Green Integrals on Manifolds with Cracks

B.-W. Schulze

A. Shlapunov *

N. Tarkhanov

May 29, 2000

^{*}Supported by the Max-Planck Gesellschaft and the RFFI grant 99–01–00790.

Abstract

We prove the existence of a limit in $H^m(D)$ of iterations of a double layer potential constructed from the Hodge parametrix on a smooth compact manifold with boundary, X, and a crack $S \subset \partial D$, D being a domain in X. Using this result we obtain formulas for Sobolev solutions to the Cauchy problem in D with data on S, for an elliptic operator A of order $m \geq 1$, whenever these solutions exist. This representation involves the sum of a series whose terms are iterations of the double layer potential. A similar regularisation is constructed also for a mixed problem in D.

Contents

1	Introduction	4
2	Preliminary results	4
3	Hodge theory on manifolds with cracks	7
4	Green formulas on manifolds with cracks	14
5	Examples	18
6	Construction of the scalar product $h_D(\cdot,\cdot)$	19
7	Iterations of potentials	21
8	Cauchy problem	24
9	Applications to Zaremba problem	27
References		33

1 Introduction

This paper is based on the following simple observation. Consider an operator equation Au = f with a bounded operator $A: H_0 \to H_1$ in Hilbert spaces. Suppose each element $u \in H_0$ can be written in the form $u = \pi_0 u + \pi_1 Au$ where π_0 is a projection onto the kernel of A in H_0 . Then it is to be expected that under reasonable conditions the element $\pi_1 f$ defines a solution to the equation Au = f.

For the Cauchy-Riemann operator $A = \bar{\partial}$ in \mathbb{C}^n , n > 1, the double layer potential involved in the regularisation formula is just the Martinelli-Bochner integral. In this case, results similar to ours were obtained by Romanov [6].

Theorem 1.1 Let D be a bounded domain in \mathbb{C}^n , n > 1, with a connected boundary of class C^1 , and Mu stand for the Martinelli-Bochner integral of a function $u \in H^1(D)$. Then the limit $\lim_{N\to\infty} M^N$ exists in the strong operator topology of $H^1(D)$, and it is equal to π_0 , a projection onto the (closed) subspace of holomorphic functions in $H^1(D)$.

By using this result Romanov [6] obtained an explicit formula for a solution $u \in H^1(D)$ to $\bar{\partial} u = f$, where D is a pseudoconvex domain with a smooth boundary, and f a $\bar{\partial}$ -closed (0,1)-form with coefficients in $H^1(D)$.

2 Preliminary results

Let X be a C^{∞} manifold of dimension n with a smooth boundary ∂X . We tacitly assume that it is enclosed into a smooth closed manifold \tilde{X} of the same dimension.

For any smooth \mathbb{C} -vector bundles E and F over X, we write $\mathrm{Diff}^m(X; E, F)$ for the space of all linear partial differential operators of order $\leq m$ between sections of E and F.

Denote E^* the conjugate bundle of E. Any Hermitian metric $(.,.)_x$ on E gives rise to a sesquilinear bundle isomorphism $*_E : E \to E^*$ by the equality $(*_E v, u)_x = (u, v)_x$ for all sections u and v of E.

Pick a volume form dx on X, thus identifying dual and conjugate bundles. For $A \in \text{Diff}^m(X; E, F)$, denote by $A' \in \text{Diff}^m(X; F^*, E^*)$ the transposed operator and by $A^* \in \text{Diff}^m(X; F, E)$ the formal adjoint operator. We obviously have $A^* = *_E^{-1} A' *_F$, cf. [9, 4.1.4] and elsewhere.

For an open set $O \subset X$, we write $L^2(O, E)$ for the Hilbert space of all measurable sections of E over O with a finite norm $(u, u)_{L^2(O, E)} = \int_O (u, u)_x dx$. When no confusion can arise, we also denote $H^m(O, E)$ the Sobolev space of distribution sections of E over O, whose weak derivatives up to order m belong to $L^2(O, E)$.

Given any open set O in X, the interior of X, we let $\mathcal{S}_A(O)$ stand for the space of weak solutions to the equation Au = 0 in O. We also denote by $\mathcal{S}_A^m(O)$ the closed subspace of $H^m(O, E)$ consisting of all weak solutions to Au = 0 in O.

Write $\sigma(A)$ for the principal homogeneous symbol of order m of the operator A, $\sigma(A)$ living on the cotangent bundle T^*X of X. From now on we assume that $\sigma(A)$ is injective away from the zero section of T^*X . Hence it follows that the Laplacian $\Delta = A^*A$ is an elliptic differential operator of order 2m on X.

Let σ be a compact subset in \check{X} . In fact, we assume that σ lies on a smooth closed hypersurface S in X. Our goal will be to construct the Hodge theory of the Dirichlet problem for the Laplacian Δ on the manifold $V = \mathring{X} \setminus \sigma$ with a crack along σ .

Crack problems are usually treated in the framework of analysis on manifolds with edges, cf. Schulze [7]. One thinks of the boundary of σ on S as an edge of V, the cross-section being a 2-dimensional plane with a cut along a ray. The relevant function spaces are therefore weighted Sobolev spaces $H^{s,w}((V,\partial\sigma),E)$ of smoothness s and weight w, both s and w being real numbers. Recall that if $s \in \mathbb{Z}_+$ it coincides with the completion of sections of E over V, C^{∞} up to the boundary and vanishing near $\partial\sigma$, with respect to the norm

$$||u||_{H^{s,w}((V,\partial\sigma),E)} = \left(\sum_{\nu} \int \sum_{|\alpha| \le s} \operatorname{dist}(x,\partial\sigma)^{2(|\alpha|-w)} |D^{\alpha}(\varphi_{\nu}u)|^2 dx\right)^{1/2},$$

where (φ_{ν}) is a partition of unity subordinate to a suitable finite open covering (O_{ν}) of X.

However, we will deal with the very particular case $H^{m,m}((V,\partial\sigma),E)$ which allows us to restrict ourselves to the usual Sobolev spaces on X.

Namely, let $H^m((V, \partial \sigma), E)$ be the closure of all sections of E over V, C^{∞} up to the boundary and vanishing close to $\partial \sigma$, in $H^m(V, E)$.

Theorem 2.1 If the boundary of σ is smooth, then $H^{m,m}((V, \partial \sigma), E)$ and $H^m((V, \partial \sigma), E)$ coincide as topological vector spaces.

Proof. Obviously, it is sufficient to show that the $H^{m,m}((V,\partial\sigma),E)$ - and $H^m(V,E)$ -norms are equivalent on sections of E over V, C^{∞} up to the boundary and vanishing close to $\partial\sigma$. Without loss of generality we can consider those sections u whose supports are contained in the domain O_{ν} of some chart on X.

If O_{ν} does not meet $\partial \sigma$ then $\operatorname{dist}(x, \partial \sigma)$ is strictly positive in O_{ν} . Hence the $H^{m,m}((V, \partial \sigma), E)$ - and $H^m(V, E)$ -norms are equivalent on sections of E with a support in O_{ν} .

In the case $O_{\nu} \cap \partial \sigma \neq \emptyset$ we choose local coordinates $x = (x_1, \ldots, x_n)$ in O_{ν} , such that $O_{\nu} \cap \sigma$ is the half-plane $\{x_n = 0, x_{n-1} \leq 0\}$. Write $x = (x', x_{n-1}, x_n)$ where $x' = (x_1, \ldots, x_{n-2})$. We restrict ourselves to sections $u = u(x', x_{n-1}, x_n)$ supported in $Q \times B$, with Q a rectangle in \mathbb{R}^{n-2} , and B a disk with centre 0 and radius $R \gg 1$.

Since

$$||u||_{H^{m,m}((V,\partial\sigma),E)}^2 = \int \sum_{|\alpha| < m} \operatorname{dist}(x,\partial\sigma)^{2(|\alpha|-m)} |D^{\alpha}u|^2 dx,$$

the $H^m(V,E)$ -norm is obviously dominated by the $H^{m,m}((V,\partial\sigma),E)$ -norm whence

$$H^{m,m}((V,\partial\sigma),E) \hookrightarrow H^m((V,\partial\sigma),E).$$

On the other hand, the summands involving the derivatives of order m in the norms $||u||_{H^{m,m}((V,\partial\sigma),E)}$ and $||u||_{H^m(V,E)}$ coincide. To handle lower order summands, we fix a multi-index $\alpha \in \mathbb{Z}_+^n$ with $0 \le |\alpha| \le m-1$. Introduce polar coordinates

$$\begin{cases} x_{n-1} = r \cos \varphi, \\ x_n = r \sin \varphi \end{cases}$$

in B, and set $U(r) = D^{\alpha}u(x', r\cos\varphi, r\sin\varphi)$. Then

$$\int \operatorname{dist}(x,\partial\sigma)^{2(|\alpha|-m)} |D^{\alpha}u|^2 dx = \int_{\Omega} dx' \int_{-\pi}^{\pi} d\varphi \int_{0}^{R} |r^{|\alpha|-m}U(r)|^2 r dr.$$

We next make use of a Hardy-Littlewood inequality for measurable functions on the semiaxis with values in a normed space. Namely,

$$||r^{p-1}\int_0^r f(\varrho)d\varrho||_{L^q(\mathbb{R}_+)} \le \left(\frac{1}{q'}-p\right)^{-1}||r^p f(r)||_{L^q(\mathbb{R}_+)},$$

where $1 \le q \le \infty$, 1/q + 1/q' = 1 and p < 1/q'. Take $f(r) = (\partial/\partial r)U(r)$ and observe that

$$|f'(r)| = |D^{\alpha+1_{n-1}}u \cos \varphi + D^{\alpha+1_n}u \sin \varphi|$$

 $\leq |D^{\alpha+1_{n-1}}u| + |D^{\alpha+1_n}u|,$

 1_j being the multi-index from \mathbb{Z}_+^n which is 1 in the j-th place and 0 in each other one. Repeated application of the Hardy-Littlewood inequality therefore yields

$$\int \operatorname{dist}(x, \partial \sigma)^{2(|\alpha|-m)} |D^{\alpha}u|^2 dx \le c \|D^{\alpha}u\|_{H^{m-|\alpha|}(V, E)}^2,$$

with c a constant independent of u.

Summarising we conclude that the $H^{m,m}((V,\partial\sigma),E)$ -norm is majorised by the $H^m(V,E)$ -norm on functions vanishing near $\partial\sigma$. This completes the proof.

More generally, given an open set $O \subset X$ and a closed set $\sigma \subset X$, we denote $H^m((O,\sigma),E)$ the closure of all sections of E over O, C^{∞} up to the boundary and vanishing near σ , in $H^m(O,E)$. If $\sigma = \partial O$, we obtain what is usually referred to as

$$\overset{\circ}{H}^m(O,E).$$

Fix a Dirichlet system B_j , $j=0,1,\ldots,m-1$, of order m-1 on the boundary of V. More precisely, each B_j is a differential operator of type $E \to F_j$ and order $m_j \leq m-1$ in a neighbourhood U of $\partial X \cup S$. Moreover, the symbols $\sigma(B_j)$, if restricted to the conormal bundle of $\partial X \cup S$, have ranks equal to the dimensions of F_j .

Set $t(u) = \bigoplus_{j=0}^{m-1} B_j u$, for $u \in H^m(V, E)$. It follows from the results of Hedberg [1] that

$$\mathring{H}^{m}(V, E) = \{ u \in H^{m}(X, E) : t(u) = 0 \text{ on } \partial X \cup \sigma \},$$
(2.1)

 $\partial X \cup \sigma$ being the boundary of V.

Corollary 2.2 Suppose $\partial \sigma$ is smooth. Then we have a topological isomorphism

$$\mathring{H}^m(V,E) \cong \{ u \in H^{m,m}((V,\partial\sigma),E) : t(u) = 0 \text{ on } \partial X \cup \mathring{\sigma} \},$$

the space on the right-hand side being endowed with the norm induced from $H^{m,m}((V,\partial\sigma),E)$.

Proof. By Theorem 2.1 it suffices to show that $\overset{\circ}{H}^m(V, E)$ consists of all $u \in H^m((V, \partial \sigma), E)$ such that t(u) = 0 on ∂V .

On the one hand, if $u \in \mathring{H}^m(V, E)$ then $u \in H^m((V, \partial \sigma), E)$ and t(u) = 0 on ∂V , as is easy to see.

On the other hand, if $u \in H^m((V, \partial \sigma), E)$ and t(u) = 0 on ∂V then $u \in H^m((V, \partial V), E)$, as follows from [1]. This just amounts to the desired assertion.

3 Hodge theory on manifolds with cracks

Let $H^{-m}(V, E)$ denote the dual space of $\overset{\circ}{H}{}^m(V, E)$ with respect to the pairing in $L^2(V, E)$. This is not a canonical definition, we rather follow the notation of [9, 1.4.9].

Γ

For every $u \in H^m(V, E)$, the correspondence

$$v \mapsto \int_V (Au, Av)_x \, dx$$

is a continuous conjugate linear functional on $\overset{\circ}{H}^m(V,E)$. Thus, the Laplacian $\Delta = A^*A$ extends to a mapping $H^m(V,E) \to H^{-m}(V,E)$.

The following boundary value problem is a straightforward generalisation of the classical Dirichlet problem, cf. [9, 9.2.4].

Problem 3.1 Given an $F \in H^{-m}(V, E)$, find a section $u \in H^m(X, E)$ such that

$$\begin{cases} \Delta u = F & in \ V, \\ t(u) = 0 & on \ \partial V. \end{cases}$$

Another way of stating the problem is to say, "Study the restriction of Δ to $\overset{\circ}{H}{}^m(V,E).$ "

If $u \in H^m(V, E)$ and $\Delta u = 0$, then Au = 0 in V. In the sequel, $\mathcal{H}(V)$ stands for

$$\overset{\circ}{H}^m(V,E)\cap \mathcal{S}_A(V).$$

Furthermore, we let $\mathcal{H}^{\perp}(V)$ consist of all sections $F \in H^{-m}(V, E)$ satisfying

$$\int_{V} (F, v)_x \, dx = 0$$

for any $v \in \mathcal{H}(V)$.

Lemma 3.2 Problem 3.1 is Fredholm. The difference of any two solutions lies in $\mathcal{H}(V)$. The problem is solvable if and only if $F \in \mathcal{H}^{\perp}(V)$. Moreover, there is a constant c > 0 such that for any solution $u \in \mathcal{H}^{\perp}(V)$ to Problem 3.1, we have

$$||u||_{H^m(X,E)} \le c ||F||_{H^{-m}(V,E)}.$$
 (3.1)

Proof. By definition, the equality $\Delta u = F$ means that

$$\int_{V} (Au, Av)_{x} dx = \int_{V} (F, v)_{x} dx$$
 (3.2)

for all $v \in \mathring{H}^m(V, E)$. We are thus looking for a section $u \in \mathring{H}^m(V, E)$ satisfying (3.2).

It readily follows from (3.2) that the null-space of Problem 3.1 is just $\mathcal{H}(V)$. Since

$$\overset{\circ}{H}^m(V,E) \hookrightarrow H^m(X,E)$$

and σ is a set of zero measure in $\overset{\circ}{X}$, we deduce that

$$\mathcal{H}(V) \hookrightarrow \mathring{H}^m(\mathring{X}, E) \cap \mathcal{S}_A(\mathring{X}),$$

the space on the right-hand side being $\mathcal{H}(X)$. Taking into account that the boundary of X is smooth, we deduce that $\mathcal{H}(V)$ is a finite-dimensional subspace of $C^{\infty}(X, E)$.

That the condition $F \in \mathcal{H}^{\perp}(V)$ is necessary for the problem to be solvable, follows from (3.2) immediately. Let us prove the sufficiency.

To this end, we invoke the classical Gårding inequality. Namely, as A has injective symbol, we have

$$||u||_{H^{m}(X,E)}^{2} \le C \int_{X} (Au, Au)_{x} dx + c ||u||_{L^{2}(X,E)}^{2}$$
(3.3)

for all $u \in \mathring{H}^m(V, E)$, the constants C and c being independent of u (cf. for instance [10]).

A familiar argument shows that there is a constant ${\cal C}>0$ with the property that

$$||u||_{H^m(X,E)}^2 \le C \int_X (Au, Au)_x \, dx,$$

for each $u \in \mathring{H}^m(V, E) \cap \mathcal{H}^{\perp}(V)$. Indeed, we argue by contradiction. If there is no such constant then we can find a sequence (u_{ν}) in $\mathring{H}^m(V, E) \cap \mathcal{H}^{\perp}(V)$, such that

$$||u_{\nu}||_{H^{m}(X,E)} = 1, ||Au_{\nu}||_{L^{2}(X,F)} < 2^{-\nu}.$$

As the unit ball in a separable Hilbert space is weakly compact, we can assume that (u_{ν}) converges weakly to a section $u_{\infty} \in \mathring{H}^{m}(V, E) \cap \mathcal{H}^{\perp}(V)$. It follows that

$$\int_{X} (u_{\infty}, A^*v)_x dx = \lim_{\nu \to \infty} \int_{X} (u_{\nu}, A^*v)_x dx$$
$$= \lim_{\nu \to \infty} \int_{X} (Au_{\nu}, v)_x dx$$
$$= 0$$

for all $v \in C_{\text{comp}}^{\infty}(\mathring{X}, E)$, i.e. $u_{\infty} \in \mathcal{H}(V)$. We thus conclude that $u_{\infty} = 0$. But the Gårding inequality yields

$$1 < C 2^{-\nu} + c \|u_{\nu}\|_{L^{2}(X E)}$$

for all ν . Since the inclusion $\overset{\circ}{H}^m(V,E) \hookrightarrow L^2(X,E)$ is compact, and thus u_{ν} converges strongly to u_{∞} in $L^2(X,E)$, we get

$$||u_{\infty}||_{L^{2}(X,E)} \geq 1/c,$$

which contradicts $u_{\infty} = 0$.

We have thus proved that the Hermitian form

$$\int_X (Au, Av)_x \, dx$$

defines a scalar product in the Hilbert space $\mathring{H}^m(V,E) \cap \mathcal{H}^{\perp}(V)$, the corresponding norm being equivalent to the original one. Now the Riesz Theorem enables us to assert that for every $F \in H^{-m}(V,E)$ there exists a unique section

$$u \in \mathring{H}^m(V, E) \cap \mathcal{H}^{\perp}(V)$$

satisfying

$$\int_{V} (F, v)_x dx = \int_{X} (Au, Av)_x dx$$

for all $v \in \mathring{H}^m(V, E) \cap \mathcal{H}^{\perp}(V)$.

Obviously, every $v \in H^m(V, E)$ can be written in the form $v = v_1 + v_2$, with

$$v_1 \in \mathcal{H}(V),$$

 $v_2 \in \mathring{H}^m(V, E) \cap \mathcal{H}^{\perp}(V).$

It follows that if $F \in \mathcal{H}^{\perp}(V)$ then u satisfies (3.2) for all $v \in \mathring{H}^{m}(V, E)$, as desired.

Finally, since for any section $F \in H^{-m}(V, E)$ "orthogonal" to $\mathcal{H}(V)$ there is a unique solution to Problem 3.1 in

$$\overset{\circ}{H}^m(V,E) \cap \mathcal{H}^{\perp}(V),$$

the estimate (3.1) follows from the Open Map Theorem.

We are now in a position to derive a Hodge decomposition for the Dirichlet problem in V.

Theorem 3.3 There are bounded linear operators

$$H: H^{-m}(V, E) \rightarrow \mathcal{H}(V),$$

 $G: H^{-m}(V, E) \rightarrow \mathring{H}^{m}(V, E) \cap \mathcal{H}^{\perp}(V)$

such that

- 1) H is the $L^2(V, E)$ -orthogonal projection onto the space $\mathcal{H}(V)$, with a kernel $K_H(x, y) = \sum_j h_j(x) \otimes *_E h_j(y)$ where (h_j) is an orthogonal basis of $\mathcal{H}(V)$;
- 2) AH = 0 and GH = HG = 0;

3)

$$G\Delta u = u - Hu \quad for \ all \quad u \in \overset{\circ}{H}{}^m(V, E),$$

 $\Delta GF = F - HF \quad for \ all \quad F \in H^{-m}(V, E).$

Proof. As already mentioned in the proof of Lemma 3.2, $\mathcal{H}(V)$ is a finite-dimensional subspace of $C^{\infty}(X, E)$. Denote H the $L^{2}(V, E)$ -orthogonal projection onto $\mathcal{H}(V)$. Fix an orthogonal basis (h_{j}) for $\mathcal{H}(V)$. Then H has the kernel

$$K_H(x,y) = \sum_j h_j(x) \otimes *_E h_j(y),$$

because

$$(HF)(x) = \sum_{i} \left(\int_{V} \left(F(y), h_{j}(y) \right)_{y} dy \right) h_{j}(x)$$

for all $F \in L^2(V, E)$. Since H is a smoothing operator it extends to all of $H^{-m}(V, E)$, too, by

$$(HF)(x) = \langle K_H(x,\cdot), F \rangle_V,$$

for $x \in V$. Clearly,

$$H: H^{-m}(V,E) \to \mathcal{H}(V) \hookrightarrow \mathring{H}^m(V,E)$$

is bounded and AH = 0.

Pick $F \in H^{-m}(V, E)$. Since $K_H(x, y)^* = K_H(y, x)$ we get

$$\int_{V} (F - HF, v)_{x} dx = \int_{V} (F - HF, Hv)_{x} dx$$

$$= \int_{V} (HF - H^{2}F, v)_{x} dx$$

$$= \int_{V} (HF - HF, v)_{x} dx$$

$$= 0$$

for all $v \in \mathcal{H}(V)$, i.e.,

$$F - HF \in \mathcal{H}^{\perp}(V).$$

Therefore, Lemma 3.2 implies that there exists a solution $u \in \mathring{H}^m(V, E)$ to $\Delta u = F - HF$ in V. Setting

$$GF = u - Hu$$

we obtain

$$F = HF + \Delta GF$$

for all $F \in H^{-m}(V, E)$.

As $u - Hu \in \mathcal{H}^{\perp}(V)$ we see from (3.1) that

$$G: H^{-m}(V, E) \to \mathring{H}^m(V, E) \cap \mathcal{H}^{\perp}(V)$$

is bounded. By definition, $HGF = Hu - H^2u = 0$ and GHF = 0.

On the other hand, we easily obtain the $L^2(V, E)$ -orthogonal decomposition

$$u = Hu + (u - Hu)$$
$$= Hu + G\Delta u$$

for all $u \in \overset{\circ}{H}^m(V, E)$. This completes the proof.

When restricted to $L^2(V, E)$, the operator G is selfadjoint. In fact, given any $F, v \in H^{-m}(V, E)$, we have

$$(GF, v) = (GF, Hv + \Delta Gv)$$

$$= (GF, \Delta Gv)$$

$$= (\Delta GF, Gv)$$

$$= (F, Gv),$$

 (\cdot, \cdot) meaning the scalar product in $L^2(V, E)$. Hence it follows that the Schwartz kernel of G,

$$K_G(\cdot,\cdot) \in \mathring{H}^m(V,E) \otimes \mathring{H}^m(V,E^*) \hookrightarrow \mathcal{D}'(V \times V, E \otimes E^*),$$

is Hermitian, i.e., $K_G(x, y)^* = K_G(y, x)$ for all $x, y \in V$.

Lemma 3.4 The operator $T = GA^*$ extends to a continuous linear mapping

$$L^2(V,F) \to \overset{\circ}{H}{}^m(V,E).$$

Proof. For any fixed $f \in L^2(V, F)$, the integral

$$\int_{V} (f, Av)_x \, dx$$

defines a continuous linear functional on $\mathring{H}^m(V,E)$. Hence, the (formal) adjoint A^* extends to a mapping $L^2(V,F) \to H^{-m}(V,E)$, which is obviously continuous. Since G maps $H^{-m}(V,E)$ continuously to $\mathring{H}^m(V,E)$, the lemma follows.

As is easy to check by Stokes' formula, the Schwartz kernel of T is

$$K_T(x,y) = (A^*(y,D))'K_G(x,y),$$

the 'prime' meaning the transposed operator.

Using T, we may rewrite the Hodge decomposition of Theorem 3.3 in the form

$$u = Hu + TAu \tag{3.4}$$

over V, for each $u \in \mathring{H}^m(V, E)$.

We now introduce the Hermitian form

$$h(u,v) = \int_V (Hu, Hv)_x dx + \int_V (Au, Av)_x dx$$

defined for $u, v \in \mathring{H}^m(V, E)$

Theorem 3.5 The Hermitian form $h(\cdot, \cdot)$ is a scalar product in $\mathring{H}^m(V, E)$ defining a norm equivalent to the original one. The operator H is also an orthogonal projection from $\mathring{H}^m(V, E)$ onto $\mathcal{H}(V)$ with respect to $h(\cdot, \cdot)$. Moreover,

$$h(Tf, u) = \int_{V} (f, Au)_x \, dx$$

for all $f \in L^2(V, F)$ and $u \in \mathring{H}^m(V, E)$.

Proof. The coefficients of A are C^{∞} up to the boundary of X, and so $Au \in L^2(V, F)$ for all $u \in \mathring{H}^m(V, E)$. Moreover, it follows from (3.4) that h(u, u) = 0 implies $u \equiv 0$ in X. Hence $h(\cdot, \cdot)$ is a scalar product on $\mathring{H}^m(V, E)$.

Since H is a smoothing operator, the original norm of $\mathring{H}^m(V,E)$ is not weaker than $\sqrt{h(\cdot,\cdot)}$.

Further, (3.4) and Lemma 3.4 show that there exists a constant c > 0 such that

$$||u||_{H^m(V,E)} \le c \left(||Hu||_{H^m(V,E)} + ||Au||_{L^2(V,F)} \right)$$

for all $u \in \overset{\circ}{H}^m(V, E)$.

On the other hand, since H is a finite rank operator, there is a constant C>0 such that

$$||Hu||_{H^m(V,E)} \le C ||Hu||_{L^2(V,E)}$$

for all $u \in \overset{\circ}{H}^m(V, E)$. This proves the equivalence of the topologies.

Suppose $f \in C^{\infty}_{\text{comp}}(V, F)$ and $u \in \overset{\circ}{H}^m(V, E)$. By Theorem 3.3, we get HTf = 0. Moreover,

$$\int_{V} (HA^*f, v)_x dx = \int_{V} (f, AHv)_x dx$$
$$= 0$$

for all $v \in L^2(V, E)$, whence $HA^*f = 0$. Thus,

$$h(Tf, u) = \int_{V} (AG(A^*f), Au)_x dx$$
$$= \int_{V} (\Delta G(A^*f), u)_x dx$$
$$= \int_{V} (A^*f - H(A^*f), u)_x dx$$
$$= \int_{V} (f, Au)_x dx.$$

As $C_{\text{comp}}^{\infty}(V, F)$ is dense in $L^2(V, F)$, we obtain the desired assertion on the integral T.

Finally, for any $u, v \in \overset{\circ}{H}^m(V, E)$, we have

$$h(Hu, = h(u, v) - h(TAu, v)$$

$$= h(u, v) - \int_{V} (Au, Av)_{x} dx$$

$$= \int_{V} (Hu, Hv)_{x} dx,$$

i.e., H is a selfadjoint operator in $\overset{\circ}{H}{}^m(V,E)$ with respect to the scalar product $h(\cdot,\cdot)$, and $H^2=H$, as desired.

4 Green formulas on manifolds with cracks

In this section we discuss Green formulas for sections of E on open subsets of V. To this end, we choose a Green operator $G_A(\cdot,\cdot)$ for A on X, cf. [9, 9.2.1]. Given an oriented hypersurface $S \subset X$, we denote $[S]^A$ the kernel over $X \times X$ defined by

$$\langle [S]^A, g \otimes u \rangle_{X \times X} = \int_S G_A(g, u)$$

for all $g \in C^{\infty}(X, F^*)$ and $u \in C^{\infty}(X, E)$ whose supports meet each other in a compact set.

In particular, the kernel $[\partial V]^A$ is supported by the hypersurface $\partial X \cup \sigma$. However, σ , if regarded as a part of the boundary of V, has two sides in X with opposite orientations. When applied to sections g and u whose derivatives up to order m-1 are continuous in a neighbourhood of σ , the kernel $[\partial V]^A$ does not include any integration over σ because the integrals over the sides with opposite orientations cancel. In general, the continuity up to the boundary in V does not assume that the limit values from both sides of σ coincide in the interior of σ on S. Hence, $[\partial V]^A$ actually includes, along with the integral over ∂X , the integral over σ of the difference of the limit values of $G_A(g,u)$ on S.

Away from the singularities of V, i.e., $\partial \sigma$, the Green operator G behaves like the Green function of an elliptic boundary value problem, cf. [5]. The edge $\partial \sigma$ is well known to cause additional singularities of the kernel of G on $(V \times \partial \sigma) \cup (\partial \sigma \times V)$.

Given any section $u \in H^m(V, E)$ vanishing in a neighbourhood of $\partial \sigma$, we set

$$(Mu)(x) = -GA^* ([\partial V]^A u)$$
$$= -\int_{\partial V} G_A(K_T(x, y), u(y))$$

for $x \in V$.

Theorem 4.1 As defined above, the operator M extends to a continuous mapping of $H^m(V, E)$, and

$$u = Hu + TAu + Mu \tag{4.1}$$

for all $u \in H^m(V, E)$.

Proof. Given any $u \in H^m(V, E)$, we define Mu from the equality (4.1), namely

$$Mu = u - Hu - TAu$$
.

Note that H is a smoothing operator in the sense that it extends naturally to a continuous mapping

$$H^{-\infty}(V,E) \to \overset{\circ}{H}{}^{\infty}(V,E),$$

where $\mathring{H}^{\infty}(V,E)$ is the projective limit of the family $\mathring{H}^{s}(V,E)$, $s \in \mathbb{Z}_{+}$, and $H^{-\infty}(V,E)$ the dual space under the pairing induced from $L^{2}(V,E)$. Hence it follows, by Lemma 3.4, that M is a well-defined continuous mapping of $H^{m}(V,E)$.

We shall have established the theorem if we prove that the operator M defined from (4.1) is actually an appropriate extension of the operator M

given before Theorem 4.1. This is an easy consequence of Stokes' formula. Indeed, pick a $u \in H^m(V, E)$ vanishing near $\partial \sigma$. Combining Stokes' formula and Theorem 3.3, we get

$$(u - Hu - TAu, v)_{L^{2}(V,E)} = (u, v - Hv)_{L^{2}(V,E)} - (Au, AGv)_{L^{2}(V,F)}$$

$$= (u, v - Hv - \Delta Gv)_{L^{2}(V,E)} - \int_{\partial V} G_{A}(*_{F}(AGv), u)$$

$$= (-T([\partial V]^{A}u), v)_{L^{2}(V,E)}$$

for all $v \in C_{\text{comp}}^{\infty}(V, E)$. This shows that $Mu = -T([\partial V]^A u)$ in (the interior of) V, as desired.

We now consider the inhomogeneous Dirichlet problem for the Laplacian Δ on V.

To this end, we first give a rigorous meaning to the boundary condition $t(u) = u_0$ on ∂V . If $\partial \sigma$ is sufficiently smooth, t induces a topological isomorphism

$$\frac{H^m(V,E)}{\overset{\circ}{H}^m(V,E)} \stackrel{\cong}{\to} \bigoplus_{j=0}^{m-1} H^{m-m_j-1/2}(\partial V, F_j),$$

which is due to (2.1). Hence we can more generally interpret t as the quotient mapping

$$t: H^{m}(V, E) \to \frac{H^{m}(V, E)}{\mathring{H}^{m}(V, E)},$$
 (4.2)

the quotient on the right substituting the space of Dirichlet data on ∂V . We make use of the Hilbert structure in $H^m(V,E)$ to construct a continuous right inverse t^{-1} for t.

Problem 4.2 Given $F \in H^{-m}(V, E)$ and $u_0 \in H^m(V, E)/\mathring{H}^m(V, E)$, find a section $u \in H^m(V, E)$ such that

$$\begin{cases} \Delta u = F & in \ V, \\ t(u) = u_0 & on \ \partial V. \end{cases}$$

Lemma 4.3 Problem 4.2 is solvable if and only if $F \in \mathcal{H}^{\perp}(V)$. Moreover, for each $F \in \mathcal{H}^{\perp}(V)$,

$$u = GF + M\left(t^{-1}u_0\right)$$

is the solution to Problem 4.2 belonging to $H^m(V,E) \cap \mathcal{H}^{\perp}(V)$ and thus satisfying

$$||u||_{H^{m}(V,E)} \le c \left(||F||_{H^{-m}(V,E)} + ||u_{0}||_{\frac{H^{m}(V,E)}{\mathring{\theta}^{m}(V,E)}} \right). \tag{4.3}$$

Proof. The necessity of the condition $F \in \mathcal{H}^{\perp}(V)$ is obvious. What is left is to show that under this condition $u = GF + M(t^{-1}u_0)$ is the solution to Problem 4.2 in $H^m(V, E) \cap \mathcal{H}^{\perp}(V)$.

Indeed, Theorem 3.3 shows that $GF \in \mathring{H}^m(V, E)$ is "orthogonal" to $\mathcal{H}(M)$ and satisfies $\Delta(GF) = F$.

On the other hand, given any Dirichlet data u_0 , we find a $U \in H^m(V, E)$ such that $t(U) = u_0$ on ∂V . Note that MU is actually independent of the particular choice of U, for if $U', U'' \in H^m(V, E)$ satisfy

$$\begin{array}{rcl} t(U') & = & u_0, \\ t(U'') & = & u_0 \end{array}$$

then $U' - U'' \in \overset{\circ}{H}{}^m(V, E)$ whence

$$\begin{array}{lll} MU' & = & MU'' + M \left(U' - U'' \right) \\ & = & MU'' + \left(U' - U'' \right) - H \left(U' - U'' \right) - G\Delta \left(U' - U'' \right) \\ & = & MU'', \end{array}$$

the last equality being a consequence of Theorem 3.3. Using Theorem 4.1 we get

$$\Delta MU = \Delta (U - HU - G\Delta U)$$
$$= \Delta U - (\Delta U - H\Delta U)$$
$$= 0$$

and

$$t(MU) = t(U - HU - G\Delta U)$$

= $t(U)$
= u_0 .

Finally, the section MU is "orthogonal" to $\mathcal{H}(V)$ because so are both U - HU and $G\Delta U$.

Summarising we conclude that u = GF + MU gives a canonical solution to Problem 4.2, as desired. The estimate (4.3) is a consequence of the Open Map Theorem.

Let D be a relatively compact domain (i.e. open connected subset) in X with a smooth boundary $(S =) \partial D$ containing σ .

For

$$u \in H^m(D, E),$$

 $f \in L^2(D, F),$

we consider the integrals

$$H_D u = H(\chi_D u),$$

$$T_D f = T(\chi_D f),$$

$$M_D u = -T([\partial D]^A u)$$

in V, where χ_D is the characteristic function of D in X. Analysis similar to that in the proof of Theorem 4.1 actually shows that

$$\chi_D u = H_D u + T_D A u + M_D u \tag{4.4}$$

over V, for every $u \in H^m(D, E)$.

Lemma 4.4 As defined above, the integrals H_D , T_D and M_D induce bounded operators

 $H_D: H^m(D,E) \to H^m((D,\sigma),E),$ $T_D: L^2(D,F) \to H^m((D,\sigma),E),$ $M_D: H^m(D,E) \to H^m(D,E).$

Proof. We first observe that the space $H^m((D, \sigma), E)$ coincides with the restriction of $\mathring{H}^m(V, E)$ to D.

Since H extends to a continuous mapping $H^{-\infty}(V, E) \to \mathcal{H}(V)$, the boundedness of H_D is clear.

Suppose $f \in L^2(D, F)$. Then $\chi_D f$ is naturally regarded as the extension of f to a section in $L^2(X, F)$ by zero. We have $T_D f = T(\chi_D f)$, and so the mapping $T_D: L^2(D, F) \to H^m((D, \sigma), E)$ is continuous, which is due to Lemma 3.4.

Finally, in order to complete the proof it is sufficient to invoke the equality $M_D = \operatorname{Id} - H_D - T_D A$ in D.

5 Examples

Example 5.1 Let X be a bounded domain with smooth boundary in \mathbb{R}^n , n > 1, and A an operator with injective symbol in a neighbourhood \tilde{X} of \bar{X} . Assume that A fulfills the uniqueness condition for the Cauchy problem in the small on \tilde{X} . Write G for the Green function of the Dirichlet problem for the Laplacian $\Delta = A^*A$ in X. In [3], a scalar product $h_D(\cdot, \cdot)$ on $H^m(D, E)$ is constructed, such that the corresponding norm is equivalent to the original one and the operator T_D is adjoint to $A: H^m(D, E) \to L^2(D, F)$ with respect to $h_D(\cdot, \cdot)$, i.e.

$$h_D(T_D f, v) = \int_D (f, Av)_x \, dx$$

for all $f \in L^2(D, F)$ and $v \in H^m(D, F)$. This implies that the iterations of the double layer potential M_D in $H^m(D, F)$ converge to the projection onto the subspace $H^m(D, E) \cap \mathcal{S}_A(D)$. This case corresponds to the Hodge decomposition for the Dirichlet problem in X with empty crack σ and $\mathcal{H}(V)$ being trivial.

Recall that $H^m((D, \sigma), E)$ just amounts to the subspace of $H^m(D, E)$ consisting of all u with t(u) = 0 on σ .

Example 5.2 Under the assumptions of Example 5.1, let moreover X have a crack along a closed piece σ of a smooth hypersurface in X. We denote G the Green function of the Dirichlet problem for the Laplacian Δ in $V = X \setminus \sigma$. In our paper [8], a scalar product $h_D(\cdot, \cdot)$ on $H^m((D, \sigma), E)$ is constructed, defining an equivalent topology on this space and such that the operator T_D is actually adjoint to $A: H^m((D, \sigma), E) \to L^2(D, F)$ with respect to $h_D(\cdot, \cdot)$, i.e.,

$$h_D(T_D f, v) = \int_D (f, Av)_x dx$$

for all $f \in L^2(D, F)$ and $v \in H^m((D, \sigma), E)$. When combined with a general result of functional analysis, this implies that the limit of iterations M_D^N in the strong operator topology of $\mathcal{L}(H^m((D, \sigma), E))$ is equal to zero. This case corresponds to the Hodge decomposition for the Dirichlet problem in X with a crack along σ and H = 0.

In the next section we will prove similar results for the integrals T_D and M_D in our more general setting.

6 Construction of the scalar product $h_D(\cdot,\cdot)$

We first apply Lemma 4.3 to $X \setminus D$, a C^{∞} manifold with boundary. Namely, write $\mathcal{S}_{\Delta}^{m}(\hat{X} \setminus D)$ for the subspace of $H^{m}(X \setminus D, E)$ consisting of all u, such that $\Delta u = 0$ in the interior of $X \setminus D$ and t(u) = 0 on ∂X . By Lemma 4.3, we get a topological isomorphism

$$\mathcal{S}^m_{\Delta}(\hat{X} \setminus D) \cap \mathcal{H}^{\perp}(X \setminus D) \xrightarrow{t_+} \oplus_{j=0}^{m-1} H^{m-m_j-1/2}(\partial D, F_j)$$

given by $u \mapsto t(u)|_{\partial D}$. Finally, composing the inverse t_+^{-1} with the trace operator

$$H^m(D,E) \xrightarrow{t_-} \bigoplus_{j=0}^{m-1} H^{m-m_j-1/2}(\partial D, F_j)$$

we arrive at a continuous linear mapping

$$H^m(D, E) \ni u \mapsto \mathcal{E}(u) \in \mathcal{S}^m_{\Delta}(\hat{X} \setminus D) \cap \mathcal{H}^{\perp}(X \setminus D).$$
 (6.1)

For $u \in H^m(D, E)$, we now set

$$e(u)(x) = \begin{cases} u(x) & \text{if } x \in D, \\ \mathcal{E}(u)(x) & \text{if } x \in X \setminus \bar{D}. \end{cases}$$

Since $t(\mathcal{E}(u)) = t(u)$ on ∂D , it follows that $e(u) \in H^m(X, E)$. Furthermore, we have

$$e(u) \in \overset{\circ}{H}{}^m(V, E)$$

for all $u \in H^m((D, \sigma), E)$.

Theorem 6.1 The Hermitian form $h_D(u,v) = h(e(u),e(v))$ is a scalar product in $H^m((D,\sigma),E)$ defining a topology equivalent to the original one.

Proof. Theorem 3.5 implies the existence of a positive constant c with the property that

$$||u||_{H^m(D,E)}^2 \le ||e(u)||_{H^m(V,E)}^2$$

 $\le c h(e(u), e(u))$

for all $u \in H^m((D, \sigma), E)$.

On the other hand,

$$h_D(u, u) \le C \|e(u)\|_{H^m(V, E)}^2$$

 $\le 2C (\|u\|_{H^m(D, E)}^2 + \|\mathcal{E}(u)\|_{H^m(X \setminus D, E)}^2)$

for all $u \in H^m((D, \sigma), E)$, with C a constant independent of u. Using Lemma 4.3 and the continuity of the trace operator we see that

$$\|\mathcal{E}(u)\|_{H^{m}(X\setminus D, E)} \leq c \sum_{j=0}^{m-1} \|B_{j}u\|_{H^{m-m_{j}-1/2}(\partial D, F_{j})}$$

$$\leq C \|u\|_{H^{m}(D, E)}$$

for all $u \in H^m(D, E)$, the constants c and C need not be the same in different applications. This finishes the proof.

Theorem 6.2 Assume that $u \in H^m(D, E)$ and $f \in L^2(D, F)$. For every $v \in H^m((D, \sigma), E)$, it follows that

$$h_D(T_D f, v) = \int_D (f, Av)_x dx,$$

$$h_D((H_D + M_D)u, v) = \int_{X \setminus D} (A\mathcal{E}(u), A\mathcal{E}(v))_x dx + \int_X (He(u), He(v))_x dx.$$

Proof. Suppose $f \in C^{\infty}_{\text{comp}}(D, F)$. Then $T_D f \in \mathring{H}^m(V, E)$. Let us show that

$$e\left(Tf|_{D}\right) = Tf.$$

For this purpose, it is sufficient to check that the restriction of Tf to $X \setminus \bar{D}$ lies in $\mathcal{S}^m_{\Delta}(\hat{X} \setminus D) \cap \mathcal{H}^{\perp}(X \setminus D)$.

However, $Tf = G(A^*f)$ and therefore, as we have already seen in the proof of Theorem 3.5,

$$\Delta Tf = A^*f - HA^*f$$
$$= A^*f$$

on X. Since f has a compact support in D we readily deduce that $\Delta T f = 0$ in $X \setminus \bar{D}$.

Note that $\mathcal{H}(X \setminus D) \subset \mathcal{H}(V)$. Indeed, every element $u \in \mathcal{H}(X \setminus D)$ can be extended by zero from $X \setminus D$ to all of X as a solution to Au = 0 on X. Since $G(A^*f)$ is "orthogonal" to $\mathcal{H}(V)$ we conclude that $Tf|_{X \setminus \bar{D}} \in \mathcal{H}^{\perp}(X \setminus D)$, as desired.

Further, if $v \in H^m((D, \sigma), E)$ then $e(v) \in \mathring{H}^m(V, E)$ and Theorem 3.5 implies

$$h_D(T_D f, v) = h(T f, e(v))$$

$$= \int_X (f, A e(v))_x dx$$

$$= \int_D (f, A v)_x dx.$$

Since $C_{\text{comp}}^{\infty}(D, F)$ is dense in $L^2(D, F)$ and the operator T_D is bounded, this formula actually holds for all $f \in L^2(D, F)$.

Finally, (4.4) implies that

$$h_D((H_D + M_D)u, v) = h_D(u - T_D Au, v)$$

$$= \int_{X \setminus D} (A\mathcal{E}(u), A\mathcal{E}(v))_x dx + \int_X (He(u), He(v))_x dx$$

for all $v \in H^m((D, \sigma), E)$, as desired.

7 Iterations of potentials

Corollary 7.1 The operators

$$T_DA: H^m((D,\sigma),E) \rightarrow H^m((D,\sigma),E),$$

 $H_D+M_D: H^m((D,\sigma),E) \rightarrow H^m((D,\sigma),E)$

are selfadjoint and non-negative with respect to $h_D(\cdot,\cdot)$, and the norms of T_DA and $H_D + M_D$ do not exceed 1.

Proof. This follows immediately from Theorems 6.1 and 6.2.

Similarly to $\mathcal{H}^{\perp}(V)$, we denote $\mathcal{H}^{\perp}(D)$ the space of all $F \in H^{-m}(D, E)$ such that

 $\int_{D} (F, v)_x \, dx = 0$

for any $v \in \mathcal{H}(D)$. It is easy to see that $H^m((D,\sigma),E) \cap \mathcal{H}^{\perp}(D)$ just amounts to the orthogonal complement of $\mathcal{H}(D)$ in $H^m((D,\sigma),E)$ with respect to the scalar product $h_D(\cdot,\cdot)$ thereon. Indeed, we have $\mathcal{H}(D) \hookrightarrow \mathcal{H}(V)$ because every element $v \in \mathcal{H}(D)$ may be extended by zero from D to X as a solution to Av = 0 on X. It follows that $\mathcal{E}(v) = 0$ for all $v \in \mathcal{H}(D)$, whence Ae(v) = 0 on X and

$$h_D(u, v) = \int_X (He(u), He(v))_x dx$$
$$= \int_D (u, v)_x dx,$$

as desired.

Lemma 4.4 allows one to consider iterations of T_DA and $H_D + M_D$ in the space $H^m((D,\sigma),E)$. Given a closed subspace Σ of $H^m((D,\sigma),E)$, we write π_{Σ} for the orthogonal projection of $H^m((D,\sigma),E)$ onto Σ with respect to the scalar product $h_D(\cdot,\cdot)$.

Corollary 7.2 In the strong operator topology in $\mathcal{L}(H^m((D,\sigma),E))$, we have

$$\lim_{N \to \infty} (T_D A)^N = \pi_{\ker(H_D + M_D)},$$

$$\lim_{N \to \infty} (H_D + M_D)^N = \pi_{H^m((D,\sigma),E) \cap \mathcal{S}_A(D)}.$$

Moreover, in the strong operator topology of $\mathcal{L}(L^2(D,F))$,

$$\lim_{N \to \infty} (\mathrm{Id} - AT_D)^N = \pi_{\ker T_D}.$$

Proof. It follows from Corollary 7.1 that

$$\lim_{N \to \infty} (T_D A)^N = \pi_{\ker(\mathrm{Id} - T_D A)},$$

$$\lim_{N \to \infty} (H_D + M_D)^N = \pi_{\ker(\mathrm{Id} - H_D - M_D)},$$

$$\lim_{N \to \infty} (\mathrm{Id} - AT_D)^N = \pi_{\ker AT_D}$$

in the strong operator topology of $\mathcal{L}(H^m((D,\sigma),E))$ or $\mathcal{L}(L^2(D,F))$, respectively (see, for instance, §2 of [3] or [4] for compact operators). Theorem 6.2 and (4.4) imply

$$\ker(\operatorname{Id} - T_D A) = \ker(H_D + M_D),$$

$$\ker T_D A = H^m((D, \sigma), E) \cap \mathcal{S}_A(D),$$

$$\ker AT_D = \ker T_D,$$

showing the corollary.

Obliviously, if the coefficients of A are real analytic and σ has at least one interior point on ∂D then $H^m((D,\sigma),E) \cap \mathcal{S}_A(D) = \{0\}$. If moreover every connected component of $X \setminus D$ meets the boundary of V, i.e., $\partial X \cup \sigma$, then $H_D = 0$ and

$$\ker M_D = \overset{\circ}{H}{}^m(D, E).$$

Indeed, according to Theorem 6.2, if $u \in H^m((D,\sigma),E)$ and $M_D u = 0$ then $A\mathcal{E}(u) = 0$ in $X \setminus \bar{D}$ and $t(\mathcal{E}(u)) = 0$ on $\partial X \cup \sigma$. Hence it follows that $\mathcal{E}(u) \equiv 0$ in $X \setminus D$, and so $t(\mathcal{E}(u)) = 0$ on ∂D . From this we conclude that t(u) = 0 on ∂D whence $u \in \mathring{H}^m(D,E)$. Conversely, if $u \in \mathring{H}^m(D,E)$ then $M_D u = 0$, as desired.

Theorem 7.3 In the strong operator topology of $\mathcal{L}(H^m((D,\sigma),E))$, we have

Id =
$$H_D + \pi_{\ker(H_D + M_D)} + \sum_{\nu=0}^{\infty} (T_D A)^{\nu} M_D$$
, (7.1)
Id = $\pi_{H^m((D,\sigma),E) \cap \mathcal{S}_A(D)} + \sum_{\nu=0}^{\infty} (H_D + M_D)^{\nu} T_D A$. (7.2)

$$Id = \pi_{H^m((D,\sigma),E)\cap S_A(D)} + \sum_{\nu=0} (H_D + M_D)^{\nu} T_D A.$$
 (7.2)

Moreover, in the strong operator topology of $\mathcal{L}(L^2(D,F))$,

$$Id = \pi_{\ker T_D} + \sum_{\nu=0}^{\infty} A (H_D + M_D)^{\nu} T_D.$$
 (7.3)

Proof. Write

$$Id = (Id - AT_D)^N + \sum_{\nu=0}^{N-1} (Id - AT_D)^{\nu} AT_D,$$
 (7.4)

for every $N = 1, 2, \dots$ It is easily seen from (4.4) that

$$(\operatorname{Id} - AT_D)^{\nu} AT_D = A (\operatorname{Id} - T_D A)^{\nu} T_D$$
$$= A (H_D + M_D)^{\nu} T_D.$$

Using Corollary 7.2 we can pass to the limit in (7.4), when $N \to \infty$, thus obtaining (7.3). The proofs for (7.1) and (7.2) are similar.

8 Cauchy problem

We first introduce the space of Cauchy data on σ , for our differential operator A. Since A is given the domain $H^m(D,E)$, the space of zero Cauchy data is $H^m((D,\sigma),E)$. Recall that $H^m((D,\sigma),E)$ is proved to be the restriction of $\mathring{H}^m(V,E)$ to D.

Similarly to (4.2) we define the space of Cauchy data on σ as the quotient space

$$\frac{H^m(D,E)}{H^m((D,\sigma),E)},$$

t being thought of as the quotient mapping

$$t: H^m(D, E) \to \frac{H^m(D, E)}{H^m((D, \sigma), E)}.$$
 (8.1)

Once again we use the Hilbert structure in $H^m(D, E)$ to construct a continuous right inverse t^{-1} for t.

If the boundary of σ on ∂D is sufficiently smooth then the quotient space in (8.1) can be identified with $\bigoplus_{j=0}^{m-1} H^{m-m_j-1/2}(\sigma, F_j)$. Consider the following Cauchy problem, for the operator A and the Dirich-

Consider the following Cauchy problem, for the operator A and the Dirichlet system $(B_j)_{j=0,\dots,m-1}$.

Problem 8.1 Given $f \in L^2(D, F)$ and $u_0 \in H^m(D, E)/H^m((D, \sigma), E)$, find $u \in H^m(D, E)$ satisfying

$$\begin{cases} Pu = f & in D, \\ t(u) = u_0 & on \sigma. \end{cases}$$

This problem is ill-posed if σ is different from the whole boundary. Using Theorem 7.3 we obtain approximate solutions to the problem. To this end, we observe that

$$\frac{H^m(V,E)}{\mathring{H}^m(V,E)} \hookrightarrow \frac{H^m(D,E)}{H^m((D,\sigma),E)}$$

is a well-defined mapping "onto", which substitutes restriction of sections over ∂V to σ . Pick a $U \in H^m(V, E)$ such that $t(U) = u_0$ on σ . Lemma 4.3 yields that $MU \in H^m(V, E)$ satisfies $\Delta MU = 0$ in V and $t(MU) = u_0$ on σ , the last property being sufficient. Problem 8.1 thus reduces to that with zero boundary conditions.

Problem 8.2 Given any $f \in L^2(D, F)$, find a section $u \in H^m((D, \sigma), E)$ such that Au = f in D.

Note that for the problem to be solvable it is necessary that $f \perp \ker T_D$. Indeed,

$$\int_{D} (f,g)_{x} dx = \int_{D} (Au,g)_{x} dx$$
$$= h_{D}(u,T_{D}g)$$
$$= 0$$

for all $g \in L^2(D, F)$ satisfying $T_D g = 0$, the second equality being due to Theorem 6.2.

Theorem 8.3 Suppose $f \in L^2(D, F)$. Problem 8.2 is solvable if and only if $f \perp \ker T_D$ and the series

$$Rf = \sum_{\nu=0}^{\infty} (H_D + M_D)^{\nu} T_D f$$

converges in $H^m((D, \sigma), E)$. Moreover, if these conditions hold then Rf is a solution to Problem 8.2.

Proof. As mentioned above, the necessity follows from Theorems 6.1 and 7.3.

Conversely, let both conditions of the theorem be fulfilled. Then (7.3) implies

$$f = \sum_{\nu=0}^{\infty} A \left(H_D + M_D \right)^{\nu} T_D f.$$

Since the series Rf converges in $H^m((D, \sigma), E)$ we conclude that f = ARf, as desired.

In the case considered in Example 5.2 a similar result has been proved in [8].

Corollary 7.2 shows that the solution u = Rf lies in the orthogonal complement of the subspace $H^m((D, \sigma), E) \cap \mathcal{S}_A(D)$ in $H^m((D, \sigma), E)$ with respect to the scalar product $h_D(\cdot, \cdot)$. Clearly, Problem 8.2 possesses at most one solution belonging to this orthogonal complement. The partial sums $R_N f$ of the series Rf may be regarded as approximate solutions to Problem 8.2, provided that $f \perp \ker T_D$. In fact, it follows easily from Corollary 7.2 and Theorem 7.3 that $R_N f$ belongs to the orthogonal complement in question, for each $N = 0, 1, \ldots$, and

$$\lim_{N \to \infty} \|f - (\pi_{\ker T_D} f + A R_N f)\|_{L^2(D,F)} = 0$$

for all $f \in L^2(D, F)$. Indeed,

$$||f - (\pi_{\ker T_D} f + AR_N f)||_{L^2(D,F)} = ||\sum_{\nu=N+1}^{\infty} A M_D^{\nu} T_D f||_{L^2(D,F)},$$

and the last expression is the rest of a converging series.

If A is included into an elliptic complex

$$C^{\infty}_{\text{loc}}(X, E) \xrightarrow{A} C^{\infty}_{\text{loc}}(X, F) \xrightarrow{B} C^{\infty}_{\text{loc}}(X, G)$$

then the condition $f \perp \ker T_D$ in Theorem 8.3 may be replaced by

- 1) Bf = 0 in D;
- 2) $f \perp \ker T_D \cap \mathcal{S}_B(D)$.

Write

$$n(g) = \bigoplus_{j=0}^{m-1} *_{F_j}^{-1} C_j *_F (g)$$

for the formal adjoint of t with respect to the Green formula for A in D, cf. [9, 9.2.3]. Set

$$\mathcal{H}^1(D,\sigma) = \{ g \in L^2(D,F) : A^*g = 0, Bg = 0, \text{ and } n(g) = 0 \text{ on } \partial D \setminus \sigma \}.$$

We call $\mathcal{H}^1(D,\sigma)$ the harmonic space in the Cauchy problem with data on σ . By the ellipticity assumption, the elements of $\mathcal{H}^1(D,\sigma)$ are of class C^{∞} in D.

Lemma 8.4 ker
$$T_D \cap \mathcal{S}_B(D) = \mathcal{H}^1(D, \sigma)$$
.

Proof. Let $g \in \ker T_D \cap \mathcal{S}_B(D)$. From Theorem 6.2 it follows that $A^*g = 0$ in the sense of distributions on D. By the ellipticity of $B \oplus A^*$ we conclude that $g \in C^{\infty}_{loc}(D, F)$.

We next claim that n(g) = 0 weakly on $\partial D \setminus \sigma$. To prove this, we denote by D_{ε} the set of all $x \in D$ such that $\operatorname{dist}(x, \partial D) > \varepsilon$. For $\varepsilon > 0$ small enough, D_{ε} is also a domain with C^{∞} boundary. We shall have established the equality n(g) = 0 on $\partial D \setminus \sigma$ if we show that

$$\lim_{\varepsilon \to 0} \int_{\partial D_{\varepsilon}} (t(u), n(g))_x \ ds_{\varepsilon} = 0$$

for all $u \in C^{\infty}(\bar{D}, E)$ vanishing near σ . Here, ds_{ε} is the area element of the surface ∂D_{ε} .

Since g is C^{∞} in D, we get

$$\lim_{\varepsilon \to 0} \int_{\partial D_{\varepsilon}} (t(u), n(g))_{x} ds_{\varepsilon} = \lim_{\varepsilon \to 0} \int_{D_{\varepsilon}} (Au, g)_{x} dx$$
$$= \int_{D} (Au, g)_{x} dx$$
$$= h_{D}(u, T_{D}g)$$
$$= 0,$$

the first equality being due to Stokes' formula and the equality $A^*g = 0$, the second equality being a consequence of the fact that $g \in L^2(D, F)$, and the third one being due to Theorem 6.2. We have thus proved that $\ker T_D \cap \mathcal{S}_B(D)$ is a subset of $\mathcal{H}^1(D, \sigma)$.

Let us prove the opposite inclusion. Pick a $g \in \mathcal{H}^1(D, \sigma)$. By ellipticity we conclude that $g \in C^{\infty}_{loc}(D, F)$. For every $u \in C^{\infty}_{loc}(\bar{D}, E)$ vanishing near σ , we have

$$h_D(u, T_D g) = \lim_{\varepsilon \to 0} \int_{D_{\varepsilon}} (Au, g)_x dx$$
$$= \lim_{\varepsilon \to 0} \int_{\partial D_{\varepsilon}} (t(u), n(g))_x ds_{\varepsilon}$$
$$= 0.$$

Since such sections u are dense in $H^m((D,\sigma),E)$, it follows that $T_Dg=0$, as desired.

It is worth pointing out that the space $\mathcal{H}^1(D, \sigma)$ fails to be finite-dimensional in general.

9 Applications to Zaremba problem

In this section we assume that σ is the closure of an open subset in ∂D with smooth boundary.

Let $H^{-m}((D, \partial D \setminus \sigma), E)$ be the dual space for $H^m((D, \sigma), E)$ with respect to the pairing in $L^2(D, E)$. It coincides with the completion of $C_{\text{comp}}^{\infty}(D \cup \sigma, E)$ with respect to the norm

$$||F||_{H^{-m}((D,\partial D\setminus \sigma),E)} = \sup_{v \in C^{\infty}_{\operatorname{comp}}(\bar{D}\setminus \sigma,E)} \frac{|\int_{D} (F,v)_{x} dx|}{||v||_{H^{m}((D,\sigma),E)}}.$$

Recall that for $s \geq 0$ we write $H^{-s}(\partial D \setminus \sigma, F_j)$ for the dual of $H^s(\partial D \setminus \sigma, F_j)$ with respect to the pairing in $L^2(\partial D \setminus \sigma, F_j)$, cf. Section 3. One can prove that

$$H^{-s}(\partial D \setminus \sigma, F_j) \stackrel{\text{top.}}{\cong} \frac{H^{-s}(\partial D, F_j)}{H_{\sigma}^{-s}(\partial D, F_j)}$$

where $H_{\sigma}^{-s}(\partial D, F_j)$ is the subspace of $H^{-s}(\partial D, F_j)$ consisting of the elements with a support in σ .

By the above, the sesquilinear form

$$\int_{\partial D} (u_1, t(v))_x \ ds$$

is well defined for all

$$u_1 \in \bigoplus_{j=0}^{m-1} H^{-m+m_j+1/2}(\partial D \setminus \sigma, F_j),$$

 $v \in H^m((D, \sigma), E).$

We are now in a position to consider the following generalised Zaremba problem in D.

Problem 9.1 Given

$$F \in H^{-m}((D, \partial D \setminus \sigma), E),$$

$$u_1 \in \bigoplus_{j=0}^{m-1} H^{-m+m_j+1/2}(\partial D \setminus \sigma, F_j),$$

find $u \in H^m(D, E)$ such that

$$\begin{cases} \Delta u = F & in D, \\ t(u) = 0 & on \sigma, \\ n(Au) = u_1 & on \partial D \setminus \sigma. \end{cases}$$

The equation $\Delta u = F$ has to be understood in the sense of distributions in D, while the boundary conditions are interpreted in the following weak sense: Find $u \in H^m((D, \sigma), E)$ satisfying

$$\int_{D} (Au, Av)_{x} dx = \int_{D} (F, v)_{x} dx + \int_{\partial D} (u_{1}, t(v))_{x} ds$$
 (9.1)

for all $v \in H^m((D, \sigma), E)$.

We emphasise that the trace of n(Au) on $\partial D \setminus \sigma$ is not defined for any $u \in H^m((D,\sigma),E)$, because the order of $n \circ A$ is equal to 2m-1. To cope with this, a familiar way is to assign an operator L with a dense domain $\mathrm{Dom}\,L \hookrightarrow H^m((D,\sigma),E)$ to Problem 9.1, such that n(Au) is well defined for all $u \in \mathrm{Dom}\,L$. In fact, $\mathrm{Dom}\,L$ is defined to be the completion of $C^\infty_{\mathrm{comp}}(\bar{D} \setminus \sigma, E)$ with respect to the graph norm of $u \mapsto (u, n(Au))$ in $H^m((D,\sigma),E) \oplus \mathfrak{N}$, where

$$\mathfrak{N} = \bigoplus_{j=0}^{m-1} H^{-m+m_j+1/2} (\partial D \setminus \sigma, F_j).$$

For more details, see Roitberg [5] and elsewhere. Then, (9.1) defines a continuous operator Dom $L \to H^{-m}((D, \partial D \setminus \sigma), E) \oplus \mathfrak{N}$ by $Lu = (\Delta u, n(Au))$.

If A is the gradient operator in \mathbb{R}^n , then (9.1) is just the classical Zaremba problem in D.

Lemma 9.2 Suppose F = 0 and $u_1 = 0$. Then $u \in H^m(D, E)$ is a solution to Problem 9.1 if and only if $u \in H^m((D, \sigma), E) \cap S_A(D)$.

Proof. Obviously, any $u \in H^m((D, \sigma), E) \cap \mathcal{S}_A(D)$ is a solution of Problem 9.1 with F = 0 and $u_1 = 0$.

Conversely, let u be a solution to Problem 9.1 with F = 0 and $u_1 = 0$. Substituting v = u to (9.1) implies Au = 0 whence $u \in H^m((D, \sigma), E) \cap \mathcal{S}_A(D)$, as desired.

Lemma 9.2 shows that Problem 9.1 is not Fredholm in general, for the space $H^m((D, \sigma), E) \cap \mathcal{S}_A(D)$ need not be finite-dimensional.

For any $v \in H^m(V, E)$, the restriction $v|_D$ belongs to $H^m((D, \sigma), E)$. Hence to each $F \in H^{-m}((D, \partial D \setminus \sigma), E)$ we can assign an element $\tilde{F} \in H^{-m}(V, E)$ by

$$(\tilde{F}, v) = (F, v|_D)$$

for all $v \in \mathring{H}^m(V, E)$. We will write \tilde{F} simply $\chi_D F$ when no confusion can arise. Therefore, the integral

$$G\left(\chi_{D}F\right) = \int_{D} \left(F, *_{E}^{-1}K_{G}(x, \cdot)\right)_{y} dy$$

defines an element of $H^m((D, \sigma), E)$, for any $F \in H^{-m}((D, \partial D \setminus \sigma), E)$.

Furthermore, since $u \mapsto t(u) \oplus n(Au)$ is a Dirichlet system of order 2m-1 on ∂D , for every data $u_1 \in \mathfrak{N}$ there exists a $U \in \text{Dom } L$ with the property that $n(AU) = u_1$ on $\partial D \setminus \sigma$ (see for instance Lemma 9.2.17 of [9]). This means that

$$\int_D (AU, Av)_x dx = \int_D (\Delta U, v)_x dx + \int_{\partial D} (u_1, t(v))_x ds$$

for all $v \in H^m((D, \sigma), E)$. Set

$$P_{\mathrm{sl}}u_{1}(x) = -\int_{\partial D} G_{A^{*}}(K_{G}(x,\cdot), AU)$$
$$= \int_{\partial D} \left(n(AU), t\left(*_{E}^{-1}K_{G}(x,\cdot)\right)\right)_{y} ds,$$

for $x \in D$.

This integral is well defined and it does not depend on the particular choice of U. Indeed, since $\Delta U \in H^{-m}((D, \partial D \setminus \sigma), E)$ we conclude, by Stokes' formula, that

$$P_{sl}u_1 = GA^* (\chi_D AU) - G (\chi_D \Delta U)$$

= $T_D AU - G (\chi_D \Delta U)$,

which is in $H^m((D, \sigma), E)$.

Let now $U \in \text{Dom } L$ be such that n(AU) = 0 on $\partial D \setminus \sigma$. Then using Theorem 3.3 yields

$$\int_{X} \left(-\int_{\partial D} G_{A^*}(K_G(x,\cdot), AU), v \right)_{x} dx = \int_{X} \left(GA^* \chi_D AU - G\chi_D \Delta U, v \right)_{x} dx$$

$$= \int_{X} \left(A^* \chi_D AU - \chi_D \Delta U, Gv \right)_{x} dx$$

$$= \int_{D} \left(AU, AGv \right)_{x} dx - \int_{D} \left(\Delta U, Gv \right)_{x} dx$$

$$= 0$$

for all $v \in C^{\infty}_{\text{comp}}(X, E)$, because $Gv \in H^m((D, \sigma), E)$. Hence, $P_{\text{sl}}u_1$ is independent of the choice of U.

Theorem 9.3 Problem 9.1 is solvable if and only if 1)

$$\int_D (F, v)_x dx + \int_{\partial D} (u_1, t(v))_x ds = 0$$

for all $v \in H^m((D, \sigma), E) \cap \mathcal{S}_A(D)$;

2) the series

$$R(F, u_1) = \sum_{\nu=0}^{\infty} (H_D + M_D)^{\nu} (G(\chi_D F) + P_{\rm sl} u_1)$$

converges in the $H^m(D, E)$ -norm.

If 1) and 2) hold then $R(F, u_1)$ is a solution to Problem 9.1.

Proof. Let Problem 9.1 be solvable and let $u \in H^m((D, \sigma), E)$ be a solution. Then

$$T_D A u = G(\chi_D \Delta u) - \int_{\partial D} G_{A^*}(K_G(x, \cdot), A u)$$
$$= G(\chi_D F) + P_{sl} u_1,$$

and so the series $R(F, u_1) = RAu$ converges in the $H^m(D, E)$ -norm, which is due to Corollary 7.2.

Conversely, assume that 1) and 2) are fulfilled. Let us prove that the series $R(F, u_1)$ satisfies (9.1). Indeed, by Theorem 6.1

$$\int_{D} (AR(F, u_1), Av)_x dx = h_D (G(\chi_D F) + P_{sl}u_1, v)$$

$$= h_D (G(\chi_D F) + GA^* (\chi_D AU) - G(\chi_D \Delta U), v)$$

with a section $U \in \text{Dom } L$ such that $n(AU) = u_1$ on $\partial D \setminus \sigma$.

Using Theorem 3.3 we see that $e(G\tilde{F}) = G\tilde{F}$ for all $\tilde{F} \in H^{-m}(V, E)$ satisfying $\tilde{F} - H\tilde{F} = 0$ in $X \setminus \bar{D}$. We next apply this equality with

$$\tilde{F} = \chi_D F + A^* \left(\chi_D A U \right) - \chi_D \Delta U.$$

We have

$$\begin{split} \int_X \left(\tilde{F}, v \right)_x dx &= \int_D \left(F - \Delta U, v \right)_x dx \\ &= \int_D \left(F, v \right)_x dx + \int_{\partial D} \left(n(AU), t(v) \right)_x ds \\ &= 0 \end{split}$$

for all $v \in H^m((D, \sigma), E) \cap \mathcal{S}_A(D)$, the last equality being a consequence of condition 1). Hence it follows readily that $H\tilde{F} = 0$ in V, and so $\tilde{F} - H\tilde{F} = 0$ in $X \setminus \bar{D}$.

Therefore, $e(G\tilde{F}) = G\tilde{F}$ and we get

$$\int_{D} (AR(F, u_{1}), Av)_{x} dx = h\left(e(G\tilde{F}), e(v)\right)$$

$$= \int_{X} \left(AG\tilde{F}, Ae(v)\right)_{x} dx + \int_{X} \left(HG\tilde{F}, He(v)\right)_{x} dx$$

$$= \int_{X} \left(\tilde{F}, G\Delta e(v)\right)_{x} dx$$

$$= \int_{X} \left(\tilde{F}, e(v) - He(v)\right)_{x} dx$$

$$= \int_{D} (F - \Delta U, e(v))_{x} dx + \int_{D} (AU, Ae(v))_{x} dx$$

$$= \int_{D} (F, v)_{x} dx + \int_{\partial D} (n(AU), t(v))_{x} ds$$

for all $v \in H^m((D, \sigma), E)$. Here, the fifth equality is due to condition 1) and the fact that $He(v) \in H^m((D, \sigma), E) \cap \mathcal{S}_A(D)$, and the last equality is a consequence of Stokes' formula. We have arrived at (9.1), thus proving the theorem.

Corollary 7.2 implies that the solution $R(F, u_1)$ to Problem 9.1 lies in the orthogonal complement of $H^m((D, \sigma), E) \cap \mathcal{S}_A(D)$ in $H^m((D, \sigma), E)$ with respect to the scalar product $h_D(\cdot, \cdot)$. Moreover, $R(F, u_1)$ is the unique solution belonging to this subspace. The partial sums $R_N(F, u_1)$ of the series $R(F, u_1)$ may be regarded as approximate solutions to Problem 9.1, provided that F

and u_1 meet condition 1) of Theorem 9.3. The sequence $R_N(F, u_1)$ has the following property:

$$\left| \int_{D} \left(AR_{N}(F, u_{1}), Av \right)_{x} dx - \int_{D} \left(F, v \right)_{y} dy - \int_{\partial D} \left(u_{1}, t(v) \right)_{x} ds \right|$$

$$\leq c \| M_{D}^{N+1} \left(G(\chi_{D}F) + P_{\text{sl}}u_{1} \right) \|_{H^{m}(D, E)} \| v \|_{H^{m}(D, E)}$$

$$(9.2)$$

for all $v \in H^m((D, \sigma), E)$, with c a constant independent of N and v. Indeed, as we have seen above (cf. (7.4)),

$$T_D A R_N(F, u_1) = (G(\chi_D F) + P_{sl} u_1) - M_D^{N+1} (G(\chi_D F) + P_{sl} u_1)$$

whence

$$\int_{D} (AR_{N}(F, u_{1}), Av)_{x} dx
= h_{D} (T_{D}AR_{N}(F, u_{1}), v)
= h_{D} ((G(\chi_{D}F) + P_{sl}u_{1}) - M_{D}^{N+1} (G(\chi_{D}F) + P_{sl}u_{1}), v)
= \int_{D} (F, v)_{x} dx + \int_{\partial D} (u_{1}, t(v))_{x} ds - h_{D} (M_{D}^{N+1} (G(\chi_{D}F) + P_{sl}u_{1}), v) .$$

The scalar product $h_D(\cdot,\cdot)$ defines an equivalent norm, hence the estimate (9.2) holds. Since $G(\chi_D F) + P_{\rm sl} u_1$ is orthogonal to $H^m((D,\sigma),E) \cap \mathcal{S}_A(D)$ we see that

$$\lim_{N \to \infty} ||M_D^{N+1}(G(\chi_D F) + P_{\mathrm{sl}} u_1)||_{H^m(D,E)} = 0.$$

Of course, if Problem 9.1 is Fredholm then the series $R(F, u_1)$ converges for all data F and u_1 .

In the setting of Example 5.2 such a theorem was proved in [8]. We can also treat the inhomogeneous Zaremba problem.

Problem 9.4 Given

$$F \in H^{-m}((D, \partial D \setminus \sigma), E),$$

$$u_0 \in \bigoplus_{j=0}^{m-1} H^{m-m_j-1/2}(\sigma, F_j),$$

$$u_1 \in \bigoplus_{j=0}^{m-1} H^{-m+m_j+1/2}(\partial D \setminus \sigma, F_j),$$

find $u \in H^m(D, E)$ such that

$$\begin{cases} \Delta u = F & in D, \\ t(u) = u_0 & on \sigma, \\ n(Au) = u_1 & on \partial D \setminus \sigma. \end{cases}$$

Indeed, using the potential $M_D t^{-1} u_0$ as in Section 4, we easily reduce it to Problem 9.1.

References

- [1] L. I. Hedberg and T. H. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 4, 161–187.
- [2] L. I. Hedberg, Approximation by harmonic functions and stability of the Dirichlet problem, Exposition Math. 11 (1993), 193–259.
- [3] M. NACINOVICH and A. SHLAPUNOV, On iterations of the Green integrals and their applications to elliptic differential complexes, Math. Nachr. **180** (1996), 243–286.
- [4] M. M. LAVRENT'EV, V. G. ROMANOV, and S. P. SHISHATSKII, Ill-Posed Problems of Mathematical Physics and Analysis, Nauka, Moscow, 1980, 286 pp.
- [5] YA. A. ROITBERG, Elliptic Boundary Value Problems in Generalized Functions, Kluwer Academic Publishers, Dordrecht NL, 2000.
- [6] A. V. Romanov, Convergence of iterations of Bochner-Martinelli operator, and the Cauchy-Riemann system, Soviet Math. Dokl. 19 (1978), no. 5.
- [7] B.-W. Schulze, Crack problems in the edge pseudo-differential calculus, Applic. Analysis 45 (1992), 333–360.
- [8] B.-W. Schulze, A. A. Shlapunov, and N. Tarkhanov, Regularisation of Mixed Boundary Problems, Preprint 99/9, Univ. Potsdam, Potsdam, 1999, 32 pp.
- [9] N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Akademie-Verlag, Berlin, 1995.
- [10] M. I. Vishik, On strongly elliptic systems of differential equations, Mat. Sb. 29 (71) (1951), no. 3.

(B.-W. Schulze) Universität Potsdam, Institut für Mathematik, Postfach 60 15 53, 14415 Potsdam, Germany

E-mail address: schulze@math.uni-potsdam.de

(A. Shlapunov) Krasnoyarsk State University, pr. Svobodnyi, 79, 660041 Krasnoyarsk, Russia E-mail address: shlapuno@math.kgu.krasnoyarsk.su

(N. Tarkhanov) Institute of Physics, Russian Academy of Sciences, Akademgorodok, 660036 Krasnoyarsk, Russia

E-mail address: tarkhan@math.uni-potsdam.de