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In this chapter� we show how noncommutative analysis can be applied to a prob�
lem of interest in the theory of electromagnetic waves and plasma physics� From the
physical viewpoint� the problem describes electromagnetic wave propagation in spa�
tially inhomogeneous plasma� From the viewpoint of mathematics� this is a problem
of constructing the high�frequency asymptotics of the solution of an equation with a
nonsmooth right�hand side� The usual WKB scheme of constructing asymptotic solu�
tions fails for this equation� since� owing to the presence of the nonsmooth right�hand
side� each subsequent term of the asymptotic expansion is less smooth �or� if the reader
prefers it� more singular� than the preceding one� thus rendering the expansion use�
less� The remedy is to seek mixed asymptotics of the solution to this problem� that is�
asymptotics simultaneously with respect to the large parameter and smoothness� The
subsequent terms of such an asymptotic expansion become more and more smooth and
decay as the large parameter tends to in�nity more and more rapidly� This asymptotic
expansion is already adequate to the problem in question and permits one to obtain
experimentally veri�able results� in particular� those concerning the so�called transient
rays �forerunners��

The physical statement of the problem can be found in ���� The construction of
mixed asymptotics in general by operator methods was considered in ��� 
� and other

�
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papers �e�g�� see ����� The speci�c application to this radiophysical problem was devel�
oped in �	� 
��

���� Statement of the Problem

We consider the following physical problem� In in�nite space occupied by spatially
inhomogeneous plasma� a point source of electromagnetic waves is switched on at time
t � �� The source frequency is high but can slowly vary in time� and so can the source
amplitude� The problem is to �nd the high�frequency asymptotics of the wave �eld
generated by the source�
Mathematically� the problem is described by the system of Maxwell equations for

the electromagnetic �eld incorporating terms that take into account the presence of
plasma� To reduce extensive computations and focus ourselves on essential points� we
adopt a simpli�ed model assuming a scalar �rather than a vector� �eld and dealing with
one�dimensional rather than three�dimensional space� Then the problem is described
by the equation

���u

�t�
� c�

��u

�x�
� ��b��x�u � ���x���t�r�t�e�i�q�t�� ������

where u is the unknown wave �eld� c is the light velocity in vacuum� �b�x� is the
so�called plasma frequency� �q��t� is the instantaneous source frequency� �r�t� is the
source amplitude� ��x� is the Dirac function concentrated at the origin� and ��t� is the
Heaviside step function�

��t� �

��� � t � ��

� t � ��
A discussion concerning the derivation of this model can be found in ���� Here we adopt
the model as being given and study the mathematical and physical consequences that
can be derived from it� Let us make a few remarks on the model �������

A� Since the equation is linear� we see that the factor � on the right�hand side in
������ is not very essential� It has been inserted to ensure a convenient normalization
of the solution�

B� We assume that the plasma frequency �b�x� and the source frequency �q��t�
are of the same order of magnitude� namely� they both are O���� and � is regarded
mathematically as a large parameter in our problem� It can be thought of as the �mean
plasma frequency� or �mean source frequency��

C� For physically meaningful solutions of Eq� ������� this equation with the step
function ��t� on the right�hand side is equivalent to the following Cauchy problem with
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initial data prescribed at t � ��

���u

�t�
� c�

��u

�x�
� ��b��x�u � ���x�r�t�e��q�t�� t 	 �� ������

ujt�� � utjt�� � �� ����
�

In turn� by virtue of Duhamel�s principle� the Cauchy problem �����������
� is equiv�
alent to the following Cauchy problem with zero right�hand side in the equation but
with nonhomogeneous initial conditions�

���v

�t�
� c�

��v

�x�
� ��b��x�v � �� t 	 
 � ������

vjt�� � �� vtjt�� � ��x�r�
 �e�i�q���� ����	�

More precisely� the solution of problem �����������
� �and hence of ������� can be
reconstructed from that of problem �����������	� by the formula

u�x� t� � �
tZ

�

v�x� t� 
 � d
� ����
�

Thus� physically� it is equation ������ that describes the model� but mathematically�
we shall mostly deal with system �����������	� and then return to the solution of the
original problem by integration�
The model ������ produces an interesting phenomenon� which is con�rmed in exper�

iments� the presence of the so�called transient rays� One might expect that the wave
�eld is asymptotically zero outside the illuminated region swept by the geometric�optics
rays issuing from the point x � �� where the source is located� for every t � ��
However� this is not the case� Some time before the rays of geometric optics reach a

given point x� �� �� it already becomes illuminated� as the so�called �forerunners� of the
main wave arrive at this point �rst� These forerunners propagate at a higher velocity�
but as � � � their amplitude is of smaller order than that of the main wave� Thus�
an observer at a point x� sees the following picture� First� it is completely dark at x��
Then� at some time t� � t��x��� the �forerunners� arrive� and there is some kind of
dawn� Finally� at t� � t��x�� the main wave arrives� and the point becomes completely
illuminated� �We should mention� by the way� that the forerunners continue to arrive
after t � t��x��� However� their amplitude is smaller in order than that of the main
wave� and so in the leading approximation the forerunners can be neglected in the region
t 	 t��x���� The rays along which the forerunners propagate are called transient rays�
and the ratio of the amplitude of the main wave to that of the forerunners is called
the di�raction coe	cient � In physics� a customary way to compute the di�raction
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coe�cient is as follows� One replaces ������ by a simpler exactly solvable model and
then computes the di�raction coe�cient from the exact solution of the simpler problem�
It is assumed that the di�raction coe�cient for the solution of the actual problem di�ers
only slightly from the one thus obtained� For example� Lewis ��� showed that for the
case of homogeneous plasma �b�x� � b � const � Eq� ������ has the exact solution

u�x� t� �
i

��

tZ
�

d


�Z
��

dk
r�t�p

c�k� � b�
ei��kx�q����

�
n
ei�

p
c�k��b��t��� � e�i�

p
c�k��b��t���o ������

and then obtained the heuristic value of the di�raction coe�cient by the asymptotic
analysis of the integral on the right�hand side in ������� In contrast� our computations
in subsequent sections result in a rigorous evaluation of the di�raction coe�cient�
Now let us explain intuitively why the transient rays occur at all� It is well known

that the presence of the plasma frequency term ��b��x� in Eq� ������ results in disper�
sion� waves with di�erent frequencies propagate at di�erent velocities� To see this� let
us assume for simplicity that b�x� � const and substitute the plane wave

��x� t� � ei���t�kx��

which propagates at the velocity ec�
� � 


k
�

into the homogeneous equation corresponding to ������� Then we obtain the dispersion
relation


� � c�k� � b� � ��

whence� for given 
�

k �

p

� � b�

c

and ec�
� � c

p


� � b�
�

Thus� waves with frequency �
 � �b less than the plasma frequency do not propa�
gate at all �at least in the semiclassical approximation�� and waves of given frequency
�
 	 �b propagate at the velocity ec�
� that decreases from �� for 
 � b to the light
velocity in vacuum� ec��� � c� for 
 � �� In particular� the waves generated by the
source at time t � � propagate at the velocity ec�q��t��� However� the source is switched
on by jump at t � �� The Fourier expansion of ��t� contains components with all
possible frequencies �
� Those with 
 � q���� propagate faster than the source �eld
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and form the above�mentioned forerunners� Those with 
 	 q���� propagate slower
and� their amplitude being one order of magnitude less than that of the main �eld� can
be neglected against the background of the main wave�
This heuristic explanation also shows that the usual high�frequency �WKB� ex�

pansion that can be formally written out for the solution of our problem will fail to
represent the solution adequately at least in the regions where the transient rays are im�
portant� it does not take account of the frequencies occurring in the Fourier expansion
of the nonsmooth right�hand side and hence ignores the transient rays�
It follows that we must devise some procedure which would permit us to take the

high�frequency components of the singularities into account� A procedure of this kind
is well known for the case in which we deal with singularities alone� it is given by the
usual theory of regularizers for partial di�erential equations of hyperbolic type� Using
a regularizer� we satisfy the equation modulo an operator with smooth kernel applied
to the right�hand side� The new right�hand side thus obtained is smooth� and the high�
frequency components in its Fourier expansion decay rapidly� However� this method
does not take account of the large parameter � present in the equation and hence also
does not provide a correct asymptotic solution of the problem in question� What we
need is the mixed asymptotics with respect to smoothness and the large parameter� In
the next section� we brie�y explain the general noncommutative analysis approach to
obtaining mixed asymptotics� and in the subsequent sections we apply this method to
our problem�
We conclude this introductive section by Figure ���� schematically showing the

arrangement of geometric�optics and transient rays�

���� Mixed Asymptotics� the General Scheme

In the present section� we very brie�y describe the general scheme used in noncommuta�
tive analysis to tackle with mixed asymptotics� A mixed asymptotics is an asymptotic
expansion that combines two or more types of usual asymptotics� Suppose that we
need to �nd a mixed asymptotic solution of the equation

Lu � v ������

in a Hilbert spaceH� Noncommutative analysis can be applied to this problem provided
one can implement the following scheme�

��� We represent each type of asymptotic expansions involved by an unbounded
self�adjoint operator in H�
For example� if we deal with the asymptotics with respect to a large parameter

�� then elements of H depend on � and we represent this type of asymptotics by the
unbounded operator of multiplication by �� If we seek the asymptotics with respect to
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Figure ����� Solid lines� geometric�optics rays� dotted lines� transient rays� hatched
region� the domain spanned by transient rays issuing from the source at t � �

smoothness� then the corresponding operator will be� say� the di�erentiation operator
�i �

�x
�or the n�tuple of these operators� one for each of the variables�� If we seek

the asymptotics with respect to growth as in�nity� then one possibly would wish to
take the operators of multiplication by the independent variables xj as the operators
representing this kind of asymptotics�

��� Let A�� � � � � Am be the operators assigned at step �� to each kind of the asymp�
totics involved� We suppose that the operator

 � � �
mX
j��

A�
j

is self�adjoint in H and de�ne the scale of Hilbert spaces Hs � Hs
A associated with the

operator
p
 in the usual way� Namely� for integer s 	 �� Hs � Hs

A is the domain of
 s�� equipped with the norm

jjujjs � jj s��ujj��

where jj � jj� is the norm in H� For negative s� Hs is the dual of Hs with respect to
the pairing given by the inner product in H�� Then one has the dense embeddings

� � � 	 H� 	 H� 	 H� 	 H�� 	 H�� 	 � � � �
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and all Aj� as well as
p
 � extend to continuous operators in the spaces

Aj � Hs � Hs��� j � �� � � � �m� s 
 Z�
p
 � Hs � Hs��� s 
 Z�

��� Now the notion of mixed asymptotics of the solution of Eq� ������ can be de�ned
as follows�

De�nition ���� A mixed asymptotic solution of Eq� ������ with respect to the oper�
ators A�� � � � � Am is a sequence un of elements of H such that

Lun � v 
 Hn
A� n � �� �� �� � � � �

De�nition ���� A mixed asymptotics of a solution u of Eq� ������ with respect to the
operators A�� � � � � Am is a sequence of elements un 
 H such that

un � u 
 Hn
A� n � �� �� �� � � � �

Proving that a mixed asymptotic solution is a mixed asymptotics of the solution
�possibly� after some shift in the indices of the sequence un� can be reduced to proving
that the inverse L�� is bounded in the scale Hn

A� since

un � u � L���Lun � v��

The boundedness of the inverse L�� is usually proved by methods completely di�erent
from those used to construct an asymptotic solution� We shall not consider these
methods in general� since they are equation speci�c�

Now we shall explain how to construct an asymptotic solution� To this end� one
proceeds as follows�

��� Take some additional operators B�� � � � � Bs such that

�i� B�� � � � � Bs are generators in the scale fHn
Ag for suitably chosen symbol classes�

�ii� the tuple �
�
A�� � � � �

m

Am�
m��
B� � � � � �

m�s
Bs � has a left ordered representation l�� � � � � lm�s�

�iii� L can be represented in the form

L � f�
�

A�� � � � �
m

Am�
m��
B� � � � � �

m�s
Bs �

with a symbol f in a suitable class�
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��� Now the problem of �nding L�� is reduced to the solution of the corresponding
equation in the algebra of symbols�

f�
�

l�� � � � �
m�s

l m�s�g�y�� � � � � ym�s� � �� ������

where g�y�� � � � � ym�s� is the symbol of the desired operator L���

	�� Finally� we assume that the symbol f�y�� � � � � ym�s� and the operators l�� � � � � lm�s

are such that the operator f�l�� � � � � lm�s� can be represented in the form

f�
�

l�� � � � �
m�s

l m�s� � H

�B��
y��i

�

�

�y

�CA �

where the function H�y� p�� referred to as the Hamiltonian of the operator L with
respect to the operators A�� � � � � Am� B�� � � � � Bs� is asymptotically homogeneous in the
variables �y�� � � � � ym� pm��� � � � � ps�� that is� admits the asymptotic expansion

H�y� p� �X
Hj�y� p� as jy�j� � � �� jymj� jpm��j� jpsj � ��

where each Hj�y� p� is homogeneous of order r � j�

Hj��y�� � � � � �ym� ym��� � � � � ys� p�� � � � � pm� �pm��� � � � � �ps�

� �r�jHj�y� p�� � 	 ��

where r is the order of H� Then we can apply the canonical operator method to obtain
an asymptotic solution of Eq� ������ modulo symbols decaying as rapidly as desired as
jy�j� � � �� jymj � ��

f�
�

l�� � � � �
m�s

lm�s�gN �y�� � � � � ym�s� � � �RN �y��

where the symbol RN �y�� as well as its derivatives� decays as �jy�j� � � � �� jymj��N at
in�nity with respect to the �rst m variables�
Then the operator

RN �
�
A�� � � � �

m

Am�
m��
B �� � � � �

m�s
B s�

has a high negative order �tending to �� as N � �� in the scale Hn
A� and so the

sequence

un � gn�
�

A�� � � � �
m

Am�
m��

B �� � � � �
m�s

B s�v

is an asymptotic solution of Eq� �������
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A similar scheme applies if we have a Cauchy problem instead of Eq� �������
We note that the exposition in this section is purely schematic� In speci�c appli�

cations of this approach� which is due to Maslov ��� 
� �see also ����� one has to verify
various additional conditions to �ll in the gaps in the above�mentioned scheme�

���� The Asymptotic Solution of Main Problem

We intend to �nd the asymptotic solution of problem �����������	� with respect to
smoothness and the large parameter ���� Accordingly� the choice of the operators
A in the general scheme described in Section ���� is obvious�

A� � �i �
�x

� A� � ��

The space in which our operators will act will be de�ned as follows�

H � L��Rx � ��������

Then A� and A� �with appropriate domains� are self�adjoint in H� and so is  �
A�

� � A�
� � �� This permits us to accomplish the construction of step �

� and use the
interpretation of the asymptotics given in step ���
Now we proceed to step ��� We must �nd an additional operator B such that the

operator occurring in ������ is representable in the form of a function of
�

A��
�

A��
�

B�
�We can assign the same Feynman indices to A� and A�� since �A�� A�� � ��� The
choice of B is however obvious� B � x� and we have the following representation of the
operator L occurring on the left�hand side in ������

L � � ��

�t�
� c�A�

� � b��B�A�
� � �

��

�t�
� f�

�

A��
�

A��
�

B�� �������

where
f�p� �� x� � c�p� � b��x���� �������

�We denote the arguments of the symbol by the letters p� x� �� it will be always clear
from the context whether x and � are variables �arguments of the symbol� or the
corresponding operators B and A� of multiplication by x and ���
We must �nd the asymptotic solution of the Cauchy problem �����������	� in the

scale Hs of Hilbert spaces of functions u�x� ��� x 
 R� � 
 ������� with �nite norm

jjujjs �
������
������
�
� � ��

�x�
� ��

	s��

u

������
������
L��R��������

�
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We seek the solution in the form of an operator

b! � !� �A��
�
A��

�
B� t� 
 � �������

applied to the right�hand side of the nontrivial initial condition in ����	��

v�t� 
 � � b! 
��x�r�
 �e�i�q���� � �����
�

The initial conditions for the symbol !�p� �� x� t� 
 � are clear from ����	����� !�p� �� x� t� 
 �jt�� � ��!t�p� �� x� t� 
 �jt�� � ��
�������

To obtain an equation for !� we must compute the left ordered representation of the

triple �
�

A��
�

A��
�

B�� This is however obvious� The left ordered representation for the
operators �B��

x��i
�

�

�x

�CA
has already been computed in Chapter �� The operator A� of multiplication by �
commutes with the other operators� and hence is represented by the multiplication by
the corresponding variable� Finally� we have

lA� � p� �

�x
� lA� � �� lB � x�

Then from ������ we obtain the following equation for !�

���!

�t�
� c�

�
p� i

�

�x

	�

!� ��b��x�! � �� �����	�

As was explained in step 	� in Section ����� we need the asymptotic solution of this
equation �with the initial conditions �������� as � �

p
�� � p� ��� Let us transform

Eq� �����	� to a form in which the large parameter � occurs appropriately for the
application of the standard WKB method �or the canonical operator� according to
which is suitable�� We isolate the large parameter in Eq� �����	� by setting

p � 
�� and � � 
���

Then 
�
� � 
�

� � �� and Eq� �����	� acquires the form

�����
�!

�t�
� c�

�

� � i���

�

�x

	�

!� 
�
�b

��x�! � �� �����
�
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The operator on the left�hand side in �����
� is a ����pseudodi�erential operator� and
we can seek the solution of Eq� �����
� with the initial condition ������� by the WKB�
method or its global version� Maslov�s canonical operator� According to this method�
the solution is sought in the form

!�p� �� x� t� 
 � � KL����� �KL������ �������

where KL� and KL� are the canonical operators on two Lagrangian manifolds L� and
L� to be constructed in what follows� The presence of two terms in ������� corresponds
to the fact that Eq� �����
� is of the second order�
At t � 
 � the function !t is represented in the form

!tjt�� � � � ei�S������� �x�a��
�� 
�� x�

with zero phase function S��
�� 
�� x� � � and unit amplitude a��
�� 
�� x� � �� The
function ! itself vanishes at t � 
 and can be represented in a similar form but with zero
amplitude� Thus both functions correspond to the nonsingular Lagrangian manifold

L� � f�x� q� j q � �g �������

in the phase space R�n
x�q with the symplectic form dq � dx� Hence for small t � 
 the

components of the solution ������� will also be described by canonical operators with
nonsingular charts� and hence ! will be represented in the form

!�p� �� x� t� 
 � � ei�S��������x�t���a��
�� 
�� x� t� 
 �

�ei�S��������x�t���a��
�� 
�� x� t� 
 ��

The initial Lagrangian manifold ������� evolves into L� and L� along the trajectories
of Hamiltonian vector �elds corresponding to the two Hamiltonians H��
�� 
�� x� q�
associated with Eq� �����
�� The simplest way to see what these Hamiltonians are is
to substitute the test function

��x� t� � ei�S�x�t�a�x� t� �������

into Eq� �����
� and write out the resulting Hamilton�Jacobi equation for S �which
is obtained by matching the coe�cients of the highest power of � in the resulting
expansions�� The substitution of the function ������� into Eq� �����
� yields���

�
�S

�t
� i���

�

�t

	�

� c�
�

� �

�S

�x
� i���

�

�x

	�

� 
�
�b

��x�

�
�a�x� t� � ��
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or� after matching the terms with like powers of ���
�S

�t

	�

� c�
�

� �

�S

�x

	�

� 
�
�b

��x� � � �������

�the Hamilton�Jacobi equation���
�S

�t

�

�t
�
�

� �

�S

�x

	
�

�x
�
��S

�t�
� ��S

�x�

�
� i���

�
��

�t�
� ��

�x�

	�
a�x� t� � � �������

�the complete transport equation��
Once Eq� ������� is solved� we can seek the solution of ������� in the form of an

asymptotic series in powers of ���� We shall return to the transport equation later on
in this section�
For now� we see that Eq� ������� splits into two Hamilton�Jacobi equations�����

�S
�t
�H�

�

�� 
�� x�

�S
�x

�
� ��

Sjt�� � �
�������

with Hamiltonians

H��
�� 
�� x� q� � 

q
c��
� � q�� � b��x�
�

�� �����
�

The corresponding Hamiltonian systems are

dx

dt
�

c��
� � q�q
c��
� � q�� � b��x�
�

�

�
dq

dt
� �� b��x�b�x�
�

�q
c��
� � q�� � b��x�
�

�

�������

for H�� and the same system with the opposite signs of the right�hand sides for H��
The corresponding phase functions S� are given by the Poincar"e�Cartan integrals along
the trajectories of the respective Hamiltonian systems�

S��
�� 
�� x� t� 
 � �

�x��t����t�Z
�x����

�q #x�H�� dt �����	�

�

tZ
�

c�
��
� � q� � b�
�
�q

c��
� � q�� � b��x�
�
�

dt

������
x�x���x�t���

�

where the x���x� t� 
 � are the inverse functions for the x�component of the solution

x � x��x�� t� 
 �� q � q��x�� t� 
 �
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of the respective Hamiltonian system ������� with the initial conditions

xjt�� � x�� qjt�� � �� �����
�

�Needless to say� these functions also depend on 
�� 
���
After the preliminary explanations� let us �nd an asymptotic solution of Eq� �����	�

with the initial conditions �������� Since the coe�cients of the equation are independent
of t� it follows that the solution has the form

!�p� �� x� t� 
 � � �
! �p� �� t � 
 �� �������

that is� depends only on the di�erence t � 
 but not on t and 
 separately� and it

su�ces to solve the Cauchy problem for
�
! with initial data prescribed at t � � �that

is� solve the original Cauchy problem for 
 � ��� From now on� we omit the circle over
! and denote the right�hand side of ������� simply by !�
Let L��t�� t � �� be the Lagrangian manifold obtained from the manifold L� �������

by applying the phase �ow in time t of the Hamiltonian system ������� corresponding
to the Hamiltonian H� �the upper sign in �����
��� Thus� L��t� is the curve in R�

q�p

depending on the parameters �
�� 
�� and described by the parametric equations

x � x��x�� t�� q � q��x�� t� �������

�t is �xed�� where

�x��x�� t� � x��x�� �� t��

�q��x�� t� � q��x�� �� t�� is the solution of the Hamiltonian system ������� with the
initial data

x��x�� �� � x�� q��x�� �� � ��

Next� on the manifold L� we consider the nondegenerate real measure

�� � dx�

This measure is transferred by the Hamiltonian �ow to L��t� for each value of t� and
so we obtain the following measure ���t� on each L��t��

���t� � dx��

where x� is the parameter in the parametric representation ������� of L��t��

Now let K���
�L��t��	��t�� be the canonical operator with small parameter ��� on the

manifold L��t� with measure ���t�� Let ���x�� t� be an arbitrary smooth function� We
interpret x� as a coordinate on L��t� for each given t� and so we can regard ���x�� t�
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as a function on L��t�� thus we can apply the canonical operator K���
�L��t��	��t�� to it and

obtain a well�de�ned function

U��x� t� p� � K���
�L��t��	��t����� �������

�Again� the function U��x� t� �� depends also on the parameters 
�� 
�� 
�
� � 
�

� � ��
which we do not bother to write out explicitly�� Let us substitute the function �������
into Eq� �����
�� Since the family L��t� of Lagrangian manifolds is associated with the
Hamiltonian of Eq� �����
�� it follows from the general theory of the canonical operator
that ������ ��

�t�
� c�

�

� � i���

�

�x

	�

� 
�
�b

��x�

��U��x� t� ��

� �i���K���
�L��t��	��t��P��� modO������

where P� is the transport operator �

P��� � �
q
c��
� � q�� � b��x�
�

�

����L��t� �V �H������ ����
��

V �H�� being the derivative along the Hamiltonian vector �eld ������� corresponding
to the Hamiltonian H� in the extended phase space with coordinates �t� x� q�� In the
coordinates �x�� t�� one has

V �H���� �
���

�t
�x�� t�� ����
��

Remark ���� For general Hamiltonians� the transport operator involves the sum
V �H�� � F � where F is a smooth function computable from the Hamiltonian� rather
than the Hamiltonian vector �eld alone� The absence of the zero order term F in our
case is due to the fact that the operator in Eq� �����
� is self�adjoint�

Thus if we take ���x�� t� independent of t� ���x�� t� � ����x��� where ��� is an
arbitrarily given initial function� then we obtain������ ��

�t�
� c�

�

� � i���

�

�x

	�

� 
�
�b

��x�

��U��x� t� �� � O������

that is� the function ������� is an asymptotic solution of Eq� �����
� modulo O������
Now we can carry all the above constructions for the second Hamiltonian H� �the

lower sign in �����
��� thus obtaining a family L��t� of Lagrangian manifolds equipped
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with the measure ���t� and the corresponding canonical operator K���
�L��t��	��t��� This

canonical operator provides the second independent solution of Eq� �����
� modulo
O������ and now our task is to satisfy the two initial conditions ��������
To this end� we recall once again that for small t each of the Lagrangian manifolds

L��t� and L��t� can be covered by a single nonsingular chart� and accordingly� the
canonical operators for these t have the form

K���
�L��t��	��t���� � ei�S��������x�t�

h
J ����
� ��

i���
x��x���x�t�

� ����
��

where the S��
�� 
�� x� t� are the functions given by �����	� for 
 � �� x���x� t� is the
inverse function for x � x��x�� t� �see ��������� and J is the Jacobian

J� � J��x�� t� � �x��x�� t�
�x�

�

The continuous branch of the square root of J� in ����
�� is chosen such that
pJ�jt�� �

��
Now we take

! � K���
�L��	���� �K���

�L��	���� ����

�

and choose the functions ��jt�� and ��jt�� so as to satisfy the initial conditions ��������
Since

S�jt�� � �� �S�
�t

�����
t��

� �H��
�� 
�� x� �� � �
q
c�
�

� � b��x�
�
��

J�jt�� � J�jt�� � ��
we obtain

� � !jt�� � ���x� �� � ���x� ��� ����
��

� � !tjt�� � i�
q
c�
�

� � b��x�
�
�����x� ��� ���x� ��� �O������

We shall satisfy the initial conditions ����
�� in the leading term �the higher�order
terms will determine the initial conditions for the subsequent terms of the asymptotic
expansion of the solution� which we do not consider here�� Thus� we neglect O����� on
the right�hand side of the second equation in ����
�� and obtain

��jt�� � 
 i

�
q
c�p� � b��x���

����
	�

�we have taken into account the fact that �
� � p and �
� � ��� Now the functions
���x�� t� are determined by ����
	� and by the transport equation

�

�t
���x�� t� � �� ����

�
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which follows from ����
�������
��� and we obtain the asymptotic solution in the form
����

�� Finally� we take the operator ������� with the symbol ����

�� apply it to the
right�hand side of ����	� as in �����
� and use Duhamel�s principle ����
� to obtain the
asymptotic solution of the original problem ��������������� in the form

u�x� �� t� � �
tZ

�

!

�B�
�

�i �
�x

� ��
�
x� t� 


�CA ���x�r�
 �e�i�q����d
� ����
��

�We omit the Feynman index over �� singe � commutes with all other operators oc�
curring in ����
���� Here the symbol !�p� �� x� t� is given by formula ����

� with
the functions �� satisfying the transport equations ����

� and the initial conditions
����
	�� and the Lagrangian manifolds L��t�� as well as the measures ���t� on these
manifolds� were described in the preceding�

���	 Analysis of the Asymptotic Solution

Now we shall analyze the asymptotic solution ����
��� Note that� according to the

general formulas for functions of the operator bp � �i �
�x
� one has

�
f�

�
x�

�bp��� �x� � �
i

��

���� Z
eipxf�x� p� e��p� dp�

where e��p� � �
� i

��

���� Z
e�ipx��x� dx

is the Fourier transform of the function ��x�� Accordingly� we can rewrite ����
�� in
the form

u�x� �� t� � � �
��

tZ
�

�Z
��
!�p� �� x� t� 
 �r�
 �ei�px��q����d
 dp� ����
��

Next� let us assume that t is su�ciently small� so that the expression ����

� for !
via the canonical operators contains only nonsingular charts on the entire integration
interval 
 
 ��� t� in ����
��� Then ����
�� can be rewritten in the form

u�x� �� t� �
�

��i

tZ
�

�Z
��

n
ei�px��q����S��p�x���t����
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�
��J�

��c� �p � �S�

�x

	�

� ��b��x�

�A������ ����
��

�ei�px��q����S��p�x���t����

�
��J�

��c� �p � �S�
�x

	�

� ��b��x�

�A������ o r�
 � d
 dp�
�Here we have transformed the expression for the amplitude using the fact that the
Hamiltonians H� are constant along the trajectories of the corresponding Hamiltonian
systems��

Our analysis starts from the expression ����
��� First of all� let us discuss the model
case in which b�x� is independent of x� that is� b�x� � b � const � Then one can readily
compute the solutions of the Hamilton�Jacobi equations ������� with zero initial data�
Indeed� the Hamiltonians are independent of x� and hence the momentum is an integral
of the corresponding Hamiltonian systems�

q �
�S

�x
�

�S

�x

�����
t��

� ��

It follows that the Hamilton�Jacobi equation ������� becomes

�S

�t
�H��
�� 
�� x� �� � ��

or
�S

�t


q
c�
�

� � b�
�
� � �� �������

whence we obtain

S� � �t
q
c�
�

� � b�
�
��

Next� from the Hamiltonian system ������� we obtain

#x � 
 c�
�q
c�
�

� � b�
�
�

� x � x� 
 tc�
�q
c�
�

� � b�
�
�

�

and so the Jacobian is constant and never vanishes�

J� � �x�

�x�
� ��
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Thus� the solution ����
�� becomes

u�x� �� t� �
�

��i

tZ
�

�Z
��

ei�px��q����

�e�i�t���
p

c�p��b��� � ei�t���
p

c�p��b���

p
c�p� � b���

dp d


�
i

��

tZ
�

�Z
��

ei��kx�q����

�ei��t���
p
c�k��b� � e�i��t���

p
c�k��b�

p
c�b� � b�

dk d
�

where we have passed to the integration over the wave number k � p��� This just
coincides with the expression ����
� obtained for the solution of the model problem by
Lewis ����

Remark ���� This is just a mere occasion that the WKB method has produced the
exact solution in this case� This often happens for equations with constant coe�cients�
when the right�hand sides of higher�order transport equations vanish and one can
truncate the chain of transport equations after the �rst step� thus obtaining the exact
solution�

Now let us analyze the general case� in which the coe�cient b�x� determining the
plasma frequencymay be variable� We shall analyze the asymptotic solution by expand�
ing it in powers of ��� by the stationary phase method� which yields the asymptotics
of the wave �eld in regions that are of interest to us�

The expression ����
�� contains two terms� one corresponding to the Hamiltonian
H� and the second� to the Hamiltonian H�� We shall consider only the �rst term� the
second term can be analyzed in a similar way� Thus� we consider the integral

u��x� �� t� �
�

��i

tZ
�

�Z
��

ei�fkx�q����S��k�x���t���gs
J�

�
c�


k � �S�

�x

��
� b��x�

� dk d
 � �������

here we have again introduced the wave number k � p��� The integral ������� is taken
over the in�nite domain

f� � 
 � t� �� � k ��g�
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and the application of the stationary phase method ������� to it can be justi�ed if the
stationary points of the phase function

L�k� 
� t� x� � kx� q
 � S��k� x� �� t� 
 � �������

with respect to the variables �k� 
 � all lie in some bounded domain� If this is the case�
then we can use a partition of unity to reduce the integral ������� to an integral over a
bounded domain plus an integral over an in�nite domain where there are no stationary
points� The second integral is O������ which can be shown with the help of integration
by parts� and the �rst integral satis�es the conditions under which the stationary phase
method can be applied�
Thus we must analyze the stationary points of the phase ������� of the integral

�������� Since the integration domain has a boundary �
 � � and 
 � t�� we must take
into account two types of stationary points�

A� �Interior� stationary points� that is� points at which

�L

�k
�

�L

�

� ��

�Of course� it may happen that an interior stationary point lies on the boundary�
Then it gives half the usual contribution��

B� Boundary stationary points� These are points on the boundary 
 � � or 
 � t at
which

�L

�k
� ��

Let us analyze both types of stationary points� For S��k� x� �� t � 
 � we have the
expression

S��k� x� �� t� 
 � �����
�

�

��� �q
c�k� � b��x��

t��Z
�

�c�k�k � q�x�� ��� � b��x�x�� ����d�

�
�
x��x���x�t���

�

where the integral is taken over the trajectory of the Hamiltonian system corresponding
to H� issuing at � � � from the point x� and entering the point x at time � � t � 
 �
For interior stationary points� the equations read

�������
�L
�k

� x�
�S�

�q
�k� x� �� t� 
 � � ��

�L
�


� �q��
 �� �S�

�t
�k� x� �� t� 
 � � ��

�������
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Let us prove that system ������� has no solutions for jkj 	 K�� where K� is su�ciently
large� Since the function S��q� x� �� t� is �rst�order homogeneous in �q� ��� it follows
that system ������� can be rewritten in the form

x�
�S�

�q
��� x� ��k� t� 
 � � ��

�q��
 ��k � �S�

�t
��� x� ��k� t� 
 � � ��

In the limit as k ��� this system becomes

x�
�S�

�q
��� x� �� t� 
 � � ��

�S�

�t
��� x� �� t� 
 � � ��

However� straightforward veri�cation shows that

S���� x� �� t� 
 � � c�t� 
 ��

�Indeed� this corresponds to the values 
� � � and 
� � ��� Then #q � � in the
Hamiltonian system �����	�� and accordingly� q�t� � �� Thus �����
� is reduced to

S� �
�p
c�

t��Z
�

c�d� � c�t� 
 ��

as was shown above�
Hence we have

�S�

�t
��� x� �� t� 
 � � c �� �

and� by a continuity argument�

�S�

�t
�
�� x� 
�� t� 
 � �� �

for 
�
� � 
�

� � �� 
� being su�ciently small� It remains to note that k � 
��
��
Now let us study the boundary stationary points� At these points� one must have

�L

�k
� x

�S�

�q
�k� x� �� t� 
 � � � �����	�

and either 
 � � or 
 � t� For 
 � t� we have S� � � and

�S�

�q
� ��
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and so �����	� implies x � �� Thus� the only case in which there are boundary sta�
tionary points on the surface 
 � t is when we are at the location of the source� This
stationary points exists for all k and hence is degenerate� we see that the stationary
phase method does not apply for x � �� But for x �� � there are no stationary points
at all� Now let us consider the surface 
 � �� To �nd out whether there are stationary
points for large k� which would prevent us from applying the stationary phase method�
we again pass to the limit as k ��� Straightforward computation shows that

lim
k��

�S

�q
�k� x� �� t� 
 � � c�t� 
 ��

and so the limit equation obtained from �����	� reads� for 
 � ��

x� ct � �� �����
�

Accordingly� if x does not lie on the light cone� x 
 ct � �� then all boundary
stationary points lie in a bounded domain� We have proved the following theorem�

Theorem ���� The stationary phase method can be applied to the expression ����
��
of the solution u�x� �� t� of problem �����������
� provided that x �� � and x does not

lie on the light cone x
 ct � ��

For x satisfying the assumptions of the theorem� we can proceed with the application
of the stationary phase method�
Then the following situations can occur�

��� The integral ������� has an interior stationary point k � k�x�� 
 � 
 �x�� This
corresponds to the so�called illuminated region� The asymptotics has the form

u��x� �� t� � ���ei�L�k�x��x���t���x��a�x� �O���	����

where a�x� is some amplitude factor determined by the second derivatives of L at the
stationary point and by the Jacobian�

�
�� The integral ������� has no interior stationary points but has a boundary sta�

tionary point� In this case�

u��x� �� t� � ��	��
ei�L�k�x��x���t�a�x�

�L

�t
�k�x�� x� �� t�

�O������ �������

where k � k�x� is the equation of the boundary stationary point at 
 � � and a�x� is
de�ned in the same way as in �����
�� We see that the intensity of the wave �eld is

�For S
�

� Eq� ������� becomes x� ct 	 
�
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by a factor of ���� less than in the preceding case� This is the so�called umbral region�
and formula ������� describes the contribution of transient rays� The factor

� �
�

�L

�t
�k�x�� x� �� t�

�
�q

c�k� � b���� � q����

is known as the di�raction coe�cient� Traditionally� it is represented in the form

� �
�


s � 
�
�

where 
� � q���� is the instantaneous frequency of the source �ar t � �� and 
s �q
c�k� � b���� is the frequency corresponding to the given transient ray�

�
�� The inner stationary point and the boundary stationary point merge� In this

case� the boundary stationary point is necessarily degenerate� We do not consider
this more complicated case but point out that the asymptotic expansion can also be
obtained by a sharpened version of the stationary phase method� which can be found
in ����

��� There are neither interior nor boundary stationary points� In this case� the point
x lies in the deep shadow region� where there are no forerunners or the main �eld� and
the solution is exponentially small as ���� Note that the exponential �rather than
the power�law� decay of the solution must be proved by completely di�erent methods�

Thus we have completed the asymptotic analysis of the simplest cases for the so�
lution of the equation describing the propagation of electromagnetic waves in plasma�
For large t� where the solution is given by the general canonical operator involving
singular charts� the analysis of the solution is more complicated� but the results are
physically the same�



BIBLIOGRAPHY �


Bibliography

��� R�M� Lewis� Asymptotic Theory of Transients� Pt� �� Pergamon Press� New York�
��
��

��� V�P� Maslov� Operator methods� Nauka� Moscow� ���
� �Russian�� English transl��
Operational methods� Mir� Moscow� ���
�

�
� V� P� Maslov� Nonstandard characteristics in asymptotic problems� Russian Math�

Surveys� �
� No� 
� ���
� �����

��� V� Maslov and V� Nazaikinskii� Algebras with general commutation relations and
their applications� I� Pseudodi�erential equations with increasing coe�cients� J�

Soviet Math�� ��� No� 
� ����� ��
���
�

�	� V� Nazaikinskii� B� Sternin� and V� Shatalov� Introduction to Maslov�s operational
method �noncommutative analysis and di�erential equations�� In Global Analysis

 Studies and Applications V� number �	�� in Lecture Notes in Math�� ����� pages
������ Springer�Verlag� Berlin�Heidelberg�New York�

�
� V� Nazaikinskii� B� Sternin� and V� Shatalov� Methods of Noncommutative Analysis�

Theory and Applications� Mathematical Studies� Walter de Gruyter Publishers�
Berlin�New York� ���	�

��� M� V� Fedoryuk� The Saddle�Point Method� Nauka� Moscow� ����� �Russian��

Potsdam


	Chapter 11: Noncommutative Analysis and High-Frequency Asymptotics
	11.1 Statement of the Problem
	11.2 Mixed Asymptotics: the General Scheme
	11.3 The Asymptotic Solution of Main Problem
	11.4 Analysis of the Asymptotic Solution
	Bibliography


