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1 Introduction

This paper is aimed at proving the completeness of the system of eigen- and
associated functions (i.e., root functions) of an elliptic operator on a manifold
with a finite number of conical points.

If the manifold is smooth, the completeness of the system of root functions
for a general elliptic system with boundary conditions of Lopatinsky type was
proved by S. Agmon in [1].

Earlier for the Dirichlet boundary value problem for an elliptic operator of
order m having a real principal part the completeness of the system of root
functions has been established by F. Browder [6]-[8].

Essential progress was achieved in the work [13] by M.V. Keldysh, who
considered non-self-adjoint operators. He studied elliptic operators of second
order in a smooth domain with Dirichlet boundary conditions. The methods of
this work have been used later on by many mathematicians.

In the article [3] by M.S. Agranovich the completeness of the system of root
functions for a general elliptic system with boundary conditions of Lopatin-
sky type has been proved under much weaker conditions on smoothness of the
principal coefficients and the domain than in [1].

The case of a non—smooth domain has been studied considerably less. N.M.
Krukovsky in [15] proved the completeness of the system of root functions for an
elliptic operator of second order in an arbitrary bounded domain with Dirichlet
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boundary conditions and in a Lipschitz domain with Neumann boundary con-
ditions. The case of sectorial operators was investigated by M.S. Agranovich in
[3], this class is wider than the class of strongly elliptic operators, but depends
on certain properties of the characteristic polynomial.

In the present paper we consider elliptic differential operators on a manifold
with a finite number of conical points. B.-W. Schulze in [18] proved the existence
and smoothness theorems. The corresponding estimates play an essential role
in the present paper.

2 Definitions

Our main definition is as follows. A manifold B with conical points is a topo-
logical space with a finite subset of points

Bo={b1,...,by} CB

such that the following properties hold:

a) the manifold B\ By is C'*°-smooth;

b) each point b € By has an open neighborhood U in B such that there
exists a diffeomorphism

®:U\{b} » X* =R x X,

where X = X (b) is a closed compact C°°-manifold, and ® is extendible to a
homeomorphism

T:U - X2 =R xX)/({0} x X).

If ¥ : U\{b} = X* is another diffeomorphism extendible to a corresponding
homeomorphism to U, then ® and ¥ are equivalent if ®¥ 1 : X* — X* is the
restriction of a diffeomorphism

R x X >R xx.

B is assumed to be paracompact; for simplicity we consider the case that
By contains only one point by, dim By \ bp = n,dim X =n — 1.

Now we pass to differential operators on a manifold B with a conical point
bo. An operator A € Diff™ (B \ by) is said to be an operator of Fuchs type, if
there exists a neighborhood U of by such that the operator A in local coordinates
(r,x) € X* has the form

sm S ()

with coefficients aj, € C> (R, Diff "~*(X)). Here, Diff™(X) is the space of all
differential operators of order m with smooth coefficients defined on X. In local
coordinates x € X we have

ar(r)= Y bs(r,z)Dy,

|Bl<m—k
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where a = (a1,...,an_1), |8 = b1+ -+ Bn_1, D? = 0515z 9P

n—1
Let us give another definition of a manifold with a conical point equivalent
to the one before.
Let w be a set on the unit sphere in R"™. Set

KA(UJ):{;L':;L'E]RN',OS|£II|<OO,|;§—|EW it  « #0}.

Moreover, let

K*(w):{x:xE]R”,O<|x|<oo,£€w}

|z]

which is a cone in R" with base w.
A manifold B with a conical point by € B is a topological space such that

a) the manifold B\ By is smooth and has dimension n;

b) there exists a neighborhood U of by in B such that the set U \ by can
be covered by a finite number of open sets U;,i = 1,...,L, such that
U C Ui, and there exist diffeomorphisms

d,:U;, —» K*(wi)
that are extendible to homeomorphisms

61' :U; Ubg — KA(UJ,').

The covering defines a system of local coordinates in a neighborhood of the point
bo. In fact, if x € U then = € U; for some i (may be for several i), ®;(z) € K*(w)
and one can consider (r,y), where y = ®;(x)/|®;(x)|, as local coordinates. If U’
is another neighborhood of x and U’ C U, then the set S = U’ \ U’ = U’ is a
smooth manifold and [ J; U; N S forms an atlas on S.

Let us introduce weighted Sobolev spaces WS (B), where s > 0 is an integer,
a € R A distribution u belongs to W2 (B), if

(1) (S Hlsoc(B \ bO):

(ii) the function u(y) = u;(®;'y), where y € K} and i is such that = € U,
satisfies the condition

Z r2Bl=2e=2s| DBy 12dy < .

K*(w) |BI<s

Note that W2(B) is a Banach space. It is easy to see that an operator A of
Fuchs type of order m defines a bounded operator WS (B) — W2~ "™(B).
An operator A of Fuchs type is said to be elliptic of weight « if

(i) it is elliptic on B\ by ,

(ii) the operator
o(4) =) ar(0)2F
k=0

is an isomorphism H*™(X) — H°(X) for all z € T /214/2—2m, where T
is the line Re z = 7 in the complex plane.
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As is shown in [18], an operator A : W2™(B) — W2(B) that is elliptic of
weight « is a Fredholm operator.

Let us define unbounded operators A : Ly(B) — La(B), Ly(B) = W{(B),
related to an elliptic operator A of Fuchs type. Suppose that the domain D 4
of A equals W2™(B) for some «, 0 < a < 2m, and set Au = Au for u € D 4.

Moreover, assume that A is elliptic of weight a. Then A is a closed operator
L,(B) — Ly(B) with dense domain in Ls(B). The kernel of A has a finite
dimension, its image is closed. If its spectrum does not coincide with the whole
complex plane, i.e., the resolvent

R(\ A) = (AT — A~ : Ly(B) — Ly(B)

is defined for some complex Ao, then R(\g, A) is compact, and R(), A) is defined
for all A, except for a discrete set of points {\}, which are the eigenvalues of

A.

3 Rays of minimal growth

A ray arg A = 60 is said to be a ray of minimal growth of R(A, A), if the resolvent
exists on this ray for all A of sufficiently large absolute value, and for these A
we have

IR\, Aoy a8y < CIAP

for some 0, 0 < 6 < 1.

In order to state whether a ray argA = 6 is a ray of minimal growth one
needs to study Fuchs type operators depending on a parameter in more detail
cf. Agmon’s work [1] for the case of differential operators in a smooth domain.
Concerning a machinery for conical singularities, cf. Gil [12].

Let B' = B\ S', where S! is a circle on the unit sphere in R®. Then B’ is
a manifold with edge by x S'. Consider on B’ the operator

m
miQa

L=A-(-)me 2.

Suppose that £ is a Fredholm operator
WZ™(B") - W2(B').

The space W2(B') consists of the functions u such that

27 2m )
e = [t O+ [| 252 ar<s.
0 0 w(B’)
The ellipticity implies the estimate
1030 < CUILVIG o + 0017, 50)]- (1)
Setting v = ey, we get

Lv = e*(Au — (1) k™),
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and estimate (1) gives us
lue™ (|30 < CrllAu = (=1)™e k™ ull3,, o + Collull, (- (2)

On the other hand, we have

ot 82m
C3||U€l ||2moz = /H ath

> /k2mro‘|u|2r”71drd$+/r“|u|2r"71drd$+ / E*"u?ds + / u*ds,

r<p r<p B\U B\U

27T
dt + / 10120yt
WO (B') ; “

(3)

where U is a neighborhood of the conical point, (r,z) are local coordinates, and
ds is a fixed Riemannian metric on B\ U.
Inequalities (2) and (3) imply that

CullAull}, o + CsllullZ, ) > k" |lullL, s)-
Since
A= (=1)mek™ |\ = |k|™, arg\=0—mm,
the latter inequality means that
IR, A < Cs| A= (4)

In the works [18], [19] by B.-W. Schulze there are the conditions for the
operator L to be Fredholm. They include condition (i)

wg Y ap@)e’ £0

|8l=2m

and condition (ii) of ellipticity on the edge. It can be stated as follows. Consider

the operator
o\" ;
__,.—m E :ak <—’I° > _ 6@9

on X*. It is easy to see that this is a Fredholm operator from W2™(X*) N
WI(X*) to WO (X™).

The definition of the spaces W2(X*) is a natural generalization of the def-
inition of W2(B) given above. The set X* can be covered by a finite set of
neighborhoods each of which is homeomorphic to an unbounded cone in the
Euclidian space, and we have u € W2(X™*) if condition (ii) from the definition
of W2(B) is fulfilled.

The ellipticity condition for the operator £ means that Ay is an isomorphism
between W2™(X*) N W2(X*) and W2(X*). This condition can be considered
as the Lopatinsky condition on the edge. Such a condition for elliptic boundary
value problems was introduced in the article [16] by V.G. Mazya and B.A.
Plamenevsky.
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Estimate (4) implies, in particular, that the map u — (A — A)u is bijective
for all A with sufficiently large absolute value and argument equal to 6 — wm.
In order to show that the ray argA = 8 — wm is a ray of minimal growth, it
suffices to prove that the image of . A— AT coincides with L2 (B). This rather long
proof is based on the methods of the proof of invertibility of elliptic differential
operators on a manifold with conical singularities, cf. Remark 2.4.50 in [19].

4 Completeness of root functions

Now we can state our main result, the theorem on the completeness of the
system of root functions of an elliptic operator on a manifold with a conical
point.

Theorem 1 Let A be an operator of Fuchs type, elliptic of weight a, 0 < a <
2m. Suppose that there exist rays argA = 0;, i = 1,...,N in the complex
plane that are rays of minimal growth for the resolvent of A, where the angles
between pairs of neighbouring rays are < w(2m — a)/2n. Then the spectrum

of the operator is discrete, and the root functions form a complete system in
Ly (B).

Proof. Let zg be a point not belonging to the spectrum of A. Set T = (A —
20l)~t. We can suppose that zo = 0. Let R(\,T) = (I' — AI)~!. Theorem 1
then easily follows from the following lemma.

Lemma 1 If A is an operator of Fuchs type, elliptic of weight «, there exists a
sequence of circles |\| = p; such that p; = 0 and

IR D) () 128) < exp(A7779), A = pi,
where v = (o — 2m) /2.

Lemma 1 will be verified below. Now we show how Theorem 1 follows from
it.

In fact, let Lemma 1 be true and assume that there exists a function f* €
L,(B), orthogonal to all eigen- and associated functions of the operator 4. We
shall show that f* = 0. This will imply the completeness of the system of root
functions. Consider the function

FQ) = (f*, R(5, 1)),

where f € Lo(B), (+,-) is the scalar product in Lo(B).

Since the resolvent of A4 is a meromorphic function with poles at the points
of the spectrum of A, the function F' is analytic for A outside the eigenvalues of
A. This follows from the expansion

b, ®, ®; .
A f = -+ — + -+ + E (A — )’
XD (A= Ag)? (A= Ag)i—t A=A i:Og ( )

in a neighborhood of the point A = Ag, Ag is a pole of R. Here j > 1,®; #
0,®; € Ly(B),g; € L2(B), ®1,®2,..., P, is a chain of the associated functions.
This expansion implies that A is a regular point of F'(\), since f* is orthogonal
to all ®;. Therefore, F'(A) is an entire function.
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Lemma 1 implies that
[F)] < exp(]AI"749), 7 = (a —2m)/2
for |A| = r;, r; — oo. Consider F(A) for A in the closure of an angle between
the rays arg A = 6; and arg A = 6,41. Its size is less than 7y/n. Since
R\T) =M — XNR(\, A)
and the ray arg A = 6; is a ray of minimal growth, we have
|[F(A)] = O(A* %), k>0, A — oo, arg A = 0;.

Applying the Phragmen-Lindel6f theorem we obtain that |F(A\)| = O(|A]>=%) as
|A| = oo in the whole complex plane. Therefore, F/(\) is a linear function, i.e.
FA) =co+ca

On the other hand, we have
R(I/NT) =M+ X +...,
and therefore,
FQ) =X N+ N TH+....

Since F is linear, we have (f*,Tf) = 0 for all f € Ly(B). Since the range of
the operator T is dense in Ly(B), we have f* = 0. Thus, the system of root
functions of the operator A is complete in Ly(B).

Definition 1 An operator T belongs to the class Cp, 0 < p < o0, if
Z |ul(T)|p < 0,
i

where pi(T) are the eigenvalues of the operator (T*T)'/2.

Lemma 1 follows from the following result:

Lemma 2 (see [10]) If T is a compact operator in a Hilbert space belonging to
the class Cp, 0 < p < 00, then there exists a sequence p;, p; — 0 such that

IR(A, T)| < exp(c|A|™")
for |A = pi.
It remains to prove that T € C, with p > n/y. To this end we use the

following result of Agmon.
Let @ be a cube in R",

Q={zelR":|z;| <mi=1,...,n}.
Represent u € L2(Q) in the form
u(z) = Z akl,,,,,knei(kl”’lJr"'Jrk"f”").
k1 enskin
Let H, be the space of functions u with a finite norm
lull} = laol® + D k" |arl*, r>0.
k+#£0

Let HY be the space of N-dimensional vectors, each component of which belongs
to H,.
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Lemma 3 Let T be a compact operator in HY such that THY C HY, .. Then
there exists a sequence p;, p; — 0 such that

[[R\,T)| < eXp(c|)\|*”/S*E)

for |A = pi.

This follows from Theorem A1.1°, p. 137 in [1].

We shall reduce the spectral problem on a conical manifold to a spectral
problem for an operator on H. Let

L

5= (U v (U)

i=1

where by ¢ ;, each Q; is homeomorphic to a cube, i.e. {Q;} form an atlas on
B\ Uy, where Uy is a neighborhood of by, which is covered by L sets €}, each
of them being homeomorphic to a cone K; in R”.
Set
Pu = u(®]'y),

where ®; is a diffeomorphism of Q; on the cube @;. We can extend P;(u) to
the whole space as a periodic function. Let us suppose for simplicity that the
period of this function is 27 in each variable y;.
Consider the function
Plu = u((@)y),

where @/ is a diffeomorphism of Q on the cone K;. Let us take a partition of
unity in K; such that

1= 6;(t), 0; € Cg°(RY), suppf; C K, j, |[D*6;| < Co27°,
where ' .
K;; = {y:y e K, 27972 < ly| < 27]71}.

Set
Ui, = 0]Pz'u

in K; ;. It is easy to see that for |3| < 2m

8Buij 2 2| .

Z ) Bl—4m+a 2

/‘ ByP v dr < Clluijllwzn i, 5)-
Kl,]-

Without loss of generality we can assume that the base of the cone is a domain
with smooth boundary and u;; can be extended to the domain

S ={y:27 <yl <277

so that it vanishes for |y| > 27971 and for |y| < 27772, The interpolation
inequality implies that

€22 1 5| re ey < Crt™ / S [DPuisPdy + Cy / g5 2y

K;; 1Bl=2m

K; ;
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or
2s 4m+a 12 a—4m 12
i ey < Cae® / > IDPusyPdy + Coe = [ fus .
|B|=2m S;
Setting ¢ = 277 we get
27 [wi || Fe ey < 03/ > ly® IDBuzglzdy+C4/|y|“ g ;P dy,
|B8|=2m
where s = —a + 4m — 2s. We have

[|1Pul

S - . ; /2 /& . /
Hs(R™) S Z ||Ui7j| Hs(R™) S (Z ||'U/z,J| %{s(Rn)2]Sl)1 2 (Z 27]51)1
J=1 j=1 =

<C5 Z/ Z ly|* |Dﬂuw| dy+/|y|" 4m|um| dy]

=15, |8]=2m

< Collullfyzm-

The function Pu can also be extended to the whole space as a periodic func-
tion, since it vanishes outside the unit sphere, and we obtain a map u +—
{U; Piu,J; Plu}. It defines the operator J : W2™(B) — HN, N =1+ L.

Let T be a bounded operator Ls(B) — W2™(B). Using the above con-
structed operator J we can define an operator T in HY' as follows. Let
f = (f1,.-.,fn) € HY¥. To each function f; there corresponds the function
7fi € La(B), supp(rf;) C U; or Ul. We have T'tf; € W™(B) and JT7f; € HY.
Set Tt = JT't. It is clear that T is a compact operator from HY to H{V. Tt
is evident also that if A # 0 is a point of the spectrum of 7', then it belongs to
the spectrum of TF. We have Tt = 7T+,

It is easy to see that

||R()‘7T)||Lz(B)—>Lz(B) < C”R()‘:TJF)HH[%V%H[%V:

if X is a regular point of the operator TF. Indeed, let A # 0 be such a point. If
u € HY, then

(T = ADT(TT = AI)tu = 7(T+ = AXI)(TF = AI) " 'u = 1u,

whence
R\, TH)u= R\ T)Tu
or
R\, T)u=7R\,T")Ju.
Therefore,

IR\, Tyull < [|RO TH)ull-

Lemma 3 implies that there exists a sequence p; > 0 such that p; — 0 and
IR T)I < exp(IA77%) if A = pi.

This completes the proof of Lemma 1 and Theorem 1 follows. O
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