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Chapter 3

Applications of
Noncommutative Analysis to
Operator Algebras on
Singular Manifolds

3.1 Statement of the problem

In this chapter, we show how noncommutative analysis can be used to
construct and study algebras of pseudodifferential operators on man-
ifolds with singularities. Operator algebras are an important aspect
in the theory of differential equations and elliptic theory on singular
manifolds, and the theory of such algebras was comprehensively devel-
oped in [9], where the reader can also find an extensive literature on
the topic of manifolds with singularities, of course not limited just to
this one aspect. Here we restrict ourselves to manifolds with isolated
singularities of one of the following types: conical singular points and
cusps (of integer order). In general, noncommutative analysis permits
one to consider operator algebras on much more general spaces, but
we prefer to avoid technicalities and concentrate at the essential points
instead.

First of all, let us explain what manifolds with singularities are
and state the main problem, whose solution will be described in the
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4  CHAPTER 3. APPLICATIONS TO OPERATOR ALGEBRAS

subsequent exposition. This is the subject of the present section.

A manifold with isolated singularities is an object that looks like a
usual smooth manifold everywhere except for a discrete set of isolated
points. (Usually one deals with compact manifolds, and the discrete
set is actually finite.) Let us transform this fuzzy description into a
rigorous definition. It is convenient to give a two-step definition. At
the first step, we just define the notion of manifold with singularities
taking no care of what type these singularities are; at the second step,
we supply relevant information determining the type (a cone or a cusp
of specific order).

Definition 1 A manifold with singularities is a Hausdorff topological
space M with distinguished singular points oq,...,any € M and with
the following additional structures:

(1) the structure of a smooth manifold on
M= M\{ai,...,an}; (3.1)

(2) the “direct product” structure

U]‘ = Q]‘ X [0,1)/Q] X {0} (32)

in some neighborhood U; of each point «;, where Q; is a smooth com-
pact manifold without boundary and the quotient implies that all points
of the form (w,0) € Q; x [0,1) are identified with one another, so that
the space (3.2) looks like a cone (see Fig. 3.1), with the singular point «;
being just the vertex of the cone, o; = Q; x{0}. It is moreover assumed
that the smooth structure naturally existing on the direct product

U= % (0,1) = U\ {a,}

is compatible with the smooth structure on ]\04

Thus, the definition says that each singular point has a neighbor-
hood that looks like a cone. We point out that (3.2) is just a topological
isomorphism and does not provide any information about the type of
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[0,1)

Figure 3.1: The neighborhood U; of a singular point

(a) (€)

Figure 3.2: Topologically, a cusp (a) and a cone (b) with the same base
) are equivalent (i.e. isomorphic). The isomorphism can be chosen in
a way such that it respects the smooth structure outside the singular
point
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the singular point. (Topologically, cusps and cones are equivalent; see
Fig. 3.2).

Now let us specify the type of singular points. This can be done
in many various ways, e.g., by considering embeddings of M in Eu-
clidean space or metrics on M degenerating at the singular points in
a prescribed way, but the most direct method is as follows. Since our
ultimate goal is to deal with differential equations on M, let us de-
scribe the type of singularity of M in terms of the supply of differential
operators that will be considered on M.

More precisely, in the “smooth” part of M our differential operators
may be arbitrary (except they must have smooth coefficients), whereas
the behavior near the singular points must be controlled in a certain
way. This method was described in [9].

Definition 2 Let M be a manifold with singularities ay,...,an. A
type of singularity is a ring D of differential operators on M such that
@A € D for any differential operator A with smooth coefficients on M

and any function ¢ € CgO(z\?)

We consider only conical singularities and cuspidal singularities of
integer order k > 1. While conical singularities and cuspidal singulari-
ties are substantily different in many respects, cuspidal singularities of
various orders prove to be very much alike, and so we essentially deal
with two distinct types of singularity.

Consider the ring Dy(M) of differential operators A that have the
following form in the neighborhood U; (3.2) of each singular point:

A= ar) (irg)j, (3.3)

where the a;(r) are differential operators with C'*° coefficients on €,
smoothly depending on the parameter r € [0,1) (up to the point r =
0). In other words, A exhibits Fuchs type degeneration at the conical
points.

Definition 3 A manifold M with isolated singularities aq, .. ., ayx equipped
with the ring Do(M) is called a manifold with conical singularities.
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Now let & > 1 be an integer. We consider the ring Dy(M) of
differential operators of the form

A=Yar) (n“l%)j (3.4)

in the neighborhoods U; of the singular points o, j =1,..., N. Here
the a;(r) satisfy the same conditions as in the preceding definition.

Definition 4 A manifold M with isolated singularities equipped with

the ring Dy (M) is called a manifold with cuspidal singularities of order
k.

We refer the interested reader to [9] for the geometric motivation of
these definitions as well as for an extended discussion of various other
types of singularities.

The ring Dy (M) will be referred to as the structure ring of the sin-
gularity. The theory of differential equations on a manifold with singu-
larities deals with operators belonging to the structure ring. However,
it is well known (even in the theory of differential equations on smooth
manifolds) that considering only differential operators is not sufficient.
For example, parametrices (almost inverses) of elliptic differential oper-
ators are pseudodifferential rather than differential operators. Thus, the
problem is to extend the structure ring Dy (M) to an algebra PSDy(M)
of pseudodifferential operators corresponding to the prescribed type of
behavior near the singular points. Just as in the usual theory of pseu-
dodifferential operators, this task is essentially local: we can construct
pseudodifferential operators in coordinate charts and then patch the lo-
cal definitions together using partitions of unity. Now that we consider
a singular manifold M, the construction of pseudodifferential operators
in the interior of M is clear in that it coincides with the usual one (e.g.,
see [2]-[5]). Accordingly, our attention will be focused on local models
near singular points. The idea of the construction is quite obvious:
since admissible differential operators have the form

1

A=A %,@'rkﬂg : (3.5)

7



8 CHAPTER 3. APPLICATIONS TO OPERATOR ALGEBRAS

where the operator-valued symbol

A(r,p) = > ai(r)p’ (3.6)

ljl<m

is polynomial in p, we shall construct admissible pseudodifferential op-
erators in the same form (3.5) but extend the class of symbols beyond
polynomials. This is where noncommutative analysis works. To carry
out the construction rigorously, we must do the following.

o Describe the operator algebra to which our would-be pseudodif-
ferential operators will belong. (This will be the algebra of con-
tinuous operators in an appropriate scale of Hilbert spaces.)

e Describe the admissible class of symbols.

e Prove that the operators

, 0
it —

’ or

7

are generators in this class of symbols.

e Finally, study whether operators with symbols of this class form
an algebra.

To this end, one uses the theory of ordered representations, which
supplies the composition law in terms of symbols as a by-product.

Let us proceed to the implementation of the above program. The
first two items actually belong in the statement of the problem and are
considered in this section.

A. Function spaces. The choice of function spaces in which the oper-
ators to be constructed will act is a matter of crucial importance in that
it affects all subsequent constructions and, if made wrongly, renders all
the theory irrelevant. This choice has to be motivated from within the
theory of differential equations itself. (Roughly speaking, these spaces
must include solutions of the differential equations to be considered.)
Fortunately, the problem of the appropriate choice of function spaces
has been solved long ago. We refer the reader to [9] and the literature
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cited therein for the motivations, which in particular include a study
of the asymptotics of solutions, and present here only the outcome, i.e.
the definitions of function spaces. It is convenient to describe these
spaces separately for k = 0 (conical singularities) and k& = 1 (cuspidal
singularities).

The case of conical singularities. Here our operators will act
in the scales { H*7(M)} of weighted Sobolev spaces on M, where s € R
is the smoothness index and v € R is a given weight exponent of the
scale. Thus, for each given v € R we have a scale of Hilbert spaces
with index s verying from —oo to co. The space H*Y(M) is defined

as the completion of the space C;;O(z\?) of smooth compactly supported

functions on ]\04 with respect to the norm

N
lullsy = D lejullsy + Meoulls, (3.7)
7=1
N . . . . .
where 1 = 3}~ ¢; is a smooth partition of unity on M subordinate to
7=0
the cover .
M=pmuUlU;U...UUy, (3.8)

|leou||s is the usual Sobolev norm of order s on M (since the support
of e¢ is compact, the specific choice of || - ||s is irrelevant up to an
equivalence of norms), and the norm ||e;jul|s~ is the weighted Sobolev
norm on the model cone

[(]‘ = [0,00) X Q]/{O} X Q]‘, (39)

defined as follows:

s/2 2

o]l = 7/ (1 - (r%)z — AQ) (r~v) dw%. (3.10)

Here we (arbitrarily) equip € with some smooth Riemannian metric
and associated volume element dw, and Agq is the Beltrami-Laplace
operator on {1 corresponding to this metric. The function e;u can
be interpreted, by virtue of the isomorphism (3.2), as a function on
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[0,1) x ©;/{0} x ©Q; and hence on the model cone K;. The extension
to the entire half-line r € [0, 00) is made for convenience: the point is

a 2

is essentially self-adjoint in

that the operator

L? (Q, ﬂdw X [0,00))
r
(but not in
d
12 (Q < [0,1), —rdw) :
r

where one would be forced to pose some boundary condition at r = 1)
and is also positive, so that all real powers

o\2
are well defined.

The parameter of the scale {H*7(M)}ser is s € R, whereas the
weight exponent v is specific problems is chosen in some way and then
is assumed to be fixed. We note the isomorphisms

H°(M) £ H*"(M) (3.11)

given by the nultiplication by ¢7, where ¢ is an arbitrary smooth func-

tion on ]\04 with the following properties:
(i) ¢ > 0 everewhere on M ;

(ii) ¢ = r in each [}j,jzl,...,N.

In view of these isomorphisms, in what follows we consider only the case
v = 0 and denote the corresponding spaces by H*(M) = H*°(M). This
saves us one superscript in notation without any loss of generality, and
an additional advantage is that all our symbols now need to be defined
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only for real values of the arguments (later we shall clarify this). The
norm in H*(M) will be denoted by || - 5.

Thus, the operator algebra Ay in which we construct our pseudod-
ifferential operators in the conical case is just the algebra of continuous
operators in the scale {H*(M)}: an operator A belongs to Ay if there
exists an m € R such that

A HY(M) — H=™(M) (3.12)

is continuous for all s € R. (Recall that when defining a continuous
operator acting in a scale of spaces, one has two possibilities. First, one
can consider a linear operator

A JHN(M) = | B (M) (3.13)

such that the restriction of A to each H® gives a continuous operator
in the spaces (3.12).
Second, one can take a linear operator

A: CR(M)(H* (M)

such that
[[Au|[s—m < Cyllulls, v € Cg7(M),

for every s € R and then extend A by continuity to the entire H*(M)
for each s. The extensons agree with each other and hence define a
linear operator satisfying the estimates (3.12). Both methods give the
same supply of operators.)

The case of cuspidal singularities. The passage from the global to
the local definition of weighted Sobolev spaces H;' (M) on manifolds
with cuspidal singularities of order & > 1 is pretty much the same as
for manifolds with conical singularities. However, the definition of the
“local” norm on the cone K is different. Naively, one would write
something like

2

2 [ ki1 0 : o oy dr
Iellou [ [1{1=("155) =aa) ) dog g
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but this has to be interpreted somehow, for the operator

2
1 — (Tk-l_l%) — AQ

is not essentially self-adjoint in

dr
2 e
L ([X]‘, de) R

but is only symmetric. This is actually due to the fact that the trajec-
tories of the vector field 5
Ght1 9
ar
on the half-line R, exit to infinity (r = +00) in finite time. Hence we
must use a definition different from (3.14). Note that the operator

0
irk""l—r
can be represented in the form
it — = B p By (3.15)
ar k ’ '

where By, is the kth-order Borel-Laplace transform

Be(p) = 7exp (22) ur)-sr (3.16)

and Bk_l is the inverse transform

ooty

i
Bl = [ e (k) i) dn (3.17)
—oco+1y
Thus, the operator
irk"'lg

or
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is similar with the help of B to the operator of multiplication by p.
Next, routine computations show that

oy AT dw
kAL

By: L? (Qj x [0,00), e ) — L*(Q; x L), (3.18)

where £, = {p € C|Imp = ~} is the weight line corresponding to
the weight exponent v, is an isometric embedding (but not an isomor-
phism). In view of all these considerations, we define the norm ||v||s.x
as follows:

loanal 2= [ 10+ bl = Aa)P2(Buv) w,p) Pdwdp. (3.19)

5 L4

Naturally, for integer s/2 this expression is the same as (3.14). Again,
using obvious isomorphisms, in the following we only consider the case
in which the weight exponent is zero. The corresponding spaces will be
denoted by H;(M), and we often even omit the subscript k if it is clear
from the context.

Remark 1 Since the globalization procedure is fairly standard and is
described very well in any good textbook on pseudodifferential opera-
tors, we work only on the model cone (or cusp)

[(]‘ = Q]‘ X [0,00)/Q] X {0} (320)

in the remaining part of this chapter (except for Section 3.4) and study
algebras of pseudodifferential operators on K ;. Another somewhat sub-
tle point is localization on ;. To avoid technical complications and
clarify the exposition, we work in local coordinates on {2 and do not
paste the local representations together. So in fact we pretend that
Q0 = R"! (noncompact!) but all our operators have symbols that are
compactly supported in w € ) or at least decay sufficiently rapidly as
w — 0o wherever necessary.

C. Symbol classes. Undoubtedly, the symbol class that is the most
convenient for the use in applications of noncommutative analysis is
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S°°(R™). Recall that it consists of functions f(y), y € R", satisfying
the estimates

S < Call+ D™, ol = 0,12, (3.21)

with some m = m(f) (see Chapter 1 for the definition of convergence
in S*(R")). However, when one deals with pseudodifferential opera-
tors, the dependence of their symbols on the spatial variables is usually
assumed to be uniform (no growth at infinity with respect to the spa-
tial variables), and moreover, operators whose symbols do grow with
respect to the spatial variables are not bounded in the spaces in ques-
tions, that is, do not belong to the algebra. This pertains to manifolds
with singularities as well. To consider such operator algebras and sym-
bol classes within the framework of noncommutative analysis conve-
niently, we slightly extend the definition of functions of noncommuting
operators by allowing the symbols themselves to be operator-valued.
Let us describe this extension. Let A be complete operator algebra
with convergence, and let F be a symbol class. Next, let B C A be a
closed subalgebra. (In the applications considered in this chapter, B is
commutative, but one need not assume this in the general definition.)
We define classes of B-valued n-ary symbols as

def

BF, ¥ Borin=BoFo... 0F (3.22)
—_——————

n copies

(here the projective tensor product @ is used; see the explanations
in Chapter 1). Now if f € BJF, is a symbol and Ai,..., A, are F-

generators, then we define the operator

~ nt+l 1

F=1 (A, A) (3.23)
in a natural way: if f is factorable,
f=Bofi...0f, (3.24)

BeB, fjeA j=1,...,N, then we set

A = Bo LA @ o (A, (3.25)
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(The place occupied by B in the product changes appropriately if we
assign a different Feynman index to the symbol f). With this more
general definition, the main theorem of Chapter 2, which expresses
the composition law in terms of symbols via ordered representation

1 n
operators remains valid. Namely, let Ay,..., A, be a given tuple of
F-generators in A, and supose that there exist operators

l;: BF, — BF, (3.26)
such that
n+1l 1 n n+l 1 n

Al f (Ao A = (L)AL, -0, An). (3.27)
Then
n+l 1 n nt+l 1 n nt+ln4l 1 n 1 n
[[f (Alv"'vAn)]][[g (Alv"'vAN)]]: [[ f (llv'"7ZN)(9)]](A17"'7A71)

(3.28)

for polynomial symbols f and arbitrary symbols ¢, and even for arbi-
trary f and ¢ provided that the [; are F-generators. The proof mutatis
mutandis reproduces the proof of the corresponding theorem in Chap-
ter 2.

With this definition, we shall approach pseudodifferential operators.
Namely, we shall consider operators of the form

1 1
f=f (%,é,@'ra ¢a> (3.29)
in the conical case and
o o
f=7f (?«,é,@'rk“ @> (3.30)

in the case of cusps of order k (the form of operator arguments will be
slightly modified), where the symbols f(r,w, p, q) satisfy the estimates

[ (rw,p )l < Capas(L+ Ipl + )™, (3.31)

ol + 181+ Iy + 6] = 0, 1,2,
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and we shall often use the following interpretation of this, which is in
line with the above extended definition of functions of noncommuting
operators.

Consider the algebra B of functions ¢(r,w) bounded together with
all derivatives. It is naturally interpreted as a subalgebra of the alge-
bra A of continuous operators in the scale {Hs(j&v’])} (g(r,w) is iden-
tified with the operator of multiplication by ¢(r,w)). Then each sym-
bol f(r,w,p,q) satisfying (3.31) can be interpreted as an element F' &
BS=(R},) as follows:

[F(p, @)](r,w) = f(r,w, p,q). (3.32)

Now we set

1 1 1 1
T BT A )
f (r,w,zr pR Z&u) =F (zr o "o | (3.33)

We note that if both sides of (3.33) can be defined independently, then
the equality still takes place. In the following, we use the notation

but understand this as a function

1 1
(o o0
r (zr or’ Z&u)

with an operator-valued symbol. This will not lead to errors or misun-
derstanding.

Let us summarize our task. We wish to extend the structure rings
Dk(j&v’) of differential operators of the form (3.3) (or (3.4)) to wider sets
of pseudodifferential operators of the form (3.29) (respectively, (3.30))
with symbols f satisfying the estimates (3.31). (This symbol space will
be denoted by S%° or by B.S*, depending on whether f is interpreted
as an ordinary function or an operator-valued symbol.) We intend
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to study whether these wider sets of pseudodifferential operators are
algebras and, if so, find the corresponding composition laws. This is
done in Section 3.3 for the case of cusps. In Section 3.4 we apply the
results to construct regularizers for elliptic elements and to prove the
finiteness theorem (the Fredholm property).

3.2 Operators on the Model Cone

Here we shall consider operators of the form
F=F|rd, —i— it —|, (3.34)
w

where f € S%(Ry x Q x R ), in the scale of spaces H*(Ry x Q)
(from now on, we omit the subscript j on Q).

First, let us note that if we wish that the set of operators of the
form (3.34) be an algebra then some modification is obviously needed.
Indeed, let

hilr,w,p.q) =p,

fa(r,w,p,q) = sin r.
Then the product fl ]?2 is
0

fifo=tr—sinr=sinr-ir—41rcosr =h,

or or

(3.35)

where h(r,w,p,q) = p sin r + ir cos r exhibits growth as r — oo, that
is, h & 59, The first idea is to allow symbols growing as r — oo, that
is, consider the standard symbol class S*(Ry x Q x R} ). However,
the operators

e,
ir—

or

and r cannot be simultaneously generators for this symbol class. This
is shown by the following reductio ad absurdum argument (see [6]).

Suppose that both
.0
ir—

or
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and r are S*-generators. Consider the symbols

fla,y) =2 —y—1,

1

g(z,y) = (v —y—1)~" (3.56)

Both symbols are S, and fg = 1. Thus

90 o
2 . . . .
r=rf (zrar,zrar) g (zrar,zrar) . (3.37)

Moving indices apart, we obtain

3 1 4 0
I PR T P
r = zrar,zrar g zrar,@rar .

Now we can isolate the middle factor in this expression and write

3 1 4 0
29 .0 .0 .0 .0
r=[rf (@rar,lrar) lg (““ara“"ar) : (3.38)

Now this factor is

3 1
2 .0 .0 ) .
r f (@rar,zrar> = [ZTE,T] — 1 = 0, (339)

and by substituting this into (3.38) we arrive at a contradiction: r = 0.

We see that the idea of extending the symbol class by allowing sym-
bols growing in r does not make sense. But we have a different option:
let us modify the definition of the operators themselves! Namely, let us
replace the operator

e,
ir—

or
by
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where

r, 0<r<1/2, 510
r) = :
() L or>l, (3.40)

Y

and moreover, ¢(r) is real-valued and vanishes nowhere except for r =
0.

From the viewpoint of applications, this is adequate, since the op-
erators on the model cone actually model the behavior of the operators
on manifolds with the corresponding singularities only near the point
r = 0. In a neighborhood of the point r = oo, we can choose the behav-
ior of our operators from the viewpoint of convenience. Using the new
operator, we accordingly modify the definition of the Sobolev spaces
H*(K) near r = oo. Now we define the norm by setting

2

0o 2 5/2
||u||5:// (1—(99@)%) —AQ) u dw(;é;). (3.41)

The operator
9\?
1 - (@(T)E) — Aq

is essentially self-adjoint and positive in

—~ d
L2 (K, dwo2" ) :
w(r)
so that arbitrary real powers of this operator are well defined.
Consequently, so are the spaces H*(K') with the new norm (3.41).

As follows from (3.7), only the norm of elements u supported in
the interval r € [0, R] with some finite R is essential when we pass to

Sobolev spaces on M. (Without loss of generality, we can assume that
R < 1/2.) We claim that, for given R, the norm (3.41) is equivalent
to the norm (3.10) (with v = 0) on the set of functions u supported in
Qx[0, R]. This is obvious if s = 2{ > 0 is an even positive number, since
in this case the operators occurring in the de finitions of the norms are
differential and (3.41) coincides with (3.10) for such functions u. To
prove the desired equivalence for arbitrary s, we proceed as follows.
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Let us denote the Sobolev space with the norm (3.10) (for v = 0) by
H: 4 (K). Let 9(r) be a smooth function such that

_ 17 TSR7
v = 0, r>1/2.

We claim that the operator of multiplication by (r) is continuous in
the spaces

o)+ Hiy(R) = H(E), (3.42)

O(r) « H(K) = Hj(K) (3.43)

for s = 21,1 € Z. Indeed, consider, for example, the mapping (3.42).
It can be decomposed as

Hy(K) % Hao(K) 0 {suppu € 0,1/2) x Q) — H*(K).

The operator of multiplication by ) is bounded in Hjld(j&’v’), since ¥ is
bounded together with all derivatives (see Lemma 5 below), the second
arrow in this deomposition is just an isometric embedding. The same
reasoning pertains to the mapping (3.43). By interpolation theiry of
linear operators in Hilbert scales, the operators (3.42) and (3.43) are
continuous for every real s > 0. But ¢u = w if supp v C Q x [0, R],
and hence we find that

S| lullsoa < Jlulls < Csllullsor, s =0 (3.44)

with some constants Cs,¢; > 0. To prove that (3.44) remains valid
for s < 0, we use the duality between Hs(j&v’) and H‘S(T&;), as well as
between Hgld(f&;) and H&j(i&:), given by the L? inner product. Let < 0,
and let u be supported in Q x [0, R]. Then

—1
fall = e, 1l = { i -}

IIxll—s= xou)||=1

and similarly for ||u||soa. We claim that, up to equivalence, it sufficies
to take the minimum over elements y supported in [0, R]. Indeed, we
have

(s u) = (dx; u),
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and so this assertion is obvious. But for these y we have the equivalence
[IxI1=5 ~ |[x[[-s,01d; and hence we imply that [[u[|s ~ [|ul[sc1d-

Now we intend to define functions of the class S%*(K x R")

BSOO(K’) of the operators uzj, P (occurring only as arguments with respect

to which the symbols are bounded) and

1 1
i
Zauj,ﬂp r ar .

To prove that these functions are well defined, we state the following
two lemmas.

Lemma 5 The algebra B of operators of multiplication by functions
f(w,r) bounded together with all derivatives is a closed subalgebra of
the algebra A of bounded operators in the scale H*(K') of Hilbert spaces
with the norm (3.41).

Lemma 6 The operators

.0
i

Ow

and

) 0
W(T)g

are S -generators in A.

Proof of Lemma 5. We shall actually prove more. Namely, we claim
that for any f(w,r) € B the operator of multiplication by f is bounded
in the spaces

flw,r): H(K) = H*(K) (3.45)

for every s € R. First, let us prove this for nonnegative integer s. For
these s, there is an equivalence of norms

ou

Ju
foll~ fulcs-+ 54|+ [lotrr (3.4

s—1 s—1

We proceed by induction over s. For s = 0 the operator (3.45) is
obviously bounded (this is the operator of multiplication by a bounded
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function in L?). Now let the desired assertion be valid for all s < s.
For s = 55 + 1 we have

A fu) I fu)
A T e R e
0 0
< ||fu||“"‘1+Ha_f'“ +Hf—u (3.47)
w s—1 aw s—1
af Ju
+HW>$'“ 5_1+‘f g
Since the derivatives
af
Ow
and of
@(T)E

also belong to B, it follows from the induction assumption that the
right-hand side of (3.47) does not exceed

ou

+ “¢(T)E ) < const ||ulls.  (3.48)

Ju
const | ||ulls—1 + ||z
Ow

s—1 s—1

Thus we have proved (3.45) for nonnegative integer s, and (3.45) for
arbitrary nonnegative s now follows by interpolation theory. Next, let
s be negative. Without loss of generality, we can assume that f(w,r)
is real-valued. Then the operator of multiplication by f(w,r) is self-
adjoint in
H® = [? (i{ d—rdw) ,
w(r)

and the desired estimate follows readily from the fact that H® and H~*°
are dual with respect to the pairing defined by the H°inner product.
The proof of Lemma 5 is complete.

Proof of Lemma 6. To prove this lemma, we use the following well-
known criterion for an element A of an algebra A with convergence to
be an S*-generator:
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Proposition 7 ([8], Theorem IV.3 and Corollary IV.1) An oper-
ator A is an S*-generator if and only if it is a generator of a tempered

one-parameter group ¢t € A (that is, a group that grows ast — +00

at most polynomially in t together with all of its derivatives).

For the detailed proof of this proposition, we refer the reader to
[8], Chapter III. Here we only give a brief explanation of why this
proposition is true. Suppose that A is an S*-generator. This means
that there is a continuous homomorphism

p: SYR)— A (3.49)
such that u(x) = A. For any k, the mapping
i R = S™(R),  u(t) = (iz)*e'™, (3.50)

is continuously differentiable and of has most polynomial growth at
infinity. Combining this with (3.49), we find that

Pul(A) = (%) () (351)

is of tempered growth.
Conversely, if all ¢;(A) are of tempered growth, then the mapping
(3.49) can be defined by the formula

i

~om

p(f) = o= [ fwar, (3.52)

where f(t) is the Fourier transform of f. Under our assumptions, one
can justify the convergence of the integral (3.52) in suitably chosen
seminorms. Thus, all we need to show when proving Lemma 6 is that
the operators

.0
i

Ow

and

) 0
W(T)g
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generate groups of tempered growth in the spaces Hs(f&:) This is
however obvious, since both operators commute with

(1 - (@(T)%)z _ AQ) /2

for arbitrary s and consequently are self-adjoint not only for s = 0,
but also for arbitrary s. Accordingly, the groups generated by these
operators are unitary, which completes the proof of the lemma.

Let us summarize our results obtained so far in the form of a theo-
rem.

Theorem 8 For any symbol [ € SO’OO(R; x R"™), the operator
1 1
g .0

~

2 2 .
f=F|rwr

is well defined and belongs to the algebra A of bounded operators in the
scale {H?(K)}ser. In other words, there exists an m € R such that

fr HY(K)— H="(K) (3.54)
is bounded for any s € R.

This theorem does not relate the order k& of growth of f as [p| +
lq| = oo with the order m of the corresponding operator f in the
scale {H*(K)}ser. For general symbols f € S%°(K x R"), it is easy
to obtain a coarse estimate m < k +n + ¢ for any ¢ > 0 (cf. [8],
Theorem IV.5), but proving anything beyon that would be extremely
hard. However, one can say something more precise about the order of
an operator f with “classical” symbol

fe L™K xR") C §%°(K x R"),
where Lm(f&; x R"™) is the space of symbols f(r,w,p,q) satisfying the
estimates

£ (0w pg)| < Cagas(L+ [pl + )™ 1L (3.55)
lal, 8], 171,161 = 0,1,2,....
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Theorem 9 The operator

1 1
= 22 . 0 0
f = f (T,CU?ZTaT Zauj)
with symbol f satisfying the estimates (3.55) is bounded in the spaces

f: H(K)— H™(K). (3.56)

In other words, the order of the operator does not exceed the order of
its symbol.

Proof. We prove this theorem by reducing it to a special case of
Theorems I1.14 and IV.6 in [8]. To this end, we proceed from the cone
to a more suitable space, namely, a cylinder.

Let us consider the change of variables r = r(7) specified by the
solution of the Cauchy problem for the ordinary differential equation

{ F=—el) (3.57)

T|7—:0 =1.

The solutions of the Cauchy problem (3.57) are globally defined on R;
by virtue of (3.40), one has

r(t) = —7 4+ const, 7 <0, (3.58)
r(t) =const e 7, 7 >>0. (3.59)
This change of variables takes K to the infinite cylinder (—o0, 00) x §
with coordinates (7,w) and the operator
0
ip(r)

to
0
—7—.

or’

The spaces Hs(j&v’) become the usual Sobolev spaces on (—oo,00) x §

s/2
(1 — V= — AQ) u

with the norm

k= [ |

—0 Q

2

dr dw. (3.60)
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Finally, the symbol

g(m,w,p,q) = f(r(7),w,p,q) (3.61)
satisfies the same uniform estimates
190 (7,0, p, @) < Capas(1+ |pl + [g]) PV (3.62)

in the new variables, since all derivatives
I*r
ok
are bounded on the entire axis. Now one has to prove that the operator
1 1
22 .0 .0
g| 7,0, —1 —1

or’ ow

with symbol satisfying the estimates (3.62) is bounded (of order < m)
in the spaces with the norms (3.60), but this is fairly standard. One
version of proof can be found, say, in [8], Theorems I1.14 and IV.6. The
proof of Theorem 9 is complete.

Now we proceed to our main question: Is the set of operators (3.53)
with symbols f € SO=(K x R"™) an algebra?

Noncommutative analysis gives the right tools to answer this ques-
tion. Namely, the problem is reduced to constructing an ordered rep-
resentation of the operators
1 1
L0 . 0

P, i i (r)=
T 9w N o

and studying properties.
By virtue of the results of Chapter 2, we have the following equiva-
lence (with some subtle points to be revealed later on in our exposition):

Functions with symbols f € The n-tuple A has operators of
left ordered representation [ =

1
Fn 075 operators A = (/A (l1,...,1,), and these operators are
;---y An) € Aform an algebra F-generators in F,.



3.2. OPERATORS ON THE MODEL CONE 27

Thus we proceed to the construction of left ordered representation
operators. According to our more general setting (see the discussion
of operator-valued symbols at the end of in Section 3.1), we seek for

operators
l_ia/aw : BSOO(Rn) — fSOO(Rn), (363)
[+ BS®R")— BS™(R") (3.64)
such that
2 o o 9 N
E——— . . . 2 . .
({ia/out") (up(r)ar,zaw> = _Z_w[[F (up(r)ar,zaw)]] (3.65)
and

r r

1 1 1 1
2
I (som;ai) = iplr) b (wmj,ii)ﬂ. (3.66)
(Note that [_;5/4, is actually a vector operator with n — 1 components,

[—iv)50 = (I=i9)001s - > l—i0)0wn_1 )

In more customary notation, (3.65) and (3.66) can be rewritten as

1 1 1 1
2 2 . 0 .0 .0 2 2 . 0 .0
(l—ia/awf) (T’M’W(T)ar’l@w) = _Za_w[[f (T’M’W(T)ar’l@w)ﬂ’

(3.67)
o 9 (s o 9
2 2 . . . . .
lf rvwvlg‘o(r)gv_la_w _ZS‘Q(T)E[[F rvwlg‘o(r)av_la_w ]]7
(3.68)

and [_;5/5., and [ can be treated as operators acting in SO’OO(R; xR™) ~
BS>*(R"), accordingly.

Let us construct [ and [_;5/5,. We have the commutation relations

l_ia%’w] - (3.69)

lic,o(r)%, r] = ip(r). (3.70)
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All other commutators, not written out explicitly in (3.69) and (3.70),
are zero. We apply the technique described in detail in Chapter 2 to
compute the left ordered representation operators. First, we have

F =it

we obtain
3
3
(= ) iplr) L= i ol (3.72)
or

and finally

l=p+ ic,o(r)a. (3.73)

The computation of [_;5/5,, is standard (in other notation, it has already
been done in Chapter 2), and we have

0
500 =q— 1=—. 3.74
a/d q—1 o ( )
Now we have to verify whether the operators (3.73) and (3.74) are
S°-generators in the symbol class S%>°(K x R™). To this end, we com-
pute the corresponding one-parameter groups. The operators (3.73)
and (3.74) are first-order differential operators, and their one-parameter
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groups can readily be computed by solving a first-order linear partial
differential equation. For [_;5/5,, this equation reads

0 0
—za—? [Ziajp0u = qu — ia—z, (3.75)
and so ' '
€Zl_i8/awtu(wv TP, Q) = elqtu(w +1i,r,p, (])- (3‘76)

The semi-norm of the right-hand side of (3.76) determined by the best
possible constants Camg in (3.55) grows as |t| — oo no faster than [¢[1%],
and we see that e!~9/9slis a group of tempered growth.

Now let us consider the group generated by [. It has the form

ot

Mu(w,r,p.q) = e'ulw, O(L, 1), p, q), (3.77)

where ®(t,r) is the solution of the differential equation

o= (®), Dlimo =r. (3.78)
For sufficiently small r, the solution of (3.78) has the form
1
®(t,r)=c'r for t<In o (3.79)
r
This readily follows from formula (3.40) for ¢(r). Now if
Ju
E(wvovpv Q) = 7£ 07
then p
E[emu(w, 7,0, )] lr=0 = ce' (3.80)

grows exponentially as ¢ — +o0o. Thus the group e is of exponential

growth, and the operator [ is not an S*-generator. It follows that the

product of two operators f; and f, with symbols fi, f, € S5 OO([& x R")
is in general not representable in the form

- so a0
fifa=Ff (w,r,up(r)ar,zaw> (3.81)

with any symbol f € SO’OO(K’, R"). Thus we have proved the following
theorem.
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Theorem 10 Operators

1 1
r

with symbols [ € SO’OO(R; x R"™) do not form an algebra.

As the reductio ad absurdum argument carried out in (3.36)—(3.39)
shows, the failure is caused by the fact that, with these operators, not
only the behavior of symbols on the real line, but also their behavior in
the complex plane is important (Eq. (3.39) can be stated in the more

general form
) .0 .
% (zra) r=ry (ZTE + z) , (3.82)

and the argument p of the symbol is actually shifted by ¢«. That is
why in most of the papers about operators on manifolds with conical
singularities, the requirement that the symbol must be analytic in the
variable p is used. This, however, is a much more complicated theory,
and we shall not touch it in the present chapter.

In the next section, we consider the theory for cuspidal singularities
of order & > 1. Surprisingly, we shall see that the conical case is
degenerate: for the case of cusps, operators with symbols in S%>(K x
R") already form an algebra.

3.3 Operators on the Model Cusp of Or-
der &

In this section we shall consider operators of the form
(3.83)

where k£ > 1 is an integer, with symbols f € SO’OO(R; x R™) in the scale
of Hilbert spaces Hi(K'). To ascribe rigorous meaning to the expression
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(3.83), we need some modification of the operator

0

e

! or

for large r (which is fairly admissible, since the actual cusp corresponds
to the point r = 0). Indeed, without this modification the operator

0

ok 9

! or

does not generate a one-parameter group at all (the trajectories of the
vector field
e

or

escape to infinity in finite time), and so S*-functions (other than poly-
nomials) are in general undefined for this operator. We consider the
function @i (r) with the following properties:

(1) @r(r) is everywhere positive for r > 0, and ¢(0) =0,
(2)

rk"'l, r<1;
or(r) = (3.84)

This is just a straightforward generalization of the construction in the
preceding section.

Accordingly, we need to modify the spaces H,ﬁ(j&v’) themselves. We
introduce a new norm || - ||sx by setting

00 2 s/2 |2
||U||§k:// (1— (@k(r)%) —AQ) u @j(r)dw. (3.85)

This is well-defined, since the operator

(o)
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is positive and essentially self-adjoint in

L? (i{ M) ,
#ir(r)
to the effect that all real powers of this operator are well defined. For
functions supported in a neighborhood of r = 0 and for even positive s,
this norm coincides with the one given by (3.55) (with v = 0), and for
any real s these two norms are equivalent by interpolation theory. The
detailed argument is the same as for the conical case (cf. the preceding
section), and we omit it altogether.
The operators

) 0
Wk(r)g

and

.0
=

ow
are self-adjoint in each space H,ﬁ(j&v’) of the newly defined scale and are
continuous from H,ﬁ(j&v’) to H,i_l(j&v’) It follows that these operators are
S*-generators in the algebra Ay of continuous operators in the scale
{H;(K)};er. Thus, we arrive at the following theorem.

Theorem 11 For any symbol [ € SO’OO(R; x R"™), the operator

1 1
~ 2 2 . 0 .0
f=17 w,r,upk(r)a,—za—w (3.86)

is a well-defined element of the algebra Ay of continuous operators in

the scale {H{(K)}ser.

Later on in this section, we shall prove an exact theorem on the
order of operators with classical symbols.

Now let us find out whether operators of the form (3.86) form a
subalgebra of Aj. We proceed along the lines of the preceding section.
The first thing we must do is to compute the left ordered representation
operators for the operators uzj, 72“,

1

. 0
ZS‘Qk(T)Ev
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and
1

.0
—i— .
Ow
The computations are actually the same as in the preceding section,
with ¢ replaced by ¢, and so we can readily write out the result:

[_ip)p0 = q— ii, (the representation of — zi), (3.87)
ow ow
: 0 : . 5,
[l = p+ upk(r)a— (the representation ofzc,ok(r)a—)(3.88)
r r

In our extended setting of operator-valued symbols, we do not write
out the representation operators corresponding to w and r; their role is
taken over by the (obvious) composition rule in the ring B of functions
of (r,w) bounded together with all of their derivatives.

The next step is to find out whether the operators [ and I_;5/5,, are
S°°-generators. The operator [_;5/, is the same as in the conical case,
so that the answer for this operator is already at hand: [_;5/5, is an
S*-generator in BS*®(R"). Now let us proceed to the operator . By
analogy with (3.77)—(3.78), the group generated by this operator has
the form

eMu(w,r,p, q) = ePu(w, Pi(l, 1), p, q), (3.89)
where @ (¢,7) is the solution of the Cauchy problem
b = or(Pr),  Prlimo =1 (3.90)

We claim that all derivatives of ®; (with respect to r and ¢) have at
most polynomial growth in [¢| as |[t| — oo. Indeed, let us study the
behavior of ®;. Whenever both r and ®(t,r) lie in the interval [0, 1],
®;(t,r) is the solution of the equation

b = ((I)k)k—l—la Ppli=o = 7. (3.91)
This equation can readily be solved by separation of variables:

O, = {(C —t)-k}y"VFk (3.92)
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where (' is the constant of integration. It can be found from the initial
conditions, and we obtain

7

(I)k(rvt) = (1 . ktrk)l/k

(3.93)
provided that r, ®,(r,t) < 1. Let us estimate the r-derivatives of
®y(r,t). We do so for k = 1, dropping the clumsy computations needed
for k > 1, the result being essentially the same. Thus, we have

”
O(r,t) = .94
1(r7 ) 1 _ tT (3 9 )

in the domain determined by the inequalities
0<r<1, 0<——<1. (3.95)

1 —1r

We note that the second inequality in (3.95) can be rewritten in the
form r(1 4+ ¢) <1, that is, » may be arbitrary > 0 if t < —1 and

1
0<r< 113 for ¢t > —1. (3.96)

+1
The derivatives of the function (3.94) have the form
a]4(1)1 (T, t)
ori

Let us give t some fixed value and find the maximum over r of the

= WL —tr) U i =1,2,.... (3.97)

absolute value of the expression (3.97) in the domain determined by
inequalities (3.95). For negative ¢, the maximum is attained at r = 0
and is equal to j!|t|’. For positive ¢, the maximum is attained at

1
r = —
1414
and is equal to
(1 t o\ ~U+D i (1 i+t 3 08
! - — =l t . .
J ( 1+t) Aty (3.98)

Thus, in both cases we have polynomial growth at infinity. Now con-
sider the case in which both r and ®,(r,t) are greater that 1. Then
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Oy (r,t) = r—+1px(r,t), where the function ¢ (r,t) is the constant gained
in the solution of the differential equation (3.90) on the interval [1, 2],
where @ (r) # r, and obviously has all derivatives uniformly bounded.
Finally, if, say » > 1 and ®¢(r,t) > 1 or vice versa, then the mapping
r+— ®p(r,1) is obtained as the composition of two mappings considered
above (one takes r — 1 in some time, and the other 1 — ®(r,t) in
the remaining time), and so again the polynomial estimate of growth
as t — oo is guaranteed. It follows that all derivatives of the function
(3.89) admit estimates with polynomial growth as |t| — co. All in all,
we have proved the following theorem.

Theorem 12 The operators [_;5/5., and | of the left ordered represen-

tation of
L0 . 0
(_Z8w7l¢k(r)6r) ’

given by (3.87), (3.88), are S -generators in the symbol space SO’OO(R;X
R") = BS*(R").

Using the standard composition theorem for tuples possessing left
ordered representation, we obtain the following composition theorem.

Theorem 13 The set PSDk(R’:) of operators [ of the form
N
~ 2 2 . .
f_ f (wvrvlg‘o(r)a?jlaw> (399)

with symbols f € SO’OO(R; x R") is a subalgebra of the algebra Ay of
continuous operators in the Hilbert scale { Hy(K)}ser. The composition
formula for two elements f,g € PSDy(K) of this subalgebra is given

by

~

g=nh,

where

1 1
. 0 s .
h(w,r,p,q) = f (é},pir ZS«Qk(T)E,(] Z&u) () fxg. (3.100)
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[t remains to verify that the “twisted product” f# g defined in (13)
makes the symbol space SO’OO(R; x R) an algebra and that the mapping
f = ]? is a homomorphism of algebras. According to the theorem
concerning the Jacobi condition in Chapter 2, it suffices to verify that
the left ordered representation operators satisfy the Jacobi condition,
that is,

[ io/pw,w] = —1i, [l,7] = Fip(r), (3.101)
and all the other commutators are zero. But this is already obvious from
the explicit formulas (3.87), (3.88) for the left ordered representation
operators.

In conclusion of this section, let us state and prove the sharp bound-
edness theorem for cuspidal pseudodifferential operators with classical
symbols.

Definition 14 By £™ C PSDk(R’:) we denote the set of classical mth-
order pseudodifferential operators of the form (3.99), that is, operators
whose symbols satisfy the estimates

[F5n (@, p, @) < Capas(1L+ [pl + |gl) =111 (3.102)

wrpq

for all o, 3, 7, 9.

Remark 2 In fact, truly classical pseudodifferential operators form a
subset of L™ — their symbols admit expansions

into asymptotic sums of homogeneous functions in (p, ¢) of orders m,
m—1,m—2,...as|p|+|q| — oco. However, as long as only the bound-

edness theorem is concerned, sharp estimates in Sobolev spaces can be
obtained for the larger class £™, and so we do not restrict ourselves
to the homogeneous case. Considering homogeneous operators will be
important in the next section, where we deal with regularizers and the
finiteness theorem.

Theorem 15 Fach operator fE L™ is bounded in the spaces
[ H}(K) = H7™(K) (3.104)

for every s € R.
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Proof. The proof reproduces the construction already used in Sec-
tion 3.2. We consider the change of variables r = r(t) specified by the
solution of the Cauchy problem

7:': S‘Qk(r)7 T'|7_:0 = 1 (3105)

Under this change of variables, K is taken to the infinite cylinder 2 x
(—o0,00), the Sobolev spaces Hi(K') are taken to the usual Sobolev
spaces on the cylinder with the norms

lulls = 7/ (1—;—;—AQ)S/QU

—oo
and the pseudodifferential operators ]? € L™ pass into pseudodifferen-
tial operators on the cylinder with uniformly bounded coefficients; the
boundedness of such operators is a trivial matter (see Theorems II.14
and IV.6 in [8]). The proof is complete.
In the following section, we apply the results obtained here to the

2

dr dw,

construction of regularizers and the proof of finiteness theorems for
classical elliptic pseudodifferential operators on manifolds with cuspidal
singularities.

3.4 An Application to the Construction of
Regularizers and Proof of the Finite-
ness Theorem

In this section, we use the left ordered representation operators of the
cuspidal algebra, constructed in the preceding section, to write out
regularizers and prove the Fredholm property for elliptic elements in
the cuspidal algebra. First, we intend to globalize our definitions of
cuspidal pseudodifferential operators. Being trivial, this operation was
omitted in the preceding section, but here it is needed to state the
theorem rigorously. Thus, let M be a compact manifold with cuspidal
singular points aq,...,ay of order & > 1. (The case in which different
cuspidal points have different orders can be treated with no additional
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difficulties, but the notation for this case would be extremely boring,
and so we assume that the orders of all points are the same.)

Definition 16 A continuous operator

A: H)(M)— H;=™(M)

of order m in the scale { H{(M)};er of cuspidal Sobolev spaces is called
a pseudodifferential operator of order m on M if the following condi-
tions are satisfied.

(i)

(iii)

There exist smooth functions ¢;, »; on M, 3 = 1,..., N, such
that ¢; and ¢; are supported in the coordinate neighborhood U;
of the conical point a;, ¢; = 1 near «;, ¥;p; = p;, and the
operators

P AL =1y), (1 =) Aw; (3.106)

are compact operators of arbitrarily large negative order in the

scale {HZ(M)}ser.

The operators

Aj =1;Ap, (3.107)

belong to the algebra PSDk(K’j) of cusp pseudodifferential oper-
ators on the model cusp K; = ; x [0,4+00)/Q; x {0} of order k;

moreover,

ord A; = m.

For any two functions ¢, € C;;O(z\?), the operator @ A is a usual

pseudodifferential operator of order m on the open manifold ]\04

(acting in the local Sobolev spaces H*( M).

We shall consider the narrower class of classical pseudodifferential
operators L™ (M). This class is defined as follows. Each operator A &€

L7 (M) becomes a classical pseudodifferential operator of order m on ]\04
after the multiplication on the right and on the left by cutoff functions
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CRLNS C;;O(z\?) As to the “cuspidal parts” ;lj (3.107) of the operator
A, they must have the form

1 1
Aj =1 éaﬁa—ii,iw(r)g , (3.108)
Ow or

where the symbols H;(w,r, g, p) admit asymptotic expansions in homo-
geneous functions for large |p| + |q|:

H(w,r,p,q) ~ S HY(w,r,p,q) || + |g] = oo; (3.109)
l=m

here each H ](l) is homogeneous of order {:
H](l)(w,r, Ap, Aq) = N H(w,r,p,q), (3.110)

Pl +lal # 0, A € Ry

For operators of this form, there is a well-defined notion of principal
symbol (see [9]). The principal symbol o(A) is a homogeneous function
of order m (with respect to the natural action of the group R, of

positive integers) on the cotangent bundle 7™ ]\04 minus the zero section.
Moreover, it satisfies the natural compatibility condition

o(A)(w,r, q,p) = H](m)(w,r,q,c,ok(r)_lp) (3.111)

in the coordinate neighborhoods U; of the cusps o, 7 =1,..., V.

Finally, we introduce the notion of the conormal symbol of a pseu-
dodifferential operator A. The conormal symbol at a singular point
a; € M is defined as follows. Let

1
~ 22 0 . 0
AJ = H] (C&J,T, Zauj,lg@k(r)ar> (3112)

be the pseudodifferential operator (3.108) on the model cusp corre-
sponding to A for some choice of the functions ¢; and v; satisfying the
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above conditions. Then the conormal symbol of A at the point «; is
the operator family

1

G,
o (A)p) = H; | .0, ~i—p

(3.113)
in the Sobolev spaces H*(§);) on the base ; of the cusp at the point «;,
depending on the parameter p € R. We point out that the definition
(3.113) of the conormal symbol is independent of the particular choice
of the functions ¢; and ;. The proof of the independence is beyond
the scope of our book, and we refer the reader, for example, to [9]. (We
note that the considerations in [9] formally cover only the case in which
the conormal symbol is analytic in the conormal variable p. However,
the proof remains valid for nonanalytic symbols as well.)

Definition 17 A classical pseudodifferential operator A of order m on
a manifold M with cuspidal singularities is said to be formally elliptic if

its principal symbol does not vanish on 7™ M \{0} and if H](m)(w, T, q,p)
does not vanish for |p| 4 |¢| # 0 for each cusp point «;.

If A if formally elliptic, then the conormal symbols o.;(A)(p) are
families of pseudodifferential operators elliptic with parameter p on £ in
the sense of Agranovich—Vishik [1]. It follows that o.;(A)(p) is invertible
for |p| sufficiently large.

Definition 18 A formally elliptic pseudodifferential operator A of or-
der m on M is said to be elliptic if all conormal symbols o.;(A)(p) are
invertible for all p € R.

The validity of the conditions of Definition 18 for a formally elliptic
operator A can usually be ensured as follows. In practically interest-
ing situations, the conormal symbols are analytic in the variable p (for
example, if A is a differential operator, then the o.;(A)(p) are poly-
nomials). In this case, the points p where the conormal symbol is not
invertible form a discrete set in the domain of analyticity, with no such
points at all in the domain

Imp| < e, |Rep|>R (3.114)
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for sufficiently large R and sufficiently small e. It follows that by slightly
shifting the weight line {Im p = 0} into the complex plane, that is, by
proceeding to the weight line {Imp = ~v} with arbitrarily small v, we
ensure the invertibility of the conormal symbol on the entire weight
line. As was already mentioned in the preceding sections, the theory
in Sobolev spaces with weight exponent v # 0 is unitarily equivalent
to the theory with weight exponent v = 0. Thus in the following we
always assume that v = 0 and hence all symbols on the model cusps
are defined on the real line, {Imp = 0}.
Let us now recall the notion of a Fredholm operator. Let

be an bounded operator between Hilbert (or Banach, or topological
vector) spaces Hy and Hs.

Definition 19 The operator (3.115) is said to be Fredholm if the fol-
lowing conditions are satisfied.

(i) The null space Ker A is finite-dimensional, dim Ker A < oo.

(ii) The range R(A) has a finite codimension in Hy: dim Hy/R(A) <

Q.

Remark 3 It follows from condition (ii) in this definition that R(A)
is closed in Hy. The quotient space Hy/R(A) is denoted by Coker A
and is called the cokernel of A. The difference

ind A = dim Ker A — dim Coker A (3.116)

is called the index of a Fredholm operator A.

Remark 4 Elliptic operators on closed smooth manifolds prove to be
Fredholm in Sobolev spaces. Index theory of elliptic operators is an
important chapter of topology. In this section we illustrate just the
first step in elliptic theory on manifolds with cuspidal points (cf. [9]).
Namely, we prove the following theorem.
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Theorem 20 Let A be an elliptic classical pseudodifferential operator
of order m on a manifold M with cuspidal singularities. Then A is
Fredholm in the Sobolev spaces

A: H (M) — H"™(M) (3.117)
for any s € R.

Proof. We shall carry out the proof by constructing right and left
almost inverses of A, that is, operators R and R’ such that the operators

Q=AR-1I,

(3.118)
Q' =RA-I,

where [ is the identity operator, are compact in the Sobolev spaces

Q: H*™™(M) — H™™(M),

(3.119)
Q' : H* (M) — H*(M)
for any s € R. The Fredholm property follows from the existence of
left and right almost inverses (also widely known as regularizers) in a
standard way. This is the subject of Fredholm theory.

Thus, let us proceed to the construction of regularizers. To sim-
plify the exposition, we shall consider only the practically most im-
portant case in which the cuspidal operators A; are actually differen-
tial rather than pseudodifferential operators. This saves us a lot of
boresome, purely technical pages which otherwise would be filled with
estimates of various remainders. First, we note that if the conormal
symbol o.;(A)(p) is invertible for all p € R, then the inverse

o~

Di(p) = loe;(A)(p)]™ (3.120)

is a pseudodifferential operator with parameter p in the sense of Agranovich—
Vishik on 2, and -
ord D; = —m. (3.121)

This follows from the Agranovich—Vishik theory [1].
We start by constructing the right regularizer. As is customary in
elliptic theory, regularizers can be constructed locally and then patched
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together with the help of partitions of unity. The construction of the
right (and left) regularizer in the interior part of the manifold is fairly
standard (e.g., see [7]) and will not be considered here. We only explain
how to construct the local part of the regularizers near the cuspidal
points. Thus, the problem is as follows.

Find an operator

1 1
~ 22 0 . 0
R=R (CU, r, —Za—w, Z@k(?")a?a) (3122)

such that

1 1 1 1
~ .0 . 0 .0 . 0
Ak = [H; | 0.7 —ig—ipu(r) o |IIR | @7, —im—igi(r) o | ] = 14Q
ow ar ow ar
(3.123)
for small r,* where Q is a compact operator in relevant Sobolev spaces.
To accomplish the construction, we note that the operator A; can

be represented in the form

1 1 1 1
~ 2 .0 0 2 60H; [ 2 2 .0 . 0
AJ = H] (waovlawvlg‘ok(r)ar) + 7 V (W,O,T, Zawvlg‘ok(r)ar)

= 0.;(A) (m(r)%) +rZ;, (3.124)
where we have denoted
]
Z; = % (é;o,%; iaaw,m(r)aar) (3.125)
for brevity. We seek the solution R of Eq. (3.122) in the form
] ]
k=D, (ic,o(r)%) + R (Eu , —@'%, ic,o(r)gr) . (3.126)

!That is, the symbol of the first term on the right-hand side is actually equal to
1 for sufficiently small r.
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Since
o (A)(p)Dj(p) = 1, (3.127)
it follows that

o.i(A) (ic,o(r)%) D; (ic,o(r)a) =1. (3.128)

With regard for this, for the operator

1 1
Ri= R (é% iaaw’w“);) (3.129)
we obtain the equation
L D ~
H; Ry =—rZ;D; u,o(r)a— + @, (3.130)
r

where @ s a compact operator.

The product Ejﬁj is a cusp pseudodifferential operator of order
zero. This follows from the composition formula involving the operators
of left ordered representation of the tuple

Bh—iiplr)
T e P\ gy

(Theorem 13). Let us denote the symbol of this operator by X (w,r, g, p):

=N

1 1
5 = . 0 L0 . d
Z; D; (up(r)a) =X (c?z,%,@aw,up(r)ar) : (3.131)

Now we are in a position to write out the equation for the symbol R;.
Using the left ordered representation, from (3.130) we obtain

2 2 .0 . 0
H] (wv r,q _Za_va—l_ Z@(T)ar) Rl(wv r, Q7p) = TX((,U, r, Q7p)

+ (the symbol of a compact operator). (3.132)



3.4. REGULARIZERS AND FINITENESS THEOREM 45

Equation (3.132) is to be solved for small r. Let us expand H; in the
Taylor series in powers of

.0
=

Ow

) 0
W(T)E-

and

This Taylor series proves to be finite. (This is the place where we use
the fact that H; is a differential operator; otherwise we would have to
deal with complicated remainders.) We have

1 1
.0 . 0
Hj (“2)77%7(] _Za_va—l' ZS‘Q(T)E - H]‘(w,r,q,p) (3133)
1 a|a|+ﬁH, d\“ P g
+ Z —aij(wvrvcbp) (_Z_) (ZS‘Q(T)_) .
1<lalra<m 9181 04 ap? Ow or

Next, in H; we isolate the principal part H](m)(w, r,q,p), homogeneous
of order m, and write

2 1
0 0 m
H; (éﬂ%’qi FLa i@(r)ar> = 0" (w,rq.p) + P(w;r,q.p)

1 a|a|+ﬁH,( a)a( a)ﬁ
4 - = w(r)=— 1| . 3.134
1§|O¢%—:ﬁ<m alB! dqgeopP Ow ( )ar ( )
where P(w,r, q,p) is a polynomial of degree < m — 1 in (¢,p). Now
let us solve Eq. (3.132) by the method of successive approximations,
obtaining a remainder decaying as |¢| + |p| — oo sufficiently rapidly. In
the course of solution, we shall divide by H](m)(w, r,q,p). By virtue of
the ellipticity condition,

H(m)(w,r,q,p) #0 for |¢|+|p| =0, (3.135)

J

but for |¢| = |p| = 0 the symbol necessarily vanishes. To avoid the
singularity, we use a cutoff function x(p,q) such that x(p,q) € C*,
X(p,q) = 0 for p* +¢* < 1, and x(p,q) = 1 for p* + ¢* > 2.
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Thus, we apply the method of successive approximations as follows.

We take

RY = H"™ (@, q,p) X (w,7,¢,p)x(¢,) (3.136)

J

and substitute this into Eq. (3.132). Then for the disrepency R; — R(lo)
we obtain a certain equation, which we again solve approximately by
dividing by H](m). Let the new approximate solution be denoted by

R(ll). Then for the difference Ry — R(ll) we obtain a new equation, and

(n)

so on. Finally, the formula for R} reads
R = X(g.p)H{" (w,r,q,) 7 [ X (w,7,q,p) (3.137)
—P(w,r,q,p) "V (w,r,q,p)
HleHPH, o\ oY
- 1§|oz%—:ﬁ<m W(% r,p,q) (—@a—w) (W(T)E)
x R (w,7,q,p)]
n=1,23....

Note that X (w,r,q,p) is a classical symbol of order zero, that is, it
satisfies the estimates

a|a|+|ﬁ|+|ﬁ|+|5|X
‘ < Com(L+ lal + o). (3.138)

Owrtdgrop?

The following lemma holds for our successive approximations.

Lemma 21 Let R(lj), 7 =0,1,2,..., be the successive approrimations
given by formulas (3.136), (3.137). Then

(i) R — RV e L

1

1
0 0
(ii) H; (5,72761 —igpt i@(r)ar) RM—rX erL= 0" n=0,1,2,....

Here L™ is the set of classical symbols of order n.
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Proof. We proceed by induction over n. Let

o8 . 9\’ o\’
Q= Plw,r,q,p)+ ————(w,m,p,q) (—i—) (W(T)—) :
lsla%r:ﬁsm 9q°0p° O or

(3.139)
Then the algorithm of our successive approximation method can be
rewritten as

H™RY 4 QRT™Y = X, n=0,1,2,..., (3.140)
REY = 0. (3.141)
Now, by subtracting two successive equations (3.140), we obtain
RYY — R = [H™T QR — BT, (3.142)
so that
ord (RU"™ — Ry < ord (R — RI"™Vy — 1, (3.143)

(The product [H](‘m)]_lX@ has the order —1in (p,q) as [p| + |¢| = o0.)
Next,
RO — RUY = RO — ™y X (3.144)

is of order —m, so that we obtain, in view of (3.143)
R — R e = forall n. (3.145)

Note that the first difference R(ll) — R(lo) contains the factor r. Let
us prove that all subsequent differences also contain this factor. In fact,
this can be observed from (3.142). The product X[H](m)]_l is a smooth

function, and @ is a differential operator in

9
Ow

and

0

or
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of rather specific structure: together with each differentiation

9
or

it contains the factor ¢(r), which is 71 near the origin, It follows that

(1n) . R(ln—l)

any differentiations in @ applied to the difference R do not

kill the factor r (moreover, each differentiation

9
or

with the factor ¢(r) ~ r1** attached increases the power of r by k).
Thus, we have proved (i). To prove (ii), we note that

1

1
2 2 . a . a n m n A pln
Hi |7, =i o—ig(r) = | B = 0B + QRY” (3.146)

- {HJ(M)R(ln—I—l) + X@Rgn)} + (1 - X)@R(ln) + H(m)(h)gn) . R(ln_l))-

J

Using (3.140) and (3.142), we find that this expression is equal to
rX 4 (1= )(@QRY = rX) + QR — BP"™Y). (3.147)

The first term in the expression (3.147) is just the right-hand side
of the equation that we solve asymptotically; the second term contains
the factor r (by virtue of the preceding argument) and vanishes for
p* +¢* > 2; the third term contains the factor r (again by virtue of the
preceding argument) and decays at infinity as (|p| + |¢|)~"T") by virtue
of (i) and with regard for the order of @ The proof of Lemma 21 is
complete.

By combining the local regularizers constructed according to this
lemma in neighborhoods of cuspidal points with the standard pseudod-
ifferential regularizer in the interior part of the manifold (this is, as
usual, accomplished with the help of partitions of unity) we obtain a
regularizer of the operator A. To prove that this is indeed a regularizer,
we need the following assertion.
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Lemma 22 The operator

1 1
2 22 . 0 . 0
B =T F (r,w, —1 &U’Z('Q(T)&a) 5 (3148)

where F' € L™° for some ¢ > 0 and F =0 for r > Ry, is compact in
the spaces

B: H{(K) — H(K) (3.149)

on the model cusp K for any s € R.

Proof. This readily follows from the fact that the composition of
mappings
‘ A(r)
o — s g s g (3.150)
where j is the natural embedding and A(r) is a smooth compactly
supported function such that

A(r) =r for small r (3.151)

1s a compact operator.

Our next task is to construct the left regularizer. Again, we do
this only locally in neighborhoods of singular points, the passage to the
global regularizer being trivial. The construction of the left regularizer
has the following peculiarity. If we seek it in the form

1 1
~ 22 0 . 0
R=R (W,T, —1 &g’lgpk(r)&“) 5 (3152)

then it will be hard to compute the symbol of the product RA as the
result of action of some operator on the function R(w,r, ¢, p), since the
right ordered representation of the tuple

1

1
34 i D iom
T e oy
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is itself hard to compute. Hence we seek R in the form
o . 0
R=R (é,%, —i aw,icpk(r)ar) : (3.153)

with the inverse order of the operators r and

) 0
W(T)E-

Then, by the general theorems on ordered representation operators (see
Chapter 2), the product RA can be represented in the form

1 2 1 1
~l21 .0 . 0 2 2 . 0 . 0
IR (w,r, — w,upk(r)ar)]][[A (w,r, — aw,upk(r)ar>]]
o . 9
Jay ) , (3.154)

where the symbol h(w,r, g, p) can be computed according to the rule

1 1 2 2
h(wv Ty Q7p) =A (lwv lrsl-ia/ow, liwk(f’)a/ar) (R(w, T %p))v (3'155)

5/ar are the operators of right ordered repre-

where lwy lra l—ia/awv li(pk(r’)
sentation of the tuple
(2
w?

Lemma 23 The operators of right ordered representation of the tuple

1 2
boei i) 2
TR
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have the form

liapk (ryd/or

Proof. Formulas (3.156) and

Formula (3.158) is obvious, since

1 2
21 . 0 . 0
I/ (w,r,z aw,upk(r)ar)]]r

Finally, we have

REGULARIZERS AND FINITENESS THEOREM

, 0
p— upk(r)a.

51

(3.156)

(3.157)
(3.158)

(3.159)

(3.157) are known from Chapter 2.

2

1
9
Ow

1 1 .
:f (wvrvl

1 2
21 . 0 0 . 0
[[f (wvrv -1t awvlg‘ok(r)ar)]] (lg‘ok(r)%)
o o "
= f (“zjv%v —1 a_u}’ZSOk(r)a_ Z@k(T)E
0 ipn(r)d N
2 -1 ion(r .
= f w, r,— a_w kar Z@k(T)E

,ic,ok(r)ar) P

0

(3.160)

(3.161)
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Let us transform the second term on the right-hand side in (3.161)
using difference derivatives:

2 1 2

1
21 . 0 . 0 2 -1 . 0 . 0
flow,r, —i a—w,upk(r)a —flw, r,—i a—w,upk(r)a

0 0
. 0 - . 0
x| g )a_ = (r—7) [ ien(r) E™ (3.162)
of 0 F )
2 1 -1
XE wv_rvrv_la 7Z99k(r)a_
Now
0 a o
(r = 7) ipn(r) 5o =—ign(r), (3.163)

and we arrive at (3.159).

The proof of Lemma 23 is complete. Starting from this place, the
construction of the left regularizer goes perfectly along the same lines
as the construction of the right regularizer, and we omit the details
altogether.

The Fredholm property of the operator A, claimed in Theorem 20,
follows from the existence of right and left regularizers.

In this section, we have shown that elliptic operators on manifolds
with cuspidal singularities possess the Fredholm property. The proof,
which was carried out only for differential operators, can be gener-
alized to pseudodifferential operators, but this requires some lengthy
estimates.

Remark 5 Once we deal only with differential elliptic operators, the
proof of Theorem 20 can readily be generalized to operators on mani-
folds with conical singularities. However, for the general case of pseu-
dodifferential operators on manifolds with conical singularities, a com-
pletely different technique is required.
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