A DECOMPOSITION OF FUNCTIONS WITH VANISHING
MEAN OSCILLATION

MICHAEL BRIAN KOREY

ABSTRACT. A function has vanishing mean oscillation (VMO) on R™ if its
mean oscillation—the local average of its pointwise deviation from its mean
value—both is uniformly bounded over all cubes within R™ and converges to
zero with the volume of the cube. The more restrictive class of functions with
vanishing lower oscillation (VLO) arises when the mean value is replaced by
the minimum value in this definition. It is shown here that each VMO function
is the difference of two functions in VLO.

1. INTRODUCTION

To say that a locally integrable function f on R™ has bounded mean oscillation,
f € BMO, means that

1
(1) wp / (@) — fgl dz < oo,

where the supremum runs over all cubes @) in R with edges parallel to the co-
ordinate axes, || denotes the measure of (), and fg is the mean value of f over @,
ie., fo = (1/|Q]) fQ f. A function f is said to have bounded lower oscillation if the

term fo in (1) can be replaced by infg f, the essential infimum! of f over @; in
other words, f € BLO if

(2) Sup @1| /(f(w) —inf f)dv = Sgp(fQ —inf f) < oo.

The suprema in (1) and (2) are denoted by ||fllsmo and ||fl|sLo, respectively,
and when only the cubes @ within a given cube @)y are considered, the sym-
bols BMO(Qp) and BLO(Qo) will be used.

It is not difficult to see that each BLO function is in BMO; in fact, the estimate
[l fllBMo < 2||f|lBLO holds. Unlike BMO, however, the set BLO is not stable under
multiplication by negative numbers (log|z| is in BLO, but —log|z| is not), and
BLO N (—BLO) = L*, as follows readily from the definition. On the other hand,
Coifman and Rochberg [3], invoking a rather subtle argument of Carleson, showed
that each BMO function can be written as the difference of two BLO functions, in
short:

BMO = BLO — BLO.
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In general, all pointwise statements in this paper should be understood to hold only almost
everywhere with respect to Lebesgue measure. In particular, infg f and supg f denote the es-
sential infimum and essential supremum of f on @, and no distinction will be made between two
functions agreeing on the complement of a set of measure zero.
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This is likewise a consequence of the factorization of A, weights obtained by
Jones [9];? in this regard, see also [2], [4], and [5].

The authors of [3] concluded their paper by noting that “many results about
functions in BMO have analogs for functions of vanishing mean oscillation ... [but
we] do not know what the analogs of our results are in that context.” The purpose
of this paper is to provide such an analog in the form of the following result:

Theorem. FEach VMO function is the difference of two VLO functions. That is,
if f € VMO, then there exist VLO functions F' and G such that f = F — G and

IF']|sLo + [|GllBLO < C|fllBMO-

The constant C' depends only on the dimension n.

A word of explanation about the terms in the theorem is necessary. To say that
a BMO function has vanishing mean oscillation means not only that the supremum
in (1) is bounded over all cubes, but also that it vanishes in the asymptotic limit
of ever smaller scales. In other words, f € VMO if both f € BMO and

1
ol / 1£(z) = foldz =o(1)  (£(Q) = 0),

where £(Q)) denotes the edge-length (or “size”) of the cube @. Each bounded, uni-
formly continuous (BUC) function is in VMO, uniform continuity being expressable
in the form

(3) sup f —inf f=o(1)  (((Q) = 0),
Q Q

and VMO is actually the closure of BUC with respect to the BMO norm defined
in (1), as was shown in [14]. The space VMO was introduced by by Sarason in [14] in
the context of algebras on the unit circle and has since found manifold applications
in diverse areas of analysis: [1] and [10] give two recent examples in the context of
partial differential equations.

The new class VLO considered here, the set of functions with vanishing lower
oscillation, consists of those BMO functions f for which

(4) fo—inff=0(1) (@) —0).
VLO is a proper subset of VMO: while both \/log(1/|z|) and —+/log(1/|z|) are

in VMO, only the former is in VLO. Moreover, the portion of VLO that is stable
under multiplication by a negative number is a familiar space:

VLO N (-VLO) = BUC,

for when both f and —f satisfy (4), then f also satisfies (3). What the theorem
then says is that
VMO = VLO — VLO.

Although the statement of the theorem is a straightforward generalization of
that in [3], the proof is not. One essential reason for the difficulty is that while
L* functions are in BLO (and thus in BMO), they are not generally in VMO); the
characteristic function of the unit interval [0, 1] on the line, for example, has mean
oscillation 1/2 over each interval of the form [—r,r]|, no matter how small r is. This
presents a non-trivial obstacle to proving the theorem, because the techniques used

2In fact, BMO = {alogw : & > 0,w € A} and BLO = {alogw : a > 0,w € A1}, so that the
statement BMO = BLO — BLO is the logarithm of the factorization result Ay = A;/A; in [9].
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to characterize BMO in [3] and the Calderon-Zygmund decomposition as applied
in [9] typically lead to bounded remainder terms. In the decomposition of BMO, this
level of precision suffices and such remainder terms need not be broken down any
further; on the other hand, if VMO functions are to be decomposed, then attention
must be paid not only to the size but also to the smoothness of these remainders.
(A similar difficulty is encountered when trying to extend VMO functions defined
on a measurable set to all of R”, as in [7].)

The method of proof for the VMO theorem stated above is first to show the result
in the dyadic model case, applying ideas used by Jones [9] for the factorization of
Muckenhoupt A, weights. Translations of this dyadic result will then be averaged
to give the general case, along the lines of of Garnett and Jones [6]. The same com-
bination of techniques was also used by the present author in [12]. There the focus
was on showing that each Muckenhoupt weight with small A, bound—that is, with
bound near 1, the bound being fized and valid over all scales—could be factored
as a product of suitable powers of two A; weights with weight bounds also close
to 1.2 Here, by contrast, the challenge is to decompose a given VMO function—a,
BMO function whose oscillatory behavior improves over ever smaller scales in an
asymptotically optimal manner—as the difference of two simpler functions that also
display this asymptotically optimal improvement.*

2. THE DYADIC SETTING

The first goal is to prove a dyadic form of the decomposition theorem. This model
version is stated for the collection D(Qo) of all dyadic subcubes of an arbitrary, fixed
cube Qg in R", that is, all those cubes obtained by dividing @) into 2™ congruent
cubes of half its length, dividing each of these into 2™ congruent cubes, and so on;
by convention, @y itself belongs to D(Qo). The space BMOY (Qy) then denotes
the set of all integrable functions on @)y for which condition (1) holds when the
supremum there is taken only over cubes @) in D(Qo); dyadic versions of BLO,
VMO, VLO, and BUC are defined analogously.

At first, we derive a preliminary result (Lemma 1) valid only on large dyadic
scales; with the help of a suitably localized iteration procedure, we shall then extend
this to the full dyadic version (Lemma 2).

Lemma 1. Suppose f € BMOY(Qy). Let § be a dyadic scale (i.e., § € 27V).
Then there exist bounded functions Fy, G1 and Ry, all locally constant® on the
mesh {Q1 € D(Qo) : £(Q1) = 04(Qo)} of dyadic subcubes of relative size §, satisfying
both the pointwise identity

f@) = fgo = Fi() —Gr(x)+ Ra(x)+ Y (f@)—fo)xei (@) (¢ € Qo)
£(Q1)=6¢(Qo)

3The sharp result is that a weight with A» bound 1+ ¢ can be factored as the quotient of two
Ay weights with bounds 1 + O(1/€), as € — 0; see [12] for details.

4In the language of asymptotically optimal Muckenhoupt weights (see [11]), the theorem devel-
oped in the present paper gives the factorization Az as = A1 as/A1,as. The statement w € Ag s
means both that supg, wq(1/w)q < oo and that wo(1/w)q — 0 as £(Q) — 0; the stronger state-
ment w € Aj a5 arises when the product wg(1/w)q is replaced by the ratio wg/infg w.

5Local constancy on a mesh of congruent cubes simply means constancy on each cube within
the mesh.
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and the estimate

(5) 171 [|BLodr (o) T [1G1lIBLOY (o) T B2l (o) < CllfllBMO(Q0)-

The constant C depends only on the dimension n.

The proof uses an iterative Calderén-Zygmund decomposition to single out those
cubes on which the mean oscillation of f is large. Note that in this first lemma
only cubes of comparable size enter—here all dyadic ) with edges of length between
00(Qo) and £(Qo); in Lemma 2, the full range of dyadic scales will be considered,
and special attention will be paid to how the oscillatory behavior of VMO functions
improves as the scale decreases.

Proof.  Without loss of generality, let Qo = [0,1]" and [|f||gmoar(gy) = 27" As
is well known, the BMO condition strongly restricts how the average values of a
function vary with the size of the averaging set. In particular, for any cube @ and
any other cube 2@) containing it and with edges twice as long,

1
(6) o - Fal S2”m/2Q|f—sz|-

When f € BMO, the right-hand side is bounded; when f € VMO, the right-
hand side vanishes as £(Q)) — 0. This simple observation drives the stopping-time
argument below.

Let G = {Qo}. Inequality (6) guarantees that |fo — fo,| < 1, when Q is
any one of the 2™ subcubes of )y obtained from it by bisecting its edges. Fix
§ € 27N, Of interest are the largest subcubes () obtained by further bisection on
which |fo — fo,| > 1 (and £(Q) > ¢). In detail, define

(7) G ={Q € D(Qu) : |fq — fo,l > 1, ¢(Q) > §, Q@ maximal}

and, inductively,
(8) T —1Q eDQ): Q" €GP, |fo — forl > 1, £(Q) > 6, Q maximal}.

Write Gy = U, _, G for the full collection of all such selected cubes. Let Q" be
the union of the cubes in G{*; then, by construction, QTH cQrcC---C QY For
each proper dyadic subcube @ of D(Qo) with £(Q) > ¢, let @ denote the minimal
cube in G; that strictly contains it;® this means, in the special case when @Q € g{”“,
that @ is the unique cube in G containing Q).

Each dyadic subcube @)1 of edge-length § is then contained in a unique decreasing
chain of selected cubes of the form”

Q2QI2QID---2Qr=0Q1 (QeG,1<i<m).

The difference f(x) — fg, can be expanded as a telescoping sum over pairs of ad-
jacent cubes in this chain, extended by the additional inclusion @; D 1. What

6That is, @ = ({Q' € G1: Q C Q'}.

"The length of the chain is at least 1 (in the extreme case when no predecessor of Q; is
selected, so that Q1 = Qo) and at most 1+ logy(1/6); the actual length varies over the mesh of
dyadic subcubes Qi within Qo of size §. Accordingly, all but finitely many of the sets G are
empty, so that the double sum in (9) is actually a sum over only finitely many cubes.
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results from this is the pointwise identity

fQo—Z > (fo - fa)xe(=)

9) m—1Qegy
+(fQ1_fél)+f(x)_fQ1 (z € @),

which holds on each dyadic @; € D(Qo) of size J.
How large are the terms in (9)? Maximality in the selection criteria (7) and (8)
and the basic BMO estimate (6) give rise to the mean-value inequality

(10) 1<l|fo-fz/<2 (@€ |Jam
m=1

They also lead to the relative density estimate

(11) QNayrt<27Ql (Qeglh,

which is valid for each m > 0. Summing this last estimate over all the cubes @
in G{" and iterating leads to the bound

(12) Q[ <277Qo]  (m € N).

Next, to obtain suitable dyadic BLO summands of f, split the double sum in (9)
according to the sign of the difference fo — f@'- Then

f(@) = fq, = Fi(z) = Gi(x) + Ru(@) + Y (f(@) — fau)xau(®) (2 € Qo),

£(Q1)=0d
where
(13) => (fo — f5) " xa (),
m=1 Qe
(14) Gilx) = (f5 — fo) " xa (=),
m=1 Qeg{”
and
Ri@) = S (far — fa,)xa: (@),
£(Q1)=0d

It is important to note that the functions Fy and G; defined in (13) and (14) are
non-negative; where they are positive, their value must, by (10), exceed 1.

Proving the L> estimate in (5) for Ry is stralghtforward since, by the defini-
tion of Ql, no dyadic cube between @, and Q1 is selected in the stopping-time
argument (in other words, |fo — fQ1| <1 whenever )1 C Q C Ql) then either
|fo, = fg,1 SLor1<|fq, — f5,| < 2. In either case, |[Ri(z)| < 2 for a.e. z € Qo,
as desired.

As F} and G, are locally constant on the mesh {Q1 € D(Qo) : £(Q1) = 6}, it
remains to estimate their (dyadic) BLO bounds on cubes larger than those in this
mesh. To confirm (5), then, we must show, for each @ € D(Qo) with £(Q) > §, that
there exists a constant Cgq (with supg Cg < 00) such that both

(15) (Fi)q < Cq +inf Fi
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and

(16) (Gi)g <Co+ iIQlf G-
To prove this we now consider three cases.

Case I: The initial cube. We first verify (15) in the case when @ = Qo, the original
cube. In this case, infg F; = 0, for the choice of the height 1 in the stopping-
time argument defining the selection procedure (7) ensures that the set Qg \ 2} has
positive measure; see (12). Since [, Fy = I |Ee| dt with By = {z € Q : Fy(z) > t},
estimating the dyadic VLO bound of F; then reduces to estimating the measure
of the set E;. But condition (10) ensures that E; C Q}, when 0 < ¢ < 2, and, in
general, that E; C Q¥ when k € N and 2(k — 1) < t < 2k. Thus, by (12),

1E¢| 194 —nk
(17) / dt < 2 [ <23 9mn <2+inf £y,
Z ae—1) QI Z |Q| Z '
which is (15) for Q = Qo.

Case II: A cube with a large jump in mean value. Suppose now that Q) € Gi" for
some positive m and that fo — f5 > 1.° Then (F1)q —infq Iy = |Q| ™" I |E,| dt,
where Ey = {z € Q : Fy(z) — info F1 > t}. In analogy to the first case, we find
from (10) and (11) that E, C QN Q7** when k € N and 2(k — 1) < ¢ < 2k. So

for ¢ in this range, |E;| < 27™*|Q|, from which the desired estimate (15) once again
follows, with Cg = 2.

Case III: Cubes with no large jump in the mean. In Case I, we considered (o; in
Case I, we treated those dyadic cubes @ within Qg (of length exceeding ) for which
fo— fé > 1. To handle the remaining case efficiently, a bit of further notation is
helpful. Recall that, for each proper dyadic subcube @ of Qo with £(Q) > 0, the
symbol @ denotes the minimal cube in G; = U_, G{"* that strictly contains ); now
set

PQ) ={I€D@Q): fr—f5> 1, €I)> 4 [ maximal},
N(@Q)={IeDQ): fr— fe <=1, 4I) > 6, I maximal}.

Note that the union of P(Q) and N (Q) is exactly the set of the cubes in U%X_, G
that lie within @. In this notation, the remaining case now consists of proving (15)
on each dyadic cube @ (of size exceeding J) for which @ & P(Q).

Fix such a cube Q. To estimate Fj, split @ into the union of its subcubes
in P(Q) and the complement of this union. On the one hand, if I € P(Q), then
I = Q; Case II then applies, so that J; F1 < (2 +inf; F1)|I]. Moreover,

1< IIIIfFl —H_lfFl = f[ —fTS 2,
Q

8Unlike in (8), the sign of the difference is important here.
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by (10). On the other hand, on the complement in @ of Urep(g)I the value of Fy
is exactly infé F;. In sum, then,

[ < Y vt R+ (af F)IQ\Urero]]
Q 1 Q
I1eP(Q)
< (4+inf F1) Z 1] + (inf F1)|Q \ Urep(q)!|
1€P(Q) Q
< (4 +inf )|Ql.
Q

Since inf 5 Fy < infq Fy, the bound (15) with C'¢ = 4 thus also holds for the cubes @
in this, the last case.
The justification of the dyadic BLO bound (16) is similar, with G in place of F},
N(Q) in place of P(Q), etc. This completes the proof of Lemma 1. O
When a function has (dyadic) vanishing mean oscillation, then we can apply the
previous lemma in an iterative way that takes advantage of the function’s improved
behavior at small scales. This is the essence of the next result.

Lemma 2. Suppose f € VMO¥(Qy). Then there exist non-negative functions
F,G € VLOY(Qo) and a function R € BUCY (Qy) such that

(18) f(@) = foo = F(z) = G(z) + R(z) (2 € Qo).

Writing f(x) as the difference (F'(z) + R(z) + fg,) — G(z) thus gives the dyadic
form of the decomposition theorem.

Proof.  As above, let [|f||lgmoar(g,) = 27" Since f € VMO%¥(Qyp), we can find
a strictly decreasing sequence of dyadic scales on which the mean oscillation of f
vanishes exponentially fast; that is, set 6o = £(Qp) and choose {§;};en C 27N such
that both 641 < d; (hence 6; = 0 as j — 00) and

(19) ﬁ /Q @)~ falde <2 (Q € D(Qu), UQ) < 5).

Further, let Q;(z) denote the dyadic subcube of @)y that contains & and has edge-
length 0;; then {Q;(z) : © € Qo} is a family of non-overlapping, congruent subcubes
whose union is Qg, and Q;(x) — {z} as j — oo for a.e. z. (When no confusion can
arise, we shall simply write Q; for Q;(z).)

The previous lemma (with 6 = d1/dp) gives rise to the decomposition

f@) = foo = Fi() = Gi(2) + Ru(@) + Y (f(@) = fa.)xe:(2) (¢ € Qo)
£Q1)=0b1

as well as to a suitable estimate on the terms Fy, R;, and G;. Now apply the
lemma to f on each cube @y of size d; (with 6 = d2/01) in place of Q9. Then

f(@) = fo, = Fo(x) = Ga(2) + Ra(@) + Y (f(@) = fo.)x@u(2) (¢ €Qu).
£(Q2)=02
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Repeat the procedure, applying the lemma on each cube @Q;_1 of size 6;_; (with
§=40;/8;_1) to obtain®

f@)=fo,-, = Fij(@)—G(@)+Ri(x)+ > (f(2)—fo;)xe; (@)  (z€Qj 1)
UQ;)=4;

The functions Fj, G;, and R; so obtained!? are all locally constant on the mesh of

dyadic subcubes of Qg of size §;. On account of (5) and (19) they also satisfy the

estimate

(20) I1FjllLosy (@, 1) + [1GjllBLowy (@, 1) + 1 RillL(q@,_1) < C277.

uniformly on all dyadic subcubes ¢);_1 within Q) of size §;_;.
All together, the first J iterations of the procedure just described yield

J J
fz) = foo = ZF =Y Gi@) + > Rim)+ Y. (f@) - fo,)xe, (@),
Jj=1 Jj=1 LQy)=0rs

which is valid for € Q. Since limj o fo,(z) — f(x) for a.e. z, the last sum
vanishes in the limit. As a result,

f(@) = fo, = ZF - Gj(x)+ ) Rj(x)
j=1 j=1

(21) =F(z) -G(@) + R(x)  (z € Qo)

which is (18). What remains is to show the appropriate estimates for the func-
tions F', GG, and R, so defined.

For this, fix an arbitrary @ € D(Qo) and find the unique number J € N such
that 67 < ¢(Q) < dy-1. On @, the functions Fj;, G;, and R; (1 < j < J —1) are

then all constant. Hence
o0

o0 o0
(22) Fo —inf F = <Z Fj> — inf Y F; <> ((Fj)g — inf Fy)
Q =) @ = Q

and
Sup m Sup J 1mn J Sup| ]|

On account of (20), the latter estimate on the (dyadic) modulus of continuity of R
becomes

(23) sup R — 1nfR < 202 277 (Q € D(Qo), UQ) < dj_1).
Q J J

9For each scale index j > 0, let 9]0 ={Qj—1 € D(Qo) : {(Qj—1) = J;_1} denote the full mesh
of subcubes of size §;_1. Then, for m > 0, the above procedure inductively defines ng'H from g]m
by the rule: g;"“ ={QeD(@):Q gl |fq— fq|>2"77,4Q) > §;, Qmaximal}. In addi-
tion, when Q € D(Qo) and §; < £(Q) < d;j_1, then Q denotes the minimal cube in Gj = uﬁzogjm
that properly contains Q.

10Strictly speaking, the argument yields functions Fj, G;, and R; that are defined separately
on each dyadic subcube Q;_1 of size d;_1; however, as the cubes {Q;_1(z) : © € Qo} of this size
are non-overlapping and together cover Qp, we shall view these functions as being defined a.e. on
all of Qo. Hence, the statement ||RjHLoo(Qj71) < C27J (for all such Q;_1) is equivalent to the
global bound || R;||re(g,) < C277.
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Since Z;’;J 279 5 0as J - o (ie, as §; — 0), then R € BUCY(Qy).

The corresponding estimate for F' is a bit more involved. The key is to de-
termine how large each difference (Fj)g — infg F; in (22) can be. Recall that
87 < (@) <dy—1. When j = J, then (Fj)g —infg F; < C277, by (20), since @
is contained in some dyadic cube Qj 1 of size 7 ;.'* Next, when j > J + 1,
then () is a finite union of non-overlapping dyadic cubes @;_; of size §;_;. On
each of these, the selection procedure guarantees that infg, , F; = 0 and that
(Fj)q@,., < C279.12 Over all of @, then, infg Fj_; = 0 and (taking the average
of the mean values (F})q,_, over the ;_; comprising Q) also (Fj)o < C277. In
sum,

(24) (Fj)o — igf F;<C277  (Q e D(Q)

for each j € N. Combining (22) and (24) gives the BLO bound

Fo-if F<C) (27)  (Q€D(Qo) (Q) <dy1).
j=J

The estimate for the BLO bound of G runs the same way. Letting J — oo then
shows that F,G € VMO (Qy), as claimed. O

Several remarks on the construction are in order; for simplicity, these are stated
under the assumption that || f||gmoav(g,) < 27" First, observe that the functions
F and G (resp. R) can be expressed as sums over all the dyadic subcubes of Qo,
not just over those where the mean oscillation of f is large (resp. not just over all
dyadic subcubes having size ¢;). This means that

(25) Fl)=% > Y (fa-fa)"xel@) =D axq.(),

j=1m=1Qegr QrED(Qo)

(26) G@)=) > > (fg-fo) xe@ = > bexa.(),

j=1m=1Qegr QrED(Qo)

and

(27) R)=>_ > (fo,- fa,)xq; (@) = > cexa. (@),
J=14(Q;)=0; QrED(Qo)

where the latter sum in each line runs over all of D(Qy). In (25), for example, when-
ever Qp ¢ U2, Ui, G or whenever Q € Uj_, G for some j but fo, — f5, <0,
then a;, = 0; otherwise, ay = fg, — f@k € (2179,2277]. A similar statement applies
to the coefficients by. In (27), cx = (fq, — f5,) € [-2°77,2* ] if £(Qx) = 9; (for
some j € N), whereas ¢ = 0 otherwise. This reformulation will prove useful below.

The second remark concerns the rate at which the mean oscillation of a given
VMO function vanishes; in the notation above, this is captured by the relative size of
the sequence of scales {J,} in (19). As was noted in [15], each function in VMO is ac-
tually in BMO,—meaning (1/|Q]) fQ |f(z) — foldz < ¢(|Q]) for all Q—for some
bounded, continuous, non-decreasing function ¢ on R; having ¢(0) = 0. Building
on the work of Campanato and Meyers, Spanne [16] showed that BMO,, functions

LT other words, one of the Cases I-III arising in the proof of Lemma 1 applies to Fy on Q.
12Thig corresponds to Case I for Fjon Qj—1.
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are essentially uniformly continuous just in case the Dini condition fol p(t)/tdt < oo
is fulfilled; this corresponds to the condition Z;’il 277 log(d;-1/d;) < oo in the no-
tation used here. Shi and Torchinsky took this analysis one step further in [15]
and gave an elegant proof of a version of the John-Nirenberg inequality for BMO,,.
Their iterative Calderén-Zygmund decomposition has much in common with that
used in the proof of the dyadic version of the theorem above (Lemmas 1 and 2
taken together), with the exception that it disregards bounded remainder terms
and focuses only on the size, not the sign, of the jumps arising in the stopping-
time argument. Precisely these two points, fine control over the remainders and a
partitioning of the jumps by sign, are key features of the argument given above:
the former explains why a Calderén-Zygmund decomposition has been applied to
all cubes in each mesh {Q; € D(Qo) : {(Q;) = 6;}, rather than just to those
having predecessors (“dyadic ancestors”) that were selected within some coarser
mesh, and the latter provides the basis for splitting the VMO function f into the
VLO summands F' and G.

3. THE GENERAL SETTING

The proof of the theorem follows the argument in [6, pp. 361-64], except for
certain technical modifications which are introduced to reflect the improved oscilla-
tory behavior of VMO functions over small scales. For completeness, the full proof
is given here. Let Sy denote the cube [—2V, 2N]n.

Lemma 3. Suppose f is in VMO. Then, for each N € N, there exist non-negative
functions Fy,Gn € VLO(Sy) and a function Ry € BUC(Sy) satisfying both the
identity

(28) f(@) = fsy = Fn(z) - Gn(2) + Bn(z) (v € Sn)

and the estimate

(29) 1EN|IBLo(sy) + IGNIIBLO(SN) + 1BN L= (5x) < ClIflIBMO-

The constant C depends only on the dimension n.

Moreover, for each M € N, the family {Ry : N > M} is equicontinuous on Sy
and the families {Fy : N > M} and {Gn : N > M} have uniformly vanishing
lower oscillation on Sar; this means that the quantity Co = Cqo(M) defined by

(30) Co = sup ((Fn)g —inf Fy,(Gn)g —inf Gn)
N>M Q Q

is finite for each @ C Sy and that Cg — 0 as £(Q) — 0.

Note that the estimates on the lower oscillation of Fy and Gy are asserted to
hold over all subcubes of Sy, not just the dyadic ones; the uniform continuity of Ry
on Sy is also meant in the standard sense (without respect to any dyadic mesh).

Let us first show how this last lemma implies the theorem. The identity (28)
can be re-written, after subtracting off the mean value of each side on Sy, as

f(@) = fs, = [Fn(x) — (Fn)s,] — [Gn(2) = (GN)so] + [Bn(z) — (RN)s,]
(31) :FN(.Z') —GNN(.Z') +RN($).
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Then (29), in conjunction with the John-Nirenberg inequality of [8], yields a uniform
bound on the quadratic mean oscillation of Fy,'® namely

1 . .
01 [V = )l <Clif o @€ Sw)
Suppose now that M < N. When @ = Sy, the last line becomes
1 P 2 - 2
(32) o | ENI < ClfllBmo + [(EN) sl
|SM| S
To control the right-hand side here, form a telescoping sum of mean values:

(33)  (EN)sy = (En)sy + [(F)s, = (Fw)so] + -+ [(Fn) sy = (Fi)sa o).

Since |S1]/]So| = --- = |Sam|/|Sm—1] = 2™ and (Fy)s, = 0, then (33) and (6) imply
that |(Fn)s, | < M2™||fllBmo- Insert this back into (32) to obtain the uniform
quadratic bound

1 -
M

An analogous estimate is also valid for {Gx : N > M}.

For each M, the sequences {Fy : N > M} and {Gn : N > M} are consequently
bounded in L?(Sy). By the lemma, the sequence {Ry : N > M} is also uniformly
bounded and equicontinuous on Spy;. It is therefore possible to choose a subse-
quence N — 00, so that F, — F and Gy, — G weakly in L?(Sy;) and so that
Ry, — R uniformly on Sp;.'* A diagonal argument ensures (with the help of a fur-
ther subsequence, if necessary) that this convergence holds simultaneously for all M.
Since, by (31), f — fs, — Ry, = Fn, — G, then the sequence {Fy, — G, } 5,
must also converge pointwise a.e. on Sys to the difference F — G.'5 In the limit,
(31) thus becomes the asserted decomposition

f(@) = fs, = F(z) = G(z) + R(z) (v € R").

Note that by construction, R is bounded and uniformly continuous on all of R™.
To see that F' € VLO(R™), fix an arbitrary cube @ in R” and choose M so large

that @ C Sp;. On this cube Sy, the weak convergence described above implies

that there is a sequence {pk }ken of finite convex combinations of the FN,“ ie.,

K K
k=1 k=1

that converges to F both in L?(Sj,) and (taking a further subsequence, if necessary)
pointwise a.e.!® Now apply Fatou’s lemmal!” to this new sequence {¢x }xen to

13The estimate on Fy carries over to Fiy, since they differ only by a constant.

4 The John-Nirenberg inequality has been invoked to move from uniform boundedness in L' to
that in L?; otherwise, weak compactness would have only guaranteed the existence of subsequences
{F‘Nk} and {G’Nk} converging to measures.

15Tt is not claimed—separately—that F‘Nk (z) — F(z) and G’Nk (z) — G(z) for a.e. x.

16See Theorem 3.13 in [13] or Theorem V.1.2 in [17]; in the latter work, this result is attributed
to S. Mazur. Note that the coefficients t; (1 < k < K) of ¢k in (34) may depend on K.

17Suppose that {px} is a sequence of non-negative, measurable functions that converges a.e.
to ¢o. What is needed here is the (standard) L! form of Fatou’s lemma, [ ¢ < limy [ ok, as well as
its L°° form: lim (inf ¢ ) < inf ¢; the latter can be verified via a simple proof by contradiction.
Recall that we write inf ¢ for ess inf ¢, as indicated in the introduction.



12 MICHAEL BRIAN KOREY

obtain from (30) the following bound on the lower oscillation of F' over @:

|Q|/F5h—mK|Q|/*"K thZIQI P,

< thZtk mfFNk +Cq) < thZ (tk 1anNk) +Co
k=1

< limy, inf Z teFn, +Cq = lim, inf ox + Co <inf F+ Co.
k=1
As, by assumption, supgcg,, Co < 00 and limyg)0 Cq = 0, then F' € VLO(Sm)
for each M. The treatment of G is identical. Modulo the proof of Lemma 3, the
proof of the theorem is now complete.

Proof of Lemma 3. We use the averaging procedure of [6] to move from the dyadic
version of the theorem (Lemma 2) to the general, local version (Lemma 3). As above
(but now over all of R"), assume that ||f||smo = 27". For each a € R”, let T, f
denote the translate of f by «, where T,, f(z) = f(z — a). Choose a single, strictly
decreasing sequence {J;}jen C 27 of dyadic scales so that (19) holds uniformly
for T, f (in place of f) as « varies over R"; this is possible due to the assumption
that f € VMO = VMO(R™).

Fix N and assume, without loss of generality, that fs, = 0. Set Qo = Sy41 and
0o = £(Sn+1). For each o € Sy, apply Lemma 2 to T, f on Qo. The result is that

Tof(@) = (Taf)swsr = F®(@) - G (@) + K@) (¢ € Sn1),

where F(*), G*), and R(*) are defined as in (21). In particular, F(®) = 3722, Fj(a),

where Fj( ) is locally constant on the mesh of dyadic subcubes of @y of edge-
length ¢;. In addition, the expansion (25) guarantees that there are non-negative
coefficient functions agca), depending measurably on «, such that

FO = Y qxe ().

QrED(SN+1)

Note that this sum runs over D(Sn+1), a fixed, countable collection of cubes that is
indexed by k and independent of «; as discussed in the remark at the end of §2, when
d; < (Qp) < dj_1, each coefficient agca) is either 0 or in the interval (2'=7,22=7].
Equation (26) leads to a similar representation for G(®), and (27) gives rise to the
sum

(35) R@) = Y V% (@)

Qr€D(SN+1)

when £(Qy) = J; for some j E N then |cka | <2277, and c(a) = 0 otherwise.

Since f(x) = (1/|Sn|) [g, f(2)da, then for a.e. z € SN
f@) = g [ T aluf) (@) da
1SN sy

1

= S T_o(F™ =G + R 4 (Tof)sys) (@) do
N
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that is, f(z) = Fy(z) — Gny(z) + Ry (), where
1 1

Fn@)=— [ T oF2)da=—— [ Fz+a)da,
ISN] ISN|
G n(z) is defined analogously, and
_ 1
Rn(z) = IS T o (R(O‘) da+ (Tof) sy, ) (@) da
(36) -1 [ g (z+ ) + 1 (Tof) s, da
|Sn] Sl Jgy

It remains to show, for the functions so defined, that Fy and Gy are in VLO on
the cube Sy and that Ry is uniformly continuous there. In particular, we wish to
show that

1 _ 0 Fre — o
and that
(38) sup Ry — inf Ry = o(1) (¢(Q) = 0).
Q Q

To reach this goal, fix an arbitrary cube @ within Sy, and find J such that
Q) <4dy/(2y/n). Split the terms comprising F(®) according to the size of Q by

writing F(®) = R0+ Fo) =7 P+ Y2, F\%). Then

(39) ﬂ;?;e(m: Y a4 xq. (@), Fsﬁiu(:c): > axq. (@)
£(Qr)>6, L(Qr)<dy

Note that only finitely many coefficients agca) enter into the first sum in (39), since

this sum runs only over those dyadic subcubes @ € D(Sn 1) of size greater than 5
(and this includes only cubes significantly larger than Q).
The corresponding averaged forms are given by

Earge |SN| / ‘Flg:;e ;U + a) da: Fsmall |SN| / Fs(r(r)i;ll ZL“ + Oé) dOé;
thus, Fy = Flarge + Fyman- To prove (37) we shall verify the bounds
(40) sup Flarge < inf Flarge + CJ277
Q
and
1 = — _
(41) @] /Q Fyman < %f Fiyman +C277.

Now, the first of these is a consequence of the following Lipschitz estimate!®
the contribution to Fj of the terms associated to cubes of a similar size. For this,
let

agca)XQk (:U + a) da,

|SN| SN 55 < Qk)<6, .

S0 that Flarge(2) = 2;21 Fj(x).

18 This is Lemma 3.2 in [6], re-interpreted to highlight only certain scales.
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Lemma 4. If maxi<i<n |2 — ys| < Jj, then

Byla) — Ey )| < 029220
J
with C dependent only on the dimension n (and, in particular, not on j).

Proof. Fix z,y € Sy with max;<j<n |2; — y;| < 6;. When £(Qr) < d;_1, then the

. . (6% . —_q .
corresponding coefficient agc )is no more than 22 7, as discussed above. So,

|08 Ixqu (& + @) — xqu (y + )| da
SN 5, <e(Qk <61

<C2JZ > |XQka+04 - X@u(y + )| da,
“ | N| s

N £(Qr)=2"0

where r; = log,(6;_1/9;). The last integrand is twice the characteristic function of
the set of all @ € Sy for which # + « and y + « lie in different dyadic subcubes @y,
of Sny1 of size £(Qy) = 2"6;. The relative density of this set in Sy is majorized by
a constant multiple of Y7 | |2; — y;]/(270;). Thus,

(@) - Bi0)] <

.
3 7 i~ =yl R ]
|Fj(z) — Fj(y)| < C277 ) 3y, <02

r=0

as claimed. -

Now, suppose that z,y € Q@ C Sy with £(Q) < §;/(2v/n), as above. Then
|z —y| < /nl(Q) <y <dy_1 <--- <. The lemma then gives

J J
] i o iy
Flarge(2) = Flarge (0)| < 3 |F3 (@) = Fy0)| S O3 27/ 5.

Let o denote this last sum. Since oy = 1/2 and

0y 1 1 1
OJ+1 = 6;10’ +2J+1S2<0J+2J>

then an elementary induction argument shows that o; < J/27. This confirms (40),
the bound on the modulus of continuity of F’large.

What about (41)? The right-hand side there can in fact be simplified further by
noting that Fyman > 0. As for the left-hand side, from Fubini’s theorem it follows

that
. F'% (z)dzda.
|Q|/ |SN| Sn |Q|/Q+a s (7) o di

For the proof of (41) and hence of (37), it thus suffices to obtain a suitable estimate
on the inner integral here, i.e., to show that

]' «@ = ]- «@ _
(42) @ or Fs(m;n(x) dr = Z @ oL Fj( )(32) de < C277
@ j=J+1 @

uniformly for all @ € Sy. But the translated cube @ + « serving as the region of
integration is contained within a union of 2™ congruent dyadic subcubes of Sy41,
each having edge-length less than twice that of @ (and hence not more than ;).
Applying (24) in §2 to each of these subcubes and summing up leads to the bound
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fQ+a Fj(a) (z)dz < C279|Q|. A further sum in j (for j > J + 1) leads to (42). The
proof of estimate (37) for G is similar.

It remains to show that Ry, as defined in (36), is uniformly continuous on Sy.
The second term in (36), the average of (T'yf)sy,, over a € Sy, is constant and
can safely be ignored. In addition, the countable sum giving R(®) in (35) can
be split according to the size of @, so that R(® = R 4+ R asin (39).

= _ - large small’
The partition By = Rlarge + Rsman likewise applies to the corresponding averaged

forms, up to the constant just described. Since |c§f)| < 0279 when £(Q) < §; (as

was the case for the coefficients agf)), then the argument in Lemma 4 for Flarge

carries over to Riarge, S0 that estimate (40) also holds for the latter. On the other

hand, since only relatively few of the coeflicients cgga) may be non-zero (namely

those corresponding to cubes @y of size exactly d;, for some j € N), the BLO
estimate (41) can be replaced by a stronger estimate on the modulus of continuity
of Rsmall- In fact,

o0
sup |Roman| < C Y 277 < C277,
Q j:J

by (20). All together, then, sup,, Ry —infg Ry < CJ277, when £(Q) < é,/(2y/n),
giving (38). Thus, Ry can be re-defined on a set, of measure zero to yield a uniformly
continuous function.

This settles the last remaining step in the proof of the lemma, and the decom-
position theorem is therefore complete. O
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