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Abstract

We describe an algebra of pseudodifferential operators on a manifold with
corners.



Contents

Introduction

1

2 Corner Mellin Operators
2.1 Parameter-dependent cone operators
2.2 Corner Sobolev spaces . . . .. ...
2.3 Corner asymptotics . . . . . .. ...
2.4 Corner Mellin symbols . . . . .. ..
3 Corner Calculus
3.1 Corner operator algebra . . .. ...
3.2 Trace and potential conditions . . . .
3.3 Elliptic operators . . . . .. ... ..
3.4 Calculi for higher order singularities .
Bibliography

Calculi for Lower Order Singularities

1.1 Motivation . . . . .. ... ... ...
1.2 Cone calculus . .. ... ... ....
1.3 Edgecalculus . ... ... ... ...
1.4 Edge asymptotics close to corners . .

10
10
19
26
40

56
56
65
67
69

72
72
76
79
81

91



Introduction

It is well-known that parametrices of elliptic partial differential equations on
C* manifolds can be expressed by pseudodifferential operators. This implies
the elliptic regularity in terms of the standard Sobolev spaces that are natural
domains of pseudodifferential operators.

The same problem is extremely interesting on manifolds or, more gener-
ally, on the Thom-Mather stratified spaces, with piecewise smooth geometry,
e.g., with conical points, edges, corners of higher order or non-compact ‘exits’.
Analytically this corresponds to operators with ‘degenerate’ symbols.

In recent years this area of problems found growing interest in the literature
while the applications in differential geometry, topology and natural sciences
are often classical. The vast variety of special investigations suggests a general
approach for sufficiently wide classes of such problems.

The present paper is devoted to the corresponding pseudodifferential cal-
culus. It is based on the articles of the first author [Sch89, Sch92].

Corners of higher order are also of interest as they occur, for instance, in
problems of ‘quarter plane type’. Our theory will be organised in such a way
that it can be iterated for those cases.

Recall that by a “manifold” with conical singularities is meant a Hausdorff
topological space B with a discrete subset By of ‘conical points’, such that
B\ By is a C* manifold and every point v € By has a neighbourhood O in B
homeomorphic to the topological cone over a C*° compact closed manifold X.
Thus,

[0,1) x X

O = x

(0.0.1)
the manifold X being referred to as the base of the cone close to v. Moreover,
we require these local homeomorphisms to restrict to diffeomorphisms of open
sets

O\ {v} < (0,1) x X.

Any two homeomorphisms h; and hs are said to be equivalent if the composition
hyoh; ! extends to a diffeomorphism of [0, 1) x X. This gives B a C™ structure
with singular points.
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Fig. 1: A corner.

According to (0.0.1), local coordinates in a punctured neighbourhood of
any conical point v in B split as (r,x), r € R, being the cone axis variable
and r € X.

The cone is a special case of a corner, the base of the latter being itself
a manifold with conical points. Some elements of the cone theory are to be
applied for the general corners again, cf. Schulze [Sch98|.

A “manifold” with corners is a Hausdorff topological space C' along with
closed subspaces Cy and C', such that C is a discrete subset of C'; consisting
of the ‘corners’, C \ Cy is a C'*° manifold of dimension 1 consisting of the edges
which emanate from the corners, and C'\ C} is a C'* manifold of dimension
n+ 2. Every v € () has an open neighbourhood O in C homeomorphic to the
topological cone over a C*° compact closed manifold with conical singularities
B

Y

0,1) x B
{0} x B’
B being the base of the corner close to v (see Fig. 1). We require these home-
omorphisms to restrict to diffeomorphisms of open sets

0 (0.0.2)

on (Cl \ Co) (0, 1) X BO;
O\C, — (0,1) x (B\ By).

R LR

Once again we specify classes of equivalent homeomorphisms by requiring suit-
able compositions to preserve the differentiability up to t = 0. This gives C' a
C° structure with corners near v.

By (0.0.2), local coordinates in a deleted neighbourhood of any corner
v € C split as (t,p), t € R, being the corner axis variable and p € B. In the
theory of Thom-Mather stratified spaces B is known as the [link of the stratum
C through v, cf. [GMS8S].

A further assumption on C' is that every point p € C \ Cy has a neigh-
bourhood O in C which is homeomorphic to a wedge

[0,1) x X

S QxS
O = Qx 0} x X

(0.0.3)

(2 being an open interval on the real axis and X a C'* compact closed mani-
fold. We confine ourselves to those homeomorphisms (0.0.3) which restrict to
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Fig. 2: A stretched corner.

diffeomorphisms
O\ C; = Qx(0,1) x X,

and the various mappings are assumed to be compatible in an obvious way
over the intersections of neighbourhoods. This leads to a C'™° structure with
edges near C \ Cy on C.

It is easy to introduce the categories of spaces with conical points, edges,
corners and evident notions of morphisms, in particular, isomorphisms. For
brevity we avoid here a lengthy discussion of axioms.

The space in Fig. 1 has one corner v, the base B of the corner has one
conical point.

The analysis near v will take place in the coordinates (¢, r, x) of the open
stretched corner R, xR, x X (cf. Fig. 2).

For a C*° manifold M, we denote by Dift” (M) the space of all differential
operators of order m with C'*° coefficients on M. It is equipped with a natural
Fréchet topology. In particular, we look at operators A € Diff™(C'\ C}) of the
form

A= f A1) (D)

in the coordinates from (0.0.2) on O \ Cy, where A;(t) is a C*> function on
0,1) with values in Diff"™7/(B \ By). We require every A;(t) to be of Fuchs
type on B, i.e., A takes the form

L ST Aultr) @Dy (D) (0.0.4)

A=
(t’l“) J+k<m

in the coordinates from (0.0.1) close to any point v € By, with Aj,(t,r) a C*
function on [0,1) x [0, 1) with values in Diff™~U**(X). The factors /=™ are
no longer important away from the corners where ¢ is non-zero. Hence, near
any point on the smooth part of an edge in C; \ Cy we can rewrite (0.0.4) in
the form .
A=) Apltr) (D)) (D))"
J+k<m

in the coordinates from (0.0.3), A;x(¢,7) being a C* function on Q x [0,1)
with values in Diff™~U+%)(X).
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Operators of the form (0.0.4) will be referred to as the typical differential
operators on manifolds with corners. By the above, they bear both cone and
edge degeneracy as well as more general corner degeneracy.

As but one example of corner-degenerate operators we show the Laplace-
Beltrami operator with respect to the Riemannian metric on C' that is of the
form

dt* + *dp®> = dt* + ¢ (dr® + r* da?)

N A 2
= (tr) ((tr) + ( 7") + dx )
in the local coordinates from (0.0.2), the first equality being close to a conical
point of the link B (cf. Fig. 1).

Now the program of the calculus is to introduce symbol structures, pseu-
dodifferential operators and adequate Sobolev spaces, such that the elliptic
operators are Fredholm and possess parametrices within the calculus. Here,
the ellipticity of an operator A means the invertibility of certain symbols re-
lated to A, while the Fredholm property refers to the scale of Sobolev spaces
above. Moreover, it is desirable to study subspaces with corner asymptotics,
such that the elliptic regularity still remains valid therein.

The solution will necessary employ an analogous theory on manifolds with
conical points and edges. The calculus for edges is known to recover the case of
boundary value problems where the edge is the boundary and the model cone
is the inner normal R, cf. Ch. 4 in [Sch98]. Here, for getting the Fredholm
property additional edge conditions are posed, satisfying an analogue of the
Lopatinskii condition. In general, they are of trace and potential type just as in
Boutet de Monvel’s theory, cf. [BAM71]. This should be combined with knowl-
edge from the cone theory where an additional operator-valued Mellin symbolic
level is required to be bijective along a weight line, c¢f. Kondrat’ev [Kon67].
Summarising, we deduce that there will actually arise several leading symbolic
levels.

The goal of this paper is a calculus of pseudodifferential operators on man-
ifolds with corners including ellipticity, Fredholm property and asymptotics of
solutions. The style of exposition is dictated by the desire to formulate the
theory on the whole and to confirm the expectation that in spite of complex-
ity of tools there does actually exist an operator algebra containing the ideas
of Vishik and Eskin’s [VE65, VE67, VE66] and Boutet de Monvel’s [BAMT71]
theories as well as higher order operator structures for conical and edge singu-
larities.

Chapter 1 repeats some material on conical singularities and edges. The
cone operators from Section 1.2 are model for the shape of corner operators
of Chapter 3. The results of Section 1.4 are motivated by applications in the
corner theory.
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New ingredients such as parameter-dependent cone operators, corner asym-
ptotics and Mellin symbols are given in Chapter 2.

Chapter 3 establishes a full corner calculus including the symbol structures
and the concept of ellipticity.

In the literature there are several approaches to the analysis on manifolds
with corners.

Boundary value problems in domains with conical points on the boundary
were studied quite thoroughly by Kondrat’ev [Kon67]. Maz’ya and Plamenevs-
kii [MP77] treat elliptic boundary value problems for differential equations on
manifolds with singularities of a sufficiently general nature. As singularities
they admit edges of different dimensions and their various intersections at non-
zero angles. The same sets are regarded as carriers of discontinuities of the
coefficients. However, the treatment falls short of providing a pseudodiffer-
ential algebra where the parametrices to elliptic elements are available. Mel-
rose [Mel87, Mel96a] studies so-called b-pseudodifferential operators on mani-
folds with corners. While originating from geometry his theory does not apply,
however, to many interesting elliptic operators, e.g., the Laplace operator in
the corner (R, )", n > 3. As far as we know the problem of representing para-
metrices of differential operators near corners in terms of symbols of operators
in an algebra and of obtaining corner asymptotics by means of the parametri-
ces was first treated by Schulze [Sch92]. The experience with simpler problems
with singularities, e.g., mixed elliptic ones such as the Zaremba problem, shows
that the analogous questions lead at once to corresponding algebras of rather
generality. For proving an analogue of the Atiyah-Singer index theorem such
an approach would be necessary, anyway. Plamenevskii and Senichkin [PS95]
discuss the C'*-algebras generated by pseudodifferential operators of order zero
with discontinuous symbols. The symbols may have discontinuities along some
submanifolds of the unit sphere intersecting at non-zero angles. The purpose is
to describe the spectrum of such algebras, i.e., the set of all equivalence classes
of irreducible representations endowed with a natural topology (the so-called
Jacobson topology). Thus, they confine ourselves to homogeneous symbols
and L?-spaces.

Note that (' can in turn be regarded as the base of a “third order” corner,
namely

[0,1) x C
{0} xC’

etc. The theory for this singular configuration encompasses the problems of
quarter plane type as well as boundary value problems in domains whose
boundary bears “second order” corners. The axiomatic ideas contain formal
procedures to obtain from a given operator algebra on some singular variety a
new one in the cone over that base by means of a machinery called “conifica-
tion”. A suitable conified algebra on a corresponding infinite model cone then
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serves as a starting object for another procedure called “edgification”. These
concepts are elaborated in Schulze [Sch91, Sch98|.

In carrying out the program for corners it turns out that even the functional
analytic background of corner Sobolev spaces and subspaces with asymptotics,
these being closely related to the character of smoothing operators, should
first be prepared. Also other in a sense non-standard elements of the calculus,
e.g., the parameter-dependent version of a given operator algebra and vari-
ous operator conventions are to be established in advance. Our exposition is
voluminous, for all these elements are needed here at the same time.

Finally, we touch a few aspects of the analysis on manifolds with edges
which intersect each other at zero angles, cf. [RST99]. The underlying space
looks locally like a wedge R? x B", where B" = R, x B is the semicylinder
over a manifold with singularities B. The Riemannian metric on R? x B" is
of the form

dy? + dt* + (5,115)) 2 dp? = ( 5';))2 (<%€6(t)>2 (e79Ody)? + (do(t))? + dp2> ,

where dy? and dp? are Riemannian metrics on R? and B, respectively, and
T = 6(t) is a diffeomorphism of a neighbourhood of ¢ = 0 to a neighbourhood
of T = —oo. In the case of transversal intersections we have §(t) = log(¢).
In contrast to this, 0(¢) behaves like —1/t?, p > 0, in the case of power-like
cuspidal singularities. The “conification” on B”" and the “edgification” on
R? x B" have to complete an operator algebra over B by functions of the
vector fields

o _ 19
o5(t) — 8'(t) ot’
IO 0

a—yj, j=1,...,q,
respectively. Under the coordinate s = ¢’® on the cone axis, the vector fields
are written as s /0s and s 0/0y;, these latter occur in the case of transversal
intersections. This is not surprising because any cuspidal singularity can topo-
logically be transformed to a conical one. However, the change of variables
s = e%® fails to preserve the C™ structure close to the edge ¢t = 0. Hence it
follows that “smooth coefficients” near t = 0 are pushed forward to “singu-
lar ones” near s = 0. The analysis on manifolds with cuspidal singularities
thus reduces to that for the case of conical singularities, but with singular
“coefficients”.

What smoothness of symbols near the edge t = 0 is required, depends on
the function spaces to be domains of operators in the algebra. In fact, the
only natural requirement stems from the general observation that the domain
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of an operator should be a module over the space of its “coefficients”. Since
pseudodifferential operators on manifolds with singularities are intended to act
in spaces with asymptotics, the coefficients themselves should bear appropriate
asymptotic expansions. As usual, the asymptotic expansions correspond to
Euler solutions to equations with coefficients constant in ¢, which are obtained
from given equations by freesing the “coefficients” at ¢ = 0. This behaviour of
symbols near ¢t = 0 is then inherited under any change of variables s = e’®.
Thus, our results apply as well to problems on manifolds with cuspidal corners,
unless we leave the setting of Euler asymptotics. For more details we refer the
reader to [ST99].



Chapter 1

Calculi for Lower Order
Singularities

1.1 Motivation

This section prepares auxiliary material on cone pseudodifferential operators
which is also a motivation for the methods for corners.

Recall that each manifold with conical singularities B gives rise through
a blow up at every conical point to a C'* manifold with boundary B, the
boundary being the disjoint union of the links of B at conical points. More
precisely, we have 0B = X{U...U Xy, with X, a C* compact closed manifold
which is the cone base close to v, € By, for v = 1,..., N. As is known, 0B
has a collar neighbourhood O in B along with a diffeomorphism

k: O—[0,1) x OB

which restricts to diffeomorphisms «,: O, — [0,1) x X,,, for v = 1,..., N,
where O, is the corresponding collar neighbourhood of the component X, of
0B.

We may actually view B as the quotient space (...(B/X1).../Xy), thus
specifying a blow-down mapping b: B — B. This mapping is C*° and restricts
to a diffeomorphism of B\ 9B onto B\ By. As defined above, any C'* structure
on B determines, via b, a unique C'* structure with conical points on B. We
call B the stretched manifold associated with B. The analysis on B will be
performed in the interior of B.

Remark 1.1.1 As is shown in Fig. 2, any manifold with corners C can
consecutively be stretched to a C*° manifold with corners on the boundary C,
e, b:C— C.

Without loss of generality we may assume that By consists of a single point,
i.e., we have only one cone base X, possibly with several connected compo-

10
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nents. It is convenient to develop the analysis also on the infinite semicylinder
over X,

X" =R, x X.
Given a C* manifold M, we write Hf (M) for the space of all u € D'(M)
such that h,u € H{ (), for every chart (O, h) on M, Q C RY being the image
of O by h. This is a Fréchet space in a canonical way. Moreover, Hg, (M)
consists of all v € H (M) with compact support. We give it the topology
of the inductive limit of Banach spaces. If M is compact, we write H*(M)
instead of Hy (M) = H_, (M).

If V is a locally convex space which is a module over an algebra A, we denote
by [a]V the completion of {av: v € V} in V, for any fixed a € A. Further,
if V1 and V5, are Fréchet spaces which are subspaces of a Hausdorff space V,
then the non-direct sum V; 4V} is also a Fréchet space in the topology induced
by the isomorphism V} + Vo, =2 Vi & V5 /A where A = {(v,—v): v € V1 N V,}.
Incidentally we shall employ analogous sums of more general topological vector
spaces.

Let Q C RY be open and m € R. Then 8™(Q x R") stands for the space
of all C* functions a(z, &) on Q x R™, such that |D§‘D?a(m, )| < (€)™ 18l for
all (z,€) € K xR* and o € Z%, 3 € Z%, with K any compact subset of
and ¢ a constant depending on K, «, . This is a Fréchet space in a natural
way. By ST(2 x R") we denote the subspace of all classical elements. The
convergence in ST (£2 x R") amounts to the convergence in C2. (€2 x (R*\ {0}))
of all homogeneous components of the elements of a given sequence.

If 2 is an open set in R™, we write U (2) for the space of all pseudodiffer-
ential operators on €, i.e., the space of all

A=F 05,8 Fase+ S (1.1.1)
with ¢ € §™(Q2 x R") and S an operator with a C'™ kernel on Q x Q, F being
the Fourier transform in R".

Let A = R? for some d € N. Then ¥™(Q;A) denotes the space of all
operator families A(\), A € A, of the form (1.1.1), with a(z,§) replaced by
a(z,&,A) € S™(Q2 x (R* x A)) and S replaced by S(\) € S(A,C(Q2 x Q)).
Here, by S(A, V') is meant the Schwartz space of V-valued functions on the
parameter space A.

By using invariance of all these classes under diffeomorphisms of open sets
we can define W™ (M) and U™(M; A) for any C* manifold M. These spaces
are Fréchet in a natural way.

The corresponding operator spaces with the subscript “cl” are introduced
in an obvious way. The Fréchet topology in the spaces with “cl” is stronger
than that induced by the spaces without “cl”. In order to avoid too much
comments on the topology we shall mainly deal with classical operators.
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Suppose X is a C* compact closed manifold. For any A(\) € U (X;A),
we denote by 0™(A)(x, &, \) the parameter-dependent principal homogeneous
symbol of order m of A()). It belongs to St ((T*X x A) \ {0}), the space of
all C* (positively) homogeneous functions of degree m on (T*X x A) \ {0},
where 0 indicates (£, A\) = 0. The mapping

o™ WX A) = S((T7X x A)\ {0}) (1.1.2)

is surjective.

Then, A(A) is said to be parameter-dependent elliptic if c™(A)(xz,&, ) #0
for all z € X and (£, A) # 0.

If A(N\) € ¥I(X;A) is a parameter-dependent elliptic operator, then there
is an R > 0 such that A(\): H*(X) — H*™(X) is an isomorphism for all
|A| > R and every s € R.

On X we fix once and for all a Riemannian metric. Then we get the space
L*(X) with respect to the corresponding Riemannian density dz. It is easy to
see that H°(X) = L*(X).

An example of an element in S} ((7* X x A)\{0}) is (|€]*+[A[*)™/2. In view
of the surjectivity of (1.1.2) we find an R™(\) € ¥ (X; A) with the property
that o™ (R™)(z,&,A) = (|€]2 + |A\?)™?2. We now apply this argument again,
with A replaced by (A, ¢), ¢ being large enough, to obtain a family R™(\) which
induces isomorphisms R™(\): H*(X) — H*~™(X) for all A € A and s € R.

Let us now turn to some elementary facts on the Mellin transform, first for
scalar functions on R, . The Mellin transform

Mu(z) :/ r’izu(r)@, z € C,
0

r

gives rise to a continuous operator Cg5 (R, ) — A(C), where A(C) is the
space of all holomorphic functions on C with the Fréchet topology of uniform

convergence on compact subsets. Set
I,={e€C: Jz=1},

for any v € R Denote by S(I',) the Schwartz space on I',, i.e., the pull-back
of S(R) under the diffeomorphism I', — R given by ¢ + iy — p. Then M
induces also continuous operators M., : Cg, (R ) — S(I';) for all v € R,
where M,u = Mu|p,. The inverse is

o

lef(r)—i/F rf(z)dz, reER,.

It is well-known that M., extends by continuity to a unitary isomorphism
L*(Ry,r*dm) — L? (I',), where dm = dr/r.
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For a fixed ¢ € C, let (Tf)(2) = f(z + () mean the shift in the covariable
by ¢. Then we have M(r"u) = T*" Mu, for every u € CZ, (R}).
It is clear that

rD, = M™12M,

when defined, for instance, on the subspace of all v € L?*(R,) such that
(rD,)u € L*(Ry). This gives rise to Mellin pseudodifferential operators

op (@) (r) = ML, (M a(r, ', 2)u(r')) (1.1.3)

with Mellin amplitude functions a(r, 7', z) to be defined more precisely below.
We also set

0P (@) =17 0py (T77a) 177,
for y € R.

The notions around the Mellin transform have straightforward extensions
to functions with values in a Fréchet space V. This will tacitly be used in the
sequel. We set

AQ,V) = AQ)®,V,
SR, V) = SR)®,V,

®, being the completed projective tensor product, and so on.

Distributions v on X" will often be regarded as being vector-valued and
then written as u(r) with the Mellin transform Mu (z).

We define W(X;T'_,) to consist of all A(z), z varying over I'_,,, such that
Ao — i) € TF(X;R,).

As explained above, for every s € R we can choose a parameter-dependent
elliptic operator R*(p) € ¥%(X;R) such that R*(z): H*(X) — L*(X) is an
isomorphism for all p € R.

Definition 1.1.2 For s,y € R, the space H®(X") is defined to be the
completion of Cg5, (X") with respect to the norm

()

Clearly, the norm of H*7(X") is independent, up to equivalent norms,
of the concrete choice of the order reducing family R*(g). These spaces are
‘weighted’ in the sense that H*7(X") = r?H*(X"), for any v € R, where
HE(XN) = H5P(X"). Moreover, it is easy to see that H*(X") — HE (X") for
all s € R.

When identifying X locally with an open set on the unit sphere S™ in R***,
we get a local diffeomorphism 7 of X” to R*™! given by 7(r,z) = rz. In other
words, we may regard (r,z) € X" as local “polar coordinates” in R**!. This

[l

1/2
||RS(%z>Mu(z>||i2(X)dz> .

~
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allows us to define the pull-back of H*(R*™') under 7 in a way independent
of the identification above, provided that r is bounded away from 0. Now
a familiar argument with a suitable open covering of X and a subordinate
partition of unity leads to a global space 7* H*(R"*!) on X", whose restriction
to every closed set away from r = 0 does not depend on any elements entered
into the definition.

Both ##7(X") and 7*H*(R"*!) are Banach spaces and modules over the
algebra of all C*° functions on R; which are constant close to r = 0 and
r = 4o0. Pick a cut-off function w € Cg5 (Ry) at v =0, ie., w(r) = 1 near
r = 0. Define

H*(X") = [w] HY(XM) + [1 — w] 7" H* (R™)

equipped with the topology of a non-direct sum. Obviously, H*?(X") is inde-
pendent of the particular choice of w.

The scale H*7(X"), with s,7 € R, is intended for the analysis on infinite
cones. On a compact closed manifold with conical points B we introduce
a weighted Sobolev space H*7(B) by gluing together the weighted Sobolev
spaces H*7(X") on collar neighbourhoods of conical points and the usual
Sobolev space Hf .(B\ 0B) on the smooth part of B. In the sequel we shall
often drop pull-backs if the identifications of objects with their pull-backs are
evident.

The spaces H*7(X") and H*7(B) can actually be thought of as Hilbert
spaces after having chosen suitable scalar products. We only need fixed scalar
products in the case s = v = 0. In H*°(X") we take the L?- scalar product
with respect to the product measure dmdx, where dm = wdr/r + (1 — w)rdr.
In H%°(B) we get a scalar product from [w]H?(X") + [1 — w]L?*(B), the space
L*(B) relying on a Riemannian metric in B.

Now let A € Diff(B \ 0B) be an arbitrary differential operator on the
smooth part of B, which takes the form

1 m
A=— A; D,)’
= A

in the coordinates (r,z) € (0,1) x X close to 0B, where A;(r) is a C* function
on [0,1) with values in Diff7(X). Then A extends to a continuous mapping
H*7(B) — H*~™7~™(B), for any s,7 € R

The cone operator theory says that we have to control two leading symbols
for the Fredholm property of A. The first of the two is the usual principal
homogeneous symbol of order m of A in the interior of B. As however 0" (A)
blows up on the boundary of B, we use instead the so-called compressed interior
symbol, namely

o™ (A)(r,z, 0,& zmjom J (z,6) & (1.1.4)
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defined everywhere on "T*B, the compressed cotangent bundle of B (cf. Mel-
rose [Mel96b]). To give (1.1.4) a precise sense away from a collar neighbour-
hood of 0B, we extend r to a positive C'*° function on the interior of B. In
this way we obtain what is referred to as a defining function of the boundary
of B.

While 0™(A) takes its values in Hom(C), the second leading symbol is
operator-valued. This is the conormal symbol

om(A)(z) =) A;(0) 2 (1.1.5)

=0

which is regarded as an operator family H*(X) — H* ™(X), for any s € R,
parametrised by the real part of z € I'_,.

Definition 1.1.3 A typical operator A € Diﬁ'm(loS) is said to be elliptic of
order m, with respect to a weight v € R, if

1) b0™(A) #0 onbT*B\ {0};
2) om(A)(2): H¥(X) — H*"™(X) is an isomorphism for all z € T'_, and
any fized s € R.

In view of the particular form of A we introduce the space S™(*T*B) of all
symbols of order m in the interior of B that take the form

CL(?", z, 0, g) = CNL(T, T, 70, 5)

in the coordinates (r,x) € (0,1) x X near the boundary, where a(r, z, g,§) is
C> up to r = 0. Moreover, we use the symbol ST(*T*B) to designate the
subspace of S™(*T*B) that originates from classical symbols just in the same
way.

The symbols of S™(*T*B) give rise to pseudodifferential operators on B
which still fit in the leading symbol structure described above.

Theorem 1.1.4 The following conditions are equivalent:

1) A is elliptic of order m, with respect to a weight v € R;
2) the operator A: H*7(B) — H* ™7 "™(B) is Fredholm, for each s € R.

We now return to differential operators A on C'\ C; mentioned at the
introduction, cf. (0.0.4), where C' is a compact closed manifold with corners
Co, and C the skeleton of one-dimensional edges. Once again it is convenient
to introduce a ‘stretched manifold” C defined as a C'*° compact manifold with
corners on the boundary, along with a blow-down mapping b: C — C such
that the interior C \ OC is mapped diffeomorphically onto C'\ Cy; b1 (v) = B
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for any v € Cy, with B the stretched manifold of the link of C' through v; and
b~ (p) 2 X for all p € C, \ Cy, where X is the base of the model cone of the
wedge with edge through p.

The manifold C can be viewed as another compactification of C'\ C;. There-
fore, we shall identify the smooth part of C' with the interior of C, the singu-
larities of C' being blown up to the boundary of C. The boundary bears the
structure of a fibre bundle under the blow-down mapping b. As mentioned, 0C
consists of a finite number of C*° hypersurfaces intersecting at non-zero an-
gles. Choosing collar neighbourhoods of these hypersurfaces in C just amounts
to endowing C' with local fibre bundle structures near the boundary. More
precisely, each point v € () has a neighbourhood O in C' with the property
that b='(0) = [0,1) x B, and every point p € C; \ Cy has a neighbourhood O
in C such that b™'(0) = Q x [0,1) x X, where 2 is an open interval on R.

We also set W = b ! (C'\ Cpy) which can be regarded as the stretched
manifold of the (non-compact) manifold with edges W = C'\ Cj.

In Section 2.2 we define corner Sobolev spaces H*7(C), for s € R and
v € R?, analogously to the cone Sobolev spaces of Definition 1.1.2. Here we
have a couple of weights v = (0, 71), where ~, refers to the cone axis variable
r and y; to the corner axis variable t. Then, our operator A will extend to
continuous operators H*7(C) — H* ™7™ (C) for all s € R and v € R?, where
vy—m = (v —m,y — m). In order to get an analogue of Theorem 1.1.4,
we have to identify the leading symbols of A, such that their bijectivity is
responsible for the Fredholm property. We want to read off the adequate
symbolic structure from (0.0.4).

First we have, of course, the usual principal homogeneous symbol of order
m, namely o™ (A) € S (T*(C \ 9C) \ {0}), which lives over the smooth part
of C. We look for a substitute for 0™ (A) which is well defined up to the
singularities. To this end we introduce the space S™(*T*C) of all symbols a of
order m in the interior of C, such that

1) for any v € Cy, we have a(t,p,7,9) = a(t,p,tr,?) in the coordinates
(t,p) € (0,1) x (B\ 0B) near b='(v), where a(t,p, 7,9) is C*® up to t = 0;

, T, &, tr7, e, €) in the coor-

2) for any v € Cy, we have a(t,r,x,7,0,§) = a(t,r
Y(v), where a(t,r, z,7,0,€) is

dinates (t,r,z) € (0,1) x (0,1) x X near b~
C*®uptot=r=0;and

3) for any p € C) \ Cy, we have a(t,r,z,7,0,§) =
coordinates (t,7,7) € Q x [0,1) x X near b~!(p
is C*° up tor =0.

a(t,ryx,rr,r0,€) in the
), where a(t,r,z, 7, 0,€)

Moreover, we write ST (*T*C) for the subspace of S™(*T*C) that originates
similarly from classical symbols.
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An equivalent definition of S™(*T*C) is to extend both r and ¢ to defining
functions of the corresponding boundary hypersurfaces on the entire manifold
C and require only the degenerate form 2) close to the boundary of C, cf.
Melrose [Mel87, Mel96a]. To any A of the form (0.0.4), we then assign the
so-called compressed interior symbol by

Yo (A)(t, 3, T, 5,6) = D o™ U (At r)) (w, ) 7 (1.1.6)

j+k<0

defined everywhere on *T*C, the compressed cotangent bundle of C (cf. Melrose
[Mel96b]).

To introduce an analogue of the conormal symbol (1.1.5) for A, we choose
a cut-off function w(r) at » = 0 and write A in a neighbourhood of a corner
v € (Cy as
ST A 0D (D + (- () D A1) (D)

( ) j+k§m jZO

A=w(r)

where

Ajk(t,r) e O

loc

([0,1) x [0, 1), Diff™~U+R) (X)),

Aj(t) € Cx([0,1),Diff" (B \ By)).
Then we set
om(A)(¢) = w(?‘)rim Z Aji(0,7) (rQ) (rDy)" + (1 = w(r)) ZAJ(O) ¢’

(1.1.7)
regarded as a family of operators on B, parametrised by the real part of ¢
varying along a weight line I'_, , v, € R. Given any (, the symbol ox(A4)(¢)
induces continuous mappings H*"(B) — H*~"™7~™(B3) for all s € R and
7 € R

As already mentioned at the beginning, a novelty for corners is the edge
symbolic level along C; \ Cy, also being operator-valued. We shall adopt here
the notation from the general theory of pseudodifferential operators on mani-
folds with edges, cf. Schulze [Sch98]. By assumption, the operator A is of the
form .

A= — At r rD,) 7“D,alg
= 3 Au(tn) (D) (D)
in the coordinates (t,r,2) near any point p of the edge C; \ Cy, with cer-
tain A;; € C2(Q x [0,1), Diff™ U (X)). For p close to v € Cy, this is,
of course, compatible with (0.0.4), so that Aj.(t,7) = t=™A.(t,7)t with the
above Aj(t,7). We set

(A7) = S Aglt,0) (rr) (D) (1.1.8)

Jj+k<m
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for (¢,7) € @ x R. Here, 7 is treated as a covariable of ¢ with respect to the
Fourier transform along R. The role of inserting » = 0 in the coefficients is
the same as that of freezing coefficients on the boundary, for boundary value
problems. We view (1.1.8) as an operator family H*(X") — Hs~™0-m(X"),
for any s € R and 7 € R, parametrised by (¢,7) € T*(C; \ Cp) \ {0}. It is
called the principal homogeneous edge symbol of order m of A, the homogeneity
referring to the group action

kau (r,z) = AT u(Ar,z), A >0,

on the spaces H*7(X"). Obviously, k) is a continuous function of A € Ry
with values in L,(H®*7(X")), for every s,7 € R, where ¢ indicates the strong
operator topology. Then, (1.1.8) satisfies

Oodge (A) (T, AT) = AN Ky Ogge (A) (E,7) Ky (1.1.9)

for all A € Ry.
The form of A close to the corner v € Cj suggests also to introduce a
principal Mellin edge symbol of order m, namely

bag;lge(A)(t,%):rim S 4,0 (7)) (rD,)F (1.1.10)

J+k<m

for (¢,7) € @xR. This is also an operator family H*7°(X")— Hs~m¥0-m(X"),
for each s € R and vy € R, parametrised by ¢ close to t = 0 and 7 = R(. It

fulfills a homogeneity property analogous to (1.1.9). Moreover, the equality
holds

o (A)(t7) = tim bom (A)(t,t7). (1.1.11)

We have chosen the designation *olfy,.(A) rather than, e.g., 07} 4,.(A) be-
cause this symbol is associated to ogg,.(A) just in the same way as the com-
pressed interior symbol *c™(A) is to o™ (A).

The components of the triple (0™ (A), or(A), ag'}ige(A)) obey obvious com-
patibility conditions.

Definition 1.1.5 A typical operator A € Diff""(C) is said to be elliptic of
order m, with respect to a weight v = (vp,71) in R?, if

1) P0™(A) #0 on*T*C\ {0};

2) om(A)(C): H>(B) — H*~"™"~™(B) is an isomorphism for all¢ € I'_,,
and any fixed s € R;

3) ol J(A)(t,T): HYO(X") — Hs~™0"™(X") is an isomorphism for all

edge

(t,7) € T*(C1 \ Cy) \ {0} and any fized s € R.
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If the condition 2) of Definition 1.1.5 is fulfilled for some real s = sg, then
it is fulfilled for all s € R. Analogously, the condition 3) for a fixed s = s
actually implies the same for all s € R.

Theorem 1.1.6 The following conditions are equivalent:

1) A is elliptic of order m, with respect to a weight v = (vo,71) in R?;
2) the operator A: H*Y(C) — H* ™7~™(C) is Fredholm, for each s € R.

Similarly to the theory of cone pseudodifferential operators it is interesting
to perform a parametrix construction within a suitable corner calculus and to
obtain elliptic regularity with asymptotics close to C; \ Cp in the sense of edge
asymptotics and close to Cy in an appropriate corner sense. In other words our
goal is to introduce corner pseudodifferential operators and the corresponding
distribution spaces with asymptotics.

Since away from Cy the theory coincides with the calculus of operators
on manifolds with edges, we have in general additional trace and potential
conditions along C; \ Cy. They will also take part in the ellipticity and the
edge symbolic structure. Even for a corner-degenerate differential operator A
it may happen that A has to be filled to a matrix

1 p H(C) He=ma=m(C)
A= A & — ® .
H5’6(01 \ Co, W) Hs—m,d—m(cl \ Cg, W)

for obtaining the Fredholm property. A convenient choice of the weight ¢ will
be specified below.

1.2 Cone calculus

The theory of pseudodifferential operators on manifolds with corners will em-
ploy some material from the cone theory. In this section we briefly discuss
the necessary tools. For a thorough treatment we refer the reader to Schul-
ze [Sch9s].

We first recall the asymptotics of distributions close to a conical point of
B or, equivalently, on the interior of B near 0B. This is formulated in terms
of X, X being the link of B through the conical point.

Given any u € H*7(X"), the discrete asymptotics of u(r, x) for r — oo are
defined as

oo My

u(r,z) ~ > Y e (logr)F o), (1.2.1)

v=1 k=0
where (p,) is a sequence of complex numbers such that Sp, — —oo as v — o0,
and the coefficients ¢, (z) belong to finite-dimensional subspaces ¥, of C*(X),



20 Pseudodifterential Operators on Manifolds with Corners

0 < v < m,. In this case we speak about the discrete asymptotic type as of u,
with
as = (pVJ my, Zu)yzl,gym )

the set mc as = (p, ),y being called a carrier of asymptotics.
Clearly, we assume p, < —v. The precise meaning of (1.2.1) is that, for
any cut-off function w(r) and real € > 0, there is an N depending on €, such

that
N my

u(r,x) —w(r) ZZT“’" logr)¥ e i () € HS7TE(XM),
v=1 k=0

Denote by H?;7(X") the space of all u € H*7(X") with asymptotics of the
type “as”. This is a Fréchet space in a natural way, the family of seminorms
being given by the norms of ¢, (x) in C*°(X) and the norms of the remainders
in H57Te(XM).

The asymptotic types are related to a weight v € R and the infinite weight
interval Z = (—o0, 0] below the weight line I'_,. We write w = (y,Z) for the
weight data.

If occurring along edges, the asymptotics are parameter-dependent and
lead to non-constant asymptotic types. More precisely, the numbers (p,) vary
along with a point on the edge and may thus fill in compact subsets of the
complex plane. These variable discrete asymptotics can be formulated as a
particular case of continuous asymptotics defined as follows. Instead of (p,)
we take an arbitrary sequence of compact sets (/K,) in the complex plane, such

that
K,c{2eC: Qz<—y} forall v

sup Sz —+ —o0  as v — o0. (1.2.2)
zeKy,

For a Fréchet space V, we denote by A'(K,V) = A'(K)®,V the space
of all V-valued analytic functionals carried by K. Any f € A'(K,V) can be
applied to r%* with respect to z € C, for each r € R,. The result belongs to

e (R4, V).

Pick a sequence f, € A'(K,,C>*(X)), v =1,2,.... By continuous asymp-

totics of u € H*Y(X") for r — 0o are meant

U(T, x) ~ Z <fV7 riz>,

the asymptotic sum being understood similarly to (1.2.1). In contrast to (1.2.1)
the functionals f, are in general not uniquely defined by the function u. Hence,
for the calculus of continuous asymptotics we have to identify any two se-
quences f, € A'(K,,C®(X)) and f, € A'(K,,C®(X)) with the property that
S {fu— fu,77%) ~ 0. Moreover, we call a set o C C a carrier of asymptotics
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if it is closed, has connected complement and meets each horizontal strip of a
finite width in a bounded set. As but one example of this we show 0 = (UK, )
where 6, for a set ¢ C C, means the complement of the union of all unbounded
connected components of C\ &. Then, we may still speak about the continuous
asymptotic type as of u defined as as = (o, X)), where o is a carrier of asymp-
totics lying in the lower half-plane {z € C: Jz < —v}, and ¥ the space of all
equivalence classes of sequences f, € A'(K,,C®(X)) with K, C o satisfying
(1.2.2).

We continue to write HZY(X") for the space of all v € H*7(X") with
continuous asymptotics of type “as”. This is a Fréchet space in a natural way,
cf. [Dor98, 2.1.3].

It will be convenient to introduce asymptotic types also for finite weight
intervals Z = (-1, 0], where [ > 0. For finite Z, by a discrete asymptotic type is
meant any finite collection as = (p,,m,,%,),_, y, with p, a complex number
in the strip {z€ C: —y—1 <SSz < —v}, m, a nbn—negative integer, and X, a
finite-dimensional subspace of C*°(X). Moreover, by a continuous asymptotic
type we mean any pair as = (K,X), where K is a carrier of asymptotics
contained in the strip {z € C: —y -1 < Iz < —v}, and ¥ the space of
all equivalence classes of functionals f € A'(K,C*(X)), two functionals f
and f being equivalent if w(r) (f—f, %) € H>"*-9(X"). In case T is finite
the definition of spaces with asymptotics is quite straightforward. Namely,
given an asymptotic type as related to the weight data w = (,Z), we denote
by Aas(X”) the space of all potentials u(r,z) = w(r) (f(x),r*), with f(z) a
functional in the relevant subspace of A'(K,C*°(X)), and w(r) a fixed cut-off
function. Set

HEP(X") = A (X") + HY 201

in the sense of non-direct sums of Fréchet spaces, Aas(X") being endowed with
the topology induced by the embedding to A'(K,C>®(X)), and H*7=0(X")
by the projective limit topology.

As defined above, the continuous asymptotic types are actually identified
with their carriers. The reason for distinguishing the notation of these objects
is that below for corners there are more complicated spaces of coefficients
for the asymptotics. Then, the present notation corresponds to a simpler
particular case.

To define weighted Sobolev spaces with asymptotics on the entire manifold
B, we fix a cut-off function w(r) supported in a collar neighbourhood of 08,
e.g., w(r) =0 for r > 1/2. Given any asymptotic type “as”, being discrete or
continuous, we set

H(B) = [w] H(X") +[1 —w] H*(B),
SH(X7) = [WHZT(X") +[1 - w] S(X")

where S(X") = S(R; )®,C>®(X) and S(R, ) stands for the restriction of S(R)
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to the half-axis.

Definition 1.2.1 For weight data w = (v,6,T), the space V(X" w) is
defined to consist of all G € NyerL(H®Y(X"), H*®°(X")) with the property
that

G : H*(X") — & (X)),

G* : H*(X") = S.7(X")
for all s € R and some asymptotic types “as” and “as” related to weight data
(0,Z) and (—~,T), respectively.

Here G* is the formal adjoint of G with respect to a fixed scalar product
in H%°(X").

The operators of ¥ (X" w) are said to be Green operators on X" with
discrete or continuous asymptotics. This concept extends in a natural way to
operators given on the whole manifold B. Namely, we write W¢(B; w) for the
space of all G € NyerL(H*Y(B), H**(B)) that induce continuous mappings

G : H*(B) — HX(B),
G* . HY(B) — HZ(B)

for all s € R and certain asymptotic types “as” and “as” related to weight
data (6,Z) and (—v,Z), respectively, G* being the formal adjoint with respect
to a scalar product in H%°(B).

The cone pseudodifferential operators are defined by means of operator-
valued Mellin symbols which also reflect the asymptotics. The task is now to
introduce the discrete and continuous asymptotic types of Mellin symbols.

If o is a subset of the complex plane we call a x € Cp2(C) a o-excision
function if x(z) = 0, when dist(z,0) < €, and x(z) = 1, when dist(z,0) > €,
for some 0 < € < &" < 0.

Fix a collection T" = (p,, my, L,),c;, Where p, are complex numbers sat-
isfying |Sp,| — oo as |[v| — oo, m, non-negative integers, and L, finite-
dimensional subspaces of finite rank operators in ¥~°°(X). Any such col-
lection 1" is called a discrete asymptotic type for Mellin symbols. The set
mcl = (py),ey gives rise to what we have already called a carrier of asymp-
totics.

Definition 1.2.2 By M (C, V7 (X)) is meant the space of all meromor-
phic functions a(z) in C with values in V(X), such that

1) given a mcT-excision function x(z), we have x(z)a(2) [r_, € ¥iF(X;T_,)
for all v € R, uniformly in v in compact intervals of R;

2) a(z) has poles at p, of multiplicities m, + 1 with Laurent coefficients at
(z — p,)~* Y belonging to L, for every 0 < k < m, and v € Z.
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The spaces My (C, U7 (X)) are Fréchet in a natural way. If 7¢T is empty
we omit 7" and write simply M (C, ¥7}(X)). It is immediate from the definition
that

My (C, U7 (X)) = M(C, ] (X)) + Mp(C, U™ (X)) (1.2.3)

as a non-direct sum of Fréchet spaces.
The continuous asymptotic types of Mellin symbols require more care and
are first defined for quasi-discrete carriers o, i.e., those of the form o = U,z K,

where
sup Sz < inf &z forall v

z€Ky 11 Z€Ky
sup |Sz| - 00 as || — oc.
zeK,

If T'= (0,0~ (X)), with 0 a quasi-discrete carrier of asymptotics, then
My (C, U (X)) is defined by (1.2.3), where My (C,U~>°(X)) denotes the
space of all a(z) € A(C\ o, ¥ >°(X)) such that, given any o-excision function
x(z), we have x(z)a(z)|r_, € ¥"°(X;['_,) for all v € R, uniformly in 7 in
compact intervals of R. It is clear that any carrier of asymptotics o has the
form o = 01 U 09, for quasi-discrete o; and oy. Thus, a continuous asymptotic
type T' = (0, ¥~°°(X)) with arbitrary carrier ¢ C C can be thought of as an
equivalence class of pairs (17, T3), where both 7} and T5 have quasi-discrete car-
riers. We identify any two pairs (77, 73) and (Tl, Tg) such that o1 Uoy = 61 Udy,
where o; and ¢; are the carriers of T; and Tj, respectively. If o = o1 U 09, we
also write T' = T, + T5. We define M (C, U7} (X)) to be the sum of Fréchet
spaces My, (C, ¥ (X)) and M, (C, U7 (X)), where T =T, + T, and Ty, T
are of quasi-discrete type. It is independent of the choice of the decomposition
T - T1 + TQ.

We shall employ a parameter-dependent analogue of M(C, U7 (X)) with
a parameter n € R?7. Namely, M(C, ¥} (X;R?)) stands for the space of all
a(n,z) € A(C, U (X;R?)) such that a(n, o —iy) € F(X;RIT) for all v € R,
uniformly in v in compact intervals of R. This space is also Fréchet in a natural
way.

We are now in a position to introduce two pseudodifferential calculus on

B. The first of the two is known as the cone algebra with discrete asymptotics,
cf. [Sch98, 2.4].

Definition 1.2.3 Let w = (v, — m,I), where v € R, m — u € Z, and

Z = (=1,0], [ being a positive integer. Then, V*(B;w) is the space of all
operators

A=A+ A+ M+G (1.2.4)

where

Ay is a Mellin operator with holomorphic symbol in a collar neighbourhood of
OB, i.e., Ay = @y~ 0Dy, (h) Yy where h(r, z) € CfL(Ry, M(C, W5 (X))
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A; s a usual pseudodifferential operator on the smooth part of B cut off away
from 0B, i.e., A; = p;¥; where ¥ € V(B \ 0B);

M s the sum of smoothing Mellin operators with meromorphic symbols in
a collar neighbourhood of 0B, i.e., M = pyr—H Zé;t TjopMm (m;)
where mj(z) € Mg (C,¥™°(X)) and y—(m—p)—j < 95 < v sat-
isfy mcT; NIy, = 0; and

G is a Green operator with discrete asymptotics on B related to the weight
data w, i.e., G € Vg (B;w).

The cone algebra with discrete asymptotics is an efficient tool of analysis
on manifolds with conical points because the asymptotics are controlled within
finite-dimensional spaces of singular functions. However, problems on mani-
folds with edges fall out this framework and require a calculus with continuous
asymptotics. The cone algebra with continuous asymptotics is formed by all
operators of the form (1.2.4), now both M and G bearing continuous asymp-
totics. A smoothing Mellin operator with continuous asymptotics is defined
by

-1
M=qgyr ™ z;r] (OPM77](1)(m§1)) 0Dy, (m§2))> Vi
j=

where mg-b)(z) e M

T N I' =0, for.=1,2.
J v

It will cause no confusion if we use the same notation W#(B; w) for the cone
algebra with continuous asymptotics. The precise meaning is always clear from
the context.

The cut-off functions ¢y, 1, € C2 [0,1) are arbitrary as well as the func-

comp

tions ;, ¥y € Cpyp, (B '\ 0B). We shall assume without loss of generality that
(b, ;) form a partition of unity on B, and v, ; cover g, ¢; in the sense
that ¥y, = ¢ and Y;; = ;, respectively. Moreover, we require A, and A;

to be compatible in the sense that

w0 (CU™%(X)) and y—(m—p)—j < 7 < 7 satisfy
J

kg W =1 "opr,(h) (1.2.5)

modulo U~=>°((0,1) x 9B), where O is a collar neighbourhood of 0B along
with a diffeomorphism x: O — [0,1) x 0B and k¥ = k,¥k* is the operator
push-forward of ¥ under k.

Finally, we define the class W*(X";w) by inserting ¥ € W} . (X") and
G € Ue(X") in (1.2.4). Here W} . (X") stands for the space of all classical
pseudodifferential operators on X" satisfying the ezit condition as r — oo. Let
us recall this latter concept in case X = S” is the unit sphere in R**!. The

general case then follows by a globalisation via a finite covering of X by open
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sets diffeomorphic to coordinate neighbourhoods on S", and a subordinate
partition of unity. For X = S" we have X" = R*"! \ {0}, the diffeomorphism
being by (r, z) — ra. The specific things concern “large” values of the variable
# and the covariable £, hence it suffices to look at symbols on R** x R**!. For
i, € € R, we denote by S#¢(R"™! x R**1) the set of all @ € S#(R"*! x R*t1)
such that ) 5

[DgDZa(#,€)| < ¢ (L+ |21 (1 + €)W

for all (7,€) € R** x R**!, the constant ¢ depending on «, 3 € Z™"'. More-
over, we write Siy“(R"*! x R"*!) for the space of all a € S#¢(R*" x R*") with
the property that a(%,&) is classical in £ and there is a sequence ay, j € Z,
in 84 (R™! x R**1)  every a;(Z,€) being homogeneous of degree € — j in &, for
large |Z|, such that

a](:%,g) c S,u,ef(zH»l) (Rn+1 % Rn+1)

M~

a(i‘,f) - X(:i')

J=0

for all j € Z,. (We also assume an analogous condition in £.) Now, the class
of exit symbols is S4°((R**! \ {0}) x R**!), the conditions being required for
|Z] > & with any € > 0. The component ¢ (a) = ag is called the principal
exit symbol of a.

The operator spaces W*(B;w) and W*(X"; w) bear natural locally convex
topologies of inductive limits of Fréchet spaces, cf. Sections 1.3.2 and 1.4.6 in
[Sch98].

We shall not repeat here once again all elements of the cone theory. For
references below let us only mention that each operator A € W*(B;w) has two
leading symbolic levels. More precisely, the principal homogeneous interior
symbol of A, here in the compressed form 0™(A), lives away from the zero
section of the compressed cotangent bundle of B, cf. (1.1.4). At any conical
point of B (here corresponding to r = 0) the operator A has also the sequence
of conormal symbols

ol (A)(z) = % (0/0r)h (0, 2) +my (=), (1.2.6)

for j = 0,1,...,1 — 1, every o”,(A)(2) being a family in L(H*(M), H>=*(M))
holomorphic in a strip around I'_,, cf. (1.1.5) for j = 0. These symbolic
levels behave in a natural way under taking formal adjoints and composition
of operators. An analogous remark also holds with B replaced by X", where
we have in addition the principal exit symbol of A as r — oo.

Remark 1.2.4 Definition 1.1.3 extends to V™(B;w). Then Theorem 1.1.4
remains valid, the parametrices of elliptic operators lying in V=" (B;w™') with
wtl=(y—m,,7I).
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An analogous result is valid for the corresponding operator classes over the
infinite cone X, where the additional exit symbol for r — oo is involved, cf.
[Sch98, 2.4.3].

1.3 Edge calculus

In this section we present the material on pseudodifferential operators along
the edges of dimension 1 that are emanated from corners.
A “manifold” with edges W is locally close to any point p of an edge F of
the form
[0,1) x X
X e
{0} x X

where €2 is a neighbourhood of p in £ identified with an open interval in R,
and X a C'*° compact closed manifold of dimension 7, the base of the model
cone. It is custom to pass to a stretched manifold W of W which is in this
case a C'* manifold with boundary. Close to the boundary, W is of the form

Q

Qx[0,1) x X,

and there is a canonical “projection” b: W — W which restricts to a diffeo-
morphism W\ oW — W \ E.

A global operator calculus with Fredholm property under ellipticity would
insist on E being closed and compact (cf. [Sch98, 3.5.2]). Our application
will concern W = b1 (C'\ Cy) where E = C; \ (g is not compact. In this
case the main point is the local picture. Near corners the wedge calculus
needs Mellin operators along C) \ Cy. This is the subject of the next section,
whereas now the theory is based on the Fourier transform along the edges. We
introduce a class of pseudodifferential operators on the smooth part of W, i.e.,
U(W;w) — UT(W \ OW) where w = (y,7 — m,Z) are double weight data.
Moreover, we define a more general class W™ (W; W, W;w) of matrix-valued

operators
A P
=(75)

with A € ¥™(W;w). The entries T and P play the role of additional trace
and potential operators along the edge, respectively, while B is a usual pseu-
dodifferential operator of type W — W and order y on E.

Since the specific information is located near 0V and the calculus is in-
variant under the diffeomorphisms obeying the cone bundle structure, we may
first look at the theory on € x X”. To some extent this can be performed
as a pseudodifferential calculus along {2 with operator-valued symbols. The
technicalities may be found in Chapter 3 of [Sch98].
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Recall the definition of abstract edge Sobolev spaces. Let V be a Ba-
nach space and (k)),., be a fixed representation of Ry in L(V), i.e., Ky €
C(Ry, L,(V)) satisfies k1 = Id and kyk, = Ky, for all A\, p € Ry. Choose a
strictly positive C* function 7 — (7) on R satisfying (7) = || for all [7| > ¢,
the constant ¢ > 0 being fixed, e.g., ¢ = 1. We write F;_,, for the Fourier
transform in R.

Definition 1.3.1 For s € R, the space H*(R,7*V) is defined to be the
completion of S(R, V') with respect to the norm

1/2
Ul|Hs(R,m*V) = T Ky Fiosru||y dT .
[l () 16y Foorully d

If k), = Idy for all A € R, we recover the usual Sobolev spaces H*(R, V")
of V-valued functions on R. Yet another crucial example corresponds to the
fibre space V' = H®Y(X"), with s,7 € R, and the group action on V' given
by kxu(r,z) = A3F/2y(\r, x), for A > 0. Then, we obtain the wedge Sobolev
spaces H*'(R x X") = H*(R,7*H*Y(X")) of smoothness s and weight ~.
When localised to compact subsets of the wedge Rx X”, the space H*?(Rx X")
is known to coincide with the usual Sobolev space H{ (R x X"). Moreover,
we have

H% "3 (R x X") = L3R x X", r"dtdrdz), (1.3.1)
the measure r"drdz corresponding to the cone Riemannian metric in the fibre
X" of the wedge.

The operator I = :tm(f)ft_w induces an isomorphism of H*(R,7*V)
onto H*(R,V'). This allows us to extend the definition of H*(R, 7*X) to the
vector subspaces ¥ C V' that are not necessarily preserved under x,. Namely,
we set

H (R 7*¥) =2 [V H* (R, X), (1.3.2)

for any Banach space ¥ continuously embedded to V. Then (1.3.2) is again a
Banach space in the topology induced by the bijection I.

Remark 1.3.2 For any two Banach spaces Y1 and Yo continuously em-
bedded to V', we have

HS(R, " (21 —+ 22)) = HS(R, 71'*21) + HS(R, 7*22)
in the sense of non-direct sums of Fréchet spaces.

The definition of the edge Sobolev spaces H*(R, 7*V') extends to Fréchet
spaces V' written as projective limits of Banach spaces V”, v € N, with con-
tinuous embeddings V**! — V* and a strongly continuous action (k) A€R,
on Vj that restricts to a strongly continuous action on each V¥, v =2,3,....
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We then obtain natural embeddings H*(R, 7*V*"!) — H*(R, 7* V") for all v,
and we set H°(R, 7*V') to be the projective limit of the sequence H*(R, 7*V?),
v € N. Note that Remark 1.3.2 remains valid in case ¥; and Y5 are projective
limits of Banach spaces.

In particular, suppose “as” is an asymptotic type related to weight data

w = (v,Z) with a finite Z = (—[,0]. Then,

H'(Rx X") = H(R, " Hg'(X")),
Hs,’y-l—l—O(R X X/\) — HS(R, ,R_*Hs,’y-l-l—O(X/\))

will be regarded as wedge Sobolev space with edge asymptotics of type “as” and
wedge Sobolev space of edge flatness [ relative to the weight ~y, respectively.
By Remark 1.3.2 we get

HE (R x XM) = H¥(R, m* Aps(X7)) + HHOR x X7,

where the space H*(R, 7% A.s(X")) consists just of the “singular functions” of
edge asymptotics, namely

Fody ()5 () (For £t 2), (7)) (1:33)

where f(¢,x) runs over H*(R, A'(K,C>(X))), K being the carrier of “as”, cf.
(1.3.2).

For infinite Z we can write u ~ 25021 u,, where u, are singular functions
associated with compact sets K, in the complex plane, satisfying (1.2.2). The
interpretation of this asymptotic expansion is that, for any € > 0, there is an
N = N(e) such that u — SN u, € H*7H(R x X7).

We also need the “loc” and “comp” versions of our spaces. The definitions
rely on the fact that the edge Sobolev spaces are modules over Cg, (R). Let
Q2 be an open set in R. Then, H{ (Q,7*V) is defined to be the space of all
u € D'(Q,V) such that pu € H*(R,7*V') for each ¢ € Cg,,,(€2). Furthermore,
Hp (9, V) stands for the space of all u € Hy (Q,7*V) with a compact
support in 2.

The invariance of our definitions under diffeomorphisms {2 = Q0 and the
property H*7'(R x X") — H (R x X") give rise to the global weighted

loc

Sobolev spaces H;Y (W) and HZ (W) on W as well as those with asymptotics

loc comp

H (V) and HSY(W).

as,loc as,comp
In order to deal with asymptotics on manifolds, here on W, it is nec-
essary to put a so-called shadow condition on the asymptotic types “as”.
For discrete asymptotic types it means that from (p,m,X) € as it follows
that (p — j,m;,%;) € as for all j € N, with Sp —j > —y — [, and cer-
tain m; > m and ¥; D X. For continuous asymptotic types it says that
(c—7)N{zeC: —y -1 <z < —v} Coforall j € N, where o is the carrier

Of “aS”
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By (1.3.1), the most natural scalar product on R x X" is that of the space
HY " (R x X"). By restricting the Lebesgue measure of R to 2 we also get
a scalar product in H% "2 (Q x X*). If we fix a Riemannian metric on E we
obtain furthermore a Hilbert space HO”HTH(W) with a fixed scalar product.
On the other hand, we want to have H%%(W) as a reference space for the formal
adjoint, etc., for the shift in the weight exponent by (n + 1)/2 no longer works
for cuspidal edges. Were W compact, it would not cause any confusion. For
a non-compact W, merely the space Hl?)’g (W) is invariantly defined. However,
we have distinguished coordinates (¢, p) near the corners where W ceases to be
locally compact. This enables one to introduce a space H*°(W) with a fixed
Hilbert structure.

Let V and V be Banach spaces and (FA)xer, and (Rx),er, fixed group

actions on V and V, respectively.

Definition 1.3.3 For an open set {2 C R® and m € R, we denote by
S™M(Q x R, L(V,V)) the set of all C* functions a(t,T) on Q x R with values
in L(V, V), such that

HR(?) (D?Dfa(tﬁ)) Ky llein < ckap (r)ym= Al

forall (t,7) € K xR and o € Zf, B € Z,, where K is any compact subset of
Q.

The only choices of Q occurring here are Q C R or 2 x Q C R%. In the
latter case we write (¢,t) for the variables in Q x Q.

For a recent account of the theory of “twisted” pseudodifferential operators
with operator-valued symbols we refer the reader to [Sch98, 1.3].

Suppose V is a Fréchet space written as projective limit of Banach spaces
V¥, v € N, with continuous embeddings V**! < V¥ and a strongly continuous
action (k) AeR, OD V1 which restricts to a strongly continuous action on every
VY, v =23,.... We then set S™(Q x R, L(V,V)) to be the projective limit
of the sequence S™(Q x R, £(V, V")), v € N. Analogous notation is used for
subspaces of classical symbols, indicated by “cl”.

More precisely, S7(Q x R, £(V,V)) is the subspace of S™(Q x R, £(V, V'))
formed by the symbols a that possess asymptotic expansions a ~ x(7) Z;’io a;
with x () an excision function and a; € C22(Q x (R \ {0}), £(V,V)) homoge-

loc
neous of degree m — j with respect to the group actions in V' and V' in the

sense that
a;(t, \7) = N Fyai(t, ) kY, A >0,

forallt € Q and 7 € R\ {0}.
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Any symbol a € S™((Q2 x Q) xR, £(V,V)) induces a canonical operator on
Q by
1 .
op(a)u (t) = o // T q(t, ', T) u(t) di'dr,
7r
~ comp loc(Q7 f/)

Denote by W™(§2; V, V) the set of all operators op(a) with arbitrary double
symbols a € S™((Q2 x Q) x R, L(V,V)), and by Wg(Q;V,V) the subspace
of classical operators. Then, W=>°(;V, V') can be identified, by the Schwartz
Kernel Theorem, with C2.(2xQ, L(V,V)). Fora € S™((2x Q) xR, L(V,V)),

loc
we set

first regarded as a continuous mapping C> (2, V) — C

Oedge(@)(t,T) = ao(t,t,7), (t,7) € T*Q\ {0}, (1.3.4)

and define the principal homogeneous edge symbol of an operator A = op(a)
by 073, (4) = o2, (a).

The kernels of operators A = op(a) live in the space of distributions on
Q2 x Q with values in L(V ‘7) Then, we may talk about the operators properly
supported with respect to the (¢,')-variables. Every A € U™(Q;V, V) extends
to continuous operators Hg, (2, 7*V) — HE™(Q, V) for all s € R. We
may write “comp” “loc” in both the domain and target space if A is properly
supported.

In the sequel we use the letters W and W to designate arbitrary C* vector

bundles over the edge E. When restricted to €2, they are trivial, i.e.,

W = QxCV,

W = QxCN.

Definition 1.3.4 Let w = (v,7 —m, ), where m,y € R and T = (-1, 0],
0 <l <oo. Then, ¥,2(Qx X" W, W;w) stands for the space of all operators
Ge N LHEL(Q2x XN @ H

comp comp
seER

(W), Hp' 7™ (2 x X7 @ Hig (2, W)

loc loc

that map as

G : H (Qx XN @ HE, (W) = HXT7™(Q x XN @ HX (Q,W),

comp comp / as,loc loc
G* 1 Higmy (X XM @ Hipp (W) = HZ o (2 x X7 @ Hig(Q,W)

for all s € R and some asymptotic types “as” and “as” related to weight data
(v —m,Z) and (—v,T), respectively.

Note that G* is the formal adjoint of G with respect to a fixed scalar product
in Ho%(Q x X") @ H°(Q).

The operators of U,>(2 x X W, W;w) are called smoothing Green op-
erators on the wedge Q2 x X”. In contrast to the cone case, Green operators
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on the wedge are specified by their action along the edge, here along 2. While
being smoothing away from the edge, they may bear a finite order along €.
In order to describe this new feature on the symbol level, we introduce Green
edge symbols.

Definition 1.3.5 Let w = (v,7 —m,I), where v € R, m — p € Z, and
Z=(-1,0],0<l<o0. Then, SL((Q2 x Q) x R;W,W;w) denotes the space of
all symbols

g€ N SG(Qx Q) xR LH>(X") & CY, H*7"™(X") @ CY))

seR

such that

8 € Niew SHQx Q) xR LEY (XN & CY, 85 (X) & CY)),
8" € Muen SHx Q) x R LIH™ (XN & CY, 8.7(X") @ CV))

for certain asymptotic types “as” and “as” related to weight data (v — m,T)
and (—v,T), respectively.

Here are some comments. By g* we mean the pointwise formal adjoint of
g in the sense that

(gU; U)H0,0(X/\)@CN = (u, g*'U)HOsO(X/\)@(CN
for all u € C5,, (X)) @ CN and v € C, (X)) @ CN. We always assume that
our groups act as the identity on the finite-dimensional complements, i.e., they
are of the form xy ® Idey and k) @ Idw, respectively, for any A € Ry. Write
UE(Q x XN W, Wi w) for the space of all operators of the form op(g) + G,
where ~

g € Se((QxQ) xR W, W;w),
G € U Q2 x XMW, W;w).

The entries of the upper left corners of the matrices g and op(g) + G are of
basic interest in our theory. They form the spaces SE((2 x Q) x Ryw) and
U (2 x X7 w), respectively.

The operators in W% (Q x X", W, W;w) are said to be Green operators of
order i on the wedge  x X”. These are matrices

He, (L HSY(XN))  HEH(Q, ot Hirmao—m (X M)
G P comp oc as
g= N S5) — ®
Hgomp(Q7 W) Hlso;#(QJ W)

acting continuously for all s € R, with “as” an asymptotic type related to
w = (7 —m,ZI). The entries T and P are called trace and potential operators,
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respectively. Furthermore, we have B € ¥*(Q; W, W), an (N x N)-matrix
with entries in U¥ (Q).

According to the above general notation, every G € Wi, (Q x X", W, Wiw)
has a principal homogeneous edge symbol of order p which is a C'* operator
family

Hs(XM) Hsm0-m( XN
Ohage(G) (8, 7) ® — ® (1.3.5)
cv cy
living away from the zero section of 7%(2 and homogeneous of order y in the
sense that

Teagel0) (A7) = A" ( o [1) )(Iéhge(g) (t,7) ( i (1) )1

for all A € R,. Clearly we have a more precise information on the range in
(1.3.5) but it is not used in this context.

Now let us introduce another sort of classical operator-valued symbols,
namely smoothing Mellin symbols

l
>3 (opM%@C3 (m{{2) + 0P,y (m;?g)) 7% o (r(7))

m(t,) = () 3o S
I (1.3.6)

where m%(t, z) is a C™ function of ¢ €  with values in M, (C, ¥~ (X))
],

and
v - (T)_M) —j < W< g,
WCTj,a N F_VJ(’L; = @,
for . = 1,2. Moreover, ¢y and 1)y are arbitrary cut-off functions on the semi-
axis. We then have m € S(Q x R, L(H*"(X"), H>*"~™(X"))) for all s € R.
The principal edge symbol of m is a family in L(H®7(X"), H*=#7~™(X"))
given by

—_

[—
— ] 1 2
Otage (M) (8,7) = olrlT) T D (17 (0B 1 0 (1)) + 0B 0 (i) o (7]

J

Il
<)

for (t,7) € T*Q \ {0}.

Definition 1.3.6 Let w = (v,y — m,Z), where y € R, m —pu € Z, and
T = (—1,0], | being a positive integer. Then, Uy, (2 x X";w) is the space of
all operators op(m)+G, where m is of the type (1.3.6) and G € V5 (QAx X" w).
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As further and main ingredient we now add pseudodifferential operators
in the interior of Q x X”. We start with symbols on © x O" where O is a
coordinate neighbourhood on X identified with an open subset U of R".

Denote by 84 (*T*(2 x U")) the space of all symbols a over Q x U” of the
form

a/(t7 T? ‘7"7 7_7 Q? 5) = E(I/(t7 r? .’I/', 707_, TQ) é‘)

where @ € SH((Q x U") x R**™) is C™ up to r = 0. We will tacitly assume
that our a(t,r, x, 7, 9, &) vanish for r large enough, for the symbols are cut off
at the end. The symbols of S4(*T*(2 x U")) are said to be edge-degenerate,
cf. [Sch98, 3.1.2].

Given any edge-degenerate symbol a(t,r, x, T, o,§), we introduce the com-
pressed principal homogeneous symbol of the operator A = r~*op(a) over
Q x U by

bt (A)(t, 7z, 7, 0,6) = ao(t,r,x, 7, 0,€), (1.3.7)

where dj is the principal homogeneous part of @ of order x. The symbol o#(A)
is defined up to r = 0, and the ellipticity with respect to *o#(A) just amounts
to that with respect to the symbol o#(A) away from r = 0 along with the
condition at r = 0, as above.

Theorem 1.3.7 Let a be an edge-degenerate symbol of order p, elliptic
with respect to the compressed symbol up to r = 0. Then there exists an edge-
degenerate symbol p of order —u, such that

(r*p) oty (r™™a) =1 mod S™((2 x U") x R*™),
where “o” means the Leibniz product of the symbols, taken with respect to the
indicated variables.

The same is true for the multiplication in reverse order or for the Leibniz
product only with respect to (r,z).

Similarly to the calculus on a cone it is adequate to formulate operators
globally along X and to consider the corresponding (¢, 7, 7, 0)-dependent oper-
ator families.

Let us fix a finite open covering of X by coordinate neighborhoods (0,),, ¢
together with a system of charts k,: O, — U,, U, being an open subset of R",
a subordinate partition of unity (¢,),c, on X, and functions ¢, € Cg,, (U, )
satisfying ¢,1, = ¢, for every v € N. Given an arbitrary system of edge-
degenerate symbols a, € S4((Q2 x U,") x R*™), v € N, with the associated
symbols a,(t,r,x,7, 9,&) which are C* up to r = 0, we can form an operator
family

t T, 7— Q Z Pv ( Ky Op}'z (a'/) (t,’l“,’]N', é)) 1/)u

veN
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where opz_denotes the pseudodifferential action in U, C R" with respect to x.
Then a(t,r, 7, 0) € CRo(Qx Ry, U4 (X;RE ;)). For obtaining a pseudodifferen-
tial operator on €2 x X" we have to carry out the action also with respect to
t € Qand r € Ry. Concerning the action in r we want to have a control up to
r = 0. To this end we formulate for the edge-degenerate symbols an operator
convention that allows us to apply the pseudodifferential calculus along R,
with respect to the Mellin transform (it is needed only for a neighborhood of
r = 0). In other words we generalise some constructions from the cone calculus
in a suitable parameter-dependent form.

The proof of the following result can be obtained by a kernel cut-off argu-

ment with respect to the parameter z.

Theorem 1.3.8 Supposey € R. For every o(t,z) € WV (X;RxI'_,) there
exists an h(r,z) € M(C, ¥4 (X;R;)) such that

h(r,z)|r_, —o(r,2) € U"°(X; R, xI'_,).

It is worth noting that if h (7, 2), hao(7, 2) € M(C, ¥4 (X;R;)) and there
exists a v € R such that (hi(z,7) —ha(2,7)) [r_, € ¥"®°(X;R, x I'_,), then
actually hy (7, z) —he(7,2) € M(C, ¥~ >(X;R,)). Since the kernel cut-off acts
only on covariables, we have analogous results for the case when o(t,r,7,2)
depends on (¢,r) € Q@ x Ry, up to r = 0. Then the other occurring objects
also depend on (t,7) € Q x Ry in a suitable way.

Theorem 1.3.9 For every a(t,r,7,0) € C22(2 x R+,\Ifé‘l(X;R§,é)), there
exists an h(t,r,7,2) € C2(Q x Ry, M(C, U* (X;R;))) such that

opz, (a)(t,7) = op g, () (t,7) mod G (2, ¥ (X";R,)),

where a(t,r,7,0) = a(t,r,r7,m0) and h(t,r,T,2) = h(t,r,r7,z). Moreover,

such an h(t,r,7,z) is unique modulo C25.(Q x Ry, M(C, ¥~ (X;R;))).

Proof. The proof of Theorem 1.3.9 is rather technical, however, the idea
is easy. In a first step we set

oo(t,r,7,0) =alt,r, T, 0).

It is easy to check that there is an @, (t,7, 7, 8) € C2(Q x Ry, W' (X; RZ ;)
such that

opg, (a)(t, ) = op i (00)(t,7) + 0pg, (a1)(t,7) mod CF (¥ (XNR,)),
where

oo(t,r,7,2) = do(t,r,rT,2),
ay(t,r,7,0) = dy(t,r,rn, o).
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This allows us to start an iteration which yields a sequence
Gi(t,r,7,2) € O (2 x Ry, U7 (X;R; xR)), j=0,1,...,
with p — 7\, —o00 as j — oo. The asymptotic sum
o0
a(t,r,7,z) ~ Z@-(t, r,T,Z)
§=0

in CY°

that

(Q x Ry, U4 (X;R: x R)) then gives a o(t,r,7,2) = 6(t,r,rn, z) such

opg, (a)(t,7) = oprg(0) (£, 7) mod Gt (2, W (X R, )).

Finally, applying Theorem 1.3.8 in the (¢, r)-dependent form and using the fact
that op,,,(0) = opy (o) for all ¥ € R, in the case of Mellin symbols which
are holomorphic in z, we obtain the desired assertion.

O

This assertion can be viewed as a Mellin operator convention which ex-
presses the Fourier pseudodifferential action in 7 € Ry in terms of Mellin oper-
ators, modulo controlled remainders. Since there is such a remainder, the cor-
respondence is not canonical, however the final operator algebra will be inde-
pendent of the concrete choice, for there will be involved also W, (Q2x X"; w)
terms.

Pick a partition of unity (¢o, ¥so) on the semiaxis, @o(r) being a cut-off
function. Choose a system of C* functions (1, 1) on Ry which covers
(00, o), 1.€., to(r) vanishes for large r, 1o (r) vanishes near r = 0 and
oy, = ¢, for v = 0,00. Combining Theorem 1.3.9 with the pseudolocal-
ity of pseudodifferential operators in parameter-dependent form, we obtain
immediately

r " opg (a)(t,7) = ag(t,7) + ax(t,7) mod Cpo (2, ¥™*(X"R,)), (1.3.8)
for every v € R, where

ao(t, T
oo (t, T

= o(r(1)) 17" 0p g, (B)(E,7) Po(r (7)),
= Poo(r (7)) 17" 0P, (a) (£, 7) Yoo (r(7))-

~— —

Theorem 1.3.10 Set o(t,7) = (r) (ag(t, T) + aoo(t, 7)) (r) where a and
h are the operator-valued symbols of Theorem 1.3.9, and @, 1) are arbitrary
cut-off functions. Then o(t,7) € SH(Q x R L(H®Y(X"), HS"#7#(X"))), for
each s € R. Moreover,

opz, (0) = opy, (pr*opg (a)(t,7) 1) mod W2(Q x X"). (1.3.9)
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The proof of the first part of Theorem 1.3.10 is based on estimates of the
norms of pseudodifferential operators by the symbols. The relation (1.3.9) is
a consequence of (1.3.8).

) For the symbol o of Theorem 1.3.10, we set oy, (0) = 0%y, (a0) + 04, (Ao0)
where

Ugdge(ao)(tJT) = QOO(T|T|)7"7“OPM’,Y(}~L(t, 0,77, Z))wO(T|T|)7
Oedge (o) (1, T) = @oo(r|7T]) 77 0D, (a(t, 0,77, 70)) Yoo (r|7]),

for (t,7) € T*Q \ {0}. Then o}, (0)(t,7) is a family of continuous operators
H*Y(X") — Hs=#7=1(X"), for any s,v € R It is homogeneous of order y in
the sense that

O—gdge(o—) (t7 )‘7_) =\ KA O—gdge (U) (t, T)K;17 A > 07

for all (¢,7) € T*Q\ {0}.

As defined in Theorem 1.3.10, o(¢,7) is a parameter-dependent family of
cone pseudodifferential operators on the infinite ‘stretched’ cone X”*. The
relation (1.3.9) actually shows that op(o) € W4 (Q x X").

Theorem 1.3.11 Let o(t,7) be given by Theorem 1.5.10. Then op(o) ex-
tends to a continuous operator

0p(0) © Hipnp (2,1 H(XM)) = HEH(Q, " HTH7H(X 1),

comp loc

for each s,v € R.

Having disposed of this preliminary step, we are in a position to organise
our local wedge operator algebra.

Definition 1.3.12 Let w = (v,y—m,Z), wherey € R, m —pu € Z, and
T = (=1,0], L being a positive integer. Then, WF(Q2 x X";w) is the space of all
operators

A=A+ A+ M+ G
where A, = op(a,), v = 0, 00, for arbitrary symbola € C2(QxR, UH(X;R?),
and M + G € W, (2 x X" w).

Finally, denote by W#(Q x X"; W, W;w) the space of all operators of the

form p
0
A= ( 0 0 ) + 3, (1.3.10)

with A € U#(Q x X";w) and G € T4 (Q x XN W, W;w).
The analogous operator classes for Z = (—o0, 0] are introduced to be the
intersections of those for Z = (—[, 0], over [ € N.
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Remark 1.3.13 Every A € U*(Qx X, W, W;w) can be regarded as being
properly supported with respect to the variables y € €, modulo operators in
V20 x XMW, Wiw).

The proof of this assertion is not obvious, as being a Green operator of
order —oo requires not only being smoothing along the edge but also being
flattening in the fibres over the edge. The idea is to rewrite the operators as
those with symbols replaced by their derivatives of sufficiently large order in
the covariable 7. This is possible provided that the kernel has no singularities
on the diagonal of €2 x €2. It remains to use the general property of the
operator algebra WH(Q x X" W, W w) that the differentiation of symbols in
the covariable 7 improves their mapping properties in the fibres. For a proof,
see Proposition 3.4.36 in [Sch98].

Theorem 1.3.14 Any A € U*(Q x X", W, W;w) induces continuous op-
erators

He Qe HS(XN)  HEH(Q, m H = (X))

comp loc

A @ — © ,
Hcsomp(QJ W) HIZZM(Q7 W)
H o (S0, 7 HY (X)) Hyg H(Q, m Hy ™7™ (X))
A @ — S
Hcsomp(Q7 W) HIZZM(QJ W)

for any s € R and asymptotic type “as” related to (vy,T), with some resulting
asymptotic type “as” related to (y —m,T).

We emphasise that “as” depends on “as” and A, but not on s. If A is
properly supported in y € €2 then it preserves the spaces with the subscripts
‘comp’ and ‘loc’.

Let us highlight the leading symbolic levels of the wedge calculus. From
TH(Q x XM w) — WH(Q x X)) we get the ‘compressed’ principal interior
symbol of order p, i.e.,

"ot(A) € Sp (T (2 x XM\ {0})

given by bo#(A) = o#(a) (cf. Definition 1.3.12), the subscript “hg” referring to
homogeneous symbols. Moreover, we have the principal edge symbol of order

W, 1.e.,

Oeage(A) € () St (T"QNA{O}, LIH*Y(X7), H #77m(X7)))

sER
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defined by og,.(A) = 0l4.e(a0) + Olige(@o0) + 0lyge (M) + 0%y, (9). For more

general A € UH(Q x X W, W;w), we set
oA = Yo (A),

1
i) = () o0 (13.1)

A being given by (1.3.10).

When localised close to 7 = 0, the spaces W*(Q x X; W, W; w) survive un-
der natural operations such as compositions, adjoints and push-forwards under
diffeomorphisms Q — €. These are compatible with the symbolic levels, which
is rather evident anyway. Hence it follows that we may globalise our pseudod-
ifferential operators to C™ vector bundles W and W over the entire edge E,
thus arriving at local “algebras” W#(E x X"; W, W;w) near the boundary on
W.

In order to develop the calculus globally over the manifold W we first need
the global negligible operators.

Definition 1.3.15 Let m,y € R and w = (7,7 —m,Z), where T = ([, 0],
0 <l <oo. Then, ¥ ,°W; W, W;w) denotes the space of all operators
Ge (N LHE (W)® HS

comp comp
seER

(E,W),HX""™W) @ HX(E,W))

loc loc

which map as

G : H2 V)@ HS, (E,W)— HXT ™W)® HX(E,W),

comp comp / as,loc loc
G* + Himy"OV) @ Henp (B, W) — Hgfi ol (W) @ Hig (E, W)

for all s € R and certain asymptotic types “as” and “as” related to weight data
(v —m,ZT) and (—v,I), respectively.

By G* we mean the formal adjoint of G with respect to a fixed scalar product
in H*°(W)® H°(E). The entries of the upper left corner of the matrix G form
the space U, (W;w).

We now suppose v € R, m—pu € Z, and w = (y,y—m,Z), with Z = (=L, 0],
I € N. For vector bundles W, W over E, the space W*(W; W, W;w) is defined
to consist of all

Ae N LIHE,,WV) @ Hpo (B, W), Hy 7™ (W) @ Hy M (B, W)

loc loc
sER

of the form
A, 0
A=y Ay + @i ( 0 O) v +G (1.3.12)
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where A, € UH(E x X W, Wiw), A; € \Iffl()/o\/), and G € V-2 (W; W, W;w).
Moreover, (gp, ;) is a partition of unity on W and (v, 1);) a system of C'*
functions covering (¢, ¢;), both @y(r) and ,(r) being cut-off functions sup-
ported in [0, 1).

Remark 1.3.16 Every A € W*(W; W, Wi w) can be written as A = A'+G
where A" € WH(W; W, W;w) is properly supported with respect to the variables
in E, and G € U 2(W, W, W;w).

Theorem 1.3.14 has a global analogue for A € W*(W; W, W w). Moreover,
the local symbol levels (1.3.11) can easily be generalised to the corresponding
global ones.

Theorem 1.3.17 Let

Al € \I]NI(W, W17W2;w1)7 wy = (777 - ml,I),
Ay € U (W, W2 W3w,),  wy=(y—my,y—my —ms,1),

one of the Ay and Ay being properly supported. Then the composition As Ay is
well defined in WH+e2(W; W W3 wyow,), with wyow; = (v, y—my —my, I),
and

b0.m1+m2(A2Al) — bo.mz(A2) b0.m1 (Al);

Ooasd "2 (A2 A1) = o (A2) ogg.(Ar).

The theory of the operator classes W*(W; W, W; w) has a straightforward
generalisation to upper left corners A acting between distribution sections of
C> vector bundles V and V over W. For simplicity we restrict ourselves to
the case where A are still scalar operators. But it may happen that non-trivial
W and W are actually necessary, as is known, e.g., in the particular case of
boundary value problems.

Definition 1.3.18 Let w = (v, —m, ) where m,y € R and T = (~[,0],
[ being a positive integer or co. An operator A € W™ (W, W, W;w) is said to
be elliptic if

1) P0™(A) #0 on *T*W\ {0},
2) o (A7) HY (X)) @ W, — H =™~ (X 1) ® W, is an isomorphism
forall (t,7) € T*E \ {0} and some s € R.

Here, W, and W, are the fibres of W and W over ¢ € E, respectively. By
the cone theory, the condition 2) for one particular s = sy implies the same
for all s € R.

Recall that in our application W is not necessarily compact while E is
C1 \ Cy. Hence one might better speak about interior “edge ellipticity”. The
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ellipticity up to non-compact “exits” of E is just the contents of the “corner
ellipticity” in Section 3.3. If
A P
(7 1)

is elliptic, then T', P and B are called elliptic edge conditions for A. The fibre
dimensions of W and W depend in general on the weight ~.
Let

A € ImW W, Wi w), w = (y,7-m7I),
P e v W, W, Wiwlt), wl = (y—m,n,7I),

A or P being properly supported. Then, P is said to be a parametriz of A if

PA—-1 € \IJE;OO(W;VI/;w_low),
AP -1 € I2W;Wiwow 1)

where 1 stands for the identity operator in the corresponding classes.

Theorem 1.3.19 Every elliptic edge problem A € ¥™(W; W, W;w) has a
properly supported parametriz P € W""(W; W, W;w ).

The following result is a straightforward consequence of the existence of
a parametrix P within the “algebra”, for any elliptic operator A of the form
(1.3.12).

Corollary 1.3.20 Let A be elliptic. Every u € H_ 07 (W) @ H. 22 (E, W)

comp comp

satisfying Au = f, with f € HS ™ ™(W) ® H:_™(E,W), s € R, actually

loc loc ~
belongs to HYY, (W) © H, (B, W), If f € Hy '™ (W) © Hy " (E, W),

loc,as loc

for some asymptotic type “as”, then w € HEY (W) @ HE (E,W), for a

comp,as comp
resulting asymptotic type “as” depending on A and “as”.

If W is compact, then the ellipticity of A is equivalent to the Fredholm
property of A in weighted Sobolev spaces on W, cf. [Dor98, 3.3].

1.4 Edge asymptotics close to corners

The previous section dealt with pseudodifferential operators on manifolds with
non-compact edges, based on the Fourier transform in ¢ along the edges. The
corner pseudodifferential operators close to t = 0 require an analogue of this
calculus in terms of the Mellin transform in ¢ € R, . This yields in particular
the edge contribution to the corner asymptotics for ¢ — 0. It is indispensable to
formulate explicitly this Mellin edge calculus, though it needs a lot of material.
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However, we shall see that many things can be red off from the Fourier version
under employing information from the cone theory. On the other hand, we get
this way a new interesting operator algebra with a rich symbol structure.

The concrete distribution and operator classes will be given on R, x X"
where now a neighbourhood of ¢ = 0 is of main interest. We write (¢,r,z)
for the corresponding splitting of coordinates. Similarly to the above wedge
theory we first look at an abstract formulation.

We start with a Banach space V' and a group action (xy),,, on V, i.e.,
Ky € C(Ry,L,(V)). As above, we employ the function 7 +— (7) for the
covariable 7 € R of t € R,. Since we are in the Mellin set-up, 7 will at the
same time be interpreted as the real part of ¢ = 7 +iv. If u € %, (R, V)
then Mu(¢) = My, cu is an entire function of ¢ € C with values in V. Hence
it follows that Mwu({) may also be regarded as a function on the line I'_g, for
each § € R.

Definition 1.4.1 Given any 5,6 € R, the space H** (R, 7*V) is defined
to be the completion of Cg5,,(Ry, V') with respect to the norm

1/2
b s = ([ s Mgt )
-5

Set H* (R, V) = H*(R,,7*V). Moreover, if ky = Idy for all A\, we
write H*?(Ry, V) and H*(R,, V), respectively.

Example 1.4.2 Let s and v, § be real numbers, and V = H*7(X"). Con-
sider the group action on V' given by kyu (r,z) = A2y (\r, 2), for A > 0.
Then,

Hs,(fy,&) (R+ % X/\) — 'HS’J(R_F,TF*HS’V(XA))

is said to be the corner Sobolev space of smoothness s and weight (7, ¢).
U

The final corner Sobolev spaces over R, x B, B being the stretched link of
C near the corner, will contain (as it ought to be) a further contribution from
R, x B.

Note that

HY (R, x XN 2 LAR, x XMt Y didrds), (1.4.1)

cf. (1.3.1).

Let us return to abstract spaces V. Suppose V is a projective limit of a
sequence (V") of Banach spaces with continuous embeddings V¥ *! «— V¥
and a strongly continuous action (ky),cg, on Vi which restricts to a strongly
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continuous action on each V¥, v = 2,3,.... We define H*°(R,, 7*V) to be the
projective limit of the sequence H**(R, ,7*V"), v € N. Thus, H**(R, ,7*V)
is a Fréchet space.

As usual, the Mellin transform M is regarded as a mapping from distribu-
tions on R, to distributions on ['y = R, unless we do not observe at the same
time analytic extensions. Analogously, the weighted Mellin transform M, for
0 € R, takes distributions on R, to distributions on I's, so that My = M.

Remark 1.4.3 The operator 15 = M:}S,g—n“(;l)M—&t—% extends to an iso-
morphism of H*?(R,,7*V) onto H**(R,,V), for each 5,6 € R.

For a V-valued distribution v on R,, we consider its pull-back under the
diffeomorphism ¢ = €/ of R onto R, . Set

(Tyu) () = e u(e?) (1.4.2)
defined for # € R. It is a simple matter to check that
Mu (T - 7,(5) = ngT (T(;U) y

with the one-dimensional Fourier transform Fy v = [e (#)df on the
right-hand side. We deduce that

1/2
u ( / ()% (I} Fosr (Tyw) |13 m)
R

is actually the same norm on H*°(R,,7*V). In other words, (1.4.2) induces
an isometry

Ty : HY(Ry,m*V) = H*(R,7*V),
cf. Definition 1.3.1.

Remark 1.4.4 In particular, H**(R, ,7*V) are ‘weighted’ spaces in the
sense that H° (R, , 7*V) = t* HS (R, 7*V) for all 5,6 € R.

Remark 1.4.3 enables us to extend the definition of H*?(R, , 7*X) to vector
subspaces ¥ C V which are not necessarily preserved under x,. More precisely,
we set

H*(Ry,7'%) 2 I} H™ (R, D), (1.4.3)

for any Fréchet space X continuously embedded to V', ¥ being a projective

limit of Banach spaces. Just as in the case of edge spaces we get, for any two
such ¥q,%y — V),

HORy, 7 (8 + X9)) = HY (R, m°81) + HO (R, 7° %)
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in the sense of non-direct sums of Fréchet spaces.
It is a simple matter to see that

15|

Hs’é(RJr:V) = ||IT6U| H“’(R,V)

for all u € C2, (R.,V). Hence I;'H*(R,,%) = Ty 'I1H*(R, V), and so

comp
(1.4.2) induces an isometry

Ty : HY(R,, %) = H* (R, 7*%).

We are now in a position to introduce the subspaces of H*>("9)(R, x X")
with asymptotics. To this end, pick an asymptotic type “as”, discrete or
continuous, related to weight data w = (y,Z) with finite Z = (—[,0]. By the
above,

H (R, m HYY (X)) = H Ry, 7 Aus (X)) + H Ry, 7 HHO(X).
We will also set

Hy"V (R, x XN = HOR,, w HEY (X)),

Hs,(7+l—0,6)(R+ x XN) = HS’(S(&,W*HS’7+Z_O(X/\))_ (1.4.4)

The spaces (1.4.4) are expressions of the edge asymptotics close to the
corner t = 0. The “singular functions” are just constituted by the elements of

HO (R, m* Aus(X7)). These are

14+n

M (0 wlr () (M gir £(t,2), (7)) (1.4.5)

where f(t,z) runs over H*°(R, , A'(K,C>®(X))), K being the carrier of “as”,
of. (1.3.3).

For infinite weight interval Z = (—o0, 0], we can write u ~ > >~ u, where
u, are singular functions associated with compact sets K, in the plane of
z € C, satisfying (1.2.2). The interpretation of the sum is that the difference
u — S, belongs to H>OF)(R, x X") for each ¢ > 0, with some N
depending on e.

Write HEY(X") as the projective limit of a sequence of Banach spaces V",
v € N, with the properties listed after Remark 1.3.2. Then H" (R, x X")
just amounts to the projective limit of the sequence H**(R,,7*V") where
veN

Theorem 1.4.5 For each s € R, (v,0) € R?® and asymptotic type “as”
satisfying the shadow condition, one has

HD)(Ry x X)) < HPY(Ry x X1,

loc

Hi"V(Ry x XN < HE (R, x XN).

as,loc
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Proof. This follows from the invariance of HJ}  (Ry x X") under diffeo-
morphisms of R, and the fact that

Ty : HSO(R, x XN S HS(R x XM).

O

Our next objective is to perform the Mellin pseudodifferential calculus with

operator-valued symbols. To this end, pick Banach spaces V' and V' along with
group actions

(“A)AGR+;
K)\))\GRJF )

respectively.

Definition 1.4.6 Denote S™((R. xR, ) xR, L(V,V)) the space of all sym-
bols a(t,t',T) with the property that there are a neighbourhood 2 of Ry x Ry
in R? and a(t,t’,7) € S™(QU X R, L(V,V)) whose restriction to (R x Ry) xR
is a(t,t', 7).

Analogously we introduce the spaces S™ (R, x R, £(V,V)) as well as those
with the subscript “cl”.

Furthermore, it will be convenient to write S™((Ry. x R}) x T's, L(V, V)
for the pull-back of S™((R; x R, ) x R, £(V,V)) under the mapping I'; — R
given by ¢ = 7 + iv + 7, and similarly for the other spaces. We can also
talk about corresponding classes of amplitude functions in case V is a Fréchet

space. )
As usual, for a(t,t',¢() € S™((Ry x Ry) x T4, L(V,V)), we set

opM,(;(a) =0 0P \q (T’i‘sa) 0

where (T~%a)(t,t,¢) = a(t,t',{ — i) and
op(a)u (t) = ML, (MyLcalt, ¢, Qu(t))

cf. (1.1.3). Thus, op,,(a) = op,y(a). The operator op, 5(a) is first regarded
as acting from Cg, (R, , V) to Cpe.(R,, V).

The generalities are needed only as a background information, where we
restrict ourselves, for convenience, to Hilbert spaces V and V.

Let us first complete the list of notation around the H?°- spaces. Namely,
the space Hi . (Ry,n*V) is defined to consist of all functions v on R, with
values in V', such that pu € H*(R;,7*V) for each ¢ € C, (R, V). Fur-

thermore, HZ,,,, (R, , 7*V) is the subspace of Hj, (R, ,7*V) consisting of all u
with a bounded support in ¢ € R;. In the same manner we define the spaces
Hi, (R, 7°8) and HZ,, (R, 7*X), ¥ C V being not necessarily preserved

under k.
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Denote by U7 (R, ; V, V) the space of all operators A = op,,(a) + G, with
a(t,t’,¢) an arbitrary symbol in S™((Ry x Ry) x [y, £(V,V)) and G any
operator satisfying

G € nsERE(H(SZOmp(IiR—F;W*Y),Hlosc(@_bﬂ*‘?)),
G* € ﬂsER‘C(H(Szomp(RwLaW*V);Hlo(?c(&,ﬂ*‘/)).

Here, by G* is meant the formal adjoint of G with respect to fixed scalar prod-
ucts in H(R,, 7*V) and H°(Ry, 7*V'). We may introduce them, for instance,
by

(0ot = [ (MulC), Mo(), de

To

The notation W7, (R, ;V, V) has an obvious meaning. Every a(t,t’,¢) of
S7((R, x Ry) x Ty, £L(V,V)) has a principal homogeneous part of order m,
ao(t,t',7), which is a C* function on (Ry x Ry) x (R\ {0}) with values in
L(V, V), satisfying

ap(t,t', A7) = N" Kk ag(t, t', 7) /@;1

for all A € R, , 7 being interpreted as (¢ for ¢ € ['y. For each excision function
X(7), we have

a(t,t',¢) — x(7) ao(t, t',7) € ST (R, x Ry) x Ty, L(V,V)).

We set
= Qo (ta t) 7—)7

.
) = ol(a)(t7) (1.4.6)

for any classical operator A = op,,(a) + G. This is obviously compatible with
(1.3.4).

The distribution kernels of operators in Wy (Ry; V, V) live on Ry x R, and
take their values in £(V, V). The notation “properly supported” refers to the
variables (¢,#'). )

Each A € U7 (R ;V, V) induces continuous mappings

A 7-t(szomp(IR-F ) 7-"*‘/) - Hs_m(RF ) 77*‘7)

loc

for all s € R. We may write “loc” or “comp” on both sides if A is properly
supported.

Lemma 1.4.7 We have \Ifg’},d(]l_h; V,V) < Un(Ry;V, V), the right-hand
side referring to the notation to (1.3.4), and

o™ (A7) = —bo™ (A)(t, t7).

edge tm edge
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Proof. Fix u € Cg,, (R, V). Changing the covariable by 7 — F(t,t')7,
we obtain

op(a)u(t) = %// Ot Tu(t) d'dr
- 2 [(L T EEG) alt () u() " g
2 t t

where
logt — logt’

F(t7t’) = t—t,

Using Taylor’s expansion yields

logt' —logt ~=(—1)F 1 ,
L L t—t
t—t kz:; ( a
which establishes the formula, cf. (1.1.11).
U
If we replace V in Definition 1.4.1 by V @ CV, the latter being endowed
with the group action k(v @ ¢) = (kAv) @ ¢, we arrive at the spaces

HAORy, 7 (Vo CY)) = HP (R, 7 V) @ HY (R, CY).

Set _
W = Ry xCNV,
W = R, xCV.
Definition 1.4.8 Let w = (v,7 — m,Z), where m,y € R and T = (—1,0],
0 <l < oco. Then, by \If]_\/A,C?OG(RF x XN, W, W;w) is meant the space of all
operators

Heomp (R, m HYV(X7)) - HEL Ry, " H7 (X))

Gent 5 , o
sk Heomp R, W) e (R, W)
which induce continuous mappings
Hiomp Ry, 7 H*7(X7)) Hige Ry, m HZ 7~ ™(X "))
g : e% — @9 B )
Heomp(Ri, W) Hige (R, W)
Hiomp (R, m H™1(X1)) Hige(Ry, 7 H 7 (X))

g* S — ®

Heomp(Re, W) Hige (R, W)

for all s € R and some asymptotic types “as” and “as” related to weight data
(v —m,ZT) and (—v,I), respectively.
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Note that G* is the formal adjoint of G with respect to a fixed scalar product
in HO(R,, w* HOO (X)) & HO(R,.).

Furthermore we introduce symbol spaces S&((R, x Ry) x Ry W, W;w),
with m — p € Z,, analogously to Definition 1.3.5, where € is everywhere to be
replaced by R, . Given any § € R, we write S5((Ry x R, ) x I's; W, Wi w) for
the pull-back of S%((R; xR, ) x R; W, W; w) under the mapping T's — R given
by 7+ iv — 7. We use the designation g(¢,#', () for elements of this space.
The classes of ¢ -independent g will be indicated by R, instead of R, x R,.
We denote Sk(R, x I's;w) the space of upper left corners of the elements in
Sh(Ry x D; W, W; w).

We then obtain operator classes \II‘IQG(RL x XN W, W, w) consisting of all
op(g) + G, where

g € SHIRy xRy) x Lo; W, W;w),
g € \I/]TEOG(K X XN W, Wi w).

The entries of the upper left corners of matrices op(g) + G form the space
\II‘X/IG(RJL x X";w). They are called Mellin Green operators of order p on the
wedge Ry x X”. The meaning of the other entries in op(g) + G is analogous
to that in the Fourier approach, cf. Section 1.3. B .

By the above, it follows that every G € Wy, (Ry x X" W, W;w) has a
principal homogeneous Mellin edge symbol of order p. This is a C* operator
family

H5,7(XA) HS—#N—M(X/\)
bot (G) (T @ = @ (1.4.7)
cN cN
living away from the zero section of T*R, and homogeneous of order y in the
sense that

-1
o) 30 <3 (0 1 Yot @r o ()

for all A € R;. Here we have smoothness in ¢ up to ¢t = 0.
Next we turn to the Mellin operators in ¢ with smoothing operator-valued
symbols on X, Let

-1

m(t, €)= @o(r(m) 1™ D17 3 (08 0000 (i) + 0Dy, (m ) ()

i=0  a<j

(1.4.8)

where m\“ (¢, z) is a C* function of ¢t € R, with values in M, ) (C, ¥~ (X))

(©)
9 T

and

—~

y—(m—p)—j < 7 <
ch.(Lo)éﬂF @ = @,
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for. =1,2 (cf. (1.3.6)). Furthermore, ¢y and 1)y are arbitrary cut-off functions
on the semiaxis. We have m € S4(R, x I, L(H*?(X"), H®~™(X"))) for
all 0 € R. The principal Mellin edge symbol of m is a family of operators in
L(H®Y(X"), H=#7—™(X")), given by

-1

— ; 1 2
e )6, 7) = ulrlrl) 1 3 (0100 () +0b, o () o)
j=0 ’ ’

for (t,7) € T*R, \ {0}.
The operators M = op,,(m) are said to be smoothing Mellin operators in
the class of Mellin wedge pseudodifferential operators.

Definition 1.4.9 Let w = (v,y — m,Z), where y € R, m —pu € Z, and
T = (—1,0], I being a positive integer. Then, \IJ‘XLMJFG(RL x X" w) stands
for the space of all operators op ,(m) + G, where m is of the type (1.4.8) and
G e Uh Ry x XN w).

It remains to add pseudodifferential operators in the interior of R, x X".
We shall introduce the symbols first on R, x O" where O is a coordinate
neighbourhood on X with local coordinates x € U, U being an open subset of
R™.

Denote by S4(°T*(Ry x U™)) the space of all symbols a on Ry x U” of the
form

a(t,ryz,1,0,&) = a(t,r,x, trr,ro,£)

where @ € S4((Ry x U") x R2*") is C™ both up to t = 0 and r = 0. We
will tacitly assume that our a(t,r, x, 7, 0,&) vanish for r large enough, for the
symbols are cut off at the end. The symbols of 84 (°*T*(R, x U")) are said to
be corner-degenerate.

For every corner-degenerate symbol a(t, r, x, 7, o, £), we introduce the com-
pressed principal homogeneous symbol of the operator A = (¢r) *op(a) over
R, x U" by

Yot (A)(t,r, 3,7, 0,€) = ao(t,r,x, 7, 8, &), (1.4.9)

where dj is the principal homogeneous part of @ of order x. The symbol o#(A)
is defined up to the faces ¢t = 0 and » = 0, and the ellipticity with respect to
bo#(A) just amounts to that with respect to the symbol o#(A) away from both
t =0 and r = 0, along with additional invertibility conditions at the faces, as
above.

Theorem 1.4.10 Suppose a is a corner-degenerate symbol of order p, el-
liptic with respect to the compressed symbol up tot =0 and r = 0. Then there
is a corner-degenerate symbol p of order —u, such that

((tr)" p) o(tra) ((tr)_“ a) =1 mod S (R, x U") x R**"™),
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[

where “o” means the Leibniz product of the symbols with respect to the indicated
variables.

Proof. Cf. Proposition 4.1.8 in [Dor98|.

0

We now turn to operator conventions which assign to a system of local
symbols on X a (¢, 7)-dependent operator family.

Choose any finite open covering of X' by coordinate neighborhoods (O,),.
together with a system of charts ,: O, — U,, U, being an open subset of R",
a subordinate partition of unity (¢,),., on X, and functions v, € Cg,,,(U,)
such that ¢ 1, = @, for every v € N. Given an arbitrary system of corner-
degenerate symbols a, € S ((Ry x U,") x R*™), v € N, with the associated
symbols a, (t,r, z, 7, 0,&) which are C* up to t = 0 and r = 0, we can form an
operator family

a(t,r,7,0) = Y o ((5),0ps, (@) (7. 7.))

veN

where opz stands for the pseudodifferential action in U, C R" with respect
to x. Then

a(t,r,7,0) € Cie(Ry x Ry, WX RE ).

By carrying out the Fourier pseudodifferential action in ¢ and r with symbol
a we arrive at an operator in W, (R, x X”). The final operator conventions
in the present set-up will be obtained in several steps. First we switch to the
Mellin conventions with respect to ¢ and r. Both reformulations of the original
Fourier action will be glued together then by ¢-dependent cut-off functions in
the r-variable.

Theorem 1.4.11 For every a € C2 (R, x Ry, \IJZ(X;R%@)) there ezists a

loc

7€ CE(Ry x Ry, M(C, ¥4 (X;R;))) with the property that whenever § € R,

loc
we have

0Pz, OPF, (@) = 0P 50Pg, (0) mod W™*(Ry x X")

where
a(t,r,7,0) = a(t,r,trr,ro),

a
o(t,r,¢,0) = a&(t,r,r,ro).

Proof. This is in fact a consequence of Theorem 1.3.9, up to minor modi-
fications.

O

Clearly, we get opz (6) € C2 (R, M(C, ¥¥ (X")). Hence we may apply

Theorem 1.3.9 once again, now in the r-variable. To formulate the result,

we need appropriate spaces of entire functions of two variables with values in
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U7(X). These are introduced similarly to Definition 1.2.2 and denoted by
M(C x C, 7% (X)).

More precisely, by M(C x C, ¥} (X)) we will mean the space of all holo-
morphic functions a(¢, z) on C x C, taking their values in U7}(X), such that
a(t—id, p—iy) € ¥I(X; Rfyg) for all §, v € R, uniformly in § and ~ in compact
intervals of R.

Theorem 1.4.12 For any a € C2(Ry xRy, W4 (X R ), there exists an
C2 (Ry xRy, M(CxC, 4 (X))) with the property that whenever 6,y € R,

we hcwe

0P, 0P, (@) = 0P 50D, (h) mod WT2(R, x X7)

where
a(t7 r? 7_7 Q) (t7 T7 trT? TQ),

a
h(t,r,(,2) = B(t,r,r{,z).

Note that
opg, (0) = 0P (h) (1.4.10)

modulo O (R, M(C, ¥~>°(X"))). Moreover, both & and A are independent
of 6 and v and are actually unique modulo elements of order —oo

Let us fix a partition of unity (¢, ¢ ) on the semiaxis, o(r) being a cut-off
function. Choose a system of C'™ functions (g, 1) on R, such that ¢y (r)

vanishes for large r, 1 (r) vanishes near r = 0 and ¢,v, = ¢,, for v = 0, 0.
Then

ao(t,C) = 900( (T>)r*“opM7( )(tJC) (7n<7.>)7
aoo(t,C) = ( 7—>)7“_”0p]_-( )(t7<)7/)oo(7“<7'>) (1.4.11)

are operator families H*7(X") — HS""#7~#(X") parametrised by ¢ € R, and
(=74 w.

Theorem 1.4.13 Set o(t,() = ¢(r) (ap(t, () + ax(,C)) ¥(r) where ag and
aoo are defined as above, and ¢, ¢ are arbitrary cut-off functions. Then
o(t,¢) € S*(Ry x T'_5, L(H®Y(X"), HS"HY=H(XM))) for all 6,s € R. More-

over,
opr(0) = opg, (o7 *opg (a)(t,7) 1) mod U 2(R, x X"). (1.4.12)

Proof. This follows by the same method as in Theorem 1.3.10, for the
Mellin transform is the pull-back of the Fourier one under the diffeomorphism
t —logt of Ry onto R.

O
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For the symbol o of Theorem 1.4.13, we set

bo-gdge(o.) = bo.gdge (a’U) + bo.gdge (a’OO)

where

"0lige(@0)(t,7) = po(r|7]) 17 0D, (A(2, 0,77, 2)) Wo(r|7]),
"0tage(00) (1, 7) = oo (r[T]) 17 0D, (6(t, 0,77, 70)) thoo (r|T]),

for (t,7) € T*R, \ {0}. Then ’c Ohage () (L, 7) is a family of continuous operators
H*"(X") — H* #7~#(X"), for each s,7 € R It is homogeneous of order p,
i.e.,

POt (0) (6 AT) = M hy "ol (o) (8 T)Ry, A >0,

for all (t,7) € T*Ry \ {0}.
Definition 1.4.14 Let w = (v,7 —m,Z), wherey €R, m —p € Zy and
T = (—1,0], [ being a positive integer. Then, ¥4, (Ry x X";w) denotes the
space of all operators
A=Ag+ A+ M+G
where A, = op,(a,), v = 0,00, for a symbol a € C2(Ry x Ry, Uh(X;R?),
and M +G € U (R x XN w).

We also introduce the space Ui (Q x X" W, W; w) consisting of all oper-

ators of the form p
0
A= ( 0 0 ) +3,

with A € Ul (R, x X" w) and G € Wi, (Ry x X" W, W;w).

The restriction of Definition 1.4.14 to (¢, () -dependent a, and m could be
dropped. We might actually allow the (¢,t',()-dependent symbols that are
smooth up to £ = 0 and ¢ = 0. However, it is a property of the calculus
that the general case can be reduced to the (¢,()-dependent one, modulo

\IIX/[‘T‘E;(K X XM w).

Theorem 1.4.15 Every A € U4 (R, x X, W, W;w) induces continuous
operators

Hiomp (R, 7 *H”(XA)) Hig (Ry, m* H> 177 m(X 1))
A . — S )
comp(R+7 ) loc (R-i— W)
Hgomp(R—H *HSN(X/\)) loc (R+ 71-*I{asfs_”’fy_m(‘XV/\))
A — S5
comp(R+7 ) loc (R-i— W)

for any s € R and asymptotic type “as” related to (v,T), with some resulting
asymptotic type “as” related to (y —m,TI).
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Note that “as” depends on “as” and A, but not on s. If moreover A is
properly supported in ¢ € R, then it preserves the spaces with the subscripts
‘comp’ and ‘loc’.

As in the previous section we have two leading symbols of our operators.
From ¥4, (R, x X";w) < W4(R, x X") we get the ‘compressed’ principal
homogeneous interior symbol of order u, i.e.,

"ot(A) € S, (T (R x X")\ {0})

defined by (1.4.9), where the subscript “hg” indicates homogeneous symbols.
Moreover, we have the principal homogeneous Mellin edge symbol of order p,
ie.,

Teage(A) € DRSﬁfg(T*K \ {0}, L(H>7(X7), H* 07 (X 1))

given by
O.(l:dge (A) = bUngge(ao) + bUngge(aoo) + bo.(l:dge (m) + bo-elfdge (g)

For more general A € U% (R, x X", W, W;w), we set quite analogously to
(1.3.11)
Pol(A) = Pot(A),

ot A) = <Uffdge(A) 0>+0éfdge(g)- (1.4.13)

Lemma 1.4.16 We have
Uh(Ry x XN W, Wi w) = KRy x X5 W, W;w),
the right-hand side referring to Definition 1.5.12, and
Tattge (A) (1, 7) = 0l (A) (2, 7).

Proof. Cf. Lemma 1.4.7.

O

To introduce pseudodifferential operators globally over W = b~ (C'\ Cy)
we begin with the negligible operators. For this purpose we first introduce
global analogues of spaces (1.4.4). Since we deal here with the local calculus
close to a corner, W is of the form R, x B.

The idea is to glue together the objects on R, x X" near r = 0 and
those in the interior part of Ry x B. We may double B through its boundary,
thus obtaining a C*° compact closed manifold 2B of dimension 1 + n. Fix 2B
once and for all. Then Definition 1.1.2 gives us the spaces H*?((2B)"), for
each s,0 € R. Choose a cut-off function w(r) supported on [0,1) x X. Then
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1 —w(r) can be thought of as a function on the entire manifold B vanishing in
a collar neighbourhood of 9B. Set

H(Ry, 7 H(B)) = [w]H*(Ry, " H* (X)) + [1 — w] H*((2B)"),
Ho Ry, m HY(B) =[] HE(Ry, w B3 (X)) + [1 — ] 2 (2B
(1.4.14)
where, for abbreviation, we drop the pull-backs under relevant diffeomor-
phisms.
Obviously, the first space of (1.4.14) is Banach, and the second one is
Fréchet, both being independent of the concrete choice of w. The operator of
multiplication by any ¢ € C’é’;’mp(K) acts continuously on these spaces. This

allows one to introduce in a familiar way the corresponding “loc” and “comp”
spaces.

1 —
1—

Theorem 1.4.17 For each s € R, v € R and asymptotic type “as,” one
has
H (R, m"H>(B)) < Hpd(W),

loc
H(R, B (B) < Horloo(W).

This theorem shows that the spaces H* (R, 7*H*®7(B)) living near corners
can be glued together with weighted Sobolev spaces living on the stretched
manifold with edges, WW. The same is still valid for the spaces with asymp-
totics. The underlying spaces away from the singularities are actually the usual
Sobolev spaces.

Definition 1.4.18 Let m,y € R and w = (v,y—m,I), where T = (-1, 0],
0 <l <oo. Then, W, ¢,(W; W, W;w) denotes the space of all operators

Hzomp(Rl—Jﬂ*Hsyv(B)) loc(R+ Tt HT m(B))

GeNCL ) ; ®
seR comp(R-i— W) IOC(R—F W)
which induce continuous mappings
He oy (R, 7 HP1(B)) = (R, 7 HZ " (B))
g : eé — @9 B )
Homp Ry, W) Hise (R, W)
Homp Ry, mH*™7(B)) His. Ry, 7 Hy " (B))
g* @ — ®
comp(R-i— W) loc(R-i— W)

for all s € R and some asymptotic types “as” and “as” related to weight data
(v —m,ZT) and (—v,I), respectively.
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By G* is meant the formal adjoint of G with respect to a fixed scalar product
in HO(Ry, 7*H**(B)) ® H° (R, ). We also write W70, (W;w) for the space of
upper left corners of the matrices G.

Suppose v € R, m — p € Zy and w = (y,v —m,Z), with Z = (—[, 0] being
a finite weight interval. For W = R, x B and the bundles W, W over R, as
above, the space ¥, (W; W, W w) is defined to consist of all operators of the

form p
0

with A € \Iffl()/o\/) and G having a kernel in

( CV)&Cm0V)  CrV)@.CrRe, W) )
IOC(R+7 ) 1%?;(W) IOC(R+ W)®7T IOC(R+7W*)

such that, for any cut-off functions @, (t), 1(t) and @, (r), 1(r) on the semiaxis,

the operator 5
(@b% 0 )A(i/)(ﬂ/)b 0 )
0 be 0 ’Lﬂb
belongs to W, (Ry x X", W, W;w), and to ViraW; W, W;w) whenever @,
1/31) have disjoint supports.

For 7T = (—o0, 0], we define the corresponding operator spaces as intersec-
tions over integers [ > 0 of those for Z = (-1, 0].

Theorem 1.4.15 remains still valid for the operators A € Ui, (W; W, W; w),
with X" replaced by B. Moreover, the local symbol levels (1.4.13) extend to
the corresponding global ones, and Lemma 1.4.16 is true if X is replaced by
B.

The above framework again suggests the standard elements of the calculus.
We content ourselves with the following material.

Theorem 1.4.19 Suppose

Al S \I]l]:/}(wa W17W2;w1)7 w = (777 - ml,I),
AQ € \I]l](;(wa W27W3;w2)7 Wy = (f)/ —my,y —my — mQJI)J

and one of the Ay and Ay is properly supported. Then the composition A A, is
well defined in W2 (W; W W35 wyow), with woow, = (77,7 —my —my, T),
and

b m1+m2(A2A1) — b mg(A )b ml(Al)
P (AzAr) = Poli (As) Poggh. (Ar).

The symbols "0™(A) and "ol (A) fall short of controlling the invertibil-
ity modulo compact operators, since from 0™ (A) = 0 and *of,.(A) = 0 it
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does not follow that A is compact. What is still lacking is a rigorous con-
trol of A on the face of W that corresponds to t = 0. We will turn to this
question in Chapter 2. For now we merely look at the ellipticity in the class
U (W W, Wi w).
Definition 1.4.20 Let w = (7,7 —m,Z) where m,y € R and T = (-1, 0],
[ being a positive integer or co. An operator A € W7 (W; W, W;w) is said to
be elliptic if
1) P0™(A) #0 on "T*W\ {0} up to t = 0; )
2) Poli (At 1) H(XN) W, — H ™ ™(X"N)@W, is an isomorphism
for all (t,7) € T*R, \ {0} and some s € R.
By the cone theory, if the condition 2) is satisfied for one particular s = sy,
then it is automatically for all s € R.
Suppose

A e vrW, W, W;w), w = (v,y—m,I),
P € \IJ (W W Wi ’U)_l), w_l = (7_m7771)7
and one of A and P is properly supported. Then, P is called a parametriz of
A if
PA—-1 € Y eW; W0t ow),
AP -1 € VU, (WWwowl),

1 standing for the identity operator in the corresponding W9, -classes.

Theorem 1.4.21 Every elliptic operator A € W7(W; W, W;w) possesses
a properly supported parametriz P € U, (W; W, W; w_l).

The role of ellipticity and elliptic regularity with asymptotics in the oper-
ator class U (W; W, W w), with W =R, x B, is to describe the correspond-
ing properties along C; \ Cj close to Cy in the final “corner” pseudodifferen-
tial calculus. In this sense the next corollary gives the edge contribution to
asymptotics near the corners. Recall that the relevant singular functions are
described by (1.4.5).

Corollary 1.4.22 Suppose A € W7 (W; W, W;w) is elliptic. If

u € %C—Oorgp(]}%+,7r*ﬂ—oo,v(3))@H;)mp(&, W),
Au € Hloc (R-HW*HS_mﬁ_m(B)) loc (R+ W)

for some s € R, then u € H, (Ry, 7 H*(B)) & Moy (Ry, W). If moreover

(S Hcioorgp(&aﬁ*Hiooﬁ(B))EB/Hcomp(RwLa )7
.A’LL S Hloc (RWL?W*H;Tsim”Yim(B)) loc (R+7 )7

for an asymptotic type “as”, then u € Hiyy (Ry, 7 H (B )) D Hiomp (R, W),
for a resulting asymptotic type ‘as” depending on A and ‘



Chapter 2

Corner Mellin Operators

2.1 Parameter-dependent cone operators

The operators in ¥4, (W; w), with W = R, x B, can be regarded as pseudodif-
ferential operators with operator-valued Mellin symbols. More precisely, these
are

A =op,,(a)

modulo ¥, 7% (W; w), where a = a(t, ) is given by

wu(r) (ao(t, Q) + aco(t, ¢) +m(t,¢) + g(t, Q) v (r) + @i(r) ai(t, ¢) %(7("), |
2.1.1
for (¢,() € Ry x'y. Here, ag and a, are described in front of Theorem 1.4.13,
m is given by (1.4.8), g € SL(R, x Tg;w), and a; € C2(Ry, $X(B\ 0B;Ty)).
Moreover, (@, ;) is a partition of unity on B, with ¢, supported in a collar
neighbourhood of 9B, and (), ;) is a system of C*° functions on B covering
(05, 1) ~

An analogous description holds for ¥4, (W; W, W; w). We shall first discuss
the upper left corners.

The symbols (2.1.1) satisfy a € C2. (R, x L', U#(B;w)) where WH(B;w) is
the class of cone operators over B from Definition 1.2.3. The t-independent
a(¢) will be examples of parameter-dependent cone operator families in the
sense of this section. We want to study the parameter-dependent ellipticity
for getting order reducing families of operators over B analogous to R™(\) of
Section 1.1. Furthermore, we look at those families which are holomorphic in (.
General considerations allow parameters to vary in a conical subset of a finite-
dimensional vector space. For simplicity, here we take the one-dimensional
parameter space 7 € R. In the sequel we then switch to 7 + v € I'_g, for any
fixed 6 € R

56
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Definition 2.1.1 Let w = (v,9,Z). Then V,>(B;w;R) is the space of all
operator families g(1) € Nger C(R, L(H®7 (B), H*?(B))) with the property
that

g(T) € ﬂsER S(Ra‘C(HS”Yl(SB)aHg%j(_B)))a
g (1) € Nier SR LIH>*(B), H™"(B)))

for some asymptotic types “as” and “as” related to weight data (6,Z) and
(—v,I), respectively.

Here by ¢* is meant the formal adjoint of g with respect to a fixed scalar
product in H*°(B).

The space of all g(7) € U;*(B; w; R) with fixed asymptotic types “as” and
“as” is Fréchet in a natural way.

Let w = (y,7 — m,Z), where v € R, m — pu € Z, and T = (—[,0], [
being finite or infinite. Then, W% (X"; w;R) denotes the space of all “twisted”
symbols

g9(r) € (| SuR, LIH*T(X"), H>T"™(X"1)))

seR

such that

9(1) € (ier Sa(RLIH>(X"),SI7"(X"))),
9(1) € Neer SaR LH"™(X"),S57(X7)))

for certain asymptotic types “as” and “as” related to weight data (y —m,Z)
and (—v,Z), respectively.

Furthermore, ¥4, ~(X"; w;R) stands for the space of all m(7)+g(7) where
g(1) € V(X" w;R) and m(7) is given by (1.3.6), the ¢-dependence being
dropped.

Note that W}, (X"; w;R) coincides with the subclass of (¢,¢') -independent
elements of S&((Ry x Ry ) x R;w), the latter space being introduced in Def-
inition 1.3.5. From (1.4.7) we obtain a principal homogeneous “Mellin edge
symbol” of order p,

"Otage(m +9)(1) € () SR\ {0}, L(H*(X7), H 7117 (X)),

seER

Finally, the Fuchs type operators close to the boundary of B contribute to
the calculus by

ag(T) = po(r (1)) 1 0p g, (h)(7) tho(r(T)),
Uoo(T) = Poo(r(T)) 77" 0D £, (@)(7) Yoo (r(7))

where
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for o
a(T,T,Q) S Cloc( 7 gl(X ””))

h(r,7,2) € Cin(Ry, (C Ve (X5 Re)))
) = 0Py, (h) modulo (X" R, ).

Definition 2.1.2 Suppose w = (fy,fy m,T), where v € R, m —p € Z,
and T = (—1,0], [ € N. Then, *(B;w;R) denotes the space of all operator
families

a(1) = @u(r) (ao(T) + aso(T) + m(7) + g(7)) Yo(r) + @i(r) ai(r) ¢i(r) + s(7),

where ag(T) and as(T) are as above; m(T) + g(1) lies in W, (X" w;R);
a;(7) is a usual pseudodifferential operator with parameter in the interior of
B, i.e., a; € V(B\ IB;R); and s(t) is a negligible element in the calculus,
i.e., s € Y2 (B;w; R).

compatible in the sense that opz (a

Note that here we impose a similar structure for ag(7) and a(7), as that
of (1.4.11). Since negligible remainders cause only a change of ¢g(7), we may
actually assume that

i 7.0) = Y o (k1) 002 (@) (r.7.8)) ¥,

veN

where @, (r,z, 7, 0,€) € SH((Ry x O,) x R*™) are local symbols corresponding
to a covering of X by coordinate patches.

Write W4, «(B; w; R) for the subspace of U*(B;w;R) consisting of all op-
erator families o, (1) (m(7) + ¢(7)) ¥y (r) + s(7), where m(7), g(7) and s(7) are
as in Definition 2.1.2. Moreover, we denote by U (B; w; R) the subclass where
m(7) vanishes.

In case Z is infinite, the space ¥*(B;w; R) is defined to be the intersection
of corresponding spaces for Z = (—1,0], [ =1,2,....

The space U#(B; w;R) is a parameter-dependent version of W*(B;w) from
Definition 1.2.3. The elements a(7) € ¥*(B; w; R) are a preliminary version of
operator-valued Mellin symbols for corners. Our special parameter dependence
involves the edge degeneracy in 7 if 7 is regarded as a Mellin covariable along
the t-axis.

We have .

U (B;w; R) — W (B; R),
the subspace W4, -(B;w;R) getting into smoothing operators in the interior
of B under this embedding. As is described in Section 1.3, cf. (1.3.12), each
parameter-dependent operator a(7) € W*(B; w;R) bears two leading homoge-
neous symbols

‘ot(a) € &, (('T*BxR)\{0}),
"0lage(0) € ﬂ St R\ A0}, LIH*T(X7), H*#7m(X 1)),

edge
seR
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the latter being the principal homogeneous Mellin edge symbol.
Without loss of generality we may assume that

a;(7) = 7" opg, (a)(7)

modulo ¥~*°(O \ 9B;R), where O is the collar neighbourhood of 9. Then,
the concrete choice of the partitions of unity and covering systems involved in
(2.1.1) affects a(t) only modulo W% (B; w; R).

For the Mellin pseudodifferential calculus along the corner axis R, with
operator-valued symbols acting on B it is necessary to endow W*(B;w;R)
with a natural locally convex topology. Let us start with W% (B;w;R). By
definition, we have

UL (B; w; R) = ¢ U5 (X"; w; R) ¢ + U2 (B; w; R).

Denote by ¥

G,as,as

(X" w; R) the space of all g(7) € U5 (X" w;R) with fixed
asymptotic types “as” and “as”, as above. Further, let S . (R\{0};w) stand
for the space of all “twisted” homogeneous functions o(7) with the properties
that

o(1) € (ier Sig(R\A{0}, LIH™(X7), S (X)),
o' (1) € Ner ShgR\A{O}, LIH™7(X7), ST (X))

The space Sj, .. (R \ {0};w) is Fréchet in a canonical way. The mapping
\I]‘é,as,aTs(X/\; w; R) - Sﬁg,as,a?s(R \ {0}7 ’U)) given by g(T) = bo—gdge (g) (7—) Is sur-
jective, and its null-space is ‘I’é,_als,a:s(X " w;R). Given any excision function
X(7), we have

g1(1) 1= g(7) = X(7) *0lye (9) () € Wi (X" w3 R)

for all g(7) € V(. (X" w; R). We now apply this argument again, with g(7)

replaced by ¢;(7), and so on, to obtain mappings

\I]‘CL}’,as,afs(X/\; w; R) — ®j:0 Sggjgs,is(R \ {0}’ ’U)) (212)
and
\I]lé (XA, ’U), R) - ﬂSER S“_(J-'_l) (R7 ‘C(HSN (X/\)7 Sgs—m(X/\)))7 (2 1 3)
V(XN wiR) = Nyer SPTVIDR L(HS™(XN),S5T(XM),

for J € Z . The first mapping of (2.1.3) is given by g — g — x ijo baé‘djo,f; (g5)
with gy = ¢, and the second one is the adjoint. Now, \Ilé,as,;fs(X/\; w;R) is a
Fréchet space under the projective limit topology with respect to the mappings
(2.1.2) and (2.1.3). It is independent of the concrete choice of y. Gluing
together We, o o (X" w;R) and Wi o (B;w; R), we arrive at a Fréchet space

U as.as(B; wi R). Then, Wi, (B;w;R) is given the inductive limit topology of
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the spaces \If‘é as as(lS’;w;]R), with “as” and “as” varying over all asymptotic
types related to w.

We now turn to W, . (B;w;R). In this space we look at the conormal
symbolic mappings operating only on the Mellin terms. We have the operator-
valued “twisted” homogeneous components o’ " (m)(7), cf. (1.4.8), defined

by

edge

1—

— i i 1 2
oo(rlr) r# S i z(opMﬁ]u]) K 5.,},2.)+OpMﬁ;3)_i(m§.7},i))wo(rm),
§=0

=

fort =0,1,...,1 — 1, both mgj) ; and m”) ; vanishing unless 7 < 7. Then we

may form the sequence of conormal symbols o7, (bO'gnge(m) (1) (2), 5 <1-1,
by
o (ol (m)(7)) (2) = 77 (M) () + miE_ (=) | (2.1.4)

cf. (1.2.6). These are elements of Mp(C,¥=°(X)) determining ’o (ffdge(m) (7)
up to an element in Sf ° - (R\ {0};w), for certain asymptotic types “as” and
“as”. The sequence (2.1. 4) is finite for all 4 and j, thus defining a mapping
of Uy, . (B;w;R) to the product of I* copies of UrM(C, ¥~ (X)), where T
varies over all asymptotic types for Mellin symbols. Using this mapping, one
can specify Wi, (B;w;R) within the non-direct sums of Cartesian products
U%(B; w; R) x UT:MT:((C U~°(X)), the ‘prime’ meaning that the union is
over asymptotic types whose carriers do not meet fixed weight lines. Therefore,
Uh, . (B;w; R) can be endowed with the topology of non-direct sum of Fréchet
spaces.

Having disposed of this most subtle step, we give ¥*(B; w; R) the topology
of the inductive limit of Fréchet spaces in a natural way.

Definition 2.1.3 By Symb ¥*(B; w;R) is meant the space of all pairs of
symbols (*c*(a), baé‘dge(a)) where a(T) runs through V*(B; w; R).

The components of Symb U#(B; w; R) are easily checked to satisfy a natural
compatibility condition.

Theorem 2.1.4 Suppose | is a positive integer. As defined above, the se-
quence

0 — U H(B;w; R) — ¥*(B;w;R) — Symb ¥*(B; w;R) — 0
15 exact and splits.

As we have seen in the preceding sections, it is necessary to consider also
matrix-valued families, here denoted by U#(B; W, W;w;R), with U*(B;w;R)
as the class of occurring upper left corners. Basically we need only generalise
the Green objects.
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Definition 2.1.5 Let w = (v,0,Z). Then V> (B; W, W;w;R) is the space
of all operator families g(7) € Nser C(R, L(H* (B) & C¥, H**(B) & CV))
such that

o(r) € Nex SR LH(B)®CY,HZ(B)®CY)),
g (1) € MNier SRLH*(B)©CY, HX™(B) & CY))

for some asymptotic types “as” and “as” related to weight data (6,) and
(=7, I), respectively.

Here g* stands for the formal adjoint of g with respect to fixed scalar
products in the spaces H*°(B) @ W and H*°(B) @ W.

Let w = (v,7 — m,Z), where v € R, m — p € Z, and Z = (—1,0],
being finite or infinite. Then, by Wi (X" W, W;w;R) we mean the space of
all symbols

g(r) € N SuR LH>(X") & CY, H*~™(X") & CY))

seER

such that

9(7) € Mier SHR LH> (XN ®CV,SL™(X") @& CY)),
g (1) € MNuer SHR,LH> (X" @ CV, 857 (X") & CV))

for certain asymptotic types “as” and “as” related to weight data (y —m,Z)
and (—v,Z), respectively. )
We also introduce the space W4, (B; W, W; w; R) consisting of all operators

of the form
(57 ) Yao ()5 ) et

where g(7) € Ui (X", W,~W;w;R) and s(1) € U5 (B; W, W;w; R).
The space UH(B; W, W;w; R) is defined as the set of all

( a(OT) 8 ) + g(7)

with a(7) € U#(B;w;R) and g(r) € W% (B; W, W;w;R). Confining ourselves
to a(r) € Uy, »(B;w;R), we obtain the space Wi, .(B; W, W;w;R) in the
same way.

For the infinite weight interval Z, the space W*(B; W, W;w;R) is defined
to be the intersection of the classes over all Z; = (—=[,0], l =1,2,.. ..

We also mention obvious parameter independent analogues W (B; W, W; w)
and UH(B; W, W; w) of the above spaces.

The construction of a locally convex topology in WH(B; W, W;w; R) is com-
pletely analogous to that for the upper left corners.
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Moreover, we can introduce the set Symb W*(B; W, W;w;R) of all pairs
(o (a),*oly,.(a)) where a(7) runs over W#(B; W, W;w; R). Theorem 2.1.4 car-
ries over to this more general context.

Our spaces of operator families have many natural properties with respect

to various operations. We will sketch a few of them.

Theorem 2.1.6 Suppose a € WO(B; W, W;w;R), for w = (v,7,Z). Then
we have
la(7) ||£(H0,’Y(B)®(CN HO (BypeN ) = €

with ¢ > 0 a constant independent of T € R.

Clearly there are much more precise norm growth estimates for general
a € UH(B; W, W;w;R), but we do not need them here.

Theorem 2.1.7 If a(t) € W*(B; W, W;w;R), for w = (v,7 —m,TI), then
a*(7) € UH(B;W,W;w*R), for w* = (m — v, —7,I), where a*(7) is the
pointwise formal adjoint with respect to the scalar products in H%(B) & CN
and H**(B) @ CN. Moreover,

boh(ar) = ('o(w)".
bo—gdge(a*) = (bo—gdge(a)) .
Here, the formal adjoints of symbols on the right-hand sides are specified
in the sense of relevant operator classes.

Theorem 2.1.8 Let

a(r) € UH(B,WI W%hw;R), w=(y,y—my,7),
a(r) € (B, W2 W3wyR), wy=(y—my,y—mi—my7I),

then the composition (aza;)(7) is well defined in WA +H2(B; W W3 wyowy; R),
with wy o wy = (77,7 — my —my,T), and

bam1+m2(aga1) = bO'mz(ag)bO'ml(Cll),
Poogme  (G201) = Lol (az) bogt (aq).

We are now in a position to use the machinery of pseudodifferential oper-
ators to construct order reducing families within the calculus on B.

Definition 2.1.9 Let w = (7,7 — m,I) where m,v € R and I = ([,0],
[ € NU{oo}. An operator a(t) € W™(B; W, W;w;R) is called elliptic with
parameter if

1) %0™(a) #0 on (*T*B x R) \ {0};
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2) lolt(a)(T): H*1(X") @ CN — H ™1 ~™(X") @ CN is an isomorphism

for all T € R\ {0} and some s € R.

By the above it is clear that when 2) is satisfied for one s = sy then it is
automatically for all s € R.
Let

e W(B;W,W;w;R), w = (,7—m1),
e UBW,WwhR),  w = (y-m7,T),
then p(7) is said to be a parametriz of a(7) if

p(rla(r) —1 € U=(B;W;w™ ow;R),
a(r)p(r) =1 € X (B;W;wow 1 R)

where 1 stands for the identity operator in the corresponding classes.

Theorem 2.1.10 Every elliptic operator a(r) € W™ (B; W, W;w;R) has a
parametriz p(t) € O "(B; W, W;w 1; R).

The following results are straightforward consequences of the existence of
a parametrix p(7) within the calculus.

Corollary 2.1.11 Suppose that a(t) € U(B; W, W;w;R) s elliptic,
where w = (7,7 —m,Z). Then there ezists a constant ¢ > 0 with the property
that i

a(t): H¥'(B) o CN — H™™(B) o CN

is an isomorphism for all s € R, provided |T| > c.

If a(7) is an isomorphism for a fixed s = 59 and all 7 € R, then it is so for
alls € Rand all 7 € R, and a~'(7) € U™™(B; W, W; w; R).

Corollary 2.1.12 For every weight data w = (vy,y — m,I), T = (—1,0],
there exists a parameter-dependent elliptic operator a(t) € W™ (B;w;R) such
that

a(t) : H*(B) — H*™™~™(B)

is bijective for all s € R and all T € R.

As mentioned, 7 will be interpreted as R(, for ( € C. For a fixed 6 € R, we
denote WH(B; W, W;w;T's) the space of all operator families a(¢), ¢ = 7 + id,
such that a(r + id) € WA(B; W, W;w;R). Analogously we use notation like
UH(B;w; Ty), ete.

Recall that U#(B; W, W;w; R) is topologised as the inductive limit of Fré-
chet spaces. Let a(¢) be a holomorphic function in a strip A’ < I¢ < A” with
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values in Nyer L(H*Y(B) ® CN, Hs=#7=™(B) @ CV). We say that a(¢) belongs
to WH(B; W, W;w;Ts) uniformly in § € [¢',6"], where A" < § < §" < A",
if a(r 4 id) lies in the same Fréchet space within W*(B; W, W;w;R) for all
§ € [0',6"], and the corresponding seminorms of a(7 + i) are bounded uni-
formly in § € [¢',0"].

Theorem 2.1.13 Let § € R. For every a(¢) € WA(B; W, W;w;'_s) there
1S an

h(¢) € Nyer A(C, L(H*(B) & C¥, H*#7™(B) @ CV))
such that

1) b(¢) € ¥*(B;W, W;w;f‘v) for all v € R, uniformly in v on compact
intervals of R;

2) H(Q)Ir_; —a(¢) € W™ (B; W, W;w; I'y).

The proof follows by a generalisation of kernel cut-off arguments as they
have been used systematically in Schulze [Sch98, 2.2.2], cf. also Theorem 1.3.8.
Here 7 is treated as R( for the Mellin covariable ¢ with respect to the Mellin
transform M, ,.

The kernel cut-off technique also allows one to choose the order reducing
family of Corollary 2.1.12 in the form a(¢) |r_, with fixed § € R, a(¢) being an
entire function with values in [ ., A(C, L(H*7(B), H*~™7"™(B))), such that
a(¢) € ¥*(B;w;I,) for all v € R, uniformly in each finite interval. Moreover,
for any ¢' and 6" we can find a(() in such a way that a(() |r_, is order reducing
for all —o0 € [¢',0"].

Let a(¢) € W™(B;W,W;w;T'_s) be elliptic and h(¢) be associated with
a(¢) via Theorem 2.1.13. Then h() |r, is elliptic for every v € R. Given any
6" < 6", there is a ¢ > 0 such that h(¢): H*'(B)®CN — H™7 =" (B)pCN is
an isomorphism for all ¢ in the strip ¢ € [¢',0"] with |RC| > ¢. Furthermore,
there exists a sequence of complex numbers (p,),., such that |Sp,| — oo as
lv| — oo, and h(¢) is an isomorphism for all € C\ (py),;. The inverse
h~1(¢), first defined on C\ (py), .z, extends to a meromorphic operator family
over the entire complex plane C with poles at p, of multiplicity m,.; and
Laurent expansions

-1

b_l(g) - Z lvk (C - pu)k + Z luk (C - pu)k

k=—(m,+1)

close to p,, where I, € Ug(B; W, W;w) are operators of finite rank for all
veZand —(m,+1) <k <-—1.
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2.2 Corner Sobolev spaces

A further essential ingredient of the calculus are corner Sobolev spaces. They
have already been announced in Section 1.1. Recall that C stands for the
‘stretched manifold’ related to the given space C' with corners C\y. Moreover
we have W that is the ‘stretched manifold” of the space C' \ Cy with edges
Ch \ Cy.

Near any corner v € Cy, the manifold C is locally of the form [0, 1) x B where
B is the stretched base of the corner with conical singularities. It will be con-
venient also to look at the spaces H*7(B"), for s € R and v = (7p,71) € R?,
where B = R, x B is the infinite semicylinder over B. Combining Corol-
lary 2.1.12 with a weight reduction obtained by multiplication with a strictly
positive function in the interior of B equal to r* 7 near 0B, we arrive, for ev-
ery weight data w = (79, 0,Z), at an elliptic operator R*?(¢) € V*(B;w;I'_,,)
which induces an isomorphism of H*7(B) onto H*(B), for all ¢ € I'_,,.
We might use this family to define the space H®7(B") quite analogously
to H¥"(X"), c¢f. Definition 1.1.2, with L*(X) replaced by H*°(B). Un-
fortunately, the spaces H*(0%(B") obtained in this way don’t agree with
H (R, n*H*"(B)) close to the edge £ = (0,1). Thus, we could not glue
them together with the wedge Sobolev spaces H;J°(W) near b !(v). This
forces us to take as H*?(B") the scale H*(Ry., 7*H*7(B)) itself, completed by
the weight factor ¢*. Then the corner Sobolev spaces H*7(C), for v € R?, will
be obtained by gluing together H*7(B") close to b~'(v) with the corresponding
wedge Sobolev spaces on W.

The various weight shifts that might play a role in the following definition
would depend on n + 1, the dimension of B. These weight conventions would
ensure that H%(%%(C) be the pull-back of L?(C) under the blow-down mapping
b.

For simplicity we assume in the sequel that C consists of a single point
v. This can be achieved formally by allowing B to have several connected
components, i.e., C remains untouched by this assumption.

Let s € R, and v = (79, 71) be a pair of real numbers. As explained above,
we put

H*Y(BY) =t" H* (R, 7" H*"(B)), (2.2.1)

the spaces on the right-hand side being introduced in (1.4.14) (cf. also Exam-
ple 1.4.2).

Lemma 2.2.1 For any s € R and v = (v, 71) € R?, we have a continuous
embedding
H*Y(B") — H*(R, x B).

loc

Proof. This follows from (2.2.1) and Theorem 1.4.17. O
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Hence we may glue together the spaces H*7(B") near the corners with
the spaces H,'°(W) living on the non-compact stretched manifold with edges

W = b }(C\ Cy). Namely, given any s € R and a pair of real numbers
Y= (70771)7 we set

Ho9(€) = [w] H(B") + [1 — w] H(W) (2.22)
where w(t) is a suitable cut-off function, and the right-hand side is equipped
with the topology of the non-direct sum of Fréchet spaces. Recall that a
neighbourhood of b= (v), for v € Cy, is identified with [0, 1) X B, so we assume
suppw C [0,1).

Note that the space (2.2.2) is independent of the concrete choice of w(t).
Moreover,
(u)(lt)t‘S + (1 —w(t))H>(C) = H0om+0) ()

for all § € R, w(t) being a cut-off function satisfying 0 < w(t) < 1.

Theorem 2.2.2 For each s" > s' and v§ > v}, v{ > 1, there is a contin-
uous embedding

" 1"

H(C) — H*7'(0),

and this embedding is compact provided that s" > s" and v > v, 77 > 71

The spaces (2.2.2) can be endowed with Hilbert structures inducing the
same topologies thereon. We only need someone in H°(C) = H%(*0(C), it will
be fixed once and for all. The adequate scalar product is first defined in local
terms and then globally by using a partition of unity on C. The obvious details
are left to the reader.

o

Theorem 2.2.3 When defined on C,, (C) x C2 (é), the scalar product

comp comp
of H(C) extends to a non-degenerate sesquilinear pairing

(+,-): H>(C)x H*>7(C) = C
for all s € R and v € R?, which allows the identification H*>7(C) = H*77(C).

Given any A € Nyeg L(H®Y(C), H*~*7"™(C)), we define the formal adjoint
A* of A by
(Auag)HO(c) = (Ua A*g)HO(c) )

o

first for u,v € Cg;,,(C). The formal adjoint actually induces a continuous
mapping

A* € Nyep LIHSTH7(C), H~77(C)).
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2.3 Corner asymptotics

We turn to the corner asymptotics of distributions belonging to the spaces
(2.2.1). The asymptotics will consist of two parts, one for r — 0 along the
edges emanated from the corners and another for ¢ — 0. We have already
treated edge asymptotics close to corners (cf. Section 1.4), our next concern
will be the corner axis asymptotics. Similarly to the cone asymptotics it will
be convenient to speak of asymptotic types.
Let v = (7,71) be a pair of real numbers and w = (wp, wy) be a pair of

weight data

Wo = (707(_l070])7

wr = (1, (=h,0])

related to v. By a discrete asymptotic type for corner asymptotics is meant
any collection

as1 = (pv, M, EV)V:l,...,N’
where p, are complex numbers in the strip {( € C: —y — [} < IC < —71},
m, non-negative integers, and ¥, finite-dimensional subspaces of Hg7°(B),
for some “asy” independent of v. We also allow [; = oo, in which case N = 0o
and Sp, — —o0 as v — o0.

By the above, the set ¢ as; = (p,),_,  is said to be a carrier of asymp-
totics. Recall that we have distinguished between the discrete and continuous
cone asymptotics. In much the same way as in Section 1.2 we can introduce
continuous asymptotic types for corner asymptotics. Moreover, we have a
mapping as; — asg making any asymptotic type for corner asymptotics to
that for cone ones. Hence various combinations can occur, for instance, dis-
crete asymptotic types for both corner and cone asymptotics. Clearly, the
reader who wants first to study discrete asymptotics may restrict himself to
the latter case.

Definition 2.3.1 Suppose s € R, v € R?, and “as,” is as above, [ being
finite. Then, HZY(B") denotes the space of all v € H*Y(B") with the property
that

N my

w(t) (u(t,p) — Z Zti”" (logt)k c,,k(p)> e g*0om+h-0) (B"),

v=1 k=0
for certain c,, € ¥, and any cut-off function w.
In the case [y = oo we modify this definition by requiring that there exist

¢ € 2, such that to any cut-off function w and € > 0 there corresponds an
N = N(e), with

() (u(t,m =33 i og c,,k<p>) € BB,

v=1 k=0
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If [, is finite, we set A,g, (B") to consist of all potentials

N my,

w(t) > 1% (logt)* cor(p)

v=1 k:O
where ¢, € ¥, and w is a fixed cut-off function. Then A, (B") is a finite-
dimensional subspace of HY"(B"), and we have

(W] H (BY) = Ags, (B") + [w] H>0om+h=0 (1), (2.3.1)

as]

the sum being direct. When combined with the original topology of H*?(B"),
for large ¢ > 1, (2.3.1) gives a natural Fréchet space structure to H37(B").
This in turn yields a projective limit Fréchet topology on H37(B") in the case
ll = OQ.

The functions of H3Y(B") can also be characterised by their Mellin trans-
forms as follows. For any cut-off function w(t), the image M (w HE(B"))
consists of all meromorphic functions f(¢) in the strip ¢ > —vy; — [; with
values in H*7([3), that have poles at p, of multiplicities m, + 1 and Laurent

expansions

my 1
FQ) =) cnp) ——7 + /(€
( ) kz:; k( )(C_py)k_H ( )
near p,, where ¢, € ¥, and f, is holomorphic at p, for all v = 1,..., N.

Moreover, if x(() is a ¢ as;-excision function, then y f meets certain estimates
like

| IO Ol < 0 (2:3.2)

for all 6 < v, + [y, uniformly in § on compact intervals, || - | H(8) being a
family of equivalent norms on H*7(B) parametrised by (.
Next we consider the corner axis asymptotics along with the edge asymp-

totics for  — 0. Analogously to (1.4.14) and (2.2.1) we use the spaces

Ho (R, HOP(B) = 00 (R 7 H0(B)),
o Ry HEP(B) = 00 H(Re,m HE(B))

asg

for arbitrary vy, 71 € R and asymptotic type “asy” related to the weight data
wy. Obviously,

Aas, (B") = HZM (R, 7 HZ™ (B)),

aso

“asg” corresponding to “as;” by definition.

Definition 2.3.2 Let s € R and as = (asg, as;), “as;” being related to wj,
j=0,1. Then, H:Y(B") denotes the subspace of H*Y(B") consisting of all u
such that
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1) we HY(B") in the sense of Definition 2.3.2;

asi
2) given any cut-off function w, there are ¢, € X, with

w(t) <U(t,p) - iti”” (log1)" o (p)> € HIMH (R, 7 HL0 (B)).

v=1 k=0

If I} = o0, the last equality needs handling with greater care. However, the
argument after Definition 2.3.1 still works.

Suppose as = (asg,as;) where “as;” is related to w;, j = 0,1. Just as in
(2.3.1), we can write

(W] H (B") = Aas, (B) + [w] 1™ 0 ORy, 7 Hy0 (B)) (2.3.3)

aso

provided [; < co. This makes [w] H?(B") a Fréchet space, for both summands
are Fréchet. For [; = oo, we endow [w] HY(B") with a projective limit Fréchet
topology.

Now we are in a position to introduce the subspaces of global spaces (2.2.2)
over C with asymptotics.

Definition 2.3.3 Suppose C is a stretched manifold with corners, as above,
and as = (asp, as;) where asy satisfies the shadow condition. For s € R and
v € R?, we set

H(C) = [w] Hy'(B") + [1 — w] HZ o (W),

asp,loc

As usual, we endow HZ7(C) with the topology of the sum. Theorem 1.4.5
shows that H27(C) does not depend on the concrete choice of w. If we fix w
and form

W] H(B") + [1 = w] Hy (W),
with arbitrary as = (asg,as;) and asy, then there is a resulting asymptotic
type asp with the property that the above sum just amounts to H3'(C), for

as = (asg, asy).

2.4 Corner Mellin symbols

The next step towards establishing a pseudodifferential calculus on manifolds
with corners is to define the spaces of operator-valued Mellin symbols, here
operating globally along the base B of the corner.

Definition 2.4.1 Suppose m,u,d € R, m—p € Z, and w = (5,6 —m,I),
where T = (—1,0], I € NU {oo}. Then, M(C, U*(B; W, W;w)) stands for the
space of all holomorphic functions h(¢) with values in W (B; W, W;w), such
that )

b(C) |F75 < \IJM(B; W7 W; wy 1—‘,5)

for all 6 € R, uniformly in § in every compact interval of R.
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Furthermore, we write M(C, U#(B;w)) for the class of upper left corners
of the elements in M(C, U*(B; W, W;w)).

Let us emphasise the link of Definition 2.4.1 to Theorem 2.1.13. The corner
calculus employes not only holomorphic but also meromorphic Mellin symbols
with values in W*(B; W, W;w). The poles and Laurent expansions are de-
scribed in terms of asymptotic types.

More precisely, choose a collection T' = (p,,m,, L,),; of complex num-
bers p, satisfying |Sp,| — oo as |v| — oo, non-negative integers m,, and
finite-dimensional subspaces £, of finite rank operators in W (B; W, W;w),
the asymptotic types of the operators being independent of v. Such collec-
tions T are said to be discrete asymptotic types for corner Mellin symbols. As
usual, we set

Tr(CT = (pV)VEZ .

Definition 2.4.2 By M (C, Vg (B; W, W;w)) is meant the space of all
meromorphic functions g(C) in C with values in Va(B; W, W;w), such that

1) x(Q)g(Q)|r_, € ¥2(B; W, Wiw;T_s) for all § € R, uniformly in & in
compact intervals of R, x(¢) being any wcT -excision function;

2) g(C) has poles at p, of multiplicities m,, + 1 with Laurent coefficients at
(¢ — p,)~ ¥+ belonging to L, for every 0 < k < m, and v € Z.

Denote My(C, ¥ (B;w)) the set of upper left corners of the matrices in
Mrp(C, U (B; W, W;w)).

Both M(C, U*(B; W, W;w)) and Mq(C, U (B; W, W;w)) are inductive
limits of Fréchet spaces in a canonical way. Thus, we can introduce the non-
direct sums

My (C, U (B; W, W;w)) = M(C, U (B; W, W; w)) + My (C, U (B; W, W; w)).

) (2.4.1)

Each symbol a(¢) € My (C,¥*(B; W, W;w)) gives rise to a Mellin pseu-
dodifferential operator

0P () u = t* op (I ") (t_du) ;

for any 6 € R with 7¢T' N '_s = (). Here u is regarded as a vector-valued
function of ¢ € Ry, and we first assume that u(t) is a C'* function with a
compact support in R, .

Theorem 2.4.3 Let v = (70,71) and wo = (Y0,% — m,Lo). Suppose that
a(¢) € My (C, U (B; W, W5 wy)) satisfies rcTNL_, = 0. Then, given any cut-
off functions p(t) and ) (t), the operator pop, ., (a) Y extends to a continuous
mapping

H*"(B") He=m0o=mm)(BA)
® = o (2.4.2)
H‘%’Yl (R+ , W) HS_IJJ,’YI (R+ , W)
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for all s € R.

This result generalises the first statement of Theorem 1.4.15 to arbitrary
corner Sobolev spaces, i.e., including those with non-zero v, € R. Indeed,
the operator @op,, (a)y belongs to ¥4, (R. x B; W, Wiwg), as is easy to
check. Moreover, to every asymptotic type as = (asp, as;) there corresponds
an asymptotic type as = (dsp, as;) such that (2.4.2) restricts to a continuous

mapping

HaSS:"/(B/\) ;S*N:(’YO*m:"/l)(B/\)
POP Ay, (@)1 D —
Hat (R, W) HE T (R, W)

as

for all s € R.



Chapter 3

Corner Calculus

3.1 Corner operator algebra

The operators of the corner algebra on C are expected to be matrix-valued with
“proper” pseudodifferential operators in the upper left corners and additional
trace and potential conditions along the edges. They can be introduced entirely
by a concise notation. However, we prefer here to look first at the upper left
corners separately. The general class will then follow in Section 3.2.

To simplify notation, we assume as above that Cy consists of a single cor-
ner v. On the other hand, the base B is allowed to have several connected
components.

We start with the Green operators. Let m € R, v = (v,71) € R?, and
w = (wp, wy) be a pair of weight data

Wy = (70770 - mJIO)J
w; = (71,71—77%11)

related to . Then Uq(C; w) is the space of all G € Nyer L(H®*(C), H*7™(C))
which induce continuous mappings

G H%(C) — HX(C),
G* . HY () — HXTU(C)

for all s € R and certain asymptotic types

as = (asg,as;),
as = (asg,as;),

where “as;” is related to (y; — m,Z;) and “as;” to (—v;,Z;), G* being the
formal adjoint with respect to a scalar product in H*°(C).

72
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Definition 3.1.1 Let m — p € Z, and w = (wo, w,), where v € R* and
Z; = (—1;,0], l; being a positive integer. Then, U*(C;w) is the space of all
operators

A=A +A +M+G (3.1.1)
where

A, is a Mellin operator with holomorphic symbol in a neighbourhood of v,
ie., Ac = pt™"op ., (h)Y where h(t,¢) € Cie.(Ry, M(C, ¥ (B; wy)));

A, isa pseudodzﬁerentzal operator on the manifold with edges W = C'\ Cy,
, A = (1 — @) Wep where W € WH(W;wy) and ¢ covers 1 — ;

M s the sum of smoothing Mellin operators with meromorphic symbols in a
neighbourhood of v, cf. (2.4.1); and

G is a Green operator on C related to the weight data w, as described above,
i.e., G € Vg (C;w).

Note that this definition is quite analogous to Definition 1.2.3. Recall that
there is a diffeomorphism x of a punctured neighbourhood O \ {v} of v in
C onto (0,1) x B. Similarly to (1.2.5) we may assume that A, and A, are
compatible in the sense that

kg W =1t "0pr, (h)

modulo W;>((0,1) x B;wy), cf. Definition 1.3.15. Then any other choice of
¢, 1 and 1) modifies (3.1.1) only by some element of ¥q(C;w).

Theorem 3.1.2 FEvery operator A € WF*(C;w) induces continuous map-
pings
A H%(C) — HsH*1™((C),
A HZ(C) — Hg ™™ (C)
for all s € R and asymptotic types “as”, with some resulting asymptotic types
“as” depending on “as”.

The inclusions

Uy (C\ Ch),
\I[“(C\Cg,wo) (312)
U ([0,1) x B; wo)

UH(Cyw
N( “w

th—n \Il“( : ;t”’

) =
)

<_>
<_>

give rise to the symbol levels over W#(C;w) from the corresponding larger

classes, namely a"(A), Ohige(A) and °o, bol,.(A). In particular, for A € U#(C;w)
we set Ohige(A) 1= edge(t“/ﬁl) the last symbol being over ¥4, ([0, 1) x B; wy).
Hence 1

Opdge(A)(t,7) = o P0lage(A) (8, 17), (3.1.3)
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which is traced back to (1.1.11).

We call °a#( A) the principal homogeneous compressed interior symbol of or-
der 1, 04, (A) the principal homogeneous edge symbol of order y, and baggge (A)
the principal homogeneous Mellin edge symbol of order p of A. Let us also de-
fine

om(A)(€) = h(0,0) + (m(©) +mP(©)). (3.1.4)

the conormal symbol of A at the corner, where h and m((f) are specified from
(3.1.1).

By definition, oa(A) is an element of Up M¢(C, ¥*(B;wy)). Thus, (3.1.4)
will be regarded as a family of operators

om(A)(C) : H*P(B) = H* 1707 (B)

parametrised by ¢ € I'_,, for any s € R.

The operator classes of Definition 3.1.1 behave well under taking formal
adjoints and compositions. We postpone this to the next section where these
properties will be formulated for matrices with A € U#(C; w) in the upper left
corners.

Let us demonstrate the new structures by the example of typical differential
operators on C. If A is such an operator of order m, then A € ¥™(C;w) for
w = (wp, w), where w; = (v;,v; — m, (—00,0]) with arbitrary 7; € R. Close
tot = 0 A has the form

. kL 1 X
A:w(r)W 'Z Aj(t,r) (trDy) (rDy)* + (1 — w(r t—mZAj (tD,)’
JF+k<m j=0
where '
Aj(t,r) € CR(0,1) x [0, 1), Diff"~U (X)),
A;(t) € C((0,1), Diff™ (B \ By)).
Set

M Q) = w(r) o 3 Al r) () (D) + (1= w(r) 3 A1) ¢

J+k<m J=0

then h(t,() is a family of operators on B, parametrised by the real part of
cel_,.

We next claim that h € C2%(Ry., M(C, U™ (B; wy))), for A = t7™0p,,, (h)
is then of the form (3.1.1) near the corner. To prove this, we only need to show
that

hlr_, € U™(B;wp; ')
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for all 6 € R, uniformly in § on compact intervals of R. As usual, we choose
a system (1, 1;) covering (w, 1 — w), with ), (r) supported in [0,1). Then we
have

h’(ta C) = w(r) (a’O(tJ C) + aoo(ta C)) %(7") 1 - w (Z A] ) )7

J

where
ao(t,() = wo(r(m))r™ OPM,W(ZﬂkgmAjk(ta?")(TC)”Z ) o (r (7)),
too(t,C) = Qoo (r{(T)) 1™ (31 hcm i (6, ) (1O (rDy)* ) Yoo (r(T)).

We thus obtain A(t,{) in the form (2.1.1) which was a model for Defini-
tion 2.1.2. In other words, we conclude that h € C22 (R, , M(C, ¥™(B; wy))),
indeed.

It is a simple matter to check that A belongs to the algebra W™ (W;wy)
over W = C'\ Cp. In (1.1.8) we have already specified the leading edge symbol
of A, ogiee(A). By this example one can observe typical relations between
various symbolic levels. Since oy, e(A) takes its values in U (X"; wy), we may
look at the conormal symbol of o7  (A) with respect to the r-variable. It is
equal to

edge

o2 (004 () (2) = 72 D Aos(1,0)2

which does not depend on 7. On the other hand, the conormal symbol of A
with respect to ¢ is

om(4)(€) = h(0,0),

the right-hand side taking its values in W (3; wy). It bears a leading conormal
symbol at 0B, namely

om (om(A)) (2) = Ags(0,0)z

whence
t" o (00ige(A)) (2) li=0 = o (G (A)) (2). (3.1.5)

This is a crucial relation for understanding the interaction between edge and
corner contributions to the asymptotics of solutions. The use of the variable
t is allowed because (3.1.5) concerns a neighbourhood of ¢ = 0. Otherwise
we could invoke a defining function of the corresponding face of the stretched
manifold C.

Theorem 3.1.3 For each operator A € ¥*(C;w), the equality (3.1.5) is
still valid with m replaced by .
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Fig. 3.1: The “branched space” of edges.

3.2 Trace and potential conditions

We now complete the operators of Definition 3.1.1 to matrices, where two
entries have the meaning of potential and trace operators with respect to the
edges, and the lower right corners are operators analogous to those from Defini-
tion 1.2.3, acting over the “branched space” formed by the edges (see Fig. 3.1).
These edges E = C \ Cy are diffeomorphic to a system of open intervals, i.e.,
to a disjoint union of 2, 2 (0,1), v = 1,..., N, the diffecomorphisms extending
to those of the closures. Letting {2 denote any component €2,, we introduce
the spaces
H*(Q) = [w] H>(0,00) + [1 — w] H*(—o0, 1),

for 5,0 € R, where w(t) is a cut-off function with a support in [0,1) and the
spaces on the right are identified with their pull-backs under the diffeomor-
phism Q — (0,1).
As usual, we write H*°(Q, CY) = H*°(Q)®CN for the space of CV -valued
functions.
Set
HS(E,W) = &) H*(Q,,C),
Hs’a(Ea W) = EB{/V’:IH&(S(QV: cN )

for some choice of N, and N,,.

The asymptotic types of distributions in H*(E, W) near v are a straight-
forward generalisation of those in H*°(R,). In this way we arrive at spaces
with asymptotics H(E,W). We could, of course, distinguish between the
weight data on different branches and allow them to be different. But we
prefer the simplest form.

The matrix-valued analogue of the Green operators of Section 3.1 is as
follows. Suppose m € R, v = (79,71) € R?, and w = (wg,w;) is a pair of
weight data

wo = (Y0,% —m,Ty),
w; = (71,71—77%11)
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related to 7. Then Uq(C; W, W;w) denotes the space of all
Ge () LHC)® H"M(E,W),H®"™(C) @ H®" ™(E W))

sER

which induce continuous operators

G : H*(C)® H*"(E,W)— HZ2'~"(C) & HZ" ™ (B, W),
G* : H>(C)@ H (B, W) — HY (C) @ HXX " (B, W)

for all s € R and certain asymptotic types (as,as) and (as,as) depending
on G, G* being the formal adjoint with respect to a fixed scalar product in
H*°(C) ® H**(F).

Definition 3.2.1 Suppose m — pu € Zy, v € R?, and w = (wy,wy) are
weight data as above. Then, W*(C; W, W;w) stands for the space of all operat-
ors

A=A+ A+ M+G

A. 15 a Mellin operator with a holomorphic symbol in a neighbourhood of v,

i Ao = ot op,ug,, (B0 with b € Cp (R, M(C, W5 (B W, W wy));

Ae is a pseudodifferential operator on the manifold with edges C \ Co, i.e.,
Ao = (1 — @)Uy where W € WH(W; W, W;wo) and b covers 1 — ;

M s the sum of smoothing Mellin operators with meromorphic symbols in
a neighbourhood of v, cf. (2.4.1); and

G s a Green operator on C related to the weight data w, as described above,
i.e., G € Ug(C; W, W;w).

The important point to note here is the number of additional conditions
along each connected component of the set of edges C; \ Cy. It depends on the
component, so that the ranks of the bundles W and W need not coincide over
different connected components of C; \ Cy.

It follows by definition that U#(C; w) just amounts to the space of all upper
left corners of WH(C; W, W;w).

Theorem 3.2.2 FEvery operator A € UH(C; W, W w) induces continuous
mappings

H(C) Ho—m1=m(C)
A . D — S B )
HS’%(E, W) Hs_“’71_m(E W)
H(C) Hi"77(C)
A &) — &

H (EW)  HLP™E,W)
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for all s € R and asymptotic types “as” and “as”, with some resulting asymp-
totic types “as” and “as”.

Let us now look at the leading symbols within the calculus on C, namely
*0#(A), 0y (A) and o (A). They act as

bot(A)(¢,p) : C—C,
ot (AET) © HXY @ W > B (X @1, (3:2.)
om(A)Q) + HO(B) @ W — H#10 ™ (B) @ W

pointwise over *T*C \ {0}, T*(C; \ Cp) \ {0} and all of the weight line I'_,,,
respectively.

Theorem 3.2.3 As defined above, the leading symbols control the order of
operators within VH(C; W, W;w), i.e.,

ker (ba“, Obiges om) = UHHC W, Wiw).

Since lower order operators act through compact embeddings of weighted
Sobolev spaces, we also have the following result completing Theorem 3.2.3.

Theorem 3.2.4 Suppose A € U= (C;W,W;w). Then the mappings of
Theorem 3.2.2 are compact.

Combining Theorems 3.2.3 and 3.2.4 we see that the triple ("a“, ag”dge, UM)
enables us to perform a standard parametrix construction on the symbol level,
provided that the pseudodifferential operators behave naturally under compo-
sition.

Theorem 3.2.5 Let my — py € Zy, mo — g € Zy and let Z; = (—1;,0], [;
being positive integers. If

Ay € U (C;WEW2wy),  wyp = (wig,wr1),
Ay € UF(C, W2 W3 ws),  wy = (wap, wa),

then Ay Ay € Wi (C; W W35 wyowy) with weow; = (wepowy g, we 0wy ),
and

btz (A2A1) = bghe (Ag) b (Al)
055;“2(,42,41) = Ugjge(A2) O—gdlge(Al

)
om(A2A4;) = (Tiulo'M(AQ))O.M Ay).

If A is a continuous operator in the sense of Theorem 3.2.2 for all s € R,
then we can define the formal adjoint

H—s-l—u,—’y-i—m(c) H—s,—fy(c)
A P = ® (3.2.2)
Hstw=nim(B W) H 5 1 (E,W)
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by
(Au, g)HOsO(C)eaHO’O(E,W) = (u, A*g)HO,O(C)eaHOsO(E,W)

first for all C'*° sections u and g compactly supported away from the singular-
ities. This extends then to a continuous operator (3.2.2) for all s € R,

Theorem 3.2.6 Each operator A € WH(C; W, W;w) allows a formal ad-
joint A* € UH(C; W, W;w*), where w* = (wg, w}) and wi = (=yj+m, =5, Z;).
Moreowver,

or(AT) = (oA,
O.(l:dge(A*) = (q::Ldge(A))*a
om(AY) = T (om(A))"

Theorems 3.2.5 and 3.2.6 can be summarised by saying that ¥°(C; w) is a
C*-algebra over C.

Let w(t) be a cut-off function on R, , satisfying 0 < w(t) < 1. Then
w’(t) = w(t)t® + (1 — w(t)) can be regarded as a function on all of C. For any
) € R, we have

w’ UH(C; W, W; w) w™? = UH(C; W, W; (wo, w1 4)),
where wy 5 = (71 + 6,71+ —m,Z;), and

bort(w’ Aw™®) = baH(A),
O—gdge(wd Aw_6) = O—gdge (A)7 (323)
om(w Aw=?) = Ty (A).

Thus, we may invoke the conjugation by w=(¢) to reduce the matter to
the weight exponent v, = 0.

3.3 Elliptic operators

The ellipticity of operators in W*(C; W, W;w) will refer to the particular choice
of p, namely p = m.

Definition 3.3.1 An operator A € U™ (C; W, W;w) is said to be elliptic if
each symbol of (3.2.1) is an isomorphism.

Mention that in (3.2.1) it is sufficient to restrict oneself to any particular
value s € R. By ellipticity on spaces of lower order singularities, the iso-
morhisms then take place for all s € R.

Suppose
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where w; ' = (v; — m,v;,Z;). Then, P is called a parametriz of A if

]
PA-1 € \Ilg(C;VY;wflow),
AP -1 € Yg(C;Wiwow™t)

where 1 stands for the identity operator in the corresponding classes.

Theorem 3.3.2 Every elliptic edge problem A € \Ilm(C;VV,W; w) has a
parametriz P € W (C; W, W;w™1).

Theorem 3.3.2 is the main result of our corner operator theory. Therefore
we sketch the main ideas of the proof. To construct a parametrix we have to
invert the symbols. It employs the following result.

Lemma 3.3.3 For each elliptic operator A € ¥™(C; W, Wiw) there exists
an operator R € W~ (C; W, W;w™') such that
‘o (R) = (f™(A)
—m m —1
Uedge(R) = (O.edge (A)) ) .
om(R) = T (om(A)) .

The construction of R is rather complicated because of the various sym-
bolic levels. However, we can proceed step by step. First we find an elliptic
operator R; € U (C; W, W;w ') such that *o™(R;) = (*™(A))"!. Then
the composition A; := R;A belongs to ¥°(C; W;w ! o w), is elliptic and sat-
isfies °0%(A;) = 1. Next we construct an elliptic R, € ¥O(C;W;w™! o w)
with the properties that *0%(R.) = 1 and 0g4,,(Re) = (09,0 (A1))™". Then
the composition As := R.A; belongs to WO(C;W;w ! o w), is elliptic and
satisfies *0%(Az) = 1, 0%y,0(A2) = 1. It remains to construct an elliptic op-
erator R, € WO(C;W;w™" o w) such that *0’(R.) = 1, 004,.(Re) = 1 and
om(Re) = (om(A2))"t. Then we may set R = R.R.R;. The details of
the construction need technicalities of the Mellin pseudodifferential calculus,
the scheme being to large extent analogous to the cone and edge theories,
cf. [Sch98|.

Combining Theorems 3.2.3 and 3.2.4 we readily deduce that R is a regu-
lariser of A, i.e., an inverse modulo compact operators. We then make use of
a formal Neumann series argument to pass from R to a true parametrix P for
A.

Since the Green operators are compact in weighted Sobolev spaces on C, it
follows from Theorem 3.3.2 that each elliptic edge problem is Fredholm. It is
to be expected that the ellipticity is also necessary for the Fredholm property,
but such a theorem has been hardly obtained as yet. However, Theorem 3.2.5
implies that the ellipticity is necessary for the existence of a pseudodifferential
parametrix.

As usual, a straightforward consequence of the existence of a left parametrix
within the calculus is a Regularity Theorem.
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Corollary 3.3.4 Suppose A is elliptic. If

w € H(C)® H M (E,W),
f e Homm(e) @ H (B, W)

and Au = f, then u actually belongs to H*Y(C) @ H*"(E,W). Moreover, if

w € H(C)®H="(E,W),
fe HZ™T(C) e Hy, ™ (E, W)

for some asymptotic types “as” and “as”, then w € HEY(C)® HE (E, W), for

[{§ing

resulting asymptotic types “as” and “as” depending on A and “as”, “as”.
Proof. Indeed, from Au = f it follows that
u=(1-PAu+7Pf

Applying Theorem 3.2.2 yields the asserted quality of Pf, whereas the regu-
larity of (1—"P.A)u is just expressed by the very definition of a Green operator.

[
Let A € U™(C; W, W w) be elliptic. Then the operator
H*(C) Hs—m7=m(C)
A: @ — ®

Hs" (B, W) Hemn-m(B W)

is Fredholm for all s € R. By Corollary 3.3.4, the index of A is independent
of s. If Ay, A, € ¥"(C; W, W;w) and

o (Ag) = Po™(A),
O—erz?ige(AO) = O—erz?ige(Al)7
om(Ao) = om(Ar),

then the indices of Ay and A; coincide, which is clear from Theorems 3.2.3
and 3.2.4. The problem of how to evaluate the index of A in terms of the
leading symbols is a straightforward generalisation of the index problem for
elliptic operators on smooth manifolds, cf. Gelfand [Gel60].

3.4 Calculi for higher order singularities

We are now in a position to single out three main features of our approach to
constructing algebras of pseudodifferential operators on singular varieties. The
first feature is using special coordinates near singularities to identify coordinate
patches with cone bundles over Euclidean spaces R?, ¢ > 0. Under these
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coordinates the singularity itself is moved to a variety of points at infinity.
This enables one to write the operators in a unified way, namely as Fourier
pseudodifferential operators along R? with operator-valued symbols, in spite of
the diversity of possible operator representations (Mellin, etc.). The analysis in
weighted Sobolev spaces near singularities reduces to that in weighted Sobolev
spaces over RY, with natural weight functions e’ and (y)* to control the
behaviour of functions at points at infinity. The choice of two weights actually
fits in the analysis on varieties with cuspidal singularities, cf. [RST99], because
§'(r) ~ (6(r))?/?*=Y as r — 0, t = &(r) being a local coordinate close to the
cusp. The second feature is the idea of edge Sobolev spaces H*(R?,7*V)
whose definition relies on group actions in the fibres over the edge R?, cf.
Definition 1.3.1. The property

HY (R 7" H(R®, V) = H* (RO 1°V), (3.4.1)

H*(R%, 7*V') being endowed with the group action u — rky(A%2/?u()\y)), cf.
[Sch98, p. 115], allows one to ensure compatibility of definitions over different
strata. Finally, the third feature is invoking operator-valued Fourier symbols
over R? which admit asymptotic expansions in “twisted” homogeneous sym-
bols, the “twisted” homogeneity referring to the group actions. This makes the
theory of pseudodifferential operators on stratified varieties quite analogous to
Boutet de Monvel’s theory of pseudodifferential boundary value problems, cf.
[BAMT1].

More precisely, let V' be a smoothly stratified space with local cone bundle
neighbourhoods, cf. [GM88]. We shall introduce this notion by defining in-
ductively for each N > 1 a category LCB(N) of smoothly stratified spaces
with local cone bundle neighbourhoods with at most /N strata. A smoothly
stratified space with local cone bundle neighbourhoods is simply an object in
LCB = UyLCB(N). For each of these categories there will be natural notions
of product with a smooth manifold and of the boundary of an object. Also,
underlying each object in LCB(/V) will be a stratified space with at most N
strata. The category LCB(1) is the category of smooth manifolds and smooth
mappings. Assume that LCB(j) has been defined for all j < N. For any closed
finite-dimensional object B in LCB(N—1) we denote by C}(B) the cone on the
topological space underlying B. Its top point is v, and the open cone is identi-
fied with (0, 1] x B. If Q is an open set in a Euclidean space, we give Q x C;(B)
a stratification in which Q x {v} is the bottom stratum and the others are of
the form € times the open cone over strata of B. An LCB(N) coordinate chart
for a stratified space V' is a strata-preserving homeomorphism A from an open
subset O of V' to Q x C(B), where Q is an open subset of a Euclidean space
and B is a closed finite-dimensional object in LCB(N —1). Two coordinate
charts h,: O, — Q, x C¢(B,), v = 1,2, are said to be compatible if the com-
position hy o h,fl induces local diffeomorphisms both from {2; to €25 and from
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Fig. 3.2: A smooth stratification.

Q; x ((0,1] x By) to Qg x ((0, 1] x By), the former being a “limit” of the latter.
An object in LCB(N) is a stratified space with a maximal atlas of compatible
LCB(N) coordinate charts covering the space. A morphism in this category
is a strata-preserving mapping f which is C° on each stratum and behaves
properly with respect to local cone bundle structures. It is well known that any
Whitney stratified subspace of a smooth manifold admits a natural structure
of a smoothly stratified space with local cone bundle neighbourhoods, cf. ibid.

Write VD .. V) for the strata of V, V1) being of codimension n; (see
Fig. 3.2). A stratum need not be connected, hence we may assume without
loss of generality that 0 =n; < ... < ny < dimV. By definition, each V1) is
a smooth manifold, and the closure of V) in V lies in VO U ... UV®) for all
j=1,...,N.

We may formally write

V) = ) « (3.4.2)

vy
for 1 < j < J < N, and our next goal is to give a precise meaning to this
equality. We shall interpret it locally in a neighbourhood O of any point
p € VU If O is small enough, then V) has the structure of a cone bundle
over V() within O, the fibre being C;(B). If non-empty, B is a smoothly
stratified space with local cone bundle neighbourhoods with at most (J — j)
strata. We call B the link of V) over V) it is actually the same over each
connected component of V). The fibre C;(B) is invariant under the group
action (t,z) — (At,z), X > 0; this latter specifies a singular fibre structure
by itself. To not exclude artificial stratifications, we allow the fibre Cy(B) to
bear a smooth structure, too. In this case Cy(B) is locally identified with a
Euclidean space (namely, R"” =" ) and endowed with the group action z +— Az,
A > 0. Now, by VU /V/) in (3.4.2) is just meant the local fibre of V1) over
vV,

In case the strata meet each other at non-zero angles the typical differential
operators on V are those of Fuchs-type. This suggests a canonical transfor-
mation of the coordinate along the cone axis of Cy(B), which maps the vertex
t = 0 to the point at infinity. More precisely, the new coordinates (7' = logt, x)
for small ¢ > 0 allow one to identify Cy(B) with the cylinder R x B over B,
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the conical point corresponding to 7" = —oo. Note that B itself has a finite
covering by local cone bundle neighbourhoods and that a smooth manifold is
locally a cone over the unit sphere. We are thus led to the problem of defining
weighted Sobolev spaces in the wedge R? x Cy(B), which properly control the
behaviour of functions up to points at infinity. We start with the scale H*(B),
s € R, of usual Sobolev spaces on a C'*° manifold B, which possesses a finite
coordinate covering. Such a manifold has one stratum, the cone over B has two
ones. We proceed by induction and assume that the relevant Sobolev spaces
have been introduced for all B with at most (J — j) strata. Any stratum con-
tributes by additional weight exponents, so we have a scale of Sobolev spaces
Hs’“"(B) on B, parametrised by smoothness s € R and a tuple of weights
w' = (wy,...,wy_j_1), every component being a weight function on R} usu-
ally identified with a quadruple of real numbers. By the above, B has a finite
covering (O,) by coordinate charts, each O, being diffeomorphic to a wedge
by h,: O, — Q, x Cy(B,). Pick a C* partition of unity on B subordinate
to this covering, (y,). The space H®* (B) is glued together from the local
spaces H*(R% , * H** (Cy(B,))) in the sense that u € H** (B) if and only if
(h)s (pou) € H*(R% , 7*H5Y' (Cy(B,))) for all v. We have Cy(B) = U,C,(0,),
and the diffeomorphisms 1 x h, take Cy(O,) to the cones over R% x Cy(B,).
Note that we think of Cy(B) as being infinite and we regard the infinity as a
conical point. Choose the covering of R, by the intervals [0,1) and (1/2, 00),
and a partition of unity on R, subordinate to this covering, (w,1 — w). We
make use of the cut-off function w to introduce a weight function along the
cone axis,

wy—i(t) = 7 (log 1/t)" w(t) + 1 (logt)” (1 — w(t)),

with v, 4,0, v € R, which is typical for the analysis on a cone. For the tuple
w = (w',wy_;), the space H*"(Cy(B)) is defined to consist of all functions
u(t, ), such that

(logt x h,), (wo, wy_ju) € H¥(R¥FY 7*H>Y'(Cy(B,))),
(1 x hy), (1 —w)pywy_ju) € H* R, 7°H>"'(C(B,)))

for all v.
We might certainly express this in a unified way by introducing a diffeo-

morphism T = §(t) of R onto R with the property that §(¢) = logt, for small
t, and 6(t) = t, for large t.

Lemma 3.4.1 As defined above, the space H*"(Cy(B)) is invariant under
the group action (Kyu)(t,z) = ANu(M, z), A > 0.

Proof. When topologising H*"(Cy(B)) under the natural norm, we get,
by (3.4.1),

||K)\u||%{s’w(0t(3)) = Z (6 x hV)*(prJ*jK/\u||%IS(R,7T*V,,)
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for all A > 0, where V,, = H*(R%,7*H*" (Cy(B,))). We will restrict our
attention to those functions w which are supported in a fixed chart O,. Then
we may omit, by abuse of notation, the index » and both ¢, and h,. Moreover,
it will cause no confusion if we write u(¢) for v and w(t) for w,_;. It follows
that

Kl Fow () = A2V /R ()2 Ny Frosr0s (w(t)u(X1)) |17 dr,

(k) being the group action in the fibre V. Changing the variable by

T=§ (%5—1(50 ,

we obtain

Frosrd. (w(t)u(rt)) = /

R

whence

Frosrd. (w(tyu(rt) = % /R K (X7, 0) Fsorob. (wit) do,

: _ 1 irs(L51(8)) +ios (O'W) (x9°'(9))
K(\T1,0) = Py Re (3571) o) (-T(5))

das,

the latter integral being understood in the sense of distributions. Applying
Schwarz’s inequality yields

B 1 s P
#5073 Frrsr 0 (w () u(A)) I} < p/(@ ZIKP |5 do | [[ullFsw(c,(m));
R @) e (v)
and so
2 IN—2 <T> # 1 ? 2 2
||K/\U| Hsw(Cy(B)) S A ey lﬂﬂ |K| drdo ||U| Hsw(Cy(B))*
R2 <U> @ vy

To complete the proof it suffices to observe that the expression in the round
brackets is dominated by

N\2N=2 // (1 —0)*?|K (\;7,0) |*drdo
RZ

which is due to a well-known property of abstract group actions and Peetre’s
inequality.
O
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Having defined the space H*"(Cy(B)) along with the group action, we can
invoke Definition 1.3.1 to introduce the space H*(R?, 7* H*"(Cy(B))), for any
q, thus completing the step of induction. What is still lacking is an explicit
value of N in dependence of ¢ and the norm in H*"(Cy(B)). The criterion for
the choice of NV is that the space H*(R?, 7*H*"(C}(B))) be locally equivalent
to the usual Sobolev space H away from the singularities of R? x Cy(B),
“locally” meaning “on compact sets”. As usual, taking v =0and N =0+1/2
fills the bill.

The underlying idea of our “resolution of singularities” consists of moving
the singular points to infinity and using the Fourier analysis in a Euclidean
space under strong control by weight functions. This idea goes back at least
as far as [Rab69].

We now turn to an arbitrary smoothly stratified space with local cone
bundle neighbourhoods V. In order to introduce pseudodifferential operators
on V, we proceed by induction. Suppose we have already defined a pseu-
dodifferential calculus on all spaces with at most N — 1 strata. Given any
B € LCB(N — 1), by a pseudodifferential operator on C;(B) we mean §*A,
where A is a pseudodifferential operator on R whose symbol takes its values in
the algebra of pseudodifferential operators on B, T' = 6(t) is a diffeomorphism
of R, onto R, as above, and 64 = §*.AJ, is the operator pull-back of .4 under
0. Obviously, the operators obtained this way are of the Mellin type close to
the conical point of Cy(B). Let now V € LCB(N). By definition, V' has a
finite covering (O,) by coordinate charts diffeomorphic to model wedges by
hy,: O, — Q, x Cy(B,), where Q, is an open subset of R¥. We pick a C'*
partition of unity on V' subordinate to this covering, (¢, ), and a system of C'*°
functions (¢,) which covers (p,). The pseudodifferential operators on V' are
of the form

A= Z Pv (h,ﬁ/Au) %,

where A, is a pseudodifferential operator along R? with an operator-valued
symbol taking its values in the algebra on C;(B,), and h} A, = h*A,(h,). is
the pull-back of A, under h,,.

Another way of stating the pseudodifferential calculus on V is to cover V/
by local cylinder bundle neighbourhoods (O,)). This requires diffeomorphisms
A,: 0, - Q, x ((—00,T,) x B,), for every v, together with a precise con-
trol of the behaviour at 7" = —oo. In the case of transversal intersections,
we carry over the point at infinity to a finite point by the diffeomorphism
t = €T, thus transplanting the C'* structure from t = 0 to 7' = —oo. For
cuspidal intersections, other diffeomorphisms are used, whose explicit nature
is prescribed by the geometry. Note that a cylinder R x B bears the group
action (T, x) — (T +log A, x), for A € R, which has actually been used in the
definition of twisted Sobolev spaces. Under this approach, pseudodifferential
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operators in O, are of the form A? A,, with A, a pseudodifferential operator
on R+ whose symbol takes the values in the algebra on B,. They can be
treated in the framework of a calculus of pseudodifferential operators in R?
with slowly varying operator-valued symbols, cf. [RST97]. However, it is more
convenient to have specified the exit to infinity by choosing a relevant variable,
here T

The pseudodifferential operators to be introduced are intended to act in
weighted Sobolev spaces on V' as

N N
A @ HS:(U}J‘H,---,WN)(V(J'), Fj) N @ HS*m,(le7---,wN)*m(V(j)7f?'j) (3_4_3)
=1 j=1
for all s € R, where w = (wy, ..., wy) is a tuple of weights, w; corresponding to
the stratum V), and Fj, Fj are C* vector bundles over V). For j = N, the
tuple (w1, ..., wy) is empty, which causes no confusion because V%) is a C
compact closed manifold. By (3.4.3), A can be specified as an (N x N) -matrix
of operators

A= (Aig) izt
with
Aij c ﬂ £(Hs,(wj+1,...,wN)(V(j)7ij),Hs—m,(wi_,_l,...,wN)—m(V(i),Fi))‘

seR

The entries A;; with ¢ > j have the meaning of trace operators, the “trace”
standing for restriction from V@ to V. On the other hand, the entries A;;
with 7 < j have the dual meaning of potential operators. To handle such
operators within an algebra, we should also add compositions of trace and
potential operators. They contribute to the diagonal entries A;; and are known
as Green operators on the corresponding strata. In fact, all the entries are
pseudodifferential operators and can be specified through their operator-valued
symbols.

To this end, it is sufficient to describe the action of A close to any point
p € V. For definiteness, consider p € V(/) where 1 < J < N. Then we have
A=F a(y,n)F,., in local coordinates y € R% of V/) near the point p,

n—=y
where
ag‘{) 0o ... 0 ary
ag) . 0 agg
a V=1 ... . (3.4.4)
0 0 a(J) a
e Gy g1 YJ-LJ
aj1 Qg2 ... Qjg-1 a.(I{])
acts as

J J
J) . % Sy (Wjt1y-myw V@) * s=m,(Wit1sewy)—m [ VO 7
al) - r G%H(Hl J)<_ Fj)_)w GBIH (Wj+15e50) ( (J))Fj)
J= J=
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for all s € R, 7 standing for the canonical projection T*V) — V() To
encompass all strata, we identify these matrices within those with (N x N)
entries in an obvious way.

Write /15{\) for the group action in H*®i+1--ws) (V) /(1)) "and gather them
to a matrix

J
J J
o=
J:

to act in @7_, H* Wi+t (V) /) ). By the above, the usual choice for
KEJ)? is
nj-—n;

u(t) = A2 u(At),

which meets (3.4.1). Analogously, we denote by RE\J), A > 0, the group action
in @5_]:1 Hs—m,(wj+1,...,wj)—m(V(j)/v(J), Fj)-

Thus, every stratum V) gives rise to group actions /@&J) and R&J) in
weighted Sobolev spaces in the fibres of V over V). Associated to these
group actions are spaces of operator-valued symbols satisfying “twisted” sym-
bol estimates, cf. Definition 1.3.3, and a concept of homogeneity. This allows
one to repeat all the steps in the construction of the algebra of pseudodiffer-
ential operators on a manifold with smooth edges, as described in Section 1.3.
It begins with typical differential operators on V' whose form can be read off
from that of the Laplace operator with respect to a Riemannian metric on the
“smooth part” of V. Near V(') the symbols of typical operators contain the
covariables along V) through the aggregates (ry...ry_1)n where ry,... 77
are defining functions of the faces whose intersection gives V(/). Hence any
differentiation in the covariables results not only in decreasing the order by 1
but also in an additional factor (r...7;_;) which vanishes on V) and thus
leads to a gain in the weight. Since the gains in both order and weight provide
compactness in the relevant weighted Sobolev spaces, the symbols of typical
operators belong to the class of symbols of compact fibre variation introduced
in [Luk72]. To include the broadest interesting operator classes we reduce our
standing assumptions on the symbols under consideration to the only require-
ment of compact fibre variation.

When summing up over all strata, we arrive at the matrixes of operators
which look like

S A Ay - AN Ay

A A21 Z.]}f:2 Aé‘;) s A2,N—1 A2N
AN*U AN*L? s Z]JV:NA A%)A,NA ANfl,N

An Aya ... Ay AN

the stratum V) contributing by A/

i to any entry (j,j) with j < J. Only the
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summand Ag) of the entry (j,7) is a usual pseudodifferential operator with

scalar-valued symbol on V). The summands Ag-]J-) with 7 < J bear operator-
valued symbols living on the cotangent bundle of V{/). They are known as
Green operators on V) associated to the stratum V) c¢f. Definition 1.3.5
and elsewhere.

Denote U (V; F, F; w) the space of all operators (3.4.3) on V', as described
above. Any operator A € U™ (V; F, F';w) has N principal homogeneous sym-
bols of order m,

o(A) = (UT(A))J:I,...,N7

o™ (A) corresponding to the stratum V). For (y,n) € T*V), we actually
have
o (A)(ysm) =l A7 7 )y ) w5 (3.4.5)
— 00
where a(’) is a local symbol of A along V() cf. (3.4.4). The passage to the
limit automatically includes freesing the coefficients at the vertex of each cone
VW /v 1 <4 < J,in a special manner.

It is worth pointing out that formula (3.4.5) gives a symbol o}(A) even if
dim V) = 0. In this case V) consists of isolated points, hence its cotangent
bundle is also discrete. Taking o'%(A) over a point v € V) just amounts to
freesing the “coefficients” of A at v.

If all the symbols o*(A),. .., (A) vanish identically, then the operator
(3.4.3) is compact. Hence we may invoke the tuple o(.A) to introduce a concept
of elliptic operators on V.

Definition 3.4.2 An operator A € U™(V; F, F;w) is said to be elliptic if,
for every J = 1,...,N, the symbol o’}'(A) is invertible away from the zero
section of T*V (),

The condition on the invertibility of o(A) away from the zero section of
T*V (™) is vague in case V(™) is zero-dimensional. To define it more exactly,
we observe that what we really need is the Fredholm property of the complete
operator-valued symbol over all of 7V V) along with its invertibility outside a
compact subset of 7"V (), Hence a proper substitute for the invertibility will
be the Fredholm property of o(.A) on all of T*V™)| provided that V) is of
dimension 0. If A is pseudodifferential close to VN, the Fredholm property
of o} (A) is in turn equivalent to the invertibility of its Fourier symbol over a
suitable horizontal line, which acts in weighted Sobolev spaces on the link of
VW over V),

Let us have look from this viewpoint at the analysis on manifolds with con-
ical points. Obviously, these correspond to smoothly stratified spaces V' with
local cone bundle neighbourhoods with at most 2 strata. In fact, V() is the
“smooth” part of the manifold, and V(? is the discrete set of conical points.
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Assume for simplicity that V® consists of only one point v, and write X for
the link of V() over V®. When localised to VI, the space U™ (V; F, F;w) is
nothing but W7 (VW Fy| F), i.e., the space of classical pseudodifferential oper-
ators of type F; — Fy and order m, acting in the usual Sobolev spaces on V(1)
as H2, (VY ) — HE™(VW, F). Further, v possesses a neighbourhood O
on V with local coordinates h: O — Cy(X). Since V2 is zero-dimensional, the
restriction of A € W™(V; F, F;w) to O is identified with its operator-valued
symbol a®(y,n) living on T*V® = {0}. This symbol is a (2 x 2)-matrix
acting as
H*Y(Cy(X), F) Hs—mw=m(Cy(X), F)
@ — S
28 28

for all s € R, where w(t) = t~7(log 1/t)*w(t) + t*(log )" (1 — w(t)) is a weight
function on the cone axis. The symbol o5*(A) is obtained from a(® by freesing
the “coefficients” at t = 0. Since both F, and Fg are finite-dimensional, the
Fredholm property of 03*(A) just amounts to that of its entry (1, 1), for which
we write a’f(aﬁ)). As described above, the change of variables T' = log t yields
local coordinates A : O — (—o00,T) x X near v, v itself corresponding to
{—0o0} x X. In these coordinates, we have aﬁ) = AVFL al(T, 7 — iv) Fro,
where a(T, 7 — i) takes its values in N,ex L(H*(X, Fy), H*~™(X, F})). It fol-
lows that
o (a) = AF L a0, 7 — i) Fiorr

and so agn(aﬁ)) is Fredholm if and only if the family a(—oo, 7—i7) is invertible.

Clearly, a(—o0, 7 — i) is the conormal symbol of A at v. We conclude that
for spaces with point singularities Definition 3.4.2 reduces to the concept of
ellipticity of Section 1.2.

We finish the paper by characterising Fredholm operators in the calculus
on a smoothly stratified space with local cone bundle neighbourhoods.

Theorem 3.4.3 Assume that A € ¥™(V; F, F; w) is elliptic. Then the
operator ~(3.4.3) 1s Fredholm, for each s € R, and it has a parametriz in
U=V F, F;w™).

Proof. By assumption, the symbol of*(A) is invertible outside the zero
section of T*V/). Using the standard Leibniz product argument, we find an
elliptic operator Ry € W™ (V; F, F;w~!) such that

o7 ™ (R1) = (07" (A)) .

Since the symbol mappings behave naturally under composition of opera-
tors, it follows readily that R1A € U(V; F;w ! ow) is an elliptic operator
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and

o1 (RiA) = o,™ (Ri)ol" (A)
= 1L

We now find an elliptic operator Ry € WO(V; F;wow) with the property
that
0'? (Rg) = ]_, .
03(R2) = (03 (R1A)) .

Arguing as above, we conclude that RoRiA € YO(V; F;w ™! o w) is an
elliptic operator and
O'? (RQRlA) = 1,
O'S (RgRlA) = 1.
We continue by induction. Suppose Rq,...,R;, 1 < J < N, have already

been constructed. Find an elliptic operator Ry, € ¥°(V; F;w™! o w) such
that

o} (Ry1) = 1,
09 (RJ-i-l) = 17 .
0'9+1 (RJ+1) = (0'9+1 (RJRlA)) .
Then
O'? (RJ+1RJ...R1A) = ]_,
0'9 (RJ+1R]...R1A) - 1,
0'9+1 (RJ+1R]...R1A) - 1,
which completes the step of induction.
Set
R - RN ‘e Rl;

then R € U (V; F, F;w!) and
oy (RA-1)=0

forall J =1,...,N. Hence it follows that R.A — 1 is a compact operator, i.e.,
R is a left parametrix of A.
In the same way we prove the existence of a right parametrix, thus showing

that actually R is a parametrix.
O
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