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Abstract� A function has vanishing mean oscillation �VMO� on R
n if its

mean oscillation�the local average of its pointwise deviation from its mean
value�both is uniformly bounded over all cubes within R

n and converges to
zero with the volume of the cube� The more restrictive class of functions with
vanishing lower oscillation �VLO� arises when the mean value is replaced by
the minimum value in this de�nition� It is shown here that each VMO function
is the di�erence of two functions in VLO�

�� Introduction

To say that a locally integrable function f on Rn has bounded mean oscillation�
f � BMO� means that

sup
Q

�

jQj
Z
jf�x�� fQj dx ������

where the supremum runs over all cubes Q in R
n with edges parallel to the co�

ordinate axes� jQj denotes the measure of Q� and fQ is the mean value of f over Q�
i�e�� fQ � ���jQj� R

Q
f � A function f is said to have bounded lower oscillation if the

term fQ in ��� can be replaced by infQ f � the essential in�mum� of f over Q	 in
other words� f � BLO if

sup
Q

�

jQj
Z
�f�x� � inf

Q
f� dx � sup

Q

�fQ � inf
Q
f� ����
�

The suprema in ��� and �
� are denoted by kfkBMO and kfkBLO� respectively�
and when only the cubes Q within a given cube Q� are considered� the sym�
bols BMO�Q�� and BLO�Q�� will be used�

It is not di�cult to see that each BLO function is in BMO	 in fact� the estimate
kfkBMO � 
kfkBLO holds� Unlike BMO� however� the set BLO is not stable under
multiplication by negative numbers �log jxj is in BLO� but � log jxj is not�� and
BLO � ��BLO� � L�� as follows readily from the de�nition� On the other hand�
Coifman and Rochberg �
�� invoking a rather subtle argument of Carleson� showed
that each BMO function can be written as the di�erence of two BLO functions� in
short�

BMO � BLO� BLO�

�		� Mathematics Subject Classi�cation� Primary 
�B��
 Secondary ��A��� 
�E���
Key words and phrases� Bounded mean oscillation� bounded lower oscillation� vanishing mean

oscillation� Ap condition� uniform continuity�
�In general� all pointwise statements in this paper should be understood to hold only almost

everywhere with respect to Lebesgue measure� In particular� infQ f and supQ f denote the es�
sential in�mum and essential supremum of f on Q� and no distinction will be made between two
functions agreeing on the complement of a set of measure zero�

�
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This is likewise a consequence of the factorization of Ap weights obtained by
Jones ���	� in this regard� see also �
�� ���� and ����

The authors of �
� concluded their paper by noting that �many results about
functions in BMO have analogs for functions of vanishing mean oscillation � � � �but
we� do not know what the analogs of our results are in that context�� The purpose
of this paper is to provide such an analog in the form of the following result�

Theorem� Each VMO function is the di�erence of two VLO functions� That is�

if f � VMO� then there exist VLO functions F and G such that f � F �G and

kFkBLO � kGkBLO � CkfkBMO�

The constant C depends only on the dimension n�

A word of explanation about the terms in the theorem is necessary� To say that
a BMO function has vanishing mean oscillation means not only that the supremum
in ��� is bounded over all cubes� but also that it vanishes in the asymptotic limit
of ever smaller scales� In other words� f � VMO if both f � BMO and

�

jQj
Z
jf�x�� fQj dx � o��� ���Q�� ���

where ��Q� denotes the edge�length �or �size�� of the cube Q� Each bounded� uni�
formly continuous �BUC� function is in VMO� uniform continuity being expressable
in the form

sup
Q

f � inf
Q
f � o��� ���Q�� ����
�

and VMO is actually the closure of BUC with respect to the BMO norm de�ned
in ���� as was shown in ����� The space VMO was introduced by by Sarason in ���� in
the context of algebras on the unit circle and has since found manifold applications
in diverse areas of analysis� ��� and ���� give two recent examples in the context of
partial di�erential equations�

The new class VLO considered here� the set of functions with vanishing lower

oscillation� consists of those BMO functions f for which

fQ � inf
Q
f � o��� ���Q�� ������

VLO is a proper subset of VMO� while both
p
log���jxj� and �plog���jxj� are

in VMO� only the former is in VLO� Moreover� the portion of VLO that is stable
under multiplication by a negative number is a familiar space�

VLO � ��VLO� � BUC�

for when both f and �f satisfy ���� then f also satis�es �
�� What the theorem
then says is that

VMO � VLO�VLO�

Although the statement of the theorem is a straightforward generalization of
that in �
�� the proof is not� One essential reason for the di�culty is that while
L� functions are in BLO �and thus in BMO�� they are not generally in VMO	 the
characteristic function of the unit interval ��� �� on the line� for example� has mean
oscillation ��
 over each interval of the form ��r� r�� no matter how small r is� This
presents a non�trivial obstacle to proving the theorem� because the techniques used

�In fact� BMO � f� logw � � � �� w � A�g and BLO � f� logw � � � �� w � A�g� so that the
statement BMO � BLO�BLO is the logarithm of the factorization result A� � A��A� in �	��
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to characterize BMO in �
� and the Calderon�Zygmund decomposition as applied
in ��� typically lead to bounded remainder terms� In the decomposition of BMO� this
level of precision su�ces and such remainder terms need not be broken down any
further	 on the other hand� if VMO functions are to be decomposed� then attention
must be paid not only to the size but also to the smoothness of these remainders�
�A similar di�culty is encountered when trying to extend VMO functions de�ned
on a measurable set to all of Rn � as in �����

The method of proof for the VMO theorem stated above is �rst to show the result
in the dyadic model case� applying ideas used by Jones ��� for the factorization of
Muckenhoupt Ap weights� Translations of this dyadic result will then be averaged
to give the general case� along the lines of of Garnett and Jones ���� The same com�
bination of techniques was also used by the present author in ��
�� There the focus
was on showing that each Muckenhoupt weight with small Ap bound�that is� with
bound near �� the bound being �xed and valid over all scales�could be factored
as a product of suitable powers of two A� weights with weight bounds also close
to ��� Here� by contrast� the challenge is to decompose a given VMO function�a
BMO function whose oscillatory behavior improves over ever smaller scales in an
asymptotically optimal manner�as the di�erence of two simpler functions that also
display this asymptotically optimal improvement��


� The dyadic setting

The �rst goal is to prove a dyadic form of the decomposition theorem� This model
version is stated for the collectionD�Q�� of all dyadic subcubes of an arbitrary� �xed
cube Q� in Rn � that is� all those cubes obtained by dividing Q� into 
n congruent
cubes of half its length� dividing each of these into 
n congruent cubes� and so on	
by convention� Q� itself belongs to D�Q��� The space BMOdy�Q�� then denotes
the set of all integrable functions on Q� for which condition ��� holds when the
supremum there is taken only over cubes Q in D�Q��	 dyadic versions of BLO�
VMO� VLO� and BUC are de�ned analogously�

At �rst� we derive a preliminary result �Lemma �� valid only on large dyadic
scales	 with the help of a suitably localized iteration procedure� we shall then extend
this to the full dyadic version �Lemma 
��

Lemma �� Suppose f � BMOdy�Q��� Let � be a dyadic scale �i�e�� � � 
�N��
Then there exist bounded functions F�� G� and R�� all locally constant� on the

mesh fQ� � D�Q�� � ��Q�� � ���Q��g of dyadic subcubes of relative size �� satisfying
both the pointwise identity

f�x�� fQ�
� F��x��G��x��R��x��

X
��Q��	���Q��

�f�x�� fQ�
��Q�

�x� �x � Q��

�The sharp result is that a weight with A� bound � � � can be factored as the quotient of two
A� weights with bounds � �O�

p
��� as �� �
 see ���� for details�

�In the language of asymptotically optimal Muckenhoupt weights �see ������ the theorem devel�
oped in the present paper gives the factorization A��as � A��as�A��as� The statement w � A��as

means both that supQ wQ���w�Q �� and that wQ���w�Q � � as ��Q� � �
 the stronger state�

ment w � A��as arises when the product wQ���w�Q is replaced by the ratio wQ� infQ w�
�Local constancy on a mesh of congruent cubes simply means constancy on each cube within

the mesh�
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and the estimate

kF�kBLOdy�Q�� � kG�kBLOdy�Q�� � kR�kL��Q�� � CkfkBMO�Q������

The constant C depends only on the dimension n�

The proof uses an iterative Calder�on�Zygmund decomposition to single out those
cubes on which the mean oscillation of f is large� Note that in this �rst lemma
only cubes of comparable size enter�here all dyadic Q with edges of length between
���Q�� and ��Q��	 in Lemma 
� the full range of dyadic scales will be considered�
and special attention will be paid to how the oscillatory behavior of VMO functions
improves as the scale decreases�

Proof� Without loss of generality� let Q� � ��� ��n and kfkBMOdy�Q�� � 
�n� As
is well known� the BMO condition strongly restricts how the average values of a
function vary with the size of the averaging set� In particular� for any cube Q and
any other cube 
Q containing it and with edges twice as long�

jfQ � f�Qj � 
n
�

j
Qj
Z
�Q

jf � f�Qj����

When f � BMO� the right�hand side is bounded	 when f � VMO� the right�
hand side vanishes as ��Q�� �� This simple observation drives the stopping�time
argument below�

Let G�� � fQ�g� Inequality ��� guarantees that jfQ � fQ�
j � �� when Q is

any one of the 
n subcubes of Q� obtained from it by bisecting its edges� Fix
� � 
�N� Of interest are the largest subcubes Q obtained by further bisection on
which jfQ � fQ�

j 	 � �and ��Q� 	 ��� In detail� de�ne

G�� � fQ � D�Q�� � jfQ � fQ�
j 	 �� ��Q� 	 �� Qmaximalg���

and� inductively�

Gm
�� � fQ � D�Q�� � Q� � Gm� � jfQ � fQ� j 	 �� ��Q� 	 �� Qmaximalg����

Write G� �
S�
m	� Gm� for the full collection of all such selected cubes� Let �m� be

the union of the cubes in Gm� 	 then� by construction� �m
�� � �m� � � � � � ��
�� For

each proper dyadic subcube Q of D�Q�� with ��Q� 	 �� let eQ denote the minimal
cube in G� that strictly contains it	� this means� in the special case when Q � Gm
�� �

that eQ is the unique cube in Gm� containing Q�
Each dyadic subcube Q� of edge�length � is then contained in a unique decreasing

chain of selected cubes of the form�

Q� 
 Q�
� 
 Q�

� 
 � � � 
 Qm
� � eQ� �Qi

� � Gi�� � � i � m��

The di�erence f�x�� fQ�
can be expanded as a telescoping sum over pairs of ad�

jacent cubes in this chain� extended by the additional inclusion eQ� � Q�� What

�That is� eQ �
TfQ� � G� � Q � Q�g�

�The length of the chain is at least � �in the extreme case when no predecessor of Q� is

selected� so that eQ� � Q�� and at most � � log������
 the actual length varies over the mesh of
dyadic subcubes Q� within Q� of size �� Accordingly� all but �nitely many of the sets Gm� are

empty� so that the double sum in �	� is actually a sum over only �nitely many cubes�
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results from this is the pointwise identity

f�x�� fQ�
�

�X
m	�

X
Q�Gm�

�fQ � f
eQ
��Q�x�

� �fQ�
� f

eQ�
� � f�x�� fQ�

�x � Q���

���

which holds on each dyadic Q� � D�Q�� of size ��
How large are the terms in ���� Maximality in the selection criteria ��� and ���

and the basic BMO estimate ��� give rise to the mean�value inequality

� � jfQ � f
eQ
j � 
 �Q �

��
m	�

Gm� ������

They also lead to the relative density estimate

jQ � �m
�� j � 
�njQj �Q � Gm� ������

which is valid for each m 	 �� Summing this last estimate over all the cubes Q
in Gm� and iterating leads to the bound

j�m� j � 
�mnjQ�j �m � N����
�

Next� to obtain suitable dyadic BLO summands of f � split the double sum in ���
according to the sign of the di�erence fQ � f

eQ
� Then

f�x�� fQ�
� F��x��G��x� �R��x� �

X
��Q��	�

�
f�x�� fQ�

�
�Q�

�x� �x � Q���

where

F��x� �

�X
m	�

X
Q�Gm�

�fQ � f
eQ
�
�Q�x����
�

G��x� �

�X
m	�

X
Q�Gm�

�f
eQ
� fQ�


�Q�x������

and

R��x� �
X

��Q��	�

�fQ�
� f

eQ�
��Q�

�x��

It is important to note that the functions F� and G� de�ned in ��
� and ���� are
non�negative	 where they are positive� their value must� by ����� exceed ��

Proving the L� estimate in ��� for R� is straightforward� since� by the de�ni�

tion of eQ�� no dyadic cube between Q� and eQ� is selected in the stopping�time

argument �in other words� jfQ � f
eQ�
j � � whenever Q� � Q � eQ��� then either

jfQ�
� f

eQ�
j � � or � � jfQ�

� f
eQ�
j � 
� In either case� jR��x�j � 
 for a�e� x � Q��

as desired�
As F� and G� are locally constant on the mesh fQ� � D�Q�� � ��Q�� � �g� it

remains to estimate their �dyadic� BLO bounds on cubes larger than those in this
mesh� To con�rm ���� then� we must show� for each Q � D�Q�� with ��Q� 	 �� that
there exists a constant CQ �with supQ CQ ��� such that both

�F��Q � CQ � inf
Q
F�����



� MICHAEL BRIAN KOREY

and

�G��Q � CQ � inf
Q
G������

To prove this we now consider three cases�

Case I� The initial cube� We �rst verify ���� in the case when Q � Q�� the original
cube� In this case� infQ F� � �� for the choice of the height � in the stopping�
time argument de�ning the selection procedure ��� ensures that the set Q� n��

� has
positive measure	 see ��
�� Since

R
Q
F� �

R�
� jEtj dt with Et � fx � Q � F��x� 	 tg�

estimating the dyadic VLO bound of F� then reduces to estimating the measure
of the set Et� But condition ���� ensures that Et � ��

�� when � � t � 
� and� in
general� that Et � �k� � when k � N and 
�k � �� � t � 
k� Thus� by ��
��

�F��Q �
�X
k	�

Z �k

��k���

jEtj
jQj dt � 


�X
k	�

j�k� j
jQj � 


�X
k	�


�nk � 
 � inf
Q
F������

which is ���� for Q � Q��

Case II� A cube with a large jump in mean value� Suppose now that Q � Gm� for

some positive m and that fQ� f
eQ
	 ��
 Then �F��Q � infQ F� � jQj�� R�� j eEtj dt�

where eEt � fx � Q � F��x� � infQ F� 	 tg� In analogy to the �rst case� we �nd

from ���� and ���� that eEt � Q � �m
k� � when k � N and 
�k � �� � t � 
k� So

for t in this range� j eEtj � 
�nkjQj� from which the desired estimate ���� once again
follows� with CQ � 
�

Case III� Cubes with no large jump in the mean� In Case I� we considered Q�	 in
Case II� we treated those dyadic cubes Q within Q� �of length exceeding �� for which
fQ � f

eQ
	 �� To handle the remaining case e�ciently� a bit of further notation is

helpful� Recall that� for each proper dyadic subcube Q of Q� with ��Q� 	 �� the

symbol eQ denotes the minimal cube in G� � 
�m	�Gm� that strictly contains Q	 now
set

P�Q� � fI � D�Q� � fI � f
eQ
	 �� ��I� 	 �� I maximalg�

N �Q� � fI � D�Q� � fI � f
eQ
� ��� ��I� 	 �� I maximalg�

Note that the union of P�Q� and N �Q� is exactly the set of the cubes in 
�m	�Gm�
that lie within Q� In this notation� the remaining case now consists of proving ����
on each dyadic cube Q �of size exceeding �� for which Q �� P�Q��

Fix such a cube Q� To estimate F�� split Q into the union of its subcubes
in P�Q� and the complement of this union� On the one hand� if I � P�Q�� theneI � eQ	 Case II then applies� so that

R
I
F� � �
 � infI F��jI j� Moreover�

� � inf
I
F� � inf

eQ

F� � fI � f
eI
� 
�

	Unlike in ���� the sign of the di�erence is important here�
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by ����� On the other hand� on the complement in Q of 
I�P�Q�I the value of F�
is exactly inf

eQ
F�� In sum� then�

Z
Q

F� �
X

I�P�Q�

�
 � inf
I
F��jI j� �inf

eQ

F��jQ n 
I�P�Q�I j

� �� � inf
eQ

F��
X

I�P�Q�

jI j� �inf
eQ

F��jQ n 
I�P�Q�I j

� �� � inf
eQ

F �jQj�

Since inf
eQ
F� � infQ F�� the bound ���� with CQ � � thus also holds for the cubes Q

in this� the last case�
The justi�cation of the dyadic BLO bound ���� is similar� with G� in place of F��

N �Q� in place of P�Q�� etc� This completes the proof of Lemma ��
When a function has �dyadic� vanishing mean oscillation� then we can apply the

previous lemma in an iterative way that takes advantage of the function�s improved
behavior at small scales� This is the essence of the next result�

Lemma �� Suppose f � VMOdy�Q��� Then there exist non�negative functions

F�G � VLOdy�Q�� and a function R � BUCdy�Q�� such that

f�x�� fQ�
� F �x��G�x� �R�x� �x � Q�������

Writing f�x� as the di�erence �F �x� �R�x� � fQ�
��G�x� thus gives the dyadic

form of the decomposition theorem�

Proof� As above� let kfkBMOdy�Q�� � 
�n� Since f � VMOdy�Q��� we can �nd
a strictly decreasing sequence of dyadic scales on which the mean oscillation of f
vanishes exponentially fast	 that is� set �� � ��Q�� and choose f�jgj�N � 
�N such
that both �j
� � �j �hence �j � � as j ��� and

�

jQj
Z
Q

jf�x�� fQj dx � 
�n�j �Q � D�Q��� ��Q� � �j������

Further� let Qj�x� denote the dyadic subcube of Q� that contains x and has edge�
length �j 	 then fQj�x� � x � Q�g is a family of non�overlapping� congruent subcubes
whose union is Q�� and Qj�x�� fxg as j �� for a�e� x� �When no confusion can
arise� we shall simply write Qj for Qj�x���

The previous lemma �with � � ������ gives rise to the decomposition

f�x�� fQ�
� F��x� �G��x� �R��x� �

X
��Q��	��

�
f�x�� fQ�

�
�Q�

�x� �x � Q��

as well as to a suitable estimate on the terms F�� R�� and G�� Now apply the
lemma to f on each cube Q� of size �� �with � � ������ in place of Q�� Then

f�x�� fQ�
� F��x��G��x� �R��x� �

X
��Q��	��

�
f�x�� fQ�

�
�Q�

�x� �x � Q���
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Repeat the procedure� applying the lemma on each cube Qj�� of size �j�� �with
� � �j��j��� to obtain�

f�x��fQj�� � Fj�x��Gj�x��Rj�x��
X

��Qj�	�j

�
f�x��fQj

�
�Qj �x� �x � Qj����

The functions Fj � Gj � and Rj so obtained�� are all locally constant on the mesh of
dyadic subcubes of Q� of size �j � On account of ��� and ���� they also satisfy the
estimate

kFjkBLOdy�Qj��� � kGjkBLOdy�Qj��� � kRjkL��Qj��� � C
�j ��
��

uniformly on all dyadic subcubes Qj�� within Q� of size �j���
All together� the �rst J iterations of the procedure just described yield

f�x�� fQ�
�

JX
j	�

Fj�x��
JX
j	�

Gj�x� �

JX
j	�

Rj�x� �
X

��QJ �	�J

�
f�x�� fQJ

�
�QJ �x��

which is valid for x � Q�� Since limJ�� fQJ �x� � f�x� for a�e� x� the last sum
vanishes in the limit� As a result�

f�x�� fQ�
�

�X
j	�

Fj�x��
�X
j	�

Gj�x� �
�X
j	�

Rj�x�

� F �x� �G�x� �R�x� �x � Q����
��

which is ����� What remains is to show the appropriate estimates for the func�
tions F � G� and R� so de�ned�

For this� �x an arbitrary Q � D�Q�� and �nd the unique number J � N such
that �J � ��Q� � �J��� On Q� the functions Fj � Gj � and Rj �� � j � J � �� are
then all constant� Hence

FQ � inf
Q
F �

� �X
j	J

Fj

�
Q

� inf
Q

�X
j	J

Fj �
�X
j	J

�
�Fj�Q � inf

Q
Fj
�

�

�

and

sup
Q

R� inf
Q
R � sup

Q

�X
j	J

Rj � inf
Q

�X
j	J

Rj �
�X
j	J


 sup
Q

jRj j�

On account of �
��� the latter estimate on the �dyadic� modulus of continuity of R
becomes

sup
Q

R� inf
Q
R � 
C

�X
j	J

�
�j� �Q � D�Q��� ��Q� � �J�����

�


For each scale index j � �� let G�j � fQj�� � D�Q�� � ��Qj��� � �j��g denote the full mesh

of subcubes of size �j��� Then� for m � �� the above procedure inductively de�nes Gm��
j from Gmj

by the rule� Gm��
j � fQ � D�Q�� � Q� � Gmj � jfQ � fQ� j 	 ���j � ��Q� 	 �j � Qmaximalg� In addi�

tion� when Q � D�Q�� and �j � ��Q� � �j��� then �Q denotes the minimal cube in Gj � 	�m��Gmj
that properly contains Q�

��Strictly speaking� the argument yields functions Fj � Gj � and Rj that are de�ned separately
on each dyadic subcube Qj�� of size �j��
 however� as the cubes fQj���x� � x � Q�g of this size
are non�overlapping and together cover Q�� we shall view these functions as being de�ned a�e� on
all of Q�� Hence� the statement kRjkL�
Qj���

� C��j �for all such Qj��� is equivalent to the

global bound kRjkL�
Q�� � C��j �
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Since
P�

j	J 

�j � � as J �� �i�e�� as �J � ��� then R � BUCdy�Q���

The corresponding estimate for F is a bit more involved� The key is to de�
termine how large each di�erence �Fj�Q � infQ Fj in �

� can be� Recall that
�J � ��Q� � �J��� When j � J � then �Fj�Q � infQ Fj � C
�j � by �
��� since Q
is contained in some dyadic cube QJ�� of size �J���

�� Next� when j 	 J � ��
then Q is a �nite union of non�overlapping dyadic cubes Qj�� of size �j��� On
each of these� the selection procedure guarantees that infQj�� Fj � � and that

�Fj�Qj�� � C
�j ��� Over all of Q� then� infQ Fj�� � � and �taking the average

of the mean values �Fj�Qj�� over the Qj�� comprising Q� also �Fj�Q � C
�j � In
sum�

�Fj�Q � inf
Q
Fj � C
�j

�
Q � D�Q��

�
�
��

for each j � N� Combining �

� and �
�� gives the BLO bound

FQ � inf
Q
F � C

�X
j	J

�
�j� �Q � D�Q��� ��Q� � �J����

The estimate for the BLO bound of G runs the same way� Letting J � � then
shows that F�G � VMOdy�Q��� as claimed�

Several remarks on the construction are in order	 for simplicity� these are stated
under the assumption that kfkBMOdy�Q�� � 
�n� First� observe that the functions
F and G �resp� R� can be expressed as sums over all the dyadic subcubes of Q��
not just over those where the mean oscillation of f is large �resp� not just over all
dyadic subcubes having size �j�� This means that

F �x� �

�X
j	�

�X
m	�

X
Q�Gm

j

�fQ � f
eQ
�
�Q�x� �

X
Qk�D�Q��

ak�Qk �x���
��

G�x� �
�X
j	�

�X
m	�

X
Q�Gm

j

�f
eQ
� fQ�


�Q�x� �
X

Qk�D�Q��

bk�Qk�x���
��

and

R�x� �

�X
j	�

X
��Qj�	�j

�fQj � f
eQj
��Qj �x� �

X
Qk�D�Q��

ck�Qk �x���
��

where the latter sum in each line runs over all of D�Q��� In �
��� for example� when�
everQk �� 
�j	� 
�m	� Gmj or wheneverQk � 
�m	�Gmj for some j but fQk � f

eQk
� ��

then ak � �	 otherwise� ak � fQk � f
eQk
� �
��j � 
��j �� A similar statement applies

to the coe�cients bk� In �
��� ck � �fQk � f
eQk
� � ��
��j � 
��j � if ��Qk� � �j �for

some j � N�� whereas ck � � otherwise� This reformulation will prove useful below�
The second remark concerns the rate at which the mean oscillation of a given

VMO function vanishes	 in the notation above� this is captured by the relative size of
the sequence of scales f�jg in ����� As was noted in ����� each function in VMO is ac�
tually in BMO��meaning ���jQj� R

Q
jf�x� � fQj dx � 
�jQj� for all Q�for some

bounded� continuous� non�decreasing function 
 on R
 having 
��� � �� Building
on the work of Campanato and Meyers� Spanne ���� showed that BMO� functions

��In other words� one of the Cases I�III arising in the proof of Lemma � applies to FJ on Q�
��This corresponds to Case I for Fj on Qj���
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are essentially uniformly continuous just in case the Dini condition
R �
�

�t��t dt ��

is ful�lled	 this corresponds to the condition
P�

j	� 

�j log��j����j� �� in the no�

tation used here� Shi and Torchinsky took this analysis one step further in ����
and gave an elegant proof of a version of the John�Nirenberg inequality for BMO��
Their iterative Calder�on�Zygmund decomposition has much in common with that
used in the proof of the dyadic version of the theorem above �Lemmas � and 

taken together�� with the exception that it disregards bounded remainder terms
and focuses only on the size� not the sign� of the jumps arising in the stopping�
time argument� Precisely these two points� �ne control over the remainders and a
partitioning of the jumps by sign� are key features of the argument given above�
the former explains why a Calder�on�Zygmund decomposition has been applied to
all cubes in each mesh fQj � D�Q�� � ��Qj� � �jg� rather than just to those
having predecessors ��dyadic ancestors�� that were selected within some coarser
mesh� and the latter provides the basis for splitting the VMO function f into the
VLO summands F and G�


� The general setting

The proof of the theorem follows the argument in ��� pp� 
�� ���� except for
certain technical modi�cations which are introduced to re!ect the improved oscilla�
tory behavior of VMO functions over small scales� For completeness� the full proof
is given here� Let SN denote the cube

��
N � 
N�n�
Lemma �� Suppose f is in VMO� Then� for each N � N� there exist non�negative

functions "FN � "GN � VLO�SN � and a function "RN � BUC�SN � satisfying both the

identity

f�x�� fSN � "FN �x� � "GN �x� � "RN �x� �x � SN��
��

and the estimate

k "FNkBLO�SN � � k "GNkBLO�SN � � k "RNkL��SN � � CkfkBMO��
��

The constant C depends only on the dimension n�
Moreover� for each M � N� the family f "RN � N 	Mg is equicontinuous on SM

and the families f "FN � N 	 Mg and f "GN � N 	 Mg have uniformly vanishing

lower oscillation on SM 	 this means that the quantity CQ � CQ�M� de�ned by

CQ � sup
N�M

�
� "FN �Q � inf

Q

"FN � � "GN �Q � inf
Q

"GN

�
�
��

is �nite for each Q � SM and that CQ � � as ��Q�� ��

Note that the estimates on the lower oscillation of "FN and "GN are asserted to
hold over all subcubes of SN � not just the dyadic ones	 the uniform continuity of "RN
on SN is also meant in the standard sense �without respect to any dyadic mesh��

Let us �rst show how this last lemma implies the theorem� The identity �
��
can be re�written� after subtracting o� the mean value of each side on S�� as

f�x�� fS� � � "FN �x�� � "FN �S� �� � "GN �x�� � "GN �S� � � � "RN �x�� � "RN �S� �

� #FN �x�� #GN �x� � #RN �x���
��
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Then �
��� in conjunction with the John�Nirenberg inequality of ���� yields a uniform

bound on the quadratic mean oscillation of #FN ��� namely

�

jQj
Z
Q

j #FN � � #FN �Qj� � Ckfk�BMO �Q � SN ��

Suppose now that M � N � When Q � SM � the last line becomes

�

jSM j
Z
SM

j #FN j� � Ckfk�BMO � j� #FN �SM j���

�

To control the right�hand side here� form a telescoping sum of mean values�

� #FN �SM � � #FN �S� � �� #FN �S� � � #FN �S� � � � � �� �� #FN �SM � � #FN �SM�� ���

�

Since jS�j�jS�j � � � � � jSM j�jSM��j � 
n and � #FN �S� � �� then �

� and ��� imply
that j�FN �SM j �M
nkfkBMO� Insert this back into �

� to obtain the uniform
quadratic bound

�

jSM j
Z
SM

j #FN j� � C �kfk�BMO �� �N � M�M � ��M � 
� � � � ��

An analogous estimate is also valid for f #GN � N 	Mg�
For each M � the sequences f #FN � N 	Mg and f #GN � N 	Mg are consequently

bounded in L��SM �� By the lemma� the sequence f #RN � N 	Mg is also uniformly
bounded and equicontinuous on SM � It is therefore possible to choose a subse�
quence Nk ��� so that #FNk � F and #GNk � G weakly in L��SM � and so that
#RNk � R uniformly on SM ��� A diagonal argument ensures �with the help of a fur�
ther subsequence� if necessary� that this convergence holds simultaneously for allM �

Since� by �
��� f � fS� � #RNk � #FNk � #GNk � then the sequence f #FNk � #GNkgNk
must also converge pointwise a�e� on SM to the di�erence F � G��� In the limit�
�
�� thus becomes the asserted decomposition

f�x�� fS� � F �x��G�x� �R�x� �x � Rn ��
Note that by construction� R is bounded and uniformly continuous on all of Rn �

To see that F � VLO�Rn �� �x an arbitrary cube Q in Rn and choose M so large
that Q � SM � On this cube SM � the weak convergence described above implies
that there is a sequence f
KgK�N of �nite convex combinations of the #FNk � i�e��


K �

KX
k	�

tk #FNk �tk 	 ��

KX
k	�

tk � ����
��

that converges to F both in L��SM � and �taking a further subsequence� if necessary�
pointwise a�e��� Now apply Fatou�s lemma�� to this new sequence f
KgK�N to

��The estimate on �FN carries over to �FN � since they di�er only by a constant�
��The John�Nirenberg inequality has been invoked to move from uniform boundedness in L� to

that in L�
 otherwise� weak compactness would have only guaranteed the existence of subsequences
f �FNkg and f �GNkg converging to measures�

��It is not claimed�separately�that �FNk �x� � F �x� and �GNk �x� � G�x� for a�e� x�
��See Theorem ���� in ���� or Theorem V���� in ����
 in the latter work� this result is attributed

to S� Mazur� Note that the coe�cients tk �� � k � K� of 
K in ��
� may depend on K�
��Suppose that f
Kg is a sequence of non�negative� measurable functions that converges a�e�

to 
� What is needed here is the �standard� L� form of Fatou�s lemma�
R

 � limK

R

K � as well as

its L� form� limK�inf 
K� � inf 

 the latter can be veri�ed via a simple proof by contradiction�

Recall that we write inf 
 for ess inf
� as indicated in the introduction�
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obtain from �
�� the following bound on the lower oscillation of F over Q�

�

jQj
Z
Q

F � limK

�

jQj
Z
Q


K � limK

KX
k	�

tk
jQj

Z
Q

#FNk

� limK

KX
k	�

tk�inf
Q

#FNk � CQ� � limK

KX
k	�

�tk inf
Q

#FNk� � CQ

� limK inf
Q

KX
k	�

tk #FNk � CQ � limK inf
Q

K � CQ � inf

Q
F � CQ�

As� by assumption� supQ�SM CQ �� and lim��Q��� CQ � �� then F � VLO�SM �
for each M � The treatment of G is identical� Modulo the proof of Lemma 
� the
proof of the theorem is now complete�

Proof of Lemma �� We use the averaging procedure of ��� to move from the dyadic
version of the theorem �Lemma 
� to the general� local version �Lemma 
�� As above
�but now over all of Rn �� assume that kfkBMO � 
�n� For each � � R

n � let T�f
denote the translate of f by �� where T�f�x� � f�x� ��� Choose a single� strictly
decreasing sequence f�jgj�N � 
�N of dyadic scales so that ���� holds uniformly
for T�f �in place of f� as � varies over Rn 	 this is possible due to the assumption
that f � VMO � VMO�Rn ��

Fix N and assume� without loss of generality� that fSN � �� Set Q� � SN
� and
�� � ��SN
��� For each � � SN � apply Lemma 
 to T�f on Q�� The result is that

T�f�x�� �T�f�SN��
� F ����x��G����x� �R����x� �x � SN
���

where F ���� G���� and R��� are de�ned as in �
��� In particular� F ��� �
P�

j	� F
���
j �

where F
���
j is locally constant on the mesh of dyadic subcubes of Q� of edge�

length �j � In addition� the expansion �
�� guarantees that there are non�negative

coe�cient functions a
���
k � depending measurably on �� such that

F ����x� �
X

Qk�D�SN���

a
���
k �Qk �x��

Note that this sum runs over D�SN
��� a �xed� countable collection of cubes that is
indexed by k and independent of �	 as discussed in the remark at the end of x
� when
�j � ��Qk� � �j��� each coe�cient a

���
k is either � or in the interval �
��j � 
��j ��

Equation �
�� leads to a similar representation for G���� and �
�� gives rise to the
sum

R����x� �
X

Qk�D�SN���

c
���
k �Qk �x�	�
��

when ��Qk� � �j for some j � N� then jc���k j � 
��j � and c
���
k � � otherwise�

Since f�x� � ���jSN j�
R
SN

f�x� d�� then for a�e� x � SN

f�x� �
�

jSN j
Z
SN

T���T�f��x� d�

�
�

jSN j
Z
SN

T��
�
F ��� �G��� �R��� � �T�f�SN��

�
�x� d�	
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that is� f�x� � "FN �x�� "GN �x� � "RN �x�� where

"FN �x� �
�

jSN j
Z
SN

T���F
�����x� d� �

�

jSN j
Z
SN

F ����x� �� d��

"GN �x� is de�ned analogously� and

"RN �x� �
�

jSN j
Z
SN

T��
�
R��� d�� �T�f�SN��

�
�x� d�

�
�

jSN j
Z
SN

R����x� �� �
�

jSN j
Z
SN

�T�f�SN��
d���
��

It remains to show� for the functions so de�ned� that "FN and "GN are in VLO on
the cube SN and that "RN is uniformly continuous there� In particular� we wish to
show that

�

jQj
Z
Q

"FN � inf
Q

"FN � o���
�
��Q�� �

�
��
��

and that

sup
Q

"RN � inf
Q

"RN � o���
�
��Q�� �

�
��
��

To reach this goal� �x an arbitrary cube Q within SN � and �nd J such that
��Q� � �J��


p
n�� Split the terms comprising F ��� according to the size of Q by

writing F ��� � F
���
large � F

���
small �

PJ
j	� F

���
j �

P�
j	J
� F

���
j � Then

F
���
large�x� �

X
��Qk���J

a
���
k �Qk�x�� F

���
small�x� �

X
��Qk���J

a
���
k �Qk �x���
��

Note that only �nitely many coe�cients a
���
k enter into the �rst sum in �
��� since

this sum runs only over those dyadic subcubes Qk � D�SN
�� of size greater than �J
�and this includes only cubes signi�cantly larger than Q��

The corresponding averaged forms are given by

"Flarge�x� �
�

jSN j
Z
SN

F
���
large�x� �� d�� "Fsmall�x� �

�

jSN j
Z
SN

F
���
small�x� �� d�	

thus� "FN � "Flarge � "Fsmall� To prove �
�� we shall verify the bounds

sup
Q

"Flarge � inf
Q

"Flarge � CJ
�J����

and

�

jQj
Z
Q

"Fsmall � inf
Q

"Fsmall � C
�J �����

Now� the �rst of these is a consequence of the following Lipschitz estimate�
 on
the contribution to "FN of the terms associated to cubes of a similar size� For this�
let

$Fj�x� �
�

jSN j
Z
SN

X
�j���Qk���j��

a
���
k �Qk�x� �� d��

so that "Flarge�x� �
PJ

j	�
$Fj�x��

�	This is Lemma ��� in ���� re�interpreted to highlight only certain scales�
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Lemma �� If max��i�n jxi � yij � �j � then

j $Fj�x� � $Fj�y�j � C
�j
jx� yj
�j

�

with C dependent only on the dimension n �and� in particular� not on j��

Proof� Fix x� y � SN with max��i�n jxi � yij � �j � When ��Qk� � �j��� then the

corresponding coe�cient a
���
k is no more than 
��j � as discussed above� So�

j $Fj�x� � $Fj�y�j � �

jSN j
Z
SN

X
�j���Qk���j��

ja���k jj�Qk �x� ��� �Qk �y � ��j d�

� C
�j
rjX
r	�

�

jSN j
Z
SN

X
��Qk�	�r�j

j�Qk�x � ��� �Qk�y � ��j d��

where rj � log���j����j�� The last integrand is twice the characteristic function of
the set of all � � SN for which x�� and y�� lie in di�erent dyadic subcubes Qk

of SN
� of size ��Qk� � 
r�j � The relative density of this set in SN is majorized by
a constant multiple of

Pn
i	� jxi � yij��
r�j�� Thus�

j $Fj�x� � $Fj�y�j � C
�j
rjX
r	�

jx� yj

r�j

� C �
�j
jx� yj
�j

�

as claimed�
Now� suppose that x� y � Q � SN with ��Q� � �J��


p
n�� as above� Then

jx� yj � p
n��Q� � �J � �J�� � � � � � ��� The lemma then gives

j "Flarge�x� � "Flarge�y�j �
JX
j	�

j $Fj�x� � $Fj�y�j � C

JX
j	�


�j
�J
�j
�

Let 
J denote this last sum� Since 
� � ��
 and


J
� �
�J
�
�J


J �
�


J
�
� �




�

J �

�


J

�
�

then an elementary induction argument shows that 
J � J�
J � This con�rms �����
the bound on the modulus of continuity of "Flarge�

What about ����� The right�hand side there can in fact be simpli�ed further by
noting that "Fsmall 	 �� As for the left�hand side� from Fubini�s theorem it follows
that

�

jQj
Z
Q

"Fsmall �
�

jSN j
Z
SN

�

jQj
Z
Q
�

F
���
small�x� dx d��

For the proof of ���� and hence of �
��� it thus su�ces to obtain a suitable estimate
on the inner integral here� i�e�� to show that

�

jQj
Z
Q
�

F
���
small�x� dx �

�X
j	J
�

�

jQj
Z
Q
�

F
���
j �x� dx � C
�J��
�

uniformly for all � � SN � But the translated cube Q � � serving as the region of
integration is contained within a union of 
n congruent dyadic subcubes of SN
��
each having edge�length less than twice that of Q �and hence not more than �J��
Applying �
�� in x
 to each of these subcubes and summing up leads to the bound
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R
Q
� F

���
j �x� dx � C
�j jQj� A further sum in j �for j 	 J � �� leads to ��
�� The

proof of estimate �
�� for "GN is similar�
It remains to show that "RN � as de�ned in �
��� is uniformly continuous on SN �

The second term in �
��� the average of �T�f�SN��
over � � SN � is constant and

can safely be ignored� In addition� the countable sum giving R��� in �
�� can

be split according to the size of Q� so that R��� � R
���
large � R

���
small� as in �
���

The partition "RN � "Rlarge � "Rsmall likewise applies to the corresponding averaged

forms� up to the constant just described� Since jc���k j � C
�j when ��Q� � �j �as

was the case for the coe�cients a
���
k �� then the argument in Lemma � for "Flarge

carries over to "Rlarge� so that estimate ���� also holds for the latter� On the other

hand� since only relatively few of the coe�cients c
���
k may be non�zero �namely

those corresponding to cubes Qk of size exactly �j � for some j � N�� the BLO
estimate ���� can be replaced by a stronger estimate on the modulus of continuity
of "Rsmall� In fact�

sup
Q

j "Rsmallj � C

�X
j	J


�j � C
�J �

by �
��� All together� then� supQ
"RN � infQ "RN � CJ
�J � when ��Q� � �J��


p
n��

giving �
��� Thus� "RN can be re�de�ned on a set of measure zero to yield a uniformly
continuous function�

This settles the last remaining step in the proof of the lemma� and the decom�
position theorem is therefore complete�
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