On completeness of eigenfunctions of an elliptic operator on a manifold with conical points

Yu. Egorov, V. Kondratiev, and B.-W. Schulze*

April 2, 2001

Contents

1	Introduction	1
2	Definitions	2
3	Rays of minimal growth	4
4	Completeness of root functions	6
\mathbf{R}	eferences	10

1 Introduction

This paper is aimed at proving the completeness of the system of eigen- and associated functions (i.e., root functions) of an elliptic operator on a manifold with a finite number of conical points.

If the manifold is smooth, the completeness of the system of root functions for a general elliptic system with boundary conditions of Lopatinsky type was proved by S. Agmon in [1].

Earlier for the Dirichlet boundary value problem for an elliptic operator of order m having a real principal part the completeness of the system of root functions has been established by F. Browder [6]–[8].

Essential progress was achieved in the work [13] by M.V. Keldysh, who considered non–self-adjoint operators. He studied elliptic operators of second order in a smooth domain with Dirichlet boundary conditions. The methods of this work have been used later on by many mathematicians.

In the article [3] by M.S. Agranovich the completeness of the system of root functions for a general elliptic system with boundary conditions of Lopatinsky type has been proved under much weaker conditions on smoothness of the principal coefficients and the domain than in [1].

The case of a non–smooth domain has been studied considerably less. N.M. Krukovsky in [15] proved the completeness of the system of root functions for an elliptic operator of second order in an arbitrary bounded domain with Dirichlet

^{*}Supported by the EU Research and Training Network "Geometric Analysis."

2 DEFINITIONS 2

boundary conditions and in a Lipschitz domain with Neumann boundary conditions. The case of sectorial operators was investigated by M.S. Agranovich in [3], this class is wider than the class of strongly elliptic operators, but depends on certain properties of the characteristic polynomial.

In the present paper we consider elliptic differential operators on a manifold with a finite number of conical points. B.-W. Schulze in [18] proved the existence and smoothness theorems. The corresponding estimates play an essential role in the present paper.

2 Definitions

Our main definition is as follows. A manifold B with conical points is a topological space with a finite subset of points

$$B_0 = \{b_1, \dots, b_M\} \subset B$$

such that the following properties hold:

- a) the manifold $B \setminus B_0$ is C^{∞} -smooth;
- b) each point $b \in B_0$ has an open neighborhood U in B such that there exists a diffeomorphism

$$\Phi: U \setminus \{b\} \to X^* = \mathbb{R}^+ \times X,$$

where X = X(b) is a closed compact C^{∞} -manifold, and Φ is extendible to a homeomorphism

$$\overline{\Phi}: U \to X^{\triangle} = (\overline{\mathbb{R}}^+ \times X)/(\{0\} \times X).$$

If $\Psi:U\setminus\{b\}\to X^*$ is another diffeomorphism extendible to a corresponding homeomorphism to U, then Φ and Ψ are equivalent if $\Phi\Psi^{-1}:X^*\to X^*$ is the restriction of a diffeomorphism

$$\overline{\mathbb{R}}^+ \times X \to \overline{\mathbb{R}}^+ \times X.$$

B is assumed to be paracompact; for simplicity we consider the case that B_0 contains only one point b_0 , dim $B_0 \setminus b_0 = n$, dim X = n - 1.

Now we pass to differential operators on a manifold B with a conical point b_0 . An operator $A \in \operatorname{Diff}^m(B \setminus b_0)$ is said to be an operator of Fuchs type, if there exists a neighborhood U of b_0 such that the operator A in local coordinates $(r,x) \in X^*$ has the form

$$A = r^{-m} \sum_{k=0}^{m} a_k(r) \left(-r \frac{\partial}{\partial r} \right)^k$$

with coefficients $a_k \in C^{\infty}(\overline{\mathbb{R}}_+, \operatorname{Diff}^{m-k}(X))$. Here, $\operatorname{Diff}^m(X)$ is the space of all differential operators of order m with smooth coefficients defined on X. In local coordinates $x \in X$ we have

$$a_k(r) = \sum_{|\beta| < m-k} b_{\beta}(r, x) D_x^{\beta},$$

2 DEFINITIONS 3

where $\alpha = (\alpha_1, \dots, \alpha_{n-1}), |\beta| = \beta_1 + \dots + \beta_{n-1}, D^{\beta} = \partial^{|\beta|}/\partial x_1^{\beta_1} \dots \partial x_{n-1}^{\beta_{n-1}}.$

Let us give another definition of a manifold with a conical point equivalent to the one before.

Let ω be a set on the unit sphere in \mathbb{R}^n . Set

$$K^{\triangle}(\omega) = \{x : x \in \mathbb{R}^n, 0 \le |x| < \infty, \frac{x}{|x|} \in \omega \text{ if } x \ne 0\}.$$

Moreover, let

$$K^*(\omega) = \{x : x \in \mathbb{R}^n, 0 < |x| < \infty, \frac{x}{|x|} \in \omega\}$$

which is a cone in \mathbb{R}^n with base ω .

A manifold B with a conical point $b_0 \in B$ is a topological space such that

- a) the manifold $B \setminus B_0$ is smooth and has dimension n;
- b) there exists a neighborhood U of b_0 in B such that the set $U \setminus b_0$ can be covered by a finite number of open sets U_i , $i=1,\ldots,L$, such that $U \subset \bigcup U_i$, and there exist diffeomorphisms

$$\Phi_i: U_i \to K^*(\omega_i)$$

that are extendible to homeomorphisms

$$\overline{\Phi}_i: U_i \cup b_0 \to K^{\triangle}(\omega_i).$$

The covering defines a system of local coordinates in a neighborhood of the point b_0 . In fact, if $x \in U$ then $x \in U_i$ for some i (may be for several i), $\Phi_i(x) \in K^*(\omega)$ and one can consider (r, y), where $y = \Phi_i(x)/|\Phi_i(x)|$, as local coordinates. If U' is another neighborhood of x and $\overline{U'} \subset U$, then the set $S = \overline{U'} \setminus U' = \partial U'$ is a smooth manifold and $\bigcup_i U_i \cap S$ forms an atlas on S.

Let us introduce weighted Sobolev spaces $W^s_{\alpha}(B)$, where $s \geq 0$ is an integer, $\alpha \in \mathbb{R}$. A distribution u belongs to $W^s_{\alpha}(B)$, if

- (i) $u \in H^s_{loc}(B \setminus b_0)$,
- (ii) the function $u(y)=u_i(\Phi_i^{-1}y)$, where $y\in K_i^*$ and i is such that $x\in U_i$, satisfies the condition

$$\int_{K^*(\omega)} \sum_{|\beta| \le s} r^{2|\beta| - 2\alpha - 2s} |D^{\beta} u_i|^2 dy < \infty.$$

Note that $W_{\alpha}^{s}(B)$ is a Banach space. It is easy to see that an operator A of Fuchs type of order m defines a bounded operator $W_{\alpha}^{s}(B) \to W_{\alpha}^{s-m}(B)$.

An operator A of Fuchs type is said to be elliptic of weight α if

- (i) it is elliptic on $B \setminus b_0$,
- (ii) the operator

$$\sigma(A) = \sum_{k=0}^{m} a_k(0) z^k$$

is an isomorphism $H^{2m}(X) \to H^0(X)$ for all $z \in \Gamma_{n/2+\alpha/2-2m}$, where Γ_{γ} is the line $\operatorname{Re} z = \gamma$ in the complex plane.

As is shown in [18], an operator $A:W_{\alpha}^{2m}(B)\to W_{\alpha}^{0}(B)$ that is elliptic of weight α is a Fredholm operator.

Let us define unbounded operators $\mathcal{A}: L_2(B) \to L_2(B), \ L_2(B) = W_0^0(B)$, related to an elliptic operator A of Fuchs type. Suppose that the domain $D_{\mathcal{A}}$ of \mathcal{A} equals $W_{\alpha}^{2m}(B)$ for some $\alpha, 0 \le \alpha < 2m$, and set $\mathcal{A}u = Au$ for $u \in D_{\mathcal{A}}$.

Moreover, assume that A is elliptic of weight α . Then \mathcal{A} is a closed operator $L_2(B) \to L_2(B)$ with dense domain in $L_2(B)$. The kernel of \mathcal{A} has a finite dimension, its image is closed. If its spectrum does not coincide with the whole complex plane, i.e., the resolvent

$$R(\lambda, \mathcal{A}) = (\lambda I - \mathcal{A})^{-1} : L_2(B) \to L_2(B)$$

is defined for some complex λ_0 , then $R(\lambda_0, \mathcal{A})$ is compact, and $R(\lambda, \mathcal{A})$ is defined for all λ , except for a discrete set of points $\{\lambda_k\}$, which are the eigenvalues of \mathcal{A} .

3 Rays of minimal growth

A ray $\arg \lambda = \theta$ is said to be a ray of minimal growth of $R(\lambda, A)$, if the resolvent exists on this ray for all λ of sufficiently large absolute value, and for these λ we have

$$||R(\lambda, \mathcal{A})||_{L_2(B) \to L_2(B)} \le C|\lambda|^{\delta - 1}$$

for some δ , $0 \le \delta < 1$.

In order to state whether a ray $\arg \lambda = \theta$ is a ray of minimal growth one needs to study Fuchs type operators depending on a parameter in more detail cf. Agmon's work [1] for the case of differential operators in a smooth domain. Concerning a machinery for conical singularities, cf. Gil [12].

Let $B' = B \setminus S^1$, where S^1 is a circle on the unit sphere in \mathbb{R}^n . Then B' is a manifold with edge $b_0 \times S^1$. Consider on B' the operator

$$\mathcal{L} = \mathcal{A} - (-1)^m e^{i\theta} \frac{\partial^m}{\partial t^m}.$$

Suppose that \mathcal{L} is a Fredholm operator

$$W_{\alpha}^{2m}(B') \to W_{\alpha}^{0}(B').$$

The space $W^s_{\alpha}(B')$ consists of the functions u such that

$$\|u\|_{s,\alpha}^2=\int\limits_0^{2\pi}\|u(\cdot,t)\|_{W^s_\alpha(B')}^2dt+\int\limits_0^{2\pi}\left\|\frac{\partial^s u(\cdot,t)}{\partial t^s}\right\|_{W^0_\alpha(B')}^2dt<\infty.$$

The ellipticity implies the estimate

$$||v||_{2m,\alpha}^2 \le C[||\mathcal{L}v||_{0,\alpha}^2 + ||v||_{L_2(B')}^2].$$
(1)

Setting $v = e^{ikt}u$, we get

$$\mathcal{L}v = e^{ikt}(\mathcal{A}u - (-1)^m e^{i\theta}k^m u),$$

and estimate (1) gives us

$$||ue^{ikt}||_{2m,\alpha}^2 \le C_1 ||\mathcal{A}u - (-1)^m e^{i\theta} k^m u||_{2m,\alpha}^2 + C_2 ||u||_{L_2(B')}^2. \tag{2}$$

On the other hand, we have

$$C_{3} \|ue^{ikt}\|_{2m,\alpha}^{2} \geq \int_{0}^{2\pi} \left\| \frac{\partial^{2m} v(\cdot,t)}{\partial t^{2m}} \right\|_{W_{\alpha}^{0}(B')}^{2} dt + \int_{0}^{2\pi} \|v\|_{W_{\alpha}^{0}(B')}^{2} dt$$

$$\geq \int_{r<\rho} k^{2m} r^{\alpha} |u|^{2} r^{n-1} dr dx + \int_{r<\rho} r^{\alpha} |u|^{2} r^{n-1} dr dx + \int_{B\backslash U} k^{2m} u^{2} ds + \int_{B\backslash U} u^{2} ds,$$
(3)

where U is a neighborhood of the conical point, (r, x) are local coordinates, and ds is a fixed Riemannian metric on $B \setminus U$.

Inequalities (2) and (3) imply that

$$C_4 \|\mathcal{A}u\|_{m,\alpha}^2 + C_5 \|u\|_{L_2(B)}^2 \ge k^{2m-\alpha} \|u\|_{L_2(B)}^2$$

Since

$$\lambda = (-1)^m e^{i\theta} k^m$$
, $|\lambda| = |k|^m$, $\arg \lambda = \theta - m\pi$,

the latter inequality means that

$$||R(\lambda, \mathcal{A})|| \le C_5 |\lambda|^{\frac{\alpha}{2m} - 1}. \tag{4}$$

In the works [18], [19] by B.-W. Schulze there are the conditions for the operator \mathcal{L} to be Fredholm. They include condition (i)

$$\arg \sum_{|\beta|=2m} a_{\beta}(x)\xi^{\beta} \neq 0$$

and condition (ii) of ellipticity on the edge. It can be stated as follows. Consider the operator

$$\mathcal{A}_{0} = r^{-m} \sum_{k=0}^{m} a_{k}(0) \left(-r \frac{\partial}{\partial r} \right)^{k} - e^{i\theta}$$

on X^* . It is easy to see that this is a Fredholm operator from $W^{2m}_{\alpha}(X^*) \cap W^0_{\alpha}(X^*)$ to $W^0_{\alpha}(X^*)$.

The definition of the spaces $W^s_{\alpha}(X^*)$ is a natural generalization of the definition of $W^s_{\alpha}(B)$ given above. The set X^* can be covered by a finite set of neighborhoods each of which is homeomorphic to an unbounded cone in the Euclidian space, and we have $u \in W^s_{\alpha}(X^*)$ if condition (ii) from the definition of $W^s_{\alpha}(B)$ is fulfilled.

The ellipticity condition for the operator \mathcal{L} means that \mathcal{A}_0 is an isomorphism between $W^{2m}_{\alpha}(X^*) \cap W^0_{\alpha}(X^*)$ and $W^0_{\alpha}(X^*)$. This condition can be considered as the Lopatinsky condition on the edge. Such a condition for elliptic boundary value problems was introduced in the article [16] by V.G. Mazya and B.A. Plamenevsky.

Estimate (4) implies, in particular, that the map $u \mapsto (\mathcal{A} - \lambda)u$ is bijective for all λ with sufficiently large absolute value and argument equal to $\theta - \pi m$. In order to show that the ray $\arg \lambda = \theta - \pi m$ is a ray of minimal growth, it suffices to prove that the image of $\mathcal{A} - \lambda I$ coincides with $L_2(B)$. This rather long proof is based on the methods of the proof of invertibility of elliptic differential operators on a manifold with conical singularities, cf. Remark 2.4.50 in [19].

4 Completeness of root functions

Now we can state our main result, the theorem on the completeness of the system of root functions of an elliptic operator on a manifold with a conical point.

Theorem 1 Let A be an operator of Fuchs type, elliptic of weight α , $0 \le \alpha < 2m$. Suppose that there exist rays $\arg \lambda = \theta_i$, i = 1, ..., N in the complex plane that are rays of minimal growth for the resolvent of A, where the angles between pairs of neighbouring rays are $\le \pi(2m - \alpha)/2n$. Then the spectrum of the operator is discrete, and the root functions form a complete system in $L_2(B)$.

Proof. Let z_0 be a point not belonging to the spectrum of \mathcal{A} . Set $T = (\mathcal{A} - z_0 I)^{-1}$. We can suppose that $z_0 = 0$. Let $R(\lambda, T) = (T - \lambda I)^{-1}$. Theorem 1 then easily follows from the following lemma.

Lemma 1 If A is an operator of Fuchs type, elliptic of weight α , there exists a sequence of circles $|\lambda| = \rho_i$ such that $\rho_i \to 0$ and

$$||R(\lambda, T)||_{L_2(B) \to L_2(B)} \le \exp(|\lambda|^{-n/\gamma - \varepsilon}), |\lambda| = \rho_i,$$

where $\gamma = (\alpha - 2m)/2$.

Lemma 1 will be verified below. Now we show how Theorem 1 follows from it.

In fact, let Lemma 1 be true and assume that there exists a function $f^* \in L_2(B)$, orthogonal to all eigen- and associated functions of the operator \mathcal{A} . We shall show that $f^* = 0$. This will imply the completeness of the system of root functions. Consider the function

$$F(\lambda) = (f^*, R(\frac{1}{\lambda}, T)f),$$

where $f \in L_2(B)$, (\cdot, \cdot) is the scalar product in $L_2(B)$.

Since the resolvent of \mathcal{A} is a meromorphic function with poles at the points of the spectrum of \mathcal{A} , the function F is analytic for λ outside the eigenvalues of \mathcal{A} . This follows from the expansion

$$R(\lambda, T)f = \frac{\Phi_1}{(\lambda - \lambda_k)^j} + \frac{\Phi_2}{(\lambda - \lambda_k)^{j-1}} + \dots + \frac{\Phi_j}{\lambda - \lambda_k} + \sum_{i=0}^{\infty} g_i(\lambda - \lambda_k)^i$$

in a neighborhood of the point $\lambda = \lambda_k$, λ_k is a pole of R. Here $j \geq 1$, $\Phi_i \neq 0$, $\Phi_i \in L_2(B)$, $g_i \in L_2(B)$, $\Phi_1, \Phi_2, \ldots, \Phi_j$ is a chain of the associated functions. This expansion implies that λ_k is a regular point of $F(\lambda)$, since f^* is orthogonal to all Φ_i . Therefore, $F(\lambda)$ is an entire function.

Lemma 1 implies that

$$|F(\lambda)| \le \exp(|\lambda|^{n/\gamma + \varepsilon}), \quad \gamma = (\alpha - 2m)/2$$

for $|\lambda| = r_i$, $r_i \to \infty$. Consider $F(\lambda)$ for λ in the closure of an angle between the rays $\arg \lambda = \theta_i$ and $\arg \lambda = \theta_{i+1}$. Its size is less than $\pi \gamma / n$. Since

$$R(\lambda, T) = \lambda I - \lambda^2 R(\lambda, \mathcal{A})$$

and the ray $\arg \lambda = \theta_i$ is a ray of minimal growth, we have

$$|F(\lambda)| = O(|\lambda|^{2-\kappa}), \ \kappa > 0, \ \lambda \to \infty, \ \arg \lambda = \theta_i$$

Applying the Phragmen-Lindelöf theorem we obtain that $|F(\lambda)| = O(|\lambda|^{2-\kappa})$ as $|\lambda| \to \infty$ in the whole complex plane. Therefore, $F(\lambda)$ is a linear function, i.e.

$$F(\lambda) = c_0 + c_1 \lambda.$$

On the other hand, we have

$$R(1/\lambda, T) = \lambda I + \lambda^2 + \dots,$$

and therefore,

$$F(\lambda) = \lambda(f^*, f) + \lambda^2(f^*, Tf) + \dots$$

Since F is linear, we have $(f^*, Tf) = 0$ for all $f \in L_2(B)$. Since the range of the operator T is dense in $L_2(B)$, we have $f^* = 0$. Thus, the system of root functions of the operator \mathcal{A} is complete in $L_2(B)$.

Definition 1 An operator T belongs to the class C_p , 0 , if

$$\sum_{i} |\mu_i(T)|^p < \infty,$$

where $\mu_i(T)$ are the eigenvalues of the operator $(T^*T)^{1/2}$.

Lemma 1 follows from the following result:

Lemma 2 (see [10]) If T is a compact operator in a Hilbert space belonging to the class C_p , $0 , then there exists a sequence <math>\rho_i$, $\rho_i \to 0$ such that

$$||R(\lambda, T)|| \le \exp(c|\lambda|^{-p})$$

for $|\lambda| = \rho_i$.

It remains to prove that $T \in C_p$ with $p > n/\gamma$. To this end we use the following result of Agmon.

Let Q be a cube in \mathbb{R}^n ,

$$Q = \{ x \in \mathbb{R}^n : |x_i| < \pi, i = 1, \dots, n \}.$$

Represent $u \in L_2(Q)$ in the form

$$u(x) = \sum_{k_1, \dots, k_n} a_{k_1, \dots, k_n} e^{i(k_1 x_1 + \dots + k_n x_n)}.$$

Let H_r be the space of functions u with a finite norm

$$||u||_r^2 = |a_0|^2 + \sum_{k \neq 0} |k|^{2r} |a_k|^2, \quad r > 0.$$

Let H_r^N be the space of N-dimensional vectors, each component of which belongs to H_r .

Lemma 3 Let T be a compact operator in H_r^N such that $TH_r^N \subset H_{r+s}^N$. Then there exists a sequence ρ_i , $\rho_i \to 0$ such that

$$||R(\lambda, T)|| \le \exp(c|\lambda|^{-n/s-\varepsilon})$$

for $|\lambda| = \rho_i$.

This follows from Theorem A1.1', p. 137 in [1].

We shall reduce the spectral problem on a conical manifold to a spectral problem for an operator on \mathcal{H}_r^N . Let

$$B = \left(\bigcup_{i=1}^{l} \Omega_i\right) \cup \left(\bigcup_{i=1}^{L} \Omega_i'\right),\,$$

where $b_0 \notin \Omega_i$, each Ω_i is homeomorphic to a cube, i.e. $\{\Omega_i\}$ form an atlas on $B \setminus U_0$, where U_0 is a neighborhood of b_0 , which is covered by L sets Ω'_i , each of them being homeomorphic to a cone K_i in \mathbb{R}^n .

Set

$$P_i u = u(\Phi_i^{-1} y),$$

where Φ_i is a diffeomorphism of Ω_i on the cube Q_i . We can extend $P_i(u)$ to the whole space as a periodic function. Let us suppose for simplicity that the period of this function is 2π in each variable y_i .

Consider the function

$$P_i'u = u((\Phi_i')^{-1}y),$$

where Φ'_i is a diffeomorphism of Ω'_i on the cone K_i . Let us take a partition of unity in K_i such that

$$1 \equiv \sum \theta_j(t), \ \theta_j \in C_0^{\infty}(\mathbb{R}^n_+), \ \operatorname{supp} \theta_j \subset K_{i,j}, \ |D^{\alpha}\theta_j| \le C_{\alpha} 2^{j|\alpha|},$$

where

$$K_{i,j} = \{ y : y \in K_i, \ 2^{-j-2} < |y| < 2^{-j-1} \}.$$

Set

$$u_{i,j} = \theta_j P_i' u$$

in $K_{i,j}$. It is easy to see that for $|\beta| \leq 2m$

$$\int\limits_{K_{i,j}} \left| \frac{\partial^{\beta} u_{i,j}}{\partial y^{\beta}} \right|^{2} r^{2|\beta| - 4m + \alpha} dx \le C \|u_{i,j}\|_{W_{\alpha}^{2m}(K_{i,j})}^{2}.$$

Without loss of generality we can assume that the base of the cone is a domain with smooth boundary and $u_{i,j}$ can be extended to the domain

$$S_j = \{y : 2^{-j-2} < |y| < 2^{-j-1}\}$$

so that it vanishes for $|y| \ge 2^{-j-1}$ and for $|y| \le 2^{-j-2}$. The interpolation inequality implies that

$$\varepsilon^{2s} \|u_{i,j}\|_{H^{s}(\mathbb{R}^{n})}^{2} \leq C_{1} \varepsilon^{4m} \int_{K_{i,j}} \sum_{|\beta|=2m} |D^{\beta} u_{i,j}|^{2} dy + C_{2} \int_{K_{i,j}} |u_{i,j}|^{2} dy$$

or

$$\varepsilon^{2s-4m+\alpha} \|u_{i,j}\|_{H^s(\mathbb{R}^n)}^2 \le C_3 \varepsilon^{\alpha} \int_{S_j} \sum_{|\beta|=2m} |D^{\beta} u_{i,j}|^2 dy + C_4 \varepsilon^{\alpha-4m} \int_{S_j} |u_{i,j}|^2 dy.$$

Setting $\varepsilon = 2^{-j}$ we get

$$2^{js_1} \|u_{i,j}\|_{H^s(\mathbb{R}^n)}^2 \le C_3 \int_{S_i} \sum_{|\beta|=2m} |y|^{\alpha} |D^{\beta} u_{i,j}|^2 dy + C_4 \int_{S_i} |y|^{\alpha-4m} |u_{i,j}|^2 dy,$$

where $s_1 = -\alpha + 4m - 2s$. We have

$$||P'_{i}u||_{H^{s}(\mathbb{R}^{n})} \leq \sum_{j=1}^{\infty} ||u_{i,j}||_{H^{s}(\mathbb{R}^{n})} \leq \left(\sum_{j=1}^{\infty} ||u_{i,j}||_{H^{s}(\mathbb{R}^{n})}^{2} 2^{js_{1}}\right)^{1/2} \left(\sum_{j=1}^{\infty} 2^{-js_{1}}\right)^{1/2}$$

$$\leq C_{5} \left[\sum_{j=1}^{\infty} \int_{S_{j}} \sum_{|\beta|=2m} |y|^{\alpha} |D^{\beta}u_{i,j}|^{2} dy + \int_{S_{j}} |y|^{\alpha-4m} |u_{i,j}|^{2} dy\right]^{1/2}$$

$$\leq C_{6} ||u||_{W_{\alpha}^{2m}}^{2}.$$

The function P'_iu can also be extended to the whole space as a periodic function, since it vanishes outside the unit sphere, and we obtain a map $u \mapsto \{\bigcup_i P_iu,\bigcup_i P'_iu\}$. It defines the operator $J:W^{2m}_{\alpha}(B) \to H^N_s$, N=l+L.

 $\{\bigcup_i P_i u, \bigcup_i P_i' u\}$. It defines the operator $J: W_\alpha^{2m}(B) \to H_s^N$, N=l+L. Let T be a bounded operator $L_2(B) \to W_\alpha^{2m}(B)$. Using the above constructed operator J we can define an operator T^+ in H_0^N as follows. Let $f=(f_1,\ldots,f_N)\in H_0^N$. To each function f_i there corresponds the function $\tau f_i\in L_2(B)$, $\operatorname{supp}(\tau f_i)\subset U_i$ or U_i' . We have $T\tau f_i\in W_\alpha^m(B)$ and $JT\tau f_i\in H_s^N$. Set $T^+=JT\tau$. It is clear that T^+ is a compact operator from H_0^N to H_0^N . It is evident also that if $\lambda\neq 0$ is a point of the spectrum of T, then it belongs to the spectrum of T^+ . We have $T\tau=\tau T^+$.

It is easy to see that

$$||R(\lambda,T)||_{L_2(B)\to L_2(B)} \le C||R(\lambda,T^+)||_{H_0^N\to H_0^N},$$

if λ is a regular point of the operator T^+ . Indeed, let $\lambda \neq 0$ be such a point. If $u \in H_0^N$, then

$$(T - \lambda I)\tau(T^+ - \lambda I)^{-1}u = \tau(T^+ - \lambda I)(T^+ - \lambda I)^{-1}u = \tau u,$$

whence

$$\tau R(\lambda, T^+)u = R(\lambda, T)\tau u$$

or

$$R(\lambda, T)u = \tau R(\lambda, T^+)Ju.$$

Therefore,

$$||R(\lambda, T)u|| \le ||R(\lambda, T^+)|||u||.$$

Lemma 3 implies that there exists a sequence $\rho_i > 0$ such that $\rho_i \to 0$ and

$$||R(\lambda, T)|| < \exp(|\lambda|^{-n/\gamma - \varepsilon})$$
 if $|\lambda| = \rho_i$.

This completes the proof of Lemma 1 and Theorem 1 follows.

REFERENCES 10

References

[1] S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math. 15 (1962), 119–147.

- [2] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. 12 (1959), 623–727.
- [3] M. S. Agranovich, On series with respect to root vectors of operators associated with forms having symmetric principal part, Funct. Anal. Appl. 28, 3 (1994), 151–167.
- [4] M. S. Agranovich, Elliptic boundary problems, Partial Differential Equations IX, Encyclopedia of Mathematical Sciences, vol. 79, Springer, 1997, pp. 1–144.
- [5] M. S. Agranovich, R. Denk, and M. Faierman, Weakly smooth nonselfadjoint spectral problems for elliptic boundary value problems, Spectral Theory, Microlocal Analysis, Singular Manifolds (B.-W. Schulze P. Demuth, E. Schrohe, ed.), Birkhäuser, 2000, pp. 138–199.
- [6] F.E. Browder, On the eigenfunctions and eigenvalues of the general elliptic differential operator, Proc. Nat. Acad. Sci. USA 39 (1953), 433–439.
- [7] F.E. Browder, Estimates and existence theorems for elliptic boundary value problems, Proc. Nat. Acad. Sci. USA 45 (1959), 365–372.
- [8] F.E. Browder, On the spectral theory of strongly elliptic differential operators, Proc. Nat. Acad. Sci. USA 45 (1959), 1423–1431.
- [9] T. Carleman, Über die Verteilung der Eigenwerte partieller Differentialgleichungen, Ber. der Sächs. Akad. Wiss. Leipzig, Mat. Nat. Kl., 1936.
- [10] N. Dunford and J.T. Schwartz, *Linear operators*, vol. II, Interscience Publishers, New York, London, 1963.
- [11] Ju. V. Egorov and B.-W. Schulze, *Pseudo-differential operators, singular-ities, applications*, Operator Theory, Advances and Applications, vol. 93, Birkhäuser Verlag, Basel, 1997.
- [12] J.B. Gil, Full asymptotic expansion of the heat trace for non-self-adjoint elliptic cone operators, Preprint math. 0004161, Temple University, Dept. Math., Philadelphia, April 2000.
- [13] M. V. Keldysh, On the eigenvalues and eigenfunctions of certain classes of non-selfadjoint equations, Doklady AN SSSR 77 (1951), 11–14.
- [14] V.A. Kondrat'ev, Boundary value problems for elliptic equations in domains with conical points, Trudy Mosk. Mat. Obshch. 16 (1967), 209–292.
- [15] N.M. Krukovsky, Theorems on the m-fold completeness of the generalized eigen- and associated functions from W_2^1 of certain boundary value problems for elliptic equations and systems, Diff. Uravneniya 12, 10 (1976), 1842–1851.

REFERENCES 11

[16] V.G. Maz'ja and B.A. Plameneskij, On the asymptotics of the fundamental solutions of elliptic boundary value problems in domains with conic points, Probl. Math. Anal. 7 (1979), 100–145.

- [17] M. Schechter, Remarks on elliptic boundary value problems, Comm. Pure Appl. Math. 12 (1959), 457–482.
- [18] B.-W. Schulze, Pseudo-differential operators on manifolds with singularities, North-Holland, Amsterdam, 1991.
- [19] B.-W. Schulze, Boundary value problems and singular pseudo-differential operators, J. Wiley, Chichester, 1998.