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ABSTRACT. It is shown that bounded solutions to semilinear elliptic
Fuchsian equations obey complete asymptotic expansions in terms
of powers and logarithms in the distance to the boundary. For that
purpose, Schulze’s notion of asymptotic type for conormal asymptotics
close to a conical point is refined. This in turn allows to perform
explicit calculations on asymptotic types — modulo the resolution of
the spectral problem for determining the singular exponents in the
asymptotic expansions.
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2 XIAOCHUN LI1U AND INGO WITT

1 INTRODUCTION

In this paper, we shall study solutions u = u(z) to semilinear elliptic equations
of the form
Au = F(z,Byu,...,Bgu) on X° =X\ 0X. (1.1)

Here, X is a smooth compact manifold with boundary, X, and of dimension
n+1, A, By,...,Bk are Fuchsian differential operators on X°, see Defini-
tion 2.1, with real-valued coefficients and of orders p, p1, ..., ti, respectively,
where py < pfor 1 < J < K, and F = F(z,v): X° x R — R is a smooth
function subject to further conditions as x — 0X. In case A is elliptic in the
sense of Definition 2.2 (a) we shall prove that bounded solutions u: X° — R
to Eq. (1.1) possess complete conormal asymptotic expansion of the form

oo My

u(t,y) ~ Z Zt*pj log¥ t cjx(y) ast — +0. (1.2)
7=0 k=0

Here, (t,y) € [0,1) x Y are normal coordinates on a neighbourhood U of 0X,
Y is diffeomorphic to 0X, and the exponents p; € C appear in conjugated
pairs, Rep; = —oo as j — oo, m; € N, and ¢ji(y) € C*(Y). Note that such
conormal asymptotic expansions are typical for solutions u to linear equations
of the form (1.1), i.e., in the case that F/(r) = F(x,v) is independent of v € RE.
The general form (1.2) of asymptotics was first thoroughly investigated by
KONDRAT’EV in his nowadays classical paper [9]. After that to assign asymp-
totic types to conormal asymptotic expansions of the form (1.2) has been proved
to be very fruitful. In its consequence, it provides a functional-analytic set-up
for treating singular problems, both linear and non-linear ones, of the kind
(1.1). Function spaces with asymptotics will be discussed in Section 2.4. In
the standard setting, going back to REMPEL-SCHULZE [14] in case n = 0,
i.e., Y is a point, and SCHULZE [15] in the general case, an asymptotic type
P for conormal asymptotic expansions of the form (1.2) is given by a se-
quence {(pj,m;,L;)}32,, where p; € C, m; € N are as in (1.2), and L; is
a finite-dimensional linear subspace of C*>°(Y") to which the coefficients c; (y)
for 0 < k < mj are required to belong. (In case n = 0, the spaces L; equal C
and disappear from the consideration.) A function u(z) is said to have conor-
mal asymptotics of type P as ¢ — 90X if u(x) obeys a conormal asymptotic
expansion of the form (1.2), with the data given by P.

When treating semilinear equations we shall encounter asymptotic types be-
longing to bounded functions u(x), i.e., asymptotic types P for which

(1.3)

Po = 07 mo = 07 LO = Spa‘n{l}a
Rep; < 0forall j >1,

where 1 € Ly denotes the function on Y being constant equal to 1.
It turns out that the notion of asymptotic type just described resolves asymp-
totics not fine enough in order to be suitable for treating semilinear problems.
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The difficulty with this notion is that only the aspect of the production of
asymptotics — via the finite-dimensionality of the spaces L; — is emphasized,
cf. Proposition 2.29 (b), but not the aspect of their annihilation. For semilinear
problems, however, the latter affair becomes crucial. Therefore, in Section 2.2,
we shall introduce a refined notion of asymptotic type, where additionally lin-
ear relations between the various coefficients c;j(y) € L;, even for different j,
are taken into account.

Let As(Y) be the set of all these refined asymptotic types, while As*(Y) C
As(Y) denotes the set of all asymptotic types belonging to bounded func-
tions according to (1.3). For R € As(Y), let Cp(X) be the space of
all u € C*(X°) having conormal asymptotic expansions of type R, and
CF(X x RE) = C®(RE;C% (X)), where C%(X) is equipped with its nat-
ural Fréchet topology. In the formulation of Theorem 1.1, we will assume that
F € C¥ (X x RE), where

W(t)t P20 (X) € Lo(X) (1.4)

for some € > 0. Here, i = maxi<j<k ptg < p and w = w(t) is a cut-off function
supported on U, i.e., w € C®°(X), suppw € U. Here and in the sequel, we will
always assume that w = w(t) only depends on ¢ for 0 < ¢t < 1 and w(t) =1
for 0 < ¢t < 1/2. Condition (1.4) means that, for the given operator A, and
then compared to the operators Bi,..., Bk, functions in C§(X) cannot be
too singular as ¢t — +0.

There is a small difference between the set As’(Y") of all bounded asymptotic
types and the set &ﬂ(y) of asymptotic types described by (1.3); &ﬁ(Y) -
As® (Y). The set &u(Y) actually appears as the set of all multiplicatively clos-
able asymptotic types, see Lemma 3.5. This proves itself in the fact that when
only boundedness is presumed we have to exclude asymptotic types belonging
to As’(Y"), but not to As*(Y") from the consideration by the following condition
of non-resonance type (1.5):

Let H>°(X) = J,eg H*°(X) for 6 € R be the space of all distributions
u = u(z) on X° having conormal order at least 6. (The weighted Sobolev spaces
H59(X), where s € R is Sobolev regularity, are introduced in (2.33).) Note
that H~°%%(X) C H~°%% (X) if and only if § > &', and Uspz H ™ (X) is the
space of all extendable distributions on X° which is dual to the space C¥ (X)
of all smooth functions on X vanishing to the infinite order on 0X. (The
subscript in Cg (X)) anticipates the empty asymptotic type, O.) Moreover, the
conormal order ¢ for 6 — oo is the parameter in which the asymptotics (1.2)
are understood.

Now, fix a certain § € R and suppose that u € H™°°(X), being real-valued
and satisfying Au € Cg(X), has an asymptotic expansion of the form

oo My

u(x) ~ Re Z Ztl+j+w log¥teir(y) | ast — 40,
J=0 k=0
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where l € Z, 8 € R, B # 0 (and ! > 0 — 1/2 provided that cg ,,(y) Z 0 due to
the fact u € H~°%(X)). Then, for each 1 < J < K, it is additional required
that

Bju=0(1) as t — +0 implies Byu = o(1) as t — +0. (1.5)

Here, O and o are Landau’s symbols. Condition (1.5) means that there is
no real-valued u € H~°°(X) with Au € CF(X) such that Byu admits an
asymptotic series in the sense of Remark 2.54 starting with the term Re(t**d(y))
for some B € R\ {0}, d(y) € C>(Y"). This condition is void if 6 > 1/2 + f.
Then our main theorem is stated as follows:

THEOREM 1.1. Let § € R and A € Difffy , (X) be elliptic in the sense of
Definition 2.2 (a), By € Diffi! | (X) for 1 < J < K, where puj < p, and F €
Cx (X xRE) for some asymptotic type R € As(Y) satisfying (1.4). Further, let
the non-resonance condition (1.5) be satisfied. Then there exists an asymptotic
type P € As(Y') expressible in terms of A, Bi,...,Bk, R, and § such that each
solution u € H™°%(X) to Eq. (1.1) satisfying Bju € L®(X) for 1 < J < K
belongs to the space CF(X).

Under the assumptions of Theorem 1.1, interior elliptic regularity already im-
plies u € C*°(X°). Thus, the statement concerns the fact that u possesses a
complete conormal asymptotic expansion of type P close to X . Furthermore,
the asymptotic type P can, in principle, be calculated once A, By, ..., Bk, R,
and § are known.

Some remarks concerning Theorem 1.1 seem to be in order. First of all, the
solution u is asked to belong to the space H~°°¢(X). Thus, if the non-resonance
condition (1.5) is satisfied for all § € R — which is generically true — then
the foregoing requirement can be replaced by the requirement for u just being
an extendable distribution. In this case, Ps < Py for 6 > ¢’ in the natural
ordering of asymptotic types, see before Proposition 2.29, where Ps denotes
the asymptotic type associated with the conormal order 6. Moreover, jumps in
this relation occur only for a discrete set of values for § € R.

Secondly, for a solution u € C¥(X) to Eq. (1.1), neither w nor the right-
hand side F(z, Byu(x),. .., Bru(z)) must be bounded. Unboundedness of u,
however, requires that asymptotics governed by the elliptic operator A are
cancelled jointly by the operators By, ..., Bk, up to a certain degree, and this,
in turn, is the non-generic situation. Furthermore, in applications one often has
that one of the operators By, say B, is the identity belonging to Diff{, .. (X),
i.e., we have Byu = u for all u. Then this leads to u € L*®(X) and explains
the term “bounded solutions” in the paper’s title.

Remark 1.2. (a) A spatial conical singularity leads via blow-up, i.e., the intro-
duction of polar coordinates, to a manifold with boundary. Vice versa, each
manifold with boundary gives rise to a space with a conical singularity via
shrinking the boundary to a point. Since in both situations the analysis takes
place over the interior of the underlying configuration, i.e., away from the con-
ical singularity and the boundary, respectively, there is no essential difference
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between these two situations. Stated this in a different way, the geometric sin-
gularity considered is prescribed by the type of degeneracy admitted, e.g., for
differential operators. In our case, this degeneracy is of Fuchsian type.

(b) Theorem 1.1 continues to hold for sectional solutions in vector bun-
dles over X. Let Ey,FE;,E> be smooth vector bundles over X, A €
Diff;, .o (X; Eo, E1) be elliptic in the sense above, B € Diffﬁ;clhs(X;Eo,Ez),
and F' € Cp(X,Ey; Ei). Then, under the same technical assumptions as
above, each solution u to Au = F(z, Bu) in the class of extendable distribu-
tions with Bu € L*°(X; E») belongs to the space C¥ (X; Ey) for some resulting
asymptotic type P.

Theorem 1.1 has actually been stated as one, though basic example to a more
general method for deriving and then justifying conormal asymptotic expan-
sions for solutions to semilinear elliptic Fuchsian equations. This method al-
ways works if one has boundedness assumptions as made above, but bound-
edness can often be successfully replaced by structural assumptions on the
nonlinearity. An example is provided in Appendix 3.A. The proposed method
works indeed not only for elliptic Fuchsian equations, but for other Fuchsian
equations as well. What counts is the invertible of the complete sequence of
conormal symbols in the algebra of all conormal symbols under the Mellin
translation product, and this is equivalent to the (parameter-dependent) el-
lipticity of the principal conormal symbol. For elliptic Fuchsian differential
operator, the latter condition is always fulfilled.

The derivation of conormal asymptotic expansions for solutions to semilinear
Fuchsian equations is a purely algebraic business once the singular exponents
and their multiplicities for the linear part are known. A strict justification
of these conormal asymptotic expansions, in the generality supplied in this
paper, requires the introduction of the refined notion of asymptotic type and
corresponding function spaces with asymptotics. For this reason, from a tech-
nical point of view the main result of this paper is Theorem 2.43 which among
others states the existence of a complete sequence of holomorphic conormal
symbols realizing a given proper asymptotic type in the sense of exactly an-
nihilating asymptotics of the given type. (The term “proper” is explained
in Definition 2.22.) The construction of such conormal symbols relies on the
factorization result of WITT [20].

The paper is organized as follows: The first part of this paper, Section 2,
is devoted to the linear theory and the introduction of the refined notion of
asymptotic type. Then, in the second part in Section 3, Theorem 1.1 is proved.
Both parts are accompanied by appendices either explaining technical details
or providing an example.

Let us conclude with a technical remark. Behind a good deal of argument,
there is Schulze’s cone pseudodifferential calculus. The interested reader is
referred to Appendix 2.B and SCHULZE [15, 16]. We will not go to much into
the details, since all the arguments below can be carried out without reference
to this calculus. Indeed, the important thing to control the production and
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annihilation of asymptotics is the algebra of complete conormal symbols, and
it is this algebra which is discussed with great care. From time to time, however,
we fall back on Schulze’s cone pseudodifferential calculus to shorten proofs.

2 ASYMPTOTIC TYPES

In this section, we shall introduce the notion of a discrete asymptotic type. A
comparison of this notion with the formerly known notions of a weakly discrete
asymptotic type and a strongly discrete asymptotic type, respectively, can be
found in Figure 1. The definition of a discrete asymptotic type is modelled
on part of the Gohberg-Sigal theory of the inversion of finitely meromorphic,
operator-valued functions at a point. This is reviewed in Appendix 2.A. It is
recommended to the reader to look up there to get a grasp of the main ideas
in Sections 2.2, 2.3. Finally, in Section 2.4, function spaces with asymptotics
are introduced. The definition of such function spaces relies on the existence of
complete (holomorphic) conormal symbols realizing a prescribed proper asymp-
totic type. The existence of these complete conormal symbols is stated and
proved in Theorem 2.43.

2.1 FUCHSIAN DIFFERENTIAL OPERATORS

Let X be a compact C*°-manifold with boundary, dX. Throughout, we fix a
collar neighbourhood U of 90X and a diffeomorphism y: ¢ — [0,1) x Y, with
Y being a closed C*°-manifold diffeomorphic to X . Hence, we work in a fixed
splitting of coordinates (¢,y) on U, where t € [0,1) and y € Y. Let (r,n) be
the covariables to (¢,y). The compressed covariable ¢ to ¢ is denoted by 7,
i.e., (7,n) is the linear variable in the fibre of the compressed cotangent bundle
T*U. Finally, let dim X =n + 1.

DEFINITION 2.1. A differential operator A with smooth coefficients of order p
on X° = X\ 0X is called Fuchsian if

i
- k
Xo (A] ) =t ar(t)(—tdr)", (2.1)
k=0
where a;, € C([0,1); Diff* (V")) for 0 < k < p. The class of all Fuchsian

differential operators of order p on X° is denoted by Difff . (X).

Henceforth, we shall suppress writing the restriction | y, and the operator push-
forward . in expressions like (2.1). For A € Diffy, ,,.(X), we denote by o7, (4)
the principal symbol of A, by &Z(A) its compressed principal symbol defined

on T*U and related to oy (A) via

oy (A)(t,y,,m) =t "oy (A) Ly, tr,m), (ty,7,m) € T"U\O, (2.2)
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Singular exponents with multiplicities, (p;, m;), are
prescribed, the coefficients c;i(y) € C*(Y) are ar-
bitrary. The general form of asymptotics is ob-
served, cf., e.g., KONDRAT'EV (1967), MELROSE
(1993), ScuuLzE (1998).

Weakly discrete
asymptotic types

Singular exponents with multiplicities, (p;, m;), are
Strongly discrete prescribed, ¢;i(y) € Lj C C*(Y), where dim L; <
asymptotic types o0o. The production of asymptotics is observed,
cf. REMPEL-SCHULZE (1989), SCHULZE (1991).

Linear relation between the various coefficients

Discrete ¢k (y) € Lj, even for different j, are additionally al-
asymptotic types lowed. Thus the production/annihilation of asymp-
totics is observed, cf. this article.

Figure 1: Schematic overview of asymptotic types
and by o%,(A)(z) its principal conormal symbol,

ahi(A)(z) = Zak (0)zF, z € C. (2.3)

Note that &, (A)(t,y,7,n) is smooth up to ¢ = 0 and that o}’ (z) for j =
0,1,2,... is a holomorphic function in z taking values in Diff*(Y"). Moreover,
if A € Difffy ,.(X), B € Diff§, ,.(X), then AB € Diffa/? (X),

oI AB)(2) = Y o (W)t o —Roi (B2 (24)
Jj+k=l

for all I =0,1,2,... This formula is called the Mellin translation product.

DEFINITION 2.2. (a) The operator A € Difff; , (X) is called elliptic if A is an
elliptic differential operator on X° and

64 (A)(t,y,7,m) # 0 for all (t,y,7,m) € T°U\ 0. (2.5)
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(b) The operator A € Difff, , (X) is called elliptic with respect to the weight
0 € Rif A is elliptic in the sense of (a) and, in addition,

ohi(A)(z): H*(Y) = H**(Y), z € Cingny/2—6 (2.6)

is invertible for some s € R (and then for all s € R). Here, I's = {z € C; Rez =
g} for g € R.

Under the assumption of interior ellipticity of A, (2.5) can be reformulated as

047 (a;(0) (y, m) (~7)” #0

M-

=0

for all (y,7,n) with (7,n) # 0. This relation implies that o, (A) is parameter-
dependent elliptic as an element of L% (Y;(,,11)/2—5), where the latter is the
space of all classical pseudodifferential operators on Y of order p with parameter
S F(n+1)/2—6; for

oy (T (AW 2| i1y j2s—z = T4 (A0, 5, F,m),

and Ufz on the left-hand side denotes the parameter-dependent principal sym-
bol. Thus, if (a) is fulfilled, then it follows that o, (A)(z) in (2.6) is invertible
for 2 € ['(;41)/2—s, || large enough.

LEMMA 2.3. If A € Difff, . (X) is elliptic, then there exists a discrete set
DCCwithDN{z e C cg <Rez <y} is finite for all —oo < ¢y < ¢1 < ©
such that (2.6) is invertible for all z € C\ D. In particular, there is a discrete
set D C R such that A is elliptic with respect to the weight 6 for all 6 € R\ D;
D =ReD.

Proof. Since o%;(A)(z) € L*(X;T'g) is parameter-dependent elliptic for all § €
R, for each ¢ > 0 there is a C' > 0 such that oy, (A4)(z) € L*(X) is invertible for
all z with |Rez| < ¢, |Imz| > C. Then the assertion follows from results on
the invertibility of holomorphic operator-valued functions. See Proposition 2.6
below or in SCHULZE [16]. O

Next, we introduce the class of meromorphic functions arising in point-wise
inverting parameter-dependent elliptic conormal symbols o, (4)(z), see again
SCHULZE [16].

DEFINITION 2.4. (a) Ms(Y) for p € RU{—o0} is the space of all holomorphic
functions f(z) on C with values in L% (Y) such that f(z)| € LL(Y;5R,)
uniformly in 8 € [By, 1] for all —oco < fp < f1 < 0.
(b) M 2 (Y) is the space of all meromorphic functions f(z) on C taking values
in L=°°(Y") and satisfying the following conditions:
(i) The Laurent expansion around each pole z = p of f(z) has the form

fo fi

= oy 1 (5 _p)I
fz) = (z —p)¥ + (z —p)v—! + +z_p+j§fv+1( p)’, (2.7)

z=P+ir
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where fo, f1,-.-, fv—1 € L7*°(Y) are finite-rank operators.

(i) If the poles of f(z) are numbered in a certain way, p1,p2, ..., then | Rep;| —
00 as j — oo if the number of poles is infinite.

(iii) For any (J;{p;}-excision function x(z) € C*(C), ie., x(z) = 0 if
dist(z,U;{p;}) < 1/2 and x(z) = 1 if dist(z,U;{p;}) > 1, we have
X(z)f(z)|Z:B+iT € L=°(Y;R,) uniformly in S € [fo, 1] for all —co < fy <
B1 < oo.

(c) Finally, we set M (Y) = Mp5(Y) + M > (Y) for p € R understood as a
non-direct sum. (Note that M%(Y) N M >*(Y) = M57(Y).)

Functions f(z) belonging to M (Y") are called Mellin symbols.

For f(z) € ME(Y), p € C, and N € N, in connection with (2.7), we shall
denote by [f(z)]) the Laurent series of f(z) around z = p truncated after
N + 1 terms, i.e.,

O = Rt I ot foaemp) =Y 29)

Furthermore, [f(2)]5 = [f(2)]s~" when v > 1 and [f(2)]} = 0 otherwise shall

denote the principal part of f(z) at z = p.

Remark 2.5. The space N£(Y) for p € RU{—o0} is defined in a similar way,
upon replacing the spaces L (Y) and LY (Y;R,), respectively, with L*(Y")
and L*(Y;RR,) (= spaces of pseudodifferential operators of type 1,0). Then
U,er Vi (Y) is an algebra under the pointwise composition as multiplication
which is filtered by the order, i.e., N&A(Y) C VX (Y) for p < p' and NE(Y) -
NLY) S NEFP(Y).

We have MK (Y) C NE(Y) for p € R, ME(Y) - MA(Y) C MEFP(Y), and,
for pe RU{—o0}, p e R,

ME(Y) T ME(Y) if and only if p — p € NU {o0}.

For that reason, the algebra (J,c.p ML (Y) is referred to as quasi-filtered.

For f(z) € MAE(Y) for some p € R, f(z) = fo(z) + fi(z), where
fo(z) € MH(Y), fi(z) € M (Y), the parameter-dependent principal symbol
al; (fo(2) |Z:B+”) is independent of the choice of the decomposition of f(z) and
also independent of 5 € R. It is called the principal symbol of f(z). The Mellin
symbol f(z) € ME(Y) is called elliptic if its principal symbol is everywhere
invertible.

PROPOSITION 2.6 (SCHULZE [16]). The Mellin symbol f(z) € ME(Y) for
i1 € R is invertible in the quasi-filtered algebra UueR ME(Y), i.e., there is a
g(z) € M7#(Y) such that f(z)g(z) = g(z)f(z) = 1 holds on C, if and only if
f(2) is elliptic.
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PROPOSITION 2.7. Let p € R and {p;j}j=1,2,.. C C be a sequence obeying the
property mentioned in Definition 2.4 (b). Further let, for each j =1,2,..., the
finite part
ALy + =)+t fy (2= p) ™M T, (29)
Gy ey T f
where v; € Z, N; € N, fg,...,fﬁj_l € L=(Y) are finite-rank operators,
f,z']_ € LY\(Y) is a Fredholm operator of index 0, and fgj+1: ey ]];,j e LE(Y), be
given. (The two cases N; < vj and v; < 0 are not excluded.) Then there is an
elliptic f(z) € ME(Y) such that, for all j =1,2,..., [f(z)]g’ equals the finite
part given in (2.9), while f(q) € L{(Y') is invertible for allg € C\U,;_, , _{p;}-

Proof. This can be derived using the results of WITT [20]. In particular, the

factorization result therein yields directly the existence of f(z) in the case that
the sequence {p;} C C is void. Concerning the assumptions made on the

coefficients f € L!(Y"), see also Definition 2.64, Proposition 2.65. O

For further reference, we also note:

LEMMA 2.8. Given ¢o,...,¢m—1,%0,...,Ym—1 € C®(Y), there are pseudodif-
ferential operators Ag, A1, ..., Am—1 € LE(Y) such that Ag € LY (Y) is invert-

ible and
Aogpo = 2o,

A1¢o + Ao = 1,
......... (2.10)

Ap_oo + -+ Agpm—2 = Y2,
Am—1¢o + Ap—21 + -+ + Agpm—1 = Yim—1.

Now, we are going to introduce the basic object of study — the algebra of all
complete conormal symbols. This algebra will enable us to introduce the refined
notion of asymptotic type and to study the behaviour of conormal asymptotics
under the action of Fuchsian differential operators.

DEFINITION 2.9. (a) For u € R, the space Symb’, (1) consists of all sequences
& = {s#(2); j € N} C ME(Y).

(b) An element G* € Symbk,(Y) is called holomorphic if &* = {s" /(z);
j €N} Cc MpH(Y).

(©) Uner Symb%,(Y) is a quasi-filtered algebra under the Mellin translation
product, . Namely, for 6* = {s#7(2); j € N} € Symbh,(Y), ¢ =
{t""#(2); k € N} € Symb#,(Y), we define U*t? = &F4,,3P € Symbh 7 (V),
where U#P = {urtr-l(z); | € N}, by

Wl (z) = Y s (2 4+ p— k)tF(2) (2.11)
j+k=l

for [ =0,1,2,... See (2.55).
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From Proposition 2.6 we immediately get:

LEMMA 2.10. 6* = {s#7I(z); j € N} € Symbh,(Y) is invertible in the quasi-
filtered algebra | ,cp Symb%,(Y) if and only if s (z) € M (Y) is elliptic.

In the case of the preceding lemma, & € Symbf,(Y) is called elliptic. It is
called elliptic with respect to the weight 6 € R if the line I'(,,11)/2_s is free of
poles of s#(z). Notice that an elliptic &* € Symbl,(Y') is elliptic for all, but
a discrete set of 4. The inverse to &* with respect to the Mellin translation
product is denoted by (&#)~t. The set of all elliptic elements of Symb%, (Y) is
then denoted by Ell Symbf,(Y).

Furthermore, there is a homomorphism of filtered algebras,

| Diffft s (X) = [ Symbh, (), A {0477 (A)(2); j €N} (2.12)
pREN HEZ

By the remark preceding Lemma 2.3, {07 (A)(2); j € N} € Symbf,(Y) is
elliptic if A € Diffpyens(X) is elliptic in the sense of Definition 2.2 (a).

2.2 DEFINITION OF ASYMPTOTIC TYPES

We now start introducing discrete asymptotic types.

2.2.1 THE SPACES & (Y)

First, we construct a space £°(Y) = Uy s €0 (Y) allowing a non-canonical
isomorphism

CZ(X)/CF(X) = £5(Y), (2.13)

where C299(X) is the space of all smooth functions on X° obeying conormal
asymptotic expansions of conormal order at least J, i.e., Rep; < (n+1)/2 4§
for all j, of the form (1.2) (with the condition that the singular exponents p;
appear in conjugated pairs skipped) and C@ (X) is the subspace of all smooth
functions on X° vanishing to the infinite order on 0X. “Non-canonical” in
(2.13) means that the isomorphism depends explicitly on the chosen splitting
of coordinates i — [0,1) x Y, x — (t,y), close to 0X.

DEeFINITION 2.11. A carrier V' of asymptotics for distributions of conormal
order § is a discrete subset of C contained in the half-space {z € C; Rez <
(n+1)/2 — 6} such that, for all gy, f1 € R, By < f1, the intersection V N {z €
C; Bop < Rez < By} is finite. The set of all these carriers is denoted by C°.

In particular, V,, = p — N for p € C is a carrier of asymptotics. Note that
V, € CY if and only if Rep < (n+1)/2—6. Weset T2V = —g+V € C—Reet?
for p € C and V € C°. We further set C = [J;cp C°.

Let [C*°(Y)]* be the space of all finite sequences in C*(Y"), as in (2.41), with
E replaced with C*°(Y'). For V € C?, we set £3-(Y) = [Lev[C(Y)];°, where
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Local asymptotics Discrete asymptotics
E C>(Y)

MEn(L(E)) U,cr Symbli, ()

M2 (L(E)) U,.cr EIISymbS, (Y)
B Uscr €0V), £(Y)
Lp Len, LY,

J(E) As(Y), A’ (Y)

J, K asymptotic types P, Q)
JE QI=H(P; A)

KF7 F e M2r(L(E)) | P5(Q; A), A elliptic
My(E, J) CF(X), Hpy(X)

Figure 2: Local asymptotics versus discrete asymptotics

[C>(Y)]° is an isomorphic copy of [C*°(Y)]>, and define £°(Y) to be the
space of all families ® € 5{5,(Y) for some V € C° depending on ®. Thereby,
® € EL(Y), ® € E(Y) for possibly different V, V' € C° are identified if
O(p) =d'(p) forall pe VNV’ and &(p) =0for p e V\ V', ®(p) =0 for
p € V'\ V. Under this identification,

ewy)y=J &) (2.14)

vecs

and E(Y)NEL (V) = %1+ (V). The right shift operator T', see (2.42), acts on
E°(Y) component-wise, i.e., (T'®)(p) = T(®(p)) for ® € E5(Y) and all p € V.
Remark 2.12. (a) In Section 3, we shall write &y (Y) instead of &) (Y) for
V € C° without ambiguity.

(b) To designate different shift operators with the same symbol 7', once T'~¢ for
0 € C for carriers of asymptotics, once T, T? etc. for vectors in £°(Y") should
not confuse the reader.

For ® € £%(Y), we define c-ord(®) = (n + 1)/2 — max{Rep; ®(p) # 0}. In

particular, c-ord(0) = oco. Note that c-ord(®) > 6 if ® € £°(Y). For ®; €
EN(Y), a; € Cfori=1,2,... satisfying c-ord(®;) — oo as i — oo, the sum

oo

=) (2.15)

i=1

is defined in £°(Y) in an obvious fashion: Let ®; € &) (Y), where V; € C%,
6 >0, and §; - coasi — co. Then V = J,V; € C%, and ® € EJ(Y) is
defined by ®(p) = >°.°, a;®;(p) for p € V, where, for each p € V, the sum on
the right-hand side is finite.
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LEMMA 2.13. Let ®; € £°(Y) fori=1,2,..., c-ord(®;) — 00 asi — co. Then
(2.15) holds if and only if

N
c-ord(® — Zaﬂ)i) — 00 as N — 0. (2.16)
i=1
Note that (2.16) already implies that c-ord(a;®;) — oo as i — oo.

DEFINITION 2.14. Let ®;, i = 1,2,..., be a sequence in £°(Y) with the prop-
erty that c-ord(®;) — oo as i — oco. Then this sequence is called linearly
independent if, for all a; € C,

i OéﬂI’i =0
i=1

implies that «; = 0 holds for all ¢. A linearly independent sequence ®; for
i=1,2,... in J for a linear subspace J C £%(Y) is called a basis for .J if every
vector ® € J can be represented in the form (2.15) with certain (then uniquely
determined) coefficients «a; € C.

Note that 3°°, a;®; = 0 in £(Y) if and only if c-ord(3N, a;®;) — oo as
N — oo according to Lemma 2.13. We also obtain:

LemMMA 2.15. Let ®;, i = 1,2,..., be a sequence in E°(Y) such that
c-ord(®;) — oo as i — oo. Further, let {3;}32, be a strictly increasing se-
quence such that d; > 0 for all j and §; — oo as j — oo. Assume that the
®; are numbered in such a way that c-ord(®;) < 6; if and only if 1 < i < ej.

Then the sequence ®;, ¢ = 1,2,..., is linearly independent provided that, for
each 7 =1,2,...,
®,...,®,; are linearly independent over the space E%(Y).

We generalize the notion of a characteristic basis from Appendix 2.A, see
Lemma 2.70.

DEFINITION 2.16. Let J C £°(Y) be a linear subspace, TJ C J, and ®; for

t=1,2,... be asequence in J. Then ®;, i =1,2,..., is called a characteristic
basis of J if there are numbers m; € NU {oco} such that 7" ®; = 0 when
m; < oo, while the sequence {T*®;;i = 1,2,...,0 < k < m;} forms a basis
for J.

The question of the existence of a characteristic basis obeying one more prop-
erty is taken up in Proposition 2.21. We also need following notion:

DEFINITION 2.17. & € £%(Y) is called a special vector if ® € 5{2 (Y) for some
peC

Thus, ® € £%(Y) is a special vector if there isap € C, Rep < (n+1)/2 -6
such that ®(p') =0 for all p’ € V, p' ¢ p — N. Obviously, if & # 0, then p is
uniquely determined by @, by the additional requirement that ®(p) # 0. We
denote this complex number p by v(®).
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2.2.2 SIMPLEST PROPERTIES OF ASYMPTOTIC TYPES

In the following, we fix a splitting of coordinates & — [0,1) x Y, z — (t,y),
close to 90X, cf. the non-canonical isomorphism (2.13). Coordinate invariance
is discussed in Proposition 2.33.

DEFINITION 2.18. An asymptotic type, P, for distributions as z — 90X, of
conormal order at least ¢, is represented — in the given splitting of coordinates
close to X — by a linear subspace J C &, (Y) for some V € C? such that the
following three conditions are met:

(a) TJ C J;

(b) dim J°* < oo for all j € N, where J°T7 = J/(J N ETI(Y));

(c) There is a sequence {p;}}L, C C, where M € NU{oo}, Rep; < (n+1)/2-9,
and Rep; — —o0 as j — oo when M = oo, such that V C U]]Vil Vp; and

J= é (Jngv Y) (2.17)
j=1

The empty asymptotic type, O, is represented by the trivial subspace {0} C
E%(Y). The set of all asymptotic types of conormal order § is denoted by
As’(Y).

For P € As’ represented by J C E3(Y), we introduce
dp = min{c-ord(®); ® € J}, (2.18)

Notice that dp > § and dp < oo if and only if P # O.
Obviously, As®(Y) C As? (YY) if 6 > ¢'. We also set

= JAs ()

JER

On asymptotic types P € As’ (Y), we have the shift operation T~¢ for p € C,
namely T~ ¢P is represented by the space

T-2] = {® € 12T (V); @(p) = ®(p + o) for p € C and some & € J},

where J C & (Y) represents P.
Furthermore, for J C £ (Y) as in Definition 2.18,

Jp ={®(p); ® € J} C[C=(Y)]™

for p € C denotes the localization of J at p. Note that 7'.J, C J, and dim J,, <
oo; thus, J, is a local asymptotic type in the sense of Definition 2.69.
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DEFINITION 2.19. Let u € C29(X) and let P € As’(Y) be represented by
J C E5(Y). Then u is said to have asymptotics of type P if there is a vector
® € J such that

(=D &, 0
u(zx) ~ Z Z —— log"t¢;"’ (y) as t — 40, (2.19)

k!
pEV k+l=my—1

where ®(p) = ( (()p), gp),...,¢£5171) for p € V. The space of all these u is
denoted by C(X).

Note the shift from m, to m, — 1 that, for notational convenience, appeared
in formula (2.19) compared to formula (1.2).

Thus, by representation of an asymptotic type we mean that P which, in
the philosophy of asymptotic algebras, see Definition 2.55, is the same as the
linear subspace CF(X)/CF(X) C CL°(X)/C& (X), is mapped onto J by
the isomorphism (2.13). Recall that this isomorphism depends on the chosen
splitting of coordinates Y — [0,1) x Y, x — (¢,y), close to 0X.

We are now going to investigate common properties of linear subspaces J C
&Y (Y) satisfying (a) to (c) in Definition 2.18. Let IL;: J — J°*J be the canoni-
cal surjection. For j' > j, there is a natural surjective map IT,; : JOH3' — Jo+i
such that Hjjrr = H]-erjrjn for j” > j’ > 7 and

(J,10;) = pgnm (JO+ TLj;0). (2.20)

o0

Note that T': J%+/ — J0%J ig nilpotent, where T denotes the map induced by
T: J — J. Furthermore, for j' > j, the diagram

gotit ity gt
Tl lT (2.21)
.7 11 ./ .
Joti 29 jo+i
commutes and the action of 7' on J is that one induced by (2.20), (2.21).

PROPOSITION 2.20. Let J C E(Y) be a linear subspace for some V € C°. Then
there is a sequence ®; fori =1,2,... of special vectors with c-ord(®;) — oo as
i — 00 such that the vectors T*®; for i =1,2,..., k=0,1,2... generate J if
and only if J fulfils conditions (a), (b), and (c).

In the situation just described, we write J = (®1, ®5,...), see Appendix 2.A
behind Lemma 2.70.

Proof. Let J C &} (Y) fulfil conditions (a) to (c). Due to (c) we may assume
that V' = V), for some p € C. Suppose that the vectors ®¢,...,®, € J are al-
ready chosen (where e = 0 is possible). Then we choose the vector ®.4; among
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the vectors @ € J which do not belong to (@, ..., ®.) such that y(®.;) is min-
imal. We claim that J = (®, ®o,...). In fact, if ® € J, then ® € (®q,..., D),
where e is so that y(®.) < y(®), while y(®e4+1) > 7(®). Otherwise, .41 would
not have been chosen in the (e + 1)th step.

The other direction is obvious. (]

For j > 1, let (m?, ... ,m} ) denote the characteristic of the space JOt+i,

PROPOSITION 2.21. Let J C EY(Y) be a linear subspace and assume that the
vectors ®; for i = 1,2,...,e, where e € NU {o0}, constructed in Proposi-
tion 2.20 are a characteristic basis of J. Then the following conditions are
equivalent: )

(a) For each j, IL; @4, .. .,Hj<I>£j is an (m],.. .,mij)-basis of JOti;

(b) For each j, ijl_ltlﬁ,...,Tmei*l‘I)ej are linearly independent over the
space E5FI(Y), while T*®; € £°HI(Y) when either 1 < i < ej, k > m! or
1> €;.

In particular, if (a), (b) are fulfilled, then, for any j' > j, IL;; ®7 ... I;; <I>g’1

. =1 -1
is a characteristic basis of J'9, while I &), = --- = I q)]e/j = 0. Here,

‘:I)jl :H]’/q)i fOT 1 S ) S €jr.

(3

Proof. This is a direct consequence of Lemmas 2.15, 2.71. O

Notice that, for a linear subspace J C &{(Y) satisfying conditions (a) to (c)
of Definition 2.18, a characteristic basis possessing the equivalent properties of
Proposition 2.21 need not exist. An example is provided below.

DEFINITION 2.22. An asymptotic type P € As’(Y) represented by the lin-
ear subspace J C E?,(Y) is called proper if J admits a characteristic basis
®y, &, ... satisfying the equivalent conditions in Proposition 2.21. The set of

all proper asymptotic types is denoted by &imp(Y) C As°(Y).

Ezample 2.23. We provide an example showing that the inclusion &imp(Y) -
As®(Y) is strict. Let the space J = (&1, ®,) C S{‘,P (Y) for some p € C, Rep <
(n+1)/2—0 be generated by two vectors @1, ®, in the sense of Proposition 2.20.
We further assume that ®1(p) = (Yo, %), ®1(p — 1) = (1, %, %), ®2(p) =0, and
®y(p—1) = (¢1, %), where ¢, ¥y € C*°(Y') are not identically zero and x stands
for arbitrary entries. See Figure 3. Then, the asymptotic type represented by
J is non-proper. In fact, assume that Rep > (n +1)/2 — ¢ + 1. Then II,®,,
TH,®, — [I,®, is a characteristic basis of J°*2, and any other characteristic
basis of J912 is, up to a non-zero multiplicative constant, of the form

H2(I)1 + a(TH2<I>1 — qu)g), B(Tﬂgq)l — ng)z) + ’}/(I)l, (222)

where «, 5, v € R and 8 # 0. But then the conclusion in Proposition 2.21 is
violated, since both vectors in (2.22) have non-zero image under the projection
I, while IT; ®;, forms a characteristic basis of J+!,
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(1
* %o {2
* * *
p—1 p p—1 p

Figure 3: Example of a non-proper asymptotic type

We are now going to introduce the analogues of Lr and J¥, see Appendix 2.A.
For ® € £°(Y), p € C, and ®(p) = ( (()p), 51))7 . "(bgi—l) we shall use, for any
q € C, the notation

(p) (p) ¢££)7
Bl —g) = o+ A T e (0x().

Here, M,(C*(Y)), A,(C*°(Y")) have the same meaning as in Appendix 2.A,
with E replaced with the space C*(Y).

DEFINITION 2.24. For 6* = {s*7J(z); j € N} € Symb’,(Y), the linear sub-
space L%u C C§§7‘5(X)/C(%° (X) is represented by the space that consists of all
® € £5(Y) such that there are functions ¢ ) (z) for p € C, Rep > (n+1)/2—6
such that

[(n+1)/2—6+n—Req]™

S @ e—pt) (e pr i -a+ ()
j=0

€ A (C(Y)) (2.23)
holds for ¢ € C, Req < (n +1)/2 — § + p. Here [a]™ for a € R is the largest
integer strictly less than a, i.e., [a]” € Z and [a]” <a <[a]” + 1.

Note that, if ® € £ (Y) for V € C?, then condition (2.23) is only effective if
[(n+1)/2—0+p—Req]” '
q€ U TV,
7j=0
since otherwise the sum appearing in (2.23) is zero.

Remark 2.25. Informally, if ® € £°(Y') belongs to the space representing L.,
and if u € C2%(X) possesses asymptotics given by the vector ® according to
(2.19), then there is a v € Cg¥(X) such that

<Z w(t)t T op (270 (51 () au)) (u+v) € CF(X).

=0
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Concerning the informality involved here, see the remarks in Appendix 2.B.

DEFINITION 2.26. For P € As’(Y) being represented by J C £3,(Y) and G# €
Symb#, (Y), the push-forward Q°~#(P;&*) of P under &* is the asymptotic
type in &67“(1’) represented by the linear subspace K C E;ﬁﬂV(Y) consisting
of all vectors ¥ € Eg,i‘,fv(Y) such that there is a ® € J and there are functions
o P (z) € Ap(C>(Y)) for p € V such that

[((n+1)/2—6+n—Req]”

Y(g)[z —q] =
j=0

(=t ) (Pa—p+ = + 6= )] @221)

holds for all ¢ € THV, see (2.8).

Remark 2.27. As in Remark 2.67, for a holomorphic &* € Symb/,(Y) it is
not necessary to refer to the holomorphic functions ¢ ® (z) € A,(C>(Y)) for
p € V to define the push-forward Q°~#(P;&*) in (2.24). We then also write
Q(P; 6*) instead of QO~H(P; GH).
Extending the notion of the push-forward from asymptotic types to arbitrary
linear subspaces of C33°(X)/C& (X), the space LY, C CX°(X)/C& (X) for
S* € Symbh,(Y) appears as the largest subspace of C0(X)/C& (X) for
which

Q* H(Lgu; &) = Q° (0; ") (2.25)

holds. In this sense, it characterizes the amount of asymptotics of conormal
order at least § annihilated by &* € Symb/, (Y).

DEFINITION 2.28. On the set As’(Y), there is a natural ordering defined by
saying that P < P’ for P, P’ € &6(1’) if and only if J C J', where J, J' C
E%(Y) are representing spaces for P and P, respectively.

PROPOSITION 2.29. (a) The ordered set (As’(Y), <) is a lattice in which every
non-empty subset S possesses a meet, \ S, represented by (\pcs Jp and every
bounded subset T possesses a join, \| T, represented by ZQET Jg, where Jp
and Jg represent the asymptotic types P and @, respectively. In particular,
AAS(Y) = 0.

(b) For P € As’(Y), &* € Symbh,(Y), we have Q°#(P; &*) € As’ *(Y).

Proof. (a) is immediate from the definition of asymptotic type and (b) can be
checked directly on the level of (2.24). O

Remark 2.30. To elements G* € Symb/,(Y") there is assigned a natural ac-
tion C0(X) = CL0(X)/C& (X). Its expression in the chosen splitting a
coordinates Y — [0,1) x Y, z — (t,y), close to X is given by in (2.24).
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Generalizing the notion of an asymptotic algebra from Definition 2.55 to the
case that operators F' € 9 act from § to the quotient space §/Fo, see
WirrT [19], Proposition 2.29 states that the quadruple

(| Symbfy, (v), 0 (X), CF (X), As’ (V)
neER

is in fact an asymptotic algebra in this generalized sense. Moreover, this asymp-
totic algebra is reduced and (Symb?w(Y),Cg;”‘s(X),C(%O(X),&J(Y)) serves
as a symbol algebra for (C°(X, (4,6)),C?(X),C&(X),As’(Y)), see again
Wit [19].

This is the reason why a great deal of notion, see, in particular, Figure 2, and
also the arguments of Appendix 2.A, carry over to the present situation.

THEOREM 2.31. For a holomorphic &" € EllSymb¥,(Y), that is elliptic with

respect to the weight §, we have LY, € &‘;rop(Y).

Proof. Let 6" = {s*=7; j € N} C M} (Y). Assume that, for some p € C,
Rep < (n+1)/2 -0, ®y € Lgu(z) at 2 = p in the sense of Definition 2.59
and Lemma 2.66 (a). (Notice that Lg.(;) at z = p is contained in the space
[C>(Y)]*°.) We then successively calculate the sequence ®g, ®;, ®3,... from
the relations, at z = p,

st(z = J)®;lz —pl + 5" Mz~ + 1)@ [z — p]
4+ s () B[z —p] =0, =0,1,2,..., (2.26)

see (2.24). In each step, we find a ®; € [C°°(Y")]*° uniquely determined modulo
Lgu(z) at z = p—j such that (2.26) holds. In the end, we obtain that the vector
®c 5{2 (Y) defined by ®(p—j) = ®; belongs to the linear subspace J C £°(Y")
representing LJGH.

Conversely, each vector in J is a finite sum of vectors ® obtained in that way.
Thus, upon choosing in each space Lgu(;) at 2 = p a characteristic basis and
then, for each characteristic basis vector ®y € [C°°(Y")]>°, exactly one vector
S S{‘,p (Y) as just constructed, we obtain a characteristic basis of J in the
sense of Definition 2.16 consisting completely of special vectors (since Lgu () at
z =pis zero for z € C, Rez < (n+1)/2 — 4, but for a set of p belonging to
C%). In particular, J C £%(Y) for some V € C° and (a) to (c) of Definition 2.18
are satisfied. By its very construction, this characteristic basis fulfils condition
(b) of Proposition 2.21. Therefore, the asymptotic type L%H represented by J
is proper. O

Summarizing we have obtained:

PROPOSITION 2.32. Let &* € EllSymb¥,(Y). Then:
(a) Ly, = Q°(0;(8") ) and Ligli_, = Q+(0;6");
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(b) There is an order-preserving bijection

{PeAS(Y); P Ly} - {Q €A™ (V) Q = Ligk 1}, (227)
P Q7H(P;6M),

with its inverse being Q — Q°(Q; (G*)~1).

Proof. This is a direct consequence of Proposition 2.29 (b) and Proposition 2.61.
The proof consists in a word-by-word repetition of the arguments given there.
O

In its consequence, Proposition 2.32 enables us to perform explicit calculations
on asymptotic types.
We conclude this section with the following basic observation:

PROPOSITION 2.33. The notion of asymptotic type, as introduced above, is
invariant under changes of coordinates.

Proof. Let k: X — X be a C*-diffetomorphism and let x,: C*°(X°) —
C*(X°) be the corresponding push-forward on the level of functions, i.e.,
(keu)(z) = u(k™t(z)) for u € C*(X°), where k~! denotes the inverse
C*°-diffeomorphism to k. As is well-known, k. restricts to Ki: C;’?‘S(X) —
C2%(X) for any 0 € R, see, e.g., SCHULZE [15].

We have to prove that, for each P € As’(Y), there is a . P € As’(Y) so that
the push-forward k. restricts further to a linear isomorphism «.: C¥(X) —
CXp(X), ie, we have to show that there is a k.P € As’(Y) so that
ke (CE (X)) = C¥p(X). Using Proposition 2.20, we finally arrive at prov-
ing that, for each u € C2°(X) such that

S (D% k)
u(zx) ~ Z Z log"t ¢, (y) as t = +0, (2.28)

k!
J=0 k+l=m;—1

where ® € E{i,p(Y) for a certain p € C, Rep < (n+1)/2 — 0, and ®(p — j) =

( (()j), gj), cee (;5%3__1) for all j € N, see (2.19), the push-forward k.u is again
of the form (2.28), with some other x.® € 5{2 (Y) in place of ® € E{i,p (Y). But
this results from a direct computation, see, e.g., SCHULZE [15]. O

2.2.3 CHARACTERISTICS OF PROPER ASYMPTOTIC TYPES

We generalize the notion of characteristic, see Lemma 2.70 and the discussion
thereafter, to proper asymptotic types. This will be the main ingredient for
proving the analogue of Proposition 2.79 in Theorem 2.43.

Let P € As® (Y) be represented by J C £%(Y) and let ®;, ®»,... by a char-

==—prop

acteristic basis of J according to Definition 2.22. As before, let (m{, . ,m@j)

be the characteristic of the space J°+J. From Proposition 2.21 we conclude that
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e1 < ez < ... In the next lemma, we find suitable “paths through” the numbers
m? for j > j;, where j; = min{j; e; > i}, i.e., an appropriate re-ordering of the

tuples (m7,... ,mgj).
LEMMA 2.34. The numbering within the tuples (m{, e ,mgj) can be chosen in
such a way that, for each j > 1, there is a characteristic (m{ ...,mgj)—basz's

(@7, .. ., ®L) of JOHI such that, for all j' > 7,

;&) = 2, ylreise
0 dfej+1<i<ley

holds.
Furthermore, the scheme
1 2 3
my my my my
€] TOWS EEREE RRREEERS SRREEEE o
mEl m61 mel mel
2 3 4
Mey41 Meyt1 Mey 41
ey — €] TOWS {4 errereeeeeeieeeeiiie
2 3 4
m?, ms, mg, ... (2.29)

{ S

where in the jth column the characteristic of the space JOTI appears, is uniquely
determined up to permutation of the kth and the k'th row, wheree;+1 < k, k' <
ej+1 and some j (eg = 0).

€3 — €2 TOWS

Proof. This is a reformulation of Proposition 2.21 in terms of the character-
istics of the spaces J%t7. Notice that one can recover the characteristic basis
@y, ®,,... of J, that was initially given, from the property that II;®; = &/
holds for all 1 <7 < e;, while II;®; = 0 for ¢ > e;. O

Performing the construction of the foregoing lemma for each space J N S{‘,P_ (Y)

in (2.17) separately, we see that the following definition makes perfect sense:

DEFINITION 2.35. Let P € As’ (V) and let J C &J(Y) represent P. If

422 prop

®,,P,,... is a characteristic basis of J according to Definition 2.22 and if
the tuples (m7 ...,m@j) are re-ordered according to Lemma 2.34, then the
sequence

e
i=1

char P = {(fy(@i);mji mgi+1,mj:i+2, . )}

i A

(2.30)

is called the characteristic of P.
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The characteristic char P of an asymptotic type P € &‘;mp(Y) is unique up
to permutation of the kth and the k'th entry, where e; + 1 < k, k' < ej41 for
some j. So far, it is an invariant associated with the representing space J; so
it still depends on the chosen splitting of coordinates. Nevertheless, we have:

PROPOSITION 2.36. The characteristic char P of an asymptotic type P €

&‘;mp(Y) is independent of the chosen splitting of coordinates Y — [0,1) x Y,

x = (t,y), close to 0X.

Proof. Follow the proof of Proposition 2.33 to get the assertion. O
Now, let {(p;;ml,mi*", ... )};_, € Cx NV be any given sequence, where we

additionally assume that Rep; < (n +1)/2 — ¢ for all i, Rep; — 0o as i = oo
when e = oo, the p; are ordered so that Rep; > (n+1)/2 — 6 — j holds if and
only if i < e; for a certain (then uniquely determined) sequence e; < ey < ...
satisfying e = sup; e;, and

L<m?d <mdth <mli™ <.
where j; = min{j; e; > i} as above.

PROPOSITION 2.37. Let the characteristic {(p,-;mg",mgiH, ... )}::1 satisfying
all the properties just mentioned be given. In case dimY = 0, we additionally
assume that p; # py for i # i’ and, for each i, there is an i' > i such that
pir =pi—1 and mff'—’_k > mfi+k+1 for k>0 (jy = ji+1). Then there exists a
holomorphic G* € Symbh,(Y') that is elliptic with respect to the weight § € R
such that LY, € &‘;mp (Y) has exactly this characteristic.

Proof. In case dimY = 0, we choose an elliptic s*(z) € M/, having zeros
precisely at z = p; of order m{’ foralli =1,2,... according to Proposition 2.7.
In case dimY > 0, let {¢;}¢_; be an orthonormal set in C*°(Y") with respect
to a fixed C*°-density dp on Y. Let II; for ¢ = 1,...,e be the orthogonal
projection in L?(Y,du) onto the subspace spanned by ¢;. We then choose an
elliptic s#(z) € M (Y') such that, for every p € V}, and all i,

Jyrtk

Ol = (1- ¥ m)+ ¥ oo

Py —k=p pir —k=p

where the sums are extended over all ¢/, k such that py — k = p, for some N,
sufficiently large, while s#(¢q) € L!(Y) is invertible for all ¢ € C\ V, again
according to Proposition 2.7.

In both cases, we set G* = {5“*]'(2’)};?‘;0 with §#7(2) = 0 for 5 > 0. Then
G&# € Symbl, (V) is elliptic with respect to the weight d, and the proper asymp-

totic type L%, has characteristic {(p;;m?,m' ™", ... )}::1. O
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2.2.4 FURTHER PROPERTIES OF ASYMPTOTIC TYPES

Here, we study further properties of asymptotic types. First, asymptotic types
can be decomposed into elementary building blocks.

PROPOSITION 2.38. (a) An asymptotic type P € As’(Y) is join-irreducible,
i.e., P# O and P = PyV Py for Py, P, € As°(Y) implies P =Py or P = P,
if and only if there is a ® € E°(Y), ® # 0, such that the representing space,
J, for P, in the given splitting of coordinates close to 0X, has characteristic
basis ®, i.e., J = (®). In particular, every join-irreducible asymptotic type is
proper.

(b) The join-irreducible asymptotic types are join-dense in As®(Y).

Proof. (a) Let P # . Assume that, for some j > 1, J%%7 has characteristic of
length larger 1. Then J% = Ky + K for certain linear subspaces K; C Jo+i
satisfying TK; C K;, for i = 0,1. Setting J; = {® € J; II;® € K;}, we get
that J = Jo+ J1, J; € J, and T'J; C J; for ¢ = 0,1. Since this decomposition
can be chosen compatible with (2.17), we obtain that a necessary condition for
P to be join-irreducible is that each space J°t7 for j > 1 has characteristic of
length at most 1, i.e., J = (®) for some ® # 0. Vice versa, if J = (®) for some
® # 0, then P is join-irreducible, since the subspace (T*®) C J for k € N are
the only subspaces of J that are invariant under the action by T'.

(b) This follows directly from Proposition 2.20. O

Note that, by the foregoing proposition, also the proper asymptotic types are
join-dense in As’(Y). We will utilize that fact in the definition of cone Sobolev
spaces with asymptotics.

In constructing asymptotic types P € As° (Y) obeying certain properties one
often encounters the situation in which P is successively constructed on strips
{zeC(n+1)/2—-6— L <Rez < (n+1)/2 — 4} of finite width, where the
sequence {f8,}52, C Ry is strictly increasing and f§, — oo as h — co. We will
meet an example in Section 3.3.

To formulate the result, we need a further definition:

DEFINITION 2.39. Let P, P’ € As’(Y) be represented by J C &£J(Y) and
J' C &Y (Y), respectively. Then, for ¥ > 0, the asymptotic types P and P’
are said to be equal up to the conormal order ¢ + @ if IlyJ = IlyJ’, where
Iy: J = J/(JNETY(Y)) is the canonical projection. Similarly, P and P’ are
said to be equal up to the conormal order é + ¢ — 0 if they are equal up to the
conormal order 0 + ¢ — ¢, for any € > 0. (Similarly for the order relation <
instead of equality.)

PrROPOSITION 2.40. Let {P,},ez C &J(Y) be an increasing net of asymptotic
types. Then the join \/ ., P, exists if and only if, for each j > 1, there is an
tj € T such that P, = P, up to the conormal order 6 + j for all ¢, V' > ;.

Proof. The condition is obviously sufficient.
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Conversely, suppose that the join \/,., P, exists. Let P, be represented by the
subspace J, C S{‘,L (Y) for V, € C°. Since the join \/,.; P, exists, the carriers V,
can be chosen in such way that | J,., V, C V for some V € C°. Thus J, C &} (Y)
for all v. Now, for each j > 1, dim(},.; JO™7) < oo, otherwise \/,.; P, does
not exist. But since the net {J%%7},c7 is increasing, this already implies that
there is some ¢; € Z such that J?TJ = Jf,ﬂ for ¢, /' > 15, ie., P, = P, up to
the conormal order § + j for ¢, ¢/ > ;. O

An equivalent condition is that the net {P,},c7 C As’(Y) of asymptotic types
is bounded on each strip {z € C;(n +1)/2 -6 —j <Rez < (n +1)/2 -4} of
finite width.

2.3 PSEUDODIFFERENTIAL THEORY

Ee come to the proof of the analogue of Proposition 2.79. We need:

PROPOSITION 2.41. Let P, Py € &‘;mp(Y), Qe &‘i;o“p(Y) for p € R. Assume
that P AN Py = O. Then there is a holomorphic &* € EllSymb,(Y) that is
elliptic with respect to the weight 6 such that L%,L = Py and Q(P;6*) = Q if
and only if P and @) have the same characteristic shifted by p, i.e., we have
char P = char Q — p (with the obvious meaning of char Q — p).

Proof. As for Lemma 2.78, it is readily seen that P € &‘;mp(Y), Q €
&‘i;é‘p(Y) have the same characteristic shifted by g if there is a holomorphic
G&# € Ell Symbf, (Y') such that Q(P; 6*) = Q.

Now, suppose that char P = char@ — u. First, we deal with the case Fy =
O. Let the asymptotic types P, @ be represented by J C (V) and K C
Eg,i‘,fv(Y), respectively. Let {®;}¢_; and {¥;}5_; be characteristic bases of J
and K, respectively, corresponding to char P and char .

We have to choose the sequence {s" *(2); k € N} C M, (Y) appropriately.
By Proposition 2.7, it suffices to construct the finite parts [5‘“’“(2*)]2{""e for
p' €V, k€N, and Ny, sufficiently large in an appropriate way. Thereby, we
can assume that V' =V, for some p € C, Rep < (n +1)/2 — 4.

Let e; < ez < ..., where e = sup;cy €, be such that y(®;) = y(¥;) —p=p—j
holds for ej_1 +1 < i < e; (and eg = 0). Then the finite parts [5“*’“(,2)];”:7’c
for all j, k must be chosen so that, for each j € N,

mi L
®;i(p— N OB 4 @ (p—j +1)E" Ol
o ()T O = (p+p— ) (2.31)

holds for all 1 < i < e;, where m/ = SUP; <i<e; mf and ®;(p—k) =0if e, +1 <

i < ej. Here, (mi,...,ml ) is the characteristic of JOti See Remark 2.67 for
the notation used in (2.31).
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Now, (2.31) can successively be solved for [s*(z — k)]g"‘_ij for j =0,1,2,...

and 0 < k < j. In fact, this can be done by choosing [s#7*(z) g"‘_jj+k for k>0
arbitrarily (in particular, we may choose " ¥(z) = 0 for k > 0) and then
finding [s*(2) Zi]j with the help of Lemma 2.8.

The general case, in which not necessarily Py = O holds, can be reduced to the
case Py = O as in the proof of Lemma 2.78, see WITT [21], since the three rules

from Lemma 2.60 used for that continues to hold in the present situation. O

Remark 2.42. (a) The proof of Proposition 2.41 shows that the holomorphic
6" = {s*7J; j € N} € EllSymbh,(Y) satisfying L%, = Py and Q(P;&*) = Q
can always be chosen so that §#~7(z) = 0 for j > 0.

(b) Proposition 2.41 in connection with Theorem 2.31 also shows that the
asymptotic types in &‘;mp(Y) are precisely the asymptotic types which are of
the form L%, for some holomorphic & € Ell Symbh, (Y) that is elliptic with
respect to the weight 6. (Choose P = Q = O in Proposition 2.41.)

Now, we reach the final aim of this section.

THEOREM 2.43. Let P € As® (V) and Q € As® " (Y). Then there exists a

—=prop =——=prop

G* € Symbh,(Y) that is elliptic with respect to the weight & such that L%, = P
and L‘géﬁ),l = Q always when dimY > 0 and if and only if PATHQ = O

when dimY = 0.

Proof. The necessity of the condition PAT™#Q = O in case dimY = 0 is clear.
Conversely, for the base manifold Y being arbitrary, choose P, € &‘;rop (Y),
W1 € &‘i;g‘p(Y) having the same characteristics as P and (), respectively,
and such that Py AT #Q; = O. As in the proof of Proposition 2.79, see
WrTT [21], it then suffices to construct holomorphic &° € Ell Symb$,(Y), 3° €
Ell Symb', (V") which are elliptic with respect to the weight § such that LY, =
P, Q°(Q1;6°% = Q and L, = Q1, Q°(P1;T°) = P hold. But this can be
achieved using Proposition 2.41.

The rest of the proof is as for Proposition 2.79, see again WITT [21]. O

2.4 FUNCTION SPACES WITH ASYMPTOTICS

The introduction of cone Sobolev spaces with asymptotics is based on the
Mellin transformation. For further details, we refer to JEANQUARTIER [5] for
the Mellin transformation and to SCHULZE [15, 16] for function spaces with
asymptotics, cf. also Remark 2.46.

2.4.1 WEIGHTED CONE SOBOLEV SPACES

Let Mu(z) = a(z) = [; t* tu(t)dt, = € C, for u € C§°(Ry) denote the
Mellin transform. The Mellin transformation is afterwards extended to larger
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distribution classes. In particular, u will be allowed to be vector-valued. Recall
the following properties of M:

My, {(=t0; — p)u}(z) = (z — p)i(z),
Mt_>z{t u} z) =a(z — p), for any p € C,

whenever both sides are defined, M : L*(Ry) — L*(T'y /»; (2mi)'dz) is an isom-
etry, and

1
(z = p)k+t

Here, x(o,1) is the characteristic function of the interval (0,1]. From that we
conclude that h(z) = M, {( k,) w(t)tP log" t} (z), where w(t) is a cut-off
function close to ¢t = 0, is a meromorphic function of z having a pole at z = p,
and the principal part of the Laurent expansion of this pole is given by the
right-hand side of (2.32), i.e., [h(2)]5 = [h(2)]F = W, see (2.8).

For 5,0 € R, let H*°(X) denote the space of all u € H (X°) such that

loc

My {wu}(z) € LE (D (nt1)/2-5; H*(Y)) and the expression

(=D*

Moo { S 7108t 0 ) = (232)

1/2
1
[ {%/ 1R (2) My, < {wu} (= ||L2(Y)} (2.33)
Cnt1y/2—s

is finite. See SCHULZE [16, Theorem 2.1.39]. Here, R*(z) € L (YT (n41)/2—5)
is an order-reducing family, i.e., R*(z) is parameter-dependent elliptic and
R*(z): H"(Y) - H"#(Y) is an isomorphism for some r € R (and then for all
r € R) and all z € ['(,11)/2—5- For instance, if f(z) € M3(Y) is elliptic and
the line I'(,,41)/2—s is free of poles of f(z), then f(z) is such an order-reduction.

2.4.2 CONE SOBOLEV SPACES WITH ASYMPTOTICS

We will use the latter observation for defining cone Sobolev spaces with asymp-
totics. Let 5,0 € R, P € Aspmp( ). By Theorem 2.43, there is an elliptic
Mellin symbol h}(z) € ME(Y) such that the line I'(,,4.1)/2—5 is free of poles of
h%(z) and, for &° = {h‘}(z),(),o, ...} € Symbj,(Y), LY. = P holds.

DEFINITION 2.44. Let s, § € R, ¥ >0, and P € As®(Y).
(a) For P € As prOp( ), the space ’H}Z”%(X) consists of all functions u € H*°(X)
such that M;_,.{wu}(2), which is a holomorphic function in {z € C; Rez >

(n+1)/2— 6} taking values in H*(Y), possesses a meromorphic continuation
to the half-space {z € C; Rez > (n+1)/2 -6 — 9},

hp(2) My {wu}(z) € A({z € GRez > (n+1)/2— 6 + s — 9}; L*(Y)),
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and the expression

1
sup — /
s<sr<so | 2mi Jp

is finite.
(b) For a general P € As°(Y), represented as the join P = V. ez P. for a

bounded family {P, },e7 C As’,,,,(Y), we define H3%(X) = 3, o, H3 5(X).

prop

1/2
||h73(z)MHz{wu}(z)||i2(y)dz} L (2.34)

(n+41)/2=6"+s

It is readily seen that Definition 2.44 (a) is independent of the choice of the
Mellin symbol h%(2), see Proposition 2.62 and Remark 2.63. Moreover, under
the condition that (2.34) is finite, the limit

hsjg(z)Mt%z{wu}(z”z:(n+1)/2_6,+h —w(r) asd = d+9—0

exists in L?(R,; L?(Y)). Thus, 7-[‘;3’7{9 (X) is a Hilbert space with the norm

1/2
E{S,S(X)} . (2.35)

Definition 2.44 (b) is justified by Proposition 2.38 (b), since we obviously have
H3(X) = HSH0(X) for P € As’,,,,(Y) and 6p > 6+9. Again, this definition

22 prop
is seen to be independent of the choice of the representing family {P,},ez C

As® ., (Y), and it yields a Hilbert space ’H;’%(X).

PROPOSITION 2.45. Lets, § € R, ¥ > 0, and P € As,. (Y. Further, let &° =
{s°79(2) j = 0,1,2,...} € Symb3,(Y) be elliptic with respect to the weight §

and L‘SGS = P, Lgéf),l = 0. (Condition L‘géf),l = O means that the Mellin
symbols 5°~7(z) are holomorphic when Rez > (n+1)/2—46.) Then a function
u € H*9(X) belongs to the space 7-[‘;3’7{9 (X) if and only if M;_, .{wu}(z) possesses

a meromorphic continuation to the half-space {z €C; Rez > (n+1)/2—(5—19},

[[ul

HpoH(X) = {”w||%2(RT;L2(Y)) + Il

M
Zss_j(z — s+ j) M {wul(z — s +7)
=0

€eA({z€ CGRez > (n+1)/2—0+s—9}; L*(Y)),
and the expression

1
sup - /
s<ér<sto | 2mi Jr

(n+1)/2—6"+s

M , 1/2
H;ss—j(z — s+ )M {wul(z—s +j)‘ ) dz} )

is finite. Here, M is any integer larger than .
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Proof. This is an application of (a here adapted version of) Proposition 2.62
and Remark 2.63. Note that s°77(z — s + j) M. {wu}(z — s + j) € A({z €
GRez > (n+1)/2 -5+ s — j}; L*(Y)) so that the condition is actually
independent of the choice of the integer M > 1. O

For s, 6 € R, ¥ > 0, and P € As’(Y), we will also employ the spaces

My o(X) = [V HE_( (2.36)

>0

These space ’H;’%_O(X) are Fréchet-Hilbert spaces, i.e., Fréchet spaces the
topology of which can be given with the help of a countable family of Hilbert
semi-norms. We will also use standard notion like

00, 6 —0o0, 6
HP,& ﬂ HP& o(X), HP,& U HP& ol
seR seER
P19+0 U HP ppe(X etc.
e>0

Remark 2.46. In the case that P is a strongly discrete asymptotic type,
the spaces H3; Pﬁ o(X) are the function spaces with asymptotics employed by

SCHULZE [16]. There the notation used is ’H;"S(X )a, with the half-open interval
A = (-9,0].

2.4.3 FUNCTIONAL-ANALYTIC PROPERTIES
We list properties of the spaces ’H‘;’% (X).

PROPOSITION 2.47. Let s, 8", 6,8 € R, ¥ > 0, P € As’(Y), P' € As” (V),
and {P,},ez C ﬁé(Y) be a family of asymptotic types. Then:

(a) Hipp(X) = H™ (X);

(b) Hp'y (X) = Hy (o (X) for any a > 0;

(¢) Mgty (X) = HH 0 (X);

(d) We have

My (X) = M5 (X)

(=D*

TS 2 H

peV, k+l=m,—1 ’
Rep>(n+1)/2—6—1

@ (p) :((b ,...,qﬁm _,) for some ® € J},

'(y);

where J C E?,(Y) is a linear subspace representing the asymptotic type P,
provided that Rep # (n +1)/2 — § — ¥ holds for all p € V;
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e) We have H32 (X) € H52,(X) if and only if s > 8', 6 +9 > &' + ', and
(e) P Plo

P < P' up to the conormal order §' + ¥';

(f) ’H;\"TEI poo(X) =Nez Hf:liﬁ(X) if the family {P,},cz is non-empty;

(g) ”Hi/’iz po(X) = ez Hfgiﬁ(X) if the family {P,},c1 is bounded (where
the sum sign stands for the non-direct sum of Hilbert spaces);

(h) CJODO(X) = ﬂseR,ﬂzo H;%(Xﬁ

(i) C¥(X) is dense in 7—[;%()().

From (e) we get, in particular, that ”Hfgg(X) = ’H}i,’i;, (X) if and only if s = &',
0+39 =0+, and P = P’ up to the conormal order § + . (b) and also (c),
in view of (a), are special cases.

PROPOSITION 248. For 6 € R, P € As°(Y), and any a € R, the family
{’HPS W X); s> a} of Hilbert spaces forms an interpolation scale with respect
to the complex interpolation method.

Proof. This follows immediate from the definition. O

PRroPOSITION 2.49. The spaces H;%(X) are invariant under changes of coor-
dinates in the sense of Proposition 2.33.

Proof. Basically, this follows from the invariance of the spaces C%(X) under
changes of coordinates, where the latter is just a reformulation of the fact that
the asymptotic types in As® (Y) are coordinate invariant. See Proposition 2.33.

O
2.4.4 MAPPING PROPERTIES AND ELLIPTIC REGULARITY

In the cone pseudodifferential calculus, one encounters operators of the
form w(t)t=" op (i 2 7 (B)w(t), where h(t,z) € C®(Ry; ME(Y)), see Ap-
pendix 2.B. Their mapping properties in the spaces ’H;’%(X) are stated next.

PROPOSITION 2.50. Let h(t,z) € C®(Ry; MA(Y)) and assume that the line
L(ny1)/2—6 18 free of poles of 8jh(0,z)/8tj for all j =0,1,2,... Then, for all
PecAs’(Y),seR, ¥ >0,

w(tyt= oply T (R) G(8): H (X) — HG B0 TH(X), (2.37)
where w(t), ©(t) are cut-off functions, G* = {JL ‘?9—~ 0,2);7=0,1,2,. }
Symbl,(Y), and Q = QO=#(P,&") € A’ (V).

Proof. The previous definitions are designed to make this result holds. O
In particular, Proposition 2.50 implies the mapping property

A HE(X) = MY 40 7H(X) (2.38)
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stated in (2.54) for cone pseudodifferential operators A € CH(X, (8,0 — p)).
Given P € As’(Y), the minimal asymptotic type Q € As’ #(Y) such that
(2.38) holds, that exists according to Proposition 2.29 and Proposition 2.47 (f),
shall be denoted by Q~#(P; A). Vice versa, in case A is elliptic with respect to
the weight §, given @ € &a_“(Y), the minimal asymptotic type P € &6(1’)
such that u € H™>9(X), Au € Hg}*~"(X) implies u € M}’ (X) shall be
denoted by P%(Q; A).

We shall employ the notion of push-forward also if more than one operator A
is involved, i.e., Q°~#(P; Ay,..., A,,) denotes the minimal asymptotic type Q
for which A;: H30(X) = HEG 5 7 (X) for 1 < j < m.

We conclude this section with the following result concerning Fuchsian differ-
ential operators.

THEOREM 2.51. For A € Difft  (X), P € As’(Y), Q € As’™“(Y), we
have QO~H(P; A) = Q'=H(P;&"), where & = {oh77(A)(2); j = 0,1,...} €
Symb%,(Y), as well as, in case A is elliptic with respect to the weight 0,
PYUQ; A) = Q%(Q; (&) 1),

Proof. In fact, Q9—#(P; A) = Q°~#(P; &") follows from Proposition 2.50.
Furthermore, it is well-known that formal asymptotic solutions u € Cg2(X)
to the equation Au = f for f € C%(X) and any R € As’™*(Y) can be
constructed, see, e.g. MELROSE [13, Lemma 5.13]. More precisely, it can be
shown that there is a right parametrix B to A, B: H*#9~H(X) — H*I(X)
for all s € R, such that

AB=I+R, R:H % HX)-CX(X),

i.e., R is smoothing over X° and flattening to the infinite order close to 0.X.
In fact, B belongs to Schulze’s cone pseudodifferential calculus of operators
of order —p, i.e., B € C*(X, (0 — p,9)), see Appendix 2.B. In particular,
B e L7M(X®).
Now let BA = I + Ry. Obviously, Ry is smoothing over X° such that
Ro: H39(X) — H>®°~#(X) for any s € R. Furthermore, A(I + Ry) = ABA =
(I + R)A so that

ARy = RA.
We conclude that Ry: H*°(X) = CF (X), where Py = Q°(0; (6#) ). Hence,
foru € H™%(X), Au=f € Hag’a*”(X), we get

u = Bf — Rou € Hp)(X),

where P = Q°(Q; (&*)71). Thus P?(Q; A) = Q°(Q; (6*)~1) as claimed. See
also WITT [19, Remark after Proposition 5.5]. O

PROPOSITION 2.52. Let A € Difff; , (X) be elliptic with respect to the weight
6. Then there is an order-preserving bijection

{PeAs’(Y); P = LE.} — A #(Y), P Q(P;A), (2.39)
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with its inverse given by Q — P°(Q; A). In particular, L%u corresponds to the
empty asymptotic type, O.

Proof. This is implied by Proposition 2.32 and Theorem 2.51. Note that
L?éﬁ)_l = O, since the o7 (4)(z) for j =0,1,2,... are holomorphic. O
Finally, we have the following locality principle:

PROPOSITION 2.53. Let A € Difff; , (X) be elliptic with respect to the weight
8, Qo, Q1 € AS*TH(Y), and Py = P*(Qo; A), P, = P%(Q1; A). Then, for some
¥ >0, Py = Py up to the conormal order § +19 if Qo = Q1 up to the conormal
order § — u + 9.

Proof. This follows from Py = Q%(Qo; (67*)7"), P = Q%(Q1;(67)71),
where 6* = {o; 7 (A4)(z); j € N} € Ell Symb¥,(Y). O

Remark 2.54. Combined with Theorem 2.31, Theorem 2.51 shows that each so-
lution u € C%(X) to the equation Au = f € CF(X), where A € Diff}; , (X)
is elliptic with respect to the weight §, can be written over finite weight intervals
and modulo the corresponding flat class as a finite sum of functions of the form
(2.19), where the ® are taken from a characteristic basis of the linear subspace
of £9(Y) representing P°(0; A). If ®(p) = (¢o,.-.,Pm_1) for such a vector
®, where p = (®), then we say, in slight abuse of notation, that A admits
an asymptotic series starting with the term ¢=?log™ 't ¢. Since this is then
the most singular term (when ~(®) is highest possible), if it coefficient can be
shown to vanish, then the whole series must vanish up to the next appearance
of a starting term for another asymptotic series.

2.A REVIEW OF THE GOHBERG-SIGAL THEORY

Here, results from WITT [19, 21] are recalled.

In fact, we provide the local theory of asymptotic types. This theory actually
appears as coordinate-free version of part of GOHBERG-SIGAL’s theory [4] of
the inversion of meromorphic, operator-valued functions at a point. At the
same time, it serves as the guiding example for considerations carried out in
Section 2.2. Indeed, all what we have to do there is to replace the algebra
M;‘“(E) and its group of invertible elements, M} (E), see Definition 2.64
below, by the quasi-filtered algebra | J LER Symb’, (Y) and its group of elliptic
elements, |J per Bl Symb’, (Y). For a dictionary of notation used here and in
Section 2.2, see Figure 2.

2.A.1 ASYMPTOTIC ALGEBRAS

We first introduce the concept of an asymptotic algebra. Actually, we re-
strict ourselves to a special kind of asymptotic algebras, namely to so-called
(asymptotic) symbol algebras, see Definition 2.57, which is sufficient for the



32 XIAOCHUN LI1U AND INGO WITT

applications we have in mind. For a more general treatment, see WITT [19],
and also Remark 2.30.

For § being a linear space, §o being its linear subspace, let Lat(§/$o) denote
the lattice of all linear subspaces of the quotient space F/&o-

DEFINITION 2.55. An asymptotic algebra is a quintuple (901, p, §, 8o, J), where
M is a unital algebra, § is a linear space, §p is its linear subspace, p is a faithful
representation of 9t on §, and J is an La.t. (lattice of asymptotic types) for the
quadruple (9, p, §, Fo). The latter means that J is a sub-lattice of Lat(F/Fo)
such that the following conditions are met;:

(a) O € § (where O = §o/Fo is the empty asymptotic type);

(b) for each F € 9 and all J € J, there is a K € J such that J¥ C K (where
JE = (p(F)m=*(J) + Fo)/Jo is the push-forward of J € Lat(F/To) under the
action by F' € 9. Here, 7: § — §/Jo is the canonical projection);

(¢) N,ez J. € J for each non-empty family {J,},ez C J.

The elements of J are called asymptotic types.

In general, the subspace §p is not left invariant under the action by elements
F € M. In a sense, an asymptotic types measure this deviation. When meaning
asymptotic types (in place of linear subspaces), we shall write <, V, and A in J
to designate C, +, and N, respectively; thus, emphasizing the order structure on
J. Also the representation p enables us to identify 9t with a unital subalgebra
of L(F) (= all linear operators acting on §) and then to write F' instead of
p(F).

Remark 2.56. Property (c) already forces every non-empty subset S C J
to possess a meet (= greatest lower bound) AS = [);csJ and every
bounded subset 7 C J to possess a join (= least upper bound) V7 =
ANK; KD Jforal JeT}.

Given the quadruple (9, p, §, Fo), there is a minimal sub-lattice of Lat(§/So),
denoted by Jo = Jo,m, satisfying (a), (c) of the previous definition and which
is such that J¥ € J holds whenever F € I, J € J.

DEFINITION 2.57. An asymptotic algebra (9,p,F,Fo,J) is called a symbol
algebra if J = Jo and if it is reduced, i.e., S € M and S(F) C 7~1(J) for some
J € Jimply S =0.

The benefit of a symbol algebra is that each elliptic operator F' € 9, i.e., each
operator F' € 9 for which there are G, G' € M such that (FG — 1)(F) C
7 Y(J), (G'F — 1)(F) C « Y(J') for certain J,J' € J is already invertible,
with G = G’ being its inverse. Note that more general asymptotic algebras
also occuring in singular analysis can often be reduced to symbol algebras, see
Wit [19].

Let 91! denote the group of invertible elements of M and A = {F € M; FFo C
So}; A is a subalgebra of M.

Ezample 2.58. (a) M = MIN(L(E)), § = My(E), Fo = Ap(E), where E
is a Banach space. This example will be thoroughly discussed starting with
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Section 2.A.2. We have that §/Fo = E° is the space of all finite sequences in E,
M~ = M (L(E)), and A = A,(L(E)). The lattice J = Jo is characterized
in Definition 2.69.

(b) 9 = U, g Symbh, (Y), /3o = E°(Y) for some § € R, see (2.13), (2.14),
and the lLa.t. J = Jo is given in Definition 2.18.

(c) M = C°(X, (6,6)) for some § € R, see Appendix 2.B, § = C9(X) =
Upeﬁé(y) C®(X) is the space of all smooth functions on X° obeying com-
plete conormal asymptotic expansions as x — 0X of conormal order larger
than ¢, and § = C¥(X) is the space of all smooth functions on X van-
ishing to the infinite order on 0X. By Borel’s summation theorem, §/Fo is
the space of all formal complete conormal asymptotic expansions as ¢ — 0X
of conormal order larger than §, and for the la.t. J we can take the same
J as in (b) after having identified (in local coordinates) C%(X)/Cg (X) =
Upease(v) CF (X)/CF (X) with the space ENY).

In this paper, we focus on (b) in the previous example and motivate the con-
siderations by (a) in the same example. (a), (b) both provide symbol algebras;
(b) in a slightly more general setting, see Remark 2.30.

The space Ly introduced in the next definition measures the amount of asymp-
totics annihilated by F € 9.

DEFINITION 2.59. For (9, p,§, Fo,J) being an asymptotic algebra and F' € 9,
we set Ly = (F~'(Fo) + To)/To € Lat(F/To)-

That means that Ly is the largest subspace of §/go for which (Lp)f = OF.
Note that the space Lp is defined without reference to the lattice J.

There are three rules which allow to manipulate asymptotic types in an effective
manner.

LeEmMMA 2.60. Let (M, p, T, To,J) be an asymptotic algebra.
(a) If F € ML, then Ly = OF ",

(b) For F, G € M, and J € J, (JI') ¢ = J¢F v O°.

(c) For FEM, GeM™, (Ly)¥ = Lpg-1V Lg-1.

Proof. The proofs of (a) to (c) are straightforward. O

For the rest of this section, we shall assume that (90, p,§,Fo,J) is a symbol
algebra. The major result in this context admitting in its consequence to
operate on asymptotic types is stated next.

PROPOSITION 2.61. Let (M, p,T,To,J) be a symbol algebra. Then, for F €
M, Lr is an asymptotic type. Furthermore, there is an order-preserving
bijection

{Je€3 T Lp} > {Ke3; KLy}, JeJb, (2.40)

with its inverse given by K — KF™,
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Proof. By (a) of the previous lemma, Ly = OF " € 3. Moreover, (b) implies
(JF)F' = JV Lp and (KF ')F = KV Lp1 for any J, K € J yielding
(2.40). O

From Lemma 2.60 and Proposition 2.61, we have the following useful conse-
quence.

PROPOSITION 2.62. For F, G € Mt N, FGL,GF* € A if and only if
Ly =Lg.

Proof. We show that, for F € M, G € M NA, Lr < Lg if and only if
Lpg-1 = O. If, in addition, F' € 9!, then this latter condition is equivalent
to GF ! € 2.

In fact, by Lemma 2.60 (c),

LyVLg=Lpa-1)¢ .

Thus Lp < L¢ ifand only if Lg = (Lpg-1) ¢ and this holds, by the foregoing
proposition, if and only if Lpg-1 < Lg-1 = O. O

Remark 2.63. For (M, p,F,Fo,d) being a symbol algebra and J € J, let F; be
the space of all u € § having asymptotics of type J, i.e., §s = 7 (J). Then
So=3%0and F:35 — §yr for F € M, J € J. Moreover, if u € §, Fu € g
for some K € J, where F' € MM~! then u € § -1, and Proposition 2.61 states
that F' is an isomorphism from §y onto §yr if J = Lp.

Furthermore, if J € J is such that J = \/,.; Lg,, for some bounded family
{G.} ez C M INA, then Fy = Yeriu € §; Guou € Fo}. From Proposi-
tion 2.62 we recover that this characterization is actually independent of the
choice of the family {G,},ez. This — via the construction of suitable G, —
is the way employed in the definition of function spaces with asymptotics in
Sections 2.3, 2.4.

2.A.2 FINITELY MEROMORPHIC FUNCTIONS

Now, we turn to a version of GOHBERG-SIGAL’s theory [4]. See Remark 2.75
for a comparison.

Let E be a Banach space. We shall consider the m-fold product E™ for m € N,
where E° = {0}. We identify E™ with a subspace of E™*! via the map

E™ — Em+17 (¢07' . ,7¢m71) = (07¢07 .. -7¢m71)-

Further, we set
E* =] BE™ (2.41)
meN

Thus, E* is the linear space of all finite sequences in E, where sequences
(¢o,--->bm—1) and (0,...,0,¢0,...,Pm—1) for h € N are identified.
———

h times
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On E*°, we define the right shift operator 7' by

T: EOO - EOO: (¢07 Tt ¢m—2: ¢m—1) = (07 ¢07 Tt ¢m—2)' (242)

By M, (E) for p € C we shall denote the space of all germs of E-valued mero-
morphic functions at p. Moreover, A, (E) is the space of all germs of E-valued
analytic functions at p.

DEFINITION 2.64. (a) MA"(L(E)) is the space of all germs of L(E)-valued,
finitely meromorphic functions at p, i.e., the space of all F' € M,(L(E)) such
that

Fo F Fya j
F(z)= + +--+ +F,+)>» F,ij(z—p) (243
()= G T o e Z iz =p) (243)

with finite-rank operators Fy, Fy,..., F,_; € L(E).
(b) MJT(L(E)) is the space of all germs of L(E)-valued, normally meromor-

phic functions at p, i.e., the space of all F' € Mg“(E(E)) such that F'(z) € L(E)
is invertible for z close to p, z # p, and F,, € L(FE) in the representation (2.43)
is a Fredholm operator (then necessarily of index 0).

PROPOSITION 2.65 (BLEHER [1]). ME(L(E)) is an algebra and My°"(L(E))
is its group of invertible elements.

2.A.3 LOCAL ASYMPTOTIC TYPES

We set MM = ME2(L(E)), § = Mp(E), and §o = A, (E) as in Example 2.58 (a)
and identify M, (E)/A,(E) = E*.

LEMMA 2.66. (a) For F € MI™E), the space Lp consists of all vectors
(40, P1s-- - dm—1) € E= for which there is a (z) € A,(E) such that

F(Z) (( ¢0 + ¢1 4t ¢m—1

z=p)m  (z-pm! z-p
(b) For F € Mgn(E), J C E* being a linear subspace,

+ é(z)) € A (E).  (2.44)

JE = {(F0¢0,F1¢0 + Fodr, .., Frgw 100 + Frpy 201 + - + F0¢m+1/71);
(605> Pm—1) € J, D, Pmt1s-- s dmiv—1 € B},
where F is given in the form (2.43).
Remark 2.67. For F € A,(L(E)), i.e., we have v = 0 in (2.43), the operation
J — J¥ is given directly on the level of the space E°°, namely
OF: E® — E>,
(ho, .- s m—1) = (Fogo, Fido + Fodr, ..., Fm—1¢o + -+ + Fopm—1), (2.45)

and then JE = {®%; ® € J}. Moreover, Ly is the kernel of the map ()¥. The
map () when restricted to E™ only depends on Fy, Fy, ..., F,_1. Therefore,
we will occasionally write () = ()(F0F1Fm—1) on Fm,
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LEMMA 2.68. For F € Mi(L(E)), Lr C E*® is a linear subspace that is
invariant under the action by the right shift operator T, i.e., TLr C Lp.
Moreover, if J C E* is a linear subspace that is invariant under the action by
T, then JE C E> is a linear subspace that is also invariant under the action
by T. In addition, dim J < oo implies dim J¥' < .

Hence, we introduce local asymptotic types as follows:

DEFINITION 2.69. An asymptotic type, J, on E is a finite-dimensional subspace
of £ such that T'J C J. The set of all asymptotic types on E is denoted by
J(E).

Notice that, for J € J(E), J C E™ for some m € N and, therefore, the right
shift operator 7" is nilpotent on J, since 7™ = 0 on E™. We will need the
following fact from linear algebra.

LEMMA 2.70. Let J be a finite-dimensional linear space and T: J — J be a
nilpotent linear operator. Then there are ®1,...,®. € J such that

O, T®,,....,.T™ 1, &, T®,,....T" 1, (2.46)

where m; € N, m; > 1, is a linear basis of J, while T™®; = 0 for 1 <
j < e. Furthermore, the numbers m1,...,me are uniquely determined up to
permutation.

Proof. Choose a linear basis in J for which the associated matrix to T is in
Jordan form. O

Hence, the numbers my,...,m, appear as the sizes of Jordan blocks; dim J =
my + - -+ + m.. The tuple (my,...,m.) is called the characteristic of J (with
respect to the nilpotent operator T'), e is called the length of its characteris-
tic, and ®q,..., P, is said to be a characteristic basis of J (of characteristic
(mi,...,me)) or simply an (my, ..., me)-basis of J. Note that the space {0}
has empty characteristic with length e = 0.

If ®;,...,P, is a characteristic basis of some linear subspace of J that is
invariant under the action by T, then this subspace will also be written as
(®1,...,P.). More generally, for ®1,...,®, € J, by (®1,...,®.) we denote
the minimal linear subspace of J containing ®4,...,®, and being invariant
under the action by T'.

Notice that the next lemma there hints at an effective method of finding the
characteristic and a characteristic basis upon constructing a suitable basis of
ker T'.

LEMMA 2.71. Let J be a finite-dimensional linear space and T: J — J be a
nilpotent linear operator as in the previous lemma. Suppose that the character-
istic of J equals (mq,...,me). Then ®1,..., P, € J is an (my,...,m)-basis
of J if and onJy if T™ L&y, ..., T™"1®, is a linear basis of ker T

We make a general remark concerning the appearance of asymptotic types.
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Remark 2.72. Let J € J(E) have characteristic (m1,ma,...,me). Let

@ = (65,0 ), @ = (00,0 ) (2.47)
be an (my,...,me)-basis of J. The vectors q&él), e, (()e) are linearly indepen-

dent, since 7™ 1®; = ( (()j)) for 1 < j <e. We set
L, = span{¢§cj); mj—k>m—1+1}

for 1 <1 < m = maxi<j<. m;. The spaces L; are actually independent of the
choice of ®q,...,®,., since L; is the projection of J on the lth component of
E™. In particular, J C Ly X -+ X Ly C E™. In the latter relation, however,
equality, in general, fails to hold.

Equality holds, i.e., we have

J=Ly xLyx---X L (2.48)

ifand only if, forall1 < j <e,1 <k <m;—1, ¢§€j) € span{(j)(()h); mp > m;—k}.
Again, this is a condition that is independent of the choice of ®1,...,®.. This
condition, in turn, is fulfilled if and only if L, = span{¢gj); mj > m—1+1}
for 1 <l <m.

For J € J(E), let £(J) denote the length of its characteristic. Note that the
linear independence of (;5(()1), ceey ¢(()e) implies that ¢{(J) = e < dim E.

Ezample 2.73. For dim E = 1, an asymptotic type is uniquely determined by a
number m € N. Namely, £ = C in this case and, if the asymptotic type J has
characteristic (m), then J = C™. Moreover, for F € Mi*(£(C)) = M,(O),
F e M (L(C)) exactly means that F'(z) Z0. Then Ly = C™ if and only if
F(z) has a zero of order m at z = p.

We immediately obtain:

LeEMMA 2.74. (a) For each tuple (m,...,m.) with e < dim E, there is a J €
J(E) having characteristic (my,...,m.).
(b) For J, K € J(E),

UJANK) > (£(J)+ (K)—dimE)*t. (2.49)

Furthermore, if (mi,...,me), (n1,...,ny¢) are tuples with e < dimE, f <
dim E, then there are J, K € J(E) having (m1,...,m.) and (nq,...,nys),
respectively, as characteristics such that in (2.49) equality holds.

Moreover, for J, K € J(E), it is easily seen that ¢(J A K) + 4(J V K) =
£(J) + ¢(K). Thus

L(JV K) <min{l(J) + {(K),dim E},

and equality holds if and only if equality holds in (2.49).
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Remark 2.75. In GOHBERG-SIGAL’s paper [4], p € C was called a characteristic
value of F' € Mi*(L(E)) if dim Ly > 0. If additionally F' € M2°"(L(E)), then
we find an (mq,...,m.)-basis ®1,...,®, of Ly as in (2.46). If &;,..., P, are
given by (2.47), then

1 1 1 2 2 2 e e e
(());ng )7"'7¢£n3717¢(())7¢5)7"'7¢£111717"'7¢(())7¢5)7"'7(25511)&717

was called a canonical system of eigenvectors and associated vectors for F(z)
at z = p. The numbers m; for 1 < j < e were called partial null multiplicities
and m; + mg + --- + m, (= dim Lg) was called the null multiplicity of the
characteristic value p of F(z).

2.A.4 SINGULARITY STRUCTURE OF INVERSES

Let E' be the topological dual to E. For ® € E®, ¥ € (E"*, & =
(¢07¢17' . '7¢m71)7 U= (1/1071:[)17' s :d’mfl); we define

(2®¥)[z—p]
_ Do ®o ¢1®¢0+¢0®¢1+‘_‘+¢m—1®¢0+"'+¢0®¢m—1
(z —p)m (z—p)mt Z=p ’

where, for ¢ € E, ¢ € E', ¢ ® ¢ € L(E) denotes the rank-one operator
h v (i, h)yd, h € E, with (, ) being the dual pairing between E, E'.

PROPOSITION 2.76. Let F' € M (L(E)), J € J(E). Moreover, let
®y,...,2. € J be an (m1,...,me)-basis of J. Then Lp C J if and only if
there are ¥q,..., ¥, € (E')® such that T™¥; = 0 for 1 < j < e and the
principal part of the Laurent expansion of F~1(z) at z = p equals

e

> (@ © %)z —p). (2.50)
j=1
In that case, Uq,..., U, € (E')*® are uniquely determined. Furthermore, Ly =

Jifand only if O, T¥, ... . T™ W, . U, TU,, ... T™"10, are linearly
independent.

Remark 2.77. From the results of GOHBERG—SIGAL [4, Theorem 7.1] it follows
that, for F' € M}°"(L(E)), there is an (my,...,me)-basis ®1,...,®. of Lp
and an (my,...,me)-basis ¥y,..., U, of Lp such that the principal part of
the Laurent expansion of F~1(z) at z = p has the form (2.50). In that respect,
Proposition 2.76 is more general.

2.A.5 CHARACTERIZATION AS A SYMBOL ALGEBRA

LEMMA 2.78. Let J, K, L € J(E). Then there is an F € M}*(L(E)) N
A, (L(E)) satisfying Ly = J and K¥ = L if and only if K/ (JAK) and L
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have the same characteristic. Here, the right shift operator induces a nilpotent
operator on K[ (J A K), since both K and JAK are invariant under the action
by T.

From this lemma, which can be derived in a constructive way, we obtain the
first main result of this appendix:

PROPOSITION 2.79. Let J, K € J(E). Then there is an F' € My°"(L(E)) such
that Ly = J and Lp-1 = K if and only if

0(J) + ¢(K) < dim E. (2.51)

(This means there is no condition if dim £ = oo, while in the other extreme
case, dim E = 1, we must have either J = O or K = O or both.)

Sketch of proof. Necessity of the condition £(J) + £(K) < dim E follows from
the representation (2.50), which holds both for F, F~' € M2°"(L(E)), and
from F(2)F~1(z) = 1.

Now, let £(J) 4+ ¢(K) < dim E. We choose J;, K1 € J(E) such that .J; has the
same characteristic as .J, K7 has the same characteristic as K, and J; A K1 =
O holds. This is possible by Lemma 2.74 (b). By Lemma 2.78, there are
F, G € Mp"(L(E)) N Ay(L(E)) such that Ly = J;, K;* = K, Lg = K;, and
J1% = J. By Lemma 2.60 (c), we eventually obtain

Lpg-1 = (Lp)“ = 1% =1J, Lgp-r = (La)" = K\" =K,
showing that FG~' € Mp°"(L(E)) is as required. O
As an immediate consequence, we obtain:
COROLLARY 2.80. We have
J(E) = {Lp; F € M (L(E)) N Ap(L(E))}.
In conclusion, we obtain the second main result of this appendix:

PROPOSITION 2.81. (ME™(L(E)), M,(E), Ap(E),J (E)) is a symbol algebra
in the sense of Definition 2.57.

Remark 2.82. The statement that Ly characterizes the amount of asymptotics
annihilated by F' € MSH(E(E)), while OF contains the asymptotics produced
by it, has to be read with some care. In fact, Proposition 2.79 shows that,
already for F' € M"(L(E)), LrAOF # O is possible provided that dim £ > 1.
As a simple example serves F(z) = 14 A(z —p)~' € Mp"(L(E)), where
A € L(E) is a finite-rank operator and A? = 0 (dimE > 1 if A # 0), with
inverse F71(2) =1— A(z —p) 1. We get

Ly =0F = AE.

Here, asymptotics of type AE are annihilated, while at the same time exactly
this sort of asymptotics is produced in a complementary direction.
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2.B  CONE PSEUDODIFFERENTIAL CALCULUS

We briefly introduce Schulze’s cone pseudodifferential calculus, cf. SCHULZE
[15, 16]. In its simplest form, the cone calculus is the union of all spaces
CH*(X,(v,0)), where p € R is the order of operators and v, € R are conormal
orders involved. Formally, the space C#(X, (v, d)) consists of all operators A,

A=wt)t 0 opII TVt 2)w(t) + (1 — w)Ay(1—w) + G, (2.52)

where w(t) is a cut-off function as above, h(t,z) € C®(Ry; MK (Y)), Ay €
L*(X°), and there is an asymptotic type R € As’(Y’) depending on A such that
G: H*7(X) —» Cy(X) for all s € R The Mellin pseudodifferential operator

opg\z+1)/2_7(h(t, z)), i.e., the definition of this operator is based on the Mellin
instead of the Fourier transformation, is defined via the oscillatory integral

o0 —z !
o™ 2l = 5 [ / (i) ht, ) % (253
Ling1y/2—4 70 ¢ t

= om

for u € C§°(Ry;C*(Y)). The difficulties with this definition are plain. On
the one hand, one has to explain what the space C*° (R, ; M~ (Y)) is — mero-
morphic functions depending smoothly on an additional parameter lead to dif-
ficulties with varying poles — on the other hand h(t,z) may have poles on
the line I'(,41)/2—. A possibility to overcome these difficulties is to consider

the Taylor expansion ) ;5 t7h;(z), where h;(z) = %%?(O,z) € ME(Y), of

the function h(t,z) at ¢ = 0 instead of the function itself and then, at least
at first, the formal series } .. tJ 0p$+1)/2_7+p" (hj(z)), where 0 < p; < j
and the line I'(,,41)/2_4,, is free of poles of h;(z). Thereby, going over from
the line of integration I'(,11)/2 - to the line of integration I'(,y1)/2-74p,, In
(2.53), one makes a mistake which can be brought to the Green part, G. The
functional-analytic details can be found in the references cited above.

The functions h;(z) for j € N are uniquely determined by the operator A (in
the chosen splitting of coordinates (¢,y) close to 0X) and form the sequence
{077°77(A)(2); j € N} of conormal symbols of A, where o7;°77(4)(z) =
hj(z). This complete conormal symbol determines the manner in which asymp-
totics are mapped by A (besides the Green part G which also has an influence).
For this reason, the behaviour of conormal symbols under compositions is quite
essential for our purposes. But before stating it, we summarize further prop-
erties of the cone pseudodifferential calculus.

Let Cyprya(X, (7,0)) (smoothing Mellin+Green) for 7,0 running through R
form the sub-calculus of all smoothing operators, i.e., all operators A of the form
(2.52), where h(t,z) € C®°(Ry; M3 (Y)) and Ay € L=°°(X°). Moreover, let
Ca(X,(7,0)) C Cuta(X,(v,9)) denote the space of Green operators which is
given by additionally requiring h;(z) = 0 for all j. The latter operators are
entirely characterized by their mapping properties. Thus, definition (2.52) in
that case reduces to the third summand, G.
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Next, we discuss the symbolic structure of operators in C*(X, (v,d)). Since
C*(X,(v,9)) C LE(X°), we have the principal pseudodifferential symbol
al(A), where %(A)(t y,7,m) =t 7TGH (A)(t,y,tr,n) for 6% (A)(t,y,7,n) €
5(1“)([0, 1) x V x ]R??;l), V' being a coordinate neighbourhood of Y. Between
Gy, (A)(t,y, 7,m) and o77°(A)(z) the compatibility condition

&Z (A y,7,m) |t:0 = Uf/j (‘71’(4_6 (4)(2) |z:(n+1)/2*vfﬁ)

holds. Here, o/ on the right-hand side denotes the parameter-dependent prin-
cipal pseudodifferential symbol of o], °(4)(2) € LE (YT (ny1)/2—4)-

For A € C*(X, (v,0)), we have:

(a) For each P € As”(Y), there is a Q € As’(Y) such that

A HE(X) = MY 20(X) (2.54)

for all s € R, ¥ > 0. In particular, A: H*7(X) — H*~H°(X).

(b) A: H>7(X) — H*™9(X) is a Fredholm operator for some s € R (and
then for all s € R) if and only if A is elliptic in the sense that A is elliptic as
an operator in L{(X°), 6y (A)(t,y,7,n) # 0 for all (t,y,7,7) € T+([0,1) x V),
and 0772 (A)(z) is invertible in LE(Y) forall z € C, Rez = (n+1)/2—. Note
that the second condition already forces o], °(4)(z) € L (YT (ny1)/2—4) to
be parameter-dependent elliptic.

(c) If A is elliptic, then a parametrix P € C~#(X, (J,)) exists, i.e., an operator
P such that PA—1 € Ca(X, (v,7)), AP — I € Cq(X, (6,0)).

Furthermore, if A € CH(X,(y0,0)) and B € C"(X,(v,%)), then AB €
CF(X,(v,4)) and the behaviour of the complete conormal symbol is regu-
lated by the Mellin translation product (2.11), i.e

ol T AB)(2) = Y ol T T (A) (e + 7 — 0 — K)oy TR (B)(2)  (2.55)
jt+k=l

for all [ € N.

3 APPLICATIONS TO SEMILINEAR EQUATIONS

In this section, Theorem 1.1 is proved. To this end, multiplicatively closable
and multiplicatively closed asymptotic types are investigated in Section 3.1.
This allows the derivation of results concerning the action of nonlinear super-
position operators on cone Sobolev spaces with asymptotics. In Section 3.2,
the general scheme for establishing results of the type of Theorem 1.1 is then
established. This scheme is specified to multiplicatively closable asymptotic
types in Section 3.3; thus, completing the proof in this way.
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3.1 MULTIPLICATIVELY CLOSED ASYMPTOTIC TYPES

Here, we investigate multiplicative properties of asymptotic types and the be-
haviour of cone Sobolev spaces ’H;’%(X ) under the action by nonlinear super-
position.

Notation 3.1. In connection with pointwise multiplication, it is useful to employ
the following notation:

s (x) = | HPanseo(X) D20,
’ HOP Y (X) otherwise,

where P € As’(Y), P # O, and § < 6p in the first line. (Proposition 2.47 (b)
yields that this definition is independent of the choice of §.) Thus, starting
from dp, the conormal order is improved by ¥ upon allowing asymptotics of
type P. Similarly for Hp ,_,(X).

Furthermore, we write {¢} if we mean either ¢ or ¢ — 0. For instance, {¢} >0
means ¥ > 0if {9} =9 and ¥ > 0if {9} =9 - 0.

3.1.1 MULTIPLICATION OF ASYMPTOTIC TYPES

The result admitting nonlinear superposition for function spaces with asymp-
totics is stated next.

LEMMA 3.2. Given P € As(Y), Q € As(Y), there is a minimal asymptotic
type, Po Q) € As(Y), such that

CP(X) x O (X) = Cpop(X), (u,v) = uv. (3.1)

Proof. Suppose that the asymptotic types P, ( are represented by subspaces
J C & (Y)and K C Ew(Y), respectively, for suitable V, W € C. Then the
asymptotic type P o @ is carried by the set V 4+ W, and it is represented by the
linear subspace of vy w (V') consisting of all © € Eyyw (V) for which there are
® € J, ¥ € K suchthat O(r) = > pig=r, ®(p)*xT¥(q) holdsforallr € V+W.

H peV,qeWwW
ere,
o = ("5 guvn, ("2 vk (M7 ) ouvn,
<m+n—2>¢0¢2+ <m+n—2>¢1¢1+ <m+n—2>¢0¢2,
m m—1 m—2

1 1 0
(e (o (oo

for ® = (do, P1,---sPm), ¥ = (Yo, Y1, ...,%p) € [C®(Y)]*°, see (2.19). Note
that T(® x ¥) = (T'®) x ¥ + & x (I'¥) and, for &y (Y), ¥y, (Y), we have
¢ x ¥ € &y, (V) showing that the linear subspace of v (Y) described
above actually represents an asymptotic type. O
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The multiplication of asymptotic types possesses a unit, denoted by 1, that is
represented by the space span{(1)} C E;o3(Y’), where 1 is the function on Y’
identically 1.

DEFINITION 3.3. An asymptotic type @ € As(Y) is called multiplicatively
closed if Q) o @ = . An asymptotic type @ € As(Y') is called multiplicatively
closable if it is dominated by a multiplicatively closed asymptotic type. In
this case, the minimal multiplicatively closed asymptotic type dominating @ is
called the multiplicative closure of () and is denoted by Q.

From the proof of Lemma 3.2,
dpo@ > dp +0g — (n+1)/2, (3.2)

where equality holds if P = @ or if dimY = 0. Especially, 6¢g = (n+1)/2 if Q
is multiplicatively closed and dg > (n + 1)/2 if @) is multiplicatively closable.
Furthermore, it is also seen @) > 1 for any multiplicatively closed asymptotic
type @, see also Lemma 3.5 below.

3.1.2 THE CLASS &ﬁ(Y) OF MULTIPLICATIVELY CLOSABLE ASYMPTOTIC
TYPES

We study the class of asymptotic types that belong to bounded functions.
It turns out that this class is intimately connected to the multiplication of
asymptotic types.

DEFINITION 3.4. (a) The class As”(Y) of bounded asymptotic types consists
of all asymptotic types @ € As(Y") for which dg > (n + 1)/2. Equivalently, a
bounded asymptotic type @ is represented by a subspace J C £y (Y) for some
V e, where V C {z € C, Rez < 0}.

(b) The class As*(Y) consists of all bounded asymptotic types @ represented
by a subspace J C £(Y") such that Jy C span{(1)} and J, = {0} for Rep =0,
p#0.

LeEmMA 3.5. For Q € As(Y), the following conditions are equivalent:

(a) @ is multiplicatively closable;
(b) the join \/,~, QF does exist, where Q¥ = Qo -0 Q is the k-fold product;
= ~———

k times

(©) Q € AS(Y), )
In case (a) to (c) are fulfilled, we have Q =1V V5, Q.

Proof. (a) and (b) are obviously equivalent. Moreover, (c) implies (b).

It remains to show that (a) also implies (c). If @ is multiplicatively closable,
then Q exists and 65 = (n+1)/2. In particular, Q € As’(Y). Let Q be
represented by J C Ey (V) for some V € C, V C {z € C; Rez < 0}. Suppose
that ¢ € J, for p € C, Rep = 0, where ¢ # 0. We immediately get ¢' € .J;, for
any [ € N, [ > 1. For p # 0, we obtain the contradiction {lp;l € N} CV € C.
For p = 0 and ¢ not being constant, we obtain a contradiction to the fact that
dim Jy < co. Thus, @ € &ﬂ(Y) and, therefore, () € &ﬂ(Y). O
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LEMMA 3.6. For each Q € As(Y), there are asymptotic types Qb € As’(Y) and
Q' e &ﬂ(Y) which are maximal possessing the properties

Q"< Q and Q* 5 Q, (3.3)
respectively. We have Q% < Q°.

Proof. The proof is straightforward. O

3.1.3 NONLINEAR SUPERPOSITION

We investigate expressions like F'(z,v(x)), where F(z,v) € C% (X xR) for some
Re€As(Y) and v € H ,(X) N L®(X) with s > 0, 9 > 0, and Q € As*(Y).
For later reference, we recall the following facts:

PROPOSITION 3.7. (a) For s > (n+1)/2, 0 < s <'s, v, € R, pointwise
multiplication induces a bilinear continuous map

HOV(X) x HT (X)) — -0 /2 (X, (3.4)

(b) Fors, § € R, H¥(X) C L®(X) if and only if s > (n+1)/2, 8 > (n+1)/2.
(c) For s > 0, 7,6 > (n + 1)/2, pointwise multiplication induces a bilinear
continuous map

(H*7(X) N L®(X)) x (H¥°(X) N L®(X)) — H&H-(4D/2(X) 0 L2(X).
(d) For s> 0,0 € R, peC, c(y) € C®(Y), the multiplication operator
w(t)t™Pe(y): HO(X) — HSO~Rer(X),

where w(t) is a cut-off function, is continuous.
(e) For s >0, vy,...,vg € (L4+H>"V/2(X)) N L>(X), and F € C=(RK),
we have

F(vi,...,vx) € (1+H>MHD/2(X)) 0 L2(X). (3.5)

The map ((1+ H>"+D/2(X)) N L°°(X))K = (14 H>HD/2(X)) N Le(X)
induced by (3.5) is continuous and sends bounded sets to bounded sets.

Proof. A proof of (3.4) in case s’ = s was supplied by WITT [18, Lemma 2.7]
using a result of DAUGE [2]. The other proofs are similar. O

Remark 3.8. Property (d) fails if logarithms appear and has to be replaced by
w(t)t™? logk te(y): 7450 (X) > 745:0—Re p—O(X)

is continuous when k € N, k£ > 1.

First, Lemma 3.2 is sharpened:
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PROPOSITION 3.9. For s > (n+1)/2,0< s <s,9 >0, and P, Q € As(Y),
pointwise multiplication induces a bilinear continuous map

HISD,ﬁ—O(X) X HS,&—O(X) - HISD’OQ,ﬁ—O(X)' (3.6)

Proof. Let u € Hj, (X), v € H(fg”ﬁio(X). Then u = up + u1, v = vo + vy,
where

S

i

M mj J

N
u0:ZZw t b log tee(y Z

j=0 k=0

t 45 lOg tdrk/( )

||M

(3.7)
w(t) is a cut-off function, the sequences {(pj,m;,c;k)}, {(gj7,nj,djr)} are
given by the asymptotic types P and @, respectively, see Definition 2.19, and
M, N are chosen so that u; € H*PT9=0(X), v; € H*¥et?=0(X). Since
ug € Ho0P~0(X), vy € H>°279(X), we obtain

UV = UgVg + ULV + UV + ULV,

where u1vg + uguy + uyvy € H¥ 9Pe@t?=0(X)) by (3.4) and

M,N mj,n;

UV = Z Z t)t— (pi+ay )logk+k tejp(y)dj (y) € HJ%OOQ,ﬂ_o(X);
7,7’ =0 k,k'=0

for w?(t) is a cut-off function and the sequence

{(rjm 05, > > cdiw)}

Pj+aj=rin k+k'=k"

where ojn = max{m; + nj; p; + q;; = r;j»}, is associated with an asymptotic
type that is equal to P o () up to the conormal order dpog + ¥ — 0. This
immediately gives uv € HI%IOQvﬂ_O(X). O

The significance of the class As’(Y") is uncovered by the next result.

PROPOSITION 3.10. Fors >0, €R, § + {9} > (n+1)/2, and Q € As’(Y),

He oy (X) N L2 (X) = HED 0 (X) 0L (X). (3.8)
Proof. Let u € HQ {19}( )N L>*(X) and write
M m;
=3 w(t)t P log* tejuly) + wi(w),
7=0 k=0

where the sequences {(p;, mj,c i)} is given by the asymptotic type ¢ and M
is chosen so that u; € H®"t1)/2=0(X). Since u € L®(X) C HO+1)/2=0(X),
we get that Z] o St w(t)t P log” tejr(y) € HOF1D/2=9(X) which implies
¢jk(y) = 0 for Rep; > 0. Thusue’HQbﬂ( ) O
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LEMMA 3.11. For s > 0,9 > 0, and P, Q € As*(Y), pointwise multiplication
induces a bilinear continuous map

(Hp oy o(X)NL¥(X)) x (Hyy o(X)NL¥(X)) = Hpogoo(X) N L>(X).
Proof. Represent u = wug + u1 € Hp,y o(X) N LX), v = vg +v1 €
H§ 5 o(X)NL*(X) as in the proof of Proposition 3.9. Since ug, vg € L>(X)
due to the assumption P, Q € As’(Y), we get that u; € H*r+?=0(X) N
L>(X), vy € H®%et?=0(X) N L>®(X) and, therefore, ujvy + uovy + u1v; €

HEOPe@tV=0(X) N [*°(X) in view of Proposition 3.7 (c). The assertion fol-
lows. O

A more precise statement is possible if P, () € &ﬂ(Y).

LEMMA 3.12. For s > 0,9 >0, and P, Q € &ﬂ(Y) satisfying P %=1, @ = 1,
pointwise multiplication induces a bilinear continuous map

(Hp,y(X) NL*(X)) x (Hg 9(X) NL¥(X)) = Hpog 9(X) NLZ(X). (3.9)

Especially, for s > 0, 9 > 0, and Q) € &u(Y) being multiplicatively closed,
HE 3(X) N L*(X) is an algebra under pointwise multiplication.

Proof. We may assume that ¢ > 0. Write u = ug +u1 € Hp 4(X) N L>(X),
v =y +uv1 € Hp4(X)N L*(X) as in the proof of Proposition 3.9, where
up = ugp + Uo1, Vo = Voo + Vo1, Uoo = wW(t)coo, and vop = w(t)doo With coo, doo
being constants and in the expressions for ug;, vg1 only appear exponents with
Rep; < 0 and Regj;r < 0, respectively. Then

wyvo1 + o1y 4+ ugvy € HHIFD/ A0y

ugov € HE) 3(X) C Hp o 9(X), uveo € Hp 3(X) C Hpoq 4(X), and
Up1vo1 € H%?)Q,§+0(X):
which proves the assertion. O

The fact which has actually been used in the last proof is that Proposi-
tion 3.7 (d) applies to the function w(t)l (p = 0, ¢(y) = 1). This is also
used in part (b) of the next result.

LEmMA 3.13. (a) Let s > 0, 9 > 0, and R, Q € As(Y). Then pointwise
multiplication induces a continuous map

Cr (X)) x Hp y_o(X) = Hpog,p—o(X)- (3.10)

(b) If, in addition, R € As(Y") is so that the multiplicities of its highest singular
values are one, i.e., J, C [C®°(Y)]' for eachr € V, Rer = (n+1)/2—3r, where
J C Ev(Y) represents R, then pointwise multiplication induces a continuous
map

CRr(X) x Hé),ﬁ(X) - HJS:on,ﬁ(X)-
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Proof. (a) is immediate from Proposition 3.9. To get (b), we argue as in the
proof of Lemma 3.12. O

PROPOSITION 3.14. Let s > 0, 9 > 0, and Q € As*(Y) be multiplicatively
closed. Then vi,...,vx € H} 5(X)NL®(X) and F' € C>(RE) implies that

F(ui,...,vg) € HY 4(X) N L(X). (3.11)

Proof. We are allowed to assume that ¢ > 0. Then v € H) ,(X) implies that
v| ox 1S a constant, where v| x means the factor in front of t? in the asymptotic
expansion (1.2) (with u replaced with v) of v as t — +0. Let 85 = 'UJ|6X for

1 < J < K be these constants. Using Taylor’s formula, we obtain

Flonok) = 3 2 (@ F) B, Br)on = B - (o = Brc)°

la|<N

+N Z /0 w(a“}?)(ﬁl—kg(vl—Bl),...,ﬁK-FU(’UK_BK))dU

oo a!
X (v — B1)* ... (vk — Br)*%. (3.12)

By Lemma 3.12, (vi — £1)* ... (vk — BK)* € HE 4(X) N L>(X) for any
a € NE | thus the first summand on the right-hand side of (3.12) belongs
to Hp) »(X) N L>(X). On the other hand, choosing N sufficiently large, we
can arrange that (v; — 1) ... (v — Br)*< € HOTD/2HY(X) N Lo(X)
for |a| > N, since vy — B; € HH>HV/2HO(X) N L2(X) for 1 < J < K.
By (3.5), {(0°F)(61 + o(v1 — Bu),..., Bk + o(vk — Bk))do; 0 < o < 1}
is a bounded set in (1 + H>"+*Y/2(X)) N L>®(X) for any o € NE. This
shows that the second summand on the right-hand side of (3.12) belongs to
st,(n+1)/2+19(X) a) Loo(X) O

PROPOSITION 3.15. (a) Let s > 0, ¥ > 0. Further let Q € As*(Y) be multi-
plicatively closed and R € As(Y). Then vy,...,vg € Hp) 4 o(X)NL>(X) and
F € C¥ (X x RE) implies that

F(ﬂ?,’l)l,...,'UK) er%oQﬁfO(X)‘ (313)

(b) If, in addition, R satisfies the assumption of Lemma 3.13(b), then
Vi, ., 0k € HY 3(X) N LP(X) and F € CF (X x RE) implies that

F(z,v1,...,vk) € Hpog 9(X).
Proof. We prove (a), (b) is analogous. Since C¥ (X x RE) = C¥(X)®,

C>(RK), we can write

F(z,v) = Zaj 90]'(33) Fj(v)a
j=0
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where {a;}32, € I' and {p;}52, C CF(X) and {F;}52, C C°°(RX), respec-
tively, are null sequences. By the preceeding proposition,
Fj(vi,...,vk) =0 asj — ooin Hp) 4_o(X).
By Lemma 3.13,
pj(@)Fj(v1,...,vk) = 0 asj — ooin Hpog g o(X).

Thus
F(CU,’Ul, v JUK) = Za]' @j(m)Fj(’Uh v 7UK) € Hf%oQ,'ﬂfO(X)a
j=0
where the sum on the right-hand side is absolutely convergent. O

3.2 THE BOOTSTRAPPING ARGUMENT
We shall consider the equation
Au = I(u), (3.14)

where A € Difffy . (X) is an elliptic Fuchsian differential operator. Properties
of the nonlinear operator v — II(u) are discussed below. The method proposed
for deriving elliptic regularity for solutions to (3.14) essentially amounts to
balancing two asymptotic types; one for the left-hand and the other one for the
right-hand side of (3.14).

We shall assume: There are asymptotic types P € As’(Y), Q € As® #(Y),
numbers a, b, so, P9 € R with a < p1, b <5 —0dp +p, so > at, dp+{d} > 9,

and a subset ¢/ C HEO{%}(X) such that the following conditions are met:

(A) A is elliptic with respect to the conormal order § and P 3= P°(Q; A), i.e.,
u € H™°%(X), Au € CF(X) implies u € CF (X);
(B) for s > sg, ¥ > 9, we have

IL: U N HS 5 (X) = HE (X)),

{9} Q.{9}-b

Note that {o} —b+dg >0 — p.

PROPOSITION 3.16. Under the conditions (A), (B), each solution u € U C
HI%O,{&O}(X) to (3.14) belongs to the space CF(X).

Proof. We are going to prove by induction on j that

so+j(pu—a)
ue HP;{#O}+]’(,LL7b+(5Q76F,)(X) (3.15)

holds for all j € N. Since p—a > 0, p—b+65—3dp > 0, this implies u € CF (X).
By assumption, (3.15) holds for j = 0. Now suppose that (3.15) for
some j has already been proven. From (B) we conclude that II(u) €

50-{1-35%}:;();:‘“6@_6P)_b(X). In view of (A), elliptic regularity gives u €
s0+(j+1)(n—a) (X). 0

P {00}+(j+1)(n—b+dg5—0p)
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Ezample 3.17. We provide an example for a nonlinearity II satisfying (B). Let
I(u) = Ko(u)/Ky(u), where Ko, K are polynomials of degree mq and my,
respectively. Let u € Hp, 4 ((X), where s > (n+1)/2,6p+9 > (n+1)/2, and
¥ > 0. Further, we assume that the multiplicities of the highest singular values
for P are simple and the coefficient functions for these singular values nowhere
vanish on Y. Then we have Ko(u) € Hp y_o(X), K1(u) € Hp, 4_o(X) for re-
sulting asymptotic types Py, P;. In particular, Fy is dominated by 1 V\/;cnzo1 pk
and P, is dominated by 1V \/;!, P*. Furthermore, it is readily seen that
v € Hp 4 o(X) and v # 0 everywhere on X° implies that 1/v € Hp) 4 o(X)
for some resulting asymptotic type ;. Hence, we are allowed to set P = P,
Q@ =PyoQ, and

U={u€ Hp, 4(X); Ki(u) # 0 everywhere on X°}.

Here, the condition s > (n+1)/2 can be replaced by s > 0. Then we addition-
ally need u € L2 (X°).

loc

3.3 PROOF OF THE MAIN THEOREM

The main step consists in constructing asymptotic types P, @ so that Propo-
sition 3.16 applies. Thereby, upon choosing § € R even smaller if necessary, we
can assume that

0<a+(n+1)/2

and that A € Diff;; , (X) is elliptic with respect to the conormal order 4.
Set A =68r+ (u—iz) — (n+ 1)/2. By assumption (1.4), A > 0.
3.3.1 (CONSTRUCTION OF ASYMPTOTIC TYPES P, )

First, we construct by induction on h sequences {P,}32, C As°(Y) and
{Qn}2, C As*(Y') of asymptotic types as follows: Set Py = P°(0O; A). Suppose

that Py,..., P, and Qo,...,Qr—1 for some h have already been constructed.
Then

Qn = (Q(Py; By, ...,Bg)*), (3.16)

Phi1 =P°(RoQp; A). (3.17)

LeMMA 3.18. For each h > 0,

Py, = Ppy1 up to the conormal order 6p + p + hA — 0, (3.18)
Qn+1 = Qn up to the conormal order 0p + (p — i) + hA — 0. (3.19)

In particular, the joins P = \/; o Py and Q = \/;—, Qn exist.

Proof. We set Q_; = O and proceed by induction on h. (3.19) holds for
h = —1, since Qg € &ﬁ(Y) and, therefore, Qg = O up to the conormal order
(n+1)/2-0.
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Suppose that Qp = Qr—1 up to the conormal order dg + (—z) + (h—1)A -0
for some h > 0 has already been proved. Then Ro (), = Ro Qp_1 up to
the conormal order dg + hA — 0 and Pp41 = P, up to the conormal order
Sr + p+hA -0, since P, = P)(RoQp; A), Phy1 = P°(RoQpyr; A).

Now suppose that P, = Pjy1 up to the conormal order dg + u + hA — 0.
We obtain Q(Py; Bi,...,Bk) = Q(Put1;Bi,--.,Bk) up to the conormal or-
der ér + (v — 1) + hA — 0 and, therefore, Q, = Qp+1 up to the conormal
order 6g + (1 — ) + hA — 0, since Qy = (Q(Pn;B1,...,Bk)*)", Qns1 =
(Q(Phy1; B1, ..., Bk)*)™

This completes the inductive proof. O

LEMMA 3.19. The asymptotic types P = \/j—, Pn € ASS(Y), Q = VieoQn €
As (V) satisfy:

(a) Q(P;By,...,Bg)" = Q(P;By,...,Bk)" and Q = (Q(P; By,..., BK)u)N;
(b) P =P°(RoQ;A);

(c) @ is multiplicatively closed.

Furthermore, P, QQ are minimal among all asymptotic types in &J(Y) and
&u(Y), respectively, satisfying (a) to (c).

Proof. The assertions immediately follow from the description of the asymp-
totic types P, @p given in the previous lemma.

Only Q(P;By,...,Bg)" = Q(P;B,...,Bk)" requires an argument. But
P = P, up to the conormal order dg + u — 0, so we get Q(P;By,...,Bk) =
Q(Py; By, . .., Bk) up to the conormal order 0+ (pu—i1)—0 = (n+1)/2+A—-0 >
(n +1)/2, and Q(Py; By,...,Bk)" = Q(Py; By,...,Bk)" is exactly the non-
resonance condition (1.5). O

Note that, by the non-resonance condition (1.5) and Proposition 3.10,

Byu € Ho gl 5y o—o(X) NLX(X)
CHG B mopo—o(X) S HG 35 H(X)  (3.20)

if u€ HpY o(X), 60— a+0> (n+1)/2, and Byu € L®(X).

3.3.2 END OF THE PROOF OF THEOREM 1.1
Since Byu € L®(X) c HOtD/2=0(X) for all 1 < J < K, we have
F(z,Byu,...,Bgu) € H%°"=0(X) and

u e H1%07(5R+N—5P—0(X) = H£,5R+H—JP—0(X)

by elliptic regularity.
To conclude the proof of Theorem 1.1, we apply Proposition 3.16 with Ilu =
F(z,Byu,..., Bxku), P=P,Q = RoQ, where P € As’(Y), Q € As*(Y) have
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been constructed in Lemmas 3.18, 3.19, so = p, {o} = dr+p—0p —0, a = [i,
b=(n+1)/2—dp + i1, and

U={ueHp; . 5._0(X); Bjue L¥(X),1<J<K}. (3.21)

Then a < p, b < dpog —0p + p for drog = 0r, A >0, and ép +VYy = 6+ p >
g+ (n+1)/2>9,ie,dp+ {¥o} > 0. Moreover, condition (A) is fulfilled.
To check condition (B), note that u € UNHp ;_o(X) for s > p, ¥ > 6p+p—dp
implies )

Flz,Biu, ..., Bxu) € Hiyh oy o(X)
by (3.20) and Proposition 3.15.
Thus Proposition 3.16 applies to yield u € CF (X).

Remark 3.20. From (3.21) it is seen that the asymptotic type P € As®(Y)
can be taken smaller, namely instead of P = P%(R o Q; A) we can choose the
asymptotic type

V{P € AS(Y); P s PP (Ro Q;A), Q(P'; By, ..., Bi) € As'(Y)}.

In concrete problems, the resulting asymptotic type for u can be even smaller,
e.g., due to nonlinear interaction caused by the special structure of the nonlin-
earity.

3.A AN EXAMPLE: THE EQUATION Au = Au? + B(z)u IN THREE SPACE
DIMENSIONS

Let 2 be a bounded, smooth domain in R? containing 0. We are going to study
singular solutions to the equation

Au = Au® + B(x)u on O\ {0}, (3.22)
You = Co, U|BQ = ¢7 (323)

where you = lim, ¢ |z|u(z), A € R, and B € C*(1Q) is real-valued. Since the
quadratic polynomial Au? + B(x)u rather than a general nonlinearity F(z,u)
enters, we may admit complex-valued solution u to (3.22). In particular, ¢o € C.

Remark 3.21. By results in VERON [17], one has to expect that the existence
of the limit lim,_,q |z|u(z) is typical for solutions u = u(z) to (3.22).

On 0\ {0}, we introduce polar coordinates (t,y) € Ry x S%,t = |z|, y = z/||.
We further introduce the function spaces

x? = {Cot_l + c11 lOgt+U0($); co,c11 € C, ug € H2(Q)},

yO = {dot_2 +'U0(£L“); do € (C, Vg € L2(Q)}

the definition of which is suggested by formal asymptotic analysis. On the
space X2, we have the trace operators vo, 71, Y11, where 1,4 = lim;_, ¢ (u(az) —

(vou)t 1) /logt, yiu = limy—, o (u(z) — (ow)t ™t — (11u) logt).
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PROPOSITION 3.22. Suppose that B(z) > 0 for all x € Q. Then, for all ¢y €
C, ¢ € H3/?(09) with |co| + 9l 3/2(00) small enough, the boundary value
problem (3.22), (3.23) admits a unique small solution u € X*. This solution
u = u(x) obeys a complete conormal asymptotic expansion as © — 0 which can
successively be calculated. FEspecially,

Ci1 = Acg, (324)
where c11 = Y11u.

Proof. Let us consider the nonlinear operator
W: X2 5 Y0 x Cx HY2(0Q), urs (Au — Au® — B(:c)u,70u,u|89) .

It is readily seen that the linearization of ¥ about u = 0 is an isomorphism
between the indicated spaces. Thus, the existence of a unique small solution
u € X% to (3.22), (3.23) is implied by the inverse function theorem. (3.24)
likewise follows.

Furthermore, writing this solution in the form u(z) = cot=! + c11 logt + uo(x),
where ug € H2(f2), we get that ug fulfils the equation

at™? + Aug = A (et + 2coc1t ' logt + cfy log® t)
+ 2A (cot™ + c11 logt) ug + Aug + B(z) (cot™" + c11logt) + B(w)ug  (3.25)

which can be brought into the form (1.1) with

F(JZ, I/) = (2A60011t_1 lOgt + B(JI)Cot_l + Ac%l lOg2 t+ B(;L')Cll log t)
+ (2Acot_1 + 2Acy; logt + B(a:)) v+ Av?,

since A = t72 ((—=t0;)% — (—t9;) + Agz) € Difff,ps(Q2 \ {0}), where 0 € Q is
considered as a conical singularity with cone base S? = {x € R?; |z| = 1}, see
Remark 1.2, and Age is the Laplace-Beltrami operator on S?. The conditions
(1.4), (1.5) are obviously satisfied.

Thus, Theorem 1.1 applies to ug € H?(Q) C L*(Q) to yield that ug, and,
therefore, u, obeys a complete conormal asymptotic expansion. O

Remark 3.23. (a) Taking for P the asymptotic type in As”(S?) which comes
out in the calculation of the conormal asymptotic expansion for u, i.e., we have
u € CF (2 )\ {0}), and for Q the resulting asymptotic type in As *(S?) for
the right-hand side of (3.22), we are in a situation in which Proposition 3.16
directly applies without having a boundedness assumption for u.

(b) Allowing more general B € C3(Q2\ {0}) for some R € As*/?(5?) (ensuring
that the term Acit~? dominates on the right-hand side of (3.25)) rather than
B € C(Q\ {0}) one can perform the same analysis as before upon replacing
the space H2(f2) in the definition of X2 accordingly.
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