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Abstract

We continue the investigation of the calculus of Fourier Integral Op-
erators (FIOs) in the class of symbols with exit behaviour (SG symbols).
Here we analyse what happens when one restricts the choice of amplitude
and phase functions to the subclass of the classical SG symbols. It turns
out that the main composition theorem, obtained in the environment of
general SG classes, has a “classical” counterpart. As an application, we
study the Cauchy problem for classical hyperbolic operators of order (1, 1);
for such operators we refine the known results about the analogous prob-
lem for general SG hyperbolic operators. The material contained here
will be used in a forthcoming paper to obtain a Weyl formula for a class
of operators defined on manifolds with cylindrical ends, improving the
results obtained in [9].

1 Introduction

The calculus of FIOs developed in [4] is based on the class of (general) SG sym-
bols and amplitudes, i.e., the classes of all @ € C*°(R" x R™ x R™; C) satisfying
Va, 8,y € N* 3C,3, > 0 such that

02050 alz, y, €)] < Cagy (€)™ 1 ()™=l (e~ (1.1)

where, as usual, |a| = a1 + as+ ...+ a, for all @« € N?, (x) = /1 + |z|? for all
z € R" and (z,y,£&) runs through all R” x R” x R”. When (1.1) is fulfilled, we
say that a belongs to the class of SG amplitudes of order m = (my, ma, ms).
An SG (left) symbol is an SG amplitude which does not depend on y. In such
a case, the vanishing third component of the order is dropped, and we will use
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the double order m = (my, m2), denoting the set of SG symbols by SG;". With
some requirement on the real-valued phase function ¢ € SGl(l’l) (see below), it
turns out that FIOs of the type

1 .
Au(z) = Ay qu(z) = W/ewv@ alz, &) u(€) dé (1.2)
T n
make sense for v € S(R"), a € SG*, m € R More precisely, the operator in
(1.2) (Type I FIO) is linear and continuous from S(R™) to itself and extendable
to a linear continuous operator from &’'(R™) to itself. All these results hold for
Type II FIOs as well, i.e. the operators of the form

Bu(¢) = By yu(€) = /e—Wf)b(x,g)u(x) d. (1.3)

These and other results (in particular, about the compositions of this FIOs with
the corresponding SG pseudo-differential operators (¢dos )) were obtained in
[4], and subsequently applied to the study of SG-hyperbolic Cauchy problems in
[5] and [7]. In section 2 we fix some notations and recall the essentials from the
SG tdos calculus (see Cordes [2], Cordes and Erkip [3], Schrohe [11, 12], Schrohe
and Erkip [13] for details and further development of the theory), together with
a short resume of the calculus of the SG FIOs, developed in [4]. In the same
section we define classical SG symbols, introduced in Egorov and Schulze [8] and
Schulze [14] (see also Maniccia and Panarese [9]). We will denote the subclass
of SG classical (left) symbols of order m € R* by SG{%). Here we wish to
illustrate what happens when amplitude and phase functions of SG FIOs (1.2)
and (1.3) are classical SG symbols®. In such a case, we will briefly speak of
classical SG FIOs. It is possible to prove the following theorem.

Theorem 1.1 Let P = Op (p) be a classical Ydo and let A= A, , be a classical
FIO of Type I withp € SG| , a € SG] . Then, the composed operators P A
and AP are classical FIOs with the same phase function and amplitude h such
that h € SG]T’. The same holds for PB and BP, where B is a classical FIO
of Type 11 with amplitude function b € SGlsyd.

Section 3 is devoted to the precise definition of classical FIOs and to the proof of
Theorem 1.1 above, while in section 4 we will discuss the hyperbolic first order
Cauchy problem associated with classical SG operators, following the same lines
of [5]. We will prove the following theorem.

Theorem 1.2 Assume that A is a classical SG symbol of order (1,1) depending
smoothly on a parametert € J = [-T,T], T > 0. Assume also that the corre-
sponding operator is hyperbolic>. Then, the operator Ayu(t),a(t), approrimating
the solution operator of

{ (D — AW))u(t) =0, teJ

w(0) = (1.4)

modulo smoothing operators, 1s a classical SG FIO.

I The additional requirements for the phase function will be stated in section 3.
2S8ee below for the precise definitions.



2 SG classes of symbols and operators.
SG Sobolev spaces

We set, from now on,

dop = (%,...,gfn):(31g0,...,3ng0):(3fg0,...,3ﬁg0), (2.1)
dp
&, e dtp

Vep = =1 .. 1= . | (2.2)
9¢ e e
3

When there is no reference to asymptotic expansions, the notations f ~ ¢ and
f(x) ~ g(x) will mean 3C1,C2 > 0 | C1|f(x)] < g(x) < Co|f(x)], for all the
values of = for which this makes sense. For convenience, when dealing with
orders of symbols, we will often use the obvious notations e = (1, 1), e; = (1,0)
and ez = (0,1). In general, ¢dos will be denoted by capital letters and their
symbols or amplitudes by the corresponding small letter (i.e., P = Op (p), ¢ =
Sym (Q), etc.). A = A, , and B = B, will be respectively, unless otherwise
stated, FIOs of Type I and II with phase function ¢ and amplitudes a and &.

Definition 2.1 For m = (my, ma2, m3) € R3, we denote by SG™ = SG™(R")
the space of all amplitudes functions a € C*° (R"™ x R™ x R™) which satisfy the
condition

Va,B,vy €EN" ICnpy >0 @ YV, y, £ € R
O£ 050 alx, y, €)] < Capy (€)™ 1N @y~ Vlyme=Pl (2.3

SG™(R™) is given the usual Fréchet topology based upon the seminorms implicit
in (2.3). When a is vector or matriz valued, a € SG™ means that the estimates
(2.3) are fulfilled component by component.

Definition 2.2 For m = (my, m2) € R%, we denote by SG* = SG["*(R") the

(m1,m2,0)

double-order symbol space of functions a € SG
of y.

which are independent

The following lemma is a result about compositions of elements of the SG
classes of symbols and amplitudes. It is a basic tool in the proof of the theorems
of composition among pseudodifferential and Fourier Integral operators.

Lemma 2.3 Let f € SG™ and g vector valued in R™ such that ¢ € SG* and
(9@, y,8)) ~ (&) Then f(x,y,9(x,y,8)) € SG™.

Definition 2.4 With each amplitude p € SG™ associate a linear operator P =
Op (p) : S(R™) — S(R") defined as

Pufa) = Op(p)ute) = [ [0 ple g utivas. (2



Here, as usual, A& = (2m)™"dE, while (z|C) denotes the scalar product of the two
vectors z,( € R™. If the conditions r € R? and q € SG] hold®, (2.4) reduces to

Op(p)u(z) = / 18 g, ) i(€) (2.5)

where w(§) = Fooye(u)(€) ts the Fourier transform of u. Let us denote by LG"
the space of all the operators defined as in (2.5). An element P € LG" is called
a SG do , of order less or equal to r.

The tdos in LG" form an algebra® of linear continuous operators from S(R"™)
to S(R™), extendable as linear continuous operators from S'(R") to S'(R").
The usual property about the order of the composed operators holds normally,
simply understanding the sum of orders as a sum of vectors in IR%. The residual
elements of this ¢dos algebra (smoothing operators) are integral operators with
kernel in S(R™ x R™), whose set is denoted by K. Moreover, it is also possible to
prove that each operator defined by (2.4) with p € SG™, m = (my, ma, m3) €
B3, can be represented, modulo K, as an operator of the form (2.5) with ¢ €
SGj, r = (my,ma + mg). Finally, it is easy to see that K coincides with the
space of operators LG~ generated, equivalently, by amplitudes in SG™™ =
Nimer: SG™ = S(R) or symbols in SG;* = () x2SG" = S(R?"). For
P € LG™ we denote by p = Sym(P) € SG;" the symbol of P, that is P =
Op (p). Moreover, we denote by Symy (P) a principal symbol of P, that is a
P € SG" such that p—p' € SG"™°.

In the present situation, the notion of asymptotic expansion is the fol-
N

lowing: for ¢ € SGJ", a; € SG;n_je, a ~ Zaj & VYN € N a - Zaj €

JjeN 7=0
SG;n_(NH)e. It is a fact that with any sequence of symbols with orders de-
creasing to (—oo, —00) it is possible to associate an asymptotic sum, which is
unique modulo S(R™ x ’™). We now recall the notion of ellipticity in this
context. The elliptic SG operators have the usual properties of “invertibility
modulo smoothing operators”.

Definition 2.5 A symbol p € SG]" and the corresponding operator P = Op (p)
are called md-elliptic (or elliptic, for short) if exists R > 0 such that

2|+ [¢] > R = p(2,£) # 0 (2.6)
and
|| +16] > R=3C >0 : |p(x,&)|”" <€) (&), (2.7)

Let us denote by ESG]" = ESG]"(R") the subset of SG]" of all md-elliptic
symbols of order m and by ELG™ = Op (ESG]") the corresponding subset of
md-elliptic operators. Analogously, an amplitude p € SG™ and the correspond-
ing operator P = Op (p) are called md-elliptic if

35 € ESG™ ,m’ = (mq1,ms +m3) | Op (p) — Op (5) € K. (2.8)

3That is, the amplitude is, indeed, a symbol.
4Details about the SG calculus can be found in [2], [11] and the references quoted therein.



Theorem 2.6 Fach P € ELG™ admits a K-parametriz (or simply parame-
triz), that is, a Ydo @ € LG™™ such that

PQ-1,QP-T€K, (2.9)
where I denotes the identity operator.

In the following definition, we recall the notion of the weighted Sobolev
spaces “adapted” to the SG calculus.

Definition 2.7 For s = (s1,s2) € R?, let m; denote the product ms(x,&) =
(&)° (2)°? and Ty = Op () the corresponding operator. The weighted Sobolev
spaces H*(R™) = H*, s = (s1,s2) € R?, are defined by:

H* ={ueS'R") |ue l*(R")}, (2.10)
with the natural Hilbert norm ||u||s = [|Hsu||r2 = ||Msullo.

The SG dos act continuously on the spaces H®, that is, P € LG" implies
that P is linear and continuous from H*® to H*~7" for all r,s € R2

We recall now the definition of SG FIO and state the main composition
result among general SG dos and FIOs, which corresponds to Theorem 1.1 in
the non-classical situation. The proof, together with a complete analysis of the
properties of SG FIOs, can be found in [4] or [6].

Definition 2.8 We will call a phase function or simply phase any real valued
¢ € SG] satisfying

e(r) < (Vep) < C(z)

<
and cl€) < {dpp) < C ) (2.11)

for suitable constants C';c > 0 and denote by P the set of all such phases.
Moreover, we define the set P, € > 0 of all regular phases as follows:

Pi={peP |V :

det (3?3?@) ‘ > e} . (2.12)

Definition 2.9 For any choice of o € P, a,b € SG]" and u € S, we define a
FIO of Type I as

Au(x) = Ay qule) = /ve)a(x,g)a(g)a‘g, (2.13)

and a FIO of Type Il as

Bu(€) = By pu(€) = /e—ww)b(x,g)u(x)dx. (2.14)

Remark 2.10 The estimates (2.11) can be valid only outside a set of the type
|z] + €] > R > 0 and all the results listed here remain true.



Theorem 2.11 Let be given a FIO A = A, 4 of Type I such that ¢ € P and
a € SG| and a ¢do P = Op (p) with p € SG]. Then, the composed operator
H = PA 1s, modulo smoothing operators, a FIO of Type I. In fact, H = H, j,
where ¢ is the same phase function and the amplitude h € SG;"’S admits the
following asymptotic expansion:

h(z, &)~ > %(3g‘p)(1‘,dwgp(aj,€))Dg V@Y gy, €) e (2.15)
aeN™ =
Here

and, as usual, DY = (—i)'“'@g. We will write h = p o, a as a short form of

(2.15).

Similar results hold for the composition AP and for the composition among
SG dos operators and SG FIOs of Type II (see [4] or [6]).

We now introduce the subclass of the Classical SG symbols. They can be
defined as follows®.

Definition 2.12 Let S™, m € R, denote the space of global classical symbols
in one variable. This means that a € S™ if a = a(€) is smooth on R", satisfies
estimates like (1.1) in the only variable £ and there exist functions a(m,—jy €
C*(R"\{0}), j € N, homogeneous of degree m—j, such that, for some excision
function® w, we have

al€) ~ 3 w(€)a; ().

7=0
Then, for m = (my,my) € R?, SG, = S?1®7TS;”2.

An equivalent definition by means of asymptotic expansions in terms of sub-
classes of homogeneous SG symbols can be found in [8], which we refer to
for most of the notations concerning the classical SG symbols?. It easily
turns out that classical symbols are closed under sums and products. More-

over, with any a € SGTCI we can canonically associate its principal symbol®

S.ymg.(a) = {0'271 (a); 072 (a), Uzze(a)}. 0';’71 (a) is called the homogeneou.s p.rin—
cipal interior symbol and the pair {¢7*2(a), 0$e(a)} the homogeneous principal

exit symbol of a.

5See [15].

8That is, w(¢) € O (R™,[0,1]) is zero in a neighbourhood of the origin and is 1 for large
values of |£|.The notion of asymptotic equivalence here is analogous to the SG one, but in a
single variable.

7"Our SG;Tll’mQ) is denoted by Scml ™2 in the cited book. We also write o'

3 2
1(5,¢) we with m € R

my,Mmz
we
8See again [8] (compare also with [9]). Any reference to the total or exit principal symbol

rather than o

must be understood component by component. So, saying that Symyp, (a) is real-valued means
that all the three components share this property, etc.



To our aim, the following two results, included in [8], are central. The first
says that, just like for the general SG symbols, classical symbols are identified
by asymptotic expansion. Through the second one, we obtain the description
of the topology of the classical symbols spaces.

Theorem 2.13 Let ai € SG;”Cl_ke, k € N be an arbitrary sequence of classical

symbols and a ~ Y 2, ay the asymptotic sum in the sense of the general SG
symbols, as recalled in section 2. Then, a € SGTCI.

Theorem 2.14 Let B® = {x € R" : |¢| < 1} and let x be a diffeomorphism
z

from the interior of B™ to R™ such that |z| > 2/3 = x(z) = BTk

z|(1— |z
Choosing a C* function [x] on R™ such that 1 —[z] # 0 for all x in the interior
of B" and |x| > 2/3 = [z] = |z, for any a € SGJ, denote by (D™a)(y,n) the
function

b(y,m) = (1 =)™ (1 = [g])™*a(x(y), x(n))- (2.17)
Then, D™ extends to a homeomorphism from SGJ, to C*(B" x B").

Remark 2.15 General FIO calculi, including the SG FIOs calculus, already
eristed (see, e.g., [10] and the references quoted therein). We preferred, in
view of our applications, a more transparent approach, completely in the SG
environment. At our knowledge, however, the present classical SG FIQOs have
not yet been studied.

3 Proof of the composition theorem

We will prove the part of the statement of Theorem 1.1 concerning the compo-
sition PA. The remaining results can be proved as in [4]. Owing to Theorem
2.11, we only need to show that h € SG?Z’IS. We will obtain this result through
different steps, dealing with compositions of classical symbols. The following
Lemma is immediate, by the natural inclusions among the classical symbols
spaces.

Lemma 3.1 Let p € SGy . Then, for (x,y,§) defined in (2.16), we have

Dgeiw(@y,&) - € SGl(ﬁl(lﬁl/%E(—lﬁl/?)). (3.1)
Definition 3.2 We denote by P, the subset of classical phase functions. It is
defined as the set of all ¢ € P such that ¢ € SGid. Moreover, by P¢; we denote
the subset of regular classical phase functions. Using the notations above, we
simply set

Py ={¢ €Pa| ¢ e P} (3.2)
A classical SG FIO (of Type I or Type I} is any SG FIO defined as in (2.13)
or (2.14) such that ¢ € Pey and a,b € SGJ",). A classical SG FI10 will be called

elliptic if its phase function s classical regular and its amplitude is classical
elliptic.



Proposition 3.3 If p € SG/, and w € S(}ll1 15 a vector valued classical
symbol such that {w(x,£)) ~ <€>, we have q(z,§) = p(z,w(z,§)) € SG/,.

Proof. Consider the topological isomorphism defined in Theorem 2.14. ¢ €
SG/, is equivalent to § = D™¢ € C*°(B" x B"). But we have, by definition of
D™yq,

i(y,n) = (1- (1 W)™ p(x(y), @ (x(¥), x(n)))
— [n] e

3

ey O G e
(]

where we set p = D™ p and @ = D* w. So, we just have to prove that the two
factors are smooth functions up to the boundary on B” x B™. Let us consider,

first of all, the expression f(y,n) = x ! (‘;(i‘/a[ﬁi) Observe that this function
—1n

1s smooth in the product of the interiors of the two balls B™. This is due to the
choice of [] and x and to the fact that w € SGj}; = @ € C*(B" x B"). So
we need only to consider f(y,n) for |y| = 1~ or |77| — 17. It is clear that f is
smooth up to |y| = 1 for all 5 in the interior of B™. Now, observe the following:
(w(z, &)Yy ~ (&) = |@(y,n)| > ¢ > 0 for || close enough to 1. Indeed, assuming
Il >2/3,

o) ~ @ & (35 ~ ) = () @

o1+ WD sy 2o ) 2 26+ (262 = (1= o)
(1—1nl)? (1= 1Inl)
=@y, > = oy, n)] > e
_ (v, m) -
for || = 17. So, we have =[] — 400. Then, for |n| = 17 we
— 17
can use the explicit expression of Y~ !, obtaining
<y, n)|
fly,m) = —= = = Gy, n) € C°(B" x B™),
U= TR 1o T Rwap P ECTEE
(1—[m)?

by the above observations. Being a composition of two functions in C'*°(B" x
B™), the second factor in (3.3) is itself in C°°(B" x B™). Let us now consider



the first factor in (3.3). Again, by the analysis carried out above and by the
choices of [n] and v, this is a smooth function in the product of the interiors,
and, indeed, up to |y| = 1. For || > r > 0 and r € (0,1) close enough to 1,
reasoning as above, we easily get

— 11

Since we have proved that in the region we are considering |&(y,n)| > ¢ > 0,
the first factor of (3.3), too, is in C°°(B” x B"). This completes the proof. ]
The following result is the final step for the proof of Theorem 1.1

Theorem 3.4 For all p € SGTCI, a € SG?CI, @ € Po, we have h = po,a €
SGf.

1
C

Proof. Our assumptions imply that w = d, € SGJ
quirements of Proposition 3.3 above, so that we have

| satisfies all the re-

Ya € N7 (98p)(x, (dop) (., €)) € SGJ 110 (3.5)

Then, the desired result follows by the multiplication properties of classical

symbols, by (2.15), (3.1) and (3.5) and by Theorem 2.13. ]

4 The Cauchy Problem in the SG classical en-
vironment

In this section we apply the theory of classical SG FIOs to the solution of the
Cauchy problem for a classical SG 1do of order e, similarly to what was done
in [5]. The differences in the present treatment amount to the proof that the
involved objects are classical in the above sense.

Consider a symbol A € C*(J;8Gy ), J = [-T,T], T > 0, which we take
scalar-valued, for simplicity. Choosing ug € H*, s € R?, we already know that,
if A(t) = Op (A(t;.,..)) is hyperbolic (i.e., if there exists a real-valued A, such
that A\g = A — A. € C°°(J; SGZO)), the solution of

{ (D, — AW))u(t) =0 teJ

w(0) = (4.1)

exists and is unique. We also know that w(t) = Ag()a)uo, With A(t) =
Apt),a(t) SG FIO of Type I, depending smoothly on ¢t € J' = [-T",7"] C J,
T" > 0. Note that Sym;;1 (A) real-valued implies A hyperbolic: indeed, we can
take?

Ae(t;2,€) = w(©)ab V)t 2,6) +w (o) (al V(2,6 —w (@l TNt 2,6))

9See [14].




where w € C*°(R™;[0,1]) is an excision function'®.

We divide the proof of Theorem 1.2 in various steps, analysing separately
the solution of the eikonal and of the transport equations, as in [5]. We deal
first with the Hamiltonian system (4.3) associated with the principal symbol of
A, since, as it is well known, the solution of the eikonal equation

d¢

o (G2,8) = Ae(e, (dop) (152,6))

@(0;2,8) = (x[€)

can be given in terms of the solution of such a system.

(4.2)

Proposition 4.1 Let A\ € C*(J;SGy ). The solution (q(t;z,),p(t;z,)) of
the Hamiltonian system

(t;2,8) = (VeAe)(t q(t; 2, 6), p(t; 2,))

p(t; 2, &) = (=doAe)(t; 9(t; 2, 6), p(t; 2, 6)) (4.3)
q(0;2,8) == '
p(0;2,8) =¢

satisfies ¢ € C*°(J';8G%)) and p € C(J';SGY) with J' = [-T",T'] C J,
7" > 0.

Proof. The solution of (4.3) can be found by means of the iterative scheme

qHNua@=x+1}vaa@muaa®muaaaws -

t
pmdt%®=€—A(%&M&%@wf%m@wfﬁﬁ~

We will prove the following:

L Vk € N qi(t;.) € C°(J',8G[%), pi(t;.) € C=(J',SGJ)), for some J' =
(-1, 171 C J;

2. The sequences {g;(¢;.)} and {px(¢;.)} are convergent in the topology of
the respective classical symbol classes, i.e., the solutions ¢(¢;.) and p(¢;.)
are classical symbols with the corresponding order.

To this aim we will use a technique similar to that used in the proof of Propo-
sition 3.3, by means of the topological isomorphism induced by (2.17). We
already know (see [2] and [5]) that the solution is globally defined on J; more-
over, {q(t;2,£)) ~ (x) and (p(t;x,£€)) ~ (&), uniformly for ¢t € J. This is also
true for any ¢ (¢;.) and pg(¢;.), possibly restricting J to J' = [-T",T"], as we
will now prove by induction'!. In fact, recall that, with suitable Cio, Co; > 0,

|der(ta $,€)| S ClO <€> 3 |vae(ta $a€)| S COl <l‘> ; (45)

10That is, w(z) is zero in a neighborhood of the origin and is 1 for large values of |x|.
11 This part of the proof is essentially the same contained in [1].

10



and that
AC >03c; € (0,1) Fea> 1 : jy—z| < C{x) = e1{x) < {y) < cafzx). (4.6)

C C
Then, setting 1" = min{T,—,
& c2Co  c2Co1

Ce(J; SG?,ch)a p € COO(J’;SGTVICI) and, Vt € J/,

}, we immediately see that ¢; €

(8 2,8) — 2| < Coa[t](z) < C (),
lpr(t;2,€) — & < Crolt](§) < C(E),
implying (q1(¢; ,8)) ~ (x), {p1(t; 2, &)) ~ (&) (uniformly for ¢ € J'). Tt remains

to prove that if such a uniform estimate holds for the (k — 1)-th iteration, then
the same holds for the k-th one. Actually we get

<C
<C

/Ot (qr-1(s;2,€)) ds

lgr(t;2,&) — x| < Cox

< Co1T'es (2) < C(x),

lpr(t;2,&) — & < Cho < CroT'es (€) < C(8),

/Ot (Pe—1(s;2,€))ds

so that we can conclude

(gr(t;2,€)) ~ (x), (4.7)
{pr(t;2,€)) ~ (£) (4.8)

uniformly for all k € N and ¢ € J'. Since A, € C*°(J,SGj ), using Proposition
3.3, we get point i) above. To prove point ii), we proceed as follows.

- We consider the sequences {§i} = {D¢r} and {pr} = {D px}, which
are made up of elements of C*°(B" x B™), owing to point i) above;

- We prove that each one of the sequences {gi} and {pg} has a limit point
in C°°(B™ x B"). Since C*°(B" x B") is a nuclear Frechét space, in order
to say that a subsequence of {§;} and {py} converges in C*°(B" x B") it
is enough to check that each sequence is bounded. Let us denote by ¢ and
p the two limit points in C°(B™ x B").

- Now, recall that D' and D*®? are topological isomorphisms and that the
topologies of SG;L and SGj2, are stronger than those induced respec-
tively by SGJ* and SG;2. Sd, since we already know that the sequences
{qr} and {pg} converge in the respective symbol classes, we can con-
clude that for the solutions ¢ and p we have ¢ = (D®2)71g € SG?,ch and

p=(D)"'p € SG,, as claimed.

So we just have to check the boundedness of the seminorms of the elements of
the sequences {gx} and {pr}. Let us set

boy = D2 (VeAe), bro = D (dyAe),

11



9(y) = (1 = [¥])x(y), y € B",

Vh € C°(B" x B") YN € N sy(h) = sup |05 05 h(y, n)|
(y,m) € B" x B"
lo+ B < N
CN = SN(g)a
@y = sup {sup so(bo1(t; -, ..)),sup so(bio(t; ., ))} .
teJ! teJ!

We will give the detailed proof of the boundedness of the seminorms so (G (¢; ., ..))
and so(pr(t;.,..)), and some remarks about the proof of the result for higher
order seminorms. Applying D2 and D°' to both sides of (4.4), respectively in
the first and second row, and repeating some steps of the proof Proposition 3.3,
we get,

Grt1(t;y,m) =9(y) 0 - [X ) (qk = ))] .
o (H52) (23

TG
oo () (B4
(4.9)

First of all, we prove that sg(gx(¢;.,..)) and so(pk (¢; ., ..)) are uniformly bounded
with respect to k € N and ¢ € J'. To this aim, we need to study the function

= [yl]

(y1,92) = :
U ()]

which enters as first factor in each one of the two integrands of (4.9). From
the proof of Proposition 3.3, we see that |y| — 17 = |@x(t;y,9)] > ¢ > 0
and |n| = 17 = |px(t;v,m)] > ¢ > 0, uniformly with respect to & € N and
t € J'. So, when y; is close to 1 we need only to consider the values of y»
such that |y2| > ¢ > 0. By this observation, (3.4) and the choices of x and
[y], we see that ¢ € C(W), wherel? W = {(y1,y2) € B" x R" | |y1| <
r}U{(y1,y2) € B® x R™ | |y1| > 7, ly2| > ¢}. Tt is also easy to see that, on W,
lg(y1,y2)| < M + |yz| with a suitable M > 0. We proceed again by induction,
obtaining, for any ¢ € J',

Pet1(t;y,m) =g(n /
0

(4.10)

solfo(ts ) = co

12, € (0,1) is chosen in such a way that (3.4) holds.
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so(@u(ts ) < (eo+ao(M + co)[t]) < (co(1+ aolt]) + an M [t])
< eo(l+ aoT’) + agMT’
so(pi(t;., ) < coll4 aolt]) + acMt| < co(1 4 aoT’) + agMT"
so(@2(t; ) < (CO + o /Ot(M + co(L + aols|) + aoM|s|)ds
< co (1+ao|t|+%)+M(ao|t|+%)
< ¢ (1 + aT' + (aog“/)Z) + M (aoT' + w
so(P2(t; ) < co (1 +aolt| + (a0|2t|)2) + M <a0|t| + W)
< e (1 +agT" + (aoT’)Z) +M (aoT’ n (GOZ/) )
U
This gives
3R = Rl(ao, co, M,T") > 0 | Yk € NVt € J' so(du(t;-, ), solBe(t; ., ..)) < R

(4.11)
as desired. Now, let us denote by ho1 and hig the whole integrands, respectively,
of the first and second row of (4.9). Denoting by B the ball in R™ of radius R
centered in the origin, by our previous considerations it turns out that 7101, hio
are smooth functions of (¢; y,n; z,{) € J' x B" x B" x BY x B%, and the iteration
scheme can be rewritten as

t
Grr1(t;y,m) = g(y) +/ hoi(s; ¥, 15 Gr (559, m), P (53 y,1))ds
0 (4.12)

t
Pesr(tiy,m) = g(n) — / hio(s; v, m; Ge(s5 9, ), (559, m))ds.

0
We conclude the proof observing that the uniform boundedness of sy (G (¢; ., ..))

and sy (pi(t;.,..)), N > 1, as well as of the higher order seminorms of the ¢-
derivatives, can be proved in a similar way, keeping in mind the following facts:

- we can Introduce the seminorms

—_ Y o
ay = sup sup |05 95,072 05, horl,
7' x B" x B™ x BL x BY

lay + 81 + g+ B2l=N

a1 QY Qg 2z .
sup |377 3ﬁ13C 3ﬁ2h10| :
J’xB"xB"ngng

lay + 81 +ag + B2l =N

13



- by the Fda di Bruno formula, we see that the derivatives of §(¢;y,n)
and P (¢;y, 1) of total height N > 1 can be expressed by a formula sim-
ilar to (4.12): the integrand is a polynomial in the derivatives of total
height less or equal to N — 1, linear in the derivatives of total height N;
the polynomial coefficients are derivatives of hgy and hig, evaluated at
Gy, msde(ty,m), Pre(t;y,m) € J' x B® x B" x B x Bg;

- then, assuming that one has already proved the uniform boundedness of
the seminorms s;(Gx(¢;.,..)), 8;(dr(t;.,..), 0< i < N =1, N > 1, by the
same inductive trick used above we achieve the boundedness of the sum
of the derivatives of total height'® N; this proves that also s (gx(¢; ., ..))
and sy (§k(t; ., ..)) are uniformly bounded.

O

Proposition 4.2 The symbol ¢(t;y,&), SG diffeomorphism with SGY parame-
ter dependence', admits an inverse q(t;z,€) € SG;* depending smoothly on t.

q(t;2,€) is defined on a closed subinterval of J including 0, which we continue
denoting by'S J'. Moreover, q(t;x,&) € C*=(J',SGj2)).

Proof. The first part of the Proposition is known'®. With notations coherent
with those used in Propositions 3.3 and 4.1, and an analogous calculation, we
see that the condition

Ve J'V(x,&) e R” x R™ q(t;q(t;2,€),&) = =, (4.13)
which characterizes q(¢; z,£), can be translated through D¢ as

Vi€ J ¥(y,n) € B" x B"
1— [X—ll Eq[l(yjiy[?)] d (t;x_l (%) ’77) =x(y)(1 — [¥])-(4.14)
— Y

Note that, setting

. _ 1 [y ~ (1 i .
GENTR)) - [x—l (13/_2[3/])] q (t,x (—1_ [y]) ,77), (4.15)
we have
( 2y, ) — 1_[y] _ -1 i3 .
o+ (e ()

13The only difference is that now the constants which appear in the estimates are given in
terms of the @;, 7 =0,...,N and s;(dx(¢;.,..)), s;(qx(¢t;.,..)), 5=0,...,N — 1.

14See [5], Proposition 4.13 and Theorem 4.14.

15 Actually, the present J’ can be strictly included in the J’ on which q(t;v, &) is defined.

16The proof can be found in [5] or [6].
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q (0; I%M,X(ﬁ)) == (4.16)

= g—f(O,z,y, n) = diag(1,...,1). (4.17)
z

Then, the equation
Ft2y.m) = x(v)(1 = [v]) (4.18)

can be solved with respect to z in a suitably small closed interval centered in
the origin, with arbitrary (y,n). The resulting function clearly has the desired
regularity up to the boundary, by the implicit function theorem and the fact
that all the objects involved are in C°°(J',C°°(B™ x B™)). Since there exists
a function ¢(t;.,..) € C(J',C*°(B" x B")) which satisfies (4.14), we have
q(t;.,..) = ((D2)™*q)(t; ., ..). This completes the proof. ]

Proof of Theorem 1.2. After our preparation, the proof of Theorem 1.2
follows the same lines of the analogous Theorem 4.14 of [5]. We can set

btnE) = () + / D\ (55 453, ), pls: 0, )
— ((VeAe)(s;a(s39,€), (s34, €)) |p(s; 9, €))] ds (4.19)

and also

pltix,§) = ¥(t;q(t;2,€),8) © et q(ty,€),8) = ¥(t; v, ). (4.20)

As is well known, the function ¢ defined in (4.20) is the solution of (4.2), and,
as such, is a regular phase function. Moreover, using the results obtained in
Propositions 3.3, 4.1 and 4.2, it turns out that, indeed, ¢ € Pg;.

The amplitude a(t;#,£) can be obtained solving the so-called transport
equations, each one giving a term al?) of its asymptotic expansion'”. Since
a) € C*°(J';8SG;7¢), by Theorem 2.13, it is enough to prove Vj € N al?) €
Ce(J; SG;gle). We give the details of the proof of this fact for a(®). This term
must satisfy the equation

. oy e (0 - 0y _
(Dt—Ao)a()_|23MeDo«a”— D oa =0

al=1 |a|=2
a®(0;.) =1

with suitable!® &, € C*°(J';SG;'~?). Indeed, since G, only depends polyno-
mially on the derivatives of ¢, we have ¢, € C*°(J'; SG[. “?). By the change
of variables

ol (t:y,€) = al®) (t; (t;9,€),€) (4.22)

17See again, e.g., [5] for the SG case of this well known construction.
183See again [5].
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we are reduced to the equation

d (4.23)
afm(o, )=1
. a?Ae ~ 1 0 . .
with H = Ay + Z —0a € C*(J',8G; ). The solution of (4.23) is
al :
|a|=2
o (t;y,€) = ¢ o Hrw, (4.24)

Now, H € C(.J’, SG?CI) implies fNI(t;z,C) = (D°H)(t;2,¢) € C=(J',C>=(B"
x B™)) and also, obviously,

exp (i/otf](r;z,g“)dr) € C™(J',C™(B" x B")). (4.25)

Again by Propositions 3.3, 4.1 and 4.2, we obtain a(®) € Cw(J’,SGﬁcl), as
desired. The argument can be repeated with almost no change for all the other
terms @), j > 1, and this allows us to conclude. ]
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