem 3.4.3, Corollary 3.4.4, and Remark 3.3.8.

Theorem 3.4.6 Let A € C*(M, g;v) be elliptic, and u € H=°9)(M;m).
Then we have

Au=feH PO ) (Mn) = ueH T (M;m)
and
Au=feHL O (Mn) = uwe HRTY (Mym)

for each s € R and every Q € As(X,W, Z; (y 0), (
with some resulting P € As(X, W, Z; (v, ©), (4, Z ) (

(0 - 24,9

),
L Z)e).

Proof. Set C':= 1—PA, where P is a parametrix of A, cf. relation (3.4.1). Then
Au = f givesus PAu = (1—C)u= Pf,ie., u = Pf+ Cu. Applying Theorem
3.3.6 to P and Definition 3.1.4 to C we immediately obtain the assertion. [

Remark 3.4.7 Let A € C*(M, g;v) be elliptic, and let A, denote the operator
(3.3.12) in the space H>O)(M;m) for some s € R. Then there is a finite—

dimensional subspace Ny C 7—[;0’(%6) (M; m) for some

P e As(X, W, Z;(v,0),(5,2)°, (6 — 5 ,2)°%)

such that Ny = ker A,. Moreover, there is a finite-dimensional subspace N_ C
7-[;0’(7_”"7) (M;mn) for some

1
R e AS(X, W, Z; (7 — 1, 0),(0,5)*, (0 —

such that N_ Nim Ay = {0} and N_ + im 4, = H*~»O~m)(M;n). The
space Ny is independent of s, N_ can be chosen to be independent of s. In
addition, the parametriz of A can be chosen in such a way that the remainders
in relation (3.4.1) are projections, where 1 — PA projects to ker A and 1 — AP
to a complement of im A, for every s € R.

This is an easy consequence of Theorem 3.4.6. The arguments are analogous
to those from the standard pseudo-—differential calculus on a smooth compact
manifold.

Remark 3.4.8 Assume A € C*(M, g;v) satisfies the condition (i) (not neces-
sarily condition (ii)) of Definition 3.4.1, then there is a P € C"*(M,g ‘v 1)
such that

l—PAECM_;,_G(M,gl;Ul), I—APECM_;,_G(M,QT;UT).
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In fact, the first steps in the proof of Theorem 3.4.3 give us an element
Py e C*(M,g ;v 1), where 1 — PyA and 1 — AP, restrict to elements in the
respective Y ~*°—classes on M,e,. Then it suffices to apply Theorem 3.3.9 and
relation (3.3.1).

3.5 Examples and remarks

Let us return to corner—degenerate differential operators of the form (0.0.3),
(0.0.4), and give an explicit description of the principal symbol levels. For
simplicity, we assume M = R, x W, where the stretched corner base W is a
compact C'*° manifold with boundary OW = X x Y. The corner conormal
symbol of the operator (0.0.3) is the operator family

ge(A)(w) 1= " br(0)w® : W (W) — WIHT=1(W),
k=0

w € C. The choice of v € R is to be specified in connection with ellipticity.
Locally in a neighbourhood of the corner (for ¢ > 0) and of OW the operator
(0.0.3) has the form (0.0.4) and is edge—degenerate, where (¢,y) € Ry x Q are
local coordinates on the edge. The principal edge symbol has the form

k
o Wtnr) = P et 00)(rtiny (<rat) ()

Jt+k+la|<p
CKEY(XN) = KSR (XY,

where 7 is the axial variable of the model cone of the local wedge. The interior
principal symbol of order p is as usual. In particular, if oy(ajka)(t, 7, y; 2, &)
denotes the homogeneous principal symbol of a;jq of order p — (j + k + |]) in
local coordinates ¢ € ¥ (corresponding to a chart on X) with covaribles £, we
have

Oy (A) (ta rT,Y,T,0, 57 77)

=ttt N oy(ajea) by @, ) (—rtit) (—rig)k (rm)®. (3.5.1)
Jtk+lal=p
Moreover, if we look at the representation (0.0.3) and denote by (Z, §~) points
on T™*(Wyeg ) \ 0, we have

op(A) (T, 7,8) =t Y oy (br)(t: 7, ) (—itr)F, (3.5.2)
k=0

where oy (bg)(t; T, €) is the homogeneous principal symbol of by, as a differential
operator on Wyeg = W\ OW of order p — k.

The considerations of the previous sections on oy,¢ and o g—versions of oy
and o, remain in force, though we now prefer to employ the standard variables
and covariables in the chosen splittings of coordinates. Let us write for a moment
0y corner (A) and oy cone(A) for the expressions (3.5.1) and (3.5.2), respectively.

Definition 3.5.1 An operator A of the form (0.0.3) is said to be oy, —elliptic if
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(i) oy (A) #0 on T*(Ry x Wieg) \ 0,

(ll) turugwycorner(A)(t7T':;U:y;riltilT;rilgafariln) 7é 0 fOT’ (T7 Q;f;’?) 75 0
and all (t,r,2,y), up tot =0, r =0,

(iil) t*oyp cone(A)(t, Z,t717,£) # 0 for all (1,€) # 0 and all (t,Z) up to t = 0.

Observe that Laplace—Beltrami operators for corner—degenerate metrics as
mentioned in the introduction are oy—elliptic.

Proposition 3.5.2 Let A be oy —elliptic. Then for every (t,y) € Ry x Y there
exists a countable set D(t,y) C C, where D(t,y)N S|, is finite for every c < ¢/,
such that

than(A)(t,y, t i) K3 (XN = Ko (X ) (3.5.3)

is a Fredholm operator for (t,n) # 0 for every v ¢ {Rez: z € D(t,y)} and all
seR

Clearly, for (7,7) # 0 we then know that
on(A)(t,y,T,m)  K27(XD) = L7m7H(X7) (3.5.4)

is a Fredholm operator for the admitted v and all s € R.

Let us now assume that A is oy—elliptic and that there is a choice of v € R
such that the condition v ¢ {Rez : z € D(t,y)} is fulfilled for all + € R, and
all y € Y (clearly, there are many examples where this is the case; instead of
t € Ry, for reasonable examples it suffices to require the condition for 0 < ¢t < ¢
for some ¢ > 0). Then we can try to complete the Fredholm family (3.5.3) to a
family of isomorphisms

K87 (XM KCs—ha=r(XN)
ons(A) U/\f(K)> _ . .
7 7 t : 3.5.5
<w<T) one(@) BUTWITe B 2T B (359)

cf. formula (3.3.14), here for § — o = —u, and B = Ry x Y in the notation of
(3.3.16). The existence of corresponding vector bundles J_, J; € Vect(B) and of
additional entries o ¢(7'), etc. is not always guaranteed. There is a topological
obstruction, similarly to that of Atiyah and Bott [1] for the existence of Shapiro—
Lopatinskij elliptic boundary conditions in the case of boundary value problems,
see also Boutet de Monvel [3] and Rempel and Schulze [17]. We now assume
that this obstruction vanishes for A; again there are many examples where this
is fulfilled, for instance, for Laplace—Beltrami operators to corner—degenerate
metrics (in the opposite case a scenario similarly to [31] applies; it will be
published in a joint paper with Seiler [33]).

The nature of the extra entries in (3.5.5) corresponds to that in the general
calculus before. They are simlpy homogeneous principal components of Green
symbols in the sense of an anlogue of Definition 1.1.1 for U = Ry x Q (in local
coordinates belonging to charts on Y,  C R?), now with covariables (7,n),
where ji are the fibre dimensions of Ji. We may (and, for simplicity, will)
choose homogeneous principal symbols of elements g(t,y,7,n) € RE(Ry x Q x
R g;w)o for w = (1,1;5_,54), cf. formula (1.1.17), where g = (vy,v —
i, (—00,0]). Recall that homogeneity refers to the group actions (1.1.5). In the
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present case we have g = (gij)s,j=1,2, where gi1 vanishes because we are talking
about additional trace and potential etc. entries.

From the local Green symbols g (with respect to a covering of Y by charts
x : U — Q) we can pass to a parameter— dependent family of Green operators
f(t,7) on W by forming a sum over expressions (x~"). Op, (wpg@p®)(t,T), with
cut—off functions w(r), @(r) supported in a small neighbourhood of r = 0,
v € C§°(2), where x*¢ belongs to a partition of unity on Y (subordinate to
the covering of V') and @ € C§°(Q2) where p@ = .

We thus obtain a family

f(t,7) € C=(R4, V5(W, g;5v)0)

for v = (1,1 , ,J4).
Using (0.0 ) we form the operator family hi1(t,w) = Y h_, b (t)w*, and
then

(el 4D)

is parameter—dependent elliptic in Y*(W, g;v;Rz) for every t € R,. Inter-
preting the variable 7 in the entries f;; as —Imw for w € I'y we can apply
Theorem 2.1.5 to (fij(t:7-)|?:71mw)i,j:1,2,i+j>2 for 6 = 0 and [ = 0 in the
t—dependent variant, cf. Remark 2.1.6. This gives us a corresponding element
(hij(t,w))ij=1,2,i+j>2 In COO(KJF,M‘&O(W,g;v)). Together with the upper
left corner hii(t,w) that is given by the differential operator (0.0.3) we now
obtain an element hu(t,w) = (hi; (t,w))i j=1,2 € C*(Ry, Mp (W, g;v)) where
h(t,B+it) € C® (R4, Y*(W, g;v;T'5)) is parameter—dependent elliptic for every
B € R (uniformly in compact S—-intervals).

Setting h(w) := h(0,w), we are now in the situation of Remark 2.2.1. It
follows that there is a countable set D C C such that the operators (2.2.2) are
isomorphisms for all w € C\ D. This determines weights § € R where the
operator

A O _ f—m
A= (0 0) + 7 opyy * ((hij)ij=1.2,i+5>2) (3.5.6)

(with A being given by (0.0.3)) belongs to the corner algebra C*(M, k;v) for
k= ((7,7 — p, (—00,0]); (8,8 — 1, (—00,0])), M = R} x W, and has an elliptic
conormal corner symbol o.(A)(w) = h(w) on the weight line T’ m1_s. In other
words, A is elliptic in the sense of Definition 3.4.1 for o = § — p.

As noted in Section 3.4 the compactness of M is not an essential assump-
tion, except for Corollary 3.4.5. The other results of Section 3.4 have obvious
analogues for general M, and they can be applied to our elliptic operator A.
To get the Fredholm property we can easily modify our example by completing
M = R, x W for t — oo by another corner point to make the new configuration
compact with two corners, cf. the author’s joint paper [7] with Fedosov and
Tarkhanov for a similar situation, where the base is a manifold with conical
singularities.

Concerning regularity of solutions with asymptotics in our iterated sense,
it is not easy to explicity evaluate the asymptotic types. However, in concrete
examples with, for instance, extra symmetry properties of the metric and of the
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coefficients, this should be an elementary fact, though it may require separate
papers.

Let us finally have a look at a Cartesian product M := B; x By of two
manifolds By, By with conical singularities. We then have Ml = B; x By . Assume
for simplicity that B; and B> have one conical singularity with base manifolds
X1 and X, respectively. Then M is locally near M" = {v} (the corner point)
modelled by X2 x X, or, in stretched form, by (Ry x X;) x (R x X3). Let
(r,z') denote the variables on X\, i = 1,2. Then, for our operator calculus
we have two non—equivalent choices of corner and cone axis variables, namely
r' =:t, r? =:r or r2 =:t and r' =: 7. In the first case M is interpreted near v
as a cone with base X; x By and in the second case as a cone with base By x X5.
This example illustrates the role of the system of singular charts on M, where
different choices give rise to edge—corner algebras that are different with respect

to the corner conormal symbol structure.
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